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Chapter 1

Introduction

1.1 Inventory System and its Motivation

Inventory management of physical goods or other products or elements is an integral part of
logistic systems common to all sectors of the economy, such as business, industry, agriculture
and defense. In an economy that is perfectly predictable, inventory may be needed to take
advantage of the economic features of a particular technology, or to syncronize human tasks,
or to regulate the production process to meet the changing trends in demand. When uncertainty
is present, inventories are used as a protection against risk of stockout.

The existance of inventory in a system generally implics the existance of an organized
complex system involving inflow, accumulation, and outflow of some commoditics or goods
or items or products. For example, in business the inflow of goods is generated through pro-
curement, purchase, or production. The outflow is generated through demand for the goods.
Finally, the difference between the rate of outflow and the rate of inflow generates an tnventory
for the goods.

The regulation and control of inventory must proceed within the context of this organized
system. Thus inventories, rather than being interpreted as idle resources, should be regarded as
a very essential element, the study of which may provide insight into the aggregate operation

of the system. The scientific analysis of inventory systems define the degree of interrelation-
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ship between inflow and outflow and identifies economic control methods for operaling such
systems.

Therc are several factors affecting the inventory. They arc demand, life-times of items
stored, damage due to external disaster, production rate, the time lag between order and sup-
ply, availability of space in the store etc. If all the paramcters are known beforehand, then
the inventory is called deterministic. If some or all of these parameters are not known with
certainty, then it is justifiable to consider them as random variables with some probability dis-
tribution and the resulting inventory is then called stochastic or probabilistic. System in which
one commodity is held independent of other commoditics are analyzed as single commodity
inventory problems. Multi-commodity inventory problems deal with two or more commodities
held together with some form of dependence. Inventory systcms may again be classified as
continuous review or periodic review. A continuous review policy is to check inventory level
continuously in time and a periodic review policy is to monitor the system at discrele, equally
spaced instants of time.

Efficient management of inventory system is done by finding out optimal values of the
decision variables. The important decision variables in an inventory system are order level
or maximum capacity of the inventory, re-ordering point, scheduling period and lot-size or
order quantity. They are usaully represented by the letters S, s. t and ¢ respectively. Different
policics are obtained when different combinations of decision variables are selected. Existing
prominent inventory policies are: (i) (s, S)-policy in which an order is placed for a quantity
up to S whenever the inventory level falls to s or below. (ii) (s, g)-policy where the order is
given for ¢ quantity when the inventory level is in s or below. (iii) (t, S)-policy which places
an order at scheduling periods of length ¢ so as to bring back the inventory level up to S and
(iv) (t, ¢)-policy that gives an order for ¢ quantity at epochs of ¢ interval length.

The time elapsed between an order and the consequent replenishment is termed as lead
time. If the replenishment is instantaneous, then lead time is zero and the system is then called
an inventory system without lead time. Inventory models with positive lead time are complex
to analyze; still more complex are the models where the lead times are taken to be random

variables.
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Shortage of inventory occur in systems with positive lead time, in systems with negative
re-ordering points, or in multi-commodity inventory systems in which an order is placed only
when the inventory levels of at least two commodities fall to or below their re-ordering points.
There are different methods to face the stock out periods of the inventory. One of the methods
is to consider the demands during the dry periods as lost sales. The other is partial or full
backlogging of the demands during these period.

In most of the analysis of inventory systems the decay and disaster factors are ignored.
In several existing models, it is assumed that products have infinite shelf-life. But in several
practical situations, a certain amount of decay or waste is experienced on the stocked items.
For example this may arise in certain food products subjected to deterioration or radio-active
materials where decay is present, or volatile fluids under evaporation. These deterioration of
items in the nventory system occur due to one or many factors such as storage condition,
weather condition including the nature of the particular product under study.Some items in the
inventory system may deteriorate wheras other can be stored for an indefinite period without
deterioration. The deterioration is usually a function of the total amount of inventory on hand.

This is one of the crucial factor that affect the inventory system.

1.2 Literature survey

The mathematical analysis of inventory problem was started by Harris [30]. He proposed the
famous EOQ fermula that was popularized by Wilson. Pierre Masse [63] discussed the stochas-
tic behaviour ot the inventory in the case of scheduling the use of stored water to minimize the
cost of supplying electric energy. He obtained a satisfactory result regarding this problem.
The first paper related to (s, S)-policy is by Arrow, Harris and Marchak [3].They showed that
tiie total expected cost incurred from the use of an (s, S)-policy satisfied a renewal equation.
Dvorestzky, Kiefer and Wolfowitz [17] established sufficient conditions an (s, S)-policy for
the single stage inventory problem to be optimal. Whitin [89] and Gani [21] have sumarized
several results in siorage systems,

A systematic account of the (s, S) inventory policy is provided Arrow, Karlin and Scarf [4]
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based on renewal theory. Hadley and Whitin [29] give sevcral applications of different inven-
tory models. In a review article Veinott [87] provided a dctailed account of the worlk carried
out in inventory theory. Naddore [56] compared different inventory policies by discussing their
cost analysis. Gross and Harris [27] considered the inventory system with state dependent lead
times. In a later work [26] they dealt with the idea of dependence between replenishment times
and the number of outstanding orders. Tijms [86] contains a detailed analysis of the inventory
system under (s, §)-policy.

Sivazlian [79] analyzed the continuous review (s, S) inventory system with arbitrarily dis-
tributed interarrival times and unit demands. He showed that the limiting distribution of the po-
sition inventory is uniform and independent of the interarrival time distribution. Richards [70]
proved the same result for compound renewal demands. Later [71] he dealt with a continuous
review (s,.S) inventory system in which the demand for items in inventory is dependent on an
external envirenment. Sahin [75] discussed continuous review (s, .S) inventory with continuous
state space and constant lead times. Srinivasan [81] extended Sivazlian’s result to the case of ar-
bitarily distributed lead times. He derived explicit expressions for probability mass function of
the stock level ard extracted steady state results. This was further extended by Manoharan, Ki-
ishramoorthy and Madhusoodanan [54] to the casc of non-identically distributed inter-arrival
times. Sahin [74] derived the binomial moments of the transient and stationary distributions
of the number of backlogs in a continuous review (s, S) inventory model with arbitrarily dis-
tributed lead time and compound renewal demand. Thangaraj and Ramanarayanan [85] deal
with an inventory system with random lead time having two order levels.

Kalpakam and Sapna [38] analyze an (s, S) ordering policy in which items are procured
on an emergency basis during stock out period. Again they [39] dealt with the problem of
controlling the replenishment rates in a lost sales inventory system with compound Poisson
demands and two re-order levels with varying order quantities. Prasad [64] developed a new
classification system that compare different inventory systems. I1ill [31] analyzed a continuous
review lost sales inventory model in which more than one order may be outstanding. Perry
et al.[62] analyzed continuous review inventory systems with exponential random yield by

the techniques of level crossing theory. Sapna [77] dcals with (s, S) inventory system with
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priority customers and arbitrary lead time distribution. Kalpakam and Sapna [40] discuss an
environment dependent (s, §) inventory system with renewal demands and lost sales where the
environment changes between available and unavailable periods according to a Markov chain.

A lot of work related to perishable inventory systcm are reported. Still more work are
going on in this direction because of its influencing nature in the inventory system. Ghare and
Schrader [22] introduced the concept of exponential decay in inventory problems. Nahmias
and Wang [58] derive a heuristic lot size re-order policy for an inventory problem subject to
exponential decay. Graves [25] apply the theory of impatient servers to some continuous review
perishable inventory models. An exhustive review of the work done in perishable inventory
until 1982 can be seen in Nahmias [57]. Kaspi and Perry [42, 43] deal with inventory system
with constant life times applicable to blood banks.

Kalpakam and Arivarignan [34, 35] studied a continuous review inventory system having
an exhibiting item subject to random failure (exponentially distributed life-times). They [36]
extended the result to exhibit items having Erlangian life times under renewal demands. Again
they [33] analyzed a perishable inventory model having exponential life-times for all the items.
‘Manoharan and A.Krishnamoorthy [53] considered an inventory problem with all items sub-
ject to decay and having arbitrary interarrival time distribution. They derived the system state
limiting probabilities. Srinivasan [83] investigated an inventory model of decaying items with
positive lcad time under (s, S) policy. Incorporating adjustable rc-order size he discussed a
solution procedure for inventory model of decaying items.

Liu [50] considered an inventory system with random life-times allowing backlogs, but
having zero lead time. He obtained a closed form for the long run cost function and discussed
its analytic properties. Raafat [66] provide a survey of decaying inventory models up to [1990].
Ravichandran [67) analyzed an (s, S) perishable inventory system with random replenishment
time and Poisson demands. In that study, he assumed that the aging of the new stock be-
gins only after exhausting the existing stock and some analytical results were obtained. Using
Matrix Analytic Method, Liu and Yang [51] analyzed an (s, S) inventory model] with random
shelf-time, exponential replenishing time and no restriction on the number of backlogged units.

Arivarignan, Elango and Arumugam [2] considered a perishable inventory system at a service
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facility, with arrival of customers forming a Poisson process. Each customer requires a single
item which is delivered through a service of random duration having exponential distribution.
Several performance measures were given.

Since this thesis provides results on retrial inventory, inventory with postponed demands

and inventory with service times we first give the motivation for considering such results.

From Retrial Queues to Retrial Inventory

Queueing system in which arriving customers who find all servers and waiting position (if
any) occupied , may retry for service after a period of time, are called retrial queues or queues
with repcated attempts. The most obvious example is provided by a person who desires to
make a phone call. If the line is busy, then he can not qucue up but tries again some time
later. Thus, retrial queues are characterised by the following feature: a customer arriving when
all servers accessible for him are busy, leaves the service arca but after some random time
repeats his demand. Retrial queues are a type of network with reservicing after blocking.
Thus, this network contains two nodes: the main node where blocking is possible and a delay
node for repeated attempts. As for other networks with blocking, the investigation of such
systems presents great analytical difficulties. Nevertheless, the main feature of the theory of
retrial queueing systems as an independent part of queucing theory are quite clearly drawn. In
particular, the nature of results obtained, methods of analysis and areas of applications allow
us to devide retrial queues into three large groups in a natural way: Single-channel system,
multi-channel fully available systems and structually complex systemns. The standard queucing
models do not take into account the phenomenon of retrials and therefore can not be applied
in solving a number of practically important problems. Retrial queues have been introduced to
solve this deficiency.

On the other hand retrial in inventory occurs as follows: Customers arrive to an establish-
ment demanding an item. If the item is available the same is supplied (may bc with negligible
service time or with a positive (not necessarily random) service time). However, when at a

demand epoch the item is out of stock, such customers need not be backlogged nor lost. An
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alternative to these is the retrial by such customers. At random cpochs of time such customers
retrics until either the demand is met or finally the customer decides not to approach that estab-

lishment (may be he is no more in need of the item or he procures it from elsewhere).

Queues with Postponed Work and Inventory with Pooled Cus-

tomers

Postponement of work is a common phenomena. This may be to attend a more important job
than the one being processed at present or for a break or due to lack of quorum (in case of
bulk service) and so on. Postponement of service to customers take place in different ways
depending on the nature of the input and service process. For example in the case of priority
queues service to customers of lower priority stands postponed when one of the higher priority
calls on. In the case of preemptive service, customers of lower priority in service is pushed out
the moment one with higher priority arrives. For further dctails on priority queues one may
refer to, for example, Gross and Harris [28] Jaiswal [32], Takagi [84]. Queues with vacation
to server also can be regarded as a queue where work stands postponed. For example in gated
vacation, the server closes a gate behind the last customer in the system before the start of
a service on return from vacation. For details refer to Takagi [84]. In the case of queues
with general bulk service rule for example Neuts [60], the scrvice of the next batch customers
stands postponed until a minimum of 'a’ are available at a service completion epoch. In control
policies such as N.T.D. a busy cycle stands only an accumulation of N customers in the system,
an elapse of T time unit, the place or the work load accumulatg«r'to D, respectively. Hence these
control policies can also be regarded as postponement of service.

On certain occations postponement of work reduces partly or some time completely cus-
tomer impatience, especially in the context of priority queues. There are several other means
of reducing customer impatience. Of these the one introduced by Qi-Ming He and Neuts [65]
deserves special mention. They devised a control machanism of a system consisting of two

queues served by two different servers, by introducing transfer of customers in bulk from the
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larger to the shorter queue. They established that even when the queues are not separately
stable the combined system can be stable. By identifying a two dimensional Markov chain
with one component representing the sum of the number of customers in the two queucs and
the other, the difference between queue 1 and queue 2, they analyzed the resulting system as a
level independent QBD. Some carlier work involving transfer of customers (jockeying) could
be found in [90, 92, 93].

In this thesis we introduce postponement of suppy of the items to a demand as described
below. At a demand epoch if the item is out of stock then such customers are directed to a
pool. Such customers are referred to as pooled customers / postponed work (demands). On
replenishment customers from the pool are selected for providing the item according to some
rules as described in chapters to follow. This is an alternative to backlogging of demands
where at the time of arrival of a customer the system is found to be out of stock. Whereas in
backlogged case such customers are provided the item immediately on replenishment, in the
case postponed demand, this facility is not extended to the cystomers. In the latter the systemn

management takes the decisions as to when the *postponed customers’be served.

Inventory with Service Time

In all worl:s reported in inventory prior to 1993 it was assumed that the time required to serve
the itcm to the customer is negligible. Berman, Kim and Shimshak [9] is the first attempt to
introduce positive service time in inventory, where it was assumed that service time is deter-
ministic. Latter Berman and Kim [10, 11] extended this results to random service time. Some
other work reported in inventory with service time are Berman and Sapna[12, 13] investigatd T
inventory control at a service facility, which uses one item of inventory for service provided.
Assuming Poisson arrival process, arbitrarily distributed service times and zero lead time they
analyze the system with the restriction that waiting space is finite. Under a specific cost struc-
ture they derive the optimum ordering quantity that minimizes the long run expected cost rate.
With all these still there are only a handful of papers that deals with inventory involving service

time. In a few chapters to follow we consider inventory with random service times.
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1.3 CQutline of the Present Work

This thesis is divided into seven chapters including this introductory chapter. Second chaper
contains two models. In the first model we analyze an (s, S) production Inventory system with
retrial of customers. Arrival of customers from out side the system form a Poisson process.
When the inventory level reaches s due to the external demand or due to purchases made by
orbital customers, the system is immediately converted to ON mode from the OFF mode i,c.
production starts. The inter production times are exponentially distributed with parameter /.
When inventory level reaches zero further arriving demands are sent to the orbit which has
capacity M (< 0o). Customers, who find the orbit full and inventory level at zero are lost to the
system.Service to the the orbital customers or external demands are provided if atleast one item
1s in the inventory. Demands arising from the orbital customers are exponentially distributed
with parameter . The long run joint probability distribution of the number of customers in
the orbit and the inventory level is obtained. Some measures of the system performance in
the long run are derived and numer’y{cal illustrations provided. In the model-II we extend
these results to perishable inventory system assuming that the life-time of each item follows
exponential distribution with parameter 8. Also it is assumed that when inventory level is zero
the arriving demands choose to enter the orbit with probability 3 and with probability (1 — 3)
it is lost for ever. All assumptions of model -I hold in this casc also. Here again the long run
joint probability distribution of the number of customers in the orbit and the inventory level is
obtained. Some measures of the system performance in the long run are derived and numerrical
illustrations provided.

Third chapter deals with an (s, S) production inventory with service times and retrial of un-
satisfied customers, Primary demands occur according to a Markovian Arrival Process (MAP).
In this system, there is a buffer which has finite capacity equal to inventory level in the system
at any given time. When the maximum buffer size is reachcd, further demands proceed to an
orbit of infinite capacity. Initially the system is assumed to be in S and in OFF mode. When
inventory level reaches s due to service provided to customers production starts, production

follow the PH- distribution. The orbital customers try their Juck to access the buffer for service
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at a constant rate. Service times of customers are cxponentially distributed. Using matrix ana-
lytic method, the steady state analysis of the system is performed. Some performance measures
are obtained and a few numerical illustrations provided. Further we also discuss the particular
case of the system where arrival form a MAP and production process follows exponential dis-
tribution. Based on these we list some system performance measures and finally provide some
numerical illustrations.

In the fourth chapter we consider an (s, S)-retrial inventory with service time in which pri-
mary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory
is controlled by the (s, S) policy. Replenishment times arc assumed to follow exponential dis-
tribution with parameter 5. In this system, there is a bufler which is of finite capacity equal
to inventory level in the system at any given tume, when the maximum buffer size is reached,
further demands proceed to an orbit of infinite capacity. The orbital customers try their luck to
access the buffer for service with constant retrial rate §. Service time of the customers are expo-
nentially distributed with parameter y. Using matrix analytic method the steady state analysis
of the system is performed. Some performance measures are listed and provide a few numerical
illustrations.

Chapter five deals with an (s, S) inventory system with random service time. Primary de-
mands occur according to Poisson process with parameter A. In this system there is a finite
buffer whose capacity varies according to the inventory level at any given time. When the max-
imum buffer size is reached, further demands join a pool of infinite capacity with probability ~
and with probability (1 — «) it is lost for ever. When inventory level is larger than the number
of customers in the buffer, an external demand can enter the buffer for service.Two models
are discussed in that chapter. In model-I, we assume that a pooled customer is transfered to the
buffer for service at a service completion epoch with probability p if the inventory level exceeds
s + 1 and also larger than the number of customers in the buffer. In model-II, we extend the
model-I by including the assumption that when inventory level is atleast one and no customer
is in the buffer then also with probability one a pooled customer is picked up for service. It is
assumed that initially the inventory level is S. When inventory' level reaches to s due to service

an order for replenishment is placed. The lead is exponentially distributed with parameter 3.
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For both of the models; we obtain the steady state system sizc distribution, some performance
measures are obtained and a few numeryical illustrations provided.

In the sixth chapter we consider two models. In the first model we analyze an (s, S) Inven-
tory system with postponed demands where arrivals of demands form a Poisson process. When
inventory level reaches zero due to demands, further demands are sent to a pool which has
capacity M{< oo). Demands of the pooled customers will be met after replenishment against
the order placed. Further they are served only if the inventory level is atleast s + 1. The lead
tir.e is exponentially distributed.The joint probability distribution of the number of customers
in the pool and the inventory level is obtained in both the transient and steady state cases. Some
measures of the system performance in the steady state are derived and numerical illustrations
are provided. In the second model, we extend our result to pcrishable inventory system as-
suming that the life-time of each item follows exponential distribution with parameter 6. Also
it is assumed that when inventory level is zero the arriving demands choose to enter the pool
with probability § and with complementary (1 — 5) it is lost for ever. All other assumptions of
model-I hold in this case also.

In the seventh chapter we analyze an (s, S) production inventory system with switching
time. A lot of work is reported under the assumption that the switching time is negligible but
this is not the case for several real life situation(.'\ Some production system may take significant
time to start the production run. We assume the switching time to be exponentially distributed.
Shortages are aliowed and infinite backlog permitted. Identilying a two dimensional Markov
chain, we investigate the optimal switching time for the system in steady state case. Waiting
time distribution is derived. A suitable cost function is defined and analyzed. Some numeryical

illustrations are provided.



Chapter 2

Inventory System with Retrial of

Customers

2.1 Introduction

In this chapter we discuss an (s, S) production Inventory system with retrial of customers. Two
moaels are discussed. In the first model we examine the case in which inventoried items have
infinite shelf-life time and in the second model we assume that the items have random shelf-life
time which is exponentially distributed with parameter ¢

To start with we provide an overview of retrial queues as it is from it (retrial queue) that the
concept of retrial in inventory emerged. Retrial Queues deal with the behaviour of queueing
systems of customers who could not find a position at the service station at the arrival time. It
has been investigated extensively (see the survey papers by Yang and Templeton[91] and Falin
(18], the monograph by Falin and Templeton [19] and also thc more recent state of art in retrial
queues by Artalejo [5]). Retrials of failed components for scrvice was introduce into reliability
of k-out-of-n system by Krishnamoorthy and Ushakumari [47]. Artaljo, Krishnamoorthy and

Lopez herrero [6] is the first attempt to studying inventory control with positive lead time and

*The results of Model-I of this chapter will appear in the Stochastic Modelling and Application.
**The results of Model-II of this chapter are appeared in Mathematical and Computational Models (Editors
G. Arulmozhi and R. Nadarajan); Allied Pub.; p 89-98 ; 2003.
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retrial of customers who could not get their demands satisficd during their earlier atiempts 1o
access the service station.

Work so far reported in inventory with retrials is very little. Except the one mentioned
above ( Artaljo, Krishnamoorthy and Lopez herrero [6]), no work in this direction has come
to our notice. In this chapter we investigate retrial of unsuccessiul customers in accessing the
service station in an (s, S) production inventory system both for the case of perishable and
non-perishable inventoried items.

This chapter is organized as follows: In section 2.2 some assumptions are made for the
models. Model-I is discussed in section 2.3. This section conlains four subsections. Steady
state analysis of the model is studied in the subﬁection 2.3.1. In subsection 2.3.2 we list some
system performance measures and based on m:lsurcs a cost function is developed and
some numericals are provided in the subsections 2.3.3 and 2.3.4 respectively. In section 2.4 we
discuss the model-II. This section contain five subsections. We discuss the model in subsection
2.4.1. In subsection 2.4.2. we studied the system in steady state case for perishable inventory
system. System characteristics measure/is given in 2.4.3. A cost function is discussed in the

subsection 2.4.4 and finally, we provided illustrative numerical examples in subsection 2.4.5.

2.2 Assumptions

1. Initially the inventory level is S.
2. Arrival of demands form a Poisson process with parameter A.

3. Inter arrival times of items from the production process are exponentially distributed with

parameter (.

4. Production starts when the level depletes to s due to extcrnal demands or demands from

retrial customers.

5. When the inventory level is zero, incoming customers go to orbit (subject to the maxi-

mum capacity) and try their luck after some time with inter-retrial times of each orbital
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customer exponentially distributed with parameter ~y.

6. Orbit has finite capacity M.

2.3 Model-1I

In this model the inventory system starts with S units of the item on stock and production
unit is in OFF mode. When the inventory level reaches s, due to demands from primary or
orbital customers, the system is immediately switched on to ON mode ie. production starts.
The time required to produce one uiut of the item is exponentially distributed with parameter
L. When inventory level reaches zero, the incoming customers join an orbit of finite capacity
M (provided it is not full) and try their luck after some time. Thus customers who encounter
the system when inventory level is zero and orbit full are lost. Demands arrive according to
a Poisson process with rate A. Each orbital customer try to access the service counter such
that the inter retrial times follow exponential distribution with parameter £y when there are
k customers in the orbit. If atleast one unit of the item is available the demand will be met
immediately; otherwise the customer return to the orbit. The production will remain in ON
mode until the inventory level reaches to S. Let

I(t),t > 0, be the inventory level at time ¢.

N(t),t > 0, be the number of customers in the orbit at time ¢.

Define

1 if the system is in ON mode
X(t) =
0 if the system is in OFF mode

To get continuous time Markov process, we consider {(/(¢). X(t), N(t)),t > 0} whose state

space is I = Ey U B, where,

E ={(0N) i=s+1,s+2, ,SN=0,1 .M}
Eg:{(i,l,N) i=0,1,2, ,S—l;N:O’l, ’ﬂ[}
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The infinitisemal generator of the process is given by

A=(a(t, j, & 1,m,n)); (5, 4,k), ({,m,n) € I where

a(i, 5,k l,m,n) =

A

fe=s+2 ,5,j=0k=0
l=i-lym=jn=k

fi=s+1,=0k=01,- M
=i—-1lm=54Lin=%

ife=1,2, ,S-1;j=1k=0,1, M
[=i-1lm=7jn=k

ifi=12  S-1j=1k=1,2, M
=i-1lm=3n=k-1

ifi=0,j=1,k=0,1, ,M-1
={im=3n=k+1

ifi=0,1, ,5-2;j=1Lk=0,1, ,M
l=i+1lm=j3n=k

fi=5-1,=1k=0,1, M
l=i+1m=0n=k

ifi=0,1, ,S-1,7=1k=0,1, M
=iym=jn=%k

ifi=0,1, ,5-Lyy=1%k=1 M
I=im=jin=k

ifi=s+1, ,S;7=0k=1, M
l=im=1ln=k

fi=s+1,j=0k=12 M
l=i-1im=1n=k-1

ifi=s+2, |S;9y=0k=12,- M

=i—lLim=jn=k-1
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Write Ay = (a(i, j, k; 1, m,n))

16
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Then the infinitesimal generator A can be Q_p@u_:xlgexpresscd as a pertitioned matrix
A= ((Ay)) where A, is an (M + 1) x (M + 1) matrix which is given by,

A

Az
Ay =
Ay
Ay
As
0
with
M A My
M-11 0 A
M-2{0 0
A =
2 0 O
1 0 0
0 0 0

ifit=s4+2, ,S;l=1—1and production off or
1=1,2, ,S-1;l=1i-1and production on or

i =5+ 1;{ =7 — 1 and production off

ifi=0,1,-- ,§—2;l =14+ 1and production on or
t =S5 —1;! =i+ 1 and production on

ifi=s+1,- ,5;!=1andproduction off
ifi=12,---,5 —1;! =i and production on

if i = 0;! = ¢ and production on

otherwise
0 0 0 O
(M — 1)y 0 0 0
A 0 0 0
0 A 2y 0
0 0 A v
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M g 0 0 0
M-110 u 0 0
Ay =
1 0 0 0
0 0 0 0 u
M =0+ My 0 0 0
M-1 0 —(\+ (M = 1)) 0 0
Ay =
1 0 0 —(A+7) 0
0 0 0 0 A
M —(A+ p+ My) 0 0
M-1 0 —(A+p+(M-=-1)7) 0
Ag=
1 0 0 ~(A+u+7)
0 0 0 0 —(\+p)
M —u 0 0 0 0 0
M-1] A —(O+p) 0 0 0 0
M=-2| 0 A ~(\+p) 0 0 0
As =
2 0 0 0 (A ) 0 0
1 0 0 0 A —(A+p) 0
0 0 0 0 0 A —(A+p)

Thus we can write A in the partitioned form as
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(S,0) Ay A, 0 0 0 0 0 0 0 0 0
(S-1,0)| 0 A4y A 0 0 0 0 0 0 0 0
(5—2/0) 0 0 A 0 0 0 0 0 0 0 0
(s+1,00] o 0 0 A; 0 0 A, 0 0 0 0
(5-1,1)| 4, 0 0 0 Ay 0 0 0 0 0 O
A=
s+1,)] 0 0o o 0 0 Ay AL 0 0 0 0
(3,1) 0 0 0 0 0 AQ ,‘1_1 Al 0 0 0
(s-1L,1)] 0 0 o0 0 0 0 A Ay 0 0 0
(2 0 0 0 0 0 0 0 0 A, A, O
(10 0 0 0 0 0 0 0 0 A, As A
fo,0  \o 0o o 0 0 0 0 0 0 Ay A

2.3.1 Steady State Analysis

It can be seen from the structure of matrix A that the state space E is irreducible. Let the

limiting distribution be denoted by IT¢7+4);
MK = Yim, o Pr{(I(t), X (t), N(t)) = (1, 5.k)], (i,5,k) € E
Write IT = ([I(59) ... TI(+10) [I(S-10 [i$-21  [1OD)
and [TK) = ([T KM= T[D) TIR0)
for K = (5,0),-- ,(s+1,0),(S—-1,1},-- ,(0,1)
The limiting distribution exists and satisfies the following relations:

A =0and S 103K = |
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The first cquation of the above yiclds the following set of relations:-

N9 4, + IS-2D 4, =0

NOHLOA 004, =0 if i=s+1, 51

6D A, + TEVA + T4, =0 ifii=s+1, 52
MO+ A, 4 T+ A 4 TIED A, 4 I A, =0 if i=
AEDA 4 IOV A, + TE20A4, =0 if i=1,2,  ,s-1
DA + IOV A =0

The solution of the above equations (except the last one) can be conviniently expressed as:-

where

and

Bis-in) =

II65-i0) = IS0 5 g_, o) and
NE-4) =TS98, )

! ifi=0
Bis-i0) = | AAT i1
(=1)(A1A5Y) ifi=23, ,S—s—1

[ - A47"

(—1)* Bs-1,)(AsAFY)

(=1)7 Bs-1)(AATY) + (=1 851y (hAs)
—Bs-ir1)(AsA7 ") = Bis_ira) (A1 A7)

—Bi(A1AT) = Bost(ALATY) = (=)o (AL ATH S (A1 A7)

L —Bis—ar1y(AdATY) — Brs-i+2)(A1471)

and to compute 159, we use the relations

MODA; + TTODA; =0and Y 1 ey =1

which yield, respectively,

9 (B11,1) A1 + Bron)As) = 0 and NI + 37 50y + 2o Buiy) =

ifi=1
ife=2
ifi =3
ifi=4,5, .S
ifi=S-—-s+1

ifi=S—s+2

1
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2.3.2 System Characteristics
Mean Inventory Level

Let a; denote the average inventory level in the long run. Then we have
oy = ZS iZM TI0A) 4 Z-'v‘-l 'Z“-’ TILE)
1 = 2 si=s41 k=0 i=1 Y2k

Switching rate

Suppose as 1s the mean switching rate. Then

ap = /\2’1:::0 TI(e+1.04) o 2}:1:1 kryT1{s+1.0.k)

Expected Number of orbital Customers

The expected number of orbital customers ¢y is given by

M S- _— g .
03 = Zk:l k(2i=01 H(l‘l‘k) + Z£=S+l H(1'0|k))

The average number of customer’s lost

The average number a4 of customers lost is,

Qy = /\\H(O,I,M)

Expected Waiting Time

Denote by W, the waiting time of the k** customer in the orbit, k = 1,2, , M. We evaluate
E(W,) conditional on the system state. Figure 2.1 provides the transition diagram for comput-
ing E(Wy) Thus E(W}) = Zio E(W,] System state at (0, k)).P(system in state (0, k))

24 Doy "
where E(Wkl System state at (0, k)) = [%}%ﬁi} fork=12 M

Now the average waiting time is

M ~)2 Dons ) ‘)k /\
— o1 (k7)? + 2kvp + 2ky
% 2 I [ (A + 1) (A + kv)? ]

k=1
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Figure 2.1:

2.3.3 Cost Function

Define

C =Inventory holding cost per unit per unit time
C, =Switching Cost for production

C3 =Loss due to customers lost to the system

So the total expected cost of the system is

E(TC) = Ciu) + Coay + Cyoyy

2.3.4 Numerical Illustration

By giving values to the underlying parameters we provide some numerical illustrations: Take

S=5,s=2,M=2,/\=0.3,u=0.2,7=0.1,01 = ].,CQ = 10,C3=2
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Table 2.1; __

Average Inventory held

10.879339266

Expected Switching rate

0.103558591

Expected Number of orbital Customers

1.327324771

Expected Number of Lost customers

0.106622418

Expected Total cost of the system

171.140799882

Table 2.2:

M-Values | Expected Waiting Time | Expected total cost
M=1 0.503827566 1.332502691
M=2 0.84547260 | 1.140799882
M=3 1.081066550 0.939071560
M=4 1329813020 "0.811073726

Table 2.3:

s-Varying | Expected Waiting Time | Expected total cost
s=1 0.853879500 1.020885630
s=2 0.845457526 1.140799882
s§=3 0.837596164 1.169143032

S-Varying | Expected Waiting Time | Expected total cost
5=5 0.845457526 1.140799882
S= 0.832381751 1.203457311
S=7 0.7222560995 1.25459858
S=38 0.715776549 1.26158201
S=9 0.710764684 1.29799481

22
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Then we get the measures as described in Tabic 2.1. In Tablc 2.2 the expected total cost is
computed by varying over M and in Table 2.3 we vary over s and S keeping other parameter
values fixed. Steady state probabilities for A/ = 2 are given in appendix-I

As expected, we see (from Table 2.2) that with A increasing, the expected waiting time of
customers in orbit also increase. However expected total cost dccrss;s with increase in value
of M, as loss due to customers not admitted to orbit, for want of space, decreases. With S
increasing, the expected waiting time of orbital customers decresed (Table 2.3 ). However the

expected total cost increases due to increase in the expected inventory held.

2.4 Model-1I

In this mode! we extended the result of model-I to an (s, S) production inventory system where
items produced have random life-times which is exponentially distributed with parameter §.
Also it is assumed that when inventory level is zero the arriving demands choose to enter the
orbit with probability 8 and with probability (1 — 5) it is lost for ever. All assumptions of

mode! -1 hold in this case also.

2.4.1 Model and Analysis

Let
I(t),t > 0, he the inventory level at time t.
N(t),t > 0, be the number of customers in the orbit at time .

Define

1 ifthe systcm is in ON mode
X(t) =
0 if the system is in OFF mode

To get continuous time Markov chain, we consider {(/(¢), X (t), N(t)),t > 0} whose state

space is I = E} U E; where,

E]_:{('L,O,N) i=5+1,8+2, )S;‘;\r:[}:la )M}
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E,={(G1,N) i=0,1,2,3, ,S-1LN=0,1, ,M}

The infinitisemal generator A of the process has entries given by,

A= {a(i, 5,k L,m,n)); (4,5,k), (L, m,n) € IZ, where

a{(¢, 5,k l,m,n)) =

\
A

A3
Y
e

6

—(A8 + u)
—(A+10)

—(A 4 p +18)

(A +1i0 + k)
—(A+p+i0+ky)

iri=142 5 ILij=1Lk=0,1, M
l=4—1;m=jn-=kor

ifi=s+2, ,$j=0%k=0,1, M
=1 Lim=jn==%kor
fi=s-+1,7=04%,=0,1, M

l=i¢-1ym=1n kor

ifi=03 =1,k 0,1, M=-1Ll=0m=jn=Fk+]

fi=0j=1k=01 ,M-lil=im=jn=k
ifi=01 ,S-%j=1k=0,1, M

l=i+1lym=g5n=%kor

fi=5-1,j=1%k=0,1,-- AM;i=i+1lim=0n=1"%k

fi=0j=Lk=Ml=im=jn=k

ifi=12 ,5% Liji=1k=12-- M
l=i-1l:m=jn=k~-1or

ifi=s+2, ,Sji=0k=1 M

l=i 1Im=jn=k-1lor
ifi=s+41;j=0k=1  AM:l=1 Lim=Ln=k
ifi=12, |5 1,7=1k=0,1,2, M
l=i-1im=jn=%kor

fi=s+2 . S;j=0k=1 M
l=i-1lm=j n=kor
fi=s+1;7=0k=1,--- Mjl=it-1m=Ln=#k
ifi=0;j=1k=01,--- M-Ll=ttm=5n=k
fi=s-+1l- ,5,7j=0k=0l=4m=3n=4k
ifi=1, ,S-1,7=Lk=0;l=im=jn=k

ifi=s+1, ,5;j=0,k=1, Mil=1m=3n="="h

ifi=1, ,S-1;j=Lk=1, | Mil=im=jn=
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Define Ay = (a(i, 5, k; 1, m,n))
Then the infinitesimal generator A can be conviniently expressed as a partitioned matrix

A = ((Ay)) where Ay isa (M + 1) x (M + 1) matrix is given by

A ifi=0,1, |§-1;l=1+ 1and the production on
A; ifi=s+1, ,8;{=1i-1and the production off
B, ifi=s+1, ,8§;l=iand the production off or
Ag=| C; ifi=1,2, ,8§—1;1=1and the production on
D if i = 0;/ = i and the production on
D; ifi=1, , S5 — 1;1 =14 — 1 and the production on
| 0 otherwise
with
Mo [p 0 0 0 0 0
M—-1|0 p 0 0 0 0
M-210 0 u 0O 0 0
A=
2 0 0 ¢ g 0 0
1 0 0 0 0 u 0
0 0 0 0 0 0 pu
M ((A+i) My 0 0 0
M-1 0 (A+148) (M — 1)y 0 0
_ M-2 0 0 (A +10) 0 0
1 0 0 0 (A -+ 1i0) ¥
0 0 0 0 0 (A +16)

i=s+1,---,5;l =1—1and production is off
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M
M-1

M
M -1

M
M-1
M-=-2

no

[

~(A+130 + M~)

—(\+ p+if + Mr)

—p
A3

0

(A +i0+ (M 1))

26

0 —(A 410+ ) 0
¢ 0 —(A+ 1)
0 0
—(A e+ i6+ (M - 1)) 0
0 —(A+ p+1b)
0 0 0 0
0 0 0 0
—(AB+p) 0 0 0
0 ~(\3+ ) 0 0
0 A3 —(AB + ) 0
0 0 A3 —(AB+ )
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M (A + i) M~y 0 0 0 0
M-1 0 (A+1i8) (M -1)y 0 0 0
M-2 0 0 (A+i6) 0 0 0
D; =
2 0 0 0 (A +0) 2y 0
1 0 0 0 0 (A +146) v
0 0 0 0 0 0 (A +126)
t=1, ,S5—1;l=¢—1andproduction is on

So we can write the partitioned matrix as follows:

(S,0) ( Bs As 0 0 o 0 o0 0 0 0
(S—1,0)| 0 Bs_, 0 0 0O 0 0 0 0 0
(s+1,0)] 0 0 Byy O 0 Ay 0 0 0 0
S-1,1){ A 0 0 Cs. 0O 0 0 0 0 0

A= s+1,1)] 0 0 0 0 Csi1 Dyy1 O 0 0 0
(s,1) B 0 0 0 A ¢ D, 0 0 0
-1, 0 o 0 0 0 A Co 0 0 0
(2,1 0 0 0 0 0 0 0 C, D 0
f1,1) 0 0 B 0 0 0 0 A C D
(0,0 0 0 0 B 6O 0 0 0 A D

2.4.2 Steady State Analysis

It can be seen from the structure of matrix A that the state space E is irreducible. Let the lim-

iting distribution be denoted by [1(+/:):
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M) = Jimg oo Pr{I(2), X (1, N(8) (1, 1)] (6., k) €
write IT = (I1(59 TIl+10) TS-L0 pris-20 0 T7(0.1))
and IT(¥X) —= (I'I(K,.’U),H(l\’,.ﬁj——l), ,l'I“‘ 1—[(1\"‘0))
for K =(5,0), ,(s+1,00.(5—-1,1), 0,1)

The limiting distribution exists and satisftes the following relations:

A S M i S anl i1
HA =0 and Zi:s+l Zj:O H( 30 + z ' L;):G 1_[( a1 =1

<1=()
The first of the above relations yields the following set of equations:-
MDD, +TEDD =0 fori=0
MEHD Dy + TONC + WA =0 fori=1, ,s—landfori=s+1, ,S—2
MO0 A4, + IO D, + TONC + TICM WA =0 fori=s
[IG+HL0 4, + MntOB, =0 fori=s+1, S
NS9O Bg +TI-11 A =

The solution of the above equations (except the last one) can be conviniently expressed as:-

M5-40 = 5056, 5 and
[T5-5) = [0 8, |

where
I ifi=20
Bs-io= | —AsBst, ifi=1

—Bs_iv10As—i+1 Bsl, ifi=2,3, | S-s-1

and
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[ _BgA~! ifi=1
—f))S—mCS—lf‘i"l if: =2
Ps-i1 = | —Bs_ia1Ds—iz2A™ = Fs-1411C5oi0 A ! if¢ =3, .S — s

—Bsi10As1 AT = Loy 1 D1 A7 = 81C AT fi=8-5+1
| —Bs—i21Ds—iva A = By 11 Csoip A7 ifi=8§-s+2, S

To compute I1(59 | we use the relations
NOLD; +TIOVD =0 and Y NIy, =1
which yield, respectively,

S9(8,,D; + By1D) = 0 and
DO+ 0 o+ Yilo Bu) =

2.4.3 System Characteristics
Mean Inventory Level

Let o; denote the average inventory level in the long run. Then we have

Z ZH(zOk)_FE intlk)
i=s+1 k=0 =21 k=0

Switching rate

Suppose a; is the mean switching rate. Then we have

M M M
Qg = by ZH(:H—LO.I:) + Zk,yn(s-rl.(),l.‘) + (S + 1)6’ ZH(3+1.0.k)
k=0 k= k=0
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Expected Number of orbital Customers
The expected number ¢z of orbital customers is given by
M S- 3
ZkZH““ LA PRI
k=1 i=0 =1 izatl
The average number of customer’s lost to the system
The average number a4 of customers lost is
(0,1,M) - (0.1.k)
— /\H H 0.1
Mean Number of Perished items
The mean number of items that perish in the system is

S-1
as = Z wLn““" +ZLOL“(”“

i=s+1 k=0 =1

The probability that an external demand will be satisfied immediately on it’s arrival

The probability that an external demand will be satisfied immediately on arrival is

S M S-1 AS
an = H(i,o,k)_:_ H(i'l'k)

The rate that an external demand enters the orbit

The rate that an external demand enters the orbit is

AM—1

a7 = A Z [0
k=0

30
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2.4.4 Cost Function

Define

L =Set up cost of production system.

C) =holding cost per unit per unit time

Cy =Switching Cost for production

C3 =Cost due to decay of items

Cy=Loss to the system due to customers not joining the system

So, the total expected cost of the system is

E(TC) = CLa; + Coay + Cyais — Cyay

2.4,5 Numerical Illustration

Since analytical expressions are impossible to arrive at we provide some numerical illustrations

by giving values to the underlying parameters . Take

L=38=5s=2M=3x=03u 02~=02,
ﬂ=0.6,9=0.1,c’1 = 1,02 = 10,6'3 = 2,0_1=3

Thus we get the measures as described in the following table and the long run system state

probabilities corresponding to the above parameters is given in the Apendix-IL.
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Table 2.4;
a; =Average Inventory held in the system 0.379025
"y =Expected Switching rate of the system ~ 170.000733156

a3 =Expected Number of orbital Customers 1.81155

z4 =Expected Number of Lost customers 0.1233402
as =Average perish items in the system o 0.0379025
o =Probability that an external demand will be satisfied 0.280116
a7 =Probability that the arrival demand will enter the orbit 0.431609
Expected Total cost of the system 4218538

Appendix-I

[1(5:0.2)

0.0014742395

1‘1(3,1,2)

H(S‘O‘l)

0.002777491

1-[(3.1,1)

T1(5.0.0)

0.006854095

13,40

0.016664942

0.025702856

H(4,D,2)

0.000884543

21

1400

0.002820237

]'1(2,1,} )

0.039620173

0.03797676

[1(40.0)

0.007779924

[1(2.1,[))

0.046057937

H(3.0,2)

0.000530726

H(I,l.?)

0.11852513

H(3.0.1)

0.004850539

o431 10.071944262

n(3,0.0)

0.0087200004

1719 1 0.053899355

H(4,1,2)

0.0036855977

T3 | 0.355408063

H(-i,l,l

0.005554981

H(O,l:l)

[1(4.1,0)

0.010281142

119 | 0.046672954

. 0.118413949

32
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Appendix-I11

1608

0.000024924

£ 0.001308551

(0.2

0.000111757

0.002179281

11(6:0,1)

0.000130351

0.003584683

H(S,0,0)

0.000384401

0.006919222

H(4,0,3)

0.000015338

0.008549204

1(4.02)

0.000054234

0.011378816

7400

0.000140703

0.014971675

T1(4.0.0)

0.000476559

H(z,l,o)

0.021643543

H(S,O,B)

0.000008947

H(l,1|3)

0.051617252

H(3,0,2)

0.000047167

1'1(1‘1,2)

1 0.051951493

I1(3.0.1)

0.000150232

H(I,l,l)

LO'OS 1714957
-

T1(3.00)

0.000602888

[1(1,1.0)

0.049451038

H(4.l.3)

0.000174473

H(O,l,:})

| 0.288330006

“.12)

0.000335273

I‘[(O.l,?)

0.20566344

L

0.000651758

H(O,l.l)

0.146672935

[1(4:1,0)

0.001537607

II([)’I‘O)

0.079272805




Chapter 3

Retrial in PH-Distribution Production

Inventory System with MAP Arrivals

3.1 Introduction

In this chapter we consider an (s,S) production inventory with service time and retrial of
customers who could not find a berth in the bufter during previous arrivals. Primary arrivals of
demands (customers who arrive for the first time) follow a Markovian Arrival Process (MAP).
Demands enter the buffer of capacity equal to the number of items held in the inventory at
that instant of time. When buffer is full (equal to the number of inventoried items) further
demands proceed 1o an orbit of infinite capacity. The orbital customers try their luck after
some random length of time, exponentially distributed with parameter §. These customers
keep on trying until they succeed in finding a berth at the buffer. Service times of customers are
exponentially distributed with parameter p. We assume that initially the inventory level is S
and the production mode is OFF. Inventory level decreases by one unit by providing service to
each customer in the buffer. When inventory level reaches s production starts i,e. system mode

is converted from OFF mode to ON mode. Production follows PH-distribution. Production

*Some results given this chapter appeared in the proceedings of the International Conference on Modern
Mathematical Methods of Analysis and Optimization of Telecommunication Networks; September 23-25 '2003;
Gomel; Belarus; p: 148-156.
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process is continued until the inventory level rcaches S.

A brief description of retrial queues was provided in 1.2 and 2.1. So we straight pass on to
retrial inventory. Artalejo, Krishnamoorthy and Lopez-Iierrero |6] is the first investigation on
(s, S) inventory policies with positive lead time and retrial of orbital customers (linear retrial
rate) who could not get the item during their carlicr attcmpts. They assumed that the service
time for providing the items to the customers is negligible. Scveral system performance mea-
sures were computed. No further work is reported until the present work is taken up.

Berman and Kim [10, 11] was the first effort to analyze the non-deterministic inventory
model for service facilities. They analyzed the system in which customers arrive at a service
facility according to a Poisson process with service times exponentially distributed where each
customer demands exactlly one unit of the item in the inventory; both zero lead time and positive
lead-time cases were discussed. Berman and Sapna [12, 13] studied inventory control at a
service facility, which uses one item if inventory for service provided. Assuming Poisson
arrival process, arbitrarily distributed service times and zero lead time they analyzed the system
with the restriction that, waiting space is finite. Under specific cost structure they derived the
optimum ordering quantity that minimizes the long run cxpected cost rate.

This chapter is organized as follows: In section 3.2 we describe the mathematical model
and study the stability condition. In section 3.3, we list some system performance measures
In section 3.4, we discuss the the particular case when production is exponentially distributed.
Steady state analysis is done and stability condition discussed. System performance measurcs

are derived in section 3.5 and based on these we provide numerical examples in section 3.6.

3.2 Model and Analysis

We consider a production inventory system in which initially there are S items and the pro-
duction process is in OFF mode. Demands from outside occur according to Markovian Arrival
Process (MAP). The demands are served singly with service times exponentially distributed
with parameter p. There is a buffer in which customers stay before getting service. The capac-

ity of this buffer is restricted to the number of items held in the inventory at any given instant.
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Then this varies from 0 to S. When inventory level reaches to s duc to service provided to the
customers in the buffer, production starts i,e., system is switched to ON mode. Production pro-
cess follows P11- distribution. Production continues until inventory level reaches 5. Customers
who find no place in the buffer go to an orbit of infinite capacity and try their luck to enter the
buffer at a constant rate ¢.

The MAP, a special class of tractable Markov renewal process, is a rich class of point
processes that includes many well knewn processes «nd Markov modulated Poisson process.
One of the most significant feature of MAP is the undetlying Markovian structure and fits
ideally in the context of matrix analytic solutions to stochastic models. The continuous time
MAP is described as follows:

Let the underlying Markov chain (on a finite set be irreducible) and let Q* = (g;;) be the
generator of the Markov chain which is exponentially distributed with parameter A; > —g;;,
one of the following two events could occur: with probability p;;(1) the transition corresponds
to ar. arrival of 1 customer and the underlying Markov chain is in state j with 1 < 4,7 < m;
with probability p;;(0) the transition corresponds to no arrival and the state of the Markov chain
moves to j, j # i. Note that the Markov chain can go from statc ¢ to state ¢ only through an
arrival. Define matrices Dy = (d;;(k)) for k = 0, 1 such that d;;(0) = —X;, 1 < 4,5 < my;
di;(0) = Aipi;(0) for j # i, 1 < 4,5 < m; and di;(L) = Api;(1). By assuming Dy to be
a non-singular matrix, the interarrival times will be finite with probability one and the arrival
process does not terminate. Hence, we see that Dy is a stablc matrix. The generator ()” is then
given by

Q" =Dy+ D,

Thus, Dy governing the transitions corresponding to no arrival and D, goveming those corre-

sponding to one arrival. For use in sequel, let
I; denote identity matrix of order ¢,
® stands for Kronecker product of two matrices,

A’ means transpose of matrix A,
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e denotes column vector of 1’s of appropriate order.

Let, Ni(2), I{t), No(t), X (), J1(t) and Jo(t) denote, respectively, the number of customers
in orbit, the number of items held in the inventory, the numbcer ol customers in the buffer, the
status of the production mechanism (i.e., OFF mode or ON modc), phases of the arrival process
and phase of the production process at time ¢.

Then {(N:(), I(t), Nao(t), X(t), J1(t), J2(t))} is a continous time Markov chain with state

space given by

Q={(4k1,11);i200<j;<S-1,0<k<s1<r<m 1< <n}

U{(#,4,k,0,7);i20,s+1<j<80<k<y 1l <r<m}
The level i, i > 0, is defined as the set of states given by,

i={(,5,k1,nl) 0<j<S-1,0<k<51<7r<m1<1<n}

U{(:,5,k0,7) s+1<3<850<k<y1<r<m}

These are arranged in the lexicographic order.

Define the following auxiluary matrices for use in scquel
Ap=Dy 95, +I,®S G.1)

D0®In+Im®S D1®Iﬂ.

(DO QL+ 1.® S) — pidyn

DI,
(Dl) 2 I'n, + Im, & S) - HIm,TL

A Cer st

1<i<s (3.2)
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0
D@l +1,8®S

D,
0
Do - jefym

-~
el
0

s+1<i<S

where A;; is a (i + 1)2mn x (3 + 1)2mn matrix.

D, D, 0 0
0 Dy—pul. D 0
, 0 0 Do —pl, D
Ags = ook :
i 0
A-i.i- 1= ® ,U]m.n
I;
(E+1)x1
[ 0 00 0 |
0 00 0
L@ pp 0 0
Aspis=| pluw 0 0O 0
0 00 Im@#ﬁ
0 00 o |

(Do@In+ 103 8) = jthmn 0

38
1),
Dl ®lvl
Dl ®ln
Dy — ulm 0
(DQ RQIn+Im® S) ~ jthiun
3.3)
34
D,
Do = pidim (S+1)mx(S+1)m
1<i<s 3.5)
(3.6)

((3+2jmn+(s+2)m) x(s+1)mn
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oS o o C©

s+2<i<S5~-1

0 0 0 puln, O
I_ 00 0 0 ﬂjmn_

((i+1)mn+(i+1)m) x (imri+im)

(3.7)
(00 o0 00 |
- ﬂlm 0 0 ¢ 0
Ass-1= (3.8)
0 0 ul, 00
- 00 0 [.L[m 0— (S+1)mux(Smnu+Smn)
Avis1 = (111,0)® (1, ®S°8) ;0<i<s—1 (3.9)
0 I,®5°3 ]
. 0 0 I,®S8%
As,s+1 =
0 Im. ’SO 00
L ® 'B J ((s+1)ymn)x((s+2)mn+(s+2)m)
(3.10)
0 '
I, ® 5%
0
Aijpr = I, ® S°3 s+1<i<S5-2
0 0 0
[,®5°% 0 0 |

(3.11)
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where A;;4y is of order ((i 4+ 1)mn + (i + 1)in) x ((i + 2)mn + (i -i- 2)m)

0 0
I, ®S° 0
- 0 0
As_15 = .
0 I‘”’l ® S
i [,&S" 0
[~ -~
Ago An
/im /'111 ;112
/121 1‘122 121'23
By = . L
A y—1 Ass A.«,s+l
_DO®In + Irn®s_01nm Dl’@' [n
_ 0 DO ® -[u + I)u \//' S - /LI'mu,

N
I

i1

Aso1s1 Asoys
Ass—1 Ass |

AOO = DO®11l +L:1®S

(3.12)

(Smn-|-Sm)x (S+1)m

(3.13)

611”7; Dl /C);' ]n

DO ’8 In, + I-yn @ S - /-['In'm.

iL<i s (3.14)
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Ai =
.DO =05 0 D,
DU ®1u+1n|®S'—91mn 0 D]'Eﬁ],‘.
Dy - 1l = 01, Q D
Do fn+tm 8 0] Dy®In
—itlwn = 0linn
l

Dy - il

41

0
Do+ L% 8
—plmn

is+1<i<S5~1 (3.16)

Dy -461, D,
Dy —pl,, - 01, D
Ags =
Dy

L Dy — ﬂfm
-/Ioo Aoy ]
A An Ay

A=

By =D I,

Bi'i = (a'H-l a:+1) & (Dl DN 111,) [ _(: i S 8
where ¢;4; is a column vectors of all zeros accept last entry whica is 1.
00 0 0

By=10 0 D, 0 |;s+1<i<S—1
O 0 0 Dl®-[n

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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- ;o
Bgs = (a4 «wiyy) @ D)
B
By,
By

>
I

By ]

Coo = is a zero matrix of order mn x inn

Gi=|° & ®O0Tm; 1<i<s
00 (i+1)x (i+1)
[0 0 01, ]
O
o1,
Cii =
O1,m
0
] 0] ((i+1ymnt(i4 1)) x ((i4+1)ma+(i+1)m)
Css = 04 261,
(S+1)x(5+1)
o ]
C'.11
Ay = o

42

(3.22)

(3.23)

(3.24)

(3.25)

;s+1 <9< 51

(3.26)

(3.27)

(3.28)
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The markov chain {(N\(#), I(t), No(t), X(t), J1(1), J2 (1)), ¢

partitioned forn given by

By Ao 0 0 0
Ay A 4 0 O
Q=10 Ay, A Ay O
0 0 A 4 A

where the entries in ¢ are given by (3.1) to (3.28).
Let A= Ay + A; + A and

7 denote the steady-state probability vector of A, i.e,
7A=0 =we=1

The vector & can be partitioned as

We have the following result on system stability

Lemma 3.2.1. The system is stable if

S-1 i-1 S i-1
( 7(2, 5, 1)0€mn + Z Zw(i,j,O)@em) >
i=1 j=0 i=3+1 j=0
S-1

43

€ Ry} has the generator @ in

5

(Z 7['(1:, ’L‘, 1)(D1€m & Cn) + Z W(i, iy 0)(Dlem))

i=0

=s+1
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Proof. From the well-known result [Neuts [61] thcorem 1.7.1] on the positive recurrence of Q,
which states that

'lT/l()(‘f < 7l'.‘1-_)(2
and by exploiting the structure of the matrices Ag and A., the stated result follows. O

Theorem 3.2.2. When the stability condition holds the steady state probability vector z of Q
which satisfies Q) = 0,ze = 1 exists.

The steady state probability vector

z = (z(0),z(1),2(2). ..)

where components are given by

z(i) = z(0)R,i> o0

where R is the minimal non-negative solution of the matrix quadratic equation
R*As + RA1 + Ag =0
The vector z(0) can be calculated using the equation
z(0)[By + RA2) = 0
together with the normalizing condition
z(0)(I - R)le=1

Proof. Follows immediately from the well-known result on matrix-geometric methods (see

Neuts [61]). il

For calculating the rate matrix R we use Logarithmic Reduction Algorithm.
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3.3 System Performance Measures

We partition the stcady state probability vector = (2(0),2:(1), 2(2), .)as

2(i) = (y(,5)) i>20,0<5<S
wherey(s, j) = (2(4,7,k,1)) withyl=1for0< ;3 <s
[=01fors+1<j<S5-1
I=0forj=3>5

0<k<y

Some of the system performance measures are given below:

1. The probability mass function of number of customer in orbit: The probability that there

are ¢ customers in the orbit is given by
P, =z(i)e=z(0)R'e; i>0
2. The rate at which the orbiting customers try to enter the buffer is given by
67 = 6(1 — z(0)e)

3. The rate at which the orbiting customers successfully enter the buffer is given by

03 = 65
where
[o) ~-175-1 S J-1
= Z {Z Z t j,k 1 mn} + { 4Z(i’j’k’0)em}]
i=1 j=1 k=0 j=s+1 k=0

4. Probability that an orbiting customer fail to enter the bufter is,

g =1-6
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5. Expected Inventory level:
Expected inventory level is given by
oo §5-1 J N J
Eo= Y [(D053 aig b Dlem +1 30 557 265,k 0) e

i=0 j=1 k= j=s+1 L=0

o

6. Expected number of customers in the orbit

7. Expected number of customers in the buffer is,

—~1 g N
Eg = i [ > kz(i, 5K, e + > ikz(i,j,k,o)em]
i=0  j=1 k=1 J=s+1 k=1

8. The fraction of retrials that are successful

o The rate of retrials that are successful 67

The overeall rate R

9. The factorial moments of the orbit size is,

KlzoR*(I — R) 1%, k>1

3.4 [Exponentially Distributed Production Process

Let Ny(t), I(t), No(t), X(t) and J(t, denote, respectively, the number of customers in orbit,
the number of items held in the inventory, the number of customers in the buffer, the status of
the production mechanism (ie., in OFF mode or ON mode) and phase of the arrival process at

time ¢. Then {(Ny(t), I(t), Na2(t), X(t), J(t))} is a continuous time Markov chain with state
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space given by

Q={@j5k1Lr) i>0,0<;<S-10<k<)1<r<m}

U{(,5,k0,1) i>05+1<j<80<k<j1<r<m}
The level i, 1 > 0, is defined as the set of states given by

i={(jklr) 0<j<S-1,0<k<jl<r<my

U{(,7,k07) s+1<,<850<k<j1<r<m}

These states are arranged in the lexicographic order.

Define the following auxiliary matrices for use in sequel.
Ag = Do - 81, (3.29)

"Dy — I, D, W
DO - (,u + ﬁ)Im Dl

D,
DO - (,U + .'13)[7;;

i+ D x(i+1}m

(3.30)
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DU 0 DI
Dy — BIm 0 D,
DO /J]m 0 ])1
Aii = DO - (8 =+ /-L)Im 0 D1
D,
1)0 - .U'[m 0
) DO B ('u, + ﬁ)IHLJ G+ 1)2mxe 120
s 1<i<S—1 (331)
Dy Dy 1
DD - ,U']m Dl
Ass (3.32)
Dy
‘DO - /J[rn_

(S+1)inx(S+1)m
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0
Wi = ) 1 S Z S S
 )xi

A =Wi@ul,, 1 <i<s

= 1
A3+1|5 = (I/‘/-‘H'l @ 1 ) & )u'[ni

Aici = (Wi L)@ ply, s +2<i< 5 -1
Assor = (Ws®[10])) @ pl,,
Vi = [lis1 O]Ga1yx(ig2), 0 << S =1

A1 =Vi® 0L, 0<i<s -1
/‘is.u+1 = (Vy ® [0 1]) ®ﬁfm

- 00
A1 = (Vi ® [

01
. 0 v
AS-—I,S = (VS—I ® ) &® ﬁjm
Ll
[Aw An
/110 -/111 A12
A2l A?? A23

By

YR BL,s +1<i<S§5-2

As_15-2 As-1s5-1 As-is

Ass-1 Ass |

49

(3.33)

(3.34)

(3.35)

(3.36)
(3.37)
(3.38)
(3.39)
(3.40)

(3.41)

(3.42)

(3.43)

The matrix A, is obtained from By by replacing the matrices Ay, 1 <4< S, by A, where

- I, 0

Ay = fin’ - & 01m)
0 0

(3.44)



3.4 Exponentially Distributed Production Process 50

for1 <7 < s and fori = S and for the remaining 7 values, except for i = 0),

PR

As=As- (|0 0 0| &04L,) (3.45)

0 00

B()()
B
Ap = H (3.46)
Bs
where

By = D, (3.47)
Bii=(ai+1'a§+1)®Dlll <i<sandfori=3S§ (3.48)

where, a;4) 15 a column vector of zeros except last entry which is 1 and is of order (z + 1) x 1.

- 0 0
Bii= & Dl;""+1§j’$S—1 (349)

2 2(i+1) x2(i+1)

C;OO
C
Ay = H (3.50)

Css ]
where

Coo is a zero matrix of order m < m (3.51)
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Ca = 0k ®80L, ;1<i<sandalsofori=_S (3.52)
-0 (14+1)x(i+1)
0 0 I

Ci=100 0 RO s+1<i<S—1 (3.53)
L 0 2(i+1)x2(i+1)

The Markov chain {(Ny(t), 7(t), Na(t), X (t), J(t))} has the generator Q in partitioned
forn: given by
By A0 0 0 0
Ay A Ay 0 0
Q=10 A, A A O
0 0 Ay A A

L ]
where the entries in () are given by (3.29) to (3.53)

Let A = Ay + A, + A, and 7 denote the steady-statc probability vector of A 1,e

TA=0,me=1
The vector 7 can be partitioned as 7 = (7(0), 7(1), .,#(s), .,7(S)) where the vectors
n(1) are again partitioned as
(i) = (r(3,5,1))0 <1< 5,0<5 <4
m(i) = (n(i,5,k));s +1<i<§-1,0<j <4,k =0,1
m(S)=(n(5,5,0)0<5<S

We have the following result on system stability.



3.5 System Performance Measures 52

Lemma 3.4.1. The system is stable if

y(Dy +81,)c, <0

where vy is given by

S§-1 S
y=[D_wli )+ > w(ii,0)]
=0 i=s+1

Proof’ From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of (7,
which states that

mAge < wAhye
and by exploiting the structure of the matrices A and As, the stated result follows O

If stability holds, by using theorem 3.2.2 and Logarithmic Reduction Algorithm (see La-

touche and Ramaswamy [49]) we can calculate the rate matrix K.

3.5 System Performance Measures

Steady state probability vector
z = (z(0),2(1),(2),...) is again partition as z(¢) = (y(¢ j)) ¢>0,0<j < Sand

y(i,j) = (z(i,j,k,l)) where! = 1for0 < j <s
[=0,1fors+1<j<S5-1
l=0forj=29

and0 <k < g

1. The probability mass function of number of customers in orbit

The probability that there are ¢ customers in the orbit is given by

P=z(d)e=z(0)Re 20
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2. The rate at which the orbiting customers try to enter the bulfer is given by

oy ol wl0)e)

3. The rate at which the orbiting customers successfully enter the buffer is given by

6; = 66

where,

[ 5]
—

-1

=S (S stamn}er{ 3

i=1 =0 Fr=s+l k=0

.,

<
Il
-
&
i

4. Probability that an orbit customer fail to enter the buffer is,

03*21—(5

5. Expected inventory level in the system:- Expected inventory level in the system 3 given

by
E, =z(0)({ - R) 'e.

where’ Cy = [eo,el,...,es,. ,es]’aﬂd

e; = [i,4 ..., |ix+ym for0 < i < sandfori= S

e =[4,%, ..., tixousnym fors+1 <1< 51

6. Expected number of customers in the orbit

Es = z(0)R(I — R)*¢
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7. Lxpected number of customers in the butler is,

Eu—i[{s ]ikztj,l\,l }(+{ i J‘I\bl-],lvo}:\
=0 g=1 k=1 Jostl k1

3.6 Numerical Illustration

We provide an example based on our system performance meusures. In Table 3.1, fixing the
other parameter values involved in the system we vary over service time . whereas in Table 3.2
and Table 3.3 we vary over production time 3 and retrial rate #. For different values of these
parameter 4 3 and @ corresponding values of the system measurcs are provided.

Take
—-0.21 0.0

0.0 -020

If

.10 0.11
0.20 -0.0

1

and
mAge

ﬂ'Aoe
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Table 3.1: Fixed8=0.5,8=10,s=3,5=8
=10 u=15 ©w=20 =205 ©w=30 p=235 =40
p | 005392 [ 0.03201 0.02648 | 0.02428 | 0.02313 [ 0.02244 0.02198 ‘
g; 10.00056759 | 0.00028509 | 0.0002149 | 0.00018591 | 0.00017062 | 0.00016114 | 0.000015473 |
65 | 0.00036846 | 0.00018988 | 0.00014353 | 0.00012413 | 0.00011378 | 0.00010742 | 0.00010318 |
E. | 5740475 | 5.740343 | 5.740291 | 5.740262 | 5.740242 | 5.740231 5740221
E, | 0.0014946 [ 0.0007251 | 0.0005433 | 0.0004692 | 0.00043001 | 0.000406 0.000390"03_’
Eg | 0.259579 0.15948 0.115063 | 0.089992 | 0.073890 | 0.062676 0.054416
Table 3.2: Fixedu=1.0,3=10,s=3,5=8
=10 =15 6 =20 =25 6=30 6=35 g=40 )
p | 0.11081 0.14687 0.1684 0.18216 0.19161 0.19847 0.20366 |
g; | 0.00080955 | 0.0010533 | 0.00129664 | 0.00154004 | 0.00178492 | 0.00202942 | 0.00227404 |
65 10.00039515 | 0.0004165 | 0.00043519 | 0.00045225 | 0.00046841 | 0.00048392 | 0.00049897
E, | 5740419 | 5.740382 | 5.740357 | 5.740341 | 5.740328 5.74032 5740316 |
E, | 0.001064 | 0.000922 | 0.00085 0.000809 | 0.0007809 | 0.0007608 | 0.0007458
Eg | 0259654 | 0.259692 | 0259715 | 0259730 | 0259741 { 0.259749 | 0.259755
Table 3.3: Fixedp=1.0,0=05,5s=3,5§=8 L
5=10 B =15 5=20 8=25 G =30 =35 =40
p | 0.05392 0.03693 0.03248 0.03064 0.02969 0.02911 0.02872
g; ] 0.00056759 | 0.00029618 | 0.00022808 | 0.00020027 [ 0.00018549 | 0.00017634 | 0.00017029 |
65 | 0.00036846 | 0.00020237 | 0.00015736 | 0.00013805 | 0.00012762 | 0.00012110 | 0.00011668
E, | 5740475 5.84053 5.884952 | 5.910028 | 5.926137 | 5.937356 | 5.945621
E, | 0.001494 | 0.000752 | 0.000576 | 0.000505 | 0.000467 | 0.000444 | 0.000429 |
Ep | 0259579 | 0.259735 | 0259793 | 0259822 | 0.259839 | 0.259851 | 0.259859




Chapter 4

Retrial Inventory with BMAP and Service

Time

4,1 Introduction

In this chapter we consider an (s, S)-retrial inventory with service time where primary arrivals
of demands follow a batch Markovian arrival process (BMAP). Demands enter the buffer of ca-
pacity equal to the number of items held in the inventory at that time. When buffer is full (equal
to the number of inventoried items), further demands proceed to an orbit of infinite capacity.
The orbital customers will try their luck after some random time, exponentially distributed with
parameter §. These customers keep on trying until they succeed in finding a berth at the buffer.
Service times of customers are i.i.d. exponential random variables with parameter 4. Inventory
level decreases by one unit for providing service to a customer in the buffer. When inventory
level reaches s an order for replenishment is given. Lead time is exponentially distributed with
parameter J.

Retrial queues deal with the behaviour of queueing systems of customers who could not
find a position at the service station at the arrival time. [t has been investigated extensively
(See the survey papers by Yang and Templeton [91] and Falin 18], the monograph by Falin

and Templeton [19]) and also the more recent state of art in re-trial queues by Artalejo [5].
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Artalejo, Krishnamoorthy and Lopez-Herrero [6] is the first investigation on inventory policies
with positive lead time and retrial of orbital customers (linear retrial rate) who could not get
service during their carlier attempts to access the scrvice station.

Berman, Kim and Shimark [9] in which they assumed that both the demand and the service
rate are deterministic and constant and as such, queues can form only during stock out pe-
riod. They determined optimal order quantity that minimize the total cost per unit time. Berman
and Kim [10, 11] analyzed an inventory system in which customers arrive at a service facility
according to a Poisson process with service times exponentially distributed where each cus-
tomer demands exactly one item in the inventory; both zero lcad time and positive lead time
cases were discussed. Berman and Sapna [13, 12] studied inventory control at a service facility,
which uses one item of inventory for service provided. Assuming Poisson arrival process, arbi-
trarily distributed service times and zero lead time they analyzed the system with the restriction
that the waiting space is finite. Under a specific cost structure they devised the optimum order-
ing quantity that minimizes the long run expected cost rate.

This chapter is organized as follows: In section 4.2 we discuss the model and provide the
brief discription of BMAP. Steady state analysis of the model 1s studied in the section 4.3. we
list some system performance measures in section 4.4 and for particular case of BMAP (when

arrival of demands form Poisson process) we Provide numerical results in the sections 4.5

4.2 Model and Analysis

We consider an inventory system with service time in which demands occur according to a
Batch Markovian Arrival Process (BMAP). The demands are served singly with service times
exponentially distributed with parameter u. There is a buffer in which demands can stay before
getting service. The capacity of the buffer is restricted to the number of items held in the
inventory at any given instant; Thus this varies from 0 to S. Customers who find no place
in the buffer go to an orbit of infinite capacity. The inventory is controlled by (s, S)-policy.
Replenishment time is exponentially distributed with parameter 3. The customers in orbit retry

for service with constant re-trial rate 4. If the inventory level is greater than the number of
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customers in the buffer then both retrial/ customers and primary customers can get into the
buffer on arrival. Its overflow lead to customers being directed to the orbit.

The BMAP in the continuous time can be described as follows:-

Let the underlying MC be irreducible and let ()* be its generator. After a sojourn in a state :

which is exponentially distributed with parameter A;, 1 < ¢ < m, two things can occur

1. It can go to state 5: 1 < 5 < m the transition corresponds to the arrival of a batch of size

k > 1 with probability p;;(k)

2. Itcangotostate j: 1 < § < m, j # i and the transition corresponds to no arrival with

probability p;;(0)

We have

XY omlk)+ Y pu(0)=1, 1<i<m

k=1 j=l j=1j#1

For £ > 0 define the matrices Dy, = (d;;(k)) such that

di;(0) = Aipi;(0) j#1,1<4.5<m
di,;(O) = —/\1' and d,‘j(k) = /\i]-'hj(k)

By assuming Dy to be non-singular matrix, the inter arrival times will be finite and the

arrival process doesn’t terminate. The generator is

Thus, the BMAP is governed by the matrices { D, } with Dy governing the transition corre-
sponding to no arrival and D governing those corresponding to arrivals of a group of size &,
k> 1

In this chapter we assume that D; = 0 for : > K so that the maximum possible batch size
in K.

For the use in the sequel let



4.3 The Steady State Analysis of the Model at an Arbitrary Time Epoch 59

I; denote identity matrix of order ¢
® stands for Kronecker product of two matrices
A’ means transpose of matrix A

e denotes column vector of 1’s of appropriate order.

4.3 The Steady State Analysis of the Model at an Arbitrary
Time Epoch

Let Ny(t), I(t), No(t) and J(t) denote respectively, the number of customers in orbit, the
number of items held in the inventory, the number of customers in the buffer including the one
getting service and the phase of the arrival process at time t. Now {Ny(t), I(t), Na(t), J(t)} is

a continuous time Markov chain with state space given by
Q={GE75k!l) i200<;<50<k<;1<I<m}
Let O denote the set of states given by
0={(rjkl) 0<r<KO0<j<S0<k<jl<li<m}
and

i={@K+rikl) 1<r<K0<j<S0<k<j1<i<m}),ix1

The above set of states are arranged in lexicographic order. Define the following matrices
for later use,
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s41 O 1 o) Q+1
0 l‘luo Huy
1 fhe Ffin 17IQ+|
2 f13) Fip

Has

s+1 Hopt,s Hotl a1

Q-1
Q I.IQ‘Q_l 1-IQQ
Q+1 Hor1.@ Ho+1,0-1

§-1

where

i — B — Fy 0<i<s

Hi= 0 is zero matrix of order . x im

-H.s'S

I:IS.S—-l HSS

1<i< 8§

ﬁi,H-Q = [li+1 ® AL, 0] (Oiszero matrix of order (i + 1)m x @m 0<i<s
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(4.1}

4.2)
4.3)

(4.4)

4.5)
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Where i
Dy D,

Do

Note that D; = Owhent > K +1

Foo=0
[0 0 0 0
010 0
F;=
0 01 0
0 00 1
where1 <1< S
Hy
Hy Hy
Hy Hy

Doy Dy
D; s Dio
0<¢< S
Dy, Iy
DO ~ @+ D)mx(E+1l)m
Eii = Ii+l QQ.B["; 0 5 t S b
0
by /-Ijrn: ®/—L]m
Geyx )
(i+1) x (i41)
Hog
Hl.Q+1
'HSS
Hog-1 Haq
Hss_, Hgg|
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(4.6)

(4.7)

(4.8)

(4.9)
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where

where

where

o O = O

= 1)",; .= I’J‘.H = l" - V,'" ] 2 S
Hy=Dy— Fy - Vi s+1<igs

1

®OI7IL =

0
0
0
0

4 (41)x(i+1)

(+1)x (i+1)

ii
By;

S§
BUJ' d

(i+1)x (i41)
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(4.10)
(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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where
D

i f

. ; Dii j
B = [ ) o it (4.16)

0j

D;
L J (i—{-l)ru.xul

where ¢!**1) is a column vector of (i + 1) entries with the (i 4 1jth entry 1 all other entries are
0’s.
Here also note thatif & > i + 1, D, = 0.

H By By Bok-:  DBok
L H By Bok-2 Box-
Aw=1(0 L H Box-3 Box-2 (4.17)
0 0 0 L H |
[ 0 0 0 0 0|
Bk 0 0 0 0
Box-1 B 0 0 0
Ao = 0K -1 0K @.18)
Bok-2 Box-1 Box 0 0
| Bo By,  Bos Bok-1 Boxk |
[0 0 0 7]
000 0
A2= {0 0 0 0 4.19)
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The Markov chain (N, (t), I(t), No(t), J(t)) has the generator @ in the partitioned form

The generator A = Ay + A; + A, is given by

L

[ H + Byg
L+ Bok1

(11 Doy By
L H By
=0 L I
0 0 0
[ Bk 0
BOK—-I BOK
Ag = Bok -2
. Bn B

By By
H+ Bog Bo
L+ BOK-I H+ BoK

By Bos

B()K—l

A Am
Ay A
Q = Ay

Dop -2
Bog -3
]}01\' —-4

L

0
0

B[)K

Bos

A

]),l)l\ -1
]3()/\' -2
“«)I\' -3

Bk |

BOK—‘Z

Box -3
Boj s

L + Boy -1

Lemma 4.3.1. The steady-state probability vector = satisfying

TA =0,

re=1

Box-1+ L]
Bok -2

Bok_3

H+BOK_
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(4.20)

(4.21)

(4.22)

(4.23)
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is given by
! (¢/ & w) 4.24
m=—(c &w .
where the vector w is the steady-state probability vector of
K
M=H+L+)Y By
j=1
Hyo ﬁoo
Hyo Hy
Hy Hax
— ) ; (4.25)
Hss Hs.S'
Hoq-1 Hao
L HSS-
¢ is a column vector with K entries all equal to | where
(D, ~ B+ 0)m Dy +6Im D, D3 sumJ";lD,-.H-
Du—(ﬁ+9+}-l-)]m D1+0]m I)z Z;;l Di+j—l
'H' DO_(ﬁ+6+}J-)lm Dy~ 81, Zf:l Di-i—j-—2
2;;1 DJ—:-I + elm
Do ~ (8 + p)m + T35, D]
(4.26)
1<i<s

Hiy=Hi+ 1 @Bl fors+1<i<8§
Hij_1for1 <1< Sand Hijpq for 0 <4 < sare as defined in (4.4) and (4.5)

Proof. Noting that A is a circulant matrix, we see that the vector = is of the form = = %(e’@ w)
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where the vector w is the steady--state probability vector of the generator M given by
K
M=1+1L+) Dy 4.27)

J=1

Partitioning the vector w as w = (wp, w1, ws)
where wp = Wi, w; = (Wi wh', wi), 1< i< S, the following result on stability condition

is obtained. O

Lemma 4.3.2. The system is stable if

{5 ) o) (58 o

Proof. From the result on the positive recurrence of @@ which states that
wApe < TAq€

and exploiting the structure of matrices A, A, 7.
Let z, partitioned as z = (z(0), z(1), 2(2). .), denote the steady state probability vector of Q.
Then z satisfies

zQ =0ze =1
g

Theorem 4.3.3. When the stability condition holds good, the steady state probability vector x
is given by

() =z(HR"Li>1

where the matrix R is the minimal non-negative solution of matrix quadratic equation:

R2A2 + RA+A;=0
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and the vector £(0) and z(1) are obtained by solving
.'L'(O)A“) -+ .‘l.‘(i)/lz =

2(0) Ao + z(1)[A) + RAY == 0

subject to the normalizing condition
z(0)e+z(DN{I -R)te=1

Proof. Follows from well known results.

Computation of the matrix R.

67

To compute R first we compute G matrix. The special structure of the matrix A, implies that

the matrix &G will have the following structure.

1 2 K
1 Gy
2 G
G = ? (4.29)
K %
where each (; is a square matrix of order %@m . Now G satisfies the matrix quadratic

equation:
A(]G2+A1G+A2 =0

Using the above form of G this equation gives

BOKG1GK+HG1 + By Gy + +BOI{_1GK+L=O
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and
N—

ZBO,J_HKG G+ LGioy + HGi+ Y ByjGuyy =0, 2<i<K.
Jj=1 !

which gives

K-1
Gy = (—H) Bk G1Gx + Z ByiGjy1 + L]
j=1
andfor2 <i< K,
K—-1
G;= I[Z Boj-14xG;Gr + LGy + Z Bo; Gy
ji=1 =1

Now we can use Block Gauss Seidel iterative method to evaluate Gy, ..Gg and hence G. The
accuracy checks can be done using G, = 1,1 <i < K.

After this R can be evaluated using the formula

R = Ao(—Al - A[)G)_L

4.4 System Performance Measures

1. Expected inventory level

o< K
Z 1[2 0,0+ (a)les
j=0 =1 j=1

=1

. 2
where e; is a column vector of %Z(SH

t(t+l) m+ 1, (1+l m +2,. (1+l)2(i+2)

m entries of which the entries in positions

m are 1s’and rest zeros.

2. Expected number of customers in the buffer conditional on the inventory level and then

remove the conditioning, is given by

» K
Ep = 2(0,0)e(b) + Y 3 _[2(1,5)e(b)]

i=0 j=1
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where e(b) = o’ @ ¥ witha = ({0}.{0,1},{0.1,2}, ,{0,1,2, ,S}) andd =
(1;-"11)1)(1!1.

3. Expected number of customers in the orbit:

4. Blocking probability (Probability that a customer (primary/orbital) finds the buffer at its

permitted maximum). This will be conditional probability (conditioned on the inventory

level):
o K
z(0,0)e(c) + Z Z z(3, 7)e(c)
=0 j=1
where e(c) is the column vector with 1’s in the positions 1,...,m;2m + 1, ,3m;

5m+1,...,6m; JS+1)(S+2m-m+1,..., B,
5. Probability of encountering the system with inventory level zero.
o K
)+ Z Z x(t, j)e(d)
i=0 j=1

where e(d) is the column vector with first m entries 1s’ and the rest zeros.

4.5 Numerical illustration

We provide an example based on our system performance measure in the particular case (Ar-
cival of demands follow Poisson process). In Table 4.1, fixing the other parameter values
involved in the system we vary over service time u whereas in Table 4.2 and Table 4.3 we vary
over replenishment rate 3 and retrial rate @ respectively. For different values of these parameter 4

L, B and @ corresponding values of the system measures are provided.
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Table 4.1: Fixed A= 050 0.7,3= 06,5 2,5=5
p=05]p=06[ p=07 | u=08 [ =09 | p=10
E, | 3.49621 | 3.48527 | 3.46317 | 3.42747 | 3.37993 | 3.32369
E, [ 2.04322 | 1.8643 | 1.70886 | 1.57053 | 1.44644 | 1.33507
FEs | 1.71564 | 1.14123 | 0.839337 | 0.664212 | 0.556632 | 0.488157
Table 4.2: Fixed A =050 =07, 40=07,s=2,8=5
6=06 |f=07] =08 3=09] 3=10 ] f=11
L, | 3.46317 | 331458 | 3.32762 | 3.36807 | 3.41198 | 3.45337
E, | 1.70886 | 1.4018 | 1.30959 | 1.27057 | 1.25161 | 1.24187
E, | 0.839337 | 0.67463 | 0.585385 | 0.527918 | 0.488025 | 0.458975
Table 4.3: Fixed A=0.5,6=06,4u=0.7,s=2,5=5
6=04] 6=05 [ 6=06 ] 6=07 =08 [ =09
E; 336830 | 340749 | 3.4385 | 3.46317 | 3.48285 | 3.49865
E, | 1.62447 | 1.66106 | 1.68846 | 1.70886 | 1.72398 | 1.73511
E5 | 1.02356 | 0.952938 | 0.891877 | 0.839337 | 0.794146 | 0.73511
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Chapter 5

Inventory System with Postponed

Demands and Service Facilities

5.1 Introduction

In most of the inventory models it is assumed that thc inventory deplete at a rate equal to
demand rate (service time negligible). However, it becomes unrealistic for the service facilities
where the stocked item is delivered to the customers after some service is performed. In this
chapter we consider an (s, §) inventory system with service facilities. Arrival of demands form
a Poisson process with parameter A(> 0) to a buffer of finite capacity equal to the inventory
level at any given time ¢t. When the maximum buffer size is reached, further demands join a
pool of infinite capacity with probability v and with probability (1 — «) it is lost for ever. In
this chapter we consider two models. In the first model, pooled customers are taken to the
buffer with probability p at a service completion epoch if the inventory level is atleast s + 1
and provided the number of customers in the buffer is less than the number of items held in the
inventory.

In the second model we assume that when inventory level is atleast one and no customer is

*Some results of this chapter was presented in the Annual Conference of Kerala Mathematical Association,
Payyanur College, Kannur, Kerala; 8-10 January’2004.
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in the buffer then with probability one a customer is picked up from the pool for service. The
other assumptions of model-I remain valid for model-II as well. The service time is assumed to
be exponentially distributed with parameter u in both modecls. It is also assumed that initially
the inventory level is . When inventory level reaches s an order for replenishment is placed.
Lead time is exponentially distributed with parameter 3.

First we have a brief review of the research reported in inventory with service. Berman,Kim
and Shimshak[9] consider an inventory system with service in which they assume that both
the demand and the service rates are deterministic and constant and as such queues can form
only during stock out period. They determine optimal order quantity that minimize the total
cost per unit time. Later Berman and Kim[10, 11] analyze the non-deterministic inventory
model for service facilities. They analyze the system in which customers arrive at a service
facility according to Poisson process where service times arc exponentially distributed and
each customer demands exactly one unit of the item in the inventory; both zero and positive
lead time cases are discussed. Berman and Sapna[l2, 13] investigate inventory control at a
service facility, which uses one item of inventory for service provided. Assuming Poisson
arrival process, arbitrarily distributed service times and zero lead time they analyze the system
with the restriction that waiting space is finite. Under a specific cost structure they derive the
optimum ordering quantity that minimizes the long run expected cost rate.

The notations used in this chapter in the sequel are explained below:-

I(t)= Inventory level at time t; this takes values {0,1, ,S}
B(t)=Number of customers in the buffer at time ¢

N(t)= Number of customers in the pool at time ¢

A’- Transpose of a matrix A

e= The column vector of 1’s of appiupriate order.

Ve have {(N(t), I(t), B(t)),t > 0} is a continous time Markov chain with state space
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given by
Q={(:7,k);1200<j<S0<k<j} (5.1)

These states are arranged in the lexicographic order

This chapter is organized as follows: Model-I is discussed in section 5.2. This section contains
three subsectioAn. In subsection 5.2.1 we descn;igé the model-I. we list some system performance
measures and based on that some numerial examples are provided in the subsections 5.2.2 and
5.2.3. In section 5.3, we discuss the model-II. This section also contain three subsections.
We discuss the model in subsection 5.3.1. System performance measure is given in 5.3.2 and

finally, we provided illustrative numerical examples in section 5.3.3.

5.2 Model-I

5.2.1 Model Discription

In the present model, when inventory level is larger than the number of customers in the buffer,
an external demand can enter the buffer for service. A pooled customer is transfered to the
buffer for service at a service completion epoch with probability p, if the inventory level ex-
ceeds s and is also larger than the number of customers in the buffer. For convenience we define

the following matrices for use in sequel

Ago Avo

AIO All A-I:Q+1
By = (5.2)

As_1,5-1

Ags-1 Ass)

where

ADO = —)\’)’ - ,B (53)
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-A-=0 A
- “A=08-ypu A
Ay = 7T for2<i<s
L My -8-u |
S ]
. —A - A
Aii= A # fOI‘S‘FlSiSS
| STy
- 0
AI.O =
/J.
- 0 )
Ai.i—1=I: } p for2<i<S
Ii (i+1)xi
AO,Q = [ﬁ) 07 0}
Aiirg = [141,0,0,--- 018 forl <i<s
[ Ao Avo ]
Aw Ay AI.Q+1
Al =
A~S—1.S—l
| /‘—15,5—1 Ass_

where
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(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9

(5.10)

(5.11)

(5.12)
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- 0
Aiic1 = (g(1=p)) fors+1<i< S
: (i+1)xa
o -
Cio Cn
Ay = C'21 C_zz

Css-1 Css|
where

Coo=0

s

Ci;are matrices of all elements with zeros fors +1 <1< S

C; i—1are matrices of all elements with zeros forl <i<s

r A

0

DU

-~ p i )
Cii-1= # for s4+1<¢<S

pu

(i+1)xi

Boo
By,

Bgs

By = Ay

Bi=(am-ajy)y  1<i<8

where a;,; is a column vector of zeros except last entry which is 1 and

By isthe (i + 1) x (i + 1) matrix.
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(5.13)

(5.14)

(5.15)
(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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The Markov chain {{N(t), I(¢), B(t)),t > 0} has the generator () in partitioned form given by

By Av 0 0 0
Az AL Ay 0 0
Q=10 A A A 0
0 0 Ay A A

where , the entries in () are given by (5.2) to (5.22).
Let A = Ay + A; + A, and 7 denote the steady-statc probability vector of 4, i.e,

TA=0, rwme=1

The vector 7 can be partiiioned as

(i) = (n(3,0),7(3, 1), ,=(3,%)),4=0,1, ,S

Then the 7’s can be calculated as

.S

where

B = —',Bs—i+l(As—i+l,s—i + Cs—i+l,s—i)(js—i,s—i + Bs—i,s—i - Cs—i,a—i)—l ifi=1,2,
T ifi=0

5 [—Bs—ir1As—it1.5-i — BaciAsos5-i)(As—i5- + Bs-is-i + Cs_is—i) ™ ifi=1,2,
5—i =

—A,5(Ass + Bss+ Css)™! ifi =0

7(3) = —=Bip1(Air1i + C‘i+1,i)(Ai,i + Bi.i + éi,i)~1 ifi=0Q-1,Q-2, ,s+1
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We have the following result on system stability

Lemma 5.2.1. The system is stable if

Proof. From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of @,
which states that

wAge < TAze
and by exploiting the structure of the matrices Ay and A,, the stated result follows. a

If stability holds, by using theorem 3.2.2 and Logarithmic Reduction Algorithm (see La-

touche and Ramaswamy [1999]) we can calculate the rate matrix R,

5.2.2 System Performance Measurcs

We write the steady state probability vector z = (z(0), 2(1), z(2),...) where

z() = (y(1,5,k)); 120,0<5<S,0<k<

Some of the system performance measures are given below:

1. The probability mass function of number of customer in the pool: The probability that

there are ¢ customers in the pool is given by

2. Expected Inventory level in the system: Expected inventory level in the system is given

by

00 S J

=3 [(D5D ulisikil]e

i=C  j=1 k=0
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3. Expected number of customers in the buffer is,

g = i [i i}.:y(i,_/.k)J(:
=0

7=1 k=1

4. Expected number of customers in the pool

6. Expected rate at which customer enter the pool is,

o) )
o = Ny 2; [ Ekjoyu,j, B)e
1=0) _-,': c=

7. The Average rate at which the pool customers enter the buffer is given by

0 S J
as=puy [ Y. D yli.gk)e

i=1 j=s+1 k=1

5.2.3 Numerical illustration

Fixed § = 5,5 = 2,0 = 3,A = 0.5, p = 0.7,8 = 0.6,p = 0.6,y = 0.6

We provide a numerical illustration based on performance measures.
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TableSA.
A=02 | A=03 | A=04 [ A 05| A=06
ay | 3.64122 3.44974 327038 | 3.1189 | 3.00847
ag | 0.362165 | 0.593453 | 0.85437 | 1.14709 | 1.47747
as | 0.0427584 | 0.176074 | 0.551752 | 1.71793 | 9.46571
ay | 0.00222627 | 0.00937859 | 0.0246719 | 0.050412 | 0.0882317
as | 0.003394 | 0.0140679 | 0.0370079 | 0.075618 | 0.132348
ag | 0.103909 | 0.143281 | 0.175928 | 0.203971 | 0.229517
Table 5.2:
p=06 [ p=07 | u=08 | g=09 [ p=10
ay | 3.15381 3.1189 | 3.10037 | 3.09042 3.0852
ap | 1.44111 | 1.14709 | 0.945552 | 0.800566 | 0.692144
as | 3.87896 | 1.71793 | 1.07129 | 0.778464 | 0.617492
aq | 0.0634834 | 0.050412 | 0.0419241 | 0.0361165 | 0.0319699
as | 0.0952251 | 0.075618 | 0.0628862 | 0.0541748 | 00479548
ag | 0.125296 | 0.146179 | 0.167062 | 0.207452 | 0.208827
Table 5.3: I
f=04 [ =05 [ =06 3=07 | =08
ar | 2.7194 2.95409 | 3.1189 | 324018 | 3.33281
as | 1.10445 1.12528 | 1.14709 | 1.16721 1.18511
az | 650534 | 2.68521 | 1.17793 | 129464 1.06335
ag | 0.0695216 | 0.0576941 | 0.050412 | 0.0456062 | 0.042261
as | 0.104282 | 0.0865412 | 0.075618 | 0.0684092 | 0.0633917
as | 0.178756 | 0.193112 | 0.203971 | 0.212473 | 0.219313
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Table 54:. _ _ R -

p=104 p=05 | p 06 p 07 ] p=08

o) | 3.13578 | 312578 | 3.1189 | 3.11374 | 3.06936
az | 1.17199 1.1566 | 1.14709 | 1.14089 | 1.00008
as | 422862 | 241191 | 1.17793 | 1.35453 | 0.680104
oy | 0.050528 | 0.0504136 | 0.050412 | 0.0504763 | 0.0466839
as | 0.0757921 | 0.0756203 | 0.075618 | 0.0757144 | 0.0466839
ag | 0.138115 | 0.171072 | 0.203971 | 0.236803 | 0.250033

_ Table 5.5:

y=04 | v=05 [ y=06 | v=07 | y=0.8

oy | 3.14825 | 3.13416 | 3.1189 | 3.10209 | 3.08329
ap | 1.05942 | 1.10032 | 1.14709 | 1.20083 | 1.26299
ay | 0.653433 | 1.05776 | 1.17793 | 2.90313 | 5.4188]
ag | 0.067264 | 0.0593129 | 0.050412 | 0.0403486 | 0.0288498
as | 0.0448427 | 0.0593129 | 0.075618 | 0.0941467 | 0.115399
ag | 0.196428 | 0.199945 | 0.203971 | 0.2086 | 0.213959
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In Table S.1-to 5.5,we provide measures of the system performance by fixing the parame-

ter's values involved in the system. we vary over the paramcters A, p1, 3, p and . For different

values of these parameters corresponding values of the system performance measures are pro-

vided.

5.3 Model-II

5.3.1 Mecdel Discription

In this model we assume that if there is atleast one unit in the inventory and no customer in the

buffer, then with probability one, service to the head of the line in the pool customer will start.

The rest of the assumptions are similar to model-1. In the present model, system will be affected

through the matrix A, and A, in the infinitesimal generator ¢ of model-1. For the coavenience,
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we are redefining the entries of matrix A; and A,. The entrics of the matrix A, can be wrilten

as:- B}
_ A=f—p A
Apy = ' (5.22)
0 Xy =8 —p
“A—pu-=-0 A
- -A=-0- A
Ay = s for2<i<s  (5.23)
L My—f-p
—-A—pu A
- “A—pu A . )
Au = fors+1<i<8§ (5.24)
L —/\";' -t |

whereas other entries are identical to that of the entries of matrix A; in model-I.

The entries of the matrix A, for the present model can be writen as:-

i )
7’
pp
Ciic1 = PH Jors+1<i<§ (5.25)
pp
0]
! < (+1)xi
éi,i-—l = H 1= 1 (526)
0
(i+1) x1
- 0
Cii-1= K Jor2 <i<s (5.27)
0 0

(i+1)xi
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The other entrics are identical to that of the entrics of matrix A, in model-1.

we have the following condition for stability

Lemma 5.3.1. The system is stable if

s 5 -1 9
szO ZZ z]p/L>)\/z
=1

Proof. From the well-known result [Neuts [61] theorem 1.7.1] on the positive recurrence of (),
which states that

mAge < wAye
and by exploiting the structure of the matrices Ay and A,, the stated result follows. |

Theorem 3.2.2 is applicable for the present model when the stability condition holds.For
calculating the rate matrix R, Logarithmic Reduction Algorithm (Latouche and Ramaswami
[49]) can be used. Note that the vector 7 of the generator A can be calculated in the same

fashion as calculated in model-1.

5.3.2 System Performance Measures

€ write the +*" component of the steady state probabihity vector r = (z(U), z(1), T(2),
We writz the i** comp fth dy probability 0), z(1), z(2

z(i) = (2(4,5,k)); 120,0<;<50<k<;

Some of the system performance measures are given below:

1. The probability mass function of number of customers in the pool: The probability that

there are  customers in the pool is given by

P, =z(i)e =z(0)R'e; i>0
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2. Expected Inventory level in the system: Expected inventory level is given by

4. Expected number of customers in the pool

By = Zzz (0) (1 = 1)~

=0

5. Average Number of Customers lost to the system is

54=/\(1—’)’)i[ i ZZJA]
=0 j=k=0

6. Expected rate that a customer will enter the pool 1s,

i[i 1]k

J=k=0

7. The Average rate at which the pooled customers enter the buffer is given by

=) S 7 o S
Bs=pud [ D > 2(iikle+nd Y 2(i,5,0)e

i=l j=s+1 k=1 i=1 j=1

5.3.3 Numerical Illustration

A
We provide a numerical illustration based on performance measure.
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Table 5.6: o
A=03 | A=04 | A=05 | A=06 [ A=07
B | 3.47192 | 330217 | 3.15116 | 3.02365 | 2.92394
B2 | 0.574263 | 0.801166 | 1.03429 | 1.27722 | 1.41279
B3 | 0.0743328 | 0.235863 | 0.628411 | 1.69963 | 2.47404
By | 0.00884 | 0.0224701 | 0.0443471 | 0.0753339 | 0.107078
Bs | 0.01326 |0.0337052 | 0.0665206 | 0.113001 | 0.160617
Bs | 0.553833 | 0.501887 | 0.452489 | 0.405742 | 0.376486
Table 5.7:
w=05 =106 pw=07 =038 p=09
B | 3.22136 3.1774 3.15116 3.1367 3.12871
B2 | 1.70973 | 128765 | 1.03429 | 0.859483 | 0.732528
B3| 526143 | 122989 | 0.628411 | 0.396087 | 0.280761
B | 0.0752161 | 0.0552871 | 0.0443471 | 0.0372473 | 0.0323662
1 Bs | 0.112824 | 0.0829306 | 0.0665206 | 0.0558709 | 0.0485493
B | 0.278375 | 0.365966 | 0.452489 | 0.54048 | 0.62965
Table 5.8:
=04 | B=05 | =06 | #=07 | =038
G | 2.74395 2.986 3.15116 | 3.27066 | 3.36096
B | 0913272 | 0.983043 | 1.03429 | 1.07372 | 1.10513
B3| 1.06962 | 0.768233 | 0.62841 | 0.551497 | 0.504454
Ba | 0.0589525 | 0.0498858 | 0.0443471 | 0.0407051 | 0.0381752
Bs | 0.0884288 | 0.0748287 | 0.0665206 | 0.0610576 | 0.0572628
Bs | 0.408505 | 0.43567 | 0.452489 | 0.463708 | 0.471619

34
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Table 5.9:
p=04 p=0.5 p=06 | p=07 p=0.8
81| 3.14934 | 315008 | 3.15116 | 3.15152 | 3.15182
B, | 0998271 | 1.01151 1.0235 1.03429 | 1.04396
Bs | 0.727222 | 0.691369 | 0.658411 | 0.601111 | 0.576402
B4 | 0.0430501 | 0.0437241 | 0.0443471 | 0.0449207 | 0.0454472
G5 | 0.0645752 | 0.0655862 | 0.0665206 | 0.067381 | 0.0681708
B | 0.392067 | 0.421981 | 0.452489 | 0.483497 | 0.514921
Table 5.10:
v=04 v=10.5 v=10.6 v =07 v=0.8
G| 3.17546 | 3.16416 | 3.15116 3.1364 3.1197
B | 0999049 | 1.01605 | 1.03429 | 1.05395 1.07535
B | 0309636 | 0.448205 | 0.628411 | 0.866194 | 1.18667
B4 ! 0.0621832 | 0.0535514 | 0.0443471 | 0.0344916 | 0.023895
Bs | 0.0414555 | 0.0535514 | 0.0665206 | 0.0804803 | 0.0955801
B | 0.460935 | 0.456892 | 0.452489 | 0.447675 | 0.442377
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In tables 5.6 to 5.10, we provide measures of the systcm performance by fixing the param-

eter values involved in the system. We vary over the parameters A, p, 3, p and «. For different
values of these parameters corresponding values of the system measures are provided.
Table Analysis

We evaluatéd certain system performance measurcs based on model-I. Where we assumed
that the pooled customer will be picked up to buffer at a service completion epoch only if
inventory level is atleast s + 1. In model-II we relax this particular restriction and consider that
the customer from the pool will be picked up with probability one even when inventory level is
atleast one and no customer is present in the buffer, So it is expected that in the latter case the
expected number of pooled customers get reduced whereas the customer entering rate from the
pool to buffer will be increased. And as an overall affect inventory level will be decreased in
model-II. Comparing the results in tables for model-I and model-II we notice that they are in

agreement with our expectation.



Chapter 6

(s, S) Inventory System with Postponed

Demands

6.1 Introduction

In this chapter we discuss an (s, S) inventory system with postponed demands. Two models
are discussed. In the first model we examine the casc in which life time of the inventoried
items Is infinite and in the second model the inventoried items have random sheif-life which
is exponentially distributed with parameter (¢ > 0) undcr the same assumptions except that
when inventory level is zero, external demand has choice to join the pool with probability 3 or
leave the system with probability (1 — 3).

Many researchers have considered (s, S) inventory system and exarnin%{me system charac-
teristics. Gross and Harris [26] analyzed a continuous review (s, S) inventory mode! with state
dependent lead-time. Srinivasan [}g]]gnalyzed an (s, S) inventory system with random lead
time and unit demand. Sahin [74] discuss an (s, S) inventory model under compound renewal

demand and random lead time. Beckman and Srinivasan [7] consider an inventory system with

*The results of Model-I of this chapter will appear in the Journal of Stochastic Analysis and Application,
Vol.22, No.3, 2004.

*The results of Model-1I of this chapter was presented in the Annual Conference of Indian Society for Proba-
bility and Statistics at Nagarjuna University, Andhrapradesh; 18-20 December’2003.
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Poisson demands and exponential lead time. Ramanarayan and Jacob [69] analyze an (s, 5)
inventory system with random lead time and bulk demand. An (s, 8) inventory system with
random life-time and positive lead time is discussed in Kalpakam and Sapna [37).

On the other hand extensive work has already been done by many researchers in the field
of perishable inventory systems by assuming a constant rate of deterioration and also constant
demand. Goel and Giri [24] study an inventory model by considering demands as a function
of selling price and three parameter Weibul] rate of deterioration. Nahmias [57] is an excellent
reference for literature on perishable inventorics. Raafat [66] presented a complete survey of

literature for the deteriorating inventory models up to [1990].

Notations

The following notations are used in this chapter

I(t) = Inventory level at time ¢

N (t) =Number of customers in the pool at time ¢
{@), N} ={(E7)0<i<50<7 < M)
f*(a) =Laplace Transform of f{.}

Fy ={0,1,2,- - S}

E,={0,1,2,- - M}

F=FE xE

ems1 = (1,1,- -, 1)7: an (M + 1) -component column vector of 1’s

This chapter is organized as follows: Model-I is discussed in section 6.2. This section contains
five subsections. Some assumptions ar> made to study the model in 6.2.1. Model analysis both
for transient and steady state cases are discussed in subsection 6.2.2. In subsection 6.2.3 we list
some system performance measures and based on that measures a cost function is developed
and some numericals are provided in the subsections 6.2.4 and 6.2.5 respectively. In section 6.3
we discuss the model-11. This section contain four subsections. In subsection 6.3.1 we study

the system in steady state case for perishable inventory system. System characteristics measurec
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J8given in 6.3.2. A cost function is discussed in the subsection 6.3.3 and finally, we provided”

illustrative numerical examples in subsection 6.3.4.

6.2 Model I

In the first model we examine an (s, S) inventory system with Postponed demands. We assume
that customers arrive to the system according to a Poisson process with rate A(> 0). When
inventory level depletes to s either due to a demand or service to a pooled customer, an or-
der for replenishment is placed. The lead time is cxponentially distributed with parameter ~.
When inventory level reaches zero, incoming customers are sent to a pool of capacity M. Any
demand that takes place when the pool is full and inventory level zero, is assumed to be lost.
After replenishment, as long as the inventory level is greater than s, the pooled customers are
selected according to an exponentially distributed time lag, with rate depending on the number
in the pool.The difference between the problem under discussion and classical (s, S) inventory
models with lead time is that pooled customers will have to wait even when inventory level is
positive whearas in the latter backlogs are cleared, partially or fully depending on availability,
on replenishment of inventory, in the former this need not take place. In both cases lead time

plays a crucial rule.

6.2.1 Assumptions

[a—

. Initially the inventory level is S, i,e. 7{0) =S
2. Inter arrival tim'g of demands are exponentially distributed with parameter A

3. Lead time is exponentially distributed with parameter
avy-
4. Demands that arrive when the inventory level is 0, is sent to a pool of capacity M. Beyond

M the demand is lost provided inventory level is also zero

5. When the inventory level I(t) > s, demands from both pooled customers and external

customers can be met, but when I(t) < s only external demands will be met and pooled
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customers have to wait until the next replenishment.

6.2.2 Model and Analysis

The maximum inventory level is fixed at S. The inter-arrival time between two successive
demands is assumed to be exponentially distributed with paramcter A. Each demand is for ex-
ectly one unit of the item.When inventory level /(t) depletes duc to demands and reaches the
re-order level s, an order for replenishment is placed. Lead time is exponentially distributed
with parameter y. When level is zero, demands that take place are sent to a pool, which has a
finite capacity M. When inventory level > s+ 1 both external and pooled customer’s demands
are met. The infinitisemal generator A = (a(i, 7;k,0), (4, 1), (k1) € E, of the process can be
obtained using the following arguments:-

a. The arrival of a demand makes a transition from

(1,j) — (k=i—-1,l=3) ifl<i<Sand

(4,j) —m (k=il=45+1) ifi=00<;<M~-1

b. When a pooled customer is picked up, it leaves the pool size and also the inventory level less
by one i,e. the transition

(1,j) = (k=i-1l=j-1) ifs+1<i<S

¢. Transition from (i, j) to (i + Q,{ = 7) if ¢ < s and has rate 7.

Hence we get
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a(i, j; k1) =

Define

A ifk=i-1i=541,
I “.!,2: y'ﬂ/ /=/
i ifh=i—-1li=x511,

l=j-17=12 ..

l=3537=01 .M
A ifk=i=0
=j+15 01,
v ifk=1+0Q;i=0,1,
l=34;7=0,1, M
~(A\+7%) ifk=ii=0,1,. ,s
l=73,7=0,1, M
A ifk=1—1:=@1,
l=3:7=0,1, M

Aix = (a(i,7), (k1)) jueE i k € B

The infinitesimal generator A can be conveniently express as a partitioned matrix

A= ((Ax))

—

where Ay isa (M + 1) x (M + 1) matrix which is given by,

[A, ifk=i-1i=s5+1,
Ay ifk=ii=s+1,

As ifk=14i=0

Ay ifk=i+Qi=0,1,
As ifk=4i=12. ,s
As ifk=i—1;i= 12,

L 0 otherwise

S

™

x

S

oM =1

90
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with
M
M-1
M-2
A =
2
1
0

fork=i-1;i=8+1,---,5.

M

M-1
Ay =

2

1

0

fork=d4i=s+1, ,S

M

M-1

M-2
Ay

A My 0 0 0 0
0 N (M-1)u 0 0 0
0 0 A 0 0 O
0 0 0 A 2 0
0 0 0 0 A u
0 0 0 0 0 A
[ —(\+ Mp) 0 0 0 0
0 —(A+ (M = 1)) 0 0 0
0 0 0 A+ 0
0 0 0 0 ~X
— 0 0 0 0 0
A —(A+9) 0 0 0 0
0 A —(A+7) 0 0 0
0 0 0 ~A+7) 0 0
0 0 0 A —(A+7) 0
0 0 0 0 A —(A+7)

fork =4i=0
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M
M-1
M -2

0
0

0
0
0

0

fork=14+@;1=0,1,---,s

M

M-1
A = M-2

1

0

—(A+7)

fork=1:=1,2,

M

M-1

M-2
Ag =

2

1

0

fork=:i1—-1;0=12,---

0
0
0

0
0

yS

0
0
0

0
—(A+7)
0

S

0
0
—(A+7)

So we can write the partitioned matrix as follows:

0 0

0 0

0 0
~(A+7) 0

0 —(A+7)
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S Ay A 0 0 0 0 0 0 0
S-1] 0 A, 0 0 Do g 0 0
Q+11 0 0 A A 0 0 0 0 0
Q 0 0 0 A, 0 0 0 0o o
A=
s-1 0 0 0 0 Ay A 60 0 0
] Ay 0 ¢ 0 0 As 0 0 0
2 0 0 0 0 0 0 A Ag O
1 0 0 Ay O 0 0 0 A5 Ag
0 0 0 0 Ay 0 0 0 0 Aj

Transient Analysis:

Define
&((1,5), (k, 1), t) = Pr{I(t) = k,N{t) = [}(0) = {, N(U) = j}, (i, 7), (k, () € E
Let, ¢; «(t) denote a matrix whose (7, )" element is &{(i, 5), (k, 1), t) and

®(t) denotes a block partitioned matrix with the sub-matrix ¢, (t) at (i, k)** position.

The Kolmogorov differential equation satisfied by ¢((1, 5), (k,!), t) in matrix form is

The solution of the above equation is given by

d(t) = et

Now,

93



6.2 Model I 94

fOO —at /U.dt — (0:1' _ ‘/_1)_.1

where
0 = (#i(a )) and ¢Zk(a) = (¢"((,9), (k, 1), ))jice,
with ¢*((3, 5), = [T e (4, ), (k, 1), )t
The matrix (aI - A) has the form
=(al - A) =
S Ds —-Bg 0 0 0 0 0
S—1 0 Dg_, 0 4] 0 0 0
Q 0 0 Dy 0 0 0 0
s+1 0 0 0 Dyy1 —Bsg 0 0
s -H, 0 0 0 D, 0 0
1 0 0 0 0 0 D, -B
0 0 0 — H, 0 y 0 Dy
where

al — Ay ifi=s+1, .S
Di= | al-As ifi=12 s
CY]-—A;; ifi=20

A, ifi=s+1, .S
Ac, lf’l:].,g, y S

B; =

Hi=A, ifi=0,1,---.s

To compute P~! = (a — A)~* we proceed as described below:-

Consider the lower triangular matrix
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s Uss 0 0 0 0 0

S-1 US—I,S U5_1|5_1 0 0 ( 0

Q Ugs Ugs-i Ugo 0 0 0
Q =

] Usys  Ussa Uso Uss 0 0

1 Uis Uis-1 Uig Ul Uip O

0 Us,s Us,s-1 Uog U, Usp Unp

with Ui,,': 1;i=0,1, ,S

And an almost lower triangular Matrix,

S C —-Bg 0 0 0 0

Q 0 0 —Bg 0 0 0
R=

s 0] 0 0 - B, 0 0

1 0 C 0 0 —B; 0

0 \ Ros Ros-1 Ry Ry Roy  Rop

such that PQ = R
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The (7, )" sub-matrix of PQ, denoted by [1Q)], jis given by,

DU;; — BU.-\ ifd 1,2, ..,95=1
~BU,, ifi==12 ,Sj=i—1
P, — | Do = Blic, i 1,2, S—lij=i+1
Dol oo 0-1
DiUiivg — BiUis1409 — Hilg; ifi=12,. ,s;7=1+¢
| Dol — ol ifi=0.041, ..,8

By equating sub-matrix of PQ to the corresponding element of 2, we get

B \Din ifi=0,1 .,S-1j=i+1
ij = 1

BiiDinUin; — B\ HinUisgry; ifi=0,1, .,S-1;j=12,. ,§

o~

Roj = | Dol Hj=1,2 ,0-1
DoUp; — HoUg,; ifj=Q+1,Q+2, ,S

Determinent and Inverse of Matrix R

The detR is given by
det(Ry s)det(—Bg)det(—Bs-1) - - - det(—By)det(— By)
For evaluating R™!, we know

., adiR

~ detR @D
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By using 6.1 we get

S RotRos-1Bs'  RysRes-2Bsl Ry sRooBy' Ry

S-1 -B3! 0 0 0
Rl =

0 0 0 —- B! 0

The equation PQ = R implies,
P71 = tildeQR™ (6.2)

By using @ and R~! in 6.2, we can easily evaluate

Pl=(al—A) =0 (6.3)

[e 4

Steady State Analysis

It can be seen from the structure of matrix A that the state space £ is irreducible. Let the

limiting distribution be denoted by T1(+7):
M6 = limy oo Pr{I(t), N(t) = (1,7)] (i.5) € E

write IT = (IT) [1¢-1 . 110 1) and
N = (ques) [UeM-1 1 D 1K) for K = 0,1, S

These limits existﬁ /and satisfy the following equations:
t
MA=0 and) N0 =1 (6.4)

The first equation of the above yields the following set of equations,

Me+D A+ IW A3 =0 if:9=0
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M+ A4 + IO A; =0 if:i=1,2,. ,s—1

M4 +TI0 A =0 if =3

H(i+1)A1+H(i)A2=O if:ri=s+1,...,Q -1
MDA + TOA, + T4 =0 if:i=Q, ..,S—1
N4, + T4, =0

The solution of the above equations (except the last one) can be conviniently expressed as

H(z) = H(D),Bt i = 01 11 . vS

where
1 ifi =0
—AzAg? ifi=1
8 = (1) 181 (As AgH )t ifi=23, s
(=1)*B1(AsAg ) HAsATY) fi=s4+1
(=12 (As A M AsAT (AR AT 7Y ifi=s+1,  ,Q
| —Bic1(A2ATY) — (A4 AT i ifi=Q+1, ,S8

To compute IT©%), we can use the following equations
Ay +TI9 A, =0and S MM 0¢yp,, =1

which yieid, respectively,

NO(B5As + B As) = 0and IO + 3 B)ensr = 1

6.2.3 System Characteristics

Mecan Inventory Level

Let L denote the average inventory level in the steady state. Then we have
M

S
L=>) i) n&
i=1

3=0
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Mecan Re-order Rate

In the system the re-order is given when either external demand take place or demand from
pocled customer is met, resulting in the level reaching s.

Let «; denote the mean order rate. Then we have:-

M M
a =\ Z Ie+19) 4 Zjﬂn(ﬂl-j)

=0 =1
Expected Number of Pooled Customers

Let a3 be the expected number of pooled customers. Then we have,

M ,/:?/
=37y 1

j=1 i=0
Expectzd Waiting Time:

Denote by W; the waiting time of the 7% customer in the pool; j = 1,2, |, M. We evaluate
E(W;) conditional on the system state. Figure 6.1 provides the transition diagram for comput-
ing E(W;) Thus E(W;) = Zﬁo{E(Wj] system state at (0, 7)) } { P(system state at (0, 7))}

where, E(W;|system state at (0, j)} = [ﬁ—kj#(;'ﬂ) + 5 +j#(f\1,1)] fork=1,2, M

Now the average waiting time

M
iy 1 Y Y Ay
- E :]_‘I(O»J) + -
* [/\+')’+j#(/\+’7)+ A +7) ]#(/\"‘7)]

j=1



6.2 Model I

A A A A
MY 1) My (02 A 03 Ay (04 OM;

QM

(Q-3.1)

Figure 6.1:

The average number of customers lost

Let, a4 be the average number of customers lost to the system. Then a4 is given by,

as = AITOM)

6.2.4 Cost Function

Define
C1 =Inventory holding cost per unit per unit time
C> =Replenishment Cost

C3 =Waiting cost of customers in the pool

100

C4 =Loss due to customers not admitted to pool for want of inventory and space in the pool
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So expected total cost rate of the system can be defined as:-

L(TC) = C L+ Cyoy + Cyery + Cierg

6.2.5 Numerical Illustration

By giving values to the underlying parameters we provide some numerical illustrations. Take
S§=55s=2,M=3,1=03,2p=02,7y=06,Q=3,C,=50C=2,Cy=3,Cy=2

Then we get the measures as described in Table-6.1

Table 6.1:
Mean Inventory of the system 3.488123232
Mean Replenishment rate of the system | 0.103558591
Mean lost customers of the system 0.000313942
Customer’s waiting cost in the pool 0.204927851
Expected Total cost of the system 18.26315574

In the Table-6.2 and Table-6.3 we vary over A keeping the other parametei‘éﬁxed at the
values given in the above table. Calculated steady state probabilities for M = 3 are given in

the Appendix-I

Table 6.2:

M -value | Expected Waiting Time
M=1 0.029392763
M=2 0.035886864 J
M= 0.041290403
M=4 0.041298622 i
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Table 6.3:
M-value | C;, =3andCs;=5|C, =5and C3 =3
M=1 12.05731445 19.82870805
M =2 10.97402285 [7.89590807
M= 11.96676498 | 18.26315574
M=1 11.9613483 |  18.33277972 |

6.3 Model-II

In several existing models, it is assumed that products have infinite shelf-time. But in a number
of practical situations, a certain amount of decay or waste is experienced on the stocked items.
For example, this arises in certain food products subjected to deterioration or radio active ma-
terials where decay is present or volatile fluid under evaporation. These deterioration occur
due to one or many facto() viz. storage condition, weather condition including the nature of the
particular product under study. The deterioration is usually a function of the total amount of
inventory on hand. Hence the need to study inventory system with deterioration arises.In this
model, we extended the result of model-I to a perishable (s, S) inventory system.We assume
that the life-time of each item has exponential distribution with rate (> 0). Also it is assumed
that when inventory level is zero the arriving demands choose to enter the pool with probability
B and with probability (1 — () it is lost for ever. All assumptions of model -I hold in this case

also.

6.3.1 Model and Analysis

It can be verified that {{J(t), N(t)),t > 0} is a Markov process on the state space E.

The infinitisemal generator of the process
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A= (a(3,7;k,10)), (,7), (k,1) € E, canbe eZ)(rcssed as;-

a((i)j)v (kvl)) =

Define

A

Ju

16

—(A+18+jp)

A3

~(A+v+i6)

Aik = (a(iaj)a (k7l)))j.lEEz,i1 ke El

The infinitesimal generator A can be conveniently express as a partitioned matrix

A= ((Aix)

irk=4- 1+ s+1,. ,S
;=012 Ml=j
ifk=i—1li=s+1,. . 8
l=5-1,7=12,....M
fk=i1-1;:=12, S
Il=33=01,.. M
ifk=4i=9s+1,. ,S
=7;7=01... M
ifk=i=0
l=j+1,7=01, ,M-1
iftk=i+@Qi1=0,1, ,s
l=4537=01.. M
iftk=14:=0,1, .,s
=7,7=0.1,... 8k
ifhk=i~14i=01,. .s
t=37=01,. M

where A;x isa (M + 1) x (M + 1) matrix which is given by,
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A =
with
M -y 0
M-11 A8 —(A8+7)
M-21 0 A8
A=
2 0 0
1 0 0
0 0 0
M /'y 0 0
M-1{0 ~v 0
M-2{0 0 ¢«
B =

2 0 0 O
1 0 0 O
0 0 0 O

ifk=14i=0

> o

-

ifk=i-1:1

i

ifk=1di=s
ifk=14i=1
ifk=1i-1;4

o

0
0

—-(A8+7)

ifhk=i+0Q;i=0,1,.

=g+ 1
+1. ,8
12) ’5

=1,2,.

—(A3+7)
A8

S

.S

S

—(AB+7)
pYe)
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M (A+10) Mpu 0 0 0 0
M-1 0 (A+10) (M —1)u 0 0 0
M -2 0 0 (A +i6) 0 0 0

A=
2 0 0 0 (A+16)  2u 0
1 0 0 0 0 (A +16) 1
0 0 0 0 0 0 (A +i6)
M —(A+16 + Mp) 0 0 0
M~1 0 —(A+i0+ (M -Vp) 0 0
B; =
1 0 0 —(A+1i0+p) 0
0 0 0 0 ~(\+i6)
M —(A 40 +7) 0 0 0
M-1 0 —(A+i0+7) 0 0
C; =
1 0 0 (A= +7) 0
0 0 0 0 —(A+1i0+7)
M (A +i6) 0 0 0 0 0
M-1 0  (A+if) 0 0 0 0
M -2 0 0 (A + i6) 0 0 0
D; =
2 0 0 0 (A -+ i) 0 0
1 0 0 0 0 (A +i6) 0
0 0 0 0 0 0 (A +16)
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So, we can write the partitioned matrix as follows;

S Bs As 0 0 G u0 0 0 0
S—1| 0 Bsa 0 0 O 0 0 0 0 0
Q+1l 0 o0 Bon Agu 0 0 0 0 0 0
Q 0 0 0 By 0 0 0 0 0 0
A= s+1| 0 o 0 0 Boii Ae 0 0 0 0
s B 0 0 0 0 B, D, 0 0 0
s—1| 0 B 0 0 00 Oy 0 0 O
2 0 0 0 0 60 0 Co Dy 0
1 0 0 B 0 G 0 0 0 C: D
0 0 0 0 B b0 0 0 0 A

Steady State Analysis

It can be seen from the structure of matrix A that the state space 5 is irreducible. Let the lim-

iting distribution be denoted by IT¢4),

nésd = lim Pr1(t), N(t) = (i.).]

(1,j)€E

write IT = (IS, 11¢5-D . 11| [1®) and

IIK) = (UM M- D K for K = 0,1,. S

The limiting distribution exists, satisfies the following equations:

[TA=0and 3 TG =1

The first equation of the above yields the following set of cquations. We can write these equa-

tions in general,
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OGR4, +00B, +N-AB =0 1=Q, ,5-1

AL +TIOB, =0 i=s+1, ,Q-1

NEDAL+00C =0 i=3s

neup., +00C =0 i=1, ,s-1

NHYD L +1TPA =0 i=0

N9 Bg + B =0

The solution of the above equations (except the last one) can be conviniently expressed as:-
M =n9gi=0,1,...,8

where

I ifi=20
—AD[! ifi = 1
_ | (=1)AD{YCDF..CDTY ifi=2,3,. ,s
b= —Bio1Cic AT ifi=s541
BB AT ifi=s+2,. ,0
| —Bis1Bi AT = Biooey BAT ifi=Q+1,. S

To compute 19 we can use the following equations
N Bs +N¥B = 0and T " TTH ey =1
which yield, respectively,
(s Bs + B,B) = 0 and V(7 + 3~ Bi)earsr = 1

6.3.2 System Characteristics
Mean Inventory Level

Let p; denote the average inventory level in the steady statc. Then we have:-
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Mean Re-order Rate

Suppose p» is the mean re-order rate. Then we have:-

A1 M M
i = AS IO 4 S 4 (o S )
=0 7j=1 J=0

Mean Number of Perished Items
The mean number of perished items u; is
s Af
i=1 j=0
Mean Number of Pool Customers
The expected number of pool customers 4 is,
M S
pa=2 5 7
j=1 =0
The average number of customer’s lost
The average number of customer’s lost psis,

M -1
ps = AIOM 4 (1 - 32y~ )
3=0

—

The probability that the external demands will be satisfied;after immediatel;} it’s arrival

A S
The probability that the external demands will be satisﬁed{aftcr i{nmediately'it’s arrival is

s M
Z Z 1769

i=1 j=0
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The probability that the external demand that’s it’s arrival enter the pool
The probability that the external demand that’s it's arrival enter the pool is
M-1 o)
v
AﬁZ;H
6.3.3 Cost Function

Define

Cy =Inventory holding cost of the system
C, =Cost of re-order of the system

C;3 =Cost of items perished in the system
C4 =Cost of customers lost to the system

So, the total expected cost of the system is
E(TC) = Clpl + Czﬂz + 03/.L3 - Clypts

6.3.4 Numerical Illustration

109

By giving value to the underlying parameters we provide somme numerical illustrations. Take

S=6,5s=2,M=3X=03,,.=027=06Q=3
0=0.1,5=0.6,Cl=1,CQ-:2,C;;=3,C4=2

Then we get the measures as described in belowing table and steady state probabilities for the

above parameter is given in appendix-II
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Mean Inventory of the system 3.20423
Mean re-order rate of the system B 0.185128
Mean perished item of the system - B 6.320423
Mean lost custeomers to the system o N 0.006399
Mean pool customers in the system - - 0.397455
Probability that the external demand will be satisfied just after it’s arrival | 0.947962
Probability that the arrival demands enter the pool 0.03086
Total expected cost of the system 4.54855318

Appendix-1

109 | 0.011233746 | [0 | 0287025356
IO | 0.004941649 | I | 0024413569
102 | 0.001957046 | 1142 | 0.005919092
IO | 0.001046476 | T3 | 0.001223153
109 | 0.033701238 | IO | 0250002555
141 | 0.003591201 | TI4D | 0.02184004

142 | 0.000929488 | [142) | 0.006744105

I3 | 0.000135905 | T4 | 0.001576509 |
129 | 0.10:103716 | 110 | 0,184403905
ey | 0.010773603 | 6D | 0.012930029 |
122} | 0,002788466 | TI> | 0.017339342

123 | 0.000407717 | TI>% | 0.013971134
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Appendix-I1

11(0.3)

0.000857867

[1(0:2)

0.002705345

heey

0.011927793

0.267052524

ey

0.010569641

{43

0.000436204

1.0

0.037906091

H(4.‘2)

0.001981623

TIe)

0.000069396

| DESERY

0.01250042

2

0.000519085

T7¢4.0)

225330124

T

0.003553056

I‘I(S,:})

0.00006543

I1(1.0)

0.07391689

162)

0.000646654

23

0.000138791

hGY

0.005812371

122

0.001038174

6o

0.13911527

(1)

0.007106122

63

(2.0

0.14783378

hol

0.000055516

0.000479138

11(3.3)

0.000254452

H((s,l)

0.003876532

132

0.001648864

11{5:0)

p
0.04260411 _SJ
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Chapter 7

Production Inventory Model with

Switching Time

7.1 Introduction

Very little investigation on production inventory in stochastic set-up had been made in the past.
The analysis becomes highly complex when the items are of random life-time and the lead
time are positive. Altiok[1] analyzed a production inventory system with compound Poisson
demand and phase-type distribution for processing time. Berge et. al[8] deal with produc-
tion inventory system with unreliable meachines , thus incorporating reliability into production
inventory. They obtain some performance measures of the system. Sharafali[78] considered
a production inventory operating under the (s, S) policy where demands arrive according to
a Poisson process and production times are exponentially distributed. He assumed that the
machinc is subject to failure and repair time has general distribution. He analyzed the prob-
lem by looking at the underlying semi-regenerative process. Ching[88] considered optimal
(s, S)policies with delivery time gurantees for production planning in manufacturing system

with early set-up. They assumed that the intcr-arrival time of the demand and the processing

*The results of this chapter will appear in the proceedings of V International Symposium on Optimization and
Statistics at Aligarh Muslim University, Uttarpradesh; 28-30th December’2002.
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time for one unit of product are exponentially distributed and a sct up time is required for the
machine. Raju [68] considered N-policy for production inventory system and assumed that the
machines are highly reliable and no break down takcl\place during production process.

In this chapter we consider a production inventory system in which demana‘> form a Poisson
process and the production times have exponential distribution. The policy is (s, S)/of type.
When the inventory level reaches s from S production is switched on; the switching time is
exponentially distributed with parameter .. During the switching time no demand is processed.

This chapter is organized as follows: In section 7.2 we describe the mathematical model.
Limit distribution and waiting time distribution are discussed in section 7.3 and 7.4. In section
7.5 we evalute the expected cycle length. In section 7.6, we list some system performance
measures Steady state cost analysis is done in section 7.7 Bascd on the systeimn performance
measures we provide illustrative examples and sensitivity analysis in section 7.8. In this chapter
following notations are used:-

A =Demand rate
4 = Production rate
o =Switching time parameter

H (t) =Inventory level at time ¢

7.2 Model and Analysis

The initial inventory level is S. Demands arrive as a Poisson process with rate A. When the
inventory level depletes to s the machine is switched on for the next production run. We assume
that a certain amount of time which is exponentially distributed with parameter « is required
for the production;\lstani. Demands that arise during the switching time are not entertained.
Shortage is allowed and infinite backlogs are permitted. The system remains in active (ON
mode) until the inventory level reaches level S. The inventory level H (t) at time ¢ takes values
intheset A={.- —N,-N+1,- ,0, ,s, .S} Togetatwo dimensional Markov
process we incorporate the process {X (¢),1 > 0} into {/7(t),¢ > 0} process where, X(t) is
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define by,

. ‘1 if the system is in ON mode

X(t) = /
-0 if the system is in OFF mede

Now {(H(t), X(t)),t > 0} is a two dimensional Markov chain defincd on the state space

E = E; U E; where,

Ey={(0) i=ss+1, S5

Ey={(1) i=-N, s ,S5—1}

It is t{noted that {(£(t), X (t)),t > 0} is a pure death process during the transition from the
state (S, 0) through the states (S —1,0),(S—2,0), ,(s.0)i,e. when the production process
is in off mode. When the system reaches (s, 1) from (s, 0) with switching time « the process is
turns out to be a birth-death process till it reaches (5, 0). Let us as;sumey{ that H(0) = S, sothat

X(0) = 0. Consider the transition probabilitics:-
Psoi)(t) = P{(H(t), X(£)) = (&, ) (H (0}, X(0)) = (5,0)}

From now on we can write P; ;) (t) for Pg ) i.5){t).

The Kolmogorov forward differential equations satisfied by 1, ,(t) are given below:-

Piso)(t) = =APsp)(t) + pPs-1n(t)
: M g
P(i',O)(t) = —/\P(,-,o)(t) + )(P(,'_;_l,c)(t) S ﬁ_’t <S5-1
P(Is|1'}(t) = —(/\ + [L)P(y‘l)(t) + aP(s’[)) (i) + /\/:’(3.,1:1)(1 1+ /lP(s_l‘l)(t)
Pls_1py(t) = =(A + 1) Pis—1(t) + pPs-an(t)
P('i'l)(t) =—(A+p)Pan(t) + AP () + uPuoint)  s+1<i<S-2
'P(,i,l)(t) =—(A+ ,u)P(,-,l)(t) + /\P(i+1,1)(t) -+ uP(i_l,l)(t) —0<i<s—1
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7.3 Limit Distribution

The steady state probabilities for (7, ) € £ of the system size are obtained by taking the limits
as t —— oo on both sides of the above equations and solving them recursively. Note that under
steady state conditions Ly o I ;1 (t) = 0

Thus we can write g 0) = pgrs-1.1) fors <4 < Swherep
and for j = 1 we cah write

qs-21) = (1+ %)Q(S—l,x)

qs-3n = (1+ ﬁ 4+ blf)Q(S—l,l)

Us-an = (L4 5+ 5+ 5)gs-10)

In general we can write

US—i1) = Ljuy Fovd(s—1y)  fori=2,3,. ,S—s—1j 1

When the system is in on mode and infinite backlogs are permittcd then the system may visit the

state --- ,—1,0,--+,5,-- ,S. To evaluate the system probabilities we consider the truncation

of the system at state —N. After truncation we get the relations;
_p2+s—N

q-~1 = (G )as-10)

By implementing the truncation result, we can write:-
- JZ-FN—S

K-y = (;{%W)f](s-u) i=1,2 ,i=1
—y2+s-S . .
Hs—ijg) = (f,,-—JrlL(p_—l)-)q(s_l'l) i=1,2,---,5j=1land

2+s=§ _2+s=5

den = (g + Sy + xaa)Ts-1
where g(s—1,1) can be be obtained by using the normalizing condition 37, 3. gy = 1
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7.4 Waiting Time Distribution

Let 7" be the random variable denoting the waiting time ol a customer to recieve the item. Then

the distribution function Fr(.) of T is given by

0 Ht<0
Fr(t) = | Y05 qun + Y GGy iTE=10
2% o Gemt) o A (Wdu it >0

where 7, », denotes the gamma density with parameter 4 and 7. The expression for ¢ = 0 1s
abvious. Fort > O we have two cases X = 0 and X = 1. In our system infinite backlogs
are permitted. Suppose there are n backlogs at a demand epoch. Then if X = 1 (that is, the
production process is in ON mode) the waiting time is the production time of n + 1 units. On
the other hand if X' = 0 (that is, the production process is oft), and the number of backlogs is
n, the production starts only after receiving N — (n + 1) morc orders and the demand of the
arrival under consideration is met at the moment the (7 + 1) unit is produced, where N is the

truncation state. Then the expected time E(T') for infinite backlogs 1s given by,

X on+1
E(T)= Z(-—ﬂ—)w_u,l) (7.1)

n=0

7.5 Expected Cycle Length

Let us define,

E(Ly) = Expected length of off mode in a cycle
E(L,) = Expected length of on mode in a cycle
E(TL) = Expected total cycle length of the system
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Expected length of off mode

We have t

"CC

E(Lo) = / YA.5— ( )(H + O.(im“!(lt
0

1)

Therefore

- + 4) (7.2)

Expected length of ON mode

Let T((ff; = Time to reach (S, 0) startng from (s, 05 for the first time and

T((:1 Y1) = Time to reach (i + 1, 1) startng from (i, 1) now,

L(l‘((:;')l N=v LR T(:J{)l b ITransition left or right) P(Transition left or right)

- L by 1 (i,1) (i+1,1)
= oot + wawloes + BT y) + B

I A (1)

(i+1,1)
L(Tm) ) = ﬁ+/LL(f(‘ 11)) (7.3)
Now
ElL| = E(T)) = LE 7o) (7.4)

Using the equation (7.3) and putting the recursive relation in equation (7.4) we get,

S-s5-1 1 )\1'__1

E[L) = Z »

i=0 j=1

XN
" +;L—Z-E(l“((””))] (1.5)

Evaluation of E(T, SJ{)I 1))

For evaluating of E(T((:T)I'U) let us consider the truncation occurred at the {— N, 1) state. So
by using equation (7.3)

(~N+1,1)y _
E(T n Y=

1
M
N+2,1
E(T(( oy 1))) s(1+3)
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(=N+3,1)

E(TZniay) = w(L+ 5+ 50

Recursively we have

BTy = LM (L)) if N — oo then

sty _ Loy
BTET ) = =070 (7.6)
pe=tp

So putting the value of (7.6) in (7.5) we get

S—-s-1 i 1

ElL)= Y [E( },( )
i=0 j=1 /J /) =0 P
= alp TTE P 0T = 0% spup® = Spp® = ppt —sup™S 4 SuptE 4 2p*))
thus
E(TL) = [ 2oL 2t ooz (e (et =204 sup® = Spp® —ppt S —sppt I+ Sppt S LA T}

7.6 System Performance Measures

Mean Inventory Level of the system

Let E[]) be expected inventory level in the steady state. Then I2/] can be defined as:-

s -1
Ell] = ZiQ(i,O) + g
i=3 =1

S~s+1){(S+s)p,  p 5+ (s(=1+p) = p)r*)(=p'** + p°) —p
2 AR -1y b Ty

2+s—8

gl = [

2+s-8
p—p ap 1 2 2 2_g? 2
plpr—=1) AQ +/))} pb( ( ) ( ) )

+5(-1+ p)as-11)
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Average Backlogs in the System

Let B[ B] be the expected backlogs in the system in the steady state. /o[Bjcan be defined as:-

2458
E[B) = (o (n‘l)) .

Expected Number of Items Produced in a Cycle

Let E[] the expected number of items produced over a cycle. Then E[P] can be obtained as:-
E[P] = px (Expected cycle length when system is in on mode)
E[P] — Tll)!_p—S(upHs - )\p2+’ + S;Lps _ Sﬂ/)s _ upl+5 _ Su,DHS + S/JPHS + /\p2+3)

The average number of customer’s lost to the system

Demands that arise during the switching time are not entertained and hence lost. Let E[N] the

expected number of customers lost to the system. Then

A

Evaluation of ¢s_; 1)

g(s—1,1) can be obtained using the normalizing condition

2225 96,5 = 1 we have
-8 -5 —3+8 2+1—S —1-3 2+ S —l-aggs 2-.-q S 24+3-5
[{((s Y143 )+a( s+ ))p}_+_{(p p(p_l)2 } { - 1)2 (1 =p) }+{ i /)(;;2_1)

_ _ _ s—S
" {p(s+su+f>_ e g5 1) = 1

r\(1+p)
which gives,

-8 -5 — S 2+s S Tt St e )'21-.'—5 —1-3 ) )— 2+s S
Gs-11) = [{((3 M1+ )+s( s+ )p}_+_{ " 1))/ }+{(/ I (p—l) (p*—p }_+_{I —
2¥a-$ P(3+S( 14+p)—sp+p(~1+£°~5)
o st T (-1+p)? i
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7.7 Steady State Cost Analysis of the System

Let us considered costs under steady state as piven below:-
K =The initial set-up cost of the system

C) =Inventory holding cost per unit per unit time

C, =Backlog cost per unit per unit time

C3 =Production cost per unit per unit time

C4 =Switching time per unit per unit time

Cs =Cost of customers lost to the system

So, the total expected cost of the system is

_ K +CE[I]+ CE[B] + GE|P] + & + C5E[N)

E(TC(a)) E(TL)

(7.7)

Due to large number of parameters involve in the cost function, it is not possible to prove that
the above cost function is convex. By the by, for proving the convex nature of the function we
adopt a numerrical search procedure. For the particular value of the parameters our calculation
of E(T'C(«a)) revealed a convex structure and we evaluated the optimal value of a* Cost rate

analysis of the optimal values by varying parameters value is presented in the tables.

7.8 WNumerical Illustration

The results we obtain in steady state case may be illustrated through the following numerical
example:-

By giving values to the underlying parameters we illustrate the convexity of the cost function
E(TC(«)) in Table 7.1. The optimal switching time parameter is shown by indicating*.Using
this optimal « value we can easily evaluate optimal switching time of the system as E[ST] =
;1;. Cost rate analysis is given in Table 7.2 and Table 7.3. Take
§=30,s=9A=10,40=13,p=13,K=55C, =15, =9,C3 =6,

Cy = 10,Cs = 5. Then we get the measures as described in table 7.1

From Table 7.1 the optimal « value is 39. So the expected optimal switching time is 0.0256.
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Table 7.1.
a—values | Cost function | av—values | Cost function
30 607.764 | 40 | 607743
31 607.759 T4 T 607743
32 607.752 42 607.744
33 607.750 43 607.744
34 607 747 44 607.745
35 607.746 45 607.747
36 607.744 46 607.748
37 607.743 47 607.750
38 607.743 48 607.752
39 607.742 49 607.754
Cost rate Analysis
Table 7.2:
p-Values | p-value | Expected total cost

13 13 607.742 |

1.4 1.4 504.786

1.5 1.5 443.876

1.6 1.6 403.971

1.7 1.7 376.064 |

1.8 1.8 355.654

1.9 1.9 340240

In Table 7.2 and Table 7.3 we varied over certain parameters associated with the system.
In Table 7.2 we vary over the values of the parameter x4 and compute the corresponding cost
rate we obseve that p has the significant influence in the system behaviours. In Table 7.3 we
varied over the cost parameter involve in the system i,e. Cy (holding cost),C> (backlog cost), Cy
(production cost) and Cy (switching cost). Among thesc parameter the table shows that the cost
function is highly sensitive with respect to C3. So we come to the conclusion that production

rate and production cost parameters drastically affect the system running cost.
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Table 7.3:

C)-Varying C,-Varying ('3-Varying | C,-Varying

C1-Value Cost C,-Value Cost Cs-Value Cost C,-Value Cost |
15 607.742 09 607.742 06 607.742 10 607.742
16 607.742 10 607.751 07 | 698.742 11 607.767
17 607.742 11 607.760 08 789.742 12 607.792"
18 607.743 12 607.769 09 §80.742 13 607.817
19 607.743 13 607.778 10 971.742 14 607.842
20 607.744 14 607.787 10 | 1062.75 15 607.876
21 607.744 15 607.796 12 1153.75 16 607.892
22 607.744 16 607.805 13 1244.76 17 607.917
23 607.745 17 607.814 14~ 1133576 18 607.942
24 607.745 18 607.823 15 | 1426.76 19 607.967
25 607.746 19 607.832 16 1517.77 20 607.992
26 607.747 20 607.841 17 1608.78 21 608.017




Conclusion

In this thesis we have presented several inventory models of utility. Of these inventory with
retrial of unsatisfied demands and inventory with postponed work are quite recently introduced
concepts, the latter being introduced for the first time. Inventory with service time is relatively
new with a handful of research work reported. The difficulty encountered in inventory with
service, unlike the queueing process, is that even the simplest case needs a 2-dimensional
process for its description. Only in certain specific cases we can introduce generating function
to solve for the system state distribution. However numerical procedures can be developed for
solving these problem.

Retrial inventory, unlike retrial queues, also poses the same problem as discribed above.
Further when an orbital customer makes a successful attempt to access the server in an in-
ventory system with negligible service time, diagonal transitions result thereby violating the
definition of a QBDP (assuming the process to be Markov). This is also the case with inventory
with postponed demands (and negligible service time).

In this thesis we attempted to provide performance measures of all the models discussed.
However, in most cases restricted the numerrical illustrations to the case in which the underly-
ing distributions are exponential.

The work reported in this thesis could be extended in different directions. One among these
is the introduction of arbitrarily distributed service time. It is also possible to have interarrival
times of customers assumed to follow an arbitrary distribution. The interarrival time of orbital
customers can also be assigned an arbitrary distribution provided we follow certain assumptions
as given in Gomez Corral [23] in the case of retrial queues. All these and more are proposed in

our future investigations.
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