
Fault Tolerant Error Coding and Detection using
Reversible Gates

Rekha K. James, Shahana T. K, K. Poulose Jacob Sreela Sasi
 Cochin University of Science and Technology Gannon University

 Kochi, Kerala, India Erie, PA, USA
 E-mail: {rekhajames, shahanatk, kpj}@cusat.ac.in sasi001@gannon.edu

Abstract - In recent years, reversible logic has emerged as one
of the most important approaches for power optimization
with its application in low power CMOS, quantum computing
and nanotechnology. Low power circuits implemented using
reversible logic that provides single error correction – double
error detection (SEC-DED) is proposed in this paper. The
design is done using a new 4 x 4 reversible gate called ‘HCG’
for implementing hamming error coding and detection
circuits. A parity preserving HCG (PPHCG) that preserves
the input parity at the output bits is used for achieving fault
tolerance for the hamming error coding and detection circuits.�
�
Keywords: fault tolerance, reversible logic, hamming
code, low power designs

I. INTRODUCTION

Error correcting codes are traditionally used to battle the
corruption of transmitted data by channel noise. The
encoded data, or code words, are sent through the channel
and decoded at the receiving end. During decoding the
errors are detected and corrected if the amount of error is
within the allowed, correctable, range. This range depends
on the extra information, parity bits, added during
encoding. Single-error-correcting and double-error-
detecting (SEC-DED) codes are generally used for this
purpose. There are many ways to construct SEC-DED
codes, and one of the most commonly used code is the
Hamming Code.

As power has become a first-order design consideration,
researchers have begun looking at techniques to reduce
power consumption in error coding and detection circuitry.
Energy loss during computation is an important
consideration in low power digital design. Landauer’s
principle states that a heat equivalent to kT*ln2 is
generated for every bit of information lost, where ‘k’ is the
Boltzmann’s constant and ‘T’ is the temperature [1]. At
room temperature T, though the amount of heat generated
may be less it cannot be neglected for low power designs.
The amount of energy dissipated in a system bears a direct
relationship to the number of bits erased during
computation. Bennett showed that energy dissipation would
not occur if the computations were carried out using
reversible circuits [2] since these circuits do not lose
information. Neither feedback nor fan-out is allowed in
reversible circuits. Classical logic gates such as AND, OR
and XOR are not reversible. Hence, these gates dissipate
heat and may reduce the life of the circuit. So, reversible
logic is in demand in power aware circuits. In recent years,
reversible logic has emerged as one of the most important

approaches for power optimization with its application in
low power CMOS, nanotechnology and quantum
computing.

One of the main constraints in reversible logic is to
minimize the number of reversible gates used and number
of unutilized outputs called “garbage” produced. Garbage
output refers to the output that is not used for further
computations. In other words, it is not used as a primary
output or as an input to another gate. As the number of
inputs and outputs are made equal there may be a number
of garbage outputs produced in certain reversible
implementations. In literature, there are a number of
existing reversible gates such as Fredkin gate [3], Toffoli
Gate [4], Feynman Gate [5], Feynman Double Gate [6] etc.
In this paper, a new reversible 4 x 4 HC gate (HCG) is
proposed for implementing hamming error coding and
detection circuits.

Parity checking is one of the oldest, as well as one of the
most widely used methods for error detection in digital
systems. Detection of faults generated in a circuit can be
done by using parity-preserving reversible logic gates. The
feasibility of the parity-preserving approach in the design
of reversible logic circuits was demonstrated by B. Parhami
[6] with examples of adder circuits. In this research, a
modified HCG in which the parity of the outputs matches
with that of the inputs is proposed. This can be used along
with other parity preserving reversible logic gates to
generate the parity preserved / fault tolerant hamming code.
Parity preserving characteristic of such gates allows the
detection of single fault generated in the circuit at the
circuit’s primary outputs in reversible logic design.

The organization of this paper is as follows: The
necessary background on reversible logic gates used for the
current implementation is discussed initially. Then ‘HC
gate’ (HCG) is proposed, and (7, 4) Hamming code
generator is implemented using this gate without any
garbage outputs. The design is chosen in such a way to
reduce the number of gates, number of levels (delay) and
number of garbage outputs to a minimum. A fault detection
method for hamming code generator circuit based on
parity-preserving reversible logic gates is introduced. The
fault tolerant reversible hamming code generator
implemented using such gates allow detection of single
fault caused in the circuit. The design is then extended for
the implementation of Hamming code error detector.
Finally, a comparison in terms of number of reversible
gates, garbage outputs and number of levels (delay) is done
for all types of implementations.

II. REVERSIBLE LOGIC GATES

This section gives the necessary background on

reversible logic gates used for the current implementation.

A. Feynman Gate

Figure 1 shows a Feynman Gate (FG) [5]. Feynman Gate
can be used as a copying gate. Since a fan-out greater than
one is not allowed, this gate is useful for duplication of the
required outputs. If B=’0’, then P=A and Q=A. But FG is
not a parity preserving gate.

Figure1. 2 x 2 Feynman Gate (FG)

B. Feynman Double Gate

Figure 2 shows a Feynman Double Gate [6]. Feynman
Double Gate (F2G) can also be used as a copying gate. If
B=’0’ and C=’0’ then P=A, Q=A and R=A. Since A⊕B⊕C
= P⊕Q⊕R, F2G is a parity preserving gate, and is suitable
for fault tolerant implementations.

Figure 2. 3 x 3 Feynman Double Gate (F2G)

III. PROPOSED REVERSIBLE GATES

A. 4 x 4 Reversible HC Gate

In this paper, a 4 x 4 reversible gate called HC gate
(HCG) is proposed, and is shown in Figure 3. Table I
shows the corresponding truth table.

TABLE 1. TRUTH TABLE OF THE 4 x 4 HCG

It is obvious from the truth table that the input pattern

corresponding to a particular output pattern can be uniquely
determined.

Figure 3. Reversible 4 x 4 HCG

B. 4 x 4 Reversible PPHC Gate

The proposed reversible Parity Preserving HC gate

(PPHCG) is shown in Figure 4. Table 2 shows the
corresponding truth table. It can be verified from the truth
table that the outputs preserve the input parity.

Figure 4. Reversible 4 x 4 PPHC

TABLE 2. TRUTH TABLE OF THE PROPOSED PPHC GATE

IV. REVERSIBLE HAMMING CODE
GENERATOR

One of the most commonly used code to perform Single

Error Correction - Double Error Detection (SEC-DED) is
the Hamming Code. The key to the Hamming Code is the
use of extra bits to allow the identification of a single error
or detection of double errors. The use of simple parity
allows detection of single bit errors in a received message.
Correction of such errors requires more information, since
the position of the bad bit must be identified if it is to be
corrected. Consider a message having four data bits (D3-0)
which is to be transmitted as a 7-bit codeword by adding

Inputs Outputs
A B C D P Q R S
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 1 1 1 0
0 1 0 1 1 1 0 1
0 1 1 0 1 0 1 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1
1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1

Inputs Outputs
A B C D P Q R S
0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1
0 0 1 0 1 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 1 1 1 0
0 1 0 1 0 1 0 1
0 1 1 0 0 0 1 1
0 1 1 1 1 0 0 0
1 0 0 0 0 1 1 1
1 0 0 1 1 1 0 0
1 0 1 0 1 0 1 0
1 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1
1 1 0 1 0 0 1 0
1 1 1 0 0 1 0 0
1 1 1 1 1 1 1 1

F2G

A
B
C

P=A
Q=A B
R=A C

FG A
B

P=A
Q=A B

three error check bits. This would be called a (7, 4) code.
The three bits to be added are three even parity bits (P),
where the parity bit is computed on different subsets of the
message bits using equations (1-3).

P1 = D0 D1 D3 (1)
P2 = D0 D2 D3 (2)
P3 = D1 D2 D3 (3)

To illustrate the application of proposed HCG a (7, 4) bit

hamming code generator is designed. Figure 5 shows (7, 4)
hamming code generator designed using 4 x 4 HCG and
three FGs. It is seen that the circuit requires 4 gates at 2
levels and generates the 7-bit hamming code (H7 to H1)
without any garbage outputs.

Figure 5. Reversible (7, 4) Hamming code generator using HCG

The reversible hamming code generator designed using
F2G and FG gates is shown in Figure 6. On comparing the
two implementations it is evident that the implementation
using F2G and FG requires 6 reversible gates at 4 levels
while the implementation using HCG and FG requires only
4 gates at 2 levels. However both implementations attain
minimum number of garbage outputs. The types of gates
used in these two implementations are not parity preserving
gates except for F2G and hence are not fault tolerant
implementations.

Figure 6. Reversible (7, 4) Hamming code generator using F2G

V. PARITY PRESERVING REVERSIBLE
HAMMING CODE GENERATOR

Figure 7 shows the implementation of reversible

hamming code generator designed using parity preserving
gates. The implementation makes use of 5 gates at 2 levels
and produces 5 garbage outputs. The input and output
parity will be the same, since the design is done using

parity preserving gates. At each level a single fault can be
detected by checking the parity of the inputs and outputs.

�

Figure 7. (7, 4) Reversible Hamming Code Generator using parity
preserving gates

The design makes use of 2 types of reversible gates.

VLSI implementations using only one type of modular
building blocks can decrease system design and
manufacturing cost. For achieving a VLSI implementation,
circuits using only one type of reversible gate as the basic
building block can be adopted. Figure 8 shows the
implementation using six F2Gs at 4 levels with 4 garbage
outputs. The implementation uses a single type of
reversible gate and produces less number of garbage
outputs. But this results in increased delay and makes use
of more number of gates.

Figure 8. (7, 4) Reversible Hamming Code Generator using F2G

VI. REVERSIBLE HAMMING CODE ERROR
DETECTOR

Figure 9 shows the (7, 4) hamming code error detector

designed using 4 x 4 HCG and three FGs. It is seen that the
circuit requires 4 gates at 2 levels and generates the check
bits (C3 to C1) with 4 garbage outputs. Check bits are
computed on different subsets of the hamming code bits
using the equations (4 - 6).

C1 = H1 H3 H5 H7 (4)
C2 = H2 H3 H6 H7 (5)
C3 = H4 H5 H6 H7 (6)

If all the check bits are zeros it indicates a ‘no error

condition’, otherwise it indicates the position of error. This
implementation is not done using parity preserving gates
and hence is not capable of detecting any fault in the
circuit.

Figure 9. Reversible (7, 4) Hamming code error detector using HCG

Figure 10 shows the implementation of reversible
hamming code error detector designed using parity
preserving gates. The implementation makes use of 5 gates
at 3 levels and produces 6 garbage outputs. The advantage
of this implementation is the use of only one type of
reversible gate, but it results in increased delay and makes
use of more number of gates. Since the implementation
uses only one type of reversible gate, the design is more
suitable for VLSI circuits.

Figure 10. Reversible (7, 4) Hamming code error detector using F2G

Table 3 shows the comparisons between different
implementations of hamming error coding and detection
circuits in terms of number of gates, garbage outputs and
levels.

VII. CONCLUSION AND FUTURE WORK

Different implementations for the reversible (7, 4)

hamming error coding and detection circuits are presented.
It is demonstrated that the design using 4 x 4 HCG is
highly optimized in terms of number of reversible gates
and/or garbage outputs. The design strategy is chosen in
such a way to reduce the most important factor of the
reversible circuit cost - the number of garbage outputs
along with number of reversible gates and delay. This
approach also provides a way of incorporating fault
tolerance into reversible circuits without much extra design
effort and with modest hardware overhead. It is hoped that
parity preservation by itself proves useful for ensuring the
robustness of reversible logic circuits in their various
application domains. The fault tolerant reversible hamming
code circuits implemented using parity preserving gates
allow detection of single fault caused in the circuit also.

In this research, the elements of a known traditional logic
implementation for an Error Correcting Code, (hamming
code) coding and detection circuits were replaced with
reversible equivalents. Further investigation into
determining alternate implementations can be done using

logic synthesis methods [7, 8, 9, 10]. Additionally, it was
noted that there is a lack of simulation tools that support
reversible gates, and this is most definitely an area worthy
of attention. The major challenges that remain are the
development of hardware and software tools for reversible
logic.

TABLE 3. COMPARISON OF REVERSIBLE HAMMING ERROR

CODING AND DETECTION CIRCUITS

Reversible 7-bit
Hamming Code

circuit

No. of

reversible
gates

No. of

Garbage
outputs

No. of
levels

HC generator using

HCG and FG

4

NIL

2

HC generator using

F2G and FG

6

NIL

4

Parity preserving HC

Generator using
PPHC gate

5

5

2

Parity preserving HC
Generator using F2G

6

4

4

HC error detector

using HCG and FG

4

4

2

Parity preserving HC
error detector using

F2G

5

6

3

REFERENCES

[1] R. Landauer, “Irreversibility and Heat Generation in the

Computational Process”, IBM Journal of Research Development, 5,
1961, 183-191.

[2] Bennett, C., “Logical Reversibility of Computation,” IBM Journal of
Research and Development, 17, 1973, 525-532.

[3] E. Fredkin and T. Toffoli, “Conservative logic,” Int’l J. Theoretical
Physics, Vol. 21, pp.219–253, 1982.

[4] T. Toffoli, “Reversible Computing,” Tech memo MIT/LCS/TM-151,
MIT Lab for Comp. Sci, 1980.

[5] R. Feynman, “Quantum Mechanical Computers,” Optics News, Vol.
11, pp. 11–20, 1985.

[6] B. Parhami; “Fault Tolerant Reversible Circuits” Proc. 40th Asilomar
Conf. Signals, Systems, and Computers, Pacific Grove, CA, Oct.
2006.

[7] Dmitri Maslov, "Reversible Logic Synthesis”, PhD Dissertion,
Computer Science Department, University of New Brunswick,
Canada, Oct 2003.

[8] A. Agrawal and N. K. Jha, “Synthesis of reversible logic,” in Proc.
Design Automation & Test in Europe Conf., Feb. 2004, pp. 21 384–
21 385.

[9] P. Gupta, A. Agrawal, N.K. Jha, “An algorithm for synthesis of
reversible logic circuits”, IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems”, Nov. 2006, Volume: 25,
Issue 11, pp. 2317-2330

[10] Guowu Yang; Fei Xie; Xiaoyu Song; Hung, W.N.N.; Perkowski,
M.A., “A constructive Algorithm for Reversible Logic synthesis”
IEEE Congress on Evolutionary Computation, July 2006, pp. 2416-
2421.

