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PREFACE 

The work presented in this thesis has been carried out by the author as a part­

time research scholar in the Department of Physics, Cochin University of Science 

and Technology during the period 1991-1998. 

Ever since its discovery by Kammerling Onnes in 1911, the phe!lomena of 

superconductivity has proved to be of continuing interest both as a challenge to 

our scientific understanding and as a source of useful technology. :More than a 

decade has elapsed since the discovery of high temperature superconductivity in 

layered cuprates and still there is no concensus on the microscopic mechanism 

responsible for high transition temperature in this class of materials. However, 

independent of the exact nature of the pairing mechanism within the layers, the 

inter layer coupling determines most of the superconducting properties of a real 

crystal. Hence there is a great need for a phenomenological model capable of 

describing the superconducting properties of these compounds. 

The thesis deals with the study of super conducting properties of layered cuprates 

within the frame work of a modified Lawrence-Doniach (LD) model. The thesis is 

organized in seven chapters. Chapter I is a survey of the phenomena and theories 

of conventional superconductivity which can serve as a springboard for launch­

ing the study of the new class of oxide superconductors and it also includes a 

chronological description of the efforts made to overcome the temperature barrier. 

Chapter II deals with the structure and properties of the copper oxide supercon­

ductors and also the experimental constraints on the theories of high te:::nperature 

superconductivity. A modified Lawrence-Doniach type of phenomenological model 



which forms the basis of the presnt study is also discussed. In chapter III~ the tem­

perature dependence of the upper critical field both parallel and perpendicular to 

the layers is determined and the results are compared with d.c. magnetization 

measurements on different superconducting compoilllds. The temperature and 

angular dependence of the lower critical field both parallel and perpendicular to 

the layers is also discussed. Chapters IV, V and VI deal with thermal fluctuation 

effects on superconducting properties. Fluctuation specific heat is studied in chap­

ter IV. Paraconductivity both parallel and perpendicular to the layers is discussed 

in chapter V. Fluctuation diamagnetism is dealt with in chapter VI. Dimensional 

cross over in the fluctuation regime of all these quantities is also discussed. Chapter 

VII gives a summary of the results and the conclusions arrived at. 

A part of the present investigations has also appeared in the form of following 

publications 

l.Fl1.l.ct1wtions in High-Tc Superconductors with Inequivalent Conducting 

LayeTs, Ind.J.Phys.72A(3), 217-224 (1998). 

2.Influence of Fluctuations on the Transport Properties of Layer€d Super­

conductors with Inequivalent Conducting Layers, Physica Scripta, 58, 

656-658 (1998). 

3. Temperature Dependence of the Critical Fields Hc2 and Hcl of Supercon­

ductors with Inequivalent Conducting Layers (communicated to Physica 

Scripta). 

and has also been presented in the following symposia/conferences 

l.Positive Curvature of the Upper Critical Field Hc2 of Superconductors 
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with Inequivalent Conducting Layers, Conference on Superconductivity, 

Dec.15-17,1997, University of Hyderabad. 

2. The First Critical Magnetic Field Hc1 ,z of Layered Supercond~lctors and 

its Dependence on Interlayer Coupting Coefficient, Third National Con­

ference on Phonon Physics, 20-23 Jan.1993, Cochin University of Science 

and Technology. 
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SYNOPSIS 

The era of high-Tc superconductivity dawned with the discovery of supercon­

ductiviy in ceramic cuprates La-Ba-Cu-O with Tc "" 30 - 40K by Bednorz and 

Muller in 1986. This was followed by the discovery of other cuprates with still 

higher transition temperatures like YECO (Tc f'V 90K) , BSCeO (Tc '" 11 OK) , 

TBCCO (Tc f'V 130K) etc. In all the cuprate superconductors there exist square­

planar CU02 layers which are parallel to the ab-planes of the crystal:> and are 

sandwiched between metallic layers like the CuO chain layers in YBCO, LaO 

double layers in LSCO and TlO(BiO) layers in Tl(Bi) based compounds. It has 

been well established that the CU02 layers are the common features of these com­

pounds and are the regions in the unit cell where superconductivity resides. These 

compounds are extremely type II superconductors and are characterised by high 

values of the critical temperature, very short coherence length, large anisotropy 

parameter and layered structure. Flux quantization and Josephson e}.-periments 

indicate that the superconductivity in these materials result from pair formation, 

but there is still no co census on the mechanism that enables the pairs to form. 

However, it does appear that whatever be the mechanism, the properties of these 

materials can be described by the Ginzburg-Landau concepts. But important 

changes arise from the extreme anisotropy, the extremely short coherence length 

and prominent fluctuation efffects. The layered structure causes these materials 

to be highly anisotropic and in extreme cases to approach the two dimensional 

behaviour expected from a stack of decoupled superconducting film planes. A 

convenient model for the analysis of the consequences of layered structure in a su­

perconducting material was proposed by Lawerence and Doniach and e:>..1:ensively 
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applied in the context of layered transition metal dichalcogcnides. Several authors 

have employed modifications of the Lawrencc-Doniach (LD) model to study the 

properties of layered high-Tc cupratcs. 

Depending on the stoichiometry the crystallographic unit cell conte.ins vary­

ing number of CuOz planes. Superconductivity appears when charge carriers are 

dopped into the CU02 sheets. The CuO chains in YBCO (TiO and BiO in Ti 

and Bi based compounds respectively) act as charge reservoirs which control the 

charge concentration in the CU02 planes. Several experiments point to the impor­

tance of the CuO chains in YBCO (TiO and BiD in Tl and Bi based cO!Ilpounds 

respectively) in enhancing the Tc although they are not required to make the ma­

terial superconducting. Thus it is natural to model a ceramic supercond1:ctor as a 

superlattice of two dimensional superconducting (SC) sheets with multi,?le Cl102 

planes sandwiched between nonsuperconducting (NSC) sheets consisting of mul­

tiple metallic planes like the CuO chain layers in YBCO. Experiments by Kleiner 

et al. and also by Briceno and Zett1 indicate a scenario where the strongly su­

perconducting layers induce a finite order parameter in weakly superconducting 

metallic layers through proximity effect. Thus we have differing order parameter 

on different layers. The spatial variation of the order parameter from layer to 

layer in materials where NSC layers are in the proximity of SC layers gives rise 

to many observed phenomena. These observations necessitates the modification 

of the usual LD formalism with the inclusion of the inequivalency of the layers to 

obtain a realistic picture of cuprate superconductors. This modification was done 

on the lines suggested by Bulaevskii and Vaguer. 

We have investigated the temperature dependence of the upper critical field Hc2 

both parallel and perpendicular to the layers starting with the modLfied LD free 
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energy functional. Our calculations show a positive curvature for H c2 (1) near Tc as 

is observed in D.C. magnetization measurements on single crystals of YECO. \Ve 

have showed that the curvature of H~(1) not only depends on the inequivalency 

of the layers but also on the mass anisotropy on the chain layers. The original LD 

model could not explain the positive curvature of H~(7) near Te. We have also 

studied using our model the temperature dependence of the first critical field Hcl 

both parallel and perpendicular to the planes and also its angular dependence. 

Thermal fluctuation effects in high temperature superconductors are much 

more pronounced than in conventional superconductors. Experimentally fluctu­

ation contribution has been observed in conductivity, specific heat and magnetic 

susceptibility measurements in YBCO superconductors. The calculations based 

on modified LD model show that the fluctuation specific heat and parallel para­

conductivity exhibit a dimensional cross over from a three dimensional regime 

near Tc to a two dimensional regime further away from Te. However it is found 

that the temperature dependence of the c-axis paraconductivity is different from 

that of either the paraconductivity parallel to the layers or the specific heat, but 

crosses over to OD fluctuation regime in the same temperature region.Fluctuation 

contribution to the London penetration depth both parallel and perpendicular to 

the layers and its temperature dependence has also been studied. 
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CHAPTER I 

SURVEY OF SUPERCONDUCTIVITY-PHENOIvfENA AND 

THEORY 

1.1 Introduction 

The discovery of the new oxide superconductors with transition tern;lCratures 

upto 125 K or higher has generated tremendous excitement among scie;:tists and 

technologists for two reasons. Firstly, the conventional electron-phonon i:::.~eraction 

apppears not to be the origin of the superconductivity in these materi.0: leaving 

the fundamental physics open to investigation. Secondly they open a new :empera­

ture realm for superconducting devices which should have widespread cO!!lIDcrcial 

applications and these potential benefits have attracted phenomenal atte:::.:ion from 

the general public. It is becoming apparent that many of the properties of these 

new materials are unusual and a proper understanding will require developing and 

extending concepts from many areas of condensed matter physics. Ne .... ertheless, 

the superconducting state appears to be associated with a pairing of chc.:ge carri­

ers (electrons or holes as the case may be) and hence the overall superco:::J.ducting 

behaviour of the new systems will be similar in many respects to the cor.·;entional 

systems. In fact, most of the familiar phenomena which are a manifestat~on of the 

superconducting state - persistent currents, Josephson tunneling, Yorte:>: lattice -

have been established in the new materials. A review of the basic pheno!Il.enology 

of superconductivity, which can serve as a springboard for launching the study of 

the new class of oxide superconductors, is done in this chapter. 
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1.2 Road to high temperature superconductivity 

The stupendous developments in the field of superconductivity all began with 

the liquefaction of helium by Kamerlingh Onnes in Leiden in 1908. Three years 

later Onnes disovered superconductivity in mercury (Tc=4.1K) [1]. It was observed 

in 1914 that superconductivity is destroyed by the magnetic field, the ,"alues of 

the critical field He(7) being not very large (He(0)=400 Oe for Hg). Until 1933 

superconductivity was thought to be simply a case of vanishing electrical resis­

tance. In that year Meissner and Ochsenfeld [2] in their landmark e:A-periment 

demonstrated another basic aspect of superconductivity, perfect diamagnetism. A 

superconductor excludes a magnetic field except in a small penetration region near 

the surface where currents flow so as to balance the applied field and make the total 

field vanish in the interior. Superconductors known till 1937 were characterised by 

(1) nearly complete flux exclusion (Meissner effect) below the bulk themodynamic 

critical field He, (2) a first order phase transition with associated latent heat in the 

presence of a magnetic field H, (3) near coincidence of the resistive transition with 

He and (4) except for some supercooling and superheating effects, independence 

of final state on magnetic and thermal history. These superconductors known as 

type I superconductors consisted principally of pure strain free elemental super­

conductors. The values of He are too low for these superconductors to have any 

useful technical application in coils for superconducting magnets. In type I super­

conductors critical currents are related to critical fields according to Silsbee's rule 

[3]. The superconducting state persists as long as the magnetic field generated by 

the flow of the current does not exceed the critical field. Therefore the critical 
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current Ie was also found to be small. 

Thus even after a quarter of century after the discovery of superconductivity 

two obstacles remained in the path of its practical applications. The first obstacle 

was the temperature barrier (low values of Te) and the second was the magnetic 

and current barrier (relatively weak fields He and currents Ie). The magnetic and 

current barrier was overcome in 1937 by the discovery of type II superconductiv­

ity by the Russian physicist Schubinikov 14]. Alloys and transition metals with 

high values of the electrical resistivity in the normal state which form the type 

II superconductors have superconducting electrical properties upto a field He2 (7). 

But the magnetic field first begins to penetrate the sample at much a lower field 

Hel • Between the lower critical field Hel and the upper critical field He'!. the flux 

density B f::. 0 and the Meissner effect is incomplete (Fig.l.1). The critical fields 

Hc1 and He2 vary with temperature and the variation is shown in Fig.1.2. Hc2 can 

assume enormous values. For example H e2 (O) ~ 200kOe for Nb3Sn. As regards the 

critical current Ie) for high values of Hc2 it is merely determined by the treatment 

of materials. Thus the current and the magnetic barriers were overcome. 

In the case of type II superconductors, the onset of resistance does not come 

about from the destruction of superconductivity hut has its roots in the phe­

nomenon called the flux flow resistance. This mechanism results in very small 

critical currents for type II superconductors, but this can be eliminated by pin­

ning the vortices in place. Imperfections in the material act as pinning centres for 

vortices. Superconducting wires are manufactured to be imperfect in a controlled 

fashion so that critical currents become quite sizeable. 

Let us now outline the endeavours to overcome the temperature barrier. By 

1973 the highest critical temperature Te rv 23.2 - 23.9K was obtained for l\1>:JGe. 
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This remained a record till 1986. AB early as 1964 superconductivity was discov­

ered in the oxide superconductor strontium titanate at 0.7K by James Schooley 

at the National Bureau of Standards in Washington. David Johnston discovered 

in 1973 a related superconductor - lithium titanate - which superconducts at 13K. 

Two years later Arther Sleight [5] observed superconductivity in BaPbl-xBi:cOa at 

14K for x = 0.25. This later led to the systematic search of the metallic oxides 

for superconductivty by Bednorz and Muller. They focussed their attention on 

metals with mixed valence states especially metal oxide compounds of copper and 

nickel. In 1986 they detected the appearance of superconductivity in ceramics 

La1.8sBao.lSCul G., with Tc = 35K [6] heralding the era of high temperature super­

conductivity. In the beginning of 1987 La was replaced by Y and this led to the 

appearance of nitrogen superconductors with Tc I"V 80 - lOOK. In February 1987, 

Maw-Kuen Wu of the University of Alabama and Ching Wu Chu of the Univer­

siy of Houston [7J discovered the YBa2Cu307_", compound (123 compound) with 

Tc = 94K. Almost one year after Maeda et aZ. [8] discovered superconductivity 

in Bi2Sr2Cu2 07+y at 120 K. During a short time after that Sheng and Herman 

(9] synthesised three thallium oxide compounds TI2Ba2Can-lCUn02nH ",ith n=1,2 

and 3. In the same year Parkin et aZ. 110J observed superconductivity in another 

family of thallium oxides 'IlIBa2Can-lCUn02n+3. The highest critical tempera­

ture (Tc rv 30K) in non-copper oxide systems was obtained by Cava et ai. [11) 

in Bal-xKzBiOa in 1988. The bismuthates are essentially three dimensional and 

display none of the antiferromagnetism characteristic of the cuprates. 

Superconductivity has also been reported at rv 94 K in HgBa2CU04. [12J, the 

first member of the homologous series HgBa2Can-ICUn02n+2 with n=1,2,3, ..... [13,14]. 

Higher transition temperature of 134 K was achieved in HgBa2Ca2Cu30S which 
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has three CU02 layers per unit cell. The Tc of this compound was found to in-

crease continuously with pressure at an increasing rate upto 17 kbar without any 

sign of saturation. The thermopower shows an undcrdoped characteristic. These 

observations suggest that the Tc of RBCCO can be further enhanced with proper 

modulation doping without inducting any structural instabilities. Molecular solids 

of the buckminster fullerene Cso doped with K, Rb and Cs have been shown to 

exhibit superconductivity with critical temperatures in the range 20 K to 33 K 

[15,16]. Fig.L3 shows the evolution of critical temperature since the discovery of 

superconductivity. 

1.3 Early phenomenological theories 

The discovery of Meissner effect led to the two fluid model, to the development 

of the thermodynamics of superconductivity by Gorter and Casimir [17] and to 

the classification of the superconductive~normal transition as a phase transition 

of the second kind. The two fluid model considers two varieties of electrons in a 

superconductor: superconducting and normal electrons. In 1935 F. and H. London 

[18] analysed the electrodynamics of superconductors using the two fluid model 

and proposed two equations to govern the microscopic electric and magnetic fields . . 
(1.1) 

and 

h = -c curl (AJ s ). (1.2) 

where the phenomenological parameter A is given by 
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A 
J s = nse(vs } = - Ac 

is the supercurrent , A is the vector potential, "ns is the number density of super-

conducting electrons, h is the magnetic flux density on a microscopic scare, (v s) is 

the local average velocity of the electrons in the presence of the field and e is the 

electronic charge. The second equation when coupled with Maxwell's equation 

leads to 

41l" 
Curlh =-J 

c 

2 h 
\7 h = >.2' 

L 
(1.3) 

This implies that a magnetic field is exponentially screened from the interior of a 

sample with penetration depth AL, called the London penetration depth [Fig.1.4]. 

The failure of the London theory for certain superconductors led B:-ian Pip­

pard [19] to propose in 1953 a non-local generalization of the London equations. 

He introduced the concept of coherence length (eo) which is the range 0: correla-

tions between the superconducting electrons in the condensed state. ~o could be 

estimated from an uncertainity principle argument as 

1iVF eo = a k T. 
B c 

where a is a numerical constant and VF i:l the Fermi velocity. 

The derivation of the London equations assumes that J a and hence h have 

negligible variations over distances rv eo. According to equation (1.3) h ...-aries in a 

range AL. Thus London equations hold only if AL »eo. In elemental supercon­

ductors like tin and aluminium >'L is small (rv 300A),the Fermi velocity t'p is large 
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(VF ~ 108cm/ s) and eo is large (eo = 104 ..4 for Al). Thus for these metals belonging 

to the category of type I superconductors ~o » AL London equations do not apply 

but they are properly described by the Pippard non-local theory. For transition 

metals and intermetallic compounds of the type Nb3Sn, .xL is large (rv 200..4.), the 

Fermi velocity is small ("" 106 cm/s), Tc is high ("" 18K for Nb3Sn) and eo is small 

(I'V 50..4.). Therefore for this class of materials belonging to the category of type II 

superconductors, A > > eo and London equations are applicable in weak fi~lds. 

1.4 Ginzburg-Landau theory 

A major landmark in describing the phenomenology of the superconducting 

state was made by Ginzburg and Landau [20] in the year 1950. The Ginzburg­

Landau (GL) theory introduces a complex pseudo wavefunction 7jJ as an order 

parameter within Landau's general theory of second order phase transitions. The 

order parameter 7jJ describes the supercoducting electrons, the local density of 

which is given by n B =11f;(x) F. Then using a variational principle and working 

from an assumed series expansion of the free energy in powers of 7jJ and v'I/J with 

expansion coefficients a and {3, a differential equation similar to the Schroedinger 

equation is obtained. Following Landau, the free energy of a superconductor is 

written as 

Fn is the free energy in the normal state. h = V x A, where A is the vector 

potential of the field h. The coefficients a and (3 are regular functions of the 
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temperature T so that a(T) is negative for T < Te and vanishes at T = Tc where 

as ~. remains finite at T = Te. Close to Tel 

(3(T) is a positive quantity and close to Tel 

Minimizing the free energy for variations of the order parameter 'I/J r.nd of the 

magnetic field h, 

1 [. e" A]2 - -zhV-- 'I/J+a'I/J+f3I'I/Jj2'I/J=O 
2m* c 

(1.5) 

and 

(1.6) 

e* = 2e and m* is sometimes taken as 2m. Otherwise it is left arbitrar:·. e and m 

are electronic charge and mass respectively. In principle, the GL equa:ions (1.5) 

and (1.6) allow the order parameter 1/J, the field h and hence the currents to be 

calculated. However, these equations are non-linear and the calculations are rather 

tedious and in general purely numerical. Nevertheless, it is possible to draw from 

them a number of qualitative conclusions without calculating 't/J or h explicitly. In 

the case of linear problems and for certain limiting cases the complete solution 

can be found. With this formalism Ginzburg and Landau were able to treat two 

features which were beyond the scope of the London theory: (i) non-linear effects 

of magnetic fields strong enough to change ns and (ii) the spatial varia~ion of ns. 

If we consider a situation where there are neither currents nor magr.etic fields 

and if we choose a gauge in which 'lj; is real, then in one dimension eqm.tion (1.5) 
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becomes, 

(1.7) 

There are two solutions for equation(1.7). (i) 'Ij; = 0 which describes the normal 
I 

state and (ii) 'Ij; = 'lj;o == (-~) 2 which describes the ordinary superconducting state 

with perfect Meissner effect. 'l/Jo corresponds to the lowest free energy when O! < 0 

i.e. when T < Te. The thermodynamic critical field is obtained as ~('I) = 4EOt'-. 

In the case of very weak fields, '9 is expected to vary very slowly close to the 

value of "po. By setting A = 0 and f = * in equation (1.5), we get 

(1.8) 

where e(T) has the dimension of length and is given by the expression e('I) = 2!~OtI' 

From equation (1.8) it is clear that the range of variaton of f and hence that of 

'I/J is e(7) which is one of the two characteristic lengths of the GL scheme and is 

called the temperature dependent coherence length. 

The second characteristic length comes into play when we introduce electro-

magnetic effects. In weak fields and to the first order in h, I'I/J 12 can be replaced 

by "p~, the value of I "p 12 in the absence of the field. Equaton (1.6) for the current 

now becomes 

C 1· 4e
2 

n,,2h ur J = --'f/O 
me 

which is equivalent to the London equation with the penetration depth 

(1.9) 

Expresssion (1.9) is the same as the expression for the London penetration depth 

AL where nIl, the number density of the superconducting electrons is replaced by 

?/J5. >.(7) is the second characteristic length of the GL scheme and is termed tem-

perature dependent penetration depth which determines the range of variation 
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of the magnetic field i.c. of hand A. In 1959, Gorkov [21] was able to show 

that GL theory was in fact a limiting form of the microscopic theory of Bardeen, 

Cooper and Schrieff'cr 122] valid near Te in which 'lj; is directly proportio:lal to the 

gap parameter .6.. According to Gorkov's derivation both {(7) and >-.(1) vary as 

(Te - 7)-i for T ~ Te. However their ratio K,('I) = >-'(7)/e('I) remains finite for 

T ~ Te. The GL theory can be used to describe type I as well as type IT materials 

in the temperature range close to Te. Following Abrikosov [23] the distinction 

between type I and type II may be made as follows: 

Type I superconductivity: K, < ~ 

Type II superconductivity : K, > ~ 

In 1957, Soviet physicist Alexei Abrikosov [24], using the GL scheme conceived 

a theory. for explaining the magnetic properties of type II superconduc:ors. The 

upper critical field He2 of these materials is related to the thermodyna~c critical 

field He by the relation He2 = KV2Hc(7). For type II superconductors K > ~ 

and hence He2 > He. For applied fields H smaller than He2 but greater ~han HeI 

the specimen is in a mixed state. This state reduces the amount of energy that a 

superconductor must expend in expelling the magnetic fields by letting the field 

partially penetrate the material. In ordinary Meissner effect magnetic fields are 

kept at bay by diamagnetic screening currents that flow on the surface of the su­

perconductor. In the mixed state magnetic field penetrates the superconductor 

through a number of cylindrical cores of normal material distributed ('..cross the 

specimen. Tiny circulating currents surround each core maintaining a magnetic 

field. These cores, known as vortices~ each contain exactly one quantlli!1 of flux 

cPo = 2 X 10-7 gauss - crn2 whatever the value of K,. The current encircling each 
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vortex generates a magnetic field that interacts with the field of other vortices. As 

a result the vortices repel one another and therefore arrange themselves into an 

orderly array called the fluxon lattice. To reach the lowest energy state this lat-

tice takes on hexagonal symmetry. An applied magnetic field thus penetrates the 

superconductor in a regular pattern. Since each vortex contains exactly one fiu.x 

quantum increasing the magnetic field merely increases the number of vortices. 

The vortices themselves are quite tiny - their size is set by the superconducting 

coherence length so that large number of them can fit into a piece of superconduc-

tor. The superconductor finally enters the normal state when no more vortices can 

be packed into the material. Thus type II superconductors can remain supercon-

ducting in far greater magnetic fields than type I superconductors. Morem;er type 

II superconductors obey the Silsbee rule only until there is enough magnetic field 

to drive the material into the mixed state. At that point the flux flow resistance 

dominates the current carrying ability of the superconductor. 

The fields He, Hc2, and Hcl were obtained from the GL theory by Abrikosov as 

(1.10) 

(1.11) 

(1.12) 

The GL theory is now universally accepted as a master stroke of physical intu­

ition which embodies in a simple way the macroscopic quantum mechanical nature 

of the supercondu.ctjng state that is crucial for understanding its unique electro-
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dynamic properties. 

1.5 Energy Gap 

One of the central features of a superconductor is that there exists an energy 

gap l:l. of the order of kBTc in the exciation spectrum for electrons, which was first 

discovered in specific heat measurements [134]. In a normal metal the specific heat 

at low temperatures is given by 

where the linear term is due to electron excitations and the cubic term origi­

nates from phonon excitations. Below the superconducting transition\ however, 

the electronic contribution was found to be of the form exp (-l:l./kBTc) which is 

characteristic of a system with a gap in the excitation spectrum of energy 2A. The 

gap is directly related to the superconducting order parameter and hence l:l. -+ 0 

as T -+ Tc. Starting about 1953 a number of experiments yielded a measurement 

of A. The energy gap can be directly observed in tunneling measurements, in the 

electromagnetic absorption spectrum in the far infra-red and in the life time of the 

phonon excitations. 

1.6 Electron-Phonon Interaction and Cooper Pairing 

The first indications that the electron-phonon interaction was responsible for 

superconductivity came as late as 1950 with Frohlich's [25] theoretical model de­

scribing an attractive electron-electron interaction mediated by phonons and the 
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discovery of the isotope effect [26,27] showing the proportionality of Tc and He to 

M-! for isotopes of the same element. 

According to classical physics, any two particles, no matter how weakly at­

tracted, can form a bound state. In contrast, tightly bound quantum mechanical 

particles have large averge velocities and thus large energies of motion. Unless the 

attractive binding energy is sufficient to overcome this kinetic energy, no bound 

states will be formed. The attractive interaction brought about by phonons was 

far too weak to produce a bound state. 

Leon Cooper [28] was able to show that in the presence of an attracti"e interac­

tion, no matter how weak, two electrons added to the Fermi sea will form a bound 

pair. Even though the kinetic energies of the added pair is higher, the overall 

energy of the system is lowered by the formation of the bound pair. This implies 

that the Fermi sea is unstable against the formation of bound pairs because the 

energy of the system could be lowered by taking two electrons of a given energy 

from the top of the sea and putting into a bound state formed from energies above 

the sea. The presence of the other electrons of the Fermi sea allows this to happen; 

two isolated electrons in the presence of a weak attractive interaction could not 

form a bound state. Thus pair formation is a many body effect. 

The pairs of electrons in a superconductor are very weakly bound and the 

amount of energy needed to break up a pair is only a few thousandths of an 

electron volt. In comparison, the Fermi energy of the electrons in a metal is 

generally 5 to 10 electron volts. So the pairs should break up very easily. Under 

proper conditions, the pairs continually recombine in order to maintain a state of 

lowered energy and on the average, electrons spend their time in paired states. 

The electron-phonon interaction is described as a scattering event in which the 
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total momentum is conserved. But the energy conservation of the electrons taking 

part in the process is not required. Cooper showed that the energy lowering from 

the formation of a bound state will overcome the additional kinetic energy of the 

electrons when the electrons of a pair have equal and opposite momentum. The 

largest number of energy lowering scattering process can occur between electrons 

of equal and opposite momentum. Such bound pairs of electrons of equal and 

opposite momenta are called Cooper pairs. 

1.7 BeS Theory 

Cooper considered the artificial case of two new electrons added to a metal. 

But the BeS theory has to deal with the case of 1023 electrons per cubic centimetre 

already present in a real metal. In order to develop a theory that could predict 

the behaviour of the multitude of electrons in a superconductor, BCS made a 

simplifying assumption. Rather than attempting to analyse the effects of inter· 

actions between three, four or more electrons at a time, they assumed that only 

pair interactions matter. So in considering the behaviour of a pair, the presence 

of all the other electrons merely limits the states into which an electron pair can 

scatter. Relegating the other electrons into the background role results in a mean 

field theory. By making the mean field assumption, the BCS theory treats all the 

electrons at once. 

As we have seen an attractive interaction results in the Fermi sea of electrons 

being unstable against the formation of bound pairs of electrons formed from states 

above the Fermi level. Therefore it is necessary to find a new ground state of the 

system in which many pairs of electrons of opposite momenta are in higher energy 
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states than the maximum of the normal Fermi sea. The BCS ground state consists 

of Coopcr pairs of electrons with equal and opposite momenta. The electrons 

in a superconductor condense into the BCS ground state. The most important 

property of the BCS ground state is that the pairs are completely interchangable 

and indistinguishable from one another. They do not have to obey the Pauli 

exclusion principle that restricts individual electrons to separate quantum states. 

The paired electrons can all be described by a single quantum-mecha;J.ical wave 

function. The pair state corresponds to the macroscopic quantum state predicted 

by Fritz London and constitutes a highly ordered state. The pairs overlGp in such 

a multiple fashion that the ordering propagates through out the lattice so that we 

have long range order in momentum space. 

According to the BCS theory, the binding energy of the Cooper pairs shows up 

as a gap in the density of electronic states for the superconductor and a minimum 

energy Eg = 2.6.(1) should be required to break a pair creating two quasi particle 

excitations. The energy gap .6.(1) was predicted to increase monotonically from 

zero at Tc to a limiting value 

In the vicinity of the transition temperature, the theory yields 

Tl 
.6.(7) = 1.74.6.(0) [1 - TJ:1 

The continuous decrease of the superconducting order parameter to a value of 

zero is a characteristic of a second order phase transition. In the presen: case the 

behaviour is controlled by an exponent value of ~ which is a result of Eean field 

theory. Like the energy gap, the critical magnetic field approaches zero continu-
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ously according to the relation 

Hc(T) = Hc(O) [1 - a(;' )2] 
c 

The electronic term in the heat capacity at low temperatures is 

which is characteristic of a system which possesses an energy gap in the e..'(citation 

spectrum. Most conventional superconductors actually exhibit the predicted ratio 

between the energy gap and the critical temperature and are known as BCS type 

or weakly coupled superconductors. Certain other superconductors - for example, 

lead - have somewhat larger values for energy gap than the theory wou.:.d predict 

and are called strong coupled superconductors. 

The existence of a gap in the low energy excitaton spectrum is r:.ot a nec-

essary condition for the occurence of typical superconducting properties such as 

the Meissner effect and permanent currents. Gapless superconductivity has been 

shown to exist. The criterion for superconductivity seems to be the exis:ence of a 

strong pairing correlation and this does not necessarily imply the existence of finite 

gap in the excitations. However, the existence of a gap in most superconductors 

has been of great importance for the establishment of the microscopic theories. 

The BCS theory has been used to predict new phenomena which have been 

later demonstrated experimentally. One of the most important of th~e discov-

eries is that of tunneling of electrons through a thin insulating layer between a 

superconductor and a normal metal or between two superconductors. This was 

experimentally verified by Giaver [29] in 1960. A couple of years later, Josephson 

[30] predicted that if two superconductors are separated by a very thin insulating 

layer a supercurrent can tunnel between them. This phenomenon called Josephson 
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tunneling was first demonstrated experimentally by Rowell and Anderson [31]. 

The contributions of Bgoliubov, Gorkov and Eliashberg in the USSR further 

developed and refined the BCS theory. 

The well known formula for the critical temperature in the BCS theory is 

(1.13) 

where e is the region of attraction between electrons near the Fermi surface and 

AeJJ is a dimensionless parameter characterizing the intensity of this attraction. 

Since equation (1.13) gives Tc :s 30K for the phonon mechanism of superconduc­

tivity, the high temperature copper oxide superconductors are left out of the ambit 

of the theory. However, with a reinterpretation of e and AeJf the theory could be 

adapted for other type of interactions such as excitons, plasmons, etc. 
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Figure 1.1 Schematic variation of the induction B versus field H in a type II 

superconductor. 

18 



H 

surface 
superconductivit 

suhubnikov 
phose 

complete 
Meissner effect 
8=0 

T 
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CHAPTER II 

IDGH TEMPERATURE SUPERCONDUCTIVITY -

A PHENOMENOLOGICAL APPROACH 

2.1 Introduction 

More than a decade has elapsed since the discovery of superconductivity in 

cuprates by Bednorz and Muller and still there is no concensus on the microscopic 

mechanism responsible for high transition temperature in this class of materials. 

However, independent of the exact nature of the pairing mechanism within the 

layers, the interlayer coupling determines most of the superconducting properties 

of a real crystal. Hence there is a great need for a phenomenological model capable 

of describing the superconducting properties of these. compounds. In this chapter 

the properties of copper oxide superconductors and phenomenological approaches 

to understand these properties will be discussed. Section 2.2 deals with the struc­

ture and properties of high-Tc copper oxide superconductors. Various microscopic 

theories put forward to explain high transition temperature in these compounds 

and the experimental constraints on these theories are explained in section 2.3. 

Ginzburg-Landau theory was extended to high-Tc superconductivity v.'ith the in­

troduction of anisotropic mass tensor and section (2.4) deals with the anisotropic 

GL theory. Lawerence-Doniach (LD) model first proposed to describe anisotropic 

layered superconducting superlattices and intercalat~d dichalcogenides of transi­

tion metals is discussed in section 2.5. A modified LD model which takes into 

account the experimentally observed structural features of high-Tc copper oxide 
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superconductors with special refrence to YBCO is proposed in section 2.6. 

2.2 Structure and Properties of Copper Oxide Superconductors 

The structure of the superconducti1).g compounds and those of the related 

phases had been studied by both X-ray and neutron diffraction techniques [135]. 

Almost all structural refinements of these compounds were carried out U5ing neu­

tron powder diffraction data. 

The Bednorz-Muller superconductor La2_ZMzCU04_y(M = Ba, Sr) known as 

214 system has the tetragonal type structure of K2NiF4 at room temperature 

[32, 33]. The prototype compound for 214 class of layered perovskite materials 

is La2CuO"-_1I whose low temperature properties vary tremendously depending on 

the oxygen content and preparation techniques that affect metal sublattice sto­

ichiometry. Oxygen vacancies promote an antiferromagnetic ground state with 

pronounced sensitivity. From an absence of antiferromagnetic order (Keel Tem­

perature TN = 0) at stoichiometry (y=O), TN rises to room temperature at y=0.03 

[34J. At full oxygen occupancy, long range magnetic order is absent in favour of 

superconductivity. La2Cu04 is a superconductor under special conditions [35]. A 

shift in the temperature dependence of the electrical resistivity of this compound 

from semiconducting to metallic correlates with the occurrence of superconductiv­

ity and the presence of vacancies on the La sites [36]. Thus the superconducting 

state is associated with vacancies on the La sublattice in conjunction \',ith com­

plete occupancy of the oxygen sites. \Vhen LaZCu04 is doped with alkaline earth 

elements such as Sr, Ba or Ca, the tendency to antiferromagnetism is suppressed 

and superconductivity becomes the dominant low temperature state. The maxi-
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mum value ofTc(~ 40K) in Sr and Ba systems is obtained for x = 0.4 and x = 0.15 

respectively [37]. A tetragonal to orthorhombic phase transition for this compo­

sition occurs at about 200K. From crystallographic point of view no c~ange can 

be detected between 60K and 10K i.e. due to superconducting transition. The 

structural prameters for the orthorhombic phase of La1.8SBaO.lSCu04 at 10K are 

a = 5.3430A, b = 13.2504A and c = 5.3479..4.. The crystal structure is remark. 

able because the co-ordination polyhedra of lanthanam and copper co~bine in a 

way that allows three dimensional space to be filled in a highly two dimensional 

manner. As a result, the two dimensional CU02 planes perpendicular to the c-axis 

interspace double layers of La/M and oxygen [Fig 2.1]. The copper O:A")'gen plane 

is the microscopic region of the crystal structure where superconduct:.:rg charge 

carriers originate. 

RBa2CU306+z otherwise known as 123 system with R representi:cg trivalent 

rare earths such as Y, Nd, etc has the defect perovskite structure [38] and is 

highly deficient in oxygen. All ph~'sical properties of this compound are sensi­

tive to oxygen concentration as shown in Fig. 2.2. They are orthorhombic for 

x > XOT (orthorhombic+-+tetragonal) while they are tetragonal for x < XOT. The 

structural parameters in the orthorhombic phase are a = 3.8198..4., b = 3.8849A 

and c = 11.6762A [39]. The orthorhombic to tetragonal structural tr2..llsition is 

accompanied by metal to insulator transition and it also separates the antiferra. 

magnetic region from superconductiyity. In the small x regime the conpound is 

a tetragonal antiferromagnetic insulator while at large x and at low temperatures 

it is an orthorhombic superconductor. In each chemical unit cell there are three 

copper-oxygen layers of ions which are stacked along the c-axis. Two of these 

layers have oxygen ions between the copper ions in both the a and b crystallo-
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graphic directions (CU02 planes) and the oxygen cannot be removed. The third 

copper layer only has oxygen ions along the b-axis (CuO chain layer) [Fig. 2.3]. 

The oxygen concentration in the chain layer can be readily varied from full occu­

pancy (x = 1) to full depletion (x = 0). Detailed analysis of the ch~.rge density 

distribution have confirmed the one dimensional nature of the CuO chains as well 

as the two dimensional nature of the CU02 planes. In the limit x = 1, oxygen 

vacancies are due to the absence of o)."Ygen atoms from the plane which separates 

the adjoining CU02 planes and from half of the oxygen sites in the CuO plane 

between the BaO layers which leads to the formation of the CuO chain. There is 

remarkable correlation between Tc and the oxygen concentration in the chain layer 

[40]. Tc rv 90K for x $ 1 for all the trivalent rare earth elements R and decreases 

to 60K where it remains upto x = 0.5. Beyond this value Tc drops sharply and 

antiferromagnetic order sets in. In the magnetic regime there are tv.-o separate 

transition to antiferromagnetic order of the eu spins which have been. observed. 

The high temperature transition involves the ordering in the CU02 plane layers 

and has a Neel temperature TN! rv 500K at x = 0 and monotonically decreases 

to zero at x rv XOT. At lower transition the Cu spins in the Cu chain lc,yers also 

become ordered and the transition temperature Tm is very sensitive to I. 

The ionic Y and Ba atoms were found to act as electron donors and otherwise 

do not participate in superconductivity or magnetism. The lack of conduction 

electron density near the V-site explains the stability of the critical temperature 

when isolated Y atoms are replaced by other rare earth atoms. The superconduct­

ing behaviour of the 123 - compunds do not depend on which rare earth element it 

contains. On the other hand, the chain layer controls all the properties of the sys­

tem - magnetism, metallic behaviour and superconductiviy. The rare earth atom 
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in 1-2-3 more or less acts like a spacer between copper oxygen planes; its chemical 

properties do not figure into the electrical properties of the superconductor. Thus 

there exists an entire family of 123-compounds that all superconduct above 90K 

and differ only in the identity of the rare earth element. 

YBazCu40S [41} exhibits superconductivity transition at about 80K. The main 

feature of this compound is the presence of two consecutive oxygen deficient CuO 

chain layers. The structure of this compound is otherwise similar to that of 

YBa2CuJ0 7. 

Aside from the small orthorhombic distortion in the unit cell and the superlat­

tice structure along the b-direction, crystal structures of both the compounds 

Bi2Sr2Cu06 (Tc rv 22K) and Bi2Sr2CaCu20S (Tc '" 84K) are body centred 

tetragonal. The thallium compounds TIzBa2CaN-l CU~ZN+4 have practically the 

same structure as that of the bismuth system. The structure of BhSr2Cu06 

(TlzBazOu06) consists of a square CuOz plane above which is a layer of SrO 

(BaO) followed by two BiO (TIO) layers and another SrO (BaO) layer before the 

whole structure repeats with the copper oxygen layer shifted to the body centred 

tetragonal position. The two layer structure differs in that the single CU02 layer 

is replaced by two CuOz layers separated by a layer of calcium. The three layer 

structure includes an additional set of Ca CU02 layers to the two layer struc­

ture. In the family of 771Ba2CaN-ICu;v02N+3 the square planar CuOz layers are 

sandwiched between single layers of thallium oxide. 

Experiments carried out in 1989 by Kikuchi et ai. have shown that in the family 

ofTlzBa2CaN-lCU~2N+4 Tc increases for N values from 1 to 3 (maximum Tc=125K 

for N=3) and decreases under the passage from three to four layered specimens. 

They have also synthesized high-Tc superconductors 711 Ba2CaN-l CU~2!\'73 with 
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N values from 2 to 5 [43] and have shown that Tc increases with the number of 

layers N upto N=4 and then is lowered N equal to five and six. 

All these high-Tc superconductors have the oxygen depleted layered perovskite 

structure which causes these materials to be highly anisotropic in their supercon-

ducting properties - critical currents, penetration depths, coherence lengths and 

other parameters (Table 2.1). In al1 of these systems copper oxide planes form 

a common structural element which is thought to dominate the superconducting 

properties. Depending on the stoichiometry the crystallographic unit cell contains 

varying nwnbers of CU02 planes. These planes are sandwiched between other lay-

ers which act as spacers and most important, as reservoirs of charge carriers. The 

electronic state of these layers determines the charge density on the copper-oxygen 

planes and the transition temperature of the compound. 

The high-Tc cuprate superconductors are all extreme type II materials with 

small values for the lower critical field and exceptionally large values for the upper 

critical field Hc2(O). For composition with optimal Te, Hc2(O) ~ 50T for poly­

crystalline samples of the 214 system and Hc2(O) is as high as 340T [4-1] for the 

123 system. Measurements of Hc2 on single crystals of YBCO [45] reveal a high 

degree of anisotropy. When the applied field is parallel to the planes the slope 

- (dHcd d7)T=Tc is 3T /K. \Vith the external field applied perpendiculu to the 

planes the slope is reduced to about O.6T /K. Non ideal behaviour of superconduc­

tors with strong flux pinning coupled with large demagnetization correction makes 

an accurate determination of Hel extremely difficult. However, with these ambgui­

ties taken into account the measure of anisotropy (H~/ H~l) is consistent with the 

expected relation (H"1i/ H~1)JJi~2/ H~) '" L These results reflect the anisotropy in 

• the values of the coherence length and the penetration depth. The experimental 
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data on the anisotropic parameters are listed in Table 2.1. 

The critical current J8 is determined by flux pinning strength and is a property 

which is quite sample dependent. flu, direct transport measurements of Jc on the 

oxide superconductors are impractical except for thin film samples, the J c values 

are usually estimated from the hysteresis of the magnetization curve using the 

Bean model [136]. Dinger et ai. [46] report the critical current density of a single 

crystal YBa2Cu307-6 sample at helium temperature and zero magnetic field to be 

J'; rv 2.9 X 106 A/cm2 and ~ rv 4.2 X 105 A/cm2
• The temperature and magnetic 

field dependences are much different for J~b and J~. 

A.C.Josephson experiments done by Niemeyer et al. for a junction between 

YBa2Cu307 and an alloy ofPb and Sn 147] gave the value of magnetic flux quantum 

4> as hc/2e indicating that the charge carriers are Cooper pairs. Hall effect data 

for LaL8SSrO.lSCu04 [48] gives a positive Hall constant indicating that conduction 

by holes dominates. The hole carrier concentration in the normal state just above 

Tc is low with a value of about (5 ± 3) x 1021 cm-3 • The data shows a strong cor­

relation between Tc and hole concentration in the copper-oxygen layers providing 

further evidence as to the importance of the low dimensional features of these 

materials. The doping with alkaline earths is seen to affect Tc via a change in the 

hole concentration. The Hall constants of 214 systems are relatively temperature 

independent. The Hall effect studies on YBa2Cu307-6 [49] give a Hall constant 

RH which is positive and sensitive to the oxygen content increasing rapidly with 

increasing oxygen deficiency h. RH exhibits a significant temperature dependence 

such that the apparent carrier density l/eRH varies linearly with T e>..1:rapolat­

ing to nearly zero at T=O. Single crystal studies 150] show that Hall effect for 

H II c - axis is quite similar to that of polycrystalline samples where as RH for 
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H /I ab - plane is much smaller, is negative and seems to have quite different 

temperature dependence. 

The resistivity of high-Tc oxides in the normal state is extremely anisotropic 

with metallic like behaviour along the planes and semiconducting like behaviour 

along the c-axis. A remarkable feature of the high-Tc cuprates is the ,vide range 

in T over which Pab falls on a straight line passing through the origin or is linear 

with a positive intercept. The conspicuous absence of resistivity saturaton at high 

temperature suggests that the electron-phonon coupling is rather weak in these 

oxides. 

Large positive (hole-like) values of thermoelectric powor have been observed 

in samples of La2-xSrxCu04 and YBa2Cu307-6' The approximate temperature 

independence contrasts with the T-linear behaviour of conventional metals. 

Nearly all of the high-Tc superconducting oxides have an oxygen isotope effect 

according to the relation Tc C( l\.1-~ [51]. Against the BCS value of {3 = 1/2, the 214 

compound with Tc ,..,., 34 - 37 K has f3 values varying from 0.09 to 0.2 for different 

studies. YBa2Cu307 has still smaller values for {3. For bismuth compounds with 

Tc = 11 OK, f3 is only 0.026. In the case of YBCO, Tc is insensitive to the mass 

of the ion at the V-site indicating that the lattice vibrations associated with the 

V-sites are not contributing to the pairing in any significant way. In addition Cu 

and Ba isotopic studies show no measurable dependence of Tc on isotopic mass 

{137]. 

Infra-red absorption and tunneling spectroscopic studies show energy gaps 

which are anisotropic for the high-Tc superconductors. For the 123 compounds 

energy gap appears to be large in the Cu-O plane upto 6-7kB Tc and smaller in the 

perpendicular direction of the order of 3-4kBTc. Several experiments suggest that 
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the energy gap is not "clean" but has finite density of states all the way down to 

zero energy. The gap parameter does not exhibit the temperature dependence of 

the BCS gap width shifting down toward zero frequency as T ~ Tc but rather ap­

pears to fade out in intensity without a major frequency shift. The angle resoh-ed 

photoemission spectroscopy (ARPES) measurements on BSCCO have ~!lown that 

a gap like feature develops below Tc along the K:r; or Ky directions in K-space but 

not along directions rotated by Tr/4 from them in the ab-plane. 

2.3 Experimental Constraints on Theories of High-Tc Superconductors 

Superconductivity in high temperature cuprate materials is also based on 

Cooper pairs because the usual a.c. Josephson effect frequency 2eV /h 13 obser .... ed 

for a junction between YBa2Cu307 and an alloy of Pb and Sn [52]' the obseryed 

flux quantum is of the usual size hc/2e [53} and Andreev reflection along the 

time-reversed trajectories is seen [54] as with conventional superconduc:ors. 

If BCS theory is taken to mean the electron-phonon interaction whi6 causes a 

pairing instability, then the cuprate superconductors are not BCS like. However, 

if the central core of the BCS theory is the pairing instability of the F€:'IDi liquid 

in the presence of an attractive interaction with the source of this ;,.,teraction 

a peripheral aspect, then the new materials may be BCS like. In ttis respect 

Eliashberg's 155] reformulation of the BeS theory is useful as it is s-miciently 

general to allow interactions that are not mediated by phonons alone but by other 

types of excitations, for example, electronic excitations. 

A calculation of the size of the pair can determine whether the supe:conductor 

is of the BCS type where the pairs are formed at Tc or the Bose-Einstein type 
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where the pairs pre-exist and only condense at Tc (Schaforth or local pair model). 

The size of the pair in YBCO and LSCO determined from coherence lengths is such 

that several pairs will overlap one another and co-exist in the same volume. This 

is characteristic of the BCS model and is in contrast to the model of pre-existing 

tightly bound bosons. 

If two electrons of wave functions ¢K (rb 81) and ¢K'(r2, 82) are bound to form 

a composite particle then the pair function will have the form, 

where R = (rl + r2)/2 is the coordinate of the centre of mass and p = (rl - r2) 

is the relative coordinate. 'I,b(R) , ¢(p) and X(51, 52) are the wavefunctions of the 

centre of mass, relative and spin coordinates respectively. Each of these three 

functions contains information on the mechanism of superconductivity. The fiu.."'{ 

quantization and hence the fact that the charge carriers are pairs result from the 

boundary conditions on 'I,b(R). We can write, 

9(P) = L elm R(p) Yim(B, 9) 
l.m 

where Yim(e, ¢) are the spherical harmonics and R(p) is a radial function. It is 

important to know whether the pairs are bound in s-,p-, or d-states, the spatial 

extent of the radial wavefunction R(p) and whether the spins form a singlet or 

a triplet state. The total wave function of the pair must be antisymmetric to 

the exchange of the two electrons because they are fermions. Hence the singlet 

state must be associated with the s- or d-states and the triplet associated \vith the 

p-state. 

An important question is about the nature of the pairing in these materials, 

whether it is of the familiar s-wave type on which the conventional BCS theory 
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is based or it is of the d-wave type. W.A.Littlc [56] has analysed several ex­

perimental results to suggest an s-wave pairing scheme just as in conventional 

superconductors. Niemeyer et ai. [47] have observed d.c.Josephson effect for a 

junction between YBa2Cu307 and a Pb/Sn alloy. Since both Pb and Sn are clas­

sic BCS superconductors in the singlet s-state, the pairs in YBa2Cu307 must also 

be of the same symmetry as it was shown by Akhtyamov [57] in 1966 that the 

tunneling of the Josephson type is impossible between a triplet state and a singlet 

state superconductor or between any two superconductors in which the symmetry 

of the pair states differ. Further evidence that the pairs in cuprates are singlet 

pairs in s-state comes from data on the impurities on Te. Chemical impurities de­

press Tc in p- and d-wave superconductors because of mixing of different lobes but 

have little effect on s-wave superconductors which have the same amplitude in all 

directions. This reduction in Tc with impurities has not been observed in YBCO 

and LSCO. In particular for La2_,z,srzCu04 the presence of Sr causes disorder in 

the lanthanam lattice, yet with increasing Sr (over a limited range) Tc goes up, 

not down. A careful comparison by Harshman et ai. [138] of the temperature 

dependence of the depolarization rate with the predictions of the BCS theory give 

excellent agreement, implying that the pairs are indeed of the s-wave variety. 

On the other hand a number of experimental results point to a d-wave type 

of pairing. Microwave measurements at rv 1 GHz [58] and muon spin rotation 

experiments [59] on high quality single crystals ofYBCO gave a linear temperature 

dependence for ns ex: (1 - a7) where a = 7.2 ± 0.1 x 10-3 K-1 and ns ex: 1/>..2. 

At higher temperatures >..(1) diverges as 6-1 
rv (Te - 7)-! as T.....-j. Te. There is 

general concensus that the variation of >..(7) in YBCO at low temperatures is more 

rapid than would be consistent with a classic clean BCS gap and is what would be 
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expected from d-wave pairing. Observed deviations from the "clean gap BCS" and 

flux quantization measurements on superconducting SQUID rings combining films 

of Pb and YBCO [60] give strong support to a d-wave pairing model. Results of 

ARPES measurements on BSCCO are what would be expected for a d:r:~-i pairing 

scheme. 

The BeS theory predicted the rise in the nuclear relaxation rate liT} to a 

Hebel-Slichter peak below Tc before an exponential drop off to zero with the freeze 

out of quasiparticles at lower temperatures. vVhen NI\IR studies were performed 

on the HTSC, the striking observation was that there is no Hebel-Slichter peak 

in liT}, rather the relaxation rate which had been decreasing with decreasing T 

in the normal state above Tc simply falls more rapidly in the superco:J.ducting 

state. At lower temperatures 11Tl was bettcr described by a power law S'.lch as rp 

or yt.5 than the exponential expected of a BCS energy gap. The absence of this 

exponential freeze out of liT} at low temperatures indicate the absence of a clean 

energy gap and the power law variation is qualitatively consistent with 2. d-wave 

pairing. 

To identify the excitation responsible for the attraction, it is helpful first to 

determine whether the coupling is weak or strong. The phenomenon of Andreev 

reflection and zero tunneling below eV = 6. [54] and infra- red rfiectivity data give 

evidence for weak coupling. The observed value of !J..Cv/'fI'c [61] and "'I~/~(O) 

where I is estimated from magnetic susceptibility X using a free electron model 

are also consistent with weak coupling. On the other hand most data for HTSC 

suggest values of 4kTc to 7kTc for the gap width which are much larger than the 

BCS weak coupling value of 3.5kTc • This implies that HTSC are not weak coupling 

BCS superconductors, but it is possible that very strong coupling could account 
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for such a high 2/j./kTc ratio. Results from Raman and infra-red spectroscopy, the 

temperature dependence of the thermal conductivity and Mossbauer studies are 

reflective of extreme strong coupling limit. 

SmaU or negligible oxygen isotope effect, large positive values of dTc/dp larger 

than that for conventional superconductors obtained from high pressure stud­

ies of YECO and LSCO, the fact that electron-phonon superconductors all have 

Tc < 23K and many other electronic properties indicate that the electron-phonon 

interaction cannot be the dominant mechanism of superconductivity !..n high-Tc 

materials. Low energy hWD of the phonon may be responsible for the low value of 

Te. It is possible that a high energy boson may act in place of or in addition to 

phonons yielding a higher Tc. 

\Vhen a test charge is inserted in a solid three kinds of distortions occ-c.r: the lat­

tice distorts (Virtual phonons), the electrons can repopulate any partly ::lled band 

(virtual plasmons) or they can mix in components from higher unfilled bands (vir­

tual eXcitons). If the test charge is time dependent (moving) then the &tortions 

follow in time, with a lag which is larger for lattice distortion than for electronic 

distortions. A second test charge will feel both the direct instantaneous repulsion 

of the first test charge and a time dependent attraction from these dym.mical dis­

tortions. The usual Eliashberg picture assumes that electronic polarizat[on serves 

only to cancel part of the direct coulomb repulsion and that only p::'onon po­

larization is sufficiently strong and retarded to contribute to pair bonding. The 

importance of electronic correlations in high temperature superconduc:ors is evi­

dent from the comparison of the band structure with photoemission data as well 

as the failure of the band theory to stabilize the antiferromagnetic gro'l!1ld state. 

Most of the electronic polarizability of complicated materials like the cuprate 
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superconductors is in exciton (interband) rather than plasmon (intraband) form. 

There have been proposals that nearly 2D plasmons of quasi-2D metals like La2Cu01 

are especially beneficial for superconductivity but so far there is no convincing cal­

culation of this, even for an electron gas, let alone for a material with interband 

dominance. The exciton mechanism like the phonon mechanism helps to weaken 

the direct coulomb repulsion of electrons. But there is no simple model system 

which should be subjected to rigorous theoretical investigation. 

Exotic forms of superconductivity could emerge in solids from highly correlated 

electronic states which are not describable as ordinary Fermi liquids. Bipolaronic 

and RVB superconductors are such proposals. In the limit Ep «EB' EF« e 

where EB is the binding energy of the pair, electrons form mobile pairs bound by 

electron-phonon interactions called bipolarons provided the attraction is strong 

enough to support a bound state. There is no unambiguous evidence :hat bipo­

larons exist in any known solid. Scalapino et ai. [621 argue that Ct.:.-O based 

superconductivity may be electron-phonon driven and on the border between bipo­

laronic and BCS like. 

The close proximity of antiferromagnetic state in 214 and 123 compounds with 

superconducting state has been the starting point for resonance valence bond the­

ory where as other theories have involved the exchange of magnons {53] or spin 

fluctuation [64] to provide a more conventional BeS attractive interaction. Nu­

clear magnetic and quadrupole resonance experiments show no evidence of static 

moments on the copper sites in YBCO nor any evidence of magnetic interactions. 

Furo et ai. [65} report that the relaxation rate of 65CU which has the larger mag­

netic moment but smaller quadrupole moment is smaller than 63Cu showing that 

the relaxation is not of magnetic origin. Lyons et al. [66] have reported the results 
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of inelastic light scattering experiments that do give evidence of pair excitation 

near 0.3me V in both insulating La2Cu04 and YBa2Cu306. However as one ap­

proaches the super conducting state the scattering cross section decreases rapidly 

suggesting that the magnetic terms are competing with superconductivity rather 

than being responsible for it. 

Inspite of the wide variety of measurements carried out on HTSC, there is still 

no conccnsus concerning the mechanism of high-Tc in these materials. However, 

it does appear that, whatever the mechanism, the superconducting properties in 

these materials can well be described by BCS/GL concepts. 

2.4 Anisotropic Ginzburg-Landau Theory 

Starting from the 1970's three new classes of superconductors were synthe­

sized which have crystal structures quite different from the cubic one of conven­

tional superconductors and show highly anisotropic electron properties. These are 

dichalcogenides of the transition metals of the NbSe2 type and their intercalated 

compounds, the organic superconductors and copper oxide high-Tc superconduc­

tors. All of them have layered crystal structure. 

The dichalcogenides of the transition metals have the chemical formula MX2 

where M=Nb,Ta,1\-1o and X=S,Se,Te. In the crystal atoms M and X form a sand­

wich which consists of two layers of X and only a layer of 1\'1 in between. The 

bonding of the atoms M and X inside the sandwich is strong, the inter atomic 

distance being 1.5..4. But the coupling of the sandwiches is rather weak with dis­

tances of about 3..4 between the layers X of neighbouring sandwiches (Fig.2.4). 

The electrons move freely inside the sandwiches while the motion between the 
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sandwiches is characterized by a narrow band due to the weak overlap of the clec-

tron wavefunctions of different sandwiches. The anisotropy of conductiyity 0"11/0";: 

is about 20-50 in NbSez and TaS2. The intercalation of these crystals by large 

insulating organic molecules arranged in between sandwiches enhances strongly 

the anisotropy and the ratio ull/O"z "'" 105 was achieved in TaS2 intercalated by the 

pyridin molecule C6HSN. 

The organic superconductors (TMTSFhX with X = PF61 CI041 AsF6 and (BEDT­

TI'F)2X with X = I3l AuI2 , Cu( CNSh are based on the organic molecules TMTSF 

and BEDT-TTF respectively which form charge transfer salts with small anion 

groups. The plane molecules TMTSF and BEDT-TTF with conjugated bonds 

form stacks which are arranged in layers. In the crystal the layers of this molecule 

alternate with layers of linear anions. The motion of the electrons along the 

layers is characterized by a broad conduction band where as the motion of the 

conducting electrons via the anion layers is rather weak. The anisotropy of con­

ductivity in (TAfTSF)2X family is characterized by the ratio 1000:50:1 while in 

the (BEDT - ITF)2X family it is 400:200:1 where the first two values are for 

conductivities along the layers and the last one is for the perpendicular direction. 

In the copper oxide superconductors CU02 layers which are responsible for 

superconductivity alternate with other layers and the anisotropy of conductivity 

in YBCO is about 100; it increases to 105 in Bi- and Tl-compounds. 

The standard isotropic GL model (1.4) is valid for a) temperatures close to Yr; 

ie 7" = T£T « 1, b) isotropic Fermi surface and c) superconducting correlation 

length { larger than the interatomic distance ao. The last condition can be written 

as Tc « €F which is easily fulfilled in conventional isotropic superconductors due 

to the large value of €oF. But the layered compounds because of their extreme ., 
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anisotropy and extremely short coherence length are beyond the ambit of the 

isotropic GL approach. One way of describing their anisotropic electron spectrum 

is by introducing the anisotropic effective mass. For axial symmetry with z-axis 

perpendicular and (x,y) plane parallel to the layers we get the electron spectrum 

(2.1) 

where hKII is the momentum along the layers. The spectrum (2.1) corresponds 

to an elliptical closed Fermi surface for any concentration of conducting elec-

trons. The model (2.1) is appropriate for compounds with intermediate degree 

of anisotropy but may be invalid in the case of very high anisotropy because the 

Fermi surface might be open there. Therefore a more general description [99] 

is provided by the tight binding model along z-direction for which the electron 

spectrum 
1i?K2 

E(K) = -2 II + 2t cos KEd 
mil 

(2.2) 

where d is the interlayer distance and 2t is the band width for electron motion 

across the layers. If t is small in comparison with Fermi energy inside the layers 

n2nd/mll (where n is the three dimensional concentration of conducting electrons), 

the Fermi surface is open and has a cylindrical form. For t » h2nd/mu the 

spectrum (2.1) approaches spectrum (2.2). 

In anisotropic compounds all the kinetic properties of electrons in the normal 

phase as well as superconducting properties can be characterized by the tensor of 

inverse effective mass (m-1)iK' In the coordinate system assumed abo'l:e: we get 

(2.3) 
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where the angular brackets mean averaging over the three-dimensio::al Fermi 

surface. The parallel component of this tensor is given by mUI introduced in 

(2.1) and (2.2) while m;l is given by tcf /tL2 in the case of closed Ferc:i surface 

(t » t~211.d/mll) and by t2~ /h2
€F for the open Fermi surface. Ginzberg [67] gen­

eralized the isotropic GL functional to anisotropic superconductors by changing 

the scalar value l/m in (1.4) by the tensor of inverse effective mass (m-1)iK. The 

free energy 

The value of the upper critical field is calculated from the linearized GL equa-

tion with anisotropic mass tensor as 

~o 
Hc2:r: = --?' , 21!'{-

I, 
(2.5) 

1 

where ei = 4 h2('T\' Thus the expression HH<12,1I = (~) 2 can be used to calculate the 
m,o 'I 02... mil 

mass anisotropy from Hc2 measurements. If the magnetic field is oriented in such 

a way that the angle between H and z-axis is 0, we get for Hc2(O) 

~2( B) CO~2 8 + Sin
2
8) = 1 

~,z ~2,11 
(2.6) 

It is interesting to compare this expression with that for angular dependence 

of Hc2 in thin plate with thickness L < < { [68]. In this case 

(2.7) 

with Hc2.11 = V6~o/1reL and Hc2,z = ipo/21rt;,2. 8 is the angle between H and the 

normal to the plate. The origin of the anisotropy of Hc2 is quite different in the 
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two systems under consideration. In the former case, it is due to the anisotropy of 

the electron spectrum while in the latter it is caused by the restricted geometry of 

the sample. vVe obtain a cusp in the dependence HC2(8) ncar 8 = 90° for the plate 

while the cusp is absent in the anisotropic superconductor. However it is possible 

to observe the cross over from the dependence (2.6) to (2.7) in the superlattices 

which consist of alternating superconducting and insulating sheets with thickness 

Ls = L1 as Ls increases from the atomic scale to the values Ls which fulfill the 

inequalities aD < < Ls < < f At small Ls the electron effective mass m= is rather 

small due to the tunneling between conducting layers. There the orbital effect 

due to the motion of electrons between the layers is important and formula (2.6) is 

valid. As Ls increases the mass Tnz grows and then at some Ls the electrons stop to 

move between the conducting plates. Only the orbital effect inside the conducting 

plate is important in this case and the formula (2.7) becomes applicable. The cross 

over occurs at t;,r ~ Ls. 

Within the frame work of the GL model (2.4), the temperature dependence 

Hc2(7) is linear near Tc independently of 8. 

The lower critical fields are obtained as 

~o All 
Hel,z = 2 .x2 ln~, 

7r II "'II 
(2.8) 

For parallel field the normal core of the vortex is elliptic with half axes {I' ez' It 

may be noted that ell> ez while Ail < Az . The Meissner screening is determined 

by All in the magnetic field which is perpendicular to the layers. It is stronger 

for this orientation than for the parallel one. Correspondingly, Hel,z > Hel,1I while 

Hc2,z < H c2 ,11' For an arbitrary orientation of the magnetic field with respect to 
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~1 (0) (COS
2 
0 + Sin

2 0) = 1. 
m.l,z ~1,1I 

(2.9) 

The approach with the anisotropic mass in GL functional is valid until condi­

tion (c) above is fulfilled. For open Fermi surface which represents actually the 

case of strong anisotropy (mz » mil) this condition is equivalent to the inequal­

ity t ~ Te. If this condition is violated, the functional (2.4) is valid in a narrow 

temperature interval near Tc only i,e. T« (tjT,J2. In the interval T» (tjTc)2 

the Lawrence-Doniach (LD) [69J model discussed in section (2.5) has to be used 

with finite differences of the order parameter in the z-direction. 

2.5 Lawrence - Doniach Model 

In the layered compounds the superconducting order parameter is highly in-

homogeneous in the direction across the layers. If the distance between the layers 

d is very large compared to ez ie d > > eZ! the inhomogeneous nature of the order 

parameter essentially affects the superconducting properties. The order parameter 

is rather large inside the conducting layers but very small between the layers. The 

situation is the same as in Josephson contacts. Therefore we can describe the order 

parameter in the region of space where it is strong enough and ignore the region 

in-between. Under such description the layered superconductors can be considered 

as an array of superconducting layers coupled by Josephson interaction. The nec-

essary condition of such treatment is that the energy of layer coupling should be 

much smaller than the energy of superconducting condensation inside the layers. 

If this condition is fulfilled the currents between layers cannot in any way destroy 

the superconducting ordering inside the layers; they affect the phase difference 
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only. This condition is equivalent to the inequality d > > ez' 

To describe this situation we introduce a discrete variable n which is th number 

of layers in the z-direction. The order parameter for the nth layer will be 'if;n (p) 

where p = (x, y). The free energy functional for the superconducting system is 

now the sum of the energy inside the layers and the energy of Josephson coupling. 

F= L J dp[a(1) 1 V;n 12 +~2 1 V;n 14 +41'1,2 1 (~II - :ie AII)V;n 12 
n mil 'bC 

+ Ii 1 V;n - 'l/Jn+l exp (-iXn.n+l 12] (2.10) 

where 'VII is the gradient along the layers, All = (A:Z:l Ay), X71,n+l = ~~ f,,:-l)d Azdz, 

Ii = fijc/2e 1 'l/Jo 12 d and 1 'l/Jo 12= al {3. Here jc is the critical value of the Josephson 

current across the layers and parameters Ij and jc determine the streng:h of the 

Josephson coupling. 

The free energy functional (2.10) was introduced by Lawrence and Do:::iach [69] 

for the analysis of the consequences of the layered structure in superco::lducting 

materials and it is a generalization of the standard GL functional to des.cribe the 

case ez « d. It was extensively applied in the context oflayered transit:on metal 

dichalcogenides with organic molecules intercalated between the metalEc layers. 

Although these materials had transiton temperatures of only a few Ke!'.-ins, the 

formalism is equally useful for the high temperature superconductors. 

The upper critical field H c2,z in this model is also given by the expres.s:on (2.5) 

because electrons move along the layers at such orientation of the field a:J.d 'if;n{P) 

does not depend on n. The Josephson part of the energy is unessentia: at such 

orientation of H at H = Hc2 • 

For the parallel magnetic field, taking the vector potential in the form A.z = Hx, 
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we get the linear Mathieu equation 

J2'1j;(x) 27rHxd 
{rr(O) dx2 + r(l - cos 

41
0 )1/J(x) - -njJ(x) = 0 (2.11) 

where r = 2e;(O)/d? The critical temperature Tc(H) is given by the lowest eigen 

value r(H) and the dependence Tc(H) gives the dependence He2(7). The solution 

of equation (2.11) can be found in analytical form for the cases oflarge and small 

magnetic fields. 

Introducing dimensionless variables x' = x/{II(O) and h = 27rH{II(O)d/ipo, for 

h«l we can expand cos hx' to obtain the harmonic oscillator equation with the 

lowest eigcn value T = h(r/2)L This is the same as the GL expression (2.5) for 

Hc2,II(7) with linear dependence in T. The assumption h « 1 reduces to the 

condition {.t(7) > > d. 

For large h, equation (2.11) is the Schroedinger equation for a particle in a 

periodic potential r(l- cos hx') with small periods of oscillations. The lowest eigen 

value is obtained using the perturbation theory in potential as T = r - h-'2 which 

shows that the upper critical field H c2 ,11 due to the orbital effect only diverges at T 2 

Tc = r i. e. at T> 7"c the orbital effect itself cannot destroy the superconductivity. 

This conclusion is natural for Josephson systems because the Josephson currents 

cannot destroy the superconductivity inside the layers. This unphysical situation 

can be overcome by taking into account the finite layer thickness, pair breaking 

due to Pauli paramagnetism and spin orbit coupling effects. The paramagnetic 

effect is accounted for by changing T to T - (H/ Hp)2 where Hp = 27rTc/PBJU;.(3) 

and ((3) = 1.2. For 7" ~ T e , Hc2, II = Hp.Ji". Knowing He2,e and Hc2 ,1I, the angular 

dependence of Hc2 on () is determined from the equation, 

(2.12) 
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where r = r - ef<Jf;{I))2 and He2.11 (r) is given by equation (2.10) i. e. by the orbital 

effect alone [114). The solution of (2.12) has the form 

(2.13) 

Near Te (r- 0), x - 0 and Hc2(e) = !rc2(e). At r> re, we have 1/!rc1. = 0 and 

Hc2(fJ) is determined from the equation 

He2(8) I cos e 1+ ~2(()) = 1 
He2,z m2.11 

(2.14) 

which does not differ practically from equation (2.7) for the value He2(B) in the 

plate except for the definition of H c2,:' Thus the smooth dependence of Hc2 on 8 

near () = 90° as obtained close to Tc changes by cusp anomaly at r> rc 

At r « 1 the dependence H c2, ,,(1) has a positive curvature while Hc'!..~('I) is 

linear. The dependence of Hc2 on () and T indicates that the essential pc:.rametcr 

of layered compounds for cross over from 3D-anisotropic GL regime to Josephson 

coupling of layers is r = 2e; (0) / ,p . 

Near Te i. e. at T < < rc we get the standard effective mass expression (2.8) for 

Hcl(O). At 'T> r e, in the Josephson regime, the expression for H el,z is Etandard 

while the structure of vortex in the parallel field differs slightly from the usual one. 

The parallel vortex has a large periphery with dimensions of the order of). and,\z 

with weak perpendicular currents jz «je' The periphery part is defined by linear 

GL effective-mass tensor equations. The centre of vortex with dimensions of the 

order d is decribed by non-linear equations of LD model because the perpendicular 

currents between the layers jz are of the order of je. Thus the non-linear core of 

the vortex determines the logarithmic factor in Hel,lI and hence 

(2.15) 
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For an arbitrary angle B between H and z-axis we again get the e..xpression 

(2.9) with logarithmic accuracy assuming In(;II»> In (>;)1). Here again the main 
~II 

contribution is given by the periphery part and so with logarithmic accuracy the 

results of the GL model with anisotropic effective mass is valid. Generally the 

vortex lattice structure in layered compounds with Josephson coupling can be de-

scribed by GL effective mass equations upto a limiting parallel field. However, 

since effects such as pinning of the vortices and lattice excitatons which determine 

the distortions of the lattice from the ideal Abrikosov lattice depend on core en-

ergy, such effects as lattice melting due to thermal excitations and disordering of 

vortices due to imperfections of the crystal should be quite different in GL effectil.'e 

mass model and LD model. 

2.6 Phenomenological !\10del for High-Tc Copper Oxide Superconduc­

tors 

More than a decade has elapsed since the discovery of supercondllctivity in 

cuprates by Bednorz and Muller and still there is no concensus on the rrJcroscopic 

mechanism responsible for high transition temperature in this class of materials. 

However, independent of the exact nature of the pairing mechanism 'within the 

layers, the interlayer coupling determines most of the superconducting properties of 

a real crystal. Hence there is a great need for a phenomenological model capable of 

describing the superconducting properties of these compounds. Since the cuprates 

are extremely anisotropic and possess layered structure, an appropriate model for 

them can be formulated on the lines of the celebrated Lawrence-Doniacn theory. 

In all high-Tc cuprate systems copper oxide planes form a common structural 
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element which dominates the superconducting properties. Depending on the stoi­

chiometry the crystallographic unit cell contains varying number of CU02 planes. 

In addition the YBa2Cu307-z compound contains CuO chains which are thought to 

serve largely as resrvoirs to control the.charge density in the planes. The CuO chain 

layers dope the CU02 planes even in the limit x = O. Yu et al. [70] have shown 

that if the nearest neighbour plane-plane interactions are turned off in '113CO, the 

transition temperature becomes 72K which is higher than 60K for the case with 

the nearest neighbour chain-plane interaction quenched. This means that the CuO 

chain between the CU02 planes play an important role in enhancing Tc although 

it is not required to make the material superconducting. Raman scattering results 

and the temperature dependence of ..\(1) obtained by muon spin resonance exper­

iments [139] also point to the possibility of the CuO chains in YBCO having an 

influence on the coupling strength between superconducting charge carriers. The 

other evidence of the role of the CuO chains in superconductivity comes from the 

experimentally observed ..\ab(O) values for Y;124, 60K Y:123 and 90K Y;123 which 

are all different [140]. Since all of these systems are almost identical except for 

the number of CuO chains, we must expect to see the same A.ab(O) if we could 

neglect the role of the CuO chains in the superconductivity. The clear difference 

among the three A.ab(O) values could therfore be interpreted as showing that the 

CuO chain is related to the superconductivity in yttrium based compounds. 

Electronic band structure calculations [141] show that the planes composed of 

CuO chains in YBa2Cu307-z provide along with the CU02 planes conduction bands 

intercepting the Fermi level. AE, oxygen vacancies are introduced, the metallic 

nature of the chain layer bands begins to vanish along with decreasing Tc ( Tc "" 

90K for O<x<0.2 and Tc "" 60K for 0.2<x<0.5 ). For x around 0.5 to 0.7 the chain 
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layer becomes insulating and the material ceases to superconduct. The metallic 

nature of the CuO chain layers is thus directly tied to the hole content in the CU02 

planes since they arise from charge transfer from one another. The CuO chain layer 

provides a metallic intervening layer that enhances the interlayer coupling among 

the CU02 layers and therefore raises Tc significantly. Superconductivity has been 

observed in single CU02 layer with a Tc of 10K, but interlayer coupling along the 

c-axis is required to activate Tc of 90K. 

The other structural element in YBa2Cu307_z like the Y and Ba atoms were 

found to act as electron donors and do not otherwise participate in the supercon­

ductivity. There is no conduction electron density near the Y site. Tc remains 

constant when other elements from the rare earth series are substiuted for Y in­

dicating that these magn~tic ions have minimal interaction with the cO::lduction 

electrons. Therefore the ions Y and Ba act as spacers which stipulate the space 

structure of the unit cell. 

In thallium based compounds multiple CU02 plane layers are sandwiched be­

tween single or double TIO layers, the neighbouring CU02 layers in the sandwich 

being separated by Ca ions. Electronic band structure studies [71] sho"; charge 

transfer from the CU02 bands to the TIO bands indicating that Tc correlates with 

the metallic nature of the intervening TIO bands. Like the CuO chains in YBCO 

the intervening metallic layers in TBCCO play the dual role of doping the CU02 

layers and enhancing the interlayer coupling between the CU02 layers. Significant 

frequency shifts of thallium nuclear magnetic resonance have been obser\"€d in the 

superconducting state of the high temperature superconductor Tl2Ba3Ca3Cu4010+z 

which suggests that the TIO bilayers participate directly in the superconductivity 

[142]. 
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Bismuth based superconductors have similar structures as thallium based ones. 

Sterne and Wang [72] calculated the electronic structure for the one and two 

layer bismuth compounds and found essentially identical CuOz bands in both 

compounds. But they found the BiO planes which lie between the CuOz layers 

to be metallic in the high-Tc compound where as they are almost insulating in 

the low-Tc compound. Hence they proposed that the metallic nature of the layers 

between the CuOz planes could enhance Tc significantly. The role of the structural 

elements other than the CuOz planes and TlO(BiO) layers in the superconductivity 

of the thallium (bismuth) based compounds can be ignored. 

The experimentally measured coherence length normal to the CU02 planes ec 
and the OU.02 interlayer spacing dcu-Cu. for the La2-xSrxCu04, YBa2CuJ07 and 

Bi2Sr2CaCuZOs systems shown in Table 2.2 emphasize the role of interlayer cou­

pling since in these compounds ec is shorter than the distance between the CU02 

planes [142J. In YBeO and BSCCO, however, ec is comparable to the distance 

dCu- M from the CU02 layer to the metallic chain or BiO layer as the case may 

be so that supercurrents can flow between CU02 layers by taking advantage of 

the metallic states on intervening layers. Considering all these facts, it is natural 

to model a cuprate superconductor as a superlattice of the 2D conductiye sheets 

with N CU02 planes and M metallic planes per unit cell with Josephson coupling 

which occurs through a proximity effect [73]. Experimental indications for the of 

this proximity effect in Bi 2:2:1:2 high-Tc superconductors have been reported by 

Briceno and Zettl [74]. Experiments on intrinsic Josephson effects carried out by 

Kleiner et at. 175J on single crystals of YBCO, BSCCO and TBCCO support a 

model of a cuprate superconductor as a stack of superconducting sheets (5) con­

sisting of multiple CU02 layers (CU02 bilayers in the case of YBCO) separated by 
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weakly superconducting (8') metallic layers (chain layers in YBCO). The strongly 

superconducting S sheets induce a finite ordr parameter in weakly superconduct-

ing 8' layers through proximity effect. Vve assume no intrinsic superconductivity 

in S layers so that the order parameter in these layers is solely due to the prox­

imity effect of S layers below Tr;. The experimental results of Kleiner Et al. [75] 

points to an S - S' structure for YBCO with different order parameters for the 

Sand S' layers. These observations necessitates the modification of the usual LD 

formalism including the inequivalence of the layers to obtain a realistic picture of 

cuprate superconductors. Hence we introduce two order parameters: i:f~ for the 

multiple CU02 S-sheets and 'I/J>:,l for the weakly superconducting S'-Iayers in the 

nth unit cell as was done by Bulaevskii and Vagner [143]. Here p=(x,y) and z is the 

axis perpendicular to the layers. In the case of YBa2Cu307 we have to take into 

account the anisotropy of the effectiYe mass due to the chain structure assuming 

my» m,z. The expression for Gibb!s free energy can be written as, 

G = '" J [a 1 ~I,(P) 12 + b1 1 ?:,'...P) 14 +~ 1 (VII - 2ie A )~I'(p) 12 
~ 1 'l-"1,n 2 Yl,n 2m fie p,n 'l-"1,n 

n " 

+ a I·"(p) 12 + b2 I.J,(p) j4 + h
2 

" ~ 1 (~ _ 2ie A )nJ.(p) 12 
2 'l-"2,n 2'1-"2,n 2 L..J m' 8l he I,n 'l-"2,n 

l=z,y I 

+ t I ~I,(P) - vf) eix .. 12 +t 1 .J,(p) - ./,(P) e-ix.. 12] dp 
'l-'l,n ' _.n 'l-"l,n 'l-"2,n+l 

J h2 H.h If2] + [- - - + - dpdz. 
81T 41T 411' 

(2.16) 

where Xn = 2;: A&,n and d is the separaation between the inequivalent layers. 

The modified LD model described by the free energy expression (2.16) is used 

in the following chapters to study the temperature dependence of the critical mag­

netic fields and the fluctuation effects of cuprate superconductors wi~h special 
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dcu-Cu dcu-M ~c 
Compound 
La2-x Srx CU04 6.6 7 - 13 

YBa2 CU3 0 7 8.2 4.1 4.8 - 7.0 

Bi2 Sr2 Ca CU2 08 12.1 4.4 4.0 

Bi2 Sr2 CU06 12.3 4.5 

Table 2.2 Interlayer separations and coherence lengths in AD for a number of 
high temperature superconductors 



Figure 2.1 Crystal structure of La2Cu04) the parent material for hole supercon­

ductors. 
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Figure 2,2 Schematic phase diagram for RBa2Cu3 06+11J as a function of oxygen 

concentration x on the chain sites, The paramagnetic (F) and antiferromag­

netic (AF) phases are shown, as well as an anti ferromagnetic phase found 

at lower temperatures (AFc), where the spins on the Cu chains order [144], 
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d 
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Figure 2.4 Superconducting and non-superconducting planes in YBaCuO. Shaded 

area represents CU02 double layers and dotted lines the CuO chain layers. 

The relationship between the order parameter on the SC layer and that on 

the NSC layer induced by the proximity effect is schematically indicated. 

55 



CHAPTER III 

TEMPERATURE DEPENDENCE OF CRITICAL MAGNETIC 

FIELDS 

3.1 Introduction 

The metallic nature of the CuO chains and the importance of the chain-plane 

interactions on the superconducting behaviour of YBazCu30r has been established 

in section 2.6. It is then natW'al to model a cuprate superconductor as a superlat­

tiee of 2D conducting sheets with N CuOz planes and M metallic planes per unit 

cell with Josephson coupling which occurs through a proximity effect, experimen­

tal evidence for which is available for Bi 2:2:1:2 [74]. Pathbreaking experiments by 

Kleiner et ai. [75] on the intrinsic Josephson effects on single crystals of YECO, 

BSCCO and TBCCO strongly support a model of cuprate superconductors as a 

stack of super conducting sheets (8) consisting ofCu02layers (CU02 bilayers in the 

case of YBCO) separated by weakly superconducting (S') metallic layers (chain 

layers in YBCO). According to Kleiner et ai. superconducting S sheets induce 

a finite order parameter in the 8' sheets which have no intrinsic superconductiv­

ity through a proximity effect and their experimental results support an 8 - S' 

structure for YECO with different order parameters for the 8 and S' sheets. The 

modified LD free energy functional (2.16) written on the lines suggested earlier 

by Bulaevskii and Vagner [143] describes this scenario fully. Other authors [145] 

have also considered the proximity effect between the planes and the chain layers, 

but introduced two coupling coefficients, one betweeen the multiple 01102 planes 
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and another between the planes and the chain layers. However experi:nents by 

Kleiner et al. [75] clearly show that the multiple CU02 layers can be equated to 

single superconducting sheet and that it is not necessary to consider two coupling 

coefficients and instead it is sufficient to consider the S - g coupling ari~g due to 

proximity effect. It was shown in section 2.6 that the modified LD model (2.16) is 

applicable to bismuth and thallium based compounds also with the metallic BiO 

and TIO layers in these compounds playing the role of the chain layer ir:. YBCG. 

DC-magnetization measurements on single crystals of YBa2Cu307 [76] of the 

upper critical field has established the positive curvature of Hm near Te fo:, all field 

orientations. Such curvature has also been observed in low-Te layered npercon­

ductors [77]. At lower temperatures Hc2 (7) becomes a straight line with negative 

slope intercepting the T-axis at about 1K below Te [76]. The GinzbU!'g-Landau 

(GL) theory predicts linear temperature dependence for He2 for aU fielC. orienta­

tions near Te. The Lawerence-Doniach (LD) model of ide~tical Josephso= coupled 

layers [5], on the other hand, predicts a positive curvature near Tc for t~e upper 
II r, 

critical field parallel to the layers (He2 (7)). But in this model H~(T) dh-erges at 

low temperatures. The positive curvature of H~('I) however is not exp:ained in 

this modeL 

In this chapter the modified LD model described by the free energy (2.16) is 

employed to study the temperature dependence of the upper and lowe:- critical 

magnetic fields both parallel and perpendicular to the layers. In section 3.2 an 

effective free energy functional is obtained which is a modification of (2_16) with 

the help of newly defined parameters and rescaled order parameters. Tnis func-

tional (3.10) is used to obtain the temperature dependence of the UppE:::' critical 

field perpendicular to the layers. The results obtained therein are compc.red with 
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model for superconductors with inequivalent conducting layers is also discussed in 

this section. Temperature dependence of upper critical field parallel to the layers 

is considered in section 3.4. An attempt is made in section 3.5 to explain the 

anomalous upturn obtained by some authors in the temperature dependence of 

3.2 Upper critical field perpendicular to the layers 

The discretized magnetic field Hn on each layer is generally defined as 

H =" (8Ayn _ 8Axn ) ,,(BAm _ DA) "(DA _ 8Azn ) 
n Z 8x By + X By yn + Y xn 8x (3.1) 

Din is the discretized derivative RCroSS the layers and Din = (1n+1 - jr;)/dn,n+l 

where dn,n+l is the distance between the nth and (n + l)th layers. Hn is b.variant 

under the discrete gauge transformation 

where Xn(x, y) is an arbitrary function ofx and y. We also have 'l/Jn ----1 'l/Jn exp( - 2i2") 

under the gauge tra.nsformation. Near Hc2 the order parameters will haw small 

values and hence the quartic terms in (2.16) can be neglected. Also h=H and the 

free energy expression becomes, 

~ f [ 1 (P) 2 h
2 

1 ( 2ie ) (p) 12 G = ~ al 'l/Jl,n I + 2mll VII - he Ap,n 'l/;I,n 

(P) 2 ",2 ~ 1 {) 2ie ) (p) 12 
+ a2 I 'l/J2.n I +2 L m' 1(8£ - he Al,n 'l/J2.n 

l=x.!J t 

+ t 1 nl,(P) - nl.(P) eiXn 12 +t 1 nl.(P) - 'I/J(p) e-i}Cn 12] dp. (3.2) 'f'1,n 'f'2,n 'f'l,n 2,n+l 
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We shall assume the magnetic field on each layer as 

Hn = H( ~ cos () + !i sin I) cos rP + Y sin 0 sin rP ). (3.3) 

Then the vector potential 

" y cos () " x cos ()" .. . 
An=H[-x 2 +y 2 +z(-xsml)sm(,b+ysm8cos(,b)] (3.4) 

and 

Xn = 2Kdsin 8 (-x sin ¢ + ycoscjJ) 

where K = eH/lic. \Vhen the magnetic field is applied perpendicular to the layers, 

() = 0, 

" Hn =Hz, 

and Xn = O. The free energy (3.2) is minimized with respect to the variations in 

'1M nand 1/)2 n and the real and imaginary parts of the resulting LD equations are , , 

separately equated to zero to obtain the following equations. 

li2 Ef2 j.(p) Ef2 I (p) 
a ~/.(P) _ - [~ + 1p1,n _ ](2 (xZ + y2)~/.(P) ] 

1 'l-'l,n 2ml 8x2 8y2 'l-'l.n 

+ t[2~/'(p) - ~/.(P) - .I.(P) ] = 0 
'l-'1,n '>"2,n '1-'2, .. +1 (3.5a) 

D¢I.n fTt/;1.n y--=x--ax &y 

f: 2 f'fJ.,I.(P) liZ r.:f) I (p) 1;.2 T/2 2 2 
a1 nl,(P) _ _ IL_ ~ __ . _ IT'l/JZ,n _ _ '~_.l\._ -(~ + --.L) ."2(P) 

'f2,n 2 a 2 2 a 2 2 '>" ,n 
m'2z x m2z Y m211 m2z 

+ t [2 nl.(p) - n',cp) - 11,(p) ] = 0 
'l-'2,n 'l-'l.n 'f" l,n-l (3.5b) 

and 
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ml = mil We sum equations (3.5) over all n, defining 'ljJj = E 'lj)j,'n/v7.V for j = 1,2 
n 

where N is the number of layers considered. The equations for 1/Jl and (;2 which 

have the form 

(3.6a) 

Reconstructing an effective free energy functional from equations (3.6a) and (3.6b), 

we get, 

Let us put x=y=O and T = Te in equations (3.6). Near Te) 7./Jl and~'2 will be 

very small and hence the spatial variations of these functions can be neglected. 

Therefore we get, 

(3.8a) 

and 

(3.8b) 

Equations (3.8) have nontrivial solutions only when 

4t2 

al(Tc ) + 2t - 2 = a 
a2 + t 

(3.9a) 

Let us assume al(7) = D:l(T-To)/Tc and az(7) = Oz where To is some phenomeno-

logical temperature and a} and az are positive constants. Here it is assumed that 
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the temperature dependence appears only in the coefficient associated with the 

CU02 planes. From (3.9a), we obtain the relation 

The free energy functional (3.7) may be written in terms of 

4t2 
A = --;-------;-

G:l(G:2 + 2t) 

f? = A
2

1l.2G:l 
a; 8m2zt2 

e = ",2 
2mlG:l 

£2 = A
2

Tt
2
G:l. 

1/ 8m2yt2 

(3.9b) 

and the rescaled order parameters '#t = cxl'l/h and 'I/J; = ¥'l/J2. After dropping the 

primes for convenience the effective free energy can be written as 

Gell = J [( T - 1) 1 '¢1 12 +e (I O'I/Jl 12 + 1 fh/JI 12) + e 1\"2 (X2 + 11) 1 '¢I [2 
~ ax ~ 

+ £; I : [2 +£~ 1 :2 12 +1\~ (£;X2 + £;11) 1 ~'2 12 

+ A I '¢1 - '1/)2 12] dx dy (3.10) 

The equations that minimize GeJJ are 

(3.lla) 

and 

2 fPlj;2 2 ff2lj;2 ~( 2 2 2 • .2) Al 1 
fa; &2 + fy 8y2 = K lyx + f:;r;Y '¢2 + 1/J2 - '1j;1 . (3.11b) 

The solutions to eqns.(3.lla) and (3.llb) in the limit A --t 0 and T -- Tc can be 

written as 
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and 

(3.12) 

where 'Y = ~. Substituting (3.12) back into (3.11), we get, 

(: - 1 + .\ + 2Ke)1P1O - .\1P20 = 0 
c 

(3.13) 

and 

(3.14) 

where £2 = £,,;i.y' Equations (3.13) and (3.14) have nontrivial solutions only if 

T 2 .\2 

1 - Tc =). + 2Kf., - (2Kf2 + ).) (3.15) 

Equation(3.15) determines the temperature dependence of H~. As 

H ---+ 00, 

At large H-values, H~(1)becomes a straight line which cuts the T-axis at T = 

Te(l - )..). In SI units H~(7) can be written as 

(3.16) 

Comparing this with the linear fit for critical field data on single crystal YBa2Cu307 

for fields perpendicular to the layers given in ref.[76] 

H~ = 173.1689 - 1.8919T 

we obtain ~ = 13.725Ao and .\ = 0.0098. For small values of H , 

dH 1 nc 1 

dT Tc 2eL2 

where L2 = e + [2. Low field critical field data on YBa2Cu307 single crystals [78] 

yields dff. = 80G / K. This is smaller than the critical field slope observed at higher 
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fields by a factor of 100. From the expression for ~~ we get l = 210.5Ao. The 

curvature 
1 nc 
R - 2e >''P:.L4[1 + h'lCJ. L-4] 

c 4e21~ 

is positive. Experimental data on single crystal YBazCu307 [76,78] shm .... that the 

curvature is present for H-values upto 18G, depends on the mass anisotropy in the 

CuO chain layers and is enhanced by it. 

Reliable Hcz data is also available for the La1.87Ca1.13CUZ06 [79] for which the 

double CU02 planes in the crystallographic unit cell constitutes the S layer and 

the double metallic LaO planes form the 8' layer. Our calculations b~ed on the 

experimental data in ref.[79] give>. = 0.1694, e = 30.1.1\ and f = 233..4. for this 

compound. This value of e compares favourably with the experimental va.lue of 

33.1\. The fairly strong coupling coefficient obtained from the calculations agrees 

with the rather small anisotropy of the coherence length which implies a fairly 

isotropic electronic structure for the compound inspite of its quasi two dimensional 

crystal structure. 

From equation (3.14), 

As 

'l/J20 >. 
'l/JI0 = ). + 2Kf2 ' 

H~O, 'l/J20 ~ 1. 
'l/J1O 

(3.17) 

But as H increases t ~ 0 (see Fig.3.1). Therefore the linear region of H~(7)is 

precisely the region where the order parameter becomes zero on the S' layers. 

The temperature dependence of H~ can also be obtained by a variational 
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method. We try the solution 

and 

(3.18) 

where b and I are variational parameters. We now make use of the fact that GeJ! 

given by (3.10) should vanish at the transition from the superconducting to the 

normal state. Substituting equation (3.18) in (3.10), performing the integration 

with the help of standard integrals [100] and setting Gell = 0, we get 

(3.19) 

where 91 = Y + ~l. I\.faximizing Tc(ll) given by equation (3.19) with respect to b, 

we obtain 
T A2 

1 - Tc = A + 2eg1 - [(l; + l~)gl + A] 

Since A is small, Tc(H) can be maximized with respect to 'Y neglecting the term in 

A2. Then we get I = ~ and 

(3.20) 

Equation (3.20) is similar to equation (3.15) and validates all the features of the 

H~(T) discussed earlier. In the case of thallium and bismuth based compounds 

and the 214 compound S'layers are square planar. Therefore fa; = £y and equations 

(3.15) and (3.20) are identical. In the LD case of identical superconducting planes, 

'l/J2 = O. If we set A = 0, 
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The temperature dependence of the upper critical field in this case is obtained 

from equation (3.13) as 

1-; = 2J(e. 
c 

For small A, the correction to Hcz can be obtained by evaluating Gell ,vith the 

above unperturbed functional forms for '¢l and '¢2 and equating the result to 

zero. This yields 

(3.21) 

When H=O, T i- T~ and hence this result is not valid near Te. However it agrees 

with the large H-limit of equaton (3.15). The situation here is identical to the LD 

model with equidistant identical 5uperconducting layers. 

Another possible model for YBazOu307 with inequivalent conducting layers 

11501 is obtained by ignoring the proximity effect and the contribution of the 

5' layers and considering the two C'llD2 layers in the elementary cell separately 

[Fig.3.5]. The distance bet\veen the GU02 layers in the same elementary cell is 

d1 = 3 .3A 0 and that between layers in the neighbouring cel1s is d2 = 8AA o• This 

entails the introduction of two different coupling coefficients t1 and t2 and two 

different order parameters 1/;} and 1/;2 to represent the inequivalently placed CU02 

layers .. The Gibb's free energy for this model is 

G = dE J [a(l 'ljJl,n 12 + 1 '¢2,n 12) + ~(I7/h,n 14 + 1 '¢2,n 14) 
n 

fj,2 2ie 2 fj,2 2ie ., 
+ 2m 1 (VII - fj,e A 11 )'1/J1,n 1 + 2m 1 (VII - lie A II )'¢2,n 1-

+ t1 1 '¢1,n - 'l/J2,ne- i ?tfAm 12 +t2 1 'l/J1,n - 7/)2,n_1e-i~Am 12- dp 

J h2 h.H :w 
+ (81r - 41r + 41r]dp dz. (3.22) 

where d = d1 + d2! al = a2 = a, and m2x = m2y = ml = m. Proceeding as before, 
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we find: 

(3.23) 

The H-}j(1) graph is a straight line which cuts the T-axis at T = Tc and there is 

no curvature for low values of H. Comparison of the results (3.21) and (3.23) show 

conclusively that the positive curvature which is a generic property of high-Tc su-

perconductors can be explained only if the contribution from the S' layers which 

are structurally different from the S layers are also included in the free energy ex-

pression. The inequivalency of the CuOz layers as described by (3.22) alone does 

not suffice to explain the positive curvature of Hc2 .1 (1). 

3.3 Angular dependence of Hc2 

When the magnetic field is applied in the x-z plane, cp = 0, 

Hn = H(zcos8+~sin8) 

and 

An = yH(~ sin 8 - ~ cos 8). 

In this case the order parameters have no explicit x-dependence and proceeding 

as in section 3.2, we get 

Gel! = J[(~ -1) I'l/Jl 12 +e 1 :112 +4e](lcos2 8lf I'l/Jl 12 +e~ I ~212 

+ 4](lC;lf cos2 0 17fJ212 +~ I'l/Jl -'l/J2exp(i2KdysinB) 12 

+ ~ 1 'l/Jl - 'l/J2exP( -i2Kdy sin B) 12] dy (3.10a) 
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Using trial solutions 

and (3.18a) 

Gel! is evaluated with the help of standard integrals [100] and it is set equal to 

zero at the transition from the superconducting to the normal state i. e. when 

H = Hc2 • In the resulting expression Tc(H) is maximized with respect to band 

we get 

(3.24) 

where 92 = / + ](2~0I,1.&. In the general case maximization of this expression 

with respect to / can be done only numerically. However for large fietds when 

(£;/ + l; ]('l~0II20) > )" the last term in ),2 becomes negligible and / = K cos 8. In 

the large H limit, the temperature and angular dependence of Ha is giwn by 

T 2 ),2 Klfl sin2 0 
1- T = A+2K~ cos()- (£2 £2)K Oexp(- ()). 

c x + II cos COS 
(3.25) 

For () = 0 equation (3.25) reduces to equation (3.20). In the opposite limit, when 

). > (£~'Y + £;~) the exponential in equation (3.24) is expanded to the first order 

in the argument and then maximized with respect to / to obtain 

ell 1 
/ = he (cos2 £1 + e: sin2 

(1)Z (3.26) 

\vhere c = Ad2/~2. In this limit, the temperature and angular dependence of Hc2 

is obtained as 

(3.27) 
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Equation (3.27) is the B-dependence obtained from the GL anisotropic theory 

and was experimentally verified in ref.180]. 

3.4 Upper critical field parallel to the layers 

Our results (3.25) and (3.27) cannot be relied upon for () = 90° since in this 

case the order parameters are oscillatory Mathieu functions as we will see later in 

this section. Setting (J = 90°, equation (3.27) yields 

which represents a straight line with negative slope passing through T = Te. \Ve 

can also calculate the temperature dependence of #1 by the variational !!1ethod. 

Gel! given by (3.10a) is evaluated after setting 19 = 90°, using the ansatz (3.18a) 

and is set equal to zero. This gives us Te(H) as a function of variational ;>arame­

ters. The maximization of Te(H) with respect to b can be done analytica..Ly where 

as the same with respect to I can be done only in certain limiting cases. In the 

limit ). > C~/ 

(3.28) 

whereL; = (e + l;)/)". At large values of H, H~2(1) is a straight line ",-hieh on 

extrapolation cuts the T-axis at T = TeO - 2>..). It is interesting to cor:z.ider the 

case when '1/;2 = a and only identical equispaced double CU02 planes are consid-
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ered. The situation is identical to the LD formalism. In this case To = Te. The 

free energy expression for determining H~2 in this case becomes 

¢n(Y) = 'I/J(y)exp( -ikn). Differentiating Fs with respect to 'I/J- we obtain the 

Mathieu equation 

'liZ ff2l/J [ 2edH ] --- +2t'I/J 1- cos--y = -a'ljJ. 
2mll ay2 he 

(3.29) 

If E(H) is the lowest eigen value of this equation, then transition to the normal 

state occurs when E(H) ~I a I. For small values of H the cosine term is expanded 

to the first order in the argwnent. \Ve obtain the Schroedinger equatio!1 for the 

harmonic oscillator solving which 

(3.30) 

At large H, E(H) ~I a I> t. For t<E<2t equation (3.29) can be solved to obtain 

(3.31) 

where T = Tc(1 - 2'x). \Vhen 1 a I> 2t, E(H) is always smaller than 1 a I and 

H~ becomes infinite. Thus H~2(1) exhibits positive curvature even if we consider 

a system of identical layers. This shows that while inclusion in the free energy of 

the contributions from the non superconducting layer.s -arising from the proximity 

effect is essential for explaining the postive curvature of Htz(7), the LD model 

with its equidistant identical superconducting layers can also explain the positive 

curvature of H'b(1). 
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The preceding procedure can be extended to La2-xSrxCu04 superconductor 

with 1/J) and 1/J2 representing the C11.o2 mono layers and LaO bilaycrs respectively 

and also to the thallium and bismuth based superconductors. Figure 3.3 is a 

graphical representation of equations (3.20) and (3.28) for }'Bu2CU307 compound 

whereas figure 3.4 is the same for La1.87Ca1.13Cu206 superconductor. Equation 

3.5 Lower Critical Field 

In this section the temperature dependence of the lower critical field :s studied 

using the high field approximation employed in refs.[99,146J in the case of super· 

conducting intercalated layered compounds. The quartic terms in equa~~on (2.16) 

are retained while evaluating He!' For magnetic fields parallel to the layers 

A A 
Hn = Hx and An = Hyz. 

In the region close to Tc, ~~.~ ~ 1 (section 3.3) and Hcl has the usual isotropic 

GL form for a continuous medium [146]. H~l = :J21nK where He = f¥ I a I and 

KV2 = 4~d (:~~:) ~. Hence 

~.l! (To - T)! 
11~1 ex: T. . 

c 
(3.32) 

~ could be different from that given by equation (3.9b) as the quartic terms were 

not considered in deriving the same. 

In the low temperature region characterilled by two dimensional behaviour, 

t «I a I and the Josephson coupling term can be treated as a perturbation. For 

t = 0, the minimum of G is obtained for h = H, 1/J)1I =1 1/J1O I exp(i~~Hnyd), 

'l/J2n =1 1/)20 1 exp(i !:Hnyd) with 1 1/Jl0 12= -aI/b) and 1 'Ij;20 12= -a"l/b2 • By 
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substituting these unperturbed values into (2.16), the free energy per unit volume 

is obtained as 

lf2 1 at 12 1 a2 12 
g=-------

8" 2b1 2b2 • 

Introducing the perturbation term, 

(3.33) 

In the Meissner state where h = 0 and A.:z; = Ay = A,z = 0 the free energy density 

(3.34) 

Comparing equations (3.33) and (3.34) we get 

(3.35) 

From equations (3.32) and (3.35) we see that the temperature dependence of H~l (,-) 

changes from -r linear near Tc to -rt at low temperatures. Fitting equation (3.30) 

to the low temperature data in ref.!81J, we get H~l at T=10K to be 49.1mT 

which is comparable to the experimental value of 56mT. \Ve obtain H~l (0) = 

54.13mT where as a parabolic fit attempted in ref. [81] gives 60mT. Figure (3.4) 

shows the tempera.ture va.riation of Hc1 according to equations (3.32) and (3.34) for 

YBa2Cu307. The figure shows the anomalous upturn at low temperatures observed 

by several authors in the nJ2(-r) graph of copper oxide superconductors[81,84]. 

H~ can be evaluated by a similar procedure by setting 

J\ 

Hn = Hz, 

K( 2 .,) 'l/Jl = 'l/JI0 exp-"2 X + y- • 

h = h(O) exp - (~) 

H A A 

An = "2( -yx +X y), 

K( 2 2) 'l/J2 = 'l/J20 exp-"2 X + y , 

and Jh dp = <1>0. 
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). is the penetration depth and <1>0 = 2 X 10-7 gauss - cm2 is the superconducting 

flux quantum. We now obtain 

(3.36) 

For copper oxide superconductors it has been shown experimentally by several 

authors [82) that the BCS clean limit approximation holds for the temperature 

dependence of the inplane London penetration depth near Tc so that 

1 1 T 
).2 (7) = ).2 (0) (1 - T. ). 

ab ab c 

Thus H-J has a 'i-linear behayiour near T~. Experimental data of ref.[83] point to 

a linear T-dependence for both Aab(7) and Ac(T) below 25K for Bi2Sr2CU'208+Y. If 

this behaviour is general to other copper oxide superconductors also, the change 

over from 'i-linear dependence near Tc to 'i-2 dependence for the low temperature 

regime as given by equation (3.36) explains the upturn in H~l (7) graph at 1m .... 

temperatures observed by several authors [81,84]. 

For applied field in the x-z plane, 

(3.37) 

where € is an anisotropy parameter[7]. \Vhen () = 0 equation (3.37) reduces to 

(3.36). 
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3.6 Conclusion 

We have theoretically studied the temperature dependence of the critical mag­

netic fields of YBa2Cu307 superconductor by employing the free energy functional 

(2.16). For temperatures close to Tel H~(T) has a positive curvature and becomes 

a straight line with negative slope at large H values The theoretical expression 

(3.16) was fitted to the experimental data for YBa2CUj07 and La1.87Ca1.13CU204' 

The values of the parameter ~ obtained in these two cases agree with the respective 

experimental values. HJ2(T) also exhibits positive curvature. Our treatment shows 

that the curvature depends not only on the inequivalency of the order parameters 

but also on the mass anisotropy of the CuO chain layers. Comparisons of models 

(2.16) and (3.22) show conclusively that the non-zero value of the order parameter 

on the NSC layers which are structurally different from the SC layers is essential to 

explain the positive curvature of H~(1) where as the positive curvature of H~2(T) 

can be explained even on the standard LD model. This is also borne out by the 

calculations in ref.[145] where the authors obtain a positive curvature for H~ con­

sidering the proximity effect between the CU02 planes and the CuD chain layers 

and by introducing two different coupling coefficients. The large H-limit of Hc2 

given by (3.16) and the parameters deduced therein are exactly identical to those 

of ref. [145] which is nothing but the expression (3.21) obtained for the LD model. 

However the experiments of Kleiner et aZ. substantiates the simpler model that 

we have considered in arriving at the results (3.15), (3.16), (3.20), (3.25), (3.26) 

and (3.28). 

Calculations carried out in section 3.5 shows that the temperature dependence 

of H~l (1) changes from a T-linear dependence given by equation (3.32) near Tc 
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to a rt dependence given by equation (3.35) further away from Te. A fit of the 

experimental data of ref.18I] for }'Ba2CU30r according to equations (3.32) and 

(3.35) is shown in Fig.{3.4). The Hd(T) graph shows a positive curvature. The 

estimated value for .H~l(O) is 54.I3mT which compares favourably with the value 

of 60mT obtained from a parabolic fit attempted in ref.ISIJ. Equation (3.36) gives 

the temperature dependence of Hci (T). The different temperature dependence 

of Aab experimentally observed by several authors [82,S3] near Te and at lower 

temperatures when substituted in equation (3.36) gives an upturn in the H~ (T) 

graph at low temperatures which has been observed experimentally [8I~84] for 

copper oxide superconductors. 
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CHAPTER IV 

FLUCTUATION SPECIFIC HEAT 

4.1 Introduction 

Superconducting fluctuations have lately been a subject of considerable study. 

There are several reports of observation of superconducting fiuctuatio:.s in the 

copper oxide materials. These fluctuations have been reported in spec~fic heat 

185], electrical conductivity 186] and magnetic susceptibility 187]. 

Thermodynamic fluctuations alter the properties of superconducting :naterials 

in the vicinity of the superconducting phase transition. Above Tel flt.:.c~uations 

towards the superconducting state lead to the appearance of excess conductiv­

ity, specific heat, diamagnetism and tunneling currents. Below Te, flt.:.ctuations 

towards the normal state lead to the appearance of resistance in thin wires and 

the break down of fluxoid quantization in small rings. The relevent length scale 

over which individual fluctuations are important is the GL coherence leng:h which 

determines the dimensionality of a given sample geometry. Because the c::'aracter­

istic coherence length in conventional superconductors is quite long, th~e effects 

are in general small. But they can be measured experimentally in superco:J.ducting 

samples of reduced dimensionality such as thin fil~hisker crystals and pow­

ders, because the thermal energy kBT leads to larger effects in smaller fi·~ctuation 

volumes. Thus thermal fluctuation effects in high temperature superco:J.ductors 

are much more pronounced than in com-entional superconductors because of their 
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very small correlation lengths, high transition temperatures and layered structures 

which effectively reduce the dimensionality. 

The Ginzburg criterion defines the region of critical fluctuations. The critical 

region can be estimated from the specific heat jump f::J.C [88]. The critical region 

lies within 7'G, where 

TG 1 kB 2 

1 7'c 1=1 Tc - 1 1= 327r2 (f::J.C~(0)3) 

For high-Tc superconductors, 6C values from ref. [85] gives 7'G ,...., 10-3
• Thus critical 

fluctuations are absent outside of a O.lK region above Tc in a 90K superconductor. 

This result is also obtained from magnetic field effects 189] using the e>--pression 

These estimates imply that as long as 1 7' I~ 10-3 critical fluctuations should 

not be important and it should be sufficient to consider Gaussian fluctuations or 

fluctuations of the mean field type. 

Besides being strongly type II superconductors with extremely small coher-

ence lengths the high-Tc materials possess layered structures. Since the highly 

anisotropic transport properties suggest that high-Tc; superconductivity may be 

driven by coupling within the planes and since fluctuation effects are expected to 

be more pronounced in lower dimensions it is sensible to explore the dimensionality 

of these fluctuations in such layered superconductors. The fact that the transverse 

coherence length ~c(O) in these materials is smaller than the interplane distance d 

brings about a cross-over between a three dimensional (3D) regime near Tc and a 

two dimensional (2D) regime for 1 T'ir I> r = 2{~O)2. The cross-over temperature 

T defined by 1 Tc:;;,T 1= r has a simple physical meaning: at T = T the temperature 
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dependent coherence length €c(1) = €C(O)(T:':T)! becomes equal to the interplane 

distance d. The LD model predicts such a cross-over between the two regimes. 

In addition to the intrinsic interest aroU5ed by observing and understanding 

such fluctuation effects, the study of fluctuation effects has given important insights 

into the domains of validity of various theoretical approaches. In many ca.ses 

the measurement of fluctuation effects has spurred the development and use of 

state-of-the-art experimental techniques, particularly SQUID magnetometers and 

voltmeters. 

In this and the following chapters the fluctuation contribution to specific heat, 

conductivity and diamagnetism for copper oxide superconductors is studied based 

on the free energy functional (2.16) and the dimensional cross over (DCR) be­

haviour in the fluctuation regime is also examined in these materials. 

4.2. Fluctuation specific heat (FSH) 

The specific heat measurements in YBa2Cu307 both with and ",ithout the 

presence of a magnetic field are rather interesting since historically fluctuations in 

the specific heat have been the most difficult to observe. A convenient theoretical 

foundation for understanding the basic phenomena of thermodynamic fluctuations 

near the superconducting phase transition is provided by the GL theory by virtue 

of its relatively simple mechanics and rich phenomenological insight. 

The superconducting contribution to the specific heat of zero dimensional (OD) 

particles (the radius R is small compared to the magnetic penetration depth A as 

well as the coherence length e) was calculated by Shmidt [90] using the thermo-
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dynamic relation 
T[)2 

Gv = -VEfP (F) 

where (F) is the weighted average of the free energy F = (a 1 'I/J 12 +~ 1 'I/J 14)V 

over all values of the order parameter and V is the volwne of the sample. For 

fluctuations effects above Te , 1 'I/J 12 is small except in the narrow critical region 

near Te. This smallness of I '¢ 12 allows us to drop the quartic term in the free 

energy expression. The fluctuations in small particles round off the behaviour 

expected from mean-field theory. The zero dimensional results have not been 

subjected to experimental test, because of the practical difficulties of achieving 

thermal equilibrium among a sufficient number of isolated small particles. 

The result for bulk material is given by 

(4.1) 

where additional terms have been included in the total free energy to represent the 

spatial variation of the order parameter. In typical conventional clean supercon-

ductors this would become compa.ra.ble with the mean field jump in the specific 

heat at Tc only for T ~ 10-11
• Even in very dirty materials with small ~(O) it should 

be unobservable. Cochran [91] has confirmed the absence of a T-! contribution in 

conventional bulk superconducting materials within the measurement precision. 

Expression (4.1) was also calculated from microscopic theory by Thouless [92] and 

Aslamazov and Larkin [93]. 

For two dimensional thin films of thickness d, Ferrel [94] has shown that ex­

pression (4.1) is enhanced by a factor e(7)/4d so that 

(4.2) 

Zally and Mochel [95] have been able to measure the heat capacity of individual 
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amorphous Bi-Sb alloy films using AC calorimetry techniques. The results for 

their films show good agreement with 7"-1 dependence outside the critical region. 

However the magnitude of the fluctuation heat capacity observed is several times 

larger than that expected from the Aslamazov and Larkin calculation. 

Gunther and Gruenberg [96] and Grossmann et ai. [97] attempted to extend 

the theory into the critical region where the quartic term in the GL free energy 

becomes important in limiting the magnitude of the fluctuations. Other attempts 

to include the quartic term in various approximations [98] have all predicted a 

peak in the specific heat not observed experimentally. 

The superconducting layered compounds with Josephson coupling of layers are 

described by the LD model and are intermediate between 3D and 2D systems 

and represent the two limits at r = ~~O) ~ 1 and r « 1. We obtain cross-over 

from 2D fluctuations to 3D fluctuations in systems with r « 1 as we go down 

in temperature from 7" =1 Tc - T 1 /Tc » r to 7" « r [99]. Such cross-over in 

Gaussian fluctuations is calculated as follows. First the free energy of the system 

taking into account the superconducting fluctuations is obtained by calculating the 

contribution of all the states described by order parameter 'lfJn(P) with statistical 

weights determined by the LD free energy functional (2.10). 

In the region of Gaussian fluctuations we take into account the quadratic terms 

only assuming that fluctuations are weak and 'lj.Jn(P) small. Omitting terms of the 

fourth order in '1fJn(P) we get a functional which can be diagonalized by use of the 

Fourier representation for order prarneter 'l/JK. Then taking 'l/JK = VlK + i1jlK and 
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performing the inegration over the real and imaginary parts of'if;K we get 

The specific heat due to the superconducting fluctuations is given by 

-
47re~(O)dJr2 + 2rT 

At T « r, Cf{T) = [87rerr{O)ez{O)]-lT-L In this temperature region fi:.:.ctuation 

specific heat varies as T-~ which is characteristic of 3D fluctuation rei;.ille. For 

T» r, Gf(T) = [47rJ.err{O)]-lT-1 • The T-1 dependence of eft for large ,('Jues of i' 

characterises a 2D fluctuation regime. 

4.3 FSH of copper oxide superconductors 

As seen in chapter 3, the modified LD model proposed in section 2.6 provides 

an adequate description of the superconducting properties of the layered. high-Te 

copper oxide superconductors. Hence in this section the fluctuation contribution 

to the specific heat is discussed within the framework of the modified LD model 

described by the free energy (2.16). 

If we consider mean field or Gaussian fluctuations above Tel the smallness of 
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I 'ifJ 12 allows us to drop the quartic terms in the free energy expression. In the zero 

field case A = 0 and equation (2.16) becomes 

F = "'/ [a I·f,(p) 12 +~ 1 \711· f,(P) 12 +a 1 "f'(P) 12 +h2 '" ~ 1 a .f,(P) 12 
B L.J 1 'f'l,n 2m 'f'l,n 2 'f'2,n 2 ~ m' O-~II 'f'2,n 

n II 1=,11 l {. 

+ t 1 .f,CP) - 1jJ(p) e'Xn 12 +t I .f,(P) _ .f,(P) e-tXn 12 + hn 21 dp. 
'f'l.n 2.n f 'f'l.n 'f'2.n+ 1 8 I 

T,-
(4.3) 

We set 

.,pj,n+l = .,pj,nexp( ikd) 

and 

'ljJj,n = L'ljJj,Kexp(iq.p) 
q 

where j = 1,2 and K = K(q, k), q is the inplane wave vector and k is the 

c-axis wave vector. The Fourier transform of equation (4.3) is perfor::::::ed using 

Parseval's identity. The order parameter 1/;2 of the NSC layers arises 6rough a 

I'" 12 proximity effect.Let us therefore put ,,,,1.KKI2 = 82 where 'ifJl,K and '92_K are the 
2. 

Fourier transformed quantities of 1/;l,n and ¢2,n respectively. We now get 

where 

Fa = L [Cl 1 'ifJl.K 12 +C2 1 'ljJ2.K 12 ] 
K 

8 is the angle which the inplane wave vector makes with the x-axis. Following 

Landau and Lifshitz [147), change in the thermodynamic potential can be written 
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as, 

n - no -T In /exp [ -F~(Vh,K' 'l/J2,K)] D'l/Jl,K DVh,K 

- -Tin /exp [- 2:{cll 'l/Jl.K 12 +C21 'l/Jz.K 1
2 }]D'l/Jl.KD'¢2.K. 

K 

Writing 

1P1' K = '1/1" K + i'I/J'~K I J, ], 

and performing the.integration over the real and imaginary parts of 1Pl.K and 1P2,K 

using standard integrals !100], 

(4.5) 

Fluctation specific heat is given by 

In the fluctuation regime we assume the same temperature dependence for a1 and 

a2 and hence al = Q:l(T-T.:) = O:l7Tc and a2 = 0:2(T-Tc) = 0:27Tc. Differentiating 

expression (4.5) twice with respect to T, we get 

Tc ,,[0:21 0:22] 
Gli = -2 L..J -2 + -2 . 

K cl C2 
The sum over K can be converted to a.n integration using the prescription 

(4.6) 

Now we get, 

1 Tc /[0:21 Q22] 
eft = (2'7(-)3 2" e12 + ez2 dqdk. 

The k integration is carried out from 0 to (2'iT / d) and the q integration over the 

entire spectrum using standard integrals [100]. Thus 

Tc [mlla1 OizJm' zm' Y] C fl - -- + -----''----
- 27rn,

2
d Jr- + 4rlr(1 - 8) r+ 2r2 

(4.7) 
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where Tl = t", and T2 = ~ are the Josephson coupling parameters. 
alAe 02.J.c 

In high-Tc superconductors the c-axis coherence length ec(O) is smaller than the 

interplanar distance d. But at temperatures close to Te, ee(1) = ec(O) I TI-! will 

be large enough to justify a 3D Ginzburg-Landau approximation for such super-

conductors. For a system of Josephson coupled identical layers the 3D contill:Ulll 

approximation is replaced by 2D behaviour of the individual layers for ~empera­

ture values I T I> T = 2{~~) where r is the Josephson coupling parameter. This 

brings about a cross over from a 3D regime near Tc to a 2D regime for I T I> r. 

In this context it is interesting to consider the contributions to the fh.:.ctuation 

specific heat in three different temperature regions. In the region cl05€ to Te, 

T2 > Tl (1 - 8) > 7, equation (4.7) becomes 

(4.8) 

From this equation it is clear that C fl varies as T-! which is the charc.cteristic 

behaviour for a 3D fluctuation regime [101]. The 2D fluctuation regime i5 charac­

terized by a ,-1 dependence for CJI. For T2 > ,> Tl(l - 8), we have 

(4.9) 

1 
In this region there is a 2D ("" ,-1) as well as a 3D ("" ,-Z contributio::. to the 

fluctuation specific heat. In fact this is a transitional region where DCR :.s taking 

place. For, > T2 > Tl (1 - 6), equation (4.7) takes the asymptotic form 

(4.10) 

This ,-1 dependence of G/I shows that the fluctuation contribution beco!Iles 2D 

in this temperature region. Thus fluctuation specific heat given by (4.7) exhibits 
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DCR from 3D behaviour near Te to 2D behaviour further from Te. 

4.4 Conclusion 

Equation (4.7) gives the fluctuation contribution to the specific heat for the 

modified Lawrence-Doniach type model of copper oxide superconductors described 

by the free energy functional (2.16). Dimensional cross over in the fluctuation 

regime from 3D for TZ > Tl (1 - 8) > T to 2D for T > T2 > Tl (1 - 8) is obtained as 

seen from equations (4.8), (4.9) and (4.10). These results explain the experimental 

observation of dimensional cross over in the Gaussian fluctuation regime for specific 

heat of YBa2Cu307 superconductor by various authors [110]. The calculations 

point to the existence of a transitional temperature region, instead of a sharp 2D-

3D transition, where the two regimes overlap. Such an overlapping region has also 

been obtained by Ghosh et al. [112] using a different procedure. 
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CHAPTER V 

PARACONDUCTIVITY 

5.1 Introduction 

The first discovered and the most striking aspect of superconductors is their 

infinite DC conductivity below Te. Historically and etymologically conductivity 

phenomena lies at the root of the subject. Therefore it is fitting that the first real 

progress in the study of fluctuation phenomena near the superconducting phase 

transition was made by studying the excess conductivity due to fluctuations above 

Tc , often called paraconductivity in analogy with paramagnetism. 

Let us first consider the excess conductivity attributable to the direct accelera-

tion of the superconducting pairs created by fluctuations above Te. Without such 

fluctuations the normal DC conductivity is given by 

where Ttr is the mean scattering time ofthe normal electrons in transport properties 

and n is their number density per unit volume. By analogy, the superconducting 

fluctuations contribute an additional term 

The density and the life time of the superconducting fluctuation modes are given 

by [104] 
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and 

where TGL is the characteristic relaxation time of the uniform (K=O) mode. The 

sum over K can be converted into an appropriate inegration depending on the 

dimensionality of the sample and the following results are obtained. 

(5.la) 

(5.lb) 

and 

(5.le) 

where the cross sectional area S < < ~2. These results were first derived by Asla-

mazov and Larkin (AL) from microscopic theory [93J and then from GL theory by 

Abrahams and \Voo [102J and Schmid [103]. For samples of intermediate thickness 

results which interpolate between these dimensional forms can be obtained. 

In a 3D bulk sample of conventional superconductors the ratio ~D/(J'n ,....., 

(K}/~(O))-lT-~ is of the order of 1O-7T-~ in clean materials and at most 1O-2T-! 

in extremely dirty materials where the mean free path is comparable with the in-

teratomic spacing [104]. Thus even in the most favourable case ~D is a very small 

fraction of (J' n except for T:::; 10-4 i. e. except within at most a millidegree of Te. 

Gittleman et ai. [105] have observed the T-~ temperature dependence character­

istic of the bulk behaviour with approximately the above coefficient in thick films 

of extremely dirty aluminium. 

For two dimensional thin films, equation (5.lb) predicts a universal dependence 

a'2Dd - G1
, the excess conductance per square which is the quantity most easily 

determined experimentally. Since the magnitude of G1 is sample independent, the 

91 



largest fractional changes are obsreved in very dirty thin samples with low normal 

conductance. Glover [106] observed an excess of conductivity proportional to 7-1 

in amorphous bismuth films and the coefficient of proportionality was in excellent 

agreement with Glover's experimental value. 

However, the predicted universal behaviour does not hold for cleaner films. 

The magnitude of the excess conductivity was observed to be larger than expected 

by upto an order of magnitude and its temperature dependence was anomalous in 

cleaner lead and aluminium films [107]. The origin of this anomalous conductivity 

has come to be understood as an indirect effect of fluctuations on the quasiparticle 

conductivity. The superconducting fluctuations decay into pairs of quasiparticles 

of nearly opposite momenta. By time-reversal symmetry, the quasiparticles re-

main in a state of small total momentum even after scattering from an impurity 

potential and continue to be accelerated much as they were while they were a 

superconducting fluctuation. The quasiparticle life time is limited in several ways 

ultimately including decay back into a superconducting fluctuation. This indirect 

contribution to conductivity known as Maki-Thompson (MT) term was obtained 

as [l08}, 

(5.2a) 

and 

(5.2b) 

where 6 = (T dJ - Tc) /Tc is the reduced shift of Tc due to pair breaking interactions. 

This combined theory (AL and MT) proved to be in good agreement with the 

experimental data for both the two dimensional thin films and one dimensional 

filaments. While the phenomenological GL theory with Gaussian fluctuations 

correctly reproduces the AL contribution to the conductivity it does not explain 
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the MT contribution. 

It is difficult to measure the conductivity of zero-dimensional sub micron parti­

cles. Kirtley et ai. [109] deposited a planar array of such particles by evaporating 

tin in an oxygen atmosphere. Wben the oxide coated particles are just barely 

touching, they observed an onset of extra conductivity above Te which varies as 

,-2 which is the temperature dependence of the AL term for zero dimensional 

particles. The r-1 dependence expected for the MT term has not been observed. 

Near Tc the direct (AL) contribution dominates the indirect (MT) term which 

may be neglected. In the linearized GL theory, the ~L term diverges at Te. To cut 

off the divergence and to obtain a smooth variation of the conductivity through 

the transition, it is necessary to retain the ~ 1 'ljJ 14 non linear term in the free 

energy density. Exact solutions for the conductivity including the non-linear term 

are not known. Therefore several approximations have been considered. 

For superconducting layered compounds with Josephson coupling of the layers, 

the AL contribution to the parallel conductivity within the LD scheme [99] is given 

by 

(5.3) 

The temperature dependence (5.3) of a'CJ.b is similar to that of the fluctuation spe-

cific heat and exhibits DCR from 3D behaviour near Tc to 2D behaviour further 

from Te. 

5.2 Paraconductivity of copper oxide superconductors 

In the recent past several authors have carried out paraconductivity measure-
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ments on single crystals and poly crystalline samples of YBa2Cu307 [86,110] which 

confirm a 2D to 3D cross over beha\'iour above Te. In this section paraconductiv-

ity both parallel and perpendicular to the layers is calculated and the cross over 

behaviour explored within the modified LD scheme described by (2.16). 

In the absence of an electric field, 'IjJ undergoes equilibrium fluctuations and 

the average equilibrium fluctuation is given by [101] 

(5.4) 

where j = 1, 2. In the presence of a weak electric field E, the equilibrium is 

perturbed and 

_ (0) (1) 
1/J)'K -1/J'K + 1/J'K . ), ], 

(5.5) 

According to the Ginzburg-Landau theory [149], the average electric current in 

the zero field case (A = 0) is given by 

• t:. [ 1 (nl.. tI nl. nl. tI .1...) " 1 (.1.. &tP2,n nl. &O;,n) "1 
-~en - ""1,11. V II ""1,11. - ""1,11. " II ""1,n + L ----=-n ""2,11. -aO - ""2,11. ~e 'J 

mil l=1,2 m, {. {.. U 

- E en [(q1 1 7/J1,K 12 +q2 1 'l/J2,K 12)] 
K 

where ql = q/mll and 

(
COS (}" sin (} ") 

q2=q --x+--y 
m l m l 

'" !I 

If we substitute (I '/f\0i< 12) given by (5.4) into this formula, we obtain zero and hence 
" 

in the next approximation we get the fluctuation contribution to the current as 

8'ab = "en "(-1//0) 1jJ(1). + 1jJ(1) 1jJ(0)*) 
3 L L 1,K 1,K 1,K 1,K (5.6) 

K i=l,2 

'ljPK) is determined from the time dependent Ginzburg-Landau equation (TDGL) 
1, 

(5,7) 
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where U is the scalar potential. Since we are interested in the fluctuational cor-

rection to 'Ij; that arises under the action of a constant electric field, it is assumed 

to be small and therefore to the first order the correction will be proportional to 

E. But since E does not depend on time, the correction to 't/J will also be indepen­

dent of time and hence ~ can be neglected. As A = 0, E = - VU. Since E is 

homogenous U = -E.r. With these substitutions equation (5.7) becomes 

(5.8). 

Changing equation (5.8) into momentum representation by the transformation 

r -j. -i ~ ( when the electric field is parallel to the layers i. e. ab planes ) and 

substituting for 8F&/8't/Jj,K from equation (4.4), we get 

and 

'IjJ(1) = r.eaj (E.~ )'IjJ\O) 
],K 2:: Dq },K 

(5.9) 

Substituting (5.9) into (5.6), we get the parallel fiuctuaton current 

6jab = 1ine
2 L L aj~ (E.~) I 't/J\0i< 12 

2 K j=l,2 ~j Dq J, 
(5.10) 

Substituting for 1 't/JJ~k 12 from equation (5.4), 

~. _ 1rfl,
3e2T

c '" '" ajCJ,j (E .) 
VJab - L...J L...J 3 .Qj 

2 K j=l,2 Cj 
(5.11) 

Converting the summation into integration using the prescription (4.6), 

where 
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After performing the k and () integrations as in section 4.3 

and 

where 

and 

II = ~[ cldq 
2dmrr 0 [Acf + 2Bq2 + OJ ~ 

A' = 71,2 
2m" 

71,4 
A= --2' 

4mll 

B' = a2 + 2t, 

li2 

B = fal + 2t(1- 8)]-
2mll 

C = at + 4t2(1 - 28) + 4alt(1 - 8) 

Since we are interested in studying the temperature dependence of paraconductiv-

ity it is convenient to set m~ = m~ = m'. After performing the q-integ:ation, we 

get 

(5.12) 

The modified LD scheme considered here is only adequate to descri'6e the AL 

contribution to the paraconductivity and does not include the anoffic:..lous MT 

contribution which is significant only for dirty superconductors. The Egh-Tc su-

perconductors are treated as clean ones and hence the MT contribution can be 

ignored. The analysis of experimental data on paraconductivity in higl·Tc super-

conductors [111] supports this contention. 

Now let us consider the three temperature regions of interest. For ten:;>eratures 

(5.13) 
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The 7"-~ dependence of o-'t>b is characteristic of the 3D fluctuation regime. For 

T2 » 7"» Tl{1- 8), 

e2 1 1 1 
o-'ab = 16nd [-; + ..Ji2 (7"+ T2)~ ] 

(5.14) 

Equation (5.12) shows the existence of a transitional region where the paracon-

ductivity has a 2D ('" 7"-1) as well 6.S a 3D ('" 7"f) contribution. For temperature 

regions further away from Tel 7" > > T2 > > Tl (1 - 6) and 

I 3e2 _ 1 
Cf't>b = 161id 7" 

(5.15) 

equation (5.13) represents the characteristic temperature dependence of 2D fluc­

tuations. Thus here again, modified LD model (2.16) predicts DCR in the fluc-

tuation contribution to paraconductivity. Additionally, as in the case of FSH, an 

overlapping region of 2D and 3D fluctuations is obtained. 

\Vhen the electric field is perpendicular to the layers, the corresponding current 

density in the present model can be written as 

(jz) = - 2i~2d L [('l/Jl,n+l'l,b;,n - Vl.n'I/J~,n+l) + ('l/J2.n+l'I/J;,n - 'l/J2.n'I/J;,n+1) ~ 
n 

(5.16) 

Performing the Fourier transformation, 

Proceeding as before 

I Tre2J2t2Tc "'( al a2 ). 2 kd 
(jc = 4t:. L...J"3 +"3 sm . 

1£ K Cl C2 

Converting the summation into inegration using the prescription (4.6), and per-

forming the integrations using standard integrals [100], 

(5.17) 
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Equation (5.17) shows that the specific temperature dependence of ~ is different 

from that of o'ab given by equation (5.12). For the temperature region close to Tc ) 

r2 > rl (1 - 6) > 7" the specific temperature dependence of ~ is given by 

a'. = e2dTc olmil ~ 
c 321i

3 
4Jr l(1 _ 6)3 -IT (5.18) 

~ varies as 7"-! which is the characteristic behaviour for a 3D fluctuation regime. 

Further away from Tc, 7" > r2 > rl (1 - 6), 

(5.19) 

The 7"-2 dependence of ~ in this region is indicative of OD regime of fluctuations 

where superconducting electrons scarcely jump from plane to plane. 

5.3 Conclusion 

Foregoing calculations based on the modified LD free energy functional (2.16) 

explain the observation of dimensional cross over in paraconductivity measure-

ments [110J. Both dab and the fluctuation specific heat C fI given by (4.7) have the 

same temperature dependence. An interesting feature of the calculations is the 

existence of an overlapping region of 2D and 3D fluctuations instead of a sharp 2D-

3D transition. As mentioned in section (4.4) Ghosh et al. [112] have also predicted 

an overlapping region using a different procedure. Another important conclusion 

is that the temperature regime 7" > r2 > r} (1 - 6) shows a clear difference in the 

temperature dependence of o'ab and o'c. In the case of o'ab' the 2D nature of the 

fluctuations is well established. But for ~) the 7"-2 temperature dependence in this 

regime is reminiscent of OD fluctuations expected of granular systems. Thus it is 
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appropriate to describe this temperature region as a 2D paraconductivity regime 

where conducting electrons scarcely jump from plane to plane. 
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CHAPTER VI 

SUPERCONDUCTING FLUCTUATION DIAMAGNETISM 

6.1. Introduction 

We have seen in the foregoing chapters that above Tc , thermodynamic fluctua­

tions towards the superconducting state contribute small but measurable amounts 

of characteristically superconducting properties like conductivity and spec-Hie heat. 

In conventional superconductors, even in the most favourable case, ~D is very 

small fraction of Un except for T::; 10-4 which is in sharp contrast to tte case of 

fluctuation diamagnetism where the coefficient of T-i is itself comparable ''lith the 

normal state diamagnetism so that fractional changes are observable ove:- a wide 

temperature range. In fact it is possible to measure the additional diarr..agnetism 

due to superconducting fluctuations even at twice its transition temperatt:..:'e. Fluc­

tuation effects have also been observed in magnetic susceptibility meascrements 

carried out in layered high-Tc copper oxide superconductors [87]. 

For a zero dimensional system like a particle whose radius R is small compared 

to e, the spatial variation of'ljJ over its volume V can be ignored. Loncon [113] 

has shown that the diamagnetic susceptibility X or induced magnetization per unit 

field H due to screening currents is given by 

1 R2 
x=---40r. ),2· 
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Since the penetration depth is given by 

(6.2) 

the susceptibility is proportional to R2(1 'lj; 12). Fluctuations above Te is the same 

order of magnitude as the fluctuations below Te. Above Te, e rises 8.S 7"-1, but 

then rises more slowly as the critical region is reached. Well below Te. e rises 

as 7" after fluctuation effects are swamped by the mean field 8upercor::ductivity 

[114J. Buhrman and Halperin [115J and Buhrman et al. [116J used SQtlD mag-

netometers to measure diamagnetic sUBceptibility of aluminium powder formed by 

evaporating aluminium in an inert gas atmosphere and observed exactly this type 

of temperature behaviour predicted by GL theory providing conclusive ?roof for 

the validity of the GL theory both inside and outside the critical region so far as 

zero dimensional systems are concerned. However e fell below the predk:ed value 

for T? 1.5Tc and this is not surprising as the GL theory is expected to be reliable 

only near Te. 

The zero field fluctuation diamagnetic susceptibility for bulk mate:-:als WBB 

calculated by Schmid [117] as 

(6.3) 

The susceptibility given by equation (6.3) formally diverges at Te. However, in 

practice the enhancement factor never gets very large before being limitEd either 

by the first order transition in a magnetic field or by the width of the trarsition in 

a real sample. X' is of the same order of magnitude as the London diamc.gnetism 
1 

of normal metals, apart from the temperature dependent enhancement fc.ctor r-i 

and it is many order of magnitude smaller than the full diamagnetic SUSCE?tibility 

'in the Meissner state, X = - 4~ 
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Only small fields can be used without destroying the effect by shrinking and 

weakening the fluctuations. None-the-Iess the susceptibility is substantial com-

pared with the background and it can be isolated by measuring the temperature 

dependent part of the magnetization in a magnetic field held absolutely constant 

by a superconducting coil in the persistent current mode. Such experiments were 

first carried out by Gollub et al. [118] using a SQUID magnetometer. 

In larger magnetic fields, the fluctuations are smaller and weaker than in the 

zero field limit and the divergence temperature shifts below Tc to the nucleation 

temperature Tc2 (H) which is the temperature at which H = H c2 (7). The Schmid 

result (6.3) was generalized by Prange [148J in the frame work of the GL theory 

to the case of finite fields. He found that the fluctuation magnetization A! should 

indeed diverge as (T - TC2)-~ and that it should be a universal result if scaled 

variables were used. He obtained 

Af 
-1- = f(x) 
H2T 

where f is a function of the single variable 

x = H(dHa /d7)Tc 

(6.4) 

When data for several materials were plotted in terms of these variables, they 

did not fall on the theoretical universal curve, but instead fell systematically well 

below it especially for the higher field values. This disagreement was because of the 

two assumptions of the GL theory viz. (i) slow spatial variation of'I/J and (ii) the 

theory is limited to reasonably weak fields. Thus the theory gives a poor account 

of the short wavelength (::; e(O)) fluctuations which dominate far above Tc and in 

strong magnetic fields. An explanation for the disagreement between theory and 

experiment was first suggested by Patton, Ambegaokar and \Vilkins [119] who 
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proposed the introduction of a cut-off energy for short wavelength fluctuations. 

This implied that fluctuations would be greatly suppressed for H > H" ~ He2 (0) 

and HI H· would govern the fall-off of the magnetization with field, independent 

of the material i. e. Prange's universal function f(x) would have to be replaced 

by a new function !(x, HI H*). GoUub et al. [120,121] found that such a scaling 

procedure could indeed eliminate the material dependence of their results. 

However, in clean materials with long mean free path, the scaling field Ha was 

much smaller than that predicted by Patton et ai. [119]. Lee and Payne [123] and 

Kurkijarvi et al. [124] found that the effect of non-locality becomes important at 

much lower fields than He2 (0) and therefore account for the smaller scaling field. 

In contrast, the experimental values of Hal He2 (0) in alloys approach a limiting 

value of", 0.5 [133]. This is in good agreement with the dirty limit microscopic 

calculation of Maki and Takayama [123] and Usadel [126] for which non-locality is 

unimportant. 

The study of fluctuation diamagnetism in bulk samples has not only demon­

strated the existence of superconducting fluctions above Te, but has aL"O proved 

useful for exploring the limits of the GL theory. 

Schmid [117] showed that the zero field susceptibility of a 2D system should 

change as .,.-1 compared with the r-! dependence of bulk materials. If the film 

thickness d is much less than the coherence length {(1), then 

X~ ~ -kBre2('I)/¢6 d = ~~D 0:: T-
1 

and 

(6.5) 

For the parallel field, the fluctuation effects are very small and weakly temperature 
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dependent and therefore essentially unobservable. For the perpendicular field, the 

susceptibility is enhanced by a factor of e/d over the bulk value. Probes et ai. [127] 

studied the superconducting layered compound TaS2 intercalated with pyridine 

molecules and suggested that over a limited temperature range well above Tc the 

fluctuation susceptibility could be fitted by the form (6.5) suggesting the existence 

of 2D fluctuations within the superconducting layers. 

Within the framework of the Lawrence~Doniach model [69], the layered COlTI-

pounds are modelled with Josephson coupling between the layers. Tsuzuki [128], 

Klemm et al. [129] and Gerhardts [130] extended the previous treatment of bulk 

fluctuations to this model and the fluctuation contribution to the perpendicular 

susceptibility in this model is 

(6.6) 

Much smaller effect is obtained for the parallel susceptibility on the lil:es of equa­

tion (6.5). Equation (6.6) allows the cross over from 3D to 2D beha\·iour. Mun­

Seog Kim et al. [131] have observed fluctuation induced magnetizatio::L above Tc 

in HgBa2CaaCU401o+b and a dimensional cross over at T' = 121.7K. 

Since diamagnetic susceptibility for superconductors is proportional to >.-2 by 

virtue of equation (6.1), we have attempted in section 6.2 to calculate the fluctua­

tion contribution to the London penetration depth both parallel and perpendicular 

to the layers of high-Tc copper oxide superconductors within the framework of the 

modified Lawrence-Doniach model described by the free energy (2.16). The cal­

culations are an extension of the work done by Buzdin and Vuyichit [132J in the 

context of the GL theory. 
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6.2.Fluctuation contribution to the London penetration depth 

In order to calculate the fluctuation contribution to the London penetration 

depth we consider the Helmholtz free energy F8 corresponding to the modified LD 

expression (2.16). 

J [a 1 .I,(P) 12 + bl 1 ol'(P) 14 + ~ 1 (\7 _ 2ie A )ol,(P) 12 
1 '7"1,11 2 '7"l,n 2 II of: Il,n '7"l,n mil nC 

+ a 1 "I,(P) 12 + ~ 1 .I,(P) 14 + n 2 
" ~ 1 (.!!.. _ 2ie A )1/'(P) 12 

2 '7"2,n 2 '7"2,n 2 L..J I an t: l,n Y2,n 
l==:e,y m t L ftC 

+ t 11/J(p) -1/J(p) e:x." 12 +t 11/J(p) - 1/J(p) e-ix" 12 + h~ l dp. (6.7) 
l,n 2,n . 1,n 2,71+1 811 c 

In the ca.lculation of the fluctua.tions in high-Te superconductors for which { < < 

>'(T),we may treat the vector potential A as constant. This is because the charac­

teristic length scale for changes in A is of the order of >.(7) where as the same for 

'If; fluctuations is of the order of {(7). The magnetic field fluctuations cP.n also be 

neglected for such superconductors. For calculating the fluctuation contribution 

to the London penetration depth below Tel we may write the order parameters as 

1/J1,n = 'l/J10,n + 4>l,n 

(6.8) 

where 1/Jio =1 a1 1 /bI and 1/J~o =1 a2 1 /~ represent the equilibrium values of the 

order parameters for T < Tc and ¢ represents the contributions from fiuctuations. 

Using (6.7) and (6.8) we calculate the fluctuation contribution oPe to the free 

energy in the quadratic approximation over cP. 

oF. =" J {~[2 1.-1.. 12 +.-1..2 + .-1..*2] + ~ [2 1.-1.. 12 +.-1..2 + 0-2
, ] 8 L..J 2 '+'l,n '+'1,11 '+'1,11 2 ,+,2,11 '+'2,n . 2.11 

11 

n2 2ie 2"h2 1 a 2ie 2 
+ -2 - 1 (\7 11 - ~AII,n)¢l," 1 +-2 ~ -, 1 (a.n - ~At,n)<,b2,n 1 

mil nC t=:z:,y mj L I£C 
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+ t[2 I ¢l,n 12 + I ¢2,n r' -¢l,n<P;,ne-iXn - ¢~,n¢2,neiXn 

+ I ¢2,n-l 12 -¢l,n¢'2,n_leiX" - ¢i,n¢2,n_le-iXn]} dp 

Fourier transformation of equation (6.9) is performed using the identities 

and 

~ /1 (\711 - ~: AII,n)¢n 12 dp = ~(q - ~:AII,n)2 I ¢K 12 

The fluctuation contribution to the free energy can now be written as 

where 

6Fs = E [ ~l (<Pl,K¢l,-K + 4>i,K4>i,-K) + Cl I4>I,K 12 
K 

+ ~2 (¢2,K¢2,-K + ¢;,K¢;,-K + DI I ¢2,K 12 

(6.9) 

(6.10) 

t12 [ 2e]2 11? [ 2e]2 {I kd } 
Dl = a2+-2 ' qcose-~A",n +-2 ' qsine-~Ay,n +2t 1--c051>.." + -2] 

m" nC my nC I 

and K=K(q,k). q is the inplane wave vector and k is the c-axis wave vector. e is 

the angle which'the inplane wave vector makes with tbe x-axis. 

We have set y = II:l,K!:. This introduces an additional pbase tern which 
'i'1,K' 

does not affect the derivation of the final result. The general expressior:. for the 

fluctuation free energy is 

Ffl = -Tln J exp[-6Heff (4),A)/T]D4>. (6.11) 

Taking 8P. as an effective hamiltonian, 

(6.12) 
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Writing 

A. A.' • A." 
'f'K - 'f'K + 'i.'f'K, 

the functional integration in (6.12) is performed over the real and imaginary parts 

of ¢1.K and ¢2.K. This gives 

(6.13) 

where 

h,2 [ 2e]2 kd 
C2 = al + -2 - q + -.;-AII + 2t{1 - 'YCOS lxn - -]} 

mil nC 2 

and 

71,2 [ 2e]2",2 [ 2e -2 {I kd } 
D2 = a2 + 2m' q cos 8+ nc Ax,n + 2m' qsin 8+ nc Ay.n~ +2t 1- ~ cos L\n - 2"] 

x y , 

The additional superconducting current due to fluctufitions is 

(6.14) 

Since we are interested in finding the linear response only, the vector potential A 

is considered to be small. Neglecting terms in second find higher powers of A, we 

get 

6Ffl = _TcAx ""[ B+Ccos¥ + B'+Ccos¥] 
6Ax 2 1< a + b cos ;d a' + 11 cos ;d (6.15) 

where 

b' = _[ 4a2t + 2c{ h
2
t ]. 

I IMf) 
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A similar expression can also be obtained for 6Ffl/6Ay by changing the suffix from x 

to y in equation (6.15). The summation over Kin (6.15) is converted to integration 

using the prescription (4.6). The integrals are evaluated using standard integrals 

·/l00] and the terms in second and higher powers of t are neglected. As suggested 

by Patton, Ambegaokar and Wilkins (119], we have introduced a cut off energy 

for short wavelength fluctuations by carrying out the q-integration upto J-. The 
~II 

London penetration depth is given by the expression 

(6.16) 

The fluctuation contribution to the London penetration depth para.llel to the layers 

can be calculated from equations (6.14), (6.15) and (6.16) as, 

6),.-2 = 4e2Tc L (M);-l[ln(~) +yi(! -~) 
L 1i2c2d j=1,2 me 31 TI 4 21 TI 

(I TI +rj) 1 2(rj+ I TO] 
+ 2 I Tin 3r; . (6.17) 

f = X,y, M Ito )lIdO )1,1'-1 [cos2 8+ Sin
2 8] ;=(_l)j-l.,-ndr·=..lL. =:;;: 0 ~V.l8 , ~V.I" = I I,· ~) 'T' 

" ~ ~ ~ ~~c 

Similarly 

6FfI __ 4e
2tP [ b + b' ] cos kd 

6Az - 1i2c2 it a+bcos¥ a'+b'cos¥ 2 

a.nd the fluctuation contribution to the London penetration depth perpendicular 

to the layers is given by 

6X;2 = 8t~::2Tc .L ~/mj [I T 1 +rj In 21r} +rj]. 
}=1,2 1 

(6.18) 

where ml = mil and m2 = M. For IT 1« rj, 

0),.l2 = 4~2Tc E [~_ (21n~ _ yi)Lti + lnLti + (3ln~ + '}2i)] (6.19a) 
1i c2d ;=1,2 rj 3 2 rj rj 3 4 

and 

(6.19b) 
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At large I r I values (r»r), 

6Xi2 = 4~2~c E (M );-1 [ln~ + yi] 
Ii c d j=1,2 mt 27Tj 4 

(6.20a) 

and 

(6.20b) 

6.3. Conclusion 

Our results (6.17) and (6.18) give the fluctuation contribution to the London 

penetration depth below Tc of copper oxide superconductors described by the 

modified LD free energy (2.16). Since diamagnetic susceptibility is proportional 

to A-2
, equations (6.17) and (6.18) which describe the temperature dependence of 

the fluctuation contribution to A -2 also give the temperature dependence of the 

superconducting fluctuation diamagnetic susceptibility. 6X;2 exhibits I T I-linear 

dependence near Te as expected [114], but at temperatures further removed from 

the critical temperature in addition to the linear term a logarithmic contribution 

also appears. In the case of 6X,2, for r < < rj in a.ddition to the linear term 

there appears a I r 1-1 term as well as a logarithmic term. At r > > Tj, only the 

logarithmic term is present. This change in temperature dependence from (6.19) 

to (6.20) could be the result of dimensional cross over in the fluctuation regime. 

Comparison of these results show that 6A~2 has a temperature dependence which 

is different from that for 6X;2. For the parallel field, the fluctuation effects (6,\;2) 

are weakly temperature dependent near Tc where as 6AiI'"2 diverges logarithmically 

at Te. 

The ratio of the amplitudes of these fluctuations for applied field perpendicular 

to the layers to that parallel to the la.yers is h2 /2t~mll = ml./mll where ml. is the 

transverse effective mass. In the GL limit ml. = mil and the magnitudes become 
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equal as should be expected. Since mil « m.1. for copper oxide 5uperco:lductors, 

the fluctuation effect is much smaller for the parallel susceptibility i. e. when the 

field is applied parallel to the layers than that for the perpendicular susceptibility. 

This conclusion is in agreement with the observations in refs.[128,129,130]. 
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CHAPTER VII 

SUl\1MARY AND CONCLUSIONS 

Experimental observations by Kleiner et al. (75] and also by Briceno and Zettl 

[74] indicate a scenario where copper oxide superconductors can be modelled as a 

superlattice of two dimensional superconducting (SC) sheets consisting of multiple 

CU02 planes sandwiched between non-superconducting (NSC) sheets consisting 

of multiple metallic planes like the GuO chain layers in YEGO. The strongly 

superconducting layers induce a finite order parameter in weakly 8uperconducting 

metallic layers through a proximity effect, thus leading to the existence of different 

order parameters in the two type of layers. This necessitates a modification of the 

Lawrence-Doniach model on the lines suggested by Bulaevskii and Vagne: [143] to 

describe the observed properties of high-Te superconductors. This modi£cation of 

the LD model has been done in section 2.6. 

Studies have been carried out in chapter III on the temperature dependence 

of the critical magnetic fields of cuprates using the modified LD free energy func­

tional (2.16). For temperatures close to Tel H-12(1) has a positive curvature and 

becomes a straight line with negative slope further away from Te. There is quali­

tative and quantitative agreement with the experimental data for YBa2CuJ07 and 

La1.B7Ca1.13GuZ04' Present calculations also predict positive curvature for .8J2(1) 

graph. D.C.magnetization measurements of the upper-critical field of sir:gle crys­

tals of YBa2Gu307 support these predictions. Comparison of models (2.16) and 
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(3.22) shows conclusively that the non-zero value of the order parameter on the 

NSC layers which are structurally different from the SC layers is essential to ex­

plain the positive curvature of H~(7) where as the positive curvature of H~(7) 

can be explained even on the standard LD model. Angular dependence of Hc2 

obtained in this model agrees with experimental observations. 

Calculations carried out in section (3.5) shows that the temperature depen­

dence of If~l (1) changes from a r-linear dependence near Te to a rt dependence 

further away from Te. Equations (3.32) and (3.35) giving the temperature de­

pendence of nJl when fitted to available experimental data explain the upturn 

in H~l (1) graph observed experimentally for copper oxide superconductors. The 

temperature dependence of H~ (7) has also been studied in this section, but could 

not be compared with experiment due to lack of relevent data. 

Thermal fluctuation effects in high-Te superconductors are much more pro­

nounced than in conventional superconductors. Experimentally fluctuation contri­

bution has been observed in conductivity, specific heat and magnetic susceptibility 

measurements in YBGa superconductors. Fluctuation contribution to the specific 

heat calculated in chapter IV within the frame work of the modified LD model 

explains the experimentally observed dimensional cross over in the Gaussian fluc­

tuation regime from 3D near Tc to 2D further away from Te. The calculations 

point to the existence of a transitional temperature region, instead of a sharp 

2D-3D transition, where the two regimes overlap. 

Paraconductivity calculations in chapter V show that both crab and the fluctu­

ation specific heat GIl have the same temperature dependence and ha\'e an over­

lapping region of 2D and 3D fluctuations. However, the temperature dependence 

of a'e is different from that of a'ab' For temperature regions further away from 
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Tel a'e has a T-
2 dependence characteristic of OD fluctuations instead of the T-1 

dependence shown by a'ab in this region. This obser.-ation is appropriate for a 2D 

regime. 

Since diamagnetic susceptibility is proportional to A -2, the fluctuation contri­

bution below Te to the London penetration depth both parallel and perpendicular 

to the layers has been calculated in chapter VI. ox;l has a temperature depen­

dence which is different from that for hA-;2. For the parallel field the fluctuation 

effects (OA-;2) are weakly temperature dependent near Te whereas hx;l diverges 

logarithmically at Te. Fluctuation effect is seen to be much smaller for the par­

allel susceptibility than for the perpendicular susceptibility. oX;l also exhibits a 

dimensional cross over in the fluctuation regime. 

The modified LD model is thus capable of explaining the experime:ltally ob­

served temperature dependence of the magnetic critical fields and the f. .. ..lctuation 

effects of copper oxide superconductors. 
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