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Chapter 0
INTRODUCTION

This thesis is a study of abstract fuzzy convexity
spaces and fuzzy topology fuzzy convexity spaces.

0.1 Fuzzy Sets and Fuzzy Topology

The formation of fuzzy mathematics rests on the
notion of fuzzy sets. The basic concept of a fuzzy set
was introduced by L.A. Zadeh in 1965 [40]. A fuzzy set

'A' in a set X is(Eharacterizeg_by a!membership}function
pA(x) from X to the unit interval [O,l], )<€ZX./ Fuzzy
set theory is a generalization of abstract (non fuzzy)
set theory. If A is an ordinary subset of X, its character­
istic function is a fuzzy set.

) C’) '\ -3   U I

n§,- ‘The/theory of fuzzy sets deals with a subset A of
*5 set X, where the transition between full membership and

,» '4

Y .’«‘.‘C\ /I‘ ‘
no membership is gradual. .The grade'of membershupjéone 1S
assigned to those objects that fully and completely belong
to A, while zero is assigned to objects that do not belong
to A at all. The more an object x belongs to A, the

closer to 'one' is its grade of membership pAS§)./\The fuzzy
set A‘ defined by uA.(x) = l-—pA(X) is called the complement
"of the fuzzy set A.



Several mathematicians have applied the theory
of fuzzy sets to various branches of pure mathematics
also, resulting in the development of new areas like,
fuzzy topology, fuzzy groups and fuzzy topological semi­
groups. Among these, fuzzy topology is well developed.
It was C.L. Chang [1] who defined fuzzy topology for
the first time in 1968.

According to Chang, a family T of fuzzy sets in X

is called a fuzzy topology for X, if
Kl:

2ny‘(i) ¢,x ear1 “;f””
"' (ii) if A,B QT then Ame. er

(iii) if A.l€T for each i ex, then UAi€T.

Then the pair (X,T) is called a fuzzy topological
space or fts in short. The elements of T are called open
sets and their complements are called closed sets.

In l976 R. Lowen [20] has given another definition
for a fuzzy topology by taking the set of constant functions
instead of Q5 and x in axiom (i) of Chang's definition. In

I

this thesis we are following Chang's definition rather filA>‘5
than Lowen's definition.

For other details of fuzzy topological spaces like



aroduct and quotient spaces, we refer to C.K. Wong [39].

0.2 Convex Sets

The study of convex sets is a branch of geometry,
analysis and linear algebra that has numerous connections
with other areas of mathematics. Though convex sets are
defined in various settings, the most useful definition
is based on a notion of betweenness. when X is_a space
in which such a notion is defined, a subset C of X is
called convex provided that for any two points x and y

of CRLC includes all the points between x and y. ‘i.e.,
yirséid to be convex if A x + (l—?1)y QC, for every
my 6C and 7! E [0,1].

The theory of convexity can be sorted into two
cinds. One deals with concrete convexity and the other
that deals with abstract convexity. In concrete situations
it was considered by R.T. Rockafellar [26], Kelly and
Weiss [16], S.R. Lay [18] and many others.

In abstract convexity theory a convexity space was
Lntroduced by F.W. Levi in 1951 [19]. He defined a
:onvexity space as a pair (X,7:) consisting of a set X
und a family 'IL' of subsets of X called convex sets



satisfying the conditions

(1) ¢.x (-2 IL

(ii) If Aié 73,, for each i €I, then _m Ai 6, I4,1 6 I

Ihe convexityfspacefintroduced by Levi was
further developed by many authors like D.C. Kay and
Womble E.W [13], R.E. Jamison—Waldner [9],

G. Sierksma [29], M. Van de Vel [33] etc. In addition

to the above conditions (i) and (ii) if UAi€ I, when­
ever Aiéf IL and Ai's are totally ordered by inclusion,
then (X,fL) is called an aligned space which was
introduced by R.E. Jamison-Waldner.

ln_abstract~situations\the notion of a topological
convexity structure has*been“intr6dUEed by R.E. Jamison

Waldner in 1974;" A triple (x,‘1i,T) consisting of a set x,
a topology T and convexity 71,on X is called a topological
convexity structure, provided the Topology T is compatible
with the convexity I, . Now a topology T is compatible
with a convexity Iv, if all polytopes of I.are closed

in (X,T). rfiffi; Jamison-Waldnerflalsd introduced the
./

concept of local convexity.



0.3 Convex Fuzzy Sets

The notion of convexity can be generalized to
fuzzy subsets of a set X. L.A. Zadeh introduced the
concept of a convex fuzzy set inll965. A fuzzy subset

‘A’ of X is convex if and only if for every xl,x2 6i X
and 71 (—;[o,1].

p-A(AXl + (J-' A)x2) >/ min {I-lA(xl)7P-A(x2)}

or equivalently a fuzzy set A is convex if and only if
the ordinary set

Ad = {X €XI|.tA(x) >, d} is convex for each d > O
and d €5[0,l].

In concrete situations the concept of a convex
fuzzy set was initiated by M.D. Weiss [35]. A.K. Katsaras
and D.B. Liu [11], R. Lowen [21], Zhou Feiyue [5] etc.
M.D. Weiss considered a convex fuzzy set in a vector
space over real or complex numbers in 1975. In 1977
Katsaras and Liu applied the concept of a fuzzy set to
the elementary theory of vector spaces and topological

vector spaces. They have also considered convex fuzzy

sets. In 19805 R. Lowefi applied the theory of fuzzy
.,»— LL\_‘/,. .’

sets tq some elementary known results offténve§’sets.L {hi “



For the definition of convex fuzzy sets in vector spaces,
we refer to A.K. Katsaras and D.B. Liu [ll].

No attempt seems to have been made to develop
a fuzzy convexity theoryin abstract situations. The
purpose of this thesis is to introduce fuzzy convexity
theory in abstract situations.

0.4 Summary of the Thesis

Chapter 1.

This chapter is a study of abstract fuzzy convexity
spaces (fcs). In Section 1, we quote some results on fuzzy
convexity in vector spaces from [11]. Also it is proved
that the union of any family of convex fuzzy sets in a
vector space E, totally ordered by inclusion is a convex
fuzzy set in E. This motivates the introduction of abstract
fuzzy convexity spaces.

In Section 2, we define abstract fuzzy convexity
spaces- introduce and study the concept of a fuzzy convex
hull operator. Also we define a fuzzy convex to convex
(FCC) map and a fuzzy convexity preserving (FCP) map in

such spaces and study some related topics under these
maps.



In Section 3, we introduce the subspace, product
and quotient of fuzzy convexity spaces.

Chapter 2.

In this chapter we introduce the notion of fuzzy
topology fuzzy convexity spaces (ftfcs). In Section 1,
we have considered a fuzzy topology together with a fuzzy
convexity on the same underlying set and introduced fuzzy
topology fuzzy convexity spaces. Also we introduce the
subspace, product and quotient of an ftfcs.

A fuzzy topology is compatible with a fuzzy convexity
in a set X, if fuzzy convex hulls of finite fuzzy sets are
fuzzy closed in X. Using this concept we introduce fuzzy
topological convexity spaces (ftcs) in Section 2.

Chapter 3.

An attempt has been made to study fuzzy local
convexity in this chapter. It is a continuation of the
study of ftfcs introduced in Chapter 2. We also study
subspace, product and quotient of such spaces.

Chapter 4.

This chapter is a study of separation axioms in
fuzzy convexity spaces.



In Section 1, we introduce fuzzy hemispaces
\

and study.certain related results.

In Sections 2 through 6, we introduce and study

concepts F50, F81, F52, F83 and PS4 spaces analogous to
5 S1, S2, S3 and S4 spaces in (crisp) convexity theory0!

introduced by R.E. Jamison-Waldner. We also study the
invariance or otherwise of these separation properties
under subspace, product and quotient operations.

Chapter 5.

In a topological convexity structure (crisp) a
number of separation properties were considered by
M. Van de vel [33]. The separation axioms in fuzzy
topology fuzzy convexity spaces are introduced in this
chapter. The separation involves closed convex fuzzy
neighbourhoods.

In Section 1, we introduce and study concepts

FNS0, FNSl and FNS2 spaces where 'FNS’ stands for ‘Fuzzy
Neighbourhood separation‘.

In Section 2, we introduce pseudo FNS3 and FNS3
spaces in an ftfcs and in Section 3, we introduce semi

FNS4 and FNS4 spaces in an ftfcs.



Also we study concepts like subspace, product
and quotient in all these cases.

0.5 Basic Definitions used in the Thesis

Definition 0.5.1.

Let A and B be fuzzy sets in a set X. Then

(1) A = B 4;=:)pA(x) = pB(x) for all x ELX

(ii) A C;B4;==e>pA(x) 4 pB(x) for all x e;xy

(iii) C = A U B 4‘:->pC(x) = max {p.A(x), p.B(x)3for all x€X.
II II

(iv) D Afl B L._—:)p.D(x) min ip.A(x), pB(x)}for all x€X.
(V) E A‘ 4:::>pE(x) = l-—-pA(x) for all x E; X.

For any family iAi} ié;I of fuzzy sets in X, we
define intersection Q; A1 and the union K.) A.i I 1 ex 1
respectively by

p (x) = inf p (X) and(7 A1 161 A15.61

p, (x) = sup p (X) forx€.XKJA. iegl A11611

The symbol ¢ will be used to denote the empty set

such that p¢(x) = O for all x ELX. For X, we have by
definition pX(x)=l for all X in X.
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Definition 0-502.

Let f be a mapping from a set X to a set Y. If A
is a fuzzy set in X, then the fuzzy set f(A) in Y is
defined by

. -l
pf(A)(y) = :u2;f_l(Y) HA(x) If f (Y) ¥ ¢

0 if f'l(y> = :25

where f-l(y) = if €IXIf(x) = y.} _

If B is a fuzzy set in Y, then the fuzzy set f"1(B) in x
is defined by

F‘ (X) = '”3':%(’‘)/\.F103)

Definition 0.5.3.

A fuzzy topology is a family T of fuzzy sets in X
which satisfies the following conditions.

(i) ¢.X€T
(ii) If A,B 31, then Ama c.;T

(iii) If A.€T for eachi€I, then U A.€T.1 151 1



The pair (X,T) is called a fuzzy topological
space or fts in short. Every member of T is called a
T—open fuzzy set (or simply an open fuzzy set). A fuzzy
set is T—closed (or simply closed) if and only if its
complement is T—open.

As in general topology, the indiscrete fuzzy
topology contains ¢ and X while the discrete fuzzy
topology contains all fuzzy sets.

Definition 0.5.4.
n

A function 1 from a fuzzy topological space
(X,T) to a fuzzy topological space (Y,U) is fuzzy
continuous if and only if the inverse of each U-open
fuzzy set is a T-open fuzzy set.

Definition 0.5.5.

A function from an fts (X,T) to an fts (Y,U) is
said to be F-open (F-closed) if and only if it maps a
fuzzy open (closed) set in (X,T) onto a fuzzy open (closed)
set in (Y,U).

Definition 0.5.6.

A fuzzy point x;in X is a fuzzy set with membership



12

function

)_for x = x0
up(x) 0 otherwise

where 0 < A g 1. P is said to have support X0 and value X
and we write P = x03 '

Two fuzzy points are said to be distinct if their
supports are distinct. when 3==], P is called a fuzzy
singleton.



Chapter 1

FUZZY CONVEXITY SPACES

1.1 Fuzzy Convexity in Vector §paces

In this section, we quote some results on fuzzy

convexity in vector spaces from [11]. Also it is proved
that the union of any family of convex fuzzy sets, in a
vector space E, totally ordered by inclusion is a convex
fuzzy set in E. This motivates the introduction of
abstract fuzzy convexity spaces.

Definition 1.1.1 [11]

Let Al,A2,A3,....,An be fuzzy sets in a vector
space E over K, where K is the space of real or complex

numbers. Then define Al x A2 x A3 x ... x An to be the
fuzzy set_A in E“ whose membership function is given by

P-A(Xlyx29X3y°-'rxn) = mini}-I-Al(Xl)r |>1A2(X2)o°-‘PA (xn)}_n

Let f: En——>E
)

f(xl,x2,...,xn) = xl+x2+ ... +xn.

Now define Al+A2+A3+ ... + An = f(A). For A scalar,
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and B a fuzzy set in E, define 258 = g(B) where g:E -~>E,
g(x) = Ax.

Definition 1.1.2 [11]

A fuzzy set A in a vector space E over K is said
to be convex if kA + (l-k)AC_',A ~\+ k e[o,1].

Proposition 1.1.3 [11]

Let A be a fuzzy set in a vector space E over K.
The following assertions are equivalent.

(1) A is convex

(ii) llA(kx + (1-k)Y) >, min {uA(x). uA(v)}
for every x,y €_E and for every k €;[O,l].

(iii) For each d E;[O,l], the crisp set

Ad =.[x €ZEIpA(x) ) o} is convex.
Note:

¢ and E are convex fuzzy sets.

Proposition 1.1.4 [11]

If A. is a family of convex fuzzy sets in E,1 161
then A = A. is a convex fuzzy set in E.

1 6.1
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Proposition 1.1.5.

The union of any family of convex fuzzy sets in E
totally ordered by inclusion is a convex fuzzy set in E.

Proof:

Let {Au} be a family of convex fuzzy setsa€I
totally ordered by inclusion in B. By proposition 1.1.3
it is enough to show that the crisp set

( UAa)d = [x EEI u UAa(x) }, d}is convex.

Let x,y Q; ( UAa)d

i.e. p UA (x) ) d and u UA (y) 3 d,a a
i.e. VpA (x) g d and VpA (y) g d.a a
Therefore given El) Q there exist a,B such that

uAa(x) > d—£ and uAB(v) > d-E.

Now (Au) is totally ordered by inclusion,

Ac QAB or AB C; Au. w.l.o.g assume that AGQAB.

>/. . uAfi(x) auA (X) > d—f_ and pAB(Y) >/llAa(Y) > d -6.



Now AB is a convex fuzzy set.

uAB(kx + (l-k)y) > min {uA(x). uA(y)}
>d-E

.‘&(3/pAa(kx + (l—k)Y) > d -E

This is true for all E) O.

. . p£JA (kx + (l—k)y) 5 da

i.e. kx + (l-k)y Q ( U/ad) d

. ( L)Aa) is a convex crisp set.d

. . ( L}Aa) is a convex fuzzy set

1.2 Fuzzy Convexity Spaces

In this section we define abstract fuzzy convexity
spaces- introduce and study the concept of a fuzzy convex
hull operator. Also we define a fuzzy convex to convex
(FCC) map and a fuzzy convexity preserving (FCP) map in

such spaces.
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Definition l.2.l.

Let X be any set. A fuzzy alignment on X is a

family ‘ii’ oftconvex fuzzy sets in X which satisfies '7
the following conditions:i

(1) (M E 1

(ii) If Aie; ‘IL for each 1 ex, then (3 A1 G; 79.i-I
(iii) If Aié. ‘Lfor each 1 61, and if A.1's‘are

totally ordered by inclusion then .i_)I A1 E; j:h1

The pair (X,f.) is called a fuzzy aligned space
or a fuzzy convexity space or fcs in short. Every
member of ' fL' is called an 1;—convex fuzzy set or
just a convex fuzzy set. As in ordinary convexity,
the indiscrete fcs contains only ¢ and X, while the
discrete fcs contains all fuzzy sets.

Example:

Let X=N, the set of natural numbers.

7‘_’g=§v¢] U §LYc:1X|AQY:‘I
where the fuzzy set A is given by



l9

1l ) -2'
lA . 2 > -2­

x ) O for every x ; 3

Then (X,7:) is a fuzzy convexity space.

Example:

LetX=[0,l]

1: =i;¢,X,A,Bj}where A and B are fuzzy sets)

. x -->0, 0 $ x ( é . x -1>O, O-£ X £ %
A’ x——2%,%<x\<1'B'x—>1,%<x.<1

Then (X, Tu) is a fuzzy convexity space.

Example:

Let X = {a,b,c 3

Id ==ié,x, fie], A:}where A is the fuzzy set$4‘?
a ———) 1

A: b-—>%
c—;:.13­

Now (X, :3 is a fuzzy convexity space.
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Note:

Given two fuzzy convexities 1:1 and '1?
on the same set X, we say that 1:1 is smaller (weaker or
coarser) than 7:2 or ‘i2 is larger (stronger or finer)
than £1 if and onlY if '11 C
Note:

From axioms (i) and (ii) in definition 1.2.1 we
have that for anyisuhset S of X there is a smallest
convex fuzzy set T:(S) containing 5 and is called the
convex hull of the fuzzy set S.

i.e. 1(5) = flL<€‘/ll sgx}.

Proposition 1.2.2.

The convex hull operator 5 -——? 11(8) satisfies

the following conditions

(1) 13¢) = 92!
(11) s Q ‘L(s)

(iii) If s gr then '):(s) Q. ]:(T)
(iv) L(L(S)) = its)V U .=<) 7L<i€Isl) L) ‘I¢(S.) for any family61 1i

of fuzzy sets {;Si|i Qllfi, which is totally ordered by
inclusion.



Proof:

(1), (ii), (iii) and (iv) can be proved very
easily. To prove (v), for i Gil

s. CUsi1

.'. f.(Si) C: t;( L151) for every i

U‘L<si> CT;<Usi) (1)
Now si C‘):/(si)

Usi C L)‘L(si)
Since I;(Si)'s are convex fuzzy sets totally

ordered by inclusion, L}1:(Si) is a convex fuzzy set
containing L) Si. Now iL(L}Si) is the smallest convex
fuzzy set containing L)Si and hence

Usi Cf.<Usi) C; Uflsi) (2)
From (1) and (2) we have

‘L‘L< Usi>- U 7‘i<si>i — — I '
Note:

Conversely given an operator T: , on the set of
fuzzy subsets of a set X, satisfying conditions (i) —— (V)
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we can find the fuzzy alignment from that, namely,

7:, = {S CX I 1(3) = S} , with fespect to which
1:(S) becomes the convex hull of 5. Thus a fuzzy

alignment and its hull operator uniquely determine
each other.

Definition l,2.3.|

Let (X,j:l) and (Y, L?) be fuzzy convexity
‘spaces and let f: x -—;‘*Y. Then f is said to be

(i) a fuzzy convexity preserving function
(PCP function) if for each convex fuzzy set
K in Y, f’l(K) is a convex fuzzy set in X.

(ii) a fuzzy convex to convex function (FCC function)
if for each convex fuzzy set K in X, f(K) is a
convex fuzzy set in Y.

Proposition 1.2.4.

Let (X, ti) and (Y, 1:2) be fuzzy convexity spaces.
Then f:X —-—>Y is an FCP function if and only if

f( 111(8)) §;1:2 (f(S)), for every fuzzy subset S of X.

Proof: (Necessity)

Let S be any fuzzy subset of X. Let K be a convex
fuzzy set containing f(S) in Y. Now f(S)§;K.
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.°. s g;f'l(K)

-. TLl<s) E 73l<f‘1<x<>> = r'1u<> )

since f is PCP and K is convex.

.n H flm))QK.

In particular f( fLl(S)) §;;t§(f(S)).

Thus necessity follows.

Sufficiency

Let K be a convex. fuzzy set in Y. Then
f-l(K) is a fuzzy set in X. Therefore we have

r<t1<r'l<1<)>>§E(r<r‘1u<>>> c_:_7‘i2u<)
= K, K being convex.

'. 73l(f‘1(K)) G; f‘l(K) (1)
Now f'l(K) £2 f~l(f’l(K)) (2)
From (1) and (2) we have

”Ll(r‘1<n<>> = rim)
f-l(K) is a convex fuzzy set in X

f is an FCP function.
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Proposition 1.2.5.

Let (X,7:l) and (Y, £2) be fuzzy convexity
spaces. Then f:X -->Y is an FCC function if and

only if iL2(f(S)) Q; f(i;l(S)) for each fuzzy subset
S of X.

Proof:

Suppose f:X “T>Y is an FCC function. Let S be

a fuzzy subset of X. Now '£1(S) is a convex fuzzy
set and s 9731(5). Since f is an FCC map, £(f.l(s))
is a convex fuzzy set in Y, and f(S) Q; f('£1(S))

n figum>§f<1gmx
Conversely assume that

i2(f(S)) Q f( 711(5)), for every fuzzy subset
S of X; and let K be a convex fuzzy set in X.

Then 1:1(K) = K and hence

f(73l(1<)) = f(K).
Now,

ignm)Qr(figm>=um
_l:’2(f(K)) Qf(1<) (3)
and

f(1<)Q7%(f(K)) (4)
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From (3) and (4) we have

712 (f(K)) = f(K)

. . f(K) is a convex fuzzy set in Y.

.'. f is an FCC function.

Definition 1.206.

Let (X,1:) be a fuzzy convexity space. A collection
C: of convex fuzzy subsets of X generates 1:-(or is a

subbase for to) if C: C;TLand Lais the smallest fuzzy
alignment containing 6: . A subbase (:.will be called a
base for I; if it is closed for arbitrary intersections.

Note that every family’ C:<3f fuzzy subsets of X
generates a fuzzy alignment on X by taking the union of
collections of sets totally ordered by inclusion of
arbitrary intersections of members of‘ C .

Proposition 1.2.7.

Let (X, 1:1) and (Y, 12) be fuzzy convexity spaces.
If C, is a subbase for "L2, then f:X —-—>Y is an FCP
function if and only if the inverse images of members of C:

is in 1:1.
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Proof:

Let f:X -—w>Y be an FCP function. Then for

any convex fuzzy set K in Y f—l(K) is a convex fuzzy
set in X. This is true for every convex fuzzy set K.
Therefore inverse images of members of C: is a convex
fuzzy set in X. Conversely, since (1.15 a subbase for

T12, each convex fuzzy set in Y is the union of a totally
ordered family of intersections of members of Ca, and
-1f preserves unions and intersections; hence it follows\­

tngt f is an FCP function.

1.3 subspaces, Products and Quotients of Fuzzy
Convexity §paces

Definition 1.3.1.

Let (X,1:) be an fcs and M a crisp subset of X.
Then a fuzzy alignment on M is given by the fuzzy sets

of the form {L r\M|L €11}. Then the pair (M, KM)
is a fuzzy subspace of (X,1).

Note:

The convex hull operator on M is given by

1:M(S) = 1;(S)f6]M for fuzzy subsets S of M.
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Definition 1.3.2.

Let (Xa,-LE) (:1 be a family of fuzzy convexityact
/ITspaces. Let X = X“ be the product space anda é,I

let na : X -——»Xa be the projection map. Then X can

be equipped with the fuzzy alignment ‘tegenerated by the

convex fuzzy sets of the form ‘1-'1t;l(Ca)ICa éffea, a GI}.
Then 11.15 called the product fuzzy alignment for X and
(X, fL) is called the product fuzzy convexity space.

Remark:

The product fuzzy alignment is the alignment which
has for a subbase the collection

{11:;l(ua)l ua €.'La, a E I}.
Definition 1.3.3.

Let X be any set. Let R be an equivalence relation
defined on X. Let X/R be the usual quotient set and let u
be the projection map from X to X/R. If (X,1L) is an fcs
one can define a fuzzy alignment on X/R as follows:

Let '}Ube the family of fuzzy sets in X/R defined by

7” = E-uI1t'l(u) E To}. Then ')"is a fuzzy alignment
on X/R and (X/R,"/J ) is called the quotient fcs.
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Example:

Let X = N, the set of natural numbers.

L fl¢}U YCIXIAQY}
where _A is the fuzzy set given by

1l > 2
A : 2 ——-—9- %

x > O for every x g 3

Then (X, T.) is an fcs.

Define 1:: N ——>fi where}? = 10,1} as follows:

0 if x is an odd number
n(x) = 1 if x is an even number

Consider"’ x
1;= 1¢}U{vc1I'K.<;v}

where'K is the fuzzy set given by

o———>

1————>

r-/A: . Then (E, Tu) is a quotient
|\) II-rOlI—a

fcs.
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Proposition 1.3.4.

Every quotient fcs of a discrete fcs is a
discrete fcs.

Proof:

Let f : (X,1L) --—> (Y,'7J) be a quotient map
where (X,T) is a discrete fcs and fif'is the quotient
fuzzy alignment on Y. Since u E."f' if and only if
f_l(u) E;‘£¢, where ‘t4iS discrete, it follows that
(Y, W”) is a discrete fuzzy convexity space.



Chapter 2

FUZZY TOPOLOGY FUZZY CONVEXITY SPACES *

2.1. Fuzzy Topology Fuzzy Convexity Spaces

Definition 2.l,l.

A triple (X,TL,T) consisting of a set X, a fuzzy
alignment i«, and a fuzzy topology T is called a fuzzy
topology fuzzy convexity space or ftfcs in short.

Example:

Let X = N, the set of natural numbers

T = {’¢,X,A,B}, where A and B are the fuzzy sets

1 .7;
A: 2 ———9% and B : x >% V'x.

x _,>O +F x g 3

Choose _/:=  U §vYC.Ix | A QY}
Then (X,lL,T) is an ftfcs.

* some of the results of this chapter appeared in Fuzzy
Sets and Systems 1994 [28].
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Definition 2.1.2.

Let a , be a fuzzy point in an ftfcs (X,TL,T)A

Then a fuzzy set N is called a fuzzy neighbourhood of

a7‘ if there exists A €T such that aA€,A C; N.

Definition 2.1.3.

Let (X,1«,T) be an ftfcs. Let M be an ordinary
subset of X. Then a fuzzy topology on M is defined as

TM =iM OYIY QT} and a fuzzy alignment on M is given
bY

'T~M = M FIL | Lta TL)“

Then the corresponding triple (M, 1; , TM) is a subspace
of (x,1Z;r).

Definition 2.1.4

Let (xa,1ld, T“) be a family of fuzzy topologya €.I

fuzzy convexity spaces. Let X = é% Xa be the producta I
set. Let na be the projection map from X to Xa. Then

the family of fuzzy sets 3\1t;l(Ua) I Ua€Ta, a 6.1}#,L.
will generate a fuzzy topology T on X. Also X = I’ X

aé;I
can be equipped with the fuzzy alignment -tugenerated by

the fuzzy sets of the form S1/n;l(Ca)[CaE. -14“, C! G21}.

Cl
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Then T is called the product fuzzy topology on X
and ‘Z/is called the product fuzzy alignment on X
and (X, Z4T) is called the product ftfcs.

Definition 2.1.50

Let X be any set. Let R be an equivalence relation
defined on x. Let X/R be the usual quotient set and let
u be the projection map from X to X/R. If X is an ftfcs,
one can define a fuzzy topology and a fuzzy alignment on
X/R in such a way that a set U in X/R is F—open if and

only if n_l(U) is F-open in X and a set V in X/R is fuzzy
convex if and only if n'l(V) is fuzzy convex in X. Then
the topology on X/R is called the quotient fuzzy topology

Tq and the alignment on X/R is called the quotient fuzzy
alignment 72a and X/R with topology Tq and alignment 121
is called the quotient ftfcs denoted by (X/R, ILq,Tq).

Example:

Consider the ftfcs (X,I,T) given below (Definition
2.1.1), where X = N, the set of natural numbers.

T = {¢,X,A,B} where A and B are the fuzzy sets
1 -->

*P x.
f\>|&—­

Z

A : 2 —-—> % and B : x —-§
0
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and 7:: U5} U {YCIX I AQY}

(i) Define n : N -—9 Kg where

N1 = N  as follows:
n(l) = 2, n(x) = x for every x 3 2.

Define a fuzzy topology and a fuzzy alignment on'Nl
as follows:

"’ -I I-’ rd
Tl ==€¢, N1, A } where A is the fuzzy set given by

2-—>
r~/A :

l
2

0x for every x » 3.-7

1,1 = L¢]uLvc1X|X 91]
Then (Kl, 35.1, 'f) is a quotient ftfcs of (X,‘L,T)

I‘!

(ii) Define n : N ---9 N2 where

N2 =iO,l}as follows:
n(x) = 0 if x is an odd number

1 if x is an even number

Consider T2 = { ¢, N2, B‘} where

B is the fuzzy set given by
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1N O )5B : 1l )5
f?

‘)3. II
2 195} U £YC_IX 1°13’ gar}

Then (K2, ‘L2, T2) is a quotient ftfcs.

2.2 Fuzzy Topological Convexityfspaces

Definition 2.2.1.

Let X be a set with a fuzzy topology T and a
fuzzy convexity ‘fie. Then T is said to be compatible
with ‘Tu, if the fuzzy convex hulls of finite fuzzy sets
are fuzzy closed in (X,T). Then (X,1L,T) is called a
fuzzy topological convexity space or ftcs in short.

Note:

We say that a fuzzy set A in X is finite if its
support is a finite subset of X.

Example:

Let x =1a,b,c}

T =£¢yX:Al1A2vA3oA47A5vA6}



a --61
Al: b —-91

c -->0

a--—+%

Then (x,‘L,I)

Example:

35

a )3
, A2 . b >9;c )1

3a )3,A5 0
c-—-90

is an ftcs.

>
(10

Let X be an infinite set with

L =iACIx I A is finite}

'1‘ =§_¢} U {_AcIX 1 l—A is finite}
Then (x,'L,,T) is an ftcs.

Remark:

l-Al: J! D-‘

NIH POI»­

)1

It is almost obvious that an ftcs is always an
ftfcs, and the converse is not true,
need not be an ftcs.

i.e., an ftfcs
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Example:

Let X = N, the set of natural numbers.

‘I =EQ5,X,A,B,C,D,E,F,G } and

‘L: X U {Y CIXIY QK} where
A,B,C,D,E,F,G and K are the fuzzy sets

1 >72 1——>1A : fl B : 2 i)%x -—-9 1 x ; 2, X />1 * X Z 3
1———2%

c:2 )2? Dzx-—->1-‘J-x
x ——-<> 1 'V'x ; 3

11...); 1->3E : F :
x -——<> 1 -V x 3 2 x ——-fi>0—V'x z.2

1l—""§ 1—--)%
G 2———->-3 K: 2-——>%

x )0-‘v"x>/3 x-—--70-V‘x>,3

Then (X,1L,T) is an ftfcs which is not an ftcs) Since K
is convex but not closed.
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Proposition 2.2.2.

Subspace of an ftcs is an ftcs.

Proof:

Let (X,1L,T) be an ftcs. Let (M,1LM,TM) be a
subspace of (X,1L,T). Clearly (M, tM, TM) is a fuzzy
topology fuzzy convexity space. Now to show that it
is an ftcs.

Let A be the fuzzy convex hull of a fuzzy set
generated by a finite fuzzy set with support

[al,a2,a3,...,ak}in M. Since A is a convex fuzzy set
in M, we have A = Mf\L where L E, 7:, ,. Now we can

take L to be the fuzzy convex hull of {al,a2,...,ak:}in X.
Since X is an ftcs, L is fuzzy closed in X and hence

A = Mf3L is a fuzzy closed set in M. Hence (M,i5M, TM)
is an ftcs.

Note 2.2.3.

An FCP, F-continuous image of an ftcs need not be
an ftcs.

Example:

Let X {a,b,c}T1 =
"Li E¢,X,Al,A3, 1-A2} where
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a )1 a >%0 ___j. I . _3_A1 . b )1 , A2 . b >4C )0 C —-*—>].

a ——-9 O
l—Al = A3 3 b ":7 0

> 1

a -1% a > % a 9%- 3A4 b____>§ A5 b >3 A6. b—-——>%c --—)O c --—) O c ) 1

Consider (Y,T.2,T2), where Y =il,2})

“L2 = {¢,‘{,Cl,C2,C3} where

C:l——)O,C:l—’-—>%,C:l'-(7)11 2--71 2 2-——>o 3 2———> 0

and

T2 ={¢,Y,Bl,B2,B3,B4} wherel l1——;1 1——;-2- 1-->0 1———7-2­Bl : B2 : B3: B4:2-—>o 2——>o 2-->1 2--—>1

Let f : (X,-Ll,Tl) --> (‘{,7f«2,T2) be defined as follows

f(a) = l, f(b) = l and f(c) = 2.



39

Now f—l(Bi) i = l,2,3,4 is an open fuzzy
set in X for each i. Therefore f is a fuzzy continuous

map. Also f_l(Ci), i = 1,2,3 is a convex fuzzy set in X
for each i. Therefore f is an FCP map.

Now (X,iLl,Tl) is an ftcs since fuzzy convex hulls
of each finite fuzzy set is a closed fuzzy set in X. But
(Y,7:2,T2) is not an ftcs, since the convex fuzzy set
C2 is not a closed fuzzy set in Y.

Proposition 2.2.4.

Quotient of an ftcs (X,7C,fQ is an ftcs if X is
finite.

Proof:

Let f : (X,'f«l,Tl) ——> (Y, 712,12) be the quotient
map. Let A be a (finite) fuzzy set in Y and KCLY be the
fuzzy convex hull of A. Then f"l(K) is a convex fuzzy
set in X and since X is finite, f-l(K) will be always
finite and hence it can be considered as the fuzzy convex
hull of a finite fuzzy set in X. Now X is an ftcs and
hence f_l(K) is fuzzy closed. Therefore K is fuzzy closed
in Y since f is the quotient map from X to Y. Therefore
convex hulls of finite fuzzy sets are fuzzy closed in Y.
Hence Y is an ftcs.



Chapter 3

FUZZY LOCAL CONVEXITY*

Introduction

In this chapter we introduce the concept of fuzzy
local convexity in an ftfcs and define a locally ftfcs.
Also it is proved that an FCC, F—continuous, F-open image
of a locally ftfcs is a locally ftfcs. We also study
the subspace, product and quotient of a locally ftfcs.

301 Locally Fuzzy Topology Fuzzy Convexity Spaces

Definition 3.191.

Let ah be a fuzzy point in an ftfcs (X,1L,T).
Then a fuzzy set N is called a fuzzy neighbourhood of aa
if there exists A QT such that age-LA Q N.

Definition 3.1.2.

An ftfcs (x, 7L,r) is said to be locally fuzzy

convex at a fuzzy point ah if for every fuzzy neigh­
bourhood U of aA there is some convex fuzzy neighbourhood C
of ab which is contained in U.

* Almost all the results of this chapter appeared as a
research paper in Fuzzy Sets and Systems 1994 [28].
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(X, tqT) is locally fuzzy convex if it is locally
fuzzy convex at each of its fuzzy points.

Example:

The Euclidean space Rn is locally convex under
usual convexity and considering crisp as a special case
of ‘fuzzy’, this means Rn is locally fuzzy convex.

Example:

Let x = £a,b,c}

i¢,x] Uiaalo < a\<

i¢.x, {_a} , ia,b}jUiaa| 0 < a <

(X,7L,T) is locally fuzzy convex.

T

L

II

II

Proposition 301.3.

An FCC, F—open, F-continuous image of a locally

ftfcs is a locally ftfcs.

Proof:

Let f: (X, I1,T1) --P (Y, tQ,T2) be an FCC, F-open,
F—continuous onto map. Let a7\ be a fuzzy point in Y. Then
we can find a point b in X such that f(b) = a. Then
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clearly f(bA ) = aA. Let U be a fuzzy neighbourhood
of aA in Y. Then f-l(U) is a fuzzy neighbourhood of
bx in X. Since X is a locally ftfcs, there exists an
f;l—convex fuzzy neighbourhood C of bh in X such that

b,, c-. c <_:r‘l(u>

f(b,,) 6 f(C) gu
i.e. a/\é,f(C) QU

Since f is an FCC, F-open onto map, f(C) is an 12-convex

fuzzy neighbourhood of ah jJ1Y. Hence Y is a locally
ftfcs.

Proposition 3.1.4.

Any subspace of a locally ftfcs is a locally ftfcs.

Proof:

Let (X,fL{T) be a locally ftfcs. Let M<:_X and

(M,'fi-, TM) be the corresponding subspace of (X,T¥,T).
Let ah be a fuzzy point in M and let U be an F—open
neighbourhood of aA in M. i.e. aA 6; U EZTM. Since U
is F-open in M, we have U = V13 M where V €ZT- Since X

is locally fuzzy convex, there exists a convex fuzzy

neighbourhood C of an such that aA E C CV- Then
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aA Q; CFWM CLVf3M. Now C F\M is a convex fuzzy

neighbourhood of a?‘ in (M, fl-, TM) and so M is locally
fuzzy convex.

Remark: Fuzzy Topology Fuzzy Convexity Fuzzy Subspace

Let (X,iL,T) be an ftfcs and M a fuzzy subset of X.
Then define

M _{'LflM]L(:7;«j
LAGMIAG-.T}'

We can say that (M,7H“,TM) is a fuzzy topology

I‘

m 3 Q —a2 H

fuzzy convexity fuzzy subspace of (X,1;,T) in the following
sense:

(1) M 6&4

(11) If A1 C—L‘LM for each 1 61, then (3 Ai €T~«M.

(iii) If Ai E '£M for each 1 61 and if A.1's are
totally ordered by inclusion,

then UAi
Again (1) ¢,M ETM

(ii) A,B ETM ==> A08 QTM

(iii) If Aié-LTM then UAi 6, TM.
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Imitating the proof of the above Proposition 3.1.4,
we can show that anysuch fuzzy subspace of a locally
ftfcs is a locally ftfcs with obvious definition for
locally ftfcs in the case of the subspace.

In the following chapters also wherever we prove

results for crisp subspaces, we could obtain analogous
results for fuzzy subspaces; however we would be restricting
ourselves to crisp subspaces only.

Remark:

We proved in Proposition 10205 that a map

f : (x,13l)-——+ (Y, i?) is an FCC function if and only if

1'2
ever, as in the crisp case (cf. Van de Vel [33] ) we can

(r(s)) g;f( 11(5)), for each fuzzy subset s of x. How­

prove the following:

Lemma 3.1.5.

In a product space, the polytopes (i.e. fuzzy
convex hulls of finite fuzzy sets) are of the product
type and hence for each finite subset S of the product,

74 na<s>)

v-”-“‘_ //its)- a 61
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Lemma 3.1.6.

f: (x,‘/fxl) ——> 01,732) is FCC if and only if

fv2(f(S)) Q; f(1Ll(S)) for each finite fuzzy set
S of X0

Proposition 30lO7u

The projection map nu of a product to its factors
is both PCP and FCC.

Proof:

In a product space X = 1! Xa a fuzzy alignment
I

can be generated by the convex fuzzy sets of the form

in;l(Ca)ICa is a convex fuzzy set in Xa , a 63%},

it follows that each nu is FCP.

That each ad is FCC is a consequenceof the two
lemmas and the remark above.

Proposition 3.1.8.

77'
A nonempty product space I (Xa,1La,Ta) is.­a

locally fuzzy convex if and only if each factor is locally
fuzzy convex.
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Proof:

Suppose each Xa is locally fuzzy convex. Let
alk be a fuzzy point in X = 7TXa and consider a basic
fuzzy neighbourhood

na;l(ul>fln;:(u2)fl...-fln;l(u >nD

of ah in X where na is the projection map from X to Xa.

Now U1 is a fuzzy neighbourhood of (aai)A in Xai for

i = l,2,3,...,n, and since each X“ is locally fuzzyi
convex, Ui contains a fuzzy convex neighbourhood Ci of

(aai)>‘. i.e. (adj-)h€CiC_Ui. Then

na;1(cl)rw na;l(C2) rw.... 4’\n;: (cn)

is a convex fuzzy neighbourhood of a A contained in-l -1 -1
nal(Ul) (W na2(U2) r\....r\nan(un),

Thus every fuzzy neighbourhood of a)‘ contains a convex
fuzzy neighbourhood and hence X is locally fuzzy convex.
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Conversely let (aa)A be a fuzzy point in X“.

Then we can choose a fuzzy point a)‘ in X such that

na(a%) = (aa)h . Let U“ be a fuzzy neighbourhood of
( )aa A in Xa. Then ngl(Ua) is a fuzzy neighbourhood of

ab in X. Since X is locally fuzzy convex, there exists
a convex fuzzy neighbourhood 'C' of a7‘ contained in

n;1(Ua). Since na is FCC, na(C) is a convex fuzzy
neighbourhood of (aa)h in Xa contained in Ua. Hence
Xa is locally fuzzy convex.

Proposition 3.1.9.

Quotient of a locally ftfcs is a locally ftfcs
if the quotient map is an FCC, F—open map.

Proof:

Let (x,1L,I) be a locally ftfcs. Let f be the
quotient map from X to Y. Let G be an open fuzzy

neighbourhood of a fuzzy point alh, O <?\$ l in Y. Then
we can find a point b in X such that f(b) = a. Then

clearly f(b) ) = a) . Therefore f'l(G) is an open fuzzy
neighbourhood of bh in X. Since X is locally fuzzy
convex, there exists a convex fuzzy neighbourhood C of bh
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such that by, (—;c C 1-"”l(G).

Then f(b;,) 6 f(C) CG
i.e. a) Q f(C) CG.
Since f is an FCC, F—open map, f(C) is a convex fuzzy

neighbourhood of a?‘ in Y and hence Y is a locally
ftfcs.

Remark:

If Xhis a fuzzy topological vector space with
fuzzy convexity as defined in K 1.1, then the quotients
are locally ftfcs, if the quotient map is F—open. This
is because, if X is a fuzzy topological vector space,
then a quotient map f is a linear map and under a linear
map the image of a convex fuzzy set is a convex fuzzy
set [11].



Chapter 4

SEPARATION AXIOMS IN FUZZY CONVEXITY SPACES

4.1. Fuzzy Hemispaces or Fuzzy Half Spaces

Definition 401010

Let (X,I;) be a fuzzy convexity space. A subset
H of X is called a fuzzy hemispace (fuzzy half space,
fuzzy biconvex set) if H is a convex fuzzy set with a
convex fuzzy complement.

Note:

¢ and X are fuzzy hemispaces.

Proposition 4.1.2.

Let (X, ti) and (Y,7L2) be fuzzy convexity spaces.
If f:(X, £1) ———? (Y, K?) is PCP and H is a fuzzy hemispace
in Y, then f-l(H) is a fuzzy hemispace in X.

Proof:

H is a fuzzy hemispace of Y. Then H and its
complement H‘ are both convex fuzzy sets in Y. Therefore
f"l(H) and f'l(H') are both convex fuzzy sets in X.
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Now to show that f-l(H) is a fuzzy hemispace in X,
we have to prove that [f'l(H)]' is a convex fuzzy set.
For every x 6 X,

uf_l(H')(x) = pH.<f<x>)

= l-uH(f(x))

= 1 - uf_l(H)(x)

= ”[f“l(H)]'(x)

.°. f'l(H') = [f‘l(H)]'

Now f—l(H’) is a convex fuzzy set and hence [f-l(H)]'
is a convex fuzzy set. Therefore f_l(H) is a fuzzy
hemispace in X.

Proposition 4.103

Let (X,1L) be an fcs and M be a crisp subspace
of X and if H is a fuzzy hemispace in X, then H F3M is
a fuzzy hemispace in M.

Proof:

H is a fuzzy hemispace in X. Clearly H17 M is a
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convex fuzzy set in M and we have to show that the
complement of HF)M (i.e. (Hf7M)') is also a convex
fuzzy set.

For x EM, we have

(X) = 1 "
= 1 - min?_uH(x)’uM(x)}

= l - uH(x) since x éLM

p(HfWM)'

1| pH! (X)­

Now,

<x) = miniuH.<x). uM<x)}

= uH,(x) since x EZM.

P
H'|W M

.’. u(Hr)M),(x) = uH,r1M(x) for every x €;M

.'. (Hf3M)' H‘F)M
Since H'F)M is a convex fuzzy set in M, we have the
complement of HFWM is also a convex fuzzy set. Hence
H F)M is a fuzzy hemispace in M.
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4.2 F50 Spaces

Definition 4.2.1.

An fcs (X,1L) is said to be FSO if fuzzy convex
hulls of distinct fuzzy points are distinct (Two fuzzy points

a?” and bu are distinct if a £ b).

Example:

Let x = {a,b,c}
a -——?l

Choose 1:1 = ¢,X,{a} , éa,b] , b -#>l
c -—1>%

Then (X, it) is an FSO space.

a —--91

Choose jlé ~ ¢,X, [33 , b --—>%
c—-9%

Then (X. £2) is not an PS0 space since the fuzzy convex
hulls of b)‘, 0 <71\<-%

a -——9 1l .
b —-€75

l
C ——€>Z

and cu, o < p g % is the same
fuzzy set
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Proposition 4.2.2.

If (X,f) is an PS0 space, then given two
distinct fuzzy points a?‘ and bu, there exist distinct
convex fuzzy sets F1 and F2. i.e., Fl # F2 such that
aA€, F1 and bu€ F2.

Note:

a)‘ (:Fl {-1) 71$ uFl(a)
Note:

The converse of Proposition 4.2.2 is not true.

Example:

Let X
{am} and

a -191
L = ¢1x9 bl/2: b 32-...) _4

Now for distinct fuzzy points ah , bp in X, there exist
distinct convex fuzzy sets a ’>% and X containing

b -—-92
both of them. But there do not exist distinct fuzzy
convex hulls containing each of them.

Proposition 4.2.3.

If (X,7:) is an F50 space, then any M CLX.is also
an F80 space.
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Proof:

(X,'L) is an PS0 space. Let a)‘, bu be two
distinct fuzzy points in M. Suppose F1 and F2 are

the distinct fuzzy convex hulls of ah and bp in X
respectively. Now we can prove that FlfW M and FQFW M

are the distinct fuzzy convex hulls of a;A and bu in M.

First we will prove that FlF)M and FQFW M are

distinct convex fuzzy sets containing a)‘ and bp in M.
If possible assume that Fir} M = F2fW M.

Then a bu 6: FlF)M = F2fW MA’

.-. aa, bu Q: F1 and ala, bu 5; F2

But then FlfW F2 is fuzzy convex and since

a’% 6i FlfW F2(:_Fl and F1 is the convex hull containing
a7‘, we get FlF7 P2 = P1. Similarly Flf7 P2 = P2.

.'. F = P2 and is a contradiction to the assumption1

that F1 and F2 are distinct.

FlOM;éF2flM
Now we will prove that FlF)M and F2fW M are the fuzzy

convex hulls of a;A and bp in M. If possible assume that
there exist convex fuzzy sets F1‘ and F2‘ in M such that

a) Q 1=l' CF10!»/1 and bp 6 F2' C L=2flM,



55

Since F1‘ and F2‘ are convex fuzzy sets in M we
have P1’ = UVWM and F2
convex fuzzy sets in X.

' = VVWM, where U and V are

eunm CF mm3% 1 (1)
iiiand bp evm/1 CFQHM

Now aAG,U and aAe F1 and since F1 is the fuzzy
convex hull ofyah in X, we have Fd_(:LL Similarly
F2 CZV.

.'. Fl P\M C:U r)M and F2 r)M CLV F)M (2)

From (1) and (2), we have

F flM=UflM andF2flM=VflMl

.'. Fl‘ = FlfW M and P2‘ = F2{W M

.'. Fl(W M and F2fW M are the fuzzy convex hulls

of ah and bp in M.

. . M is an F50 space.

Proposition 4.2.4.

A nonempty product is PS0 if each factor is FSO.
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Proof:
TLet X = Xa and let each factor X“ bea €.I

F80. Let aA and bu be two distinct fuzzy points in X.

Then for some a, (aa)A and (bu) are distinct fuzzy
P

points in Xa. Now Xa is FSO. Therefore there exist

distinct fuzzy convex hulls Pa and Ga containing (aa)A
and (ba) respectively. Since Pa and Ga are fuzzy convex,

P

1
(n;l(Fa) and fl; Ga) are fuzzy convex) n is the projection(1

map from X to Xa.

Now, p (ah) uFa(na(aA))na'l(Fa)

p,_.a(<aa),\> 2,»

Now we will prove that n;l(Fa) and n;l(Ga) are distinct.

If possible assume that

n;1(Fa) = n;l(Ga)
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Then

( ) = ( ) **
;.11[(_r_l(Fa) x pn_(;1(Ga) x x €.X

1.9- pFa(na(x)) = uGa(na(x))

.'. Fa = Ga

which is a contradiction since Fa # Ga.

.°. t'1(p ) e t'l(e )OZ (1 (I (I

1( (1Now to prove that fig Pa) and n (Ga) are the fuzzy convex

hulls of ah and bu respectively. If possible assume that
there exists a convex set H in x such that ah 6, 1-1 cn;l(1=a).
Then we have

1ta(-3;‘) é 1ra(H) CFa

i.e. (aa)A Q 1ta(H) Q Fa.

Since ma is FCC, na(H) is a convex fuzzy set and hence it
is a contradiction to the assumption that Fa is the fuzzy
convex hull of (aa)A in X“. Hence n;l(Fa) is the fuzzy
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convex hull of a/\ in x. Similarly n;1(Ga) is the

fuzzy convex hull of bp in X and we have

n-l(F ) £ n'l(G ) Hence X is FSa a a a ' 0'
Note:

The quotient of an F30 space need not be an
F50 space.

Example:

Let X {a,b,c}
a -——91

1 ¢,x,[a}, {ta}, b-—->1W1:
i

Now (X, fifi) is an F50 space.

Consider Y = {},2;}

Define f : X --> Y as

f(a) = 1 = f(b) and He) = 2

l --9 1
1Choose _t§ = ¢,Y,

2 —-€> 5
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Then ‘f is a quotient map from (X, £1) to (Y, £2).

n.o (Y,7:é) is the quotient space of (X,1:l). But

(Y,‘fi§) is not F50, since the fuzzy convex hulls of

1) , O <;A$ l and 2p, 0 < p 5 % are the same convex

fuzzy set 1 -_7>i
2 1->5

4.3 PS1 Spaces

Definition 4.3.1.

An fcs (x,'L) is said to be FSl if given two
distinct fuzzy points a)‘, bu there exist distinct
fuzzy convex hulls of each of them not containing the

other. i.e. given a’A, bu , a £ b, there exist fuzzy
convex hulls F1 and P2 of a A and bu respectively with

P1 ;é F2 such that aA¢ F2 and hp 91; F1.

Example:

Let X be any nonempty set and

L=i¢,x}L) i{_x}l xex}
Then (x,7L) is an F51 space.
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Example:

LetX = {a,b,c}
a ——€>%

-L = ¢!X! i:a}9{b}1{rC}v 31/2) b ‘)1
c —-—>l

(X,IL) is an PS1 space.

Proposition 4.3.2.

(X,IL) is an PS1 space if and only if each
fuzzy singleton in X is a convex fuzzy set. (Recall:

a fuzzy point a;a is a fuzzy singleton if A:= 1).

Proof:

If each fuzzy singleton in X is a convex fuzzy

set then clearly (X,1L) is F81. To prove the other part,
assume that there is a fuzzy singleton {a} which is not
a convex fuzzy set. Then the support of the fuzzy convex

hull of {a} consists of at least one more point 'b'
with membership value p, 0 < p~$ 1. Then the two fuzzy

points al and bu, p E3 (0,l] cannot be separated by
distinct fuzzy convex hulls’which is a contradiction to
the assumption that (X,1L) is an F81 space. Hence every
fuzzy singleton must be a convex fuzzy set.
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Proposition 4.3.3.

An F81 space is always FSO.

Proof:

Trivial.

Note:

An F50 space need not be FS

Example:

Let X = ie,b,c_}

‘L = ¢9XrLa]r iivkigv
c -€>%

(x,T~) is F50 but not F51.

Proposition 4.304.

Let (X,f:) be an FSl.space and 1:2 a fuzzy
alignment on x such that 'fLlC7:2. Then (x,7:2) is
also an PS1 space.
Proof:

It can be easily proved by Proposition 4.3.2.
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Proposition 4.3.5.

Every subspace of an F81 space is an F5 space.1

Proof:

(X,1L) is an PS1 space. Let M be a crisp

subspace of X. Let a), bu be two distinct fuzzy points
in M. Then there exist distinct fuzzy convex hulls F1
and F2 in X of a‘a and bu respectively such that
a $2 F2, bp<$IFl. Then we can prove as in the proof
of Proposition 4.2.3 that Fl(W M and F2f7 M are distinct

fuzzy convex hulls in M of a7‘ and bu respectively and

a). ¢ F2 QM, bu?) Flfl M. Hence M is an F51 space.

Proposition 4.3.6.

A nonempty product is F81 if each factor is PS1.

Proof:

Let X = I’ Xa and let each factor Xa be F81.a GL1

Let a A, bu, A, u 6 (O,l] be two distinct fuzzy points
in X. Then for some a, (aa)% and (ba) are distinct

P

fuzzy points in Xa. Then there exist distinct fuzzy

convex hulls Pa and Ga in Xa for (aa)A and (ba)p
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respectively and such that (aaxagt Ga and (ba) qt Pa.
P

Then n;l(Fa) and n;l(Ga) are distinct fuzzy convex

hulls in X for a)‘ and bu respectively such that-l —l .
bu gt nu (Pa) and ah 4: na (Ga). Hence X is PS1.

Note:

Quotient of an F31 space need not be F51.

Example:

Let X =

7'41
ll

gcmx Uzix}| x Ex]

Then (X, £1) is an F51 space. Let Y = {P,l:}and define
f:X -7>Y as follows:

f(x) : 0 if x is an odd number
1 if x is an even number

Let 1:2 be the indiscrete fuzzy alignment on Y. Then
(Y,‘£§) is a quotient of (X,1:1) and is not an PS1 space.

404 PS2 Spaces

Let (X,7:) be a fuzzy convexity space. We say
that two fuzzy sets are separated by a fuzzy hemispace
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if one is contained in the fuzzy hemispace and the other
in its complement which is also a convex fuzzy set.

40401.:
An fcs (x,'L) is said to be PS2 if distinct fuzzy

points can be separated by a fuzzy hemispace. i.e., if

ah, b“ are distinct fuzzy points, we can find a fuzzy
hemispace H such that aA E,H and bp 65 1-H.

Example:

Let X = {a,b,c}

TV, ¢,X,ia},{b},§c},§a,b},3a,cj,{b,c}
J1 13*‘? 5 3 7'2‘

ab—-—)l ' 1/2’c >1

(X,7L) is an F52 space.

Proposition 4.4.2.

An F52 space is always PS1.

Proof:

Trivial.

Note:

The converse of Proposition 4.4.2 need not be true.
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Example:

Let x ={a,b,c}

L
._,.%

¢,X, Ea} , Eb} , Z9}, al/2, b-——9 1
c-——9 1

(X,I;) is F51 but not F52 since the only hemispaces are

al/2 and its complement; these will not separate a;%and cu.

Proposition 4.4.3.

Let (X,7Ll) be an PS2 space and ‘1:2 a fuzzy
alignment on X such that Llc 7:2 then (X, 32) is also
an PS2 space.

Proof:

Trivial.

Proposition 4.4.4.

Every subspace of an PS2 space is an PS2 space.

Proof:

Let (X,1) be an PS2 space. Let M be a subspace of X.

Let a A, bu, A A1 Ei(O,l] be two distinct fuzzy points in M.
Since (X,1:) is PS2 there exists a fuzzy hemispace H such

that a;%Q;H and bu e;lrH. Then HIW M is a fuzzy hemispace
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in M (by Proposition 4.1.3) and Hf? M separates ala and
b in M.

P

Proposition 4.4.5.

A nonempty product is F52 if each factor is PS2.

Proof:

Let X = )] Xa and let each factor X be F82.a (E I a
Let a A, bp, )5 ,p e(O,l] be two distinctfuzzy points
in X. Then for some a, ( au)z and (ba) are distinct

P

fuzzy points in Xa and hence there exists a fuzzy hemispace
H in X such that H se arates (a ) and (b ) . Thea P a A a p "
n;l(H) separates a7‘ and bp in X and n;l(H) is clearly
a hemispace. Therefore X is PS2.

Note:

Quotient of an F52 space need not be an PS2 space.

Example:

Let x = {a,b,c}
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7-H = ¢»><.{a}» 2b}.:c1aa.b}. gm} . {me}
18*--7-5 a )‘—%­ab “1> 1 ’ 1/2, c )1

(X, ii) is an F32 space.

Consider Y = §},2:}and define f:X ——1> Y as

f(a) = 1 = f(b) and f(c) = 2.

Choose 1:2 ==iQ,Y, ii} }

Then f is a quotient map from X to Y and (Y,'fi§) is not
F52.

4.5. PS3 Spaces

Definition 4.5.1.

An fcs (X;fJ is F53 if any convex fuzzy set and
a fuzzy point (not in it) such that the supports are
disjoint, can be separated by a fuzzy hemispace. i.e.

given a convex fuzzy set A in X and a fuzzy point ah
such that the supports of ah and A are disjoint, then
there exists a fuzzy hemispace H such that A CLH and aa€El—H.
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Example:

Let X = N, the set of natural numbers.
Let a ELN be a chosen point.

Choose 7:=i¢,X,{a:} , x -—-7 1 'V’“ x ;é a A?x-—-7 0 if x = a

Then (X, LJ is an PS3 space.

Example:

Let X = {a,b,c‘}

___ A a ——+.l

E : ¢1Xy {:3}, k: b "“"->% {(b’c}C -—'>'2­

(X,fL) is an PS3 space.

The above example shows that an F53 space need not be F52,

PS and PS0.1

Note:

An F52 space need not be PS3.

Example:

Let X = ia,b,c }

7:, = ¢,x,[a}, bl/2, {ta}, {5} , §_b,c}, {am}/
a‘-9 l
b ——>-52%
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(x,1) is F52 but not PS3.

Note:

If (X,'t1) is an F5 space and 1:5 a fuzzy alignment3

such that 7'Z,lCfl2, then (x, 732) need not be an F53 space.

Example

Let X = ia,b,c_} l 1a —-+

7:1: ¢,x,za}, "“*§ b..,g {M3°’—*‘§ 1
C-*—~>§

(x,Ll) is PS3.
1 a ———9 1b-——r­h 1» = 2 __ A 3C oose 2 ¢,X,ia}, C __§% , > E iP,c , cl/2c ——> —2

Now 7:1 Cf? and (X,L2) is not an F53 space.

Proposition 4.5.2­

Any fuzzy convex subspace of an PS3 space is an
F53 space.

Eroof:

Let M be a fuzzy convex subspace of an FS3 space
(x,7E.) and let a A G. (o,1] be a fuzzy point in M and A,A’

a convex fuzzy set in M such that the supports of a;\ and A
are disjoint. Then A = M¢1L where L is a convex fiuzzy seti
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Since supports of a7) and A are disjoint, we have
supports of a 3 and L are disjoint. Since X is PS3,
there exists a fuzzy hemispace H such that LCZH and
a (E 1-H. Then H F\M is a fuzzy hemispace in M suchA

that HF\M separates a)‘ and A. Therefore, M is an
PS3 space.

Proposition 4.5.3.

A nonempty product is F83 if each factor is F53.

Proof:

Let x = H xa and let each factor xa be PSa Ell

Let a A , A EL(0,l] be a fuzzy point in X and A, a convex

3.

fuzzy set in X such that the supports of a_a and A are
disjoint. Since the fuzzy alignment generated by sets

of the fonn it;l(Ua)|Ua, a convex fuzzy set in Xaig,
where na is the projection map from X to X“; we can

take A as A = (\ n;l(Ua). Now for some a, (aa)A isa Q I
a fuzzy point in Xa and the supports of (aa);‘ and U“ are
disjoint. Since X“ is F53, (aa)A and Ua can be
separated by a fuzzy hemispace Ha. Then H = (a) n;l(Ha)a 6.I
se arates A — (W n"l(U ) and a in X Hence X is FSp " a a A ' 3'a 6,1



Proposition 4.5.30

Quotient of an F83 space need not be an F53
space.

Example:

Let X = N, the set of Natural numberso

T3-1 ={¢,x,{1} , A,B,C,D}

where the fuzzy sets A,B,C,D are given by

x—-20% ‘J-x evenA : 1 ——7> B :
x——>l"v‘x),2, x-—->0 -V'xodd
l --7 O l -#91

C:x——>-%°VLxeven D: x-—9-é "9“xeven
x-—) 1-Vx }, 3, x odd x-—)O V‘ x;,3, x odd

Consider Y = {a,b } and

71/2 =i¢iY9bll2 }

Define f : (X, 11) to (Y, ié) as

f(x) = a if x is an odd numberb if x is an even number
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Then f is a quotient map from (X,1l) to (Y,1L2).

Now (Y, jg) is not an F83 space since the fuzzy point

a A and the convex fuzzy set bl/2 cannot be separated
by a fuzzy hemispace.

4.6 FS4 Spaces

Definition 4.601.

An fcs (X,7:) is PS4 if two disjoint convex
fuzzy sets can be separated by a fuzzy hemispace.

i.e. given two disjoint convex fuzzy sets A and B
there exist a fuzzy hemispace H such that A CLH and B C21-H.

Note:

Two fuzzy sets are said to be disjoint if their
supports are disjoint.

Example 1.

Let X = N, the set of Natural numbers, and let a % b
be points of N chosen arbitrarily.

Choose,7:/= ¢,X, {a}, {b}, X—‘—?l 'V'Xiéa
x ——€>O if x = a

(X,TL) is an PS4 space.
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Example 2.

Let X =z/a,b,c}

ix’: 2'¢,X,[a} , al/2, bl/2,zb,c}§
()(,7:,,) is an FS4 space.

Note:

The above example 2 shows that an PS4 space need
not be F33.

Note:

If (X,‘Ll) is an PS4 space and 71/2 a fuzzy align;
ment on X such that 7:1 Cf.2, then (X,‘t-*2) need not be
an PS4 space.

Example:

Let X = {a,b,c:}

Ll =E25,x La} , al/2, bl/2, §o,c}}
(X, 11) is an PS4 space.

Choose -L2 = ¢yX9 {3} 9 31/2! bl/2 I {bye}: EC]: 3 ""7%c :71

Now 7:,lC£2 and ()(,'L2) is not PS4.
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Proposition 4.6.2a

ANY fuzzy convex subspace of an FS4 space is an
FS4 space.

Proof:

Let (x,‘L) be an 1=s space. Let (M,'LM) be a4

fuzzy convex subspace of (X,7L). Let F1 and F2 be
disjoint convex fuzzy sets in M. Since M is a convex

fuzzy set, F1 and F2 are disjoint convex fuzzy sets in X
and since X is F84, there exists a fuzzy hemispace H
such that FICZH and F2CZl-H. Then H{\M is a fuzzy
hemispace in M such that F1CIHf7M and F2C:l—(HF)M).

Hence (M,1fiw) is F84.

Proposition 4.6.3.

A nonempty product is PS4 if each factor is FS4.

Proof:
7)­

a é.I
Let A and B be two Convex fuzzy sets in X. Then A and B

Let X = Xa and let each factor X“ be PS4.

can be written as

A = a(:;L n;l(Ua) and B = ac;>I “El (Va)
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where nu is the projection map from X to X“ and
Ua's and Va's are convex fuzzy sets in X“. Since A
and B are disjoint convex fuzzy sets, U and Va willa

be disjoint for at least one a. Since each Xa is FS4,
U“ and Va can be separated by a fuzzy hemispace Ha,
a 631. Then the hemispace n;l(Ha) separates A and B
in Hxa. Hence TX“ is I-‘S4.

Note 4.6,4.

Quotient of an FS4 space need not be PS4.



Chapter 5

SEPARATION AXIOMS IN FUZZY TOEOLOGY
FUZZY CONVEXITY SPACES

5.1. FNSO, FNSl, FNS2 Spaces

In a topological convexity structure (crisp) a
number of separation properties were considered by
Van de Vel [33]. The separation involve closed convex
sets. We introduce the "fuzzy neighbourhood separation

properties" FNS0, FNSl, FNS2, FNS3 and FNS4 in a fuzzy
topology fuzzy convexity space of which the last three

are in some sense analogous to N82, N53 and N54 introduce
by Van de Vel.
Definition 5.1.1.

(Let (x,L,T) be an ftfcs. Then (X,'L,T) is said
to be

(i) FNSO if for any two distinct fuzzy points there
exists a closed convex fuzzy neighbourhood containing one
and not containing the other.

(ii) FNSl if for any two distinct fuzzy points there
exists a closed convex fuzzy neighbourhood of each of
them not containing the other.

* Some of the resul ts of this chapter will appear in the J1
Fuzzy Mathematics(1994).
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(iii) FNS2 if for any two distinct fuzzy points
there exist disjoint closed convex fuzzy neighbour­
hoods of each of them.

From the above definition 5.1.1 one can notice

that (X,t4,T) is FNS2 :-.,>I-‘N51 —:-_> FNSO. Also we

can show that FNS0:"=>’ I-‘N81 at) I-“N52.

Examples

1) Let X=N, the set of natural numbers.

')1»=Z¢,x}U£Lx}l xéx}
T, the discrete fuzzy topology on X.

Then (x,7L,T) is FNS2.

2) Let x {§,b,c;} 1a-—?­
L ?¢9Xv?'a-1 9 b 1-}? 1 al/2}

T = {¢,X,2a_} , a’l/2 , ic}, {me}

ib,c}, a ———w>

II

A
2

1b --1? b —-—w>1 C -—¢'l

(x,L,r) is mso but not FNSl.
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3) Let X = {a,b,c_} l 1
ix =g¢,X,{a}, {me} a—-95 , a )5 ,’b--Pl c———>1

al/2, {Io} , icjj

T ={¢,X,{b,c}, ia}, a ——-9% a ——%
c ——-9 1 b ————>1

{a-b]-a1/2»Zb}»ic}- ZZZ? .:a.c3

(x,f.,T) is FNSl.

Proposition 5.1.2.

Any subspace of an FNSi space is FNSi for every
1 = 0,1,2.

Proof:

Let us prove when i = 2. Let (X,T4,T) be an FNS2
space and let UM,1HM,TM) be a subspace of (X,75,T).

Let a by be two distinct fuzzy points in M. Then7, 9

a7‘ and bu can be considered as distinct fuzzy points
in X and X is FNS2. Therefore there exist disjoint
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closed convex fuzzy neighbourhoods U and V for ah

and bu respectively. Then Uffi M and VfW M are disjoint

closed convex fuzzy neighbourhoods of ah and bp in M
respectively. Therefore (M,1M, TM) is FNS2.
Similarly we can prove the result for i = 0 and 1.

Proposition 5.1.3.

A nonempty product is FNSi, if each factor is
FNSi for every i = 0,1,2.

Proof:

Consider the case when i = 2.

Let (Xa,1La,Ta)a(£I be a family of FNS2 spaces.

Let ah , bp be two distinct fuzzy points in X, where.j_
(x,1”T) éatgI(Xa.fa,Ta) Then for some a, (aa)A and

(ba) are distinct fuzzy points in X“ and each Xa is
P

2’

neighbourhoods Ua and Va in X

FNS then there exist disjoint closed convex fuzzy

for (aa)A and (bu)
P

respectively. Then U = n;l(Ua) and V = n;l(Va) are

Cl

disjoint closed convex fuzzy neighbourhoods in X of

a)‘ and bu respectively.
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(x,L,T) is FNS2.
Similarly one can prove the result when i = O and 1.

Note 5.194.

An PCP, F-continuous image of an FNSi space need
not be an FNSi space, for every i = 0,1 and 2

Example:

Let X be any space with more than one point,

having discrete fuzzy convexity ill and discrete
fuzzy topology Tl. Consider any map

f : (X, 1Ll,Tl) ---? (Y, f;2,T2), where T2 is any
fuzzy topology on Y other than the indiscrete fuzzy

topology and 1:2 is the indiscrete fuzzy convexity
on Y. Then f is an PCP, F—continuous map from X to Y.

Clearly X is FNSi for every 1 = 0,1,2. But Y is not
FNSi for the corresponding-i = 0,1,2 respectively,
because, any proper closed subset A of Y is not a
convex fuzzy set. Therefore there is no proper

closed convex fuzzy set in Y. Hence Y is not FNSi
for every i = 0,1 and 2.
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Note:

The quotient of an FNSi space need not be FNSi
for every i = 0,1 and 20

5.2 Pseudo FNS3 and FNS3 Spaces

Definition 5.2.1.

An ftfcs (X,"L,T) is pseudo I-‘N53 if for each
closed convex fuzzy set A in X and a fuzzy point ah
(not in it) such that supports of a)‘ and A are disjoint,
then there exists a closed convex fuzzy neighbourhood

V ofA such that ah #2 V.

Definition 502.2.

An ftfcs (X,TL,T) is FNS3 if for each closed
convex fuzzy set A in X and a fuzzy point ah (not in it)
such that the supports of ah and A are disjoint, then
there exist disjoint closed convex fuzzy neighbourhoods

U of am and V of A.

Note:

From the above definition one can notice that

FNS3 :=;> Pseudo FNS3 and pseudo FNS3 ;;&;> FNS3.
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Example (i):

Let X be any set with discrete fuzzy topology T
and the fuzzy convexity given by

-K/=i(¢)X}U{(E(} I x C-. X}
Then (x,'L,T) is FNS3.

Example (ii):

Let X = N, the set of Natural numbers with

a x ——>1 *9‘ x ;é a
i?'X’ i & , x--90 if x = ag}

7:: =é¢,X,?_a}}where a E N

-I II

but not FNS .(x,‘£,,T) is pseudo I-‘N83 3

Example (iii):

Let X [0,1]

{_¢.X,A,B,C,D,E:);

‘L = 5L¢,x,A°,B° 3

T

where A,B,C,D,E,Ac and BC are the fuzzy sets
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A x ———>l, 0 g x $ % x -——>l, O 4 x g1 1 B‘x 2-2—,§<x«1 x-—>o,-%<x\<

C x-—->O.O.<x\<-2l- x-—?l,O\<x\<' >3 1 D‘ 3 1><——z.§<X$l x——>-Z,§<x$

x——->o,ogxg-%E :

x >%,-é-< xs1

x-—-)0,0-\<x$% x——>0,0\<x$AC BC:’ 1 1 1x—-)§,-2-(x\<l X:->l,§.LX\(

(X,TL,T) is pseudo FNS3 but not FNS3.

Note:

An FNS3 space and so a pseudo FNS3 space need

not be FNS2.

Example 1.
llI.etX f_a,b,c}

L T ={¢,x, {.3}, ;_b,c}}
(x,L,I) is FNS3 but not FNS2.

H BMH

H hMH

H MH­
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Example 2:

Here we give another example of a pseudo FNS3
space which is not FNS2.

Let X = N, the set of Natural numbers and let

{¢.x.A.B.c.D.E}

{S25} U £YCIx | AQY3

where A,B,C,D,E are the fuzzy sets)

T

7';

__,»l _._. A _..,».§1 2 l > 2 l 3l 2 -—>A : 2 2% B: 2'__’ 5 C: H
x )0 "v‘x),3 X l_v,x>4 x—.>o-vx)/4

3l-——-73 l-——? OD 3 E‘ 2 ——€> O2 ——-:72 3 ——~> Ox -H? 1 Vkx ) 4X ——-€>l VFX ;.3 '
Now the only proper closed convex fuzzy sets in X

C and Ec,whereAC,Bc,Ec are the complements ofare AC, B

A,B,E respectively. Now there is no fuzzy point ah in X
such that supports of ah and Ac are disjoint. Any
fuzzy point disjoint with 3° is of the form ah where
a > 3 andO <A\< 1., Now 3° cc CEC where C E-IT.



85

Therefore (X,IL,T) is pseudo FNS3 and is not FNS2,
because aA and b A , O <A.$ 1 are distinct fuzzy
points in X, where a # b and a,b ; 4. But any
closed convex fuzzy set containing a), contains b>salso.

Proposition 5.2.3.

Fuzzy closed fuzzy convex subspaces of an FNS3
space is FNS3.

Proof:

Let (x,7L,T) be an FNS3 space. Let M be a fuzzy
closed fuzzy convex subspace of X. Let a?‘ be a
fuzzy point in M and A, a closed convex fuzzy set in M

such that the supports of a?‘ and A are disjoint.
Then A = M F)L, where L is a closed convex fuzzy set in X.

Since supports of ala and A are disjoint, we have supports
of a A and L are disjoint in X and X is FNS3, hence there
exist disjoint closed convex fuzzy neighbourhoods U,V

of a A and L respectively. Then M F)U and MI”)V are
disjoint closed convex fuzzy neighbourhoods of a)‘ and A
respectively in M.

Proposition 5.2.4.

Fuzzy closed fuzzy convex subspace of a pseudo FNS3

space is pseudo FNS3.
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Proof:

Similar to Proposition 592.3.

Note:

An PCP, F—continuous image of an FNS3, pseudo

FNS3 space need not be FNS3, pseudo PNS3 respectively.

Example:

Let X be any set with more than one point having

discrete fuzzy topology T1 and discrete fuzzy convexity
7:1. Consider

f : (x, fLl,Tl) -e> (Y, f«2, T2), where T2 is

the indiscrete fuzzy topology and 11?, the discrete
fuzzy convexity on Y. Now X is FNS3 and hence pseudo
FNS Clearly f is an FCP, F-continuous map from X3.

to Y. But Y is not pseudo FNS3 and not FNS3.

Proposition 5.2.5.

A nonempty product of FNS3 spaces is an FNS3
space.

Proof:

Let (Xa,1:a,Ta) be a family of FNS3 spaces. Let

(X,-f_,,T) -.-a 21 (Xa. Ji«a,Ta). Let a7,‘ be a fuzzy point
in X and A, a closed convex fuzzy set in X such that
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the supports of a;% and A are disjoint. Let ua
be the projection from X to X“. Then we can take
A as A = (f\ n;l(Ua), where Ua is a closed convexa (E I
fuzzy set in Xa. Now for some a, the supports of

(aa))) and ua are disjoint. Since xa is FNS3, there
exist closed convex fuzzy neighbourhoods Va of (an A
and Wu of Ua such that (aa)% gt Wu and Va and U“ are
disjoint. Then U = n;l(Va) and W = n;1(Wa) are closed

convex fuzzy neighbourhoods of aA and A in X respectively

such that a2 #2 W and U and A are disjoint.

Proposition 5.2.6.

A nonempty product of pseudo FNS3 spaces is a

pseudo FNS3 space.

Proof:

Similar to Proposition 5a2o5o

Proposition 5.2.7.

The quotient of an FNS3, pseudo FNS3 space is FNS3,

pseudo FNS3 respectively if the quotient map is an FCC,
F—closed and F-open map.

Proof:

Let (X,1L,T) be an FNS3 space and let f be the
quotient map from X to Y, which is FCC, F-closed and
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F—open. Let a)‘ be a fuzzy point in Y and let G be
a closed convex fuzzy set in Y, such that the supports

of a7‘ and G are disjoint. Then we can choose a
pointu;in Xsuch that f(b) = a and then f(bA) = a A.
Also f-l(G) is a closed convex fuzzy set in X and

f‘1(G)

since the supports of a‘A and G are disjoint.

.°. bh gt f‘l(G),

Now X is FNS3, therefore there exist closed convex fuzzy
neighbourhoods U and V of bh and f'l(G) respectively

su:h that b}‘q§ V and f-l(G)fW U = ¢. Then f(U) and f(V)
are closed convex fuzzy neighbourhoods of ah and G
respectively in Y since f is an FCC, F—closed and F—open

map. Also

uf(V)(a) = E:Ef_l(G)uV(b) = O

.u aA $ fW),O<A{l.
Also G F)f(U) = ¢. Therefore Y is FNS3 and hence pseudo

FNS3.
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5.3 Semi FNS4 and FNS4 Spaces

Definition 5.3.1.

An ftfcs (x,1,T) is semi FNS4 if for each pair
of disjoint closed convex fuzzy sets in X there is a
closed convex fuzzy neighbourhood U of one of the closed

convex fuzzy sets such that U and the other are disjoint.

Definition 5.3.2.

An ftfcs (x,1L,I) is FNS4 if for each pair of
disjoint closed convex fuzzy sets A and B in X there
are closed convex fuzzy neighbourhoods U of A and V

of B respectively such that U and B are disjoint and A
and V are disjoint.

Note:

From the above definitions one can notice that

(x,1L,T) is FNS ==a> Semi FNS4 and4

semi FNS4 :;t;> FNS4 and semi FNS4 =#=)> FNS3.

Example:

(1) Let X be any set with discrete fuzzy topology T
and the fuzzy convexity given by

i=[¢-X} Ujml x 6 X}
(x,1L,T) is FNS4.



(ii) Let X = N, the set of Natural numbers

Z¢.x.A,B.c.o.E.F.G}
XLJiYC.IX | Y Q K}

T

T;

where the fuzzy sets A,B,C,D,E,F,G and K are

1———>-3 -——.>1A 4 B: gx-—>1—vLx>,2 4--9 1-9 x ; 3

1——;>%

C : 2 _> % D : x -—-> 1 4-x
x-———9 l *‘x ) 3

1 > % 1 ———> %E: F;
x ———w> l *‘x ) 2 x --9 O *‘x g 21 __.l1 >5 1 >2

G- 2——>731 K: 2——>-%­
x ———e> O'V x g 3 x -<9 0 **x 3,3

Now consider

Ac 1 —__€’%
' x ———%»O'V x 3 2

1——7oc l c 1 ““9‘3 ° 2 Z and E : 2
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AC and BC are disjoint closed convex fuzzy sets in X0
Also Ac and EC are disjoint closed convex fuzzy sets
and also there are no other disjoint closed convex
fuzzy sets in X. Now

A°cE°mmA°cFcJ¥,mueFgT.

.°. X is semi FNS4. But there is no closed convex
fuzzy neighbourhood of BC in X and hence X is not FNS4.

l"->—?-111'
(iii) In the above example (ii), c° : ___ i2 2 4

x ———¢ 0-* x;3

is closed and is convex and any fuzzy point not in Cc

is of the form a A , where a 5 3 and O <}L$ 1. Then
there is no closed convex fuzzy neighbourhood containing

CC and disjoint with ah .

.°. (x,1L,T) is not FNS3.

.'. Semi FNS4 :¢=;> FNS3­

Proposition 5.3.3.

Fuzzy closed fuzzy convex subspace of an FNS4,

semi FNS4 space is FNS4, semi FNS4 re5pective1y_

Proof:
Similar to Proposition 5.2.3.
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Note:

A nonempty product of FNS4 and semi FNS4 spaces

need not be FNS4 and semi FNS4 respectively.

Example:

We quote below the example from [33] in the crisp
case and this will then be an example to prove the above
Note in the fuzzy case also.

Consider the Real line H with crisp usual topology

and usual convexity. It is FNS4 and semi FNS4. Now
R2 is not FNS4, semi FNS4, because consider the disjoint
closed convex fuzzy sets

A=£(a,b) | a>,o,b>,0, a.b>,1}, 2
and B = i(a,b) I a = 9} in R
Now B has no closed convex fuzzy neighbourhood disjoint
with A.

Note 503.4.

An PCP, F-continuous image of a semi FNS4 space need

not be semi FNS4.
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Example:

Let x = £a,b,c} and Y{1,2}

Let Tl =Z¢,X,Al,A2,A3,A4,A5,A6} and

‘L1 = {¢_,X,Al,A3,A2c E where

a%"l a---»"-2
Al: b—-91 /A2: b_____;%C:)O c—->1

a——>o a——;>%­
A3: b——>O A4: b——»%C )1 c——>o

3a 24 5.-.»;A5‘ b——>§ A6‘ 14 b-——,>§
C—_)0 c-——)l
a--ii° 1

A2.‘ b—'-7'3
c—20

Consider f: (X,Ll,Tl) --7 (Y, 71,232) such that
f(a) = 1, f(b) = 1 and f(c) = 2.

Let T2 = i¢,Y,Bl,B2,B3,B4} where
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1 ——>1 1 —-—>42LBl : B2 :2 ——-—>o 2 -———>o

1 >0 1 —->-2;B3 : B4 :2 ———;1 2 ——>1

Now f'l(Bi), i=1,2,3,4 is fuzzy open in x for each i.
Therefore f is a fuzzy continuous map.

Let ‘T12 = £¢,Y,Cl,C2,C3}, where

, 1 -——»o _ 1 ———9$ 1 ———>1C1.2%l, C2.2 >3 , C3:2 O——— -——+

Now f_l(Ci), i=l,2,3 is a convex fuzzy set in X for
each in Therefore f is an PCP map.

New A3,Al and A2c are the only proper closed

convex fuzzy sets in which A3 and A2c are disjoint

and A3 and A1 are disjoint. Now consider A3 and A2C.
A2° CA1 and A2° C A4C_Al, where A4 at.

.'. Al is a closed convex fuzzy neighbourhood of AQC
and A3 and A1 are disjoint. Then in the case of A3
and Al. Al itself is a closed convex fuzzy neighbourhood.

.'. (x,iL,I) is semi FNS4.
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In (Y,'L2,T2) consider the two disjoint closed

convex fuzzy sets Blc : % ‘>2 and B3c: 2 =6 .
Now there is no closed convex fuzzy neighbourhood

separating them in Y. Hence (Y,'fiQ,T2) is not semi
FNS4.

Proposition 5.3.4.

The quotient of an FNS4, semi FNS4 space is FNS4,
semi FNS4 respectively if the quotient map is an
F-closed, FCC and F—open map.

Proof:

Similar to Proposition 5.2.7.
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