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Preface

Research on queueing systems with attached inventory has captured much

attention of researchers over the last two decades. Inventory models are

studied in detail in Churchman, Acoff and Arnoff [14], Hadley and Whitin

[20], Naddor [46], and in Sahin [59] and in a number of research papers.

In the first three, a large number of deterministic models are discussed

whereas in the book by Sahin, stochastic models are highlighted. We call

these models and problems as Classical type, since in all these the amount

of time required to serve the item is negligible.

In contrast most of the real life situations need positive amount of time

to serve the inventory. Such cases are referred to as inventory with positive

service time. It may appear that there is no difference between a queue

and an inventory with positive service time. However, this is not the re-

ality. In a queue we do not speak about the resources for service – if the

customers are available and server is ready to serve then the service starts.

Nevertheless, this is not the case in inventory with positive service time.

Server may be available to serve and there may be customers waiting to get

service. However, inventory may not be available on stock. Thus a queue

iii



of customers builds up. Even in the case when lead time is zero, the above

problem can very well arise. Needless to say that in the case of positive

lead time the server may remain idle even when customers are waiting for

want of items in the inventory.

In this thesis the queueing-inventory models considered are analyzed

as continuous time Markov chains in which we use the tools such as ma-

trix analytic methods. We obtain the steady-state distributions of various

queueing-inventory models in product form under the assumption that no

customer joins the system when the inventory level is zero. This is despite

the strong correlation between the number of customers joining the system

and the inventory level during lead time. The resulting quasi-birth-and-

death (QBD) processes are solved explicitly by matrix geometric methods.

Matrix analytic methods introduced by M.F. Neuts in the second half of

the 1970’s, establish a success story, illustrating the enrichment of science

and applied probability. Since then, matrix analytic methods have become

an indispensable tool in stochastic modeling and have found applications

in the analysis and design of manufacturing systems, telecommunications

networks, risk/insurance models, reliability models and inventory and sup-

ply chain systems. The power and popularity of matrix analytic methods

come from their flexibility in stochastic modeling, capacity for analytic ex-

ploration, natural algorithmic thinking and tractability in numerical com-

putation.
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Chapter 1

Introduction to

queueing-inventory system

Inventory management is one of the most important tasks in commercial

world. Inventory can be found everywhere and is an obedient companion of

many human activities. Books in a bookstore, food in a refrigerator, goods

in a supermarket, cars to be sold, and spare parts to be used, are all inven-

tory of some kind. Inventory takes up space and ties up with cash/resource,

which might be scarce or can be used somewhere else. In the case of busi-

ness faces inventory problems in its most basic activities. Inventory is held

by the selling party to meet the demand made by the buying party. The

complexity of inventory problems varies significantly, depending on the sit-

uation. Consequently, inventory management becomes an issue of interest.

Some of the inventory problems that arise in complex business processes

Part of this chapter appeared in the following paper.

A. Krishnamoorthy, B. Lakshmy and R. Manikandan : A survey on inventory models

with positive service time. OPSEARCH, 48 (2), 153–169, 2011.
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2 Introduction to queueing-inventory system

require sophisticated mathematical tools and advanced computing power

to get a reasonably good solution. Inventory models usually consist of a

demand process, goods in a warehouse, and a replenishment process of or-

dered goods. Thus the fundamental questions of inventory models can be

described as follows: (1) when should an order be placed? and (2) how

much should be ordered? Thus in inventory management, finding the opti-

mal policy is the most important issue. There are two basic trade-offs in an

inventory problem. One is the trade-off between setup costs and inventory

holding costs. By placing orders frequently, the size of each order can be

made relatively small. Therefore, the holding costs can be reduced. How-

ever, the total setup costs will go up. Conversely, less frequent orders will

save on setup costs but incur higher holding costs. The other trade-off is

between holding costs and stock out costs. Holding more inventory reduces

the likelihood of stock outs, and vice versa. These trade-offs give rise to an

optimization problem of finding the optimal ordering policy that minimizes

the overall cost.

While dealing with inventory systems, there are many factors that should

be taken into consideration when solving an inventory problem. Among

them, the most important notions are listed below (for more details see

Dirk Beyer et al. [18]).

Cost function:

One of the most important prerequisites for solving an inventory problem

is an appropriate cost function. A typical cost function incorporates the

following four types of costs.
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• Variable procurement cost. This is the cost of buying items. The total

purchase cost is usually expressed as cost per unit multiplied by the

quantity procured. Sometimes a quantity discount applies if a large

number of units are purchased at a time.

• Fixed ordering cost. The fixed ordering cost is associated with or-

dering a batch of items. The ordering cost does not depend on the

number of items in the batch. It includes cost of setting up the

machine, costs of issuing the purchase order, transportation cost, re-

ceiving cost, etc.

• Holding cost. The holding cost is associated with keeping items in

inventory for a period of time. This cost is typically charged as a

percentage of dollar value per unit time. It usually consists of the

cost of capital, the cost of storage, the costs of obsolescence and

deterioration, the costs of breakage and spoilage, etc.

• Stock out cost. Stock out cost reflects the economic consequences of

unsatisfied demands. In cases when unsatisfied demands are back-

logged, there are costs for handling back orders as well as costs asso-

ciated with loss of customer goodwill on account of negative effects

of backlogs on future customer demands. If all unsatisfied demands

are lost, i.e., there is no backlogging, then the stock out cost will also

include the cost of the foregone profit.

Demand:

Over time, demand may be constant or variable. Demand may be known in

advance or may be random. Its randomness may depend on some exogenous
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factors such as the state of the economy, weather condition, etc. Another

important factor, often ignored in the inventory literature review, is that

demand can also be influenced directly or indirectly by the decision makers

choice. For example, a sales promotion decision can have a positive effect

on demand.

Lead time:

The lead time is defined as the amount of time required to deliver an order

after the order is placed. The lead time can be constant (including zero)

or random.

Review time:

There are two types of review methods. One is called continuous review,

where the inventory levels are known at all times. The other is called

periodic review, where inventory levels are known only at discrete points

in time.

Various replenishment policies:

• (s,Q) policy : This policy requires two parameters for definition. The

first parameter s is called the reorder level. A new order is placed

as soon as the inventory falls below this level. The other parameter

is the order quantity Q (= S − s). Therefore, in this policy, a fixed

quantity Q is ordered as soon as the actual inventory falls to the

reorder level.
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• (s, S) policy : This policy is similar to the (s,Q) policy with a dif-

ference of one parameter. Instead of a fixed quantity Q a variable

quantity is ordered so that the sum of on-hand inventory and the or-

dered quantity become equal to the pre-defined maximum inventory

level S.

• Random replenishment quantity : At the time of replenishment a ran-

dom number of items is purchased according to a probability distri-

bution. This random quantity belongs to the set {1, 2, . . . , k} such

that the on-hand plus number of items purchased does not exceed a

pre-specified number S.

In this thesis a few queueing-inventory models are analyzed as continuous

time Markov chains. In some cases we use tools such as Matrix geometric

method for detailed investigation of the problem. Algorithmically tractable

tools like these help us to model and analyze the structures so obtained in

a very general setup. The resulting quasi-birth-death processes are solved

algorithmically by Matrix geometric method.

Phase type distribution (continuous time):

The exponential distribution is widely used in queueing models because of

the exceptional mathematical tractability that flows from the memoryless

property of this distribution. However, in applications this assumption

is highly restrictive. This lead us to explore ways in which we can model

more general distributions while maintaining some of the tractability of the

exponential distribution. Thus, M. F. Neuts developed the theory of phase

type (PH) distributions and related point processes. A PH distribution is
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obtained as the distribution of the time until absorption in a finite state

space Markov chain with an absorbing state.

Consider a Markov chain {X(t) : t ≥ 0} with finite state space {1, 2, . . . ,m+

1} where state m+ 1 is absorbing, and the infinitesimal generator matrix

W =



1 2 . . . m m+ 1

1 T11 T12 . . . T1m T1m+1

2 T21 T22 . . . T2m T2m+1
...

...
...

. . .
...

...

m Tm1 Tm2 . . . Tmm Tmm+1

m+1 0 0 . . . 0 0


=

(
Tm×m T 0

0 0

)

where the elements of the matrices T and T 0 satisfy Tii < 0 for 1 ≤ i ≤ m,

Tij ≥ 0 for i 6= j; Ti0 ≥ 0 and Ti0 > 0 for at least one i, 1 ≤ i ≤ m and

T e+ T 0 = 0. Note that the states 1, 2, . . . ,m are transient whereas state

m+ 1 is absorbing.

The initial distribution of {X(t) : t ≥ 0} is given by (α, αm+1) with the

property that αe + αm+1 = 1. Here the states 1, 2, . . . ,m,m+ 1 are called

phases.

Let Z = inf{t ≥ 0 : X(t) = m+ 1} be the time until absorption in state

m+ 1. Then the distribution of Z is called PH distribution with represen-

tation (α, T ). The dimension m is called the order of the distribution.

(i) The distribution function of Z is given by

F (t) = 1−α exp(T .t)e for every t ≥ 0.
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It has a jump of magnitude αm+1 at t = 0 and its density function is given

by

f(t) = α exp(T .t) T 0 for every t > 0

where the function exp(T .t) =
∞∑
i=0

ti

i!
T i, the matrix exponential function

and

(ii) the Laplace-Stieltjes transform of F (.) is given by

φ(s) = αm+1 +α(sI − T )−1 T 0 for Re(s) ≥ 0.

Theorem 1.0.1 (see, Latouche and Ramaswami [44]). Consider a PH

distribution (α, T ). Absorption into state m+ 1 occurs with probability 1

from any phase i in {1, 2, . . . ,m} if and only if the matrix T is non singular.

More over, (−T −1)i,j is the expected total time spent in phase j during

the time until absorption, given that the initial phase is i.

1.1 Quasi-birth-death processes

Consider a Markov Chain with state space Ω =
⋃
n≥0
{(n, i) : 1 ≤ i ≤ m}.

Here the first component n is called level of the chain and the second

component i is called a phase of the nth level. This Markov Chain is called

a Quasi-birth-death (QBD) process if the one step transitions from a state

is restricted to the same level or to the two adjacent levels. In other words,

(i− 1, j′) 
 (i, j) 
 (i+ 1, j′′) for i ≥ 1

If the transition rates are level independent, the resulting QBD process is

called level independent quasi-birth-death process (LIQBD); else it is called

a level dependent quasi-birth-death process (LDQBD).
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Arranging the elements of Ω in lexicographic order, the infinitesimal

generator of a LIQBD process has the block tridiagonal matrix form in

which three diagonal blocks repeat after some initial levels. We write such

a matrix with modification depending on boundary states as

H =


B1 A0

B2 A1 A0

A2 A1 A0

. . .
. . .

. . .

 , (1.1)

where the sub matrices A0, A1, A2 are square and have the same dimension;

matrix B1 is also square and need not have the same size as A1. Also,

B1e +A0e = B2e +A1e +A0e = (A0 +A1 +A2)e = 0.

1.2 Matrix geometric method

Marcel F. Neuts pioneered matrix-geometric methods in the study of queue-

ing models in the 1970s. Since then, matrix-geometric methods have be-

come an indispensable tool in stochastic modeling and have found appli-

cations in the analysis and design of manufacturing systems, telecommuni-

cations networks, risk/insurance models, reliability models, and inventory

and supply chain systems. The power and popularity of matrix-geometric

methods come from their flexibility in stochastic modeling, capacity for

geometric exploration, natural algorithmic thinking, and tractability in nu-

merical computation.

Theorem 1.2.1 (see Theorem 3.1.1. of Neuts [47]). The processH in

(1.1) is positive recurrent if and only if the minimal non-negative solution
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R to the matrix-quadratic equation

R2A2 +RA1 +A0 = O (1.2)

has all its eigenvalues inside the unit disk and the finite system of equations

x0 (B1 +RB2) = 0

x0(I −R)−1 e = 1 (1.3)

has a unique positive solution x0.

If the matrix A = A0 + A1 + A2 is irreducible, then sp(R) < 1 if and

only if

πA2 e > πA0 e (1.4)

where π is the stationary probability vector of A.

The stationary probability vector x = (x0,x1, . . .) of H is given by

xi = x0R
i for i ≥ 1. (1.5)

Once R, the rate matrix is obtained, the vector x can be computed. We can

use an iterative procedure or logarithmic reduction algorithm (see Latouche

and Ramaswami [45]) or the cyclic reduction algorithm (see Bini and Meini

[5]) for computing R.

1.3 Computation of R matrix

In some cases R can be easily computed. This is especially so when the

matrix A0 has nice structure. When this feature is absent we have to

be satisfied with algorithmic approach. There are several algorithms for

computing rate matrix R. Here we list two of them.
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1.3.1 Iterative algorithm

From (1.2), we can evaluate R in a recursive procedure as follows.

Step 0: R(0) = O.

Step 1:

R(n+ 1) = A0(−A1)
−1 +R2(n)A2(−A1)

−1, n = 0, 1, . . .

Continue Step 1 until R(n+ 1) is close to R(n).

That is, ||R(n+ 1)−R(n)||∞ < ε.

1.3.2 Logarithmic reduction algorithm

Logarithmic reduction algorithm is developed by Latouche and Ramaswami

[45] which has extremely fast quadratic convergence. This algorithm is con-

sidered to be the most efficient one. We will list only the main steps involved

in the logarithmic reduction algorithm. For full details on the logarithmic

reduction algorithm refer Latouche and Ramaswami [45].

Step 0: H ← (−A1)
−1A0, L← (−A1)

−1A2, G = L, and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M
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M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH

Continue Step 1: until ||e−Ge||∞ < ε.

Step 2: R = −A0(A1 +A0G)−1.

1.4 Inventory with positive service time-a review

Research on queueing systems with attached inventory has captured much

attention of researchers over the last two decades. Inventory models are

studied in detail in Churchman, Acoff and Arnoff [14], Hadley and Whitin

[20], Naddor [46], and in Sahin [59]. In the first three, a large number of

deterministic model are discussed whereas in the book by Sahin, stochastic

models are highlighted. We call these models and problems as Classical

type, since in all these the amount of time required to serve the item is

negligible.

In contrast most of the real life situations need positive amount of time

to serve the inventory. Such cases are referred to as inventory with positive

service time. It may appear that there is no difference between a queue and

an inventory with positive service time. However this is not the case. In a

queue we do not speak about the resources for service – if the customers are

available and server is ready to serve then the service starts. Nevertheless,

this is not the case in inventory with positive service time. Server may be
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ready to serve and there may be customers waiting to get service. However,

inventory may not be available on stock. Thus a queue of customers builds

up. Even in the case when lead time is zero, the above problem can very

well arise. Needless to say that in the case of positive lead time the server

may remain idle even when customers are waiting for want of items in

inventory.

The notion of inventory with positive service time was introduced by

Sigman and Simchi-Levi [65] with Poisson arrival of demands, arbitrar-

ily distributed service time and exponentially distributed replenishment

lead time. Among other results they proved that the resulting queueing-

inventory system is stable if and only if the service rate is higher than the

customer arrival rate. This was followed by large number of research works

reported. A brief survey of inventory with positive service time is given in

Krishnamoorthy et al. [39].

In what follows, we have classified the papers according to two crite-

ria. In the first we include problems involving product form solutions and

the second classification is based on queueing-inventory models that use

algorithmic approach in the absence of product form solution.

1.4.1 Product form solutions in queueing-inventory models

Control policies like N,D, T and their combinations are extensively stud-

ied in queuing systems. Krishnamoorthy et al. [29] consider an (s, S)

inventory system, where customers require a random amount (positive) of

service time. With all underlying distributions independent exponentials

they analyze the classical N -policy for inventory with positive service time.

Lead time for replenishment of orders is assumed to be zero. Using ma-
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trix geometric method and a bit of heuristics the authors obtain the joint

distribution of the system state in product form.

The paper by Schwarz et al. [62] requires special mention since under

exponentially distributed service time and lead time and Poisson input of

customers, the authors come up with product form solution for the system

state distribution under the assumption that customers do not join when

the inventory level is zero. This is despite the strong correlation between

the number of customers joining the system during the lead time and the

number of items in the inventory over that period. Their work is subsumed

in Krishnamoorthy and Viswanath [42] wherein the authors have reduced

the Schwarz et al. [62] model to a production inventory system with a

single-batch bulk production of the quantum of inventory required.

Schwarz and Daduna [63] investigate an M/M/1 queueing system with

unlimited capacity for customers where service is in the form of provid-

ing inventoried items. Customers can join even when the inventory level is

zero. They derive the main performance measures from queueing and inven-

tory perspective and study their interconnection. Wherever a performance

measure does not have a closed form, the authors develop approximations.

Schwarz et al. [64] consider queueing networks with attached inventory. At

each service station an order for replenishment is placed when the inven-

tory level at that station drops to its reorder level. They consider rerouting

of customers served out from a particular station, when the immediately

following station has zero inventory. Thus no customer is lost to the sys-

tem. The authors derive joint stationary distribution of queue length and

inventory level in explicit product form.

Saffari et al. [57] consider an M/M/1 queue with inventoried items

for service. The control policy followed is (s,Q) and lead time is mixed
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exponential distribution. When inventory is out of stock, fresh arrivals are

lost to the system. This leads to a product form solution for the system

state probability.

In a very recent paper Saffari et al. [58] analyze an inventory model with

positive service time and arbitrarily distributed lead time. They assume

that no customer joins the system when the inventory level is zero. A prod-

uct form solution for system state is obtained here as well. Another recent

contribution of interest to inventory with positive service time involving a

random environment is by Ruslan and Daduna [55] where again they estab-

lish a stochastic decomposition of the system. They prove a necessary and

sufficient condition for a product form steady state distribution of the joint

queueing-environment process to exist. A still more recent paper Ruslan

and Daduna [56] investigate inventory with positive service time in a ran-

dom environment embedded in a Markov chain. They provide a counter

example to show that the steady state distribution of an M/G/1/∞ system

with (s, S) policy and lost sales, need not have a product form. Neverthe-

less, in general loss systems in a random environment have a product form

steady state distribution.

Can we always get a product form solution when the lead time is zero

and the probability distributions involved are all exponential? The answer

is, surprisingly “NO”. Krishnamoorthy et al. [30] considered an (s, S) in-

ventory system with service time in which it is assumed that when the

server is idle he continues to process the items. In case a processed item

is available at a customer arrival epoch, then it is instantaneously served

resulting in negligible service time. However, in the absence of processed

item at the epoch of arrival of a customer, he has to wait until the item

is processed. Of course he has to wait until all ahead of him, if any, are
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served. Unlike in Krishnamoorthy et al. [29], here the authors are not able

to produce closed form solution. Instead they obtain a matrix geometric

solution. Unlike its predecessor, in the present case optimal s is not zero.

Whereas Krishnamoorthy et al. [30] failed to get closed form solution for

the model where the purpose was to increase server idle time utilization

and decrease waiting time of customers, Deepak et al. [16] (see also Kr-

ishnamoorthy et al. [34]) consider another variation of Krishnamoorthy et

al. [29] where a customer demands a processed item or an unprocessed

one with probability p and 1 − p, respectively, at the time when the cus-

tomers enter for service. If unprocessed item is demanded, then service

time is negligible whereas if processed item is needed then there is a posi-

tive service time involved which they assume to be exponential. Customers

arrive according to a Poisson process. Lead time is assumed to be zero

as in the last two problems discussed. Surprisingly here the authors suc-

ceeded in producing closed form solution for the system state probability,

which further turned out to be in product form. Since the main objective

of this thesis is to obtain product form solution for inventory with positive

service time, we mention below those contributions that provide mainly

algorithmic solution, without going into the details of the content of these

papers. These are not referred in our main work. Hence we do not go into

the details of such papers. Instead these are classified on the basis of the

category they belong to, such as vacation, retrial, production, multi-server

and so on. Nevertheless, chapters 5 and 6 of this thesis provide algorithmic

approach to the system under study; also part of chapter 4 on multi-server

queueing-inventory models adopts algorithmic approach.
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1.4.2 Queueing-inventory systems involving algorithmic ap-

proach

Single server, Markovian queueing-inventory models

The contributions are:

Arivarignan et al. [2], Berman [6], Berman and Kim [7], Berman and Sapna

[8], Berman and Sapna ([9], [10]), Berman and Kim [11], Deepak et al. ([16],

[17]), Jayaraman et al. [21], Cui and Wang [15], Kalpakam and Shanthi

[23], Krishnamoorthy and Islam ([25], [26]), Krishnamoorthy et al. [27],

Krishnamoorthy and Jose [28], Krishnamoorthy et al. ([29], [30], [31]),

Krishnamoorthy and Jose ([32], [33]), Krishnamoorthy et al. [34], Krish-

namoorthy and Jose ([35]), Krishnamoorthy and Anbazhagan [36], Krish-

namoorthy et al. ([37], [40], [41]), Krishnamoorthy and Viswanath ([38],

[42]), Lalitha [43], Ning Zhao and Zhanotong Lian [48], Padmavathi et al.

[49], Paul Manuel et al. ([50], [51]), Perumal and Arivarignan [53], Ruslan

and Daduna [55], Saffari, et al. ([57], [58]), Sajeev S. Nair [60], Schwarz

et al. ([62], [64]) Schwarz and Daduna [63], Sivakumar and Arivarignan

([69], [70], [72]), Sivakumar [71], Sivakumar ([66], [72], [68]), Viswanath et

al. [74], Vineetha [75] and Yadavalli ([76], [77]).

Single server, non-Markovian queueing-inventory models

There are very few contributions beginning to this category.

Ruslan and Daduna [56], Sigman and Simchi-Levi [65], Saffari, et al. [58].

Fourth chapter of this thesis examines a two server and then c(≥ 3) server

queueing-inventory system respectively.
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Multi-server queueing-inventory models

Literature on this also is pretty scarce:

Anoop N. Nair et al.[1], Yadavalli et al. ([78], [79], [80]).

Queueing-inventory model with retrial of unsatisfied customers

Though literature on retrial queues is vast, that on queueing-inventory

finds very few contributions. Chapter 6 of this discuses an inventory prob-

lem with retrial of customers. Here is the list of the limitted contribution:

Cui and Wang [15], Padmavathi et al. [49], Sivakumar ([66], [68]), Krish-

namoorthy and Jose ([32], [33], [35]), Krishnamoorthy et al. [40], Sivaku-

mar and Arrivagnan et al. [72].

Production inventory models

Production inventory could be viewed as a supply chain with two echelons.

Here as well not much contributions could be found: Krishnamoorthy and

Islam [25], Krishnamoorthy et al. ([27], [41] ), Krishnamoorthy and Jose

[35], Krishnamoorthy and Viswanath ([38].

Queueing-inventory models with server vacation

Jayaraman et al. [21], Krishnamoorthy and Viswanath [38], Sivakumar

[68], Padmavathi et al. [49] and Viswanath et al. [74].

SUMMARY OF THE THESIS

In this thesis a few queueing-inventory models are analyzed as continu-

ous time Markov chains. We obtain steady-state distributions of a few

queueing-inventory models in product form under the assumption that no
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customer joins the system when the inventory level is zero. This is despite

the strong correlation between the number of customers joining the system

and the inventory level during lead time. The resulting quasi-birth-and-

death (QBD) processes are solved explicitly by Matrix Geometric Methods.

The inventory literature so far available assume that a customer, at the end

of his service, is provided one unit of item from the inventory. However, in

practice this need not hold. For example, assuming vacant job positions as

inventory and job aspirants as customers, we notice that a candidate (cus-

tomer) need not be offered the job at the end of the interview. It is as well

the case that, a candidate rejects the offer of the position after interview.

This is the motivation behind the work reported in this thesis. Further an

item produced in a production process need not be of the required quality.

Such items are rejected.

Now we turn to the content of the thesis. This thesis entitled “In-

vestigations on Stochastic Storage Systems with Positive Service Time” is

divided into 6 chapters including the introductory chapter.

In chapter 1 a detailed review of inventory models involving positive

service time is given. These include classical and retrial cases. Also con-

tributions to production inventory with service time are indicated towards

the end.

Chapter 2 discusses a single server queueing-inventory system, with the

item given with probability γ to a customer at his service completion epoch.

Two control policies, (s,Q) and (s, S) are discussed. In both cases we ob-

tain the joint distribution of the number of customers and the number of

items in the inventory as the product of their marginals under the assump-

tion that customers do not join when inventory level is zero. Optimization

problems associated with both models are investigated and the optimal
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pairs (s, S) and (s,Q) and the corresponding expected minimum costs are

obtained. Further we investigate numerically an expression for per unit

time cost as a function of γ. This function exhibits convexity property. A

comparison with Schwarz et al. [62] is provided. The case of arbitrarily dis-

tributed service time is briefly indicated. First emptiness time distribution

is computed for the M/M/1/1 queueing-inventory system.

In Chapter 3 we discuss a production inventory system with the item

produced being admitted (added to the inventory) with probability δ at

the end of a production epoch as well as an item from the inventory is sup-

plied to the customer with probability γ at the end of a service. The

control policy followed is of the (s, S) type. We obtain joint distribu-

tion of the number of customers and the number of items in the inven-

tory as the product of their marginals under the assumption that cus-

tomers do not join when inventory level is zero. Performance measures

that impact the system, are obtained. In particular optimal pairs (s, S)

are obtained through numerical procedures for values of (γ, δ) on the set

{0.1, 0.2, . . . , 1} × {0.1, 0.2, . . . , 1} . Here also we compute the first empti-

ness time distribution for the M/M/1/1 queueing-inventory system with

production.

In Chapter 4 we attempt to derive the steady-state distribution of the

M/M/c queueing-inventory system with positive service time. First we

analyze the case of c = 2 servers which are assumed to be homogeneous

and that the service time follows exponential distribution. The inventory

replenishment follows the (s,Q) policy. We obtain a product form solution

of the steady-state distribution under the assumption that customers do not

join the system when the inventory level is zero. An optimization problem

is also investigated to get the optimal pair (s,Q) and the corresponding
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expected minimum cost. As in the case of M/M/c retrial queue with c ≥ 3 ,

we conjuncture that M/M/c, for c ≥ 3 but c less than s, queueing-inventory

problems do not have analytical solution. So we proceed to analyze by using

algorithmic approach. All servers are assumed to be homogeneous and that

the service time follows exponential distribution. Here also the inventory

replenishment follows (s,Q) policy. We derive an explicit expression for the

stability condition of the system. We discuss the conditional distribution of

the inventory level, conditioned on the number of customers in the system

and conditional distribution of the number of customers conditioned on

the inventory level. Also we compute the distribution of two consecutive

s to s transitions of the inventory level (that is the first return time to

s). Since closed form solutions is not possible. We employ algorithmic

method to compute the stationary distribution. We also obtain several

system performance measures.

Chapter 5 is on queueing-inventory system under (s,Q) policy with

working vacations and vacation interruptions. The notion of working vaca-

tion is introduced by Jihong Li and Naishuo Tian [22] in classical queueing

theory. During working vacation also the server provides service, but at

a lower rate. Further, the server can come back from the vacation mode

to the normal working mode once some indices of the system, such as the

number of customers achieve a certain value and there is at least one item in

the inventory. More precisely, the server may come back from the vacation

without completing the vacation period. This is called vacation interrup-

tion (see [22]). We assume that if there are customers in the system after a

service completion during a working vacation, the server will comeback to

the normal working mode provided the vacation completion is realized dur-

ing the service; else the server stays in the working vacation mode. With
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the system having infinite capacity, we derive condition for stability of the

system. Despite the corresponding queueing system (without inventory)

having analytic solution, we are not able to arrive at closed form expres-

sion for system state for the queueing-inventory problem under discussion.

Hence algorithmic approach is adopted. Several performance measures are

evaluated. An optimization problem is also discussed.

In the 6th chapter, we consider an M/M/1/1 queueing-inventory sys-

tem. Here arrivals taking place when server busy, proceed to an orbit of

infinite capacity. From the orbit the head of the queue alone retires to

access the server. Failed attempts to access an idle server with positive in-

ventory results in the retrial customer returning to orbit. The inter-retrial

times are independent identically distributed exponential random variables

with parameter θ, irrespective the number of customers in the orbit. We

compute the condition for stability and then employ algorithmic approach

for the computation of the system state probability. We also compute the

expected waiting time of a customer in the orbit, distribution of the time

until the first customer goes to orbit and the probability of no customer

going to orbit in a given interval of time. An optimization problem is

also numerically investigated. In the last section of the chapter we briefly

analyze a tandem queueing-network with just two stations. The second

station has characteristics indicated above in this paragraph. Station 1 is

M/M/1/∞ queueing-inventory system whose output proceeds to station 2,

provided there is at least one item in the inventory. This combined system

is analyzed. It is argued that the combined system can be decomposed into

two sub systems.
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Chapter 2

A revisit to

queueing-inventory system

with positive service time

2.1 Introduction

A close look at the literature on inventory with positive service time in-

dicates that one unit of the inventory is provided to the customer at his

departure epoch. However, this need not hold in several real life situations.

For example consider a candidate who appears for an interview against a

position. At the end of the interview he/she may not be offered the posi-

tion. In some cases the candidate may decline the offer of the job. In this

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, R. Manikandan and B. Lakshmy : A revisit to queueing-inventory

system with positive service time. Annals of Operations Research, DOI 10.1007/s10479-

013-1437-x.

23
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case the job is taken as an inventory and the candidate as customer. In this

chapter we analyze such type of situations under Poisson demand process,

exponentially distributed service and lead time. We further impose the

condition that no customer joins the system when the on-hand inventory is

zero (those who are already present stay back in the system until served).

Two models based on the ordering policy are specifically considered:

(i) The replenishment order which is placed when the inventory level goes

down to s (which is called reorder level), for a fixed number Q of the item.

This is referred to as (s,Q) policy. (ii) The replenishment order is to bring

back the inventory to the maximum level S as and when replenishment

takes place this is referred to as (s, S) policy where s is again the reorder

level. Both these positions are the same when lead time is zero.

Mathematical formulation of the (s,Q) policy is given in Section 2.2.1.

Stability condition of the queueing-inventory system under the (s,Q) pol-

icy is provided in Section 2.3. Further, the system state distribution is

derived in that section. Several performance measures are also indicated

there. In Section 2.4 mathematical description of the queueing-inventory

under (s, S) policy is provided. Here again the stability condition is derived

and performance measures are computed. We also establish the stochastic

decomposition property of the system as done for the system under the

(s,Q) policy in the previous section. In the next section three optimization

problems are investigated: for given γ, (a) the optimal pair (s,Q) and the

corresponding minimum cost, (b) the optimal pair (s, S) and the corre-

sponding minimum cost and (c) the expected unit time cost of the system

as a function of γ. In all the three cases we obtain through numerical exper-

iments the global optima. A brief sketch of arbitrarily distributed service

time with Poisson arrival of demands and exponentially distributed lead
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time is provided in Section 2.6. First emptiness time distribution for the

M/M/1/1 queueing-inventory system is computed in Section 2.7.

2.2 Description of the model

We consider an M/M/1 queueing-inventory system with positive service

time. Arrival process is assumed to be Poisson with rate λ. Each customer

requires a single homogeneous item, having random duration of service

time which follows exponential distribution with parameter µ. However, it

is not essential that inventory is provided to the customer at the end of

his service. More specifically, the item is served with probability γ at the

end of a service and with probability 1− γ the item is not delivered to the

customer. When γ = 1 our model reduces to Schwarz et al. [62]. A very

crucial assumption of this model is that customers do not join the system

when the inventory level is zero. This leads us to the product form solution

for the models under study. We consider the two distinct replenishment

policies: (i) (s,Q) and (ii) (s, S) described in the previous section.

2.2.1 Model 1: (s,Q) policy

In this model when the on-hand inventory reaches a pre-specified value

s ≥ 0, a replenishment order is placed for Q(< ∞) units with Q > s. We

fix S = s+Q as the maximum number of items that could be held in the

system at any given time. The lead time follows exponential distribution

with parameter β. Then {X (t)|t ≥ 0} = {(N (t), I(t))|t ≥ 0} is a CTMC
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with state space

Ω1 =

∞⋃
i=0

L(i)

where L(i) is called the ith level (number of customers in the system is

i(≥ 0)). In the ith level the number of items in inventory can be anything

from 0 to S. Accordingly we write L(i) = {(i, 0), . . . , (i, s+Q)} . In these,

the second coordinate is referred to as the phase of the system. Now we

describe the transitions in the Markov chain {X (t)|t ≥ 0}:

(a) Transitions due to arrival of customers :

(i, j)→ (i+ 1, j) : the rate is λ, for i ≥ 0; 1 ≤ j ≤ S.

(b) Transitions due to service completion consequent to which an inven-

toried item is served to the outgoing customer:

(i, j)→ (i− 1, j − 1) : the rate is γµ, for i ≥ 1; 1 ≤ j ≤ S.

(c) Transitions due to service completion for which inventory is not served:

(i, j)→ (i− 1, j) : the rate is (1− γ)µ, for i ≥ 1; 1 ≤ j ≤ S.

(d) Transitions due to replenishment’s:

(i, j)→ (i, Q+ j) : the rate is β, for i ≥ 0; 0 ≤ j ≤ s.

All other transition pairs have rate zero. The infinitesimal generatorW of

the CTMC {X (t)|t ≥ 0} is
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W=


B A0

A2 A1 A0

A2 A1 A0 . . .
. . .

. . .
. . .

 ,

where B contains transition rates within L(0); A0 represents the transitions

from L(i) to L(i + 1), i ≥ 0; A1 represents the transitions within L(i) for

i ≥ 1, and A2 represents transitions from L(i) to L(i− 1), i ≥ 1. All these

matrices are square matrices of dimension S + 1.

2.3 Analysis of the system

In this section we perform the steady-state analysis of the (s,Q) queueing-

inventory model under study by first establishing the stability condition

of the system. Define A=A0 + A1 + A2. This is the infinitesimal gener-

ator of the finite state space CTMC corresponding to the inventory level

{0, 1, . . . , S}. Let ϕ denote the steady-state probability vector of A. That

is,

ϕA = 0,ϕe = 1. (2.1)

Write

ϕ = (ϕ0, ϕ1, . . . , ϕS)

where ϕk is the probability that inventory level is k, 0 ≤ k ≤ S. Then

using relations in (2.1) we get the components of the vector ϕ explicitly as
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ϕk =



[
1 +Q β

γλ

(
β+γλ
γλ

)s]−1
, k = 0.

β
γλ

(
β+γλ
γλ

)k−1
ϕ0, k = 1, 2, · · · , s.

β
γλ

(
β+γλ
γλ

)s
ϕ0, k = s+ 1, s+ 2, · · · , Q.

β
γλ

(
β+γλ
γλ

)k−Q−1((
β+γλ
γλ

)s−(k−Q−1)
− 1

)
ϕ0, k = Q+ 1, Q+ 2, · · · , S.

Since the Markov chain is an LIQBD, it is stable if and only if the left drift

rate exceeds the right drift rate. That is,

ϕA0e < ϕA2e. (2.2)

We have the following lemma:

Lemma 2.3.1. The stability condition of the (s,Q) queueing-inventory

model is given by λ < µ.

Proof. From the well known result in Neuts [47] on the positive re-

currence of A, we have ϕA0e < ϕA2e. With a bit of computation, this

simplifies to the result λ < µ.

For future reference we define ρ as

ρ =
λ

µ
. (2.3)

2.3.1 Steady-state analysis

For computing the steady-state probability vector of the process {X (t)|t ≥
0}, we first consider an inventory system with negligible service time and

no backlog of demands. The rest of the assumptions such as those on the
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arrival process and lead time are the same as given earlier. Designate the

Markov chain so obtained as {X̃(t)} = {I(t)|t ≥ 0}. Here X̃(t) = I(t)

is the inventory level at time t. Its infinitesimal generator W̃ is given by,

W̃ =



0 1 . . . s . . . Q . . . S

0 −β β

1 γλ −(γλ+ β)
...

. . .
. . .

. . .

s −(γλ+ β) β

γλ −γλ
...

Q
. . .

. . .
... γλ −γλ
S γλ −γλ


Let π=(π0, π1, . . . , πS) be the steady-state probability vector of the process

{X̃(t)}={I(t)|t ≥ 0}. Then π satisfies the relations

πW̃ = 0,πe = 1 (2.4)

That is, at arbitrary epochs the inventory level distribution πj is given by

πj =



[
1 +Q β

γλ

(
β+γλ
γλ

)s]−1
, j = 0.

β
γλ

(
β+γλ
γλ

)j−1
π0, j = 1, 2, · · · , s.

β
γλ

(
β+γλ
γλ

)s
π0, j = s+ 1, s+ 2, · · · , Q.

β
γλ

(
β+γλ
γλ

)j−Q−1((
β+γλ
γλ

)s−(j−Q−1)
− 1

)
π0, j = Q+ 1, Q+ 2, · · · , S.

(2.5)

Using the components of the probability vector π, we shall find the steady-

state probability vector of the original system. For this, let x be the steady-

state probability vector of the original system. Then the steady-state vector
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must satisfy the set of equations

xW = 0,xe = 1. (2.6)

Let us partition x by levels as

x = (x0, x1, x2, . . . ) (2.7)

where the subvectors of x; are further partitioned as,

xi = (xi(0), xi(1), xi(2), xi(3), ..., xi(S)), i ≥ 0. (2.8)

Then the above system of equations reduces to

x0B + x1A2 = 0 (2.9)

xiA0 + xi+1A1 + xi+2A2 = 0, i ≥ 0 (2.10)

Assume that

x0 = ξπ (2.11)

and

xi = ξ

(
λ

µ

)i
π, i ≥ 1 (2.12)

where ξ is a constant to be determined. We verify that the equations (2.9)

and (2.10) are satisfied by (2.11) and (2.12). For (2.9), we have

x0B + x1A2 = ξπ

(
B +

λ

µ
A2

)
(2.13)

and from relation (2.10), we have,
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xiA0 + xi+1A1 + xi+2A2 = ξ

(
λ

µ

)i+1

π

(
B +

λ

µ
A2

)
(2.14)

Now from the matrices B,A2 and W̃ , it follows that

B +
λ

µ
A2 = W̃ (2.15)

Also from (2.4) we have πW̃ = 0. Hence the right hand side of the equation

(2.13) and (2.14) are zero. Hence if we take the vector x as given by (2.6),

it follows that (2.9) and (2.10) are satisfied. Now applying the normalizing

condition xe=1, we get

ξ

[
1 +

λ

µ
+

(
λ

µ

)2

+

(
λ

µ

)3

+ · · ·

]
= 1

Hence under the condition that λ < µ, we have

ξ = 1− λ

µ
. (2.16)

Thus we arrive at our main theorem:

Theorem 2.3.1. Under the necessary and sufficient condition λ < µ

for stability, the components of the steady-state probability vector of the

process {X (t)|t ≥ 0} with generator matrix W is given by (2.11), (2.12)

and (2.16). That is, x0 = (1− ρ)π, xi = (1− ρ)ρiπ, for i ≥ 1 where ρ is

as defined in (2.3) and the finite probability vector π is as given in (2.5).

The consequence of Theorem 2.3.1 is that the two dimensional system can

be decomposed into two distinct one dimensional objects (namely number

of customers and number of inventory items in the system).
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Remark 2.3.1. : From Theorem 2.3.1 we see that the system state

distribution, under the stability condition, is the product of marginal distri-

butions of the number of customers in an M/M/1 system and the number

of items in the inventory.

2.3.2 Performance measures

• Mean number of customers in the system, Ls = λ
µ−λ .

• Mean number of customers in the queue, Lq = λ2

µ(µ−λ) .

• Mean inventory level in the system, Im =
Q+s∑
j=1

jπj .

• Depletion rate of inventory, Dinv = γλ(1− π0).

Note that the quantity on the right hand side above is smaller than

the corresponding quantity given in Schwarz et al. [62].

• Mean number of replenishments per unit time , Rr = β

(
s∑
j=0

πj

)
.

• Mean number of departures per unit time, Dm = µ2

µ−λ (1− π0).

• Expected loss rate of customers, Eloss = λπ0.

• Define the length of cycle as the time duration between two consecu-

tive epochs at which order for replenishments are placed. So we get,

Expected loss rate of customers when the inventory level is zero per

cycle, Ecloss = Eloss
Rr

.
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• Mean number of customers arriving per unit time, λA = λ(1− π0).

• Mean sojourn time of the customers in the system, Ws = Ls
λA

.

• Mean waiting time of a customer in the queue, Wq =
Lq
λA

.

• Mean number of customers waiting in the system when inventory is

available, W̃ = Ls(1− π0).

• Mean number of customers waiting in the system during the stock

out period,
˜̃
W = Lsπ0.

2.4 Model 2: (s, S) policy

We consider a queueing-inventory system with positive service time as de-

scribed at the beginning of Section 2.2. However, the inventory replenish-

ment policy is of (s, S) type. This policy differs from the (s,Q) policy in

that instead of a fixed quantity Q, a variable quantity at the time of replen-

ishment, is purchased so that the sum of on-hand inventory and the pur-

chased quantity equal to a predefined maximum inventory level S. This pol-

icy is also referred to as order upto S. We keep the same arrival and service

processes as in Section 2.2. The lead time is also exponentially distributed

with parameter β. Then the CTMC {Y (t)|t ≥ 0} = {(N (t), I(t))|t ≥ 0}
with state space,

Ω2 =

∞⋃
i=0

L(i)

where L(i) is the collection of states defined as L(i) = {(i, 0), . . . , (i, S)}
as defined in Model 1. The transitions corresponding to the Markov chain

{Y (t)} are same as in Section 2.2, but the transitions corresponding to the
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inventory replenishment is different in that the rate of transition from (i, j)

to (i, S) is β, for i ≥ 0 and for j such that 0 ≤ j ≤ s and zero for other

combinations. The infinitesimal generator H of the CTMC {Y (t)|t ≥ 0} is

H =


B̄ Ā0

Ā2 Ā1 Ā0

Ā2 Ā1 Ā0 . . .
. . .

. . .
. . .


where B̄ contains rates of transitions within L(0); Ā0 represents the transi-

tions from L(i) to L(i+1), i ≥ 0; Ā1 represents the rate of transitions within

L(i) i ≥ 1 and Ā2 represents the transitions from L(i) to L(i − 1), i ≥ 1.

All entries in H are square matrices of dimension S + 1.

2.4.1 System stability and computation of steady-state prob-

ability vector:

The Markov chain under consideration is a LIQBD process. For this

chain to be stable it is necessary and sufficient that

ψĀ0e < ψĀ2e (2.17)

where ψ is the unique non negative vector satisfying,

ψĀ = 0,ψe = 1 (2.18)

and Ā = Ā0 + Ā1 + Ā2, is the infinitesimal generator of the finite state

CTMC on the set {0, 1, . . . , S}. Write ψ as (ψ0, ψ1, . . . , ψS) . Then by

relation (2.18), we get the components of the probability vector ψ explicitly
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as,

ψk =


[(

1 + β
γµQ

)(
β+γµ
γµ

)s]−1
, k = 0.

β
γµ

(
β+γµ
γµ

)k−1
ψ0, k = 1, 2, ..., s.

β
γµ

(
β+γµ
γµ

)s
ψ0, k = s+ 1, s+ 2, ..., S − 1, S.

From the relation (2.17) we have

Lemma 2.4.1. The stability condition of the queueing-inventory sys-

tem under study is given by λ < µ

Proof. : On the same lines as that of Lemma 2.3.1.

For computing the steady-state probability vector of the process {Y (t)|t ≥ 0},
we first consider an inventory system with negligible service time and no

backlog of demands. Designate this CTMC by {Ỹ (t)|t ≥ 0} = {I(t)|t ≥ 0}.
Its infinitesimal generator H̃ is a matrix of order S+1. Let π̃=(π̃0, π̃1, . . . , π̃S)

be the steady-state probability vector of the Ỹ (t) process. Then H̃ satisfies

the equations

π̃H̃ = 0, π̃e = 1 (2.19)

Its components π̃j are computed as:

π̃j =


[(

1 + β
γλQ

)(
β+γλ
γλ

)s]−1
, j = 0.

β
γλ

(
β+γλ
γλ

)j−1
π̃0, j = 1, 2, ..., s.

β
γλ

(
β+γλ
γλ

)s
π̃0, j = s+ 1, s+ 2, ..., S − 1, S.

(2.20)

Now using the vector π̃, we shall find the steady-state probability vector of

the original system by using the same technique as in Section 2.3.1. Thus

we arrive at:
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Theorem 2.4.1. Under the necessary and sufficient condition λ < µ

for stability, the components of the steady-state probability vector of the

process {Y (t)|t ≥ 0} with generator matrix H is y0 = (1 − ρ)π̃ and yi =

(1 − ρ)ρiπ̃, i ≥ 1 where ρ is defined as in (2.3) and the finite probability

vector π̃ in the component form is given by (2.20).

2.4.2 Performance measures:

• Mean number of customers in the system, Ls = λ
µ−λ .

• Mean number of customers in the queue, Lq = λ2

µ(µ−λ) .

• Mean inventory level in the system, Im =
S∑
j=1

jπ̃j .

• Depletion rate of inventory, Dinv = γλ(1− π̃0).

Note that the quantity on the right hand side is smaller than the

corresponding quantity given in Schwarz et al. [62]

• Mean number of replenishment’s per unit time, Rr = β(s+ 1)π̃S .

• Mean number of departures per unit time, Dm = µ2

µ−λ (1− π̃0) .

• Expected loss rate of customers, Eloss = λπ̃0.

• Define the length of cycle as the time duration between two consec-

utive epochs at which order for replenishment are placed. So we get

expected loss rate of customers when the inventory level is zero per

cycle as, Ecloss = Eloss
Rr

.

• Mean number of customers arriving per unit time, λA = λ(1− π̃0).
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• Mean sojourn time of the customers in the system, Ws = Ls
λA
.

• Mean waiting time of the customers in the queue, Wq =
Lq
λA
.

• Mean number of customers waiting in the system when inventory is

available, W̃ = Ls(1− π̃0).

• Mean number of customers waiting in the system during the stock

out period,
˜̃
W = Lsπ̃0.

2.5 Optimization problem

We look for the optimal pair of control variables in the two models discussed

above. Now for computing the minimal costs of (s,Q) and (s, S) models

we introduce two cost functions: F1(s,Q) and F2(s, S) defined by

F1(s,Q) = h1.Im + c1.Eloss + c2.
˜̃W + (K +Q.c3) .Rr

and

F2(s, S) = h1.Im+c1.Eloss+c2.
˜̃W+K.Rr+

(
β

λ+ β + µ

s∑
i=1

πi. (S − i) +
βS

λ+ β
.π0

)
.c3

where K is fixed cost for placing an order, c1 is cost incurred due to loss per

customer, c2 is waiting cost per unit time per customer during the stock

out period, c3 is variable procurement cost per item, and h is unit holding

cost of inventory for one unit of time. We assign the following values to

the parameters: λ = 2, µ = 3, β = 1,K = $500, c1 = $25, c2 = $50, c3 =

$25, h1 = $2. We obtain the following two Tables (2.1 & 2.2) which provide

the optimal pairs (s,Q) and (s, S) and also the corresponding minimum

cost (in Dollars). Here γ is varied from 0.1 to 1, each time increasing it by
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0.1 unit. The optimal pair (s,Q) and the corresponding cost (minimum)

are given in Table 2.1. Table 2.2 contains optimal pairs (s, S) and the

corresponding costs (minimum) when γ is varied from 0.1 to 1.

Table 2.1: Optimal (s,Q) pair and minimum cost

γ 0.1 0.2 0.3 0.4 0.5

Optimal (s,Q) pair (1,30) (1,29) (1,29) (1,28) (1,28)

& minimum cost 109.10 104.02 100.28 97.45 95.26

γ 0.6 0.7 0.8 0.9 1

Optimal (s,Q) pair (1,28) (1,27) (1,27) (1,27) (1,27)

& minimum cost 93.56 92.23 91.17 90.33 89.67

Table 2.2: Optimal (s, S) pair and minimum cost

γ 0.1 0.2 0.3 0.4 0.5

Optimal (s, S) pair (1,13) (1,13) (1,14) (1,14) (1,14)

& minimum cost 30.08 57.46 82.77 106.46 128.88

γ 0.6 0.7 0.8 0.9 1

Optimal (s, S) pair (1,14) (1,14) (1,14) (1,14) (1,14)

& minimum cost 150.22 170.62 190.18 208.99 227.12
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2.5.1 Comparison with Schwarz et al. [62]

First we provide an analytical comparison (Tables 2.3 and 2.4) followed

by numerical comparison (Tables 2.5 and 2.6) of our model with that of

Schwarz et al. [62] based on a few performance measures. It may be noted

that the expressions for various performance measures in column 2 and 3 in

Tables 2.3 and 2.4 are in agreement when γ = 1. For numerical comparison

we take the following values of the performance measures: λ = 2, µ = 3,

β = 1, s = 1 and S = 3. Table 2.5 and 2.6 indicate our model is superior to

that of Schwarz et al. [62] in terms of performance measures: Eloss is much

less, so also Ws and Wq. Of course, holding cost in our model is higher.

So also are the mean inventory and mean number of arrivals per unit time.

Table 2.3: Analytical comparison with Schwarz et al. [62] for (s,Q) Model

Performance measures Schwarz et al. [62] Model Our Model

Im
Q

Q+λ
β

(
λ

λ+β

)s (Q+1
2

+ s− λ
β

(
1−

(
λ

λ+β

)s)) Q+s∑
j=1

jπj

λA
λQ

Q+λ
β

(
λ

λ+β

)s λ (1− π0)

Eloss
λ
β

(
λ

λ+β

)s λ

Q+λ
β

(
λ

λ+β

)s λπ0

Ws
1

µ−λ

(
1 + λ

Qβ

(
λ

λ+β

)s) 1
(µ−λ)(1−π0)

Wq
λ

µ(µ−λ)

(
1 + λ

Qβ

(
λ

λ+β

)s) λ
µ(µ−λ)(1−π0)
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Table 2.4: Analytical comparison with Schwarz et al. [62] for (s, S) Model

Performance measures Schwarz et al. [62] Model Our Model

Im
1

S−s+λ
β

(
λ
β

(
s− λ

β

(
1−

(
λ

λ+β

)s))
+

(S+1)S−(s+1)s
2

) Q+s∑
j=1

jπ̃j

λA λ− λ2

(S−s)β+λ

(
λ

λ+β

)s
λ (1− π̃0)

Eloss
λ2

(S−s)β+λ

(
λ

λ+β

)s
λπ̃0

Ws
1

(µ−λ)

(
1 + λ(

S−
(
s−λ

β

(
1−
(

λ
λ+β

)s)))
β

(
λ

λ+β

)s) 1
(µ−λ)(1−π̃0)

Wq
λ

µ(µ−λ)

(
1 + λ(

S−
(
s−λ

β

(
1−
(

λ
λ+β

)s)))
β

(
λ

λ+β

)s) λ
µ(µ−λ)(1−π̃0)

Table 2.5: (s,Q) Model

Performance measures Schwarz et al. [62] Model (with γ = 1) Our Model (with γ = 0.5)

Im 1.1 1.6

λA 1.2 1.6

Eloss 0.8 0.4

Ws 1.6667 0.25

Wq 1.1111 0.83333

In both models it is difficult to prove analytically the convexity in γ of the

cost function is because of the high non-linearity of the function. Neverthe-

less, all numerical experiments we have performed indicate that this cost

function is either monotone decreasing in γ (for moderate values of fixed

cost) or first decreases in γ, attains a minimum and then starts going up

(for relatively small values of fixed cost) as in Figure 2.1; that is, in the

latter case the cost function is strictly convex in γ and hence there exists

a global minimum cost. This means that there is a unique probability (γ

value) for providing an inventoried item to the customer, at the end of his

service, that would ensure minimum cost. If fixed cost is made to tend to

zero, the optimal γ value could be seen to be drifting to the left in the (0, 1]

interval.
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Table 2.6: (s, S) Model

Performance measures Schwarz et al. [62] Model (with γ = 1) Our Model (with γ = 0.5)

Im 1.4167 1.8333

λA 1.3333 1.6667

Eloss 0.66667 0.33333

Ws 1.5 1.2

Wq 1 0.8

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
1 1 5

1 2 0

1 2 5

1 3 0

1 3 5

1 4 0

F1(
s,Q

)

γ

Figure 2.1: γ verses F1(s,Q)

2.6 M/G/1 type queueing-inventory system for (s,Q)

policy

So far we have analyzed queueing-inventory process CTMCs’. Next we

consider the case of arbitrarily distributed service time, designated as G(.).

Thus we have an M/G/1-type queueing-inventory system with positive ser-

vice time. We assume
∞∫
0

[1−G(t)]dt to be finite. Denote by t1, t2, . . . the

successive departure epochs of the first, second,. . . customers and let N(t+i )

denote the number of customers left behind by the ith departure and I(t+i )
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denote the on-hand inventory at that epoch, i = 1, 2, 3, . . . . Then the

embedded stochastic process
{
Z(ti) =

(
N(t+i ), I(t+i )

)
; i = 1, 2, . . .

}
with

state space Ω3 = {(i, j)|i ≥ 0; 0 ≤ j ≤ Q+ s− 1} is a Markov chain. The

one-step transition probability matrix of this Markov chain is

P =



B̃0 B̃1 B̃2 B̃3 · · ·
B0 B1 B2 B3 · · ·

B0 B1 B2 · · ·
B0 B1 · · ·

B0 · · ·
. . .


.

The (i, j)th (in terms of levels) entry of P describes the probability of tran-

sition from i customers to j customers during a service time with different

possibilities for the inventory level. These are described below:

(1) Transitions with no arrival during a service time:

(0, j)→ (0, j−1) : the probability is


γ
∞∫
0

e−(λ+β)udG(u), for 1 ≤ j ≤ s.

γ
∞∫
0

e−λudG(u), for s+ 1 ≤ j ≤ S.

In the following transitions, the inventory level j is greater than zero but

less than or equal to s;

a. (0, j)→ (0, j) : the probability is (1− γ)
∞∫
0

e−(λ+β)udG(u).

b. (0, j)→ (0, j +Q− 1) : the probability is γ
∞∫
0

e−λu(1− e−βu)dG(u).

c. (0, j)→ (0, j +Q) : the probability is (1− γ)
∞∫
0

e−λu(1− e−βu)dG(u).

d. (0, 0)→ (0, Q− 1) : the probability is

γ

∞∫
t=0

t∫
v=u

v∫
u=0

βe−βuλ(1− e−λ(v−u))dudvdG(t− v).
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e. (0, 0)→ (0, j +Q): the probability is

(1− γ)

∞∫
t=0

t∫
v=u

v∫
u=0

βe−βuλ(1− e−λ(v−u))dudvdG(t− v).

(2) Transitions with k arrivals during a service time:

a. (0, j)→ (k, j − 1): the probability is γ
∞∫
0

e−λu(λu)k

k! dG(u), for j ≥ s+ 1.

b. (0, j)→ (k, j) : the probability is (1−γ)
∞∫
0

e−λu(λu)k

k! dG(u), for j ≥ s+ 1.

(3) Transitions for i ≥ 1; when the inventory level at the beginning of a

service is greater than or equal to s+ 1, inventory level depleting by one or

staying at the present position:

(i, j)→ (i− 1, j( or j − 1)) : the probability is


(1− γ)

∞∫
0

e−λudG(u).

γ
∞∫
0

e−λudG(u).

(4) Transitions for i ≥ 1; when the inventory level at beginning of service

greater than zero but less than or equal to s, inventory level depleting by

one or staying at the present position:

(i, j)→ (i−1, j( or j−1)) : the probability is


(1− γ)

∞∫
0

e−(λ+β)udG(u).

γ
∞∫
0

e−(λ+β)udG(u).

(5) Transitions with replenishment of inventory, with positive inventory

level at the beginning, 1 ≤ j ≤ s:
(i, j)→ (i− 1, j − 1 +Q) : the probability is γ

∞∫
0

e−λu(1− e−βu)dG(u).
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(i, j)→ (i− 1, j +Q) : the probability is (1− γ)
∞∫
0

e−λu(1− e−βu)dG(u).

(6) Transitions for i > 0, k ≥ 0, when there is no inventory at the beginning:

a. (i, 0)→ (i+ k − 1, Q− 1) : the probability is

γ

∞∫
0

∞∫
u

βe−βu
e−λ(t−u)(λ(t− u))k

k!
dG(t− u)du.

b. (i, 0)→ (i+ k − 1, Q) : the probability is

(1− γ)

∞∫
0

∞∫
u

βe−βu
e−λ(t−u)(λ(t− u))k

k!
dG(t− u)du.

(7) Transitions for i > 0, k ≥ 0; inventory level j is such that 1 ≤ j ≤ s

and no replenishment during a service:

a. (i, j)→ (i+ k − 1, j − 1) : the probability is γ
∞∫
0

e−(λ+β)t(λt)k

k! dG(t).

b. (i, j)→ (i+ k − 1, j) : the probability is (1− γ)
∞∫
0

e−(λ+β)t(λt)k

k! dG(t).

(8) Transitions for i > 0, k ≥ 0; replenishment occurs during service, that

is, 1 ≤ j ≤ s at the beginning:

a. (i, j)→ (i+k−1, j+Q−1) : the probability is γ
∞∫
0

e−λt(λt)k

k! (1− e−βt)dG(t).

b. (i, j)→ (i+k−1, j+Q) : the probability is (1−γ)
∞∫
0

e−λt(λt)k

k! (1− e−βt)dG(t).

All other transition pairs have probability zero. The above transitions prob-

abilities could be made use of to compute the inventory level probabilities

at departure epochs (we have to sum over the number of arrivals during a

service time).
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The distribution of the number of customers at departure epochs and at

arbitrary epochs have the same form as in an M/G/1 queue. However, the

number of items in the inventory can never be S at departure epochs. This

is also the case in the M/M/1 set up.

2.7 Emptiness time distribution for M/M/1/1

queueing-inventory system

We now compute the distribution of the time till the inventory becomes

empty (zero). We consider the inventory level, starting from S, until

the next epoch when all items in the inventory becomes zero. Let χ de-

note the random variable “time until the items in the inventory becomes

zero”starting with S items. We consider the CTMC {(I(t), C(t))|t ≥ 0}.
The state space of the CTMC {(I(t), C(t))|t ≥ 0} is

{(`,m) /1 ≤ ` ≤ S,m = 0, 1} ∪ {∆} ,

where {∆} (= (0, 0)) is the absorbing state which represents the state that

the inventory level becomes zero, starting from the state {(1, 1)}. Clearly,

= is a finite state space Markov chain. The possible transitions and the

corresponding rates are given in Table 2.7.

Thus the infinitesimal generatorQ of the Markov chain {(I(t), C(t))|t ≥ 0}

is of the formQ =

[
G G0

0 0

]
with initial probability vectorα = (0, 0, . . . , 1, 0)

where 1 is the in the (2S)th position; G is of order 2S + 1; G0 is a 2S + 1

component column vector such that Ge+G0=0. This time duration follows

PH distribution with representation (α,G). Therefore the expected time



46 A revisit to queueing-inventory system with positive service time

Table 2.7: The transitions in the CTMC {(I(t), C(t))|t ≥ 0} and corresponding

rates

Form To Rate

(`, 0) (`, 1) λ ` = 1, 2, . . . , S.

(`, 1) (`+ 1, 1) λ ` = 1, 2, . . . , S.

(`, 1) (`− 1, 1) µ ` = 2, 3, . . . , S.

(`,m) (`+Q,m) β ` = 2, 3, . . . , s.; m = 0, 1.

(`, 1) (`, 1) −(λ+ β + µ) ` = 1, 2, . . . , s.

(`, 0) (`, 1) −(λ+ µ) ` = 1, 2, . . . , s.

(1, 1) ∆ µ

until the inventory become zero is,

E (χ) = −α
(
G−1

)
e.



Chapter 3

On a two stage supply chain

inventory with positive

service time and loss

3.1 Introduction

In the previous chapter we have considered the case of no inventory provided

at the end of a service to the departing customer. In the present chapter

we extend this concept to production inventory with positive service time.

Thus we assume that the item produced is accepted with some probability

and rejected with complementary probability. Similarly we assume that at

the end of a service, a customer is provided/accepts the inventory with a

pre-assigned probability and with complementary probability he has to go

empty hand/declines the item. We impose the condition that no customer

Some results of this chapter are included in the following paper.

A. Krishnamoorthy and R. Manikandan : On a two stage supply chain inventory with

positive service time and loss (Under review).
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joins when the on-hand inventory is zero (those who are already present,

stay back in the system until served). Thus this chapter generalizes the

work reported in Krishnamoorthy and Vishwanath [42].

We arrange the presentation in this chapter as indicated below: Section

3.2 provides the mathematical formulation of the problem under study.

The analysis of the system is carried out in section 3.3. In particular, we

derive the long run stability of the system. Then, under this condition

we show that the system state can be decomposed: that is to say, we

get the system state distribution as the product of marginal distribution

of the components. Next we compute system performance measures that

have significant impact. Further, in order to construct an appropriate cost

function, we compute the expected length of a production cycle in section

3.4. A few results on up and down crossings of level s on a production cycle

are also discussed in that section. Having achieved that we construct a cost

function. Then we look for the optimal pair (s, S) values that would result

in cost minimization for different pairs of values of γ and δ. This is reported

in section 3.5. Finally we discuss the first emptiness time distribution for

the M/M/1/1 queueing-inventory system with production.

3.2 Description of the model

We consider an (s, S) production inventory system with a single server.

Demands by customers for the item occur according to a Poisson process

of rate λ. Processing of the customer request requires a random amount

of time, which is exponentially distributed with parameter µ. However, as

assumed in the previous chapter it is not essential that the item from in-

ventory is provided to the customer at the end of a service. More precisely,

an item from inventory is provided to a customer with probability γ at the



Description of the model 49

end of his service and with probability 1 − γ the customer leaves the sys-

tem empty handed. When the inventory level depletes to s, the production

process is immediately switched on. Each production is of 1 unit and the

production process is kept in the on mode until inventory level becomes

S. To produce an item it takes an amount of time which is exponentially

distributed with parameter β. A produced item is not necessarily added

to the inventory due to manufacturing defect: with probability δ it is ac-

cepted and with probability 1− δ the item is rejected. We assume that no

customer is allowed to join the queue when the inventory level is zero; such

demands are considered as lost. It is assumed that the amount of time for

the item produced to reach the retail shop is negligible. Thus the system is

a CTMC {X (t); t ≥ 0} = {(N (t), I(t),P(t)) ; t ≥ 0} . The production pro-

cess is in on mode if 0 ≤ I(t) ≤ s and it is in off mode if I(t) = S ;

but when the inventory level lies between s + 1 and S − 1, P(t) is either

0 or 1 according as the production is in off or in on mode, respectively.

Thus to describe the status of the process we need write P(t) = 0 or 1

only when I(t) takes values s + 1, . . . , S − 1. Thus the state space of the

CTMC is Ω=
∞⋃
i=0
L(i), where L(i), called level i of the CTMC, is given by,

{(i, j); 0 ≤ j ≤ s}
⋃
{(i, j, k); s+ 1 ≤ j ≤ S − 1, k = 0, 1}

⋃
{(i, S)} , ∀ i ≥

0. The number of states (called phases in that level) within ith level is

2S − s. The infinitesimal generator of this CTMC is

W =


B1 A0

A2 A1 A0

A2 A1 A0 . . .
. . .

. . .
. . .

 .
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The block matrices appearing on the right side above are explained below:

B1 =



−δβ δβ

−(λ+ δβ) δβ
. . .

. . .

−(λ+ δβ) δβ

−(λ+ δβ) V1

U V2

U V2
. . .

. . .

U V2

U V3

−λ



,

with U =

[
−λ 0

0 −(λ+ δβ)

]
, V1 =

[
0 δβ

]
, V2 =

[
0 0

0 δβ

]
, V3 =

[
0

δβ

]
;

entries of B1 corresponding to transition rates within level 0.

A0=

[
0 0

0 λI(2S−s)−1

]
, A1= B1 − µ

λA0

and A2 =



0 . . . . . . 0

γµ (1− γ)µ
. . .

. . .

γµ (1− γ)µ

F1 F2

F3 F2

F3 F2

. . .
. . .

F3 F2 0

F4 (1− γ)µ



,

with F1 =

[
γµ

γµ

]
, F2 =

[
(1− γ)µ 0

0 (1− γ)µ

]
, F3 =

[
γµ 0

0 γµ

]



Analysis of the system 51

and F4 =
[

0 γµ
]
.

3.3 Analysis of the system

In this section we perform the steady-state analysis of the (s, S) production

inventory model under study by first establishing the stability condition of

the system. Define A=A0 + A1 + A2. This is the infinitesimal generator

of the finite state CTMC corresponding to the inventory level {0, . . . , s} ∪
{(j, k); s+ 1 ≤ j ≤ S − 1, k = 0, 1} ∪ {S}. Let ϕ denote the steady-state

probability vector of A. That is ϕ satisfies

ϕA = 0, ϕe = 1. (3.1)

Using the above relations, we get the components of the probability vector

ϕ explicitly as:

ϕ (s− i) = ϕ (S)
γµ

δβ − γµ

(
1−

(
γµ

δβ

)S−s)(γµ
δβ

)i
, 0 ≤ i ≤ s,

ϕ (i, 0) = ϕ (S) , s+ 1 ≤ i ≤ S − 1,

ϕ (i, 1) = ϕ (S)
γµ

δβ − γµ

(
1−

(
γµ

δβ

)S−i)
, s+ 1 ≤ i ≤ S − 1.

and the unknown probability

ϕ(S) =

(
γµ
δβ − 1

)2
(
γµ
δβ

)S+2
−
(
γµ
δβ

)s+2
− (S − s)

(
γµ
δβ − 1

) .
Since the Markov chain under study is an LIQBD process, it is stable if

and only if the left drift rate exceeds the right drift rate. That is,

ϕA0e < ϕA2e. (3.2)

We have the following lemma:
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Lemma 3.3.1. The stability condition of the (s, S) production inven-

tory model is given by λ < µ.

Proof. From the well known result in Neuts [47] on the positive re-

currence of A, we have ϕ A0e < ϕA2e. With a bit of computation, this

simplifies to the result λ < µ. For future reference we define ρ as

ρ =
λ

µ
. (3.3)

3.3.1 Steady-state analysis

For computing the steady-state probability vector of the process {X (t); t ≥
0}, we first consider a production inventory system with negligible service

time where no backlog of customers is allowed (that is when inventory level

is zero, no demand joins the system). The rest of the assumptions such as

those on the arrival process and lead time are the same as given earlier. Des-

ignate the Markov chain so obtained as {X̃ (t); t ≥ 0}={(I(t),P(t)) ; t ≥ 0}.
Its infinitesimal generator W̃ is given by,

W̃ =



−δβ δβ

γλ −(γλ + δβ) δβ

.
.
.

.
.
.

.
.
.

γλ −(γλ + δβ) δβ

γλ −(γλ + δβ) V1

F̂1 U V2

F̂3 U V2

.
.
.

.
.
.

.
.
.

F̂3 U V2

F̂3 U V3

F̂4 −γλ



,

where F̂1 = λ
µF1, F̂3 = λ

µF3, F̂4 = λ
µF4, and all other sub matrices are as

defined previously for matrix .

Let π=(π(0), π(1), . . . , π(s), π(s+1, 1), . . . , π(S−1, 1), π(s+1, 0), . . . , π(S−
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1, 0), π(S)) be the steady-state probability vector of the process X̃ (t)={I(t); t ≥
0}. Then π satisfies the relations

πW̃ = 0, πe = 1 (3.4)

That is, at arbitrary epochs the components of the inventory level proba-

bility distribution π is given by:

π (s− i) = π (S)
γλ

δβ − γλ

(
1−

(
γλ

δβ

)S−s)(γλ
δβ

)i
, 0 ≤ i ≤ s,

π (i, 0) = π (S) , s+ 1 ≤ i ≤ S − 1,

π (i, 1) = π (S)
γλ

δβ − γλ

(
1−

(
γλ

δβ

)S−i)
, s+ 1 ≤ i ≤ S − 1.

and the unknown probability

π(S) =

(
γλ
δβ − 1

)2
(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
− (S − s)

(
γλ
δβ − 1

) .
Using the components of the probability vector π, we shall find the steady-

state probability vector of the CTMC {X (t); t ≥ 0}. For this, let x be the

steady-state probability vector of the original system. Then the steady-

state vector must satisfy the set of equations

xW = 0, xe = 1. (3.5)

partition x by levels as

x = (x0, x1, x2, . . . ) (3.6)

where the subvectors of x are further partitioned as, xi = (xi(0), xi(1), . . . , xi(s),

xi(s + 1, 1), . . . xi(S − 1, 1), xi(s + 1, 0), . . . xi(S − 1, 0), xi(S)), i ≥ 0. Then

the above system of equations reduces to

x0B1 + x1A2 = 0 (3.7)
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xiA0 + xi+1A1 + xi+2A2 = 0, i ≥ 0 (3.8)

Assume that

x0 = ξπ (3.9)

xi = ξ

(
λ

µ

)i
π, i ≥ 1 (3.10)

where ξ is a constant to be determined. We verify that the equations (3.7)

and (3.8) are satisfied by (3.9) and (3.10). For (3.7), we have

x0B1 + x1A2 = ξπ

(
B1 +

λ

µ
A2

)
(3.11)

and from relation (3.8), we have,

xiA0 + xi+1A1 + xi+2A2 = ξ

(
λ

µ

)i+1

π

(
B1 +

λ

µ
A2

)
(3.12)

Now from the matrices B1, A2 and W̃ , it follows that

B1 +
λ

µ
A2 = W̃ (3.13)

Also from (3.4) we have πW̃ = 0. Hence the right hand side of the equation

(3.11) and (3.12) are zero. Hence if we take the vector x as given by (3.6),

it follows that (3.7) and (3.8) are satisfied. Now applying the normalizing

condition xe=1, we get

ξ

[
1 +

λ

µ
+

(
λ

µ

)2

+

(
λ

µ

)3

+ · · ·

]
= 1

Hence under the condition that λ < µ, we have

ξ = 1− λ

µ
. (3.14)

Thus we arrive at
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Theorem 3.3.1. Under the necessary and sufficient condition λ < µ

for stability, the components of the steady-state probability vector of the

process {X (t); t ≥ 0} with generator matrix W, is given by (3.9), (3.10)

and (3.14). That is, x0 = (1 − ρ)π,xi = (1 − ρ)ρiπ, i ≥ 1 where ρ is as

defined in (3.3) and π is the inventory level probability vector.

The consequence of the above Theorem 3.3.1 is that the joint distribution

of the two dimensional system can be decomposed into probabilities of

two distinct one dimensional objects namely, number of customers and

the number of inventoried items in the system. Thus for example, when

production is on, denoting by P (z) and Q(z) the probability generating

functions of the number of customers in the system and the number of

items in the inventory respectively, then the joint generating function (the

generating function of the system state) , can be written as the product of

the marginal generating functions. This is the case when the production is

off as well (that is the inventory level is dropping from S, but is above s).

3.3.2 Performance measures

We enumerate below the long run system performance characteristics that

are useful in formulating an optimization problem.

• Mean number of customers in the system, Ls = λ
µ−λ .

• Mean number of customers waiting in the system during the stock

out period,

Ws = Lsπ(0)

= λ
µ−λ

((
γλ
δβ

)s+1
(

1−
(
γλ
δβ

)S−s(
1− γλ

δβ

)
)( (

γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
))

.
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• Mean number of customers waiting in the system when inventory is

available,

W̃s = Ls (1− π(0))

= λ
µ−λ

(
1−

(
γλ
δβ

)s+1
(

1−
(
γλ
δβ

)S−s(
1− γλ

δβ

)
)( (

γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
))

.

• Mean number of items in the inventory,

Einv =
s∑
i=0

iπ(i) +
S−1∑
i=s+1

i(π(i, 0) + π(i, 1))

= 2−(S−s)(S+s+3)

2
(
γλ
δβ
−1
)

( (
γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
)
.

• Mean rate at which the production process is switched on,

Eon = γµ

( ∞∑
i=1

ξ
(
λ
µ

)i
π (s+ 1, 0)

)
= γλ

( (
γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
)
.

• Expected rate at which items are added to the inventory,

Erp = δβ

(
s∑
i=0

π(i) +
S−1∑
i=s+1

+π(i, 1)

)
= δβ

(
1− (S − s)

( (
γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
))

.

• Expected loss rate of the manufactured item due to rejection,

Mloss = (1− δ)β
(

s∑
i=0

π(i) +
S−1∑
i=s+1

π(i, 1)

)
= (1− δ)β

(
1− (S − s)

( (
γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
))

.

• Expected loss rate of customers (customers not joining the system

for want of inventory),
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Closs = λπ(0)

= λ

((
γλ
δβ

)s+1
(

1−
(
γλ
δβ

)S−s(
1− γλ

δβ

)
)( (

γλ
δβ
−1
)2

(
γλ
δβ

)S+2
−
(
γλ
δβ

)s+2
−(S−s)

(
γλ
δβ
−1
)
))

.

3.4 Analysis of the production cycle time

The production process is switched on at a service completion epoch t0,

which started with s + 1 items in the inventory with one item from in-

ventory supplied to the customer and the production process being in off

mode. The production process, once turned on, is turned off only at an

epoch t1 at which the inventory level in the system reaches S. A production

cycle starts with the switching on of the production process as inventory

level drops progressively to s from S and terminates with the inventory

level reaching S. We analyze the length t1 − t0 of the production cycle as

the time until absorption in a CTMC Ψ= {(N (t), I(t)); t ≥ 0}, the vari-

ation of N (t) is from 0 to ∞ and I(t) varies from 0 to S − 1. The state

space of Ψ is given by
∞⋃
i=0

{̃
i
}⋃
{∆1}, where each level

{̃
i
}

is given by{̃
i
}

= {(i, j); 0 ≤ j ≤ S − 1} and ∆1 denotes the single absorbing state,

which represents switching off of the production process(that is, inventory

level reaches S). Except for the absorbing state ∆1, transitions between

states in Ψ are the same as those in Ω. The infinitesimal generator Qc

of the process Ψ has the form Qc=
[
H −He

0 0

]
, where H is given by

H=


B̂1 Â0

Â2 Â1 Â0

Â2 Â1 Â0 . . .
. . .

. . .
. . .

 ,
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with B̂1 =



−δβ δβ

−(λ+ δβ) δβ
. . .

. . .

−(λ+ δβ) δβ

−(λ+ δβ)


,

Â1 =



−δβ δβ

−(λ+ µ+ δβ) δβ
. . .

. . .

−(λ+ µ+ δβ) δβ

−(λ+ µ+ δβ)


,

Â2 =



0 0 0 0 0

γµ (1− γ)µ
. . .

. . .

γµ (1− γ)µ

γµ (1− γ)µ


, Â0 =

(
0 0

0 λIS−1

)

Define the row vector ητ=(ητ0 , η
τ
1 , η

τ
2 , . . . ), where each ηi is a column vec-

tor with S entries, such that ηi(j) is the expected time until absorption

of the process Ψ, from state (i, j). Also define the probability vector

σ = (σ0, σ1, σ2, . . . ), where each σi is a row vector of dimension S × 1

such that σi(j) is the probability that the production process is switched

on with i customers and j inventory in the system. Clearly σi(j) = 0 if

j 6= s and σi(s) can be found using the steady-state probability vector x of



Analysis of the production cycle time 59

the process {X (t); t ≥ 0} as follows:

σi(s) =
ξ
(
λ
µ

)i+1
π (S) γµ

Pon
=
ξ
(
λ
µ

)i+1
π (S) γµ

π (S)λ
= ξ

(
λ

µ

)i
γ, for all i ≥ 0.

Thus the expected length of the production cycle,

Ecycle =

∞∑
i=0

σi(s)ηi(s) =

∞∑
i=1

ξ

(
λ

µ

)i
γηi(s) (3.15)

Now for computing the vector η, a simple probabilistic argument shows that

the vector η satisfies the infinite system of equations given by Hη = −e,

which implies

B̂1η0 + Â0η1 = −e, (3.16)

Â2ηi−1 + Â1ηi + Â0ηi+1 = −e, i ≥ 1. (3.17)

For future reference we define

P0 = B̂1η0 + Â0η1, (3.18)

and

Pi = Â2ηi−1 + Â1ηi + Â0ηi+1, i ≥ 1. (3.19)

For solving the above infinite system of equations, we use the same tech-

nique as that was employed in the case of finding the steady-state vector;

that is by seeking the help of the expected cycle time of the production

process Ẽcycle in a production inventory system with negligible service time

and no backlog of demands. For computing Ẽcycle, we define a CTMC

Ψ̃={I(t); t ≥ 0} with an absorbing state ∆2, that represents the switching

off of the production process. Here a production cycle, I(t) denotes the

inventory level at time t. The state space of a CTMC, {I(t); t ≥ 0} is given

by {0, 1, 2, ..., S − 1}
⋃
{∆2} and its infinitesimal generator is given by,



60 On a two stage supply chain inventory with positive service time and loss

G=

[
D −De

0 0

]
with

D =



−δβ δβ

γλ −(γλ+ δβ) δβ
. . .

. . .
. . .

γλ −(γλ+ δβ) δβ

γλ −(γλ+ δβ)


.

Now Ẽcycle is the (s+ 1)th entry of the column vector −D−1e.

Let −D−1e=(Γ0,Γ1, . . . ,ΓS−1). Then the relation D
(
−D−1e

)
= −e

gives us the following equations

−δβ Γ0+δβ Γ1=−1,

γλ Γi−1 − (γλ+ δβ) Γi +δβ Γi+1 = −1, 1 ≤ i ≤ S − 2,

γλ ΓS−2 − (γλ+ δβ) ΓS−1=−1.

Some algebraic manipulation of the above equations results in the fol-

lowing equations:

Γi − Γi+1=
1
δβ

i∑
j=0

(
γλ
δβ

)j
,ΓS−1 = 1

δβ

S−1∑
j=0

(
γλ
δβ

)j
and by solving these equa-

tions we get, Γs = 1
δβ

(
(S − s)

s∑
j=0

(
γλ
δβ

)j
+

S−1∑
j=s+1

(S − j)
(
γλ
δβ

)j)
Now by using the relations (3.18) and (3.19),

∞∑
i=0

(
λ
µ

)i
Pi implies

(
B̂1 +

λ

µ
Â2

)
η0 +

∞∑
i=0

(
λ

µ

)i(
Â0 +

(
λ

µ

)
Â1 +

(
λ

µ

)2

Â2

)
ηi+1 = −

∞∑
i=0

(
λ

µ

)i
e

(3.20)

Here we get the following identities:(
B̂1 +

λ

µ
Â2

)
= D,
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Â0 +

(
λ

µ

)
Â1 =

(
λ

µ

)
B̂1,

Â0 +

(
λ

µ

)
Â1 +

(
λ

µ

)2

Â2 =

(
λ

µ

)
B̂1 +

(
λ

µ

)2

Â2 =

(
λ

µ

)
D.

These identities are applied in to the equation (3.20) to get

D
∞∑
i=0

(
λ

µ

)i
ηi = −1

ξ
e.

That is,
∞∑
i=0

ξ

(
λ

µ

)i
ηi = −(D−1)e. (3.21)

From the equations (3.15) and (3.21), it follows that the expected duration

of a production run, Ecycle is the same as Ẽcycle, the expected length of a

production cycle in a production inventory system with negligible service

time. Thus the expected cycle time of the production process Ecycle is given

by

Ecycle =
1

δβ

(S − s)
s∑
j=0

(
γλ

δβ

)j
+

S−1∑
j=s+1

(S − j)
(
γλ

δβ

)j .

We record this in the following

Lemma 3.4.1. The expected length of a production cycle is given by

Ecycle = 1
δβ

(
(S − s)

s∑
j=0

(
γλ
δβ

)j
+

S−1∑
j=s+1

(S − j)
(
γλ
δβ

)j)
= 1

γλ

(
1

π(S) − (S − s)
)
.

Corollary 1. The expected number of production up-crossings of level

s is given by E =

[
x0(s)

δβ
λ+δβ + δβ

λ+µ+δβ

∞∑
i=1

xi(s)

]
.Ecycle

= (1− (S − s)π (S))
(

δβ
δβ−γλ

)(
1−

(
γλ
δβ

)S−s)(
1−ρ
λ+δβ + ρ

λ+µ+δβ

)
.
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Corollary 2. The expected number of production down crossings of

level s is given by E = (1− (S − s)π (S))
(

γλ
(δβ−γλ)(λ+γµ+δβ)

)(
1−

(
γλ
δβ

)S−s)
.

Some of the above down and/ up-crossings of s may not go below/above s.

The expected number of such crossings are given in the following corollaries

Corollary 3. The expected number of production down crossings

that goes below s in a production cycle, Pdown = E∗Probability of a service

completion before addition of an inventoried item. That is,

Pdown = E.

 ∞∑
i=1

ξ

(
λ

µ

)i( γµ

δβ + γµ

)
+ξ

∞∫
t=0

t∫
v=0

λe−λvγµe−µ(t−v)δe−βtdvdt


= E.

( ∞∑
i=1

ξ

(
λ

µ

)i( γµ

δβ + γµ

)
+

ξδλγµ

(λ+ β)(µ+ β)

)
.

Corollary 4. The expected number of production up-crossings that

go above s in a production cycle, Pup = E∗Probability of a unit produced

before a service completion. That is,

Pup = E.


∞∑
i=1

ξ
(
λ
µ

)i (
δβ

δβ+γµ

)
+
(

δβ
δβ+λ

)
ξ

+ξ
∞∫
t=0

t∫
v=0

λe−λve−µ(t−v)δ(1− e−βt − e−βv)dvdt


= E.

( ∞∑
i=1

ξ
(
λ
µ

)i (
δβ

δβ+γµ

)
+
(

δβ
δβ+λ

)
ξ + ξδ

(λ+β)

[
β(µ+β)+λµ
µ(µ+β)

] )
.

Having obtained the expected length of a production cycle we turn to

compute the optimal pair (s, S) values and the corresponding minimum

costs. Lemma 3.4.1 provides us the rate at which the production process

is switched on in unit time.
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3.5 Computing optimal (s, S) pairs and the mini-

mum cost

We look for the optimal values of s (the level, reaching at which the pro-

duction process is switched on) and the maximum inventory level S of the

production inventory model under discussion. Now for checking the opti-

mality of s and S, the following cost function is constructed. Define F(s, S)

as the expected cost per unit time in the long run. Then

F(s, S) = K.Eon + hinv.Einv + c1.Closs + c2.Mloss + c3.Erp + c4.Ws + c5.W̃s

where K is the fixed cost for starting a production run, hinv is the cost

per unit time per inventory towards holding, c1 is the cost incurred due to

loss per customer when the inventory is out of stock, c2 is the cost incurred

due to rejection per unit manufactured item, c3 is the cost of production

per unit time, c4 is the waiting cost per unit time per customer during

the stock out period and c5 is the waiting cost per unit time per customer

when inventory is available. Though we are not able to compute explicitly

the optimal values of s and S, due to the highly complex form of the cost

function, we arrive at these using numerical techniques.

For the following input values λ = 2, µ = 3, β = 2.5,K = $5000, hinv =

$20, c1 = $400, c2 = $100, c3 = $200, c4 = $300, c5 = $100 and varying δ

and γ we arrive at Table 3.1. δ and γ are given values from 0.1 to 1 at

0.1 spacing. Note that the case of γ = δ = 1 is what is discussed in Krish-

namoorthy and Vishwanath [42]. The pair of values given in each cell of

Table 3.1 indicates the optimal (s, S) pair and the value at the bottom of

each cell corresponds to the minimum cost (in Dollars). As γ and δ are var-

ied we get distinct optimal pairs of (s, S) and the corresponding minimum

cost. We observe that the minimum cost is a decreasing function of δ, or at

first decreasing and then starts growing with δ. This can be attributed to
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the fact that for fixed γ, and for δ increasing, initially the loss of manufac-

tured items get reduced; but subsequently from a point on, the holding cost

factor dominates the gain from acceptance of produced item. The optimal

(s, S) pair first decreases with δ increasing, comes to a minimum and then

starts rising up. Same is the trend shown by the minimum cost values. The

explanation for this trend is that with γ increasing, customers are provided

the item at the end of their service with increasing probability, so shortage

is bound to occur with higher probability. To some extend, increasing δ

value can cope with this, since produced items are accepted with higher

probability. Nevertheless, increase in δ results in increase in the holding

cost. For the given input parameters the “best” among the optimal pair

is (1, 11) and the minimum cost is $461.02 which correspond to δ = 1 and

γ = 0.1.

Now by using the same input values of Table 3.1 and with s = 5 and

S = 11 we provide a comparison of the performance measures for a few

(γ, δ) pair values in Table 3.2. For example we observe from Table 3.2

that the production cycle length and loss rate of customers are largest for

the (γ, δ) pair values (1, 0.5) and least for (0.5, 1) among the three pairs of

values indicated in that table. Similarly expected inventory held is least

for (γ, δ) pair value (1, 0.5) and the highest for (0.5, 1).

3.5.1 Emptiness time distribution for M/M/1/1 production

inventory system

We now compute the distribution of the time till the items in the inventory

becomes empty (zero) starting from the epoch at which the production is

switched on reaching level S. Let χ represent this random variable. Since
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Table 3.1: Optimal (s, S) values and minimum cost

H
HHH

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1δ

0.1 (3,11) (1,26) (1,12) (1,9) (1,8) (1,7) (1,7) (1,7) (1,6) (1,6)

605.4 958.33 1189.3 1309.1 1381.7 1430.3 1465.1 1491.2 1511.6 1527.9

0.2 (1,10) (2,13) (6,20) (1,27) (1,15) (1,13) (1,13) (1,10) (1,9) (1,9)

515.24 649.96 793.76 983.33 1120 1214.3 1282.5 1334.1 1374.4 1406.7

0.3 (1,10) (1,12) (2,14) (4,18) (7,25) (1,23) (1,16) (1,19) (1,13) ((1,12)

490.34 610.1 689.76 765.15 804.83 1008.3 1105.2 1180.1 1239.3 1287

0.5 (1,10) (1,13) (1,15) (1,15) (1,16) 2,18) (4,21) (6,26) (1,29) (1,24)

472.89 584.32 664.66 722.9 763.58 795.24 838.8 908.47 987.12 1058.3

0.6 (1,10) (1,13) (1,16) (1,16) (1,16) (1,17) (2,18) (3,20) (5,24) (4,29)

468.89 578.74 660.13 721.23 766.65 797.98 821.01 849.05 896.26 959.93

0.7 (1,11) (1,14) (1,16) (1,17) (1,17) (1,17) (1,18) (2,18) (2,20) (4,23)

466.11 574.69 656.36 720.28 769.82 806.51 831.65 849.35 867.81 899.16

0.9 (1,11) (1,14) (1,16) (1,18) (1,18) (1,19) (1,19) (1,19) (1,19) (1,19)

462.32 569.49 651.76 732.47 773.71 818.36 853.53 879.47 896.85 907.9

1 (1,11) (1,14) (1,16) (1,18) (1,19) (1,20) (1,20) (1,20) (1,20) (1,20)

461.02 567.74 650.26 717.95 774.64 822.1 860.79 891.35 913.86 928.76

it is impossible to compute the distribution of χ for the case where the

system capacity is unlimited, we specialize to the case of M/M/1/1 pro-

duction inventory with positive service time. This will enable us to deal

with a finite state space CTMC with 3S−s elements and having state space
= = {(0, 0, 1) , (1, 0, 1) , . . . , (s, 0, 1) , (s, 1, 1) , (s+ 1, 0, 0) , (s+ 1, 0, 1) , . . . ,

(S − 1, 0, 0) , (S − 1, 0, 1), (S − 1, 1, 0), (S − 1, 1, 1), (S, 0, 0), (S, 1, 0)} ,
The state ((0, 0, 1)) is regarded as absorbing, state which represents the

state of the inventory level becomes zero from the state {(1, 1, 1)}. The

possible transitions and the corresponding rates are given in Table 3.3.

Thus the infinitesimal generatorQ of the Markov chain {(I(t), C(t),P(t))|t ≥ 0}

is of the formQ =

[
T T 0

0 0

]
with initial probability vectorα = (0, 0, . . . , 1, 0)

where 1 is in the (3S − s− 2)th position; T is of order 3S − s− 1; T 0 is a

3S−s component column vector such that T e+T 0=0. Let χ represent the

random variable “time till the items in the inventory becomes zero”. This

time duration follows PH distribution with representation (α,T ). There-
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Table 3.2: Effect of γ and δ on various performance measures

Performance measures γ = 1 and δ = 0.5 γ = 0.5 and δ = 1 γ = δ = 1

Ls 0.00085731 0.10005 0.038268

Ws 0.75643 0.0013604 0.07402

W̃s 1.2436 1.9986 1.926

Einv 1.5852 7.8376 5.9064

Erp 1.2436 0.99932 1.926

Ecycle 580.22 3.9955 10.066

Closs 0.75643 0.0013604 0.07402

fore the expected time until the inventory become zero is,

E (χ) = −α
(
T −1

)
e.
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Table 3.3: The transitions in the CTMC {(I(t), C(t),P(t))|t ≥ 0} and corre-

sponding rates

Form To Rate

(`, 0, 1) (`, 1, 1) λ ` = 1, 2, . . . , s, s+ 1, . . . , S − 1.

(`, 0, 1) (`+ 1, 0, 1) β ` = 1, 2, . . . , s, s+ 1, . . . , S − 1.

(`, 0, 1) (`, 0, 1) −(λ+ β) ` = 1, 2, . . . , s, s+ 1, . . . , S − 1.

(`, 1, 1) (`− 1, 0, 1) µ ` = 2, 3, . . . , s.

(`, 1, 1) (`+ 1, 1, 1) β ` = 1, 2, . . . , s.

(`, 1, 1) (`, 1, 1) −(β + µ) ` = 1, 2, . . . , s.

(`, 0, 0) (`, 1, 0) λ ` = s+ 1, s+ 2, . . . , S − 1.

(`, 0, 0) (`, 0, 0) −λ ` = s+ 1, s+ 2, . . . , S − 1.

(`, 1, 0) (`− 1, 0, 0) µ ` = s+ 1, s+ 2, . . . , S − 1.

(`, 1, 0) (`, 1, 0) −µ ` = s+ 1, s+ 2, . . . , S − 1.

(`, 1, 1) (`− 1, 1, 1) µ ` = s+ 1, s+ 2, . . . , S − 1.

(`, 1, 1) (`+ 1, 1, 1) β ` = s+ 1, s+ 2, . . . , S − 1.

(`, 1, 1) (`, 1, 1) −(µ+ β) ` = s+ 1, s+ 2, . . . , S − 1.

(S, 0, 0) (S, 1, 0) λ

(S, 0, 0) (S, 0, 0) −λ
(S, 1, 0) (S − 1, 1, 0) µ

(S, 1, 0) (S, 1, 0) −µ
(1, 1, 1) {∗} µ
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Chapter 4

Multi-server

queueing-inventory system

4.1 Introduction

In chapters 2 and 3 we discussed single server queues with inventory as

service item. Either bulk replenishment policy (chapter 2) or replenishment

through production (chapter 3) was adopted and the optimal values of

decision variables computed.

In this chapter we attempt to derive the steady-state distribution of the

M/M/c queueing-inventory system with positive service time. First we an-

alyze the case of c = 2 servers which are assumed to be homogeneous and

that the service time follows exponential distribution. The inventory re-

plenishment follows the (s,Q) policy. We obtain a product form solution of

the steady-state distribution under the assumption that customers do not

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, R. Manikandan and Dhanya Shajin : Analysis of a multi-server

queueing-inventory system (Under review).

69
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join the system when the inventory level is zero. An optimization problem

is also investigated to get the optimal pair (s,Q) and the corresponding ex-

pected minimum cost is obtained. As in the case of M/M/c retrial queue

with c ≥ 3, we conjuncture that M/M/c, for c ≥ 3, queueing-inventory

problems do not have analytical solution. So we proceed to analyze those

cases by using algorithmic approach. Assume that c < s. All servers are

assumed to be homogeneous and that the service time follows exponential

distribution. Here also the inventory replenishment follows (s,Q) policy.

We derive an explicit expression for the stability condition of the system.

We discuss the conditional distribution of the inventory level, conditioned

on the number of customers in the system and conditional distribution of

the number of customers conditioned on the inventory level. Also we com-

pute the distribution of two consecutive s to s transitions of the inventory

level (that is the first return time to s). Closed form solution for the sys-

tem state distribution cannot be arrived so the steady-state distribution of

this system is difficult to obtain as a product form. So by using algorithmic

method we compute the stationary probability distribution. We also obtain

several system performance measures.

This chapter organized as follows. In Section 4.2 the M/M/2 queueing-

inventory problem is mathematically formulated. The product form solu-

tion of the steady-state probability distribution, including some important

performance measures are obtained in Section 4.3. Further we provide the

optimal pair (s,Q) values and the minimal cost for different values of γ.

Section 4.5 discuss the M/M/c with c (greater than or equal to 3 but

less than s) queueing-inventory problems by using algorithmic approach.

Section 4.6 gives some conditional probability distributions and few per-

formance measures. Section 4.7 analyzes the distribution of the inventory

cycle time. In Section 4.8 provides the optimal c and the corresponding
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minimal cost for different values of γ. Further we look for the optimal pair

(s,Q) values that would result in cost minimization for different pairs of

values of γ and c.

4.2 Mathematical modelling of the M/M/2

queueing-inventory problem

First we consider an M/M/2 queueing-inventory system with positive ser-

vice time. Arrival process is assumed to be Poisson with rate λ. Each

customer requires a single item having random duration of service which

follows exponential distribution with parameter µ. However, it is not essen-

tial that inventory is provided to the customer at the end his service. More

precisely, the item is served with probability γ at the end of a service and

is not provided with probability 1− γ. A crucial assumption of this model,

as done in the previous two chapters, is that customers do not join the

system when the inventory level is zero. When the number of customers is

at least two and not less than two items are in inventory, the service rate

is 2µ. When the on-hand inventory reaches a pre-specified value s > 0,

a replenishment order is placed for Q(< ∞) units with Q > s. We fix

S = Q + s as the maximum number of items that could be held in the

system at any given time. The lead time follows exponential distribution

with parameter β. Then {X (t)|t ≥ 0} = {(N (t), I(t))|t ≥ 0} is a CTMC

with state space Ω1 =
∞⋃
i=0
L(i), where L(i) is called the ith level (number

of customers in the system is i(≥ 0)). In each of the level the number of

items in the inventory can be anything from 0 to S. Accordingly we write

L(i) = {(i, 0), . . . , (i, Q+ s)} . In these, the second coordinate is referred to

as the phase of the system. The infinitesimal generatorW1 of this CTMC

{X (t)|t ≥ 0} is
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W1 =



B00 A0

B20 B10 A0

A2 A1 A0

A2 A1 A0 . . .
. . .

. . .
. . .


,

where

[B00]kl =



−β, for l = k = 0.

−(λ+ β), for l = k; k = 1, 2, ..., s.

−λ, for l = k; k = s+ 1, s+ 2, ..., S.

β, for l = k +Q; k = 0, 1, ..., s.

0, otherwise.

[B20]kl =


γµ, for l = k − 1; k = 1, 2, ..., S.

(1− γ)µ, for l = k; k = 1, 2, ..., S.

0, otherwise.

[B10]kl =



−β, for l = k = 0.

−(λ+ β + µ), for l = k; k = 1, 2, ..., s.

−(λ+ µ), for l = k; k = s+ 1, s+ 2, ..., S.

β, for l = k +Q; k = 0, 1, ..., s.

0, otherwise.

[A0]kl =

{
λ, for l = k; k = 1, 2, ..., S.

0, otherwise.
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[A1]kl =



−β, for l = k = 0.

−(λ+ β + µ), for l = k = 1.

−(λ+ β + 2µ), for l = k; k = 2, 3, ..., s.

−(λ+ 2µ), for l = k; k = s+ 1, s+ 2, ..., S.

β, for l = k +Q; k = 0, 1, ..., s.

0, otherwise.

[A2]kl =



γµ, for l = k − 1; k = 1.

(1− γ)µ, for l = k = 1.

2γµ, for l = k − 1; k = 2, 3, ..., S.

2(1− γ)µ, for l = k; k = 2, 3, ..., S.

0, otherwise.

Note that all entries (block matrices) ofW1 are of the same order, namely

S + 1.

4.2.1 Analysis of the system

In this section we perform the steady-state analysis of the queueing-inventory

model under study by first establishing the stability condition of the queueing-

inventory system. Define A = A0 + A1 + A2. This is the infinitesimal

generator matrix of the finite state CTMC corresponding to the inventory

level {0, 1, 2, ..., S} for any level i (≥ 1). Let ζ denote the steady-state

probability vector of A. That is,

ζA = 0, ζe = 1. (4.1)

Write

ζ = (ζ0, ζ1, ..., ζs, ..., ζQ, ..., ζS)
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and

A =



−β β

γµ −(β + γµ)

2γµ −(β + 2γµ)
. . .

. . .
. . .

2γµ −(β + 2γµ) β

2γµ −2γµ

. . .
. . .

2γµ −2γµ



,

Then using (4.1) we get the components of the vector ζ explicitly as

ζ0 =


1 + β

γµ

[
1 +

(
β+γµ
γµ

) s∑
i=0

(
β+2γµ
2γµ

)i−2
+ (Q− s− 2)

(
β+2γµ
2γµ

)s−1]
+ β

2γµ

(
β+γµ
γµ

)[(
β+2γµ
2γµ

)s−1
−
(

γµ
β+γµ

)
+

s∑
i=0

(
β+2γµ
2γµ

)i−2((
β+2γµ
2γµ

)s−i+1

− 1

)]

−1

ζi =



β
γµζ0, for i = 1.

β
γµ(β+γµ2γµ )

(
β+2γµ
2γµ

)i−2
ζ0, for i = 2, 3, ..., s+ 1.

ζi+1, for i = s+ 1, s+ 2, ..., Q− 1.

β
2γµ

[
(β+γµγµ )

(
β+2γµ
2γµ

)s−1
− 1

]
ζ0, for i = Q+ 1.

and ζQ+i = β
2γµ

(
β+γµ
γµ

)(
β+2γµ
2γµ

)i−2 [(
β+2γµ
2γµ

)s−(i−1)
− 1

]
ζ0, i = 2, 3, ..., s.

Since the Markov Chain {X (t)|t ≥ 0} is an LIQBD, it is stable if and only

if the left drift rate exceeds the right drift rate. That is,

ζA0e < ζA2e.

Thus, we have the following lemma for stability of the system under study.
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Lemma 4.2.1. The stability condition of the M/M/2 queueing-

inventory system under consideration is given by λ < µ
[
2− βζ0

γµ(1−ζ0)

]
.

Proof. From the well known result in Neuts [47] on the positive recur-

rence of A, we have ζA0e < ζA2e for the Markov chain to be stable. With

a bit of computation, this simplifies to the result λ < µ
[
2− βζ0

γµ(1−ζ0)

]
.

For future reference we define ρ1 as

ρ1 =
λ

µ
[
2− βζ0

γµ(1−ζ0)

] . (4.2)

4.3 Computation of the steady-state probability

For computing the steady-state probability vector of the process {X (t)|t ≥
0}, we first consider a queueing-inventory system with unlimited supply

of inventory items (that is classical M/M/2 queueing system). The rest

of the assumptions such as those on the arrival process and lead time are

the same as given earlier. Designate the Markov chain so obtained as

{N (t)|t ≥ 0}, where N (t) is the number of customers in the system at time

t. Its infinitesimal generator G1 is given by,

G1=



−λ λ

µ −(λ+ µ) λ

2µ −(λ+ 2µ) λ

2µ −(λ+ 2µ) λ . . .
. . .

. . .
. . .


.
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Let π be the steady-state probability vector of G1. Partitioning π by levels

we write π as

π = (π0, π1, π2, . . . ). (4.3)

Then the steady-state vector must satisfy

πG1 = 0, πe = 1. (4.4)

From the relation (4.4) we get the vector π explicitly as follows

πi =



[
1 + λ

µ

(
1− λ

2µ

)−1]−1
for i = 0.

λ
µπ0 for i = 1.

1
2i−1

(
λ
µ

)i
π0 for i ≥ 2.

(4.5)

Further we consider an inventory system with negligible service time and no

backlog of demands. The assumptions such as those on the arrival process

and lead time are the same as given in the description of the model. Denote

this Markov chain as {I(t)|t ≥ 0}. Here I(t) is the inventory level at time

t. Its infinitesimal generator G2 is given by,

G2=



0 1 . . . s . . . Q . . . S

0 −β β

1 γλ −(γλ+ β)
...

. . .
. . .

. . .

s γλ −(γλ+ β) β

γλ −γλ
...

Q
. . .

. . .
... γλ −γλ
S γλ −γλ



.
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Let ψ=(ψ0, ψ1, . . . , ψS) be the steady-state probability vector of the process

{I(t)|t ≥ 0}. Then ψ satisfies the relations

ψG2 = 0, ψe = 1 (4.6)

That is, at arbitrary epochs the inventory level distribution ψj is given by

ψj =



[
1 +Q β

γλ

(
β+γλ
γλ

)s]−1
, j = 0.

β
γλ

(
β+γλ
γλ

)j−1
ψ0, j = 1, 2, · · · , s.

β
γλ

(
β+γλ
γλ

)s
ψ0, j = s+ 1, s+ 2, · · · , Q.

β
γλ

(
β+γλ
γλ

)j−Q−1((
β+γλ
γλ

)s−(j−Q−1)
− 1

)
ψ0, j = Q+ 1, Q+ 2, · · · , S.

(4.7)

Using the components of the probability vector ψ, we shall find the steady-

state probability vector of the original system. Let x be the steady-state

probability vector of the original system. Then the steady-state vector must

satisfy the set of equations

xW1 = 0, xe = 1. (4.8)

Partition x by levels as

x = (x0, x1, x2, . . . ). (4.9)

where the subvectors of x are further partitioned as

xi = (xi(0), xi(1), xi(2), xi(3), ..., xi(S)), i ≥ 0. (4.10)

Then by using the relation xW1 = 0, we get

−βxi(0) + γµxi+1(1) = 0, i ≥ 0. (4.11)
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λxi(j)− (λ+ 2µ+ β)xi+1(j) + 2(1− γ)µxi+2(j) + 2γµxi+2(j + 1) = 0,

i ≥ 1, 2 ≤ j ≤ Q− 1.

(4.12)

λxi(j) + βxi+1(j −Q)− (λ+ 2µ)xi+1(j) + 2(1− γ)µxi+2(j) + 2γµxi+2(j + 1) = 0,

i ≥ 1, Q ≤ j ≤ S − 1.

(4.13)

λxi(S) + βxi+1(s)− (λ+ 2µ)xi+1(S) + 2(1− γ)µxi+2(S) = 0, i ≥ 1.

(4.14)

−(λ+ β)x0(j) + (1− γ)µx1(j) + γµx1(j + 1) = 0, 1 ≤ j ≤ s. (4.15)

−λx0(j) + (1− γ)µx1(j) + γµx1((j + 1) = 0, s+ 1 ≤ j ≤ Q− 1. (4.16)

βx0(j−Q)−λx0(j)+(1−γ)µx1(j)+γµx1(j+1) = 0, Q ≤ j ≤ S−1. (4.17)

βx0(s)− λx0(S) + (1− γ)µx1(S) = 0. (4.18)

λx0(j)− (λ+ β + µ)x1(j) + 2(1− γ)µx2(j) + 2γµx2(j + 1) = 0, 2 ≤ j ≤ s.
(4.19)

λx0(j)−(λ+µ)x1(j)+2(1−γ)µx2(j)+2γµx2(j+1) = 0, s+1 ≤ j ≤ Q−1.

(4.20)

λx0(j) + βx1(j −Q)− (λ+ µ)x1(j) + 2(1− γ)µx2(j) + 2γµx2(j + 1) = 0,

Q ≤ j ≤ S − 1.

(4.21)

λx0(S) + βx1(s)− (λ+ +µ)x1(S) + 2(1− γ)µx2(S) = 0. (4.22)

Now let

xi(j) = Θi
jπiψj , i ≥ 0, 0 ≤ j ≤ S, (4.23)

The constants Θi
j ’s are given by

Θi
0 = 1, i ≥ 0. (4.24)
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Θi
1 =

{
1
γ , i = 1.
2
γ , i ≥ 2.

(4.25)

Θ0
j =

(
1

γ

)j
, 1 ≤ j ≤ S − 1. (4.26)

Θi
2 =


(
β+γλ
β+λ

)
1
γ2
, i = 1, 2.(

2β+(1+γ)λ
β+λ

)
1
γ2
, i ≥ 3.

(4.27)

Θi
j =



(
1

γ(β+λ)

)
δij−1, 3 ≤ i ≤ 2(j − 1), 3 ≤ j ≤ s+ 1.(

(β+γλ)
γ(β+λ)

)
Θi−2
j−1, i ≥ 2j − 1, 3 ≤ j ≤ s+ 1.(

1
γλ

)
δij−1, 3 ≤ i ≤ 2(j − 1), s+ 2 ≤ j ≤ Q.(

β+γλ
γλ

)
Θi−2
j−1, i ≥ 2j − 1, s+ 2 ≤ j ≤ Q.

(4.28)

where δij−1 = (λ+ 2µ+ β)Θi−1
j−1 − 2µΘi−2

j−1 − (1− γ)λΘi
j−1.

Θi
Q+k =



1
γλ

[(
β+λ
λ

)s
− 1
]−1 [

ξiQ+k−1

(
β+λ
λ

)s
− λ
]
, 3 ≤ i ≤ 2Q, k = 1.

1
γλ

[(
β+λ
λ

)s
− 1
]−1 [

ξi−2Q+k−1γλ
(
β+λ
λ

)s
− λ
]
, i ≥ 2Q+ 1, k = 1.

1
γλ(β+λ)

[(
β+λ
λ

)s−(k−1)
− 1

]−1 [
ξiQ+k−1

[(
β+λ
λ

)s−(k−2)
− 1

]
− βΘi−1

k−1

]
,

3 ≤ i ≤ 2(Q+ k − 1), 2 ≤ k ≤ s.

1
γλ(β+λ)

[(
β+λ
λ

)s−(k−1)
− 1

]−1 [
γλ

[(
β+λ
λ

)s−(k−2)
− 1

]
Θi−2
Q+k−1 − βΘi−1

k−1

]
,

i ≥ 2(Q+ k)− 1, 2 ≤ k ≤ s.
(4.29)

where, ξiQ+k−1 = (λ+ 2µ)Θi−1
Q+k−1 − 2µΘi−2

Q+k−1 − (1− γ)λΘi
Q+k−1.

Θ1
j =


1

γ(β+λ)

[
(λ+ β)Θ0

j−1 − (1− γ)λΘ1
j−1

]
, 3 ≤ j ≤ s+ 1.

1
γ

[
Θ0
j−1 − (1− γ)Θ1

j−1

]
, s+ 2 ≤ j ≤ Q.

(4.30)

Θ0
S =

[
Θ0
s − (1− γ)Θ1

S

]
. (4.31)
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Θ2
j =

 1
γ(β+λ)

[
(λ+ β + µ)Θ1

j−1 − µΘ0
j−1 − (1− γ)λΘ2

j−1

]
, 3 ≤ j ≤ s+ 1.

1
γλϑj−1, s+ 2 ≤ j ≤ Q.

(4.32)

Θ2
Q+k =


1
γλ

[(
β+λ
λ

)s
− 1
]−1 [

ϑQ

(
β+µ
µ

)s
− β

]
, k = 1.

1
γ(β+λ)

[(
β+λ
λ

)s−(k−1)
− 1

]−1 [
ϑj−1

[(
β+λ
λ

)s−(k−2)
− 1

]
− βΘ1

k−1

]
,

2 ≤ k ≤ s.
(4.33)

where, ϑj = (λ+ µ)Θ1
j − µΘ0

j − (1− γ)λΘ2
j , s− 1 ≤ j ≤ S.

Now we require xe=1. That is,

∞∑
i=0

Q+s∑
j=0

Θi
jπiψj = 1 +Q

β

γλ

(
β + γλ

γλ

)s
.

Let α = 1 + Q β
γλ

(
β+γλ
γλ

)s
. So dividing each sub-vector of x by α we get

the steady-state probability distribution vector of the original system.

Thus we arrive at our main theorem:

Theorem 4.3.1. Under the necessary and sufficient condition ρ1 < 1

for stability, the components of the steady-state probability vector of the

process {X (t)|t ≥ 0} with generator matrixW1 is xi(j) = α−1Θi
jπiψj , i ≥

0; 0 ≤ j ≤ S where ρ1 is as defined in (4.2), the probabilities πi corresponds

to the distribution of number of customer in the system as given in (4.5)

and the probabilities ψj are obtained (4.7).

The consequence of Theorem 4.3.1 is that the two dimensional system can

be decomposed into two distinct one dimensional objects one of which cor-

respond to number of customers in an M/M/2 queue and the other to the

number of items in the inventory.



Performance measures 81

4.3.1 Performance measures

• Mean number of customers in the system,

Ls = α−1

(
∞∑
i=1

Q+s∑
j=0

iΘi
jπiψj

)
.

• Mean number of customers in the queue,

Lq = α−1

(
∞∑
i=2

Q+s∑
j=2

(i− 2)Θi
jπiψj

)
.

• Mean inventory level in the system, Im = α−1

(
∞∑
i=0

Q+s∑
j=1

jΘi
jπiψj

)
.

• Mean number of busy server,

PBS = α−1


[
∞∑
i=2

Θi
1πiψ1 +

Q+s∑
j=2

Θ1
jπ1ψj + Θ1

1π1ψ1

]

+2

[
∞∑
i=3

Θi
2πiψ2 +

Q+s∑
j=3

Θ2
jπ2ψj + Θ2

2π2ψ2

]
 .

• Depletion rate of inventory, Dinv = γλα−1

(
∞∑
i=0

Q+s∑
j=1

Θi
jπiψj

)
.

• Mean number of replenishments per time unit,

Rr = βα−1

(
∞∑
i=0

s∑
j=0

Θi
jπiψj

)
.

• Mean number of departures per unit time,

Dm = µα−1

(
∞∑
i=1

Θi
1πiψ1 +

Q+s∑
j=1

Θ1
jπ1ψj

)
+ 2µα−1

(
∞∑
i=2

Q+s∑
j=2

Θi
jπiψj

)
.

• Expected loss rate of customers, Eloss = λα−1
( ∞∑
i=0

Θi
0πiψ0

)
.
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• Expected loss rate of customers when the inventory level is zero per

cycle, Ecloss = Eloss
Rr

.

• Effective arrival rate,

λA = λα−1

(
∞∑
i=0

Q+s∑
j=1

Θi
jπiψj

)
.

• Mean sojourn time of the customers in the system, Ws = Ls
λA

.

• Mean waiting time of a customer in the queue, Wq =
Lq
λA

.

• Mean number of customers waiting in the system when inventory is

available, W̃ = α−1

(
∞∑
i=0

Q+s∑
j=1

iΘi
jπiψj

)
.

• Mean number of customers waiting in the system during the stock

out period,
˜̃
W = α−1

( ∞∑
i=0

iΘi
0πiψ0

)
.

4.4 Optimization problem I

In this section we provide the optimal values of the inventory level s and

the fixed order quantity Q of this model. Now for computing the minimal

costs of M/M/2 queueing-inventory model we introduce the cost function

F(2, s,Q) defined by

F(2, s,Q) = h.Im + c1.Eloss + c2.
˜̃
W + (K +Q.c3) .Rr + c4.PBS + c5. (c− PBS)

where K is fixed cost for placing an order, c1 is the cost incurred due to loss

per customer, c2 is waiting cost per unit time per customer during the stock

out period, c3 is variable procurement cost per item, c4 is the cost incurred

per busy server, c5 is the cost incurred per idle server and h is unit holding

cost of inventory unit per unit of time. We assign the following values to

the parameters: λ = 5, µ = 3, β = 1,K = $500, c1 = $100, c2 = $50, c3 =
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$25, c4 = $10, c5 = $20, h = $2. Thus we obtain Table 4.1 which provide the

optimal pairs (s,Q) and also the corresponding minimum cost (in Dollars).

Here γ is varied from 0.1 to 1, each time increasing it by 0.1 unit. The

optimal pair (s,Q) and the corresponding cost (minimum) are given in

Table 4.1.

Table 4.1: Optimal (s,Q) pair and minimum cost

γ 0.1 0.2 0.3 0.4 0.5

Optimal (s,Q) pair (3,15) (3,21) (3,27) (3,33) (3,39)

& minimum cost 82.684 106.87 130.57 153.76 176.29

γ 0.6 0.7 0.8 0.9 1

Optimal (s,Q) pair (3,43) (5,46) (5,53) (6,53) (6,58)

& minimum cost 198.10 219.04 239.03 258.26 277.18

4.5 M/M/c (c ≥ 3) queueing-inventory system

In this section we consider an M/M/c (c ≥ 3) queueing-inventory system

with positive service time. We keep the model assumptions the same as

in Section 4.2. There are c servers with 3 ≤ c < s. Hence the service

rate is iµ, for i varying from 0 to c, depending on the availability of the

inventory and customers. When the number of customers is at least c and

not less than c items are in the inventory, the service rate is cµ. Write

{Y(t)|t ≥ 0} = {(N (t), I(t))|t ≥ 0}. Then {Y(t)|t ≥ 0} is a CTMC with

state space Ω2 =
∞⋃
i=0
L(i), where L(i) is the collection of states L(i) =

{(i, 0), . . . , (i, Q+ s)} as defined in Section 4.2. The infinitesimal generator
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W2 of the CTMC {Y(t)|t ≥ 0} is

W2 =



B Ā0

A1
2 A1

1 Ā0

A2
2 A2

1 Ā0

. . .
. . .

. . .

Ac−22 Ac−21 Ā0

Ac−12 Ac−11 Ā0

Ā2 Ā1 Ā0

Ā2 Ā1 Ā0 . . .
. . .

. . .
. . .



,

where

[B]kl =



−β, for l = k = 0.

−(λ+ β), for l = k; k = 1, 2, ..., s.

−λ, for l = k; k = s+ 1, s+ 2, ..., S.

β, for l = k +Q; k = 0, 1, ..., s.

0, otherwise.

[
Ā0

]
kl

=

{
λ, for l = k; k = 1, 2, ..., S.

0, otherwise.

[
Ā1

]
kl

=



−β, for l = k = 0.

−(λ+ β + iµ), for l = k; k = 1, 2, ..., c.

−(λ+ β + cµ), for l = k; k = c+ 1, c+ 2, ..., s.

−(λ+ cµ), for l = k, k = s+ 1, s+ 2, ..., S.

β, for l = k +Q; k = 0, 1, ..., s.

0, otherwise.
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[
Ā2

]
kl

=



iγµ, for l = k − 1; k = c, c+ 1, c+ 2, ..., S.

iγµ, for l = k − 1; k = 1, 2, ..., c− 1.

c(1− γ)µ, for l = k; k = c, c+ 1, c+ 2, ..., S.

i(1− γ)µ, for l = k; k = 1, 2, ..., c− 1.

0, otherwise.

For m = 1, 2, ..., c− 1,

[Am2 ]kl =



mγµ, for l = k − 1; m ≤ k; k = 1, 2, ..., S.

kγµ, for l = k − 1; m > k; k = 1, 2, ..., S.

m(1− γ)µ, for l = k; m ≤ k; k = 1, 2, ..., S.

kγµ, for l = k; m > k; k = 1, 2, ..., S.

0, otherwise.

[Am1 ]kl =



−β, for l = k = 0.

−(λ+ β +mµ), for l = k; m ≤ k; k = 1, 2, ..., s.

−(λ+ β + kµ), for l = k; m > k ≥ 1.

−(λ+mµ), for l = k; k = s+ 1, s+ 2, ..., S.

β, for l = k +Q; k = 0, 1, ..., s.

0, otherwise.

4.5.1 System stability and computation of steady-state prob-

ability vector

The Markov chain under consideration is a LIQBD process. For this chain

to be stable it is necessary and sufficient that

ξĀ0e < ξĀ2e. (4.34)

where ξ is the unique non negative vector satisfying,

ξĀ = 0, ξe = 1. (4.35)



86 Multi-server queueing-inventory system

and Ā = Ā0 + Ā1 + Ā2, is the infinitesimal generator of the finite state

CTMC on the set {0, 1, . . . , S}. Write ξ as (ξ0, ξ1, . . . , ξS) . Then we get

from (4.35), the components of the probability vector ξ explicitly as,

ξ0 =



1 +
c−1∑
i=1

i−1∏
k=0

β+kγµ
(k+1)γµ +

c−1∏
k=1

β+kγµ
kγµ

[(
β+cγµ
cγµ

)s+1−c
− 1

]
+Q

(
β+cγµ
cγµ

)s+1−c c−1∏
k=0

β+kγµ
(k+1)γµ −

sβ
cγµ

[
1 +

s−2∑
i=0

i∏
k=0

β+kγµ
(k+1)γµ

]
+ β2

cγµ

[
1 +

s−2∑
i=1

i∏
k=1

β+kγµ
kγµ

]



−1

,

ξi =



i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
ξ0, for 1 ≤ i ≤ c.(

β+cγµ
cγµ

)i−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
ξ0, for c+ 1 ≤ i ≤ s+ 1.

ξi+1, for s+ 1 ≤ i ≤ Q− 1.

and

ξQ+i =



[(
β+cγµ
cγµ

)s+1−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

cγµ

]
ξ0, for i = 1.[(

β+cγµ
cγµ

)s+1−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

cγµ

[
1 +

∑i−2
j=0

j∏
k=0

β+kγµ
(k+1)γµ

]]
ξ0,

for 2 ≤ i ≤ s.

From the relation (4.34) we have

Lemma 4.5.1. The stability condition of the queueing-inventory sys-

tem under study is given by ρ2 < 1, where ρ2 = λ(1−ξ0)

µ

[
c−1∑
j=1

jξj+c
Q+s∑
j=c

ξj

] .

Proof. On the same lines as that of Lemma (4.2.1).

Next we compute the steady-state probability vector ofW2 under the sta-

bility condition. Let y denote the steady-state probability vector of the
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generatorW2. So y must satisfy the relations

yW2 = 0, ye = 1. (4.36)

Let us partition y by levels as

y = (y0, y1, y2, . . . ). (4.37)

where the subvectors of y are further partitioned as,

yi = (yi(0), yi(1), yi(2), . . . , yi(S)), i ≥ 0. (4.38)

The steady-state probability vector y is obtained as,

yi+c−1 = yc−1R
i, i ≥ 1. (4.39)

where R is the minimal non-negative solution to the matrix quadratic equa-

tion

R2Ā2 +RĀ1 + Ā0 = 0.

and the vectors y0, y1, . . . , yc−1 can be obtained by solving the following

equations,

y0B + y1A
1
2 = 0.

yi−1Ā0 + yiA
i
1 + yi+1A

i+1
2 = 0, 1 ≤ i ≤ c− 1.

yc−2Ā0 + yc−1

(
Ac−11 +RĀ2

)
= 0.

 (4.40)

Now from (4.40), we get

y0 = y1A
1
2(−B)−1 = y1A

1
2(−Ā0

′
)−1.

y1 = −y2A2
2

[
A1

1 +A1
2(−Ā0

′
)−1Ā0

]−1
= y2A

2
2(−Ā1

′
)−1
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yi = yi+1A
i+1
2 (−Āi

′
)−1, 0 ≤ i ≤ c− 1,

where

Āi
′

=

{
B, i = 0.

Ai1 +Ai2(−Ā
′
i−1)

−1Ā0, 1 ≤ i ≤ c,

subject to normalizing condition

c−2∑
i=1

yi + yc−1(I −R)−1e = 1.

Since R cannot be computed explicitly we explore the possibility of algo-

rithmic computation. Thus, one can use logarithmic reduction algorithm

as in [45] for computing R. We list here only the main steps involved in

logarithmic reduction algorithm for computation of R.

Logarithmic Reduction Algorithm for R:

Step 0: H ← (−Ā1)
−1Ā0, L← (−Ā1)

−1Ā2, G = L, and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ε.

Step 2: R = −Ā0(Ā1 + Ā0G)−1.
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4.6 Conditional probability distributions

We could arrive at analytical expression for system state probabilities of

M/M/2 queueing-inventory system. However for the M/M/c queueing-

inventory system with c ≥ 3, the system state distribution does not seem

to have closed form owing to the strong dependence between the inventory

level, number of customers and the number of servers in the system. In

this section we provide conditional probabilities of the number of items in

the inventory, given the number of customers in the system and also that

of the number of customers in the system conditioned on the number of

items in the inventory.

4.6.1 Conditional probability distribution of the inventory

level conditioned on the number of customers in the

system

Let η= (η0, η1, ..., ηS) be the probability distribution of the inventory level

conditioned on the number of customers in the system. Then we get ex-

plicit form for the conditional probability distribution of the inventory level

conditioned on the number of customers in the system. We formulate the

result in the following lemma:

Lemma 4.6.1. Assume that i is the number of customers in the

system at same point of time. Conditional on this we compute the inventory

level distribution. We consider two cases as follows:

(i) When i < c, the inventory level probability distribution is given by,
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η0 =



1 +
i−1∑
j=1

j−1∏
k=0

β+kγµ
(k+1)γµ +

i−1∏
k=1

β+kγµ
kγµ

[(
β+iγµ
iγµ

)s+1−i
− 1

]
+Q

(
β+iγµ
iγµ

)s+1−i i−1∏
k=0

β+kγµ
(k+1)γµ −

sβ
iγµ

[
1 +

s−2∑
j=0

j∏
k=0

β+kγµ
(k+1)γµ

]

+ β2

iγµ

[
1 +

s−2∑
j=1

j∏
k=1

β+kγµ
kγµ

]



−1

,

ηj =



j−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for 1 ≤ j ≤ i.(

β+iγµ
iγµ

)j−i i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for i+ 1 ≤ j ≤ s+ 1.

ηj+1, for s+ 1 ≤ j ≤ Q− 1.

and

ηQ+j =



[(
β+iγµ
iγµ

)s+1−i i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

iγµ

]
η0, for j = 1.[(

β+iγµ
iγµ

)s+1−i i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

iγµ

[
1 +

j−2∑
i=0

i∏
k=0

β+kγµ
(k+1)γµ

]]
η0,

for 2 ≤ j ≤ s.

(ii) When i ≥ c, the inventory level probability distribution is derived

by,

η0 =



1 +
c−1∑
j=1

j−1∏
k=0

β+kγµ
(k+1)γµ +

c−1∏
k=1

β+kγµ
kγµ

[(
β+cγµ
cγµ

)s+1−c
− 1

]
+Q

(
β+cγµ
cγµ

)s+1−c c−1∏
k=0

β+kγµ
(k+1)γµ −

sβ
cγµ

[
1 +

s−2∑
j=0

j∏
k=0

β+kγµ
(k+1)γµ

]

+ β2

cγµ

[
1 +

s−2∑
j=1

j∏
k=1

β+kγµ
kγµ

]



−1

,

ηj =



j−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for 1 ≤ j ≤ c.(

β+cγµ
cγµ

)j−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for c+ 1 ≤ j ≤ s+ 1.

ηj+1, for s+ 1 ≤ j ≤ Q− 1.

and
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ηQ+j =



[(
β+cγµ
cγµ

)s+1−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

cγµ

]
η0, for j = 1.[(

β+cγµ
cγµ

)s+1−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

cγµ

[
1 +

j−2∑
c=0

c∏
k=0

β+kγµ
(k+1)γµ

]]
η0,

for 2 ≤ j ≤ s.

Proof. Let Γ1 be the infinitesimal generator of the corresponding Markov

chain.

(i) Case of i < c.

The infinitesimal generator Γ1 is given by,

Γ1=



0 1 . . . i . . . c . . . s . . . Q . . . S

0 −β β

1 γµ −(γµ + β)

2 2γµ −(2γµ + β)

.

.

.
. .
.

. .
.

. .
.

i iγµ −(iγµ + β)

.

.

.
.
. .

.
. .

c iγµ −(iγµ + β)

.

.

.
.
.
.

.
.
.

s iγµ −(iγµ + β) β

iγµ −iγµ
.
.
.

Q
.
.
.

.
.
.

.

.

. iγµ −iγµ
S iγµ −iγµ



.

and

The inventory level distribution η can be obtained from the equations

ηΓ1= 0 and ηe= 1, we get

ηj =



j−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for 1 ≤ j ≤ i.(

β+iγµ
iγµ

)j−i i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for i+ 1 ≤ j ≤ s+ 1.

ηj+1, fors+ 1 ≤ j ≤ Q− 1.
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ηQ+j =



[(
β+iγµ
iγµ

)s+1−i i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

iγµ

]
η0, for j = 1.[(

β+iγµ
iγµ

)s+1−i i−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

iγµ

[
1 +

j−2∑
i=0

i∏
k=0

β+kγµ
(k+1)γµ

]]
η0,

for 2 ≤ j ≤ s.

where, η0 =



1 +
i−1∑
j=1

j−1∏
k=0

β+kγµ
(k+1)γµ +

i−1∏
k=1

β+kγµ
kγµ

[(
β+iγµ
iγµ

)s+1−i
− 1

]
+Q

(
β+iγµ
iγµ

)s+1−i i−1∏
k=0

β+kγµ
(k+1)γµ −

sβ
iγµ

[
1 +

s−2∑
j=0

j∏
k=0

β+kγµ
(k+1)γµ

]

+ β2

iγµ

[
1 +

s−2∑
j=1

j∏
k=1

β+kγµ
kγµ

]



−1

.

(ii) Case of i ≥ c.
The infinitesimal generator Γ2 is given by,

Γ2=



0 1 . . . c . . . i . . . s . . . Q . . . S

0 −β β

1 γµ −(γµ + β)

2 2γµ −(2γµ + β)

.

.

.
.
.
.

.
.
.

.
.
.

c cγµ −(cγµ + β)

.

.

.
.
.
.

.
.
.

i cγµ −(cγµ + β)

.

.

.
. .
.

. .
.

s cγµ −(cγµ + β) β

cγµ −cγµ
.
.
.

Q
.
.
.

.
.
.

.

.

. cγµ −cγµ
S cγµ −cγµ



.

By solving the equations ηΓ2= 0 and ηe= 1, we get
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ηj =



j−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for 1 ≤ j ≤ c.(

β+cγµ
cγµ

)j−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
η0, for c+ 1 ≤ j ≤ s+ 1.

ηj+1, for s+ 1 ≤ j ≤ Q− 1.

and

ηQ+j =



[(
β+cγµ
cγµ

)s+1−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

cγµ

]
η0, for j = 1.[(

β+cγµ
cγµ

)s+1−c c−1∏
k=0

(
β+kγµ
(k+1)γµ

)
− β

cγµ

[
1 +

j−2∑
c=0

c∏
k=0

β+kγµ
(k+1)γµ

]]
η0,

2 ≤ j ≤ s.

where, η0 =



1 +
c−1∑
j=1

j−1∏
k=0

β+kγµ
(k+1)γµ +

c−1∏
k=1

β+kγµ
kγµ

[(
β+cγµ
cγµ

)s+1−c
− 1

]
+Q

(
β+cγµ
cγµ

)s+1−c c−1∏
k=0

β+kγµ
(k+1)γµ −

sβ
cγµ

[
1 +

s−2∑
j=0

j∏
k=0

β+kγµ
(k+1)γµ

]

+ β2

cγµ

[
1 +

s−2∑
j=1

j∏
k=1

β+kγµ
kγµ

]



−1

.

4.6.2 Conditional probability distribution of the number of

customers given the number of items in the inventory

Let pi, i ≥ 0, denote the probability that there are i customers in the system

conditioned on the inventory level at j. We have three different cases:

(i) When j = 0,

pi =
µ

µ+ λ+ β
pi+1, for i ≥ 1.

and

p0 =
µ

µ+ λ+ β
p1, for i = 0.
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(ii) When 0 < j < c,

pi =


λi

i!µi
p0, for i < j.
λi

j!ji−jµi
p0, for i ≥ j; i < c.

λi

j!ji−jµi
p0, for i ≥ j; 0 < j ≤ c; i ≥ c.

(iii) When j ≥ c,

pi =


λi

i!µi
p0, for 1 ≤ i < c.
λi

c!ci−cµi
p0, for i ≥ c; j ≤ i.

λi

c!ci−cµi
p0, for c ≤ i ≤ j.

4.6.3 Performance measures

• Mean number of customers in the system, Ls =
∞∑
i=1

Q+s∑
j=0

iyi(j).

• Mean number of customers in the queue, Lq =
∞∑

i=c+1

Q+s∑
j=0

(i− c)yi(j).

• Mean inventory level in the system, Im =
∞∑
i=0

Q+s∑
j=1

jyi(j).

• Mean number of busy server,

PBS =
c∑

k=1

k

[
∞∑

i=k+1

yi(k)+
Q+s∑
j=k+1

yk(j) + yk(k)

]

• Mean number of idle server , PIS =

(
c−

∞∑
i=0

yi(0)

)
.

• Depletion rate of inventory, Dinv = γλ

(
∞∑
i=0

Q+s∑
j=1

yi(j)

)
.
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• Mean number of replenishments per time unit, Rr = β

(
∞∑
i=0

s∑
j=0

yi(j)

)
.

• Mean number of departures per unit time,

Dm =
c−1∑
k=1

[
kµ

(
∞∑
i=k

yi(k)+
Q+s∑
j=k

yk(j)

)]
+ cµ

[
∞∑
i=c

Q+s∑
j=c

yi(j)

]
.

• Expected loss rate of customers, Eloss = λ

( ∞∑
i=0

yi(0)

)
.

• Expected loss rate of customers when the inventory level is zero per

cycle, Ecloss = Eloss
Rr

.

• Mean number of customers arriving per unit time,

λA = λ

(
∞∑
i=0

Q+s∑
j=1

yi(j)

)
.

• Mean sojourn time of the customers in the system, Ws = Ls
λA

.

• Mean waiting time of a customer in the queue, Wq =
Lq
λA

.

• Mean number of customers waiting in the system when inventory is

available, W̃ =
∞∑
i=1

Q+s∑
j=1

iyi(j).

• Mean number of customers waiting in the system during the stock

out period,
˜̃
W =

∞∑
i=1

iyi(0).

4.7 Analysis of inventory cycle time

We define the inventory cycle time random, Γcycle as the time interval be-

tween two consecutive instants at which the inventory level drops to s. Thus

the inventory cycle time is a random variable whose distribution depends
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on the number of customers at the time when inventory level dropped to

s at the beginning of the cycle and the inventory level process prior to

replenishment. We proceed with the assumption that γ = 1. If the

number of customers present in the system is at least Q+ c when the order

for replenishment is placed, then we need not have to look at future arrivals

to get a nice form for the cycle time distribution. In fact it is sufficient that

there are at least Q customers at that epoch. However in this case the

service rate during lead time may drop below cµ even when there are at

least c items in the inventory. This is so since number of customers may go

below c.

4.7.1 When the number of customers ` ≥ Q+ c

When the number of customers is at least Q + c, future arrivals need not

be considered. The service rate of the M/M/c queueing-inventory system

depends on the number of customers, number of servers and number of

items in the inventory. Thus we consider the following cases:

Case 1. Replenishment occurs before inventory level hits c− 1.

We consider the state (`, s) as the starting state; thus the inventory level

decreases from s to a particular level s − k, k vary from 0 to s − c due

to service completion at rate cµ, during the lead time. At level s − k,

the replenishment occurs and it is absorbed to {∆1}, where the absorbing

state is defined as {∆1} = {(`− k,Q+ s− k)|0 ≤ k ≤ s− c} . Therefore

the time until absorption to {∆1} follows Erlang distribution of order k with

parameter cµ, it is denoted as E(cµ; k). Now, the number of customers in

the system is `−k or larger with the corresponding inventory level Q+s−k,

for k varying from 0 to s− c. Similarly, the inventory level reaches s from

Q + s − k with Q − k service completions all of which have rate cµ. This
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time duration also follows Erlang distribution of order Q − k. Write this

as E(cµ;Q − k). Thus under the condition that there are at least Q + c

customers at the beginning of the cycle and that the inventory level does

not fall below c, the inventory cycle time, Γcycle has Erlang distribution of

order Q with parameter cµ. That is,

Γcycle ∼ E(cµ; k) ∗ E(cµ;Q− k)

∼ E(cµ;Q).

where the symbol “∼” stands for “has distribution”. The probability of

replenishment taking place before inventory level drops to c − 1, is given

by
∞∫
0

s−c∑
k=0

e−µv(µv)kβe−βv

k! dv.

Case 2. Replenishment after hitting c− 1 but not zero.

The inventory level decreases from s to k, when k varies from 1 to c − 1.

The first s−c+1 services are at the same rate cµ. Thereafter it shows down

to (c−1)µ and finally to kµ, when replenishment occurs. Consequently the

inventory level rises to Q + k. Now on the service rate stays at cµ. Thus

in the cycle, the distribution of the time until replenishment takes place

is the convolution of generalized Erlang distribution and that of an Erlang

distribution E(Q+k−s; cµ). The conditional distribution of replenishment

realization after s − k − 1 service are completed, but before (s − k)th is

completed, can be computed as in case 1. At the same level s − k, the

replenishment will occur and it is absorbed to {∆2}, where the absorbing

state is defined as {∆2} = {(`− (s− k), Q+ k)|1 ≤ k ≤ c− 1} . Thus, the

time until absorption to {∆2} follows generalized Erlang distribution with

parameters cµ, (c − 1)µ, . . . , (k + 1)µ of order s − k and k vary from 1 to

c − 1. It is denoted as GE (cµ, (c− 1)µ, . . . , (k + 1)µ; s− k). Then from
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{∆2} the inventory level reaches s due to service completion with parameter

cµ. Thus the time duration follows Erlang distribution with parameter cµ

of order Q+k−s, k vary from 1 to c−1. That is, E (cµ;Q+ k − s). Hence

the inventory cycle time, Γcycle follows generalized Erlang distribution of

order Q. Therefore, Γcycle is defined as

Γcycle ∼ GE

 cµ, . . . , cµ︸ ︷︷ ︸
s−c+1 times

, (c− 1)µ, . . . , (k + 1)µ; s− k

∗E (cµ;Q+ k − s)

where GE(.) stands for generalized Erlang distribution.

Case 3. Replenishment after inventory level reaching zero.

Then the inventory level reaches 0 from the level s due to service comple-

tion with parameters cµ (repeated s − c + 1 times). Thus the time until

absorption to {∆3} = {(`− s,Q)} follows generalized Erlang distribution

of order s and parameters cµ, (c−1)µ, . . . , µ. When the inventory level hits

0, the system becomes idle for a random duration of time which follows ex-

ponential distribution with parameter β. After replenishment, the system

starts service and consequently the inventory level reaches s from Q due to

service completion with parameter cµ. This part has Erlang distribution

with parameter cµ and order Q−s. Thus, Γcycle follows generalized Erlang

distribution of order Q. That is,

Γcycle ∼ GE

 cµ, . . . , cµ︸ ︷︷ ︸
s−c+1 times

, (c− 1)µ, . . . , µ; s

 ∗ exp(β) ∗ E(cµ;Q− s)

The cases we are going to consider hereafter result in cycle time

distribution that are phase type with not necessarily unique rep-

resentation. However, one can sort out the problem of minimal

representation. Obviously this is the one which considers that

many arrivals needed to have exactly Q services in this cycle.
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4.7.2 When the number of customers ` < Q+ c

In this case we may have to consider future arrivals as well, since number

of customers available at the start of the cycle may be such that the service

rate falls below cµ. Thus the cycle time will have more general distribution,

namely the phase type. We go about doing this. Our procedure is such that

the moment we have enough customers to serve during the remaining part

of the cycle, we stop looking at future arrivals. Thus consider a Markov

chain on the state space

{(s, `) , (s− 1, `− 1) , . . . , (0, `− s) , (s, `+ 1) , (s− 1, `)

. . . , (0, `− s+ 1) , . . . , (s+Q, `) , . . . , (s+Q− `, 0) ,

(s+Q, `+ 1) , . . . , (s, `) , . . . (s+Q, s+Q− `− 1) ,

· · · ,
(s+Q− 1, `− 1) , (s+Q, s+Q− `) , . . . , (s, s− `− 1)} .

The initial state (s, `). Thus the initial probability vector will have one

at the position corresponding to (s, `) and the rest of the elements zero.

The absorption state in this Markov chain is (s, ∗), where ∗ belonging to

{0, 1, 2, . . . , Q+ `− s} and is a departure epoch. Let T be the block with

transitions among transient states and T ∗ be the column vector with tran-

sition rates to the absorbing states as elements. Then the cycle time has

distribution 1−αeT te where α is the initial probability vector with 1 at the

position indicating the inventory level s as first coordinate and the number

of customers (= `) at the beginning of the cycle as second coordinate. Note

that the phase type representation obtained is not unique since the service

rate strongly depends on both inventory level and number of customers in

the system. The case of ` < s: Here again the procedure is similar to that

corresponding to ` ≥ s, but less than Q + c. The initial state is (s, `).

After exactly Q service completions with a replenishment within this cy-

cle and with arrivals truncated at that epoch which ensure rate cµ for as
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many services as possible. The absorption state of the Markov chain gener-

ated corresponds to a departure epoch with s items in the inventory. Here

again the cycle time has a PH distribution with representation which is not

unique because the service rates may change depending on the number of

customers in the system and the number of items in the inventory.

4.8 Optimization problem II

We look for the optimal pair of control variables in the model discussed

above. Now for computing the minimal cost of (s,Q) model we introduce

the cost function: F(c, s,Q) which is defined by,

F(c, s,Q) = h.Im + c1.Eloss + c2.
˜̃
W + (K +Q.c3) .Rr + c4.PBS + c5. (c− PBS)

where s = 40, S = 81 and K, c1, c2, c3, c4, c5, h are the same input param-

eters as described in Section 4.4. We provide optimal c and corresponding

minimum cost for various γ values. From Table 4.2 we notice that the op-

timal value of c is 6 for various γ values, presumably become of the high

holding cost.

Table 4.2: Optimal server c and minimum cost

γ 0.1 0.2 0.3 0.4 0.5

Optimal c 6 6 6 6 6

& minimum cost 148.78 166.36 183.93 201.51 219.09

γ 0.6 0.7 0.8 0.9 1

Optimal c 6 6 6 6 6

& minimum cost 236.66 254.24 271.82 289.40 306.98
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Table 4.3: Optimal (s,Q) values and minimum cost

H
HHH

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
c

3 (4,12) (4,15) (4,19) (4,23) (4,27) (4,31) (4,37) (4,39) (4,42) (4,45)

95.857 113.57 131.86 151.49 171.55 191.59 211.50 230.82 249.87 268.55

4 (5,15) (5,19) (5,23) (5,27) (5,31) (5,34) (5,38) (5,41) (5,45) ((5,48)

126.43 147.25 166.70 186.06 205.42 224.69 243.74 262.55 281.05 299.25

5 (6,16) (6,22) (6,26) (6,31) (6,34) (6,38) (6,42) (6,45) (6,48) (6,52)

154.11 177.53 198.43 218.40 237.91 257.07 275.93 294.49 312.75 330.72

6 (7,16) (7,23) (7,28) (7,32) (7,36) (7,40) (7,43) (7,46) (7,49) (7,53)

177.90 202.28 223.79 244.06 263.65 282.79 301.56 320.00 338.13 355.97

7 (8,16) (8,23) (8,28) (8,32) (8,36) (8,40) (8,43) (8,46) (8,49) (8,53)

200.30 224.90 246.58 266.91 286.47 305.52 324.18 342.49 360.51 378.24

8 (9,16) (9,23) (9,28) (9,32) (9,36) (9,40) (9,43) (9,46) (9,49) (9,53)

222.30 246.98 268.68 288.97 308.45 329.01 345.92 364.12 382.02 399.65

9 (10,16) (10,23) (10,28) (10,32) (10,36) (10,40) (10,43) (10,46) (10,49) (10,53)

244.29 268.97 290.65 310.87 330.25 349.08 367.49 385.57 403.36 420.89

10 (11,16) (11,23) (11,28) (11,32) (11,36) (11,40) (11,43) (11,46) (11,49) (11,53)

266.27 290.94 312.60 332.76 352.06 370.78 389.08 407.05 424.73 442.17

In Table 4.3, we examine the optimal pair (s,Q) and the corresponding

minimum cost for various of γ and c, keeping other parameters fixed (as in

Section 4.4).
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Chapter 5

Queueing-inventory system

with working vacations and

vacation interruptions

5.1 Introduction

In this chapter we discuss about queueing-inventory system under (s,Q)

policy with working vacations and vacation interruptions. This investiga-

tion appears almost unrelated to problems discussed in the rest of the thesis.

Nevertheless, if we replace the assumption of working vacation by the usual

notion of idleness of the server due to the absence of customers and/ in-

ventory then we recoop the model discussed in chapter 2. The notion of

working vacation is introduced by Jihong Li and Naishuo Tian [22]. Dur-

ing working vacation also the server provides service, however, at a lower

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, R. Manikandan and Sajeev S.Nair : Classical queueing-inventory

system with working vacations and vacation interruptions (Under review).
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rate. Further, the server can come back from the vacation mode to the

normal working mode once some indices of the system, such as the number

of customers achieve a certain value and items of the inventory are avail-

able during a working vacation. More precisely, the server may come back

from the vacation without completing the vacation period. This is called

vacation interruption (see [22]). We assume that if there are customers in

the system at a service completion epoch during a working vacation, the

server will comeback to the normal working mode; else the server stays

in the working vacation mode. With the system having infinite capacity,

we derive condition for stability of the system. Despite the corresponding

queueing system (without inventory) having analytic solution, we are not

able to arrive at even closed form expression for system state distribution

for the queueing-inventory problem under discussion. Hence algorithmic

approach is adopted which is given in Section 5.3. Several performance

measures are evaluated in Section 5.3.3. An optimization problem is also

discussed in Section 5.4.

5.2 Mathematical formulation

Consider a single server queueing-inventory system with working vacation

and vacation interruptions. The server takes vacation only in the absence

of customers in the system and not due to inventory level falling to zero

at a service completion epoch. We assume that if there are customers in

the system after a service completion during a working vacation period,

the server will come back to the normal working mode. On the other hand

if there are no customers in the system at the end of service in vacation

mode, the server continues the vacation. This vacation duration follows

exponential distribution with parameter θ.
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Customers arrive to a single server counter according to a Poisson pro-

cess of rate λ. They do not join the system when inventory level is zero.

Service time follows exponential distribution with parameter µv during va-

cation period and µb during normal period. We assume that even when

vacation mode is realized during a service in that mode, switching to nor-

mal mode is done starting with the next customers service only, provided

there is at least one waiting on completion of the present service. The

inventory replenishment is governed by the (s,Q) policy. Here s is the re-

order level and Q(= S−s) is the fixed order quantity. We assume (S > 2s)

to avoid perpetual reordering. Lead time is exponentially distributed with

rate β. Then {X (t)|t ≥ 0} = {(N (t),M(t), I(t))|t ≥ 0} is a CTMC with

state space Ω is given by

Ω =
∞⋃
i=0

L(i)

where the state space of the CTMC is partitioned in to levels L(i) defined

as

L(0) = {(0, 0, 0), (0, 0, 1), . . . , (0, 0, Q+ s)}

and L(i) = {(i, 0, 0), (i, 0, 1), . . . , (i, 0, Q+ s), (i, 1, 1), . . . , (i, 1, Q+ s)} , for

i ≥ 1. Now we describe the transitions in the Markov chain:

(a) Transitions due to arrival of customers:

(i, 0, j)→ (i+ 1, 0, j) : the rate is λ, for i ≥ 0; 1 ≤ j ≤ Q+ s.

(i, 1, j)→ (i+ 1, 1, j) : the rate is λ, for i ≥ 0; 1 ≤ j ≤ Q+ s.

(b) Transitions due to service completion during working vacation mode:
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(i, 0, j)→ (i− 1, 0, j − 1) : the rate is µv, for i = 1; 1 ≤ j ≤ Q+ s.

(i, 0, j)→ (i− 1, 1, j − 1) : the rate is µv, for i ≥ 2; 2 ≤ j ≤ Q+ s.

(i, 0, 1)→ (i− 1, 0, 0) : the rate is µv, for i ≥ 2.

(c) Transitions due to service completion during normal mode:

(i, 1, j)→ (i− 1, 0, j − 1) : the rate is µb, for i = 1; 1 ≤ j ≤ Q+ s.

(i, 1, j)→ (i− 1, 1, j − 1) : the rate is µb, for i ≥ 2; 2 ≤ j ≤ Q+ s.

(i, 1, 1)→ (i− 1, 0, 0) : the rate is µb, for i ≥ 2.

(d) Transitions due to replenishment:

(i, 0, j)→ (i, 0, Q+ j) : the rate is β, for i ≥ 0; 0 ≤ j ≤ s.

(i, 1, j)→ (i, 1, Q+ j) : the rate is β, for i ≥ 1; 1 ≤ j ≤ s.

(e)Transitions due to vacation realization:

(i, 0, j)→ (i, 1, j) : the rate is θ, for i ≥ 1; 1 ≤ j ≤ Q+ s.

All other transition pairs have rate zero. The infinitesimal generatorW of

this CTMC is expressed in a block partitioned form:
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W =



C1 C0

C2 A1 A0

A2 A1 A0

A2 A1 A0 ...
. . .

. . .
. . .


,

where C1 is a square matrix of dimension S + 1 that represents transitions

within L(0); C0 and A0 represent transitions from L(i) to L(i+1) for i ≥ 0,

with dimensions (S+ 1)× (2S+ 1) and (2S+ 1)× (2S+ 1) respectively; C2

has dimension (2S + 1) × (S + 1) and represents transitions from L(1) to

L(0); A1 is a square matrix of dimension 2S+1 which represents transitions

within L(i), i ≥ 1, and A2 is a square matrix of order 2S+1 that represents

transitions from L(i) to L(i− 1), i ≥ 2.

5.3 Analysis of the system

In this section we discuss the steady-state analysis of the queueing-inventory

system under study by first establishing the stability condition of the sys-

tem. Define A=A0+A1+A2. Let the steady-state probability vector of the

generator matrix A be π = (π0(0), π0(1), . . . , π0(S), π1(1), π1(2), . . . π1(S)).

Then the relations πA = 0 and πe = 1 gives the following equations,

π0(Q) =
β

θ + µv
π0(0)

π0(1) = π0(2) = · · · = π0(Q−1) = π0(Q+1) = π0(Q+2) = · · · = π0(S) = 0

π1(1) =
β

µb
π0(0)

π1(2) =
β(β + µb)

µ2b
π0(0)
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π1(3) =
β(β + µb)

2

µ3b
π0(0)

...

π1(s+ 1) =
β(β + µb)

s

µs+1
b

π0(0)

π1(s+ 1) = π1(s+ 2) = · · · = π1(Q)

π1(1) + π1(Q+ 1) = π1(Q)

π1(2) + π1(Q+ 2) = π1(Q)

π1(3) + π1(Q+ 3) = π1(Q)

...

π1(s) + π1(S) = π1(Q)

The LIQBD process with infinitesimal generatorW is stable if and only if

πA0e < πA2e. That is,

⇐⇒ µb (π1(1) + π1(2) + · · ·+ π1(S)) > λ (π1(1) + π1(2) + · · ·+ π1(S))+λπ0(Q)

⇐⇒ µbQπ1(Q) > λ (π0(Q) +Qπ1(Q))

⇐⇒ µbQ
β(β + µb)

s

µs+1
b

π0(0) > λ

(
β

θ + µv
π0(0) +Q

β(β + µb)
s

µs+1
b

π0(0)

)

⇐⇒ λ <
µbQ

(β+µb)
s

µs+1
b

1
θ+µv

+Q (β+µb)s

µs+1
b

⇐⇒ λ <
µb

1 +
µs+1
b

(θ+µv)Q(β+µb)
s

Thus we have the following result for the stability of the system:
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Lemma 5.3.1. The CTMC Ω is stable if and only if λ < µb

1+
µs+1
b

(θ+µv)Q(β+µb)
s

.

Proof. From the well known result in Neuts [47] on the positive re-

currence of A, we have πA0e < πA2e. With a bit of computation, this

simplifies to the result λ < µb

1+
µs+1
b

(θ+µv)Q(β+µb)
s

.

It may be noted that the above condition is weaker than the one corre-

sponding to M/M/1 queueing-inventory systems discussed in chapters 2

and 3. Next we compute the steady-state probability vector x of the in-

finitesimal generator W under the stability condition. The steady-state

probability vector x be partitioned according to the levels as

x = (x0, x1, x2, ...), (5.1)

where the subvectors of x are further partitioned as

x0 = (x0(0, 0), x0(0, 1), x0(0, 2), ..., x0(0, S)) , (5.2)

xi = (xi(0, 0), xi(0, 1), xi(0, 2), ..., xi(0, S), xi(1, 1), xi(1, 2), ..., xi(1, S)) , i ≥ 1.

(5.3)

Suppose xi+1 = x1R
i, for i ≥ 1. Then from xW = 0, we get

x1A0 + x2A1 + x3A2 = 0

=⇒ x1A0 + x2RA1 + x1R
2A2 = 0

=⇒ x1

(
A0 +RA1 +R2A2

)
= 0

Choose R such that A0 +RA1 +R2A2 = 0. Also we have

x0C0 + x1C2 = 0

x0C1 + x1A1 + x2A2 = 0
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=⇒ x0C1 + x1 (A1 +RA2) = 0

=⇒ x1 = −x0C1 (A1 +RA2)
−1

= x0V, where V = −C1 (A1 +RA2)
−1

Hence from the above we get x0 (C0 + V C2) = 0. First take x0 as the

steady-state vector of C0+V C2. Then x1 = x0V and xi+1 = x1R
i, for i ≥

1. Now the steady-state probability distribution of the system is obtained

by dividing each xi, with the normalizing constant

[x0 + x1 + · · · ] e =
[
x0 + x1 (I −R)−1

]
e.

Once the matrix R is obtained, the vector x can be computed by ex-

ploiting the special structure of the coefficient matrices. One can use loga-

rithmic reduction algorithm for computing R. We will list the main steps

involved in the logarithmic reduction algorithm.

Logarithmic Reduction Algorithm for R:

Step 0: H ← (−A1)
−1A0, L← (−A1)

−1A2, G = L, and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ε.

Step 2: R = −A0(A1 +A0G)−1.
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5.3.1 Busy period analysis

For the system under study, we define busy period the time duration be-

tween the arrival of a customer to an empty system with positive inventory

and the first epoch thereafter when the system is left with no customer

immediately after a service completion. Thus it is precisely the first pas-

sage time from the state (1, 0, j), for 1 ≤ j ≤ S, to the state (0, 0, j̃), for

0 ≤ j̃ ≤ S−1. Busy cycle for the given system is the time interval between

two successive departures, which leave the system empty (in terms of cus-

tomers). Thus the busy cycle is the first return time to the state (0, 0, j̃),

for 0 ≤ j̃ ≤ S with at least one visit to any other state. Before analyzing

the busy period structure we introduce the notion of fundamental period.

For the QBD process under consideration, it is the first passage time from

level i, where i > 1, to the level i − 1. The cases i = 1 and i = 0 corre-

sponding to the boundary states need to be discussed separately. It should

be noted that due to the structure of the QBD process the distribution of

the first passage time is invariant in i (i ≥ 2).

LetGjj̃(k, τ) denote the conditional probability that the QBD process start-

ing in the state (i, 0, j), for 1 ≤ j ≤ S and i > 1, at time 0, reaches the

state (i− 1, 0, j̃), where 0 ≤ j̃ ≤ S − 1, for the first time, involving exactly

k transitions and completing before time τ . Thus

Gjj̃(k, τ) = P [τ <∞ : χ(τ) = j̃/χ(0) = j]

where τ is the first passage time from the level i to the level i−1 and χ is the

QBD process under reference. Because of the structure ofW , the probabil-

ity Gjj̃(k, τ) does not depend on i. The matrix with elements Gjj̃(k, τ) is

denoted by G(k, τ). For convenience, we write the joint transform matrix,

G̃jj̃(z, θ) =

∞∑
k=1

zk
∫ ∞
0

e−θτdGjj̃(k, τ) ; |z| ≤ 1, θ > 0
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and the matrix

G̃(z, θ) = (G̃jj̃(z, θ)).

The matrix G̃(z, θ)is the unique solution to the equation (see Neuts [47])

G̃(z, θ) = z(θI −A1)
−1A2 + (θI −A1)

−1A0G̃
2(z, θ). (5.4)

Then the matrix G = G̃(1, 0) takes care of the first passage times, except

for the boundary states. If we know the matrix R then matrix G can be

computed using the result (see [44])

G = −(A1 +RA2)
−1A2. (5.5)

We use logarithmic reduction method to compute G. For the boundary

level states 1 and 0 let G
(1,0,j)

jj̃
(k, τ), for 1 ≤ j ≤ S and G

(0,0,̃j)

jj̃
(k, τ), for

0 ≤ j̃ ≤ S − 1, be the conditional probability discussed above for the first

passage times from level 1 to level 0 and the first return time to the level

0 respectively. Then as in (5.4) we get

G̃(1,0,j)(z, θ) = z(θI−A1)
−1C2+(θI−A1)

−1A0G̃(z, θ)G̃(1,0,j)(z, θ), 1 ≤ j ≤ S.
(5.6)

and

G̃(0,0,̃j)(z, θ) = [λ/(λ+θ), 0, j̃]G̃(1,0,j)(z, θ), 1 ≤ j ≤ S, 0 ≤ j̃ ≤ S−1. (5.7)

Note that G̃(1,0,j)(z, θ), for 1 ≤ j ≤ S is a (2S + 1)× (S + 1) matrix. Thus

the LST of the busy period is the first element of G̃(1,0,j)(1, 0). For future

reference use the notations G10 = G̃(1,0,j)(1, 0), G00 = G̃(0,0,̃j)(1, 0), for 1 ≤
j ≤ S, 0 ≤ j̃ ≤ S − 1. Due to the positive recurrence of the QBD process,

matrices G , G10, and G00 are all stochastic. If we let C0 = (−A1)
−1A2 and
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C2 = (−A1)
−1A0, then G is the minimal non negative solution (see [47])

to the matrix equation G = C0 +C2G
2. From equations (5.6) and (5.7) we

get

G10 = −(A1 +A0G)−1C2 (5.8)

and

G00 = [1, 0, j̃]G10 (5.9)

for 1 ≤ j̃ ≤ S − 1 respectively. Equation (5.4) is equivalent to

zA2 − (θI −A1)G̃(z, θ) +A0G̃
2(z, θ) = 0. (5.10)

Let

D = − ∂G̃(z, θ)

∂θ

∣∣∣∣∣
z=1,θ=0

and

D̃ =
∂G̃(z, θ)

∂z

∣∣∣∣∣
z=1,θ=0

.

Differentiation of (5.10) with respect to θ and z followed by setting z = 1

and θ = 0 leads to (see Neuts [47])

D = −A−11 G+ C2(GD +DG)

and

D̃ = C0 + C2(GD̃ + D̃G).

With 0 as starting value for D and D̃, successive substitutions in the above

equations yield the values of D and D̃. Applying an exactly similar rea-

soning to (5.6) and (5.7), we get

D10 = −(A1 +A0G)−1(I +A0D)G10,

and

D00 = [1/λ, 0, j̃]G10 + [1, 0, j̃]D10, 0 ≤ j̃ ≤ S − 1
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where

D10 = − ∂G̃(1,0,j)(z, θ)

∂θ

∣∣∣∣∣
z=1,θ=0

, for 1 ≤ j ≤ S

D00 = − ∂G̃(0,0,̃j)(z, θ)

∂θ

∣∣∣∣∣
z=1,θ=0

, for 0 ≤ j̃ ≤ S − 1.

The first element of the vector D10 and D00 are mean lengths of a busy

period and a busy cycle respectively. With the notation

D̃10 =
∂G̃(1,0,j)(z, θ)

∂z

∣∣∣∣∣
z=1,θ=0

it follows from equations (5.6) that

D̃10 = −(A1 +A0G)−1(C2 +A0DG10).

The first component of the vector D̃10 is the mean number of service com-

pletions in a busy period.

5.3.2 Stationary waiting time distribution in the queue

In this section the LST of waiting time distribution and mean waiting time

of a customer in the queue are discussed. The stationary waiting time

distribution of the queueing-inventory system is in general, analytically

intractable. However, we obtain the LST of the waiting time of a customer

in the queue and derive an expression for its mean. First note that an

arriving customer will enter into service immediately with probability

z0 = x0e. With probability 1−z0 the arriving customer has to wait before

getting into service. Any such customer is served only in the normal mode.

If the tagged customer joins as the first one, his waiting time would be equal

to the service time of the customer in service. Thus in this case the mean

waiting time of the customer is 1
µv

or 1
µb

depending upon the nature of the
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service of the customer ahead of the tagged customer. The waiting time

may be viewed as the time until absorption in a Markov chain with a highly

sparse structure. The state space (that includes the arriving customer in

its count) of the Markov chain is given by

Ω̃ = {∗}
⋃
{(i, j)| i ≥ 2, 1 ≤ j ≤ Q+ s}. (5.11)

The state ∗ indicate that the tagged customer is taken for service. That is,

∗ is obtained by lumping {(0, j)| 1 ≤ j ≤ Q + s}. Its generator matrix H
is given by

H =



0 0

a Ã1

A2 Ã1

A2 Ã1

. . .
. . .


, (5.12)

where

Ã1 = A1 + λI, a = A2e. (5.13)

The initial probability vector ofH is denoted by σ and in partitioned form

it is given by

σ = (z0, z2, z3 · · · ),

where z0 = x0e and zi denotes the steady-state probability that an arrival

finds the server busy in normal mode and the number of customers in the

system including the current arrival is i.

zi = (01×S ,xi(1, 1),xi(1, 2) · · · ,xi(1, Q+ s)) , for i ≥ 2. (5.14)
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Define W̃(t), t ≥ 0 to be the probability that an arriving customer will

enter into service no later than t units of time from his arrival, when the

server is in normal mode. We will now derive the LST, w̃(θ), of the station-

ary waiting time in the queue of an arriving customer during the normal

mode of service. Using the structure of H, it can readily be verified that

Theorem 5.3.1. The LST, w̃(θ), of W (t) is given by

w̃(θ) = z0 +
∞∑
i=0

zi[(θI − Ã1)
−1A2]

i(θI − Ã1)
−1A2e. (5.15)

Corollary 5. The mean waiting time µ′W , in the queue of an arriving

customer is given by

µ′W = [z2(I−R)−1−z2
∞∑
k=0

RkP k+1+z2(I−R)−2P̃ ](I−P+P̃ )−1(−Ã1)
−1e,

(5.16)

where

P = (−Ã1)
−1A2, P̃ = ep, (5.17)

and p is the invariant probability vector of P . That is,

pP = p, pe = 1. (5.18)

Note: In the computation of the mean waiting time µ′W , we need to

evaluate the infinite sum
∑∞

k=0R
kP k+1. On noting that P is a stochastic

matrix, we get z2
∑∞

k=0R
kP k+1e = 1 − z0 and hence in truncating the

infinite sum we find N∗ such that |z2
∑N∗

k=0R
kP k+1e− (1−z0)| < ε, where

ε is a pre-determined sufficiently small quantity.
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5.3.3 System performance measures

• Mean number of customers in the system,

Ls =
∞∑
i=1

(
Q+s∑
j=1

ixi (1, j) +
Q+s∑
j=0

ixi (0, j)

)
.

• Mean inventory level,

Im =
∞∑
i=0

Q+s∑
j=1

jxi (0, j) +
∞∑
i=1

Q+s∑
j=1

jxi (1, j).

• Mean number of replenishments per time unit,

Rr = β

(
s∑
j=0

( ∞∑
i=0

xi (0, j) +
∞∑
i=1

xi (1, j)

))
.

• Rate of service when the server is in normal mode,

Pn = µb

(
∞∑
i=1

Q+s∑
j=1

xi (1, j)

)
.

• Rate of service when the server is in vacation mode,

Pv = µv

(
∞∑
i=1

Q+s∑
j=1

xi (0, j)

)
.

• Rate at which the server goes to vacation mode,

Γ = µv
λ+µv+β

(
∞∑
i=1

xi(0, 1)+
s∑
j=1

x1(1, j)

)

+ µb
λ+µb+β

(
∞∑
i=1

xi(1, 1)+
s∑
j=1

x1(1, j)

)

+ µv
λ+µv

(
Q+s∑
j=s+1

x1(1, j)

)
+ µb

λ+µb

(
Q+s∑
j=s+1

x1(1, j)

)
.

• Rate of vacation realization, Rv = θ

(
∞∑
i=1

Q+s∑
j=1

xi (0, j)

)
.

• Expected loss rate of customers, Eloss = λ

( ∞∑
i=0

xi (0, 0)

)
.
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• Mean number of customers waiting in the system when inventory is

available, Winv =

(
∞∑
i=1

Q+s∑
j=1

ixi(0, j) +
∞∑
i=1

Q+s∑
j=1

ixi(1, j)

)
.

• Mean number of customers waiting in the system during the stock

out period, W̃inv =

( ∞∑
i=1

ixi(0, 0)

)
.

5.4 Optimization problem

We look for the optimal pair of the values of the control variables. Now for

computing the minimal cost and the optimal pair (s,Q) we introduce the

cost function F(s,Q) defined by

F(s,Q) = h.Im + c1.Eloss + c2.W̃inv + (K +Q.c3) .Rr

where K is the fixed cost for placing an order, c1 is the cost incurred due

to loss per customer, c2 is the waiting cost per unit time per customer

during the stock out period, c3 is the variable procurement cost per item

and h is the unit holding cost of inventory for one unit of time. Though we

are not able to compute explicitly the optimal values of s and Q, due to

the complexity of the cost function, we arrive at these by using numerical

procedures. Thus for the following input values of the parameters:

λ = 5, µv = 3, µb = 10, β = 3,K = $500, h = $5, c1 = $100, c2 = $50 and

c3 = $50 we get the optimal pair (s,Q) as (4, 15) and the corresponding

minimum cost is $134.9468.



Chapter 6

Retrial of unsatisfied

customers in a

queueing-inventory system

6.1 Introduction

In chapters 2 through 5 we assumed that customers join an infinite capacity

waiting station on arrival, if the server is busy. If the server is idle and at

least one item is in the inventory the arriving customer enters for service

immediately. If customers upon arrival encounter an idle server with no in-

ventory, then it does not join the system and is lost for ever. In the present

chapter we consider M/M/1/1 queueing-inventory system with service time

where, on arrival, if a customer encounters a busy server, proceeds to an

orbit of infinite capacity. In the orbit a queue of customers is formed. The

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, R. Manikandan and Sajeev S. Nair : Retrial of unsatisfied customers

in a queueing-inventory system (Under review).

119
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head of the queue retries to access an idle server with at least one item

in the inventory, failing which it goes back to orbit and occupies the first

position in the queue. The inter retrial times are exponentially distribution

with parameter θ, independent of the number of customers in the orbit, pro-

vided there is at least one. With arrival of customers according to a Poisson

process of rate λ2, service time exponentially distributed with parameter

µ2 and lead time for replenishment of inventory following exponential dis-

tribution with parameter β2, the process {(N2(t), C(t), I2(t))|t ≥ 0}, forms

a CTMC on the state space Ω2 given by

Ω2 =
(

(Z+

⋃
{0})× {0, 1} × {1, 2, . . . , S2}

)⋃(
(Z+

⋃
{0})× {0} × {0}

)
.

Retrial of unsatisfied customers is extensively discussed in queueing lit-

erature (see Falin and Templeton [19], Artalejo and Gomez Corral [4]).

However, in the context of inventory with retrial of unsatisfied customers,

not much work is reported, especially those involving positive service time.

The negligible service time case is discussed in Ushakumari [73] and Ar-

talejo et al. [3]. Whereas the former provides analytical solution (for the

case of constant retrial), the latter provides an algorithmic approach in a

more general set up (linear retrial rate). Those involving positive service

time also has limited literature (see for example Krishnamoorthy et al. [40],

Cui and Wang [15] and Padmavathi et al. [49]). A few other references are

also provided in chapter 1.

This chapter is arranged as follows. Section 6.2 deals with the mathe-

matical formulation of the problem. In Section 6.3 the condition for stabil-

ity of the system is investigated, followed by the computation of the steady-

state probability vector. Performance measures are provided in Section 6.4.

In particular we compute the expected waiting time of a customer in the

orbit, distribution of time until the first customer goes to orbit (during a
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cycle that is appropriately defined) and probability of no customer going

to orbit in a given interval of time. Section 6.5 discusses an optimization

problem. In Section 6.6 we analyze briefly a tandem queueing-inventory

network.

6.2 Mathematical formulation of the problem

With arrival constituting a Poisson process of rate λ2, service time indepen-

dent identically distributed exponential random variables with parameter

µ2, lead time for replenishment having exponential distribution with param-

eter β2 and inter-retrial time of head of the queue in the orbit following ex-

ponential distribution with parameter θ, the process {(N2(t), C(t), I2(t))|t ≥
0} forms a CTMC on the state space Ω2 described in the introduction. It

is to be noted that we make a strong assumption on customers getting into

the system: when inventory level is zero, no customer joins the system. The

replenishment policy followed is (s2, Q2) (This notation is needed since to-

wards the end of this chapter we examine a queueing-inventory network

with the first station having the classical M/M/1/∞ pattern, whereas the

second station has retrial component attached to it). Further, as consid-

ered in all previous chapters it is assumed here also that at the end of a

service a customer is provided one unit of the item with probability γ. We

expected “the assumption that no customer joins when inventory is zero”

would enable us to arrive at, in the least, a closed form solution of the

system state distribution, if not decomposition of the system. Nevertheless

it turned out to be otherwise. Thus we are forced to adopt algorithmic

approach for the analysis of the system described.



122 Retrial of unsatisfied customers in a queueing-inventory system

The state space of the CTMC is partitioned in to levels L(i) defined as

L(i) = {(0, 0, j) |1 ≤ j ≤ s2 +Q2}∪{(i, k, j) /i ≥ 1; k = 0, 1; 0 ≤ j ≤ s2 +Q2} .

The transitions in the Markov chain are listed below:

(a) Transitions due to arrival of customers :

(i, 0, j)→ (i, 1, j) : the rate is λ2, for i ≥ 0; 1 ≤ j ≤ S2.

(i, 1, j)→ (i+ 1, 1, j) : the rate is λ2, for i ≥ 0; 1 ≤ j ≤ S2.

(b) Transitions due to service completion of customers:

(i, 1, j)→ (i, 0, j − 1) : the rate is γµ2, for i ≥ 0; 1 ≤ j ≤ S2.

(i, 1, j)→ (i, 0, j) : the rate is (1− γ)µ2, for i ≥ 0; 1 ≤ j ≤ S2.

(c) Transitions due to replenishments:

(i, 0, j)→ (i, 0, Q2 + j) : the rate is β2, for i ≥ 0; 0 ≤ j ≤ s2.

(i, 1, j)→ (i, 1, Q2 + j) : the rate is β2, for i ≥ 0; 0 ≤ j ≤ s2.

(d) Transitions due to retrial of customers:

(i, 0, j)→ (i− 1, 1, j) : the rate is θ, for i ≥ 1; 1 ≤ j ≤ S2.

All other transition pairs have rate zero. The infinitesimal generatorW of

this CTMC is given by
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W=


B̂0 B̂1

B̂2 Â1 Â0

Â2 Â1 Â0 . . .
. . .

. . .
. . .

 ,

where B̂0, B̂1 and B̂2 contains transition rates within L(0), transition from

L(0) to L(1) and transition from L(1) to L(0) respectively; Â0 represents

the transitions from L(i) to L(i + 1), i ≥ 1; Â1 represents the transitions

within L(i) for i ≥ 1, and Â2 represents transitions from L(i) to L(i− 1),

i ≥ 2. All these matrices are square matrices of order 2S2 + 1.

6.3 System stability and computation of steady-

state probability vector

The Markov chain under consideration is a LIQBD process. For this chain

to be stable it is necessary and sufficient that

ξÂ0e < ξÂ2e. (6.1)

where ξ is the unique non negative vector satisfying,

ξÂ = 0, ξe = 1 (6.2)

and Â = Â0 + Â1 + Â2, is the infinitesimal generator of the finite state

CTMC. Let ξ = (ξ0(0), ξ0(1), . . . , ξ0(S2), ξ1(1), ξ1(2), . . . ξ1(S2)) be the steady-

state vector of the generator matrix Â. Then ξÂ = 0 gives the following

equations

−β2ξ0(0) + γµ2ξ1(1) = 0 (6.3)

−(λ2 + θ + β2)ξ0(i) + (1− γ)µ2ξ1(i) + γµ2ξ1(i+ 1) = 0, 1 ≤ i ≤ s2 (6.4)
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−(λ2+θ)ξ0(i)+(1−γ)µ2ξ1(i)+γµ2ξ1(i+1) = 0, s2+1 ≤ i ≤ Q2−1 (6.5)

β2ξ0(i)−(λ2+θ)ξ0(Q2+i)+(1−γ)µ2ξ1(Q2+i)+γµ2ξ1(Q2+i+1) = 0, 0 ≤ i ≤ s2−1

(6.6)

β2ξ0(s2)− (λ2 + θ)ξ0(S2) + (1− γ)µ2ξ1(S2) = 0 (6.7)

(λ2 + θ)ξ0(i)− (β2 + µ2)ξ1(i) = 0, 1 ≤ i ≤ s2 (6.8)

(λ2 + θ)ξ0(i)− µ2ξ1(i) = 0, s2 + 1 ≤ i ≤ Q2 (6.9)

β2ξ1(i) + (λ2 + θ)ξ0(Q2 + i)− µ2ξ1(Q2 + i) = 0, 1 ≤ i ≤ s2 (6.10)

The LIQBD process with infinitesimal generatorW is stable if and only if

ξÂ0e < ξÂ2e. That is,

⇐⇒ θ (ξ0(1) + ξ1(2) + · · ·+ ξ0(S2)) > λ2 (ξ1(1) + ξ1(2) + · · ·+ ξ1(S2)) .

⇐⇒ θ (ξ0(1) + ξ1(2) + · · ·+ ξ0(S2)) > λ2

(
λ2 + θ

µ2

)
(ξ0(1) + ξ1(2) + · · ·+ ξ0(S2))

⇐⇒ θ > λ2

(
λ2 + θ

µ2

)
⇐⇒ λ2

µ2
<

θ

λ2 + θ
.

Thus we have the following lemma for the stability of the second station:

Lemma 6.3.1. The CTMC Ω2 is stable if and only if λ2 <
µ2θ
λ2+θ

.

Now we compute the steady-state probability vector of W under the sta-

bility condition. Let y denote the steady-state probability vector of the

infinitesimal generator W . Then the steady-state probability vector must

satisfy the relations,

yW = 0, ye = 1. (6.11)
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Let us partition y by levels as

y = (y0, y1, y2, . . . ), (6.12)

where the subvectors of y are further partitioned as,

yi = (yi(0, 0), yi(0, 1), yi(0, 2), ..., yi(0, S2), yi(1, 1), yi(1, 2), ..., yi(1, S2)) , i ≥ 0.

(6.13)

Since the state space Ω2 is a LIQBD process, its steady-state vector is given

by

yi = y0R
i, i ≥ 1. (6.14)

(see Neuts [47]), where R is the minimal non-negative solution to the matrix

quadratic equation R2 + RÂ1 + Â0 = 0. For finding the boundary vectors

y0 and y1, we have from yW=0,

y0B̂1 + y1Â1 + y2Â2 = 0

⇐⇒ y0B̂1 + y1

(
Â1 +RÂ2

)
= 0

⇐⇒ y1 = −y0B̂1

(
Â1 +RÂ2

)−1
⇐⇒ y1 = y0D, where D = −B̂1

(
Â1 +RÂ2

)−1
.

Further,

y0B̂0 + y1B̂2 = 0

⇐⇒ y0

(
B̂0 +DB̂2

)
= 0.
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First we take y0 as the stady state vector of the generator matrix B̂0+DB̂2.

Then yi, for i ≥ 1, can be found using the formula y1 = y0D and yi =

y1R
i−1, for i ≥ 2. Finally, the steady-state probability distribution of

the system under study is obtained by dividing each yi with normalizing

condition

y0e + (y1 + y2 + . . . ) e = y0

(
I +D (I −R)−1

)
e

Once the matrix R is obtained, the steady-state probability vector y can

be computed by exploiting the special structure of the coefficient matrices.

We can use logarithmic reduction algorithm for computing R. We will list

only the main steps involved in the logarithmic reduction algorithm for

computing R.

Logarithmic Reduction Algorithm for R:

Step 0: H ← (−Â1)
−1Â0, L← (−Â1)

−1Â2, G = L, and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ε.

Step 2: R = −Â0(Â1 + Â0G)−1.
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6.4 Performance measures

6.4.1 Expected waiting time of a customer in the orbit

For computing the expected waiting time in the orbit of a tagged cus-

tomer who joins as rth customer in the orbit, we consider the CTMC,

Ψ1 =
{

(N̂2(t), C(t), I2(t))|t ≥ 0
}

where N̂2(t) denotes the rank, which is

the position of the tagged customer in the orbit at the time he joins the

system. The state space of the CTMC Ψ1 is given by

=1 = {(i, 0,m), 1 ≤ i ≤ r; 0 ≤ m ≤ S2}
⋃
{∆1}, where {∆1} is an absorb-

ing state which corresponds to the tagged customer being taken for service.

The infinitesimal generator of the chain Ψ1 is given by

H1 =

[
G1 G10

0 0

]
, where G10 is an {(r − 1)(2S2 + 1) + S2} × 1 matrix

such that G10(i, 1) = θ, for 1 ≤ i ≤ S2 and G1=



B 0 0 ... ... 0

Ã2 B 0 ... ... 0

0 Ã2 B ... ... 0
. . .

. . .
˜̃A2 B̃


,

whereB=



B1 0 B2 0 0 0

0 B4 0 0 0 0

0 0 B6 0 0 0

B8 0 0 B9 0 B10

B3 B11 0 0 B12 0

0 B5 B13 0 0 B14


withB1 =

[
−β2 0

0 −(β2 + θ)Is

]
,

B2 = β2Is+1, B3 =

[
0 γµ2

0 0

]
(S−2s−1)×(s+1)

, B4 = −θIS−2s−1,

B5 =

[
0 γµ2

0 0

]
(s+1)×(S−2s)

, B6 = −θIs+1,
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B8=


γµ2 (1− γ)µ2

γµ2 (1− γ)µ2
. . .

. . .

γµ2 (1− γ)µ2


s×(s+1)

, B9 = −β2Is,

B11=


(1− γ)µ2

γµ2 (1− γ)µ2
. . .

. . .

γµ2 (1− γ)µ2


(S−2s−1)×(S−2s−1)

,

B13=


(1− γ)µ2

γµ2 (1− γ)µ2
. . .

. . .

γµ2 (1− γ)µ2


(s+1)×(s+1)

,

B10 =
[

0 β2Is

]
s×(s+1)

, B12 = −µ2IS−2s−1, B14 = −µ2Is+1,

B̃(i, j) = B(i+ 1, j + 1) for 1 ≤ i, j ≤ 2S;
˜̃A(i, j) = ˜̃A2(i+ 1, j) for 1 ≤ i ≤ 2S, 1 ≤ j ≤ 2S + 1;

Ã2 =



0 0 0 F1 0 0

0 0 0 0 F2 0

0 0 0 0 0 F3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, with F1 =

[
0

θIs

]
(s+1)×s

,

F2 = θIQ−s and F3 = θI(s+1)×(s+1).

Now the waiting time distribution Wr of the tagged customer who joins as

the rth customer in the orbit, is the time until absorption in the CTMC

Ψ1 , and given by the column vector

Wr = Î2S2(−G1−1)e,
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where Î2S2 = [0 I2S2 ](2S2)×{(r−1)(2S2+1)+S2}. Hence, the expected waiting

time of a general customer is given by

E(WL) =
∞∑
r=1

π̂rWr,

where π̂r is a 1× 2S2 dimensional row vector defined by

π̂r(i) = π̂r(i+ 1), for1 ≤ i ≤ 2S2.

In a similar manner, we can find the second moment of the waiting time of

an orbital customer as

E(W2
L) =

∞∑
r=1

π̂rWr
2 ,

where Wr
2 = 2Î2S2(G1−2)e (see Neuts [47]).

6.4.2 Distribution of the time until the first customer goes

to the orbit

We now compute the distribution of the time till the first customer in a

cycle goes to orbit. By a cycle we shall mean that starting with no customer

in orbit, until the next epoch when all customers in the orbit are served

out. We also assume that at the beginning of a cycle the inventory level

is S2 and there is no customer in service. A customer arrives and straight

enters for service. During this service time, if another customer arrives,

then he is the first to go to orbit. Let χ denote the random variable “time

until the first customer goes to orbit in a cycle”.

We consider the CTMC Ψ2 = {(C(t), I2(t))|t ≥ 0} , where C(t) and I2(t)
are same as defined in the beginning of this chapter. The state space of

this CTMC Ψ2 is

=2 = {0}
⋃
{(`,m)| ` = 0, 1; 1 ≤ m ≤ S2}

⋃
{∆2}
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where {∆2} is the absorbing state which represents the state “first customer

to go to orbit” from the state {(1,m)| 1 ≤ m ≤ S2}. Clearly, =2 is a finite

state space Markov chain. The possible transitions and the corresponding

rates are given in Table 6.1.

Table 6.1: The transitions in the CTMC Ψ2 and corresponding rates

Form To Rate

(0, 0) (0, 0) −β2
(0,m) (0,m) −(β2 + λ2) m = 1, 2, . . . , s2.

(0,m) (0,m) −λ2 m = s2 + 1, s2 + 2, . . . , S2.

(1,m) (1,m) −(λ2 + µ2 + β2) m = 1, 2, . . . , s2.

(1,m) (1,m) −(λ2 + µ2) m = s2 + 1, s2 + 2, . . . , S2.

(1,m) (0,m− 1) µ2 m = 1, 2, . . . , S2.

(`,m) (`,m+Q2) β2 ` = 0, 1; m = 0, 1, . . . , s2.

(0,m) (1,m) λ2 m = 1, 2, . . . , S2.

(1,m) {∆2} λ2 m = 1, 2, . . . , S2.

Thus the infinitesimal generator H2 of the Markov chain Ψ2 is of the form

H2 =

[
G2 G20

0 0

]
with initial probability vectorα = (0, 0, . . . , 1, 0) where

1 is the in the S2
th position; G2 is of order 2S2+1; G20 is a 2S2+1 component

column vector such that G2e+G20=0. Let χ represent the random variable

“time till first customer goes to orbit”. This time duration follows PH

distribution with representation (α,G2). Therefore the expected time until

the first customer goes to the orbit is

E (χ) = −α
(
G−1
2

)
e.
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6.4.3 Probability that all customer arrivals (demands) in a

time duration of length t do not go to the orbit

Consider an interval of duration t in the steady-state regime. The objective

is to compute the probability that no customer arriving during this time

period goes to orbit. This means that all customer arrivals in this interval

either meet an idle server with positive inventory or during the stock out

period. Thus customers do not join the second station when the inventory

level is zero (by model assumption). Assume that there is no customer in

the orbit at the beginning of this interval. Choose n1 of the arrivals to find

positive inventory and server idle. The remaining n − n1 are chosen such

that upon their arrival the server is found to be idle with no item in the

inventory. Then the required probability Pt is given by

Pt =
∞∑
n=1

J

(
n

n1

)
n∑

n1=1

n1∑
i=1

Q2+s2∑
j=1

y0(0, j)
(

1− e−µ(xi−xi−1)
)n1

(y0(0, 0))n−n1

where J =

(
n!
tn

s1∫
0

· · ·
sn−1∫
xn−2

sn∫
xn−1

dxn · · ·dx1

)
.

6.4.4 Other performance measures

• Mean number of customers in the orbit,

LO =

(
∞∑
i=1

Q2+s2∑
j=0

iyi(0, j) +
∞∑
i=1

Q2+s2∑
j=1

iyi(1, j)

)
.

• Mean inventory level, Einv =
∞∑
i=0

Q2+s2∑
j=0

jyi(0, j) +
∞∑
i=1

Q2+s2∑
j=1

jyi(1, j).

• Depletion rate of inventory, Dinv = γµ2

(
∞∑
i=1

Q2+s2∑
j=1

yi(1, j)

)
.
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• Mean number of replenishments per unit time,

Rr = β2

(
s2∑
j=0

( ∞∑
i=0

yi(0, j) +
∞∑
i=1

yi(1, j)

))
.

• Expected loss rate of customers, Eloss = λ2

( ∞∑
i=1

yi(0, 0)

)
.

• Probability that the server is busy, Pbusy =
∞∑
i=0

Q2+s2∑
j=1

yi(1, j).

• Successful rate of retrials, Eretrial = θ

(
∞∑
i=1

Q2+s2∑
j=1

yi(0, j)

)
.

• Mean number of departures per unit time,

Dm = µ2

(
∞∑
i=0

Q2+s2∑
j=1

yi(1, j)

)
.

• Mean number of customers waiting in the orbit when inventory is

available, W̃O =

(
∞∑
i=1

Q2+s2∑
j=1

iyi(0, j) +
∞∑
i=1

Q2+s2∑
j=1

iyi(1, j)

)
.

• Mean number of customers waiting in the orbit during the stock out

period,
˜̃
WO =

( ∞∑
i=1

iyi(0, 0)

)
.

6.5 Optimization problem

In this section we provide the optimal values of the inventory level s2 and

the fixed order quantity Q2 of the model. For checking the optimality of

s2 and Q2, the following cost function is constructed. Define F(s2, Q2) as

the expected total cost per unit time in the long run. Then

F(s2, Q2) = h.Einv + c1.Eloss + c2.(1− Pbusy) + (K +Q2.c3).Rr

where K is the fixed cost for placing an order, c1 is the cost incurred due

to loss per customer, c2 is the waiting cost per unit time per customer
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during the stock out period, c3 is the variable procurement cost per item

and h is the unit holding cost of inventory for one unit of time. Table

6.2 provides the optimal pair (s2, Q2) and the corresponding minimum cost

(in Dollars). Here γ is varied from 0.1 to 1, at an interval of 0.1. The

values for the input parameters are given as follows λ2 = 2, µ2 = 5, θ =

4, β2 = 3, K = $500, c1 = $25, c2 = $50, c3 = $35, h = $3.5. We provide a

numerical comparison based on a few performance measures in Table 6.3.

Table 6.2: Optimal (s2, Q2) pair and minimum cost

γ 0.1 0.2 0.3 0.4 0.5

Optimal (s2, Q2) pair (1,29) (1,29) (1,29) (1,29) (1,29)

& minimum cost 242.353 241.978 241.585 241.181 240.767

γ 0.6 0.7 0.8 0.9 1

Optimal (s2, Q2) pair (1,29) (1,29) (1,29) (1,29) (1,29)

& minimum cost 240.347 239.922 239.494 239.062 238.629

For numerical comparison we assign the same input values as for Table 6.2

with s2 = 10 and S2 = 31. For example we observe from Table 6.3 that

the mean number of replenishments and loss rate of customer is larger for

γ = 1 compared to that for γ (= 0.5). Further Pbusy and Einv are higher

for γ = 0.5 compared to that for γ = 1. These are all on expected lines.

6.6 Tandem queueing-inventory network

Now we assume that the model discussed so far in this chapter is the second

station in a tandem queueing-inventory network. The first station follows

M/M/1/∞ queueing-inventory. Thus arrival process to this forms a Pois-



134 Retrial of unsatisfied customers in a queueing-inventory system

Table 6.3: Effect of γ on various performance measures

Performance measures with γ = 0.5 with γ = 1 (classical queueing-inventory system)

Pbusy 0.39999911 0.39999864

Einv 20.6666431 20.3333149

Dinv 0.14285707 0.14285702

Rr 0.03213748 0.06427498

LO 1.09998846 1.09998834

Eloss 0.00000070 0.00000286

son process of rate λ1, service times are independent identically distributed

exponential random variables with parameter µ1. We follow (s1, Q1) policy

for inventory replenishment. The distribution for replenishment time is ex-

ponential with parameter β1. As done in all our earlier discussions through-

out this thesis, here also we make the crucial assumption that no customer

joins when inventory in this station is empty. As obtained in Schwarz et

al. [64] or in Krishnamoorthy and Viswanath [42], we have stochastic de-

composition property of the system state holding for station one. That is,

P (N1 = i, I1 = i1) = P (N1 = i) . P (I1 = i1) where N1 is the number of

customers and I1 the number of items in the inventory in station 1 in the

steady state. In other words, P (N1 = i) . P (I1 = i1) =
(

1− λ1
µ1

)(
λ1
µ1

)i
.π

where π = (π0, π1, . . . , πS1) with πi1 = P (I1 = i1) , i1 = 0, 1, . . . , S1. Ex-

plicit expression for πi1 is given by:

πi1 =



[
1 +Q1

β1

γλ1

(
β1+γλ1

γλ1

)s
1

]−1
, i1 = 0.

β1

γλ1

(
β1+γλ1

γλ1

)i1−1
π0, i1 = 1, 2, · · · , s1.

β1

γλ1

(
β1+γλ1

γλ1

)s1
π0, i1 = s1 + 1, s1 + 2, · · · , Q1.

β1

γλ1

(
β1+γλ1

γλ1

)i1−Q1−1
((

β1+γλ1

γλ1

)s1−(i1−Q1−1)
− 1

)
π0,

i1 = Q1 + 1, Q1 + 2, · · · , S1.

(6.15)

The output of station 1 is Poisson of rate λ1 (1− π0) by Burkes theo-

rem (see [13]). This is fed into station 2 that was described in the ear-

lier part of this chapter. Since no served customer is blocked in sta-
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tion 1 (except for want of inventory), the two stations behave almost like

two independent stations, except that the output from station 1 flows to

station 2. This flow to station 2 is prevented when inventory in that

station is zero. Thus the effective inflow of customers to station 2 is

[λ1 (1− π0)× probability that station 2 has inventory] which we designate

as λ2. With this we can write combined system state distribution as the

product of the probability distribution of the status of station 1 × prob-

ability distribution of the status of station 2. Let N1(t) is the umber of

customers in station 1, N2(t) is the number of customers in the orbit of

station 2, Ii(t) is the number of inventoried items in station i (= 1, 2)

and for station 2, C(t) is the status of the server at time t, that is C(t) ={
0, if server is idle at time t.

1, if server is busy at time t.

The combined system {(N1(t), I1(t),N2(t), I2(t), C(t)) , t ≥ 0} is a CTMC

with state space

{(n1, i1, n2, i2, k) |n1, n2 ≥ 0; 0 ≤ i1 ≤ s1 +Q1; 0 ≤ i2 ≤ s2 +Q2; k = 0, 1} .

Assume that the whole system is stable. For station 1 to be stable it is

necessary and sufficient that λ1 < µ1. The stability condition for station 2

is given by λ2 <
µ2θ
λ2+θ

. Both these conditions should hold in order for the

combined system to be stable. We write X for lim
t→0
X (t). Thus under the

condition that the whole system is stable, the probability distribution of

the system state is given by,

P {N1 = n1, I1 = i1;N2, I2 = i2, C = 0} =

(
1− λ1

µ1

)(
λ1
µ1

)n1

πi1yn2(0, i2)

(obviously C = 0 for i2 = 0) and

P {N1 = n1, I1 = i1;N2, I2 = i2, C = 1} =

(
1− λ1

µ1

)(
λ1
µ1

)n1

πi1yn2(1, i2), i2 > 0.
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Concluding remarks:

This thesis was an attempt to arrive at product form solution for queueing-

inventory problems. In chapters 2 and 3 we succeeded in achieving that.

In chapter 4 (multi-server system), we could achieve product form solution

only in the case when number of servers is restricted to 2. In remaining part

of that chapter and the rest of the chapters we were forced to satisfy with

algorithmic solution. Performance measures of significance were computed

for all models discussed. We wish to highlight quite a few distributions

that we derived in this thesis. Though these are of great significance, it is

surprising that no attempt was made earlier to derive such distributions.

In the context of storage systems (continuous state space) first emptiness

probability is discussed. However, for the discrete state space system this

distribution was not seen to be studied earlier.

We have to admit the fact that exponentially distributed service/ pro-

duction time are not very common. Nevertheless, there are a few cases

where it works. Despite the assumption that customers do not join when

inventory level is zero in a retrial queue, we are not able to produce product

form solution. We did notice in our attempt towards this end that we can

have analytic solution if we proceed on the lines of the 2-server queueing-

inventory problem discussed in chapter 4. However, we have not reported

that in this thesis.

There are several avenues for future studies based on this thesis. In-

troducing vacation to server when either no customer in the system or

inventory is empty is one possibility. Also the case of server breakdown/

production mechanism breakdown could be studied. In all these cases we do

not expect closed form solution. Moving from exponential distribution to

more complex distributions enhances applicability of the findings reported

in the thesis.



Appendix A

Notations and abbreviations

used in the thesis

Notations:

• N (t) : number of customers in the system at time t.

• N1(t) : Number of customers in station 1.

• N2(t) : Number of customers in the orbit of station 2.

• Ii(t) : Number of inventoried items in station i (= 1, 2).

• I(t) : Inventory level in the system at time t.

• C(t) : Status of the server is idle/ busy at time t.

That is, C(t) =

{
0, if server is idle at time t.

1, if server is busy at time t.

• P(t) : Status of the production process at time t.

That is, P(t) =

{
0, if production is off at time t.

1, if production is on at time t.

137
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• M(t) : Status of the server is vacation/ normal mode at time t.

That is, M(t) =

{
0 if server is in vacation mode at time t.

1 if server is in normal mode at time t.

• Ik : Identity matrix of order k.

• e : Column vector of 1’s with appropriate dimension.

• 0 : Vector consisting of 0’s with appropriate dimension.

• Z+ : The set of positive integers.

Abbreviations:

• PH : Phase type.

• CTMC: Continuous Time Markov Chain.

• QBD: Quasi-Birth-Death.

• LST: Laplace-Stieltjes Transform.

• LIQBD: Level Independent Quasi-Birth-Death.

• LDQBD: Level Dependent Quasi-Birth-Death.
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