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Chapter I 

Review of Literature 

1.1 ,-ntroduction 

The problem of modelling income data as well as that of 

measurement of inequality in the income of members of a group or a 

society has a history of about two hundred years and has been 

attracting a lot of researchers in Economics, Statistics, Sociology etc. 

As is customary in most statistical analysis, the extend of variation in 

incomes is represented in terms of certain summary measures. Thus a 

measure of income inequality is designed to provide an index that can 

abridge the variations prevailing among the individuals in a group. 

Although there had been many attempts to provide measures of 

income inequality in the nineteenth century, the first major 

development in this area can be attributed to the work of M.O.Lorenz in 

1905. A measure of income inequality is provided through a graphical 

representation of incomes by plotting a curve .with co-ordinates 

( p, L(p) ), where L(p) represents the percentage of the total income of 

the population accruing to the poorest p percent of the population. For 

different data, a comparison of inequality of income shall be 

accomplished from the nature of the Lorenz curve. Subsequently, Gini 

(1912) proposed a measure of income inequality, which is defined as 

twice the area between the Lorenz curve and the line of equal 

distribution. Although different measures of income inequality such as 

coefficient of variation, relative mean deviation, mean deviation, 

standard deviation of logarithms of incomes and some entropy indices 

has been suggested in literature, the Gini-index still enjoys an 

important role in the context of measurement of income inequality. For 

a detailed study on various measures of income inequality we refer to 

Kakwani (1980), Anand (1983) and Arnold (1987). 
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For statistical or administrative reasons, many surveys of income 

are truncated at the lower end of the income range. Since much of the 

data on incomes comes from income tax returns and most countries 

have a threshold below which no tax is levied, someone known or 

suggested to have a low income is much less likely to file a tax return 

than a person with high earnings. Hence the importance of studying 

inequality measures of truncated distributions is much of interest. The 

effect of truncation of the distribution upon the various measures of 

income inequality had been a theme of recent interest among 

researchers. Bhattacharya (1963) showed that the Lorenz curve of a 

left truncated distribution is independent of the point of truncation if 

and only if the distribution is Pareto.The right truncation case was 

studied by Moothathu (1966) who showed that the Lorenz curve is 

independent of the point of truncation if and only if the distribution is a 

power function distribution. Ord, Patil and Taillie (1963) examined the 

effects of truncation upon some derived measures of inequality and it 

is shown that only for the Pareto distribution are the measures 

invariant with respect to truncation. Dancelli (1990) has looked into the 

effects of the truncation upon the Zenga curve and the Zenga index 

and makes some numerical studies of the effect of truncation in the 

Dagum model type-1 distribution. Further some results connected with 

ordering of distributions in the context of truncation have been 

obtained. Ahmed (1966) studied a partial ordering for life distributions 

based on the mean residual life. Mailhot (1990) studied some 

conditions to obtain ordering of truncated distributions. Belzunce, 

Candel and Ruiz (1995) has looked into the problem of ordering of 

truncated distributions using the Lorenz and Zenga curve of 

concentration. 

Recently concepts and ideas from Reliability theory has been 

extensively used to study measures of inequality. Chandra and 

Singpurwalla (1.961) pointed out few relationship's between some 

notions that are common to Reliability theory and Economics in the 

context of measuring inequality. These aspects were further 
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investigated by Klefsjo (1984). Further Bhattacharjee (1993) stress the 

role of anti-aging distributions in Reliability theory as reflecting certain 

features of skewness and heavy tails, typical of wealth distributions. 

Shannon's entropy [Shannon (1948)] has been extensively used 

in literature as a qualitative measure of the uncertainty associated with 

a random phenomenon. Further the entropy indices have been 

advantageously used as measures of income inequality, as pOinted out 

in section 1.6. In the Reliability context, concepts such as failure rate 

or the mean residual life function comes up as a handy tool to describe 

the failure pattern of a component or device. Observing that highly 

uncertain components are inherently not reliable, recently, Ebrahimi 

and Pellery (1995) has used the Shannon's entropy associated with the 

residual life, referred to in literature as the residual entropy function, 

as a measure of the stability of a component or a system. 

Motivated by this, the present study focuses attention on 

(i) defining certain measures of income inequality for the 

truncated distributions and characterization of probability 

distributions using the functional form of these measures. 

(ii) extension of some measures of inequality and stability to 

higher dimensions. 

(iii) cha~acterization of some bivariate mode!s using the above 

concepts. 

(iv) estimation of some measures of inequality using the 

Bayesian techniques. 

1.2 Basic concepts in Reliability. 

In the present section we give a brief review of the basic 

concepts and results in Reliability theory, which are of use in the 

sequel and are referred to in the text. The commonly used concepts in 

Reliability theory are (i) the survival function (ii) the failure rate 
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(iii) the mean residual life function and (iv) the vitality function. The 

definitions are reproduced below. 

Let X be a non-negative random variable defined on a 

probability space (n, 3, p) with distribution function F(x) = P(X ~ x). 

In the Reliability context, X generally represents the lifetime of a 

device measured in units of time. The function 

F(x) = P(X > x) 

= 1 - F(x) (1.2.1 ) 

is called the survival (Reliability) function, which indicates the 

probability of failure free operation of the devise up to time x. One 

major problem of interest in Reliability analysis is that of the 

determination of the functional form of the survival function. 

In the bivariate case, if X = (X" X2 ) is a non-negative random 

vector admitting an absolutely continuous distribution function F(x, ,x2 ) 

with respect to Lebesgue measure, the survival function of X is 

defined as 

(1.2.2) 

(1.2.2) represents the probability of failure free operation of a two­

component system up to time (x" x2 ). Also we have 

F (x" x2 ) = 1 - F,(x,) - F:;(x2 ) + F(x"x2 ) 

where 0(~) is the distribution function of Xi ,i=1,2.Further the density 

function of X is given by 

(1.2.3) 

For the random vector X considered above, it is of special 

interest to consider the conditional distribution of XI given 

X) > t) ,i,j = 1,2, i *- j. In a life testing experiment, if (X, ,X2 ) 

represents the lifetimes of the components in a two component system 
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the above conditional distribution focuses attention on the distribution 

of the ithcomponent subject to the condition that the other has survived 

up to time If" The survival function of Xl given X2 > 12 takes the form 

where F,(t,) = P(Xj > I,) ,i = 1,2. 

Also we have 

Differentiating with respect to 11 we get 

so that 

Failure rate 

Defining the right extremity, L, of F(x) by 

. L=lnf{x:F(x)=1}, 

(1.2.4) 

(1.2.5) 

the failure rate h (x) of X, when F(x) is absolutely continuous with 

respect to Lebesgue measure with probability density function f(x) , is 

defined for x< L by 

t(x) = lim 
p[ x< X <x+u] 

u-+o' U 

f(x) 
= 

F (x) 

= 
dlogF(x) 

(1.2.6) 
dx 

For a random variable X defined on the entire real line, Kotz 

and Shanbhag (1980) defines the failure rate as the Radon-Nikodym 
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derivative with respect to Lebesgue measure on { X, F(x) < 1} of the 

hazard measure, 

!fI(E!) - J dF 
B 1- F(x) 

for every Borel set B of (-oo,L). Further the distribution of X is uniquely 

determined by the failure rate through relationship 

F(x) = I1 (1- H(u)) exp (- Hc(-OO, c) ) (1.2.7) 
u<x 

where Hcis the continuous part of H. When X is non-negative and has 

an absolutely continuous distribution function, (1.2.7) reduces to 

F(x) ~ exp( -j "<I) dt)' (1.2.8) 

In view of (1.2.8) tl..x) determines the distribution uniquely. Also 

the constancy of tl..x) is characteristic to the exponential model 

[Galambos and Kotz (1978)]. Further Mukherjee and Roy (1986) has 

established that for a non-negative random variable X in the support 

of the set of non-negative real numbers, a failure rate of the form 

is characteristic to 

1 
tl..x) = --­

ax + b 

(i) the exponential distribution with survival function 

F(x) = e- Ax ,x ~ 0, 2 > O. 

(ii) the Pareto distribution with survival function 

(1.2.9) 

(1.2.10) 

F(x) = (_a_JP ,x ~ 0, p > 1, 0 ~ a < ex:> (1.2.11) 
x+a 

(iii) and the finite range distribution with survival function 

F(x) = (1- ~J ,0 < x < R, c > 1 (1.2.12) 

according as a = 0, a > 0 and a < O. 
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The concept of failure rate has been extended to higher 

dimensions. One of the main problems encountered in generalizing a 

univariate conc~pt to higher dimensions is that it c~nnot be done in a 

unique manner. Where as Basu (1971) defines the failure rate for a two 

dimensional random vector as a scalar, Johnson and Kotz (1975) 

defines the same as a vector. Assuming that (X;, X2 ) represents the 

lifetime of the components in a two-component system, Basu (1971) 

defines the failure rate as 

a( ) f(X"X2) f . 2 x"x2 = or x, > 0 ,1=1, . 
F(x"x2 ) 

(1.2.13) 

8asu (1971) has further shown that a (x" x2 ) is a constant independent 

of X, and x2 ' if and only if (X;, X2 ) is distributed as a bivariate 

exponential distribution with exponential marginals. One of the main 

draw back of this definition is that the bivariate failure rate does not 

determine the distribution uniquely. 

A second· approach to the concept of bivariate failure rate is 

provided by Johnson and Kotz (1975) who define it as the vector 

valued function 

h(x"x2) = (~(X"X2)' hz(x"x2)) (1.2.14) 

where 

hAx"x2) = 
-1 aF(x"x2) 

,j=1,2. (1.2.15) 
F(x"x2) ax, 

When the components h,(x"x2 ) exist and are continuous in an open set 

containing R.z+ = {(x"x2 )lx,>O,i=1,2}, Galambos and Kotz (1978) has 

established that 

F{x" x,) = exp( - I h,(~, 0) dt, - j 11, (x" I,) dt, ] (1.2.16) 

or alternatively 

F{x,;x,) = exp( - j 11,(0,1,) d4 - Ih,(~,x,) dl;] (1.2.17) 
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as an extension of the one-dimensional relationship (1.2.8). Thus the 

vector h (x, ,x2 ) uniquely determines the distribution of X through 

(1.2.16) and (1.2.17). 

Mean residual life function 

The mean residual life function (MRLF) represents the average 

lifetime remaining for a component, which has survived up to time x. 

For a continuou~ random variable X with E(X) < 00, the mean residual 

life function is defined as the Borel measurable function 

r(x) = E (X -xl X~ x) (1.2.18) 

for all x such that P (X ~ x) > O. If X is a random variable admitting 

an absolutely continuous distribution r(x) can also be written as 

1 .., 
r(x) = =- J F(t) dt. 

F(x) x 
(1.2.19) 

The following relationship between the failure rate and the mean 

residual life function is immediate. 

tt..x) = 1 + r'(x). 
r(x) 

(1.2.20) 

Also the mean residual life function determines the distribution 

uniquely through the relationship 

F(x) = r(O) exp ( _ j ~) 
r(x) 0 r(t) 

(1.2.21 ) 

for every x in (0, L). A set of necessary and sufficient condition for 

r(x) to be a mean residual life function, given by Swartz (1973) is that, 

along with (1.2.21), the following conditions hold. 

(i) r(x) ~ 0 

(ii) r(O) = E(X) 

(ii i) 

(iv) 

r'(x) ~ -1 

.., dx 
J - diverges. 
o r(x) 
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Cox (1972) has established that the mean residual life function is a 

constant for the exponential distribution. Mukherjee and Roy (1986) 

observed that a relation of the form 

r(x) t/..x) = k (1.2.22) 

where k is a constant, holds if and only if X follows the exponential 

distribution specified by (1.2.10) when k = 1, the Pareto distribution 

specified by (1.2.11) when k > 1 and the finite range distribution 

specified by (1.2.12) when 0 < k < 1. The Pareto case is also 

discussed in Sullo and Rutherford (1977). In view of (1.2.20), Hitha 

(1991) has observed that a linear mean residual life function of the 

form 

r(x) = a x + b (1.2.23) 

is characteristic to the exponential distribution specified in (1.2.10) if 

a = 0, the Pareto distribution specified by (1.2.11)·if a> 0, and the 

finite range distribution specified by (1.2.12) if a < o. 

As a natural extension of the mean residual life function, 

Buchanan and Singpurwalla (1977) defines the bivariate mean residual 

life function as 
00 00 

J JP( X, > X, + t" X2 > x2 + t2 ) 

g (x" x2 ) = ..::..0..::..0 ---==,..------­
F(x"x2 ) 

, XI > O,i = 1,2 . (1.2.24) 

Although g(x"x2 ) seems to be a reasonable and direct extension, it 

does not share the most essential property of the univariate 

MRLfunction, viz, that, it should determine the corresponding 

distribution function uniquely. 

A second ·definition for the bivariate mean residual life function 

is provided in Shanbhag and Kotz (1987) and Arnold and Zahedi 

(1988). Let X = (X" X2 ) be a random vector defined on R/ with joint 

distribution function F(x, ,x2 ) and L=(L" 4) be a vector of extended 



10 

real numbers such that L,=inf {xl 0'(x,)= 1} where 0'(x,) is the 

distribution fu nction of X,.i = 1,2. Fu rthe r let E(X,) < IX) , i = 1,2 . 

The vector valued Borel measurable function r(xl'x2 ) on 

~defined by 

r(x;, x2 ) = E( X-xl X~ x) 

= ('1(X;, x2 ) , '2(X;, x2 )) (1.2.25) 

for all x = (X;,x2 ) E R/,x, < L" i=1,2, such that P(X>x»Oand X ~ x 

implies X, ~ x, .i=1,2 is called the bivariate mean residual life function 

(8VMRLF). When (~, X2 ) is continuous and non-negative the 

components of the BVM RLF are given by 

'1(xl, x2 ) = E( ~ - Xl I X~ x) 

(1.2.26) 

and 

1 co_ 

= J F(X;, t)dt. 
F(Xl,X2 ) "2 

(1.2.27) 

It is established that r(X;,x2 )determine the distribution of X uniquely. 

The unique representation of the survival function in terms of r(x;,x2 ) is 

provided in Nair and Nair (1988) as 

F(X;,x
2

) = '1(0,0) '2(xl,O) exp[- J ~- 1 dt] 
'1(Xl,O) '2(x;, x2 ) 0 '1(t,O) 0 '2(x;, t) 

(1.2.28) 

or alternatively 

F(X;,x
2

) = '2(0,0) '1(0, x2 ) exp[- Xj ~_ J dt]. 
'2(O,x2 ) '1(Xl,X2 ) 0 '2(O,t) 0 '1(t,x2 ) 

(1.2.29) 

The 8VMRL function in (1.2.25) and the bivariate failure rate in 

(1.2.14) are connected through the relationship 

1 + °li(X;,x2 ) 

h,(X;,x
2

) = ___ ox....:...'_ .i = 1,2. 
Ii(X;, x2 ) 

(1.2.30) 
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A necessary and sufficient condition for a vector valued function 

r(X;,x2 ) to be BVMRLF are 

(i) 

(ii) 

(iii) 

(iv) 

Ij(O,O) = E( Xi) 

Cl) dy Cl) d J and J r diverge. 
o '1(y, x2 ) 0 '2(X;,Y) 

The result of Mukherjee and Roy (1986) has been generalized by 

Roy (1989). It is established that a relationship of the form 

(1.2.31) 

is characteristic to 

(i) the Gumbels bivariate exponential distribution with survival function 

F(t"t2) = e-'<'r, - ~tz - Olttz , A,,~ > 0 ,t, ,t2 > 0,0 :::; B ~ A,~ (1.2.32) 

if c = 1 

(ii) the bivariate Pareto type-I! distribution with survival function 

F( t" t2) = ( 1 + a, t, + ~ t2 + b t, t2 ) - c , t, , t2 > 0, a" ~, c > 0 

,0 ~ b ~ (c+1) a,~ (1.2.33) 

if c > 1 and 

(iii) the bivariate finite-range distribution with survival function 

A(t. t.) ( 1 ) d 0 1 0 1-PIt, 
"2 = - PIt, - P2t2 + q t,t2 ' < t, < -:-, < t2 < ---'~ 

P, P2 -qt1 

q 
Ip"p2>0,1-d~-~1,d>0 (1.2.34) 

P1P2 

if c < 1. 

Sankaran (1992) has proved that a relationship of the form 

Ij(X;,x2 ) = Ax,+~(X) J,j=1,2 J*j (1.2.35) 
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where, BAxJ) > 0 for all xJ > 0 holds if and only if X is distributed as 

(1.2.32) when A = 0, the Pareto distribution specified by (1.2.33) when 

A>O and the finite range distribution specified by (1.2.34) when A<O. 

Vitality function 

The concept of vitality function was introduced by Kupka and Loo 

(1989). For a non-negative random variable X admitting an absolutely 

continuous distribution function, the vitality function is defined as the 

B-measurable function defined on the real line given by 

m. x) = E(XI X~ x) 

1 ., 
= =- f tdF(t). 

F(x) x 
(1.2.36) 

The vitality function satisfies the following properties. 

(i) m.x) is non-decreasing and right continuous on (-co,L) 

(ii) m.x) ~ x for all x< L 

(iii) lim m.x) = L 
x-+c 

(iv) -lim m.x) = E(X) 
x-+-«> 

Moreover, m. x) is.related to r(x) through the relationships 

m. x) = x+ r(x) 

and 

m'(x) = r(x) Ji...x). 

(1.2.37) 

(1.2.38) 

In the bivariate case, let X = (X" X2 ) be a random vector in the 

support of { (x" x2 ) I a, :s; x, :s; b,,i = 1,2} for a, ~ -co and b, :s; +00 with 

survival function F(x"x2 ). For values of x, < b, such that 

P( X~ x) > 0 and X/ = max(O ,X,) satisfying E( X/) < 00, Sankaran 

and Nair (1991) defines the bivariate vitality function as the vector 

m.x"x2 ) = (m,(x"x2 ) ,m2 (x"x2 )) (1.2.39) 
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where 

(1.2.40) 

In a two-component system, where the life lengths of the components 

are X; and X2 (which are non-negative), m,(x"x2 ) measures the 

expected age at failure of the first component as the sum of the 

present age x, and the average lifetime remaining to it, given the 

survival of the second at age x2 • A similar interpretation can be given 

to n;(x"x2 ). Also we have 

(1.2.41) 

and 

1 b.. 
~(x" x2) = x2 + f F(x"12) dl2 

F(x"x2 ) X:z 

(1.2.42) 

The following relationship is immediate 

m,(x"x2 ) = xj + 1j(x"x2 ) J=1,2. (1.2.43) 

In view of (1.2.43) and (1.2.28), F(x"x2 ) is uniquely determined from the 

bivariate vitality function. Also, the bivariate failure rate h(x"x2 ) given 

in (1.2.14) is related to ~X"X2) through the relationship 

a 
- m,(x"x2 ) 
a~ (1.2.44) 

or 

(1.2.45) 

1.3 The Lorenz Curve 

To compare the distribution of income of a country at different 

periods of time or of different countries at the same time, Lorenz 

(1905) introduced an approach, later termed as the Lorenz curve, 
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which simultaneously takes into account the changes in income and 

population. 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution function F(x), with finite mean f.J. 

The Lorenz curve L(p) of X is defined in terms of two parametric 

equations in x [Kendall and Stuart (1977)] namely 
x 

p = F(x) = ff(t) dt 
o 

and 

1 x 

L(p) = ~(x) = - f t f(t) dt. 
f.J 0 

(1.3.1) 

L(p) determined by (1.3.1) is called 'the standard Lorenz curve'. 

F(x) can be interpreted as the proportion of individuals having 

income less than or equal to x. ~(x) can be viewed as the proportional 

share of the total income of individuals having an income less than or 

equal to x. It follows from (1.3.1) that the Lorenz curve is the first 

moment distribution function of F(x). It may be noticed that both F(x) 

and ~(x) lies between zero and one and the Lorenz curve being the 

plot of the points (F(x) ,~(x)) is represented in the unit square. L(p) 

can be interpreted as the proportion of the total wealth owned by the 

poorest p"'fraction of the population. The Lorenz curve defined by 

(1.3.1) satisfies the following properties. 

(i) L(O) = 0,L(1) = 1, L(p) is continuous and strictly increasing on 

(0,1), as 

1 
L '(p) = - x > O. 

f.J 

(ii) L(p) is twice differentiable and is strictly convex on (0 ,1) as 

L "(p) = _1 - > o. 
f.J f(x) 
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Gastwirth (1971) gave a general definition of the Lorenz curve. 

For any non-negative random variable X with distribution function F(x) 

and a finite mean p, the Lorenz curve L(p) is defined as 

1 p 

L(p) = - f p-l(t) dt, 0 ~ P ~ 1 
p 0 

(1.3.2) 

where p-l(t)=inf {x:F(x) ~ t} is the left continuous inverse of F(x) (also 
x 

known as the quantile function). 

Thompson (1976) has proved the following properties for the 

Lorenz curve defined by (1.3.2). 

(i) L(p) is continuous, has a left derivative and is convex on [0,1] 

(ii) L(p) ~ P and equality holds if and only if F places all its 

probability mass at one point. 

(iii) Given a convex, non-decreasing function g(p) on [0,1], which satisfies 

g(O) = 0, and g(1) = 1, there is a distribution function for which g(p) is the 

Lorenz curve. 

(iv) EIX - pi = 
2p 

(v) EIX -~ = 
2p 

F(p) - L(p) = max [F(y) - L(y)] 
y 

1 
F(m)-L(m) = --L(m), where m is the median of 

2 

income. 

Kakwani and Podder (1976) introduced a new co-ordinate system 

for the Lorenz curve. Consider the standard Lorenz curve and let P be 

a point on this Lorenz curve with co-ordinates (F,F,). Now define 

TJ = 
(F - F,) 

J2 
and 

" = 
(F + F,) 

J2 
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Then TJ is the length of the perpendicular line on the egalitarian line 

from Pand 7r is the distance from origin (0,0) to the foot of the above 

perpendicular line on the egalitarian line. With this co-ordinate system, 

they considered the following Lorenz curve 

. (1.3.3) 

where a > 0 ,0 ;5; a ;5; 1, 0 ;5; p ;5; 1 are parameters. 

Many authors have extended the concept of Lorenz curve 

to higher dimensions. Taguchi (1972a) defined the 'concentration 

surface' of a two dimensional random vector (X I Y) having a 

continuous density fu nction f(x,y) and having non-zero finite mean 

values ,uxand ,uy for X and Y respectively, by the following implicit 

function 

(1.3.4) 

where 
y x 

P1 = J J f(u, v) du dv 

1 y x 

P2 = - J J u f(u, v) du dv 
,ux -<0-<0 

and 

1 y x 

P3 = - J J V f(u, v) du dv. 
,uy ....,...., 

(1.3.5) 

He proved that the transformations (1.3.5) provides a one-to-one 

correspondence between (XI y) and (P1 'P2 ,P3). Hence the concentration 

surface defined by (1.3.4) can always be expressed as a single-valued 

explicit function 

(1.3.6) 

Taguchi (1972b) extended the notion of concentration surface to 

complete surface, which he called as the Lorenz manifold. Arnold 
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(1987) introduced the following definition, which is much easier to 

handle. The Lorenz-Arnold surface of F is the graph of the function 

~ 'I 11 X; x2 dF(X;,x2 ) 

L (F,s ,f) = ~o.:::....o ____ _ 

"""" 
(1.3.7) 

I I X; X2 d F(X;, x2 ) 

00 

where 
, 'I 

S = I d P(x1) , f = I d P(x2 ) , 0 ~ s, f ~ 1, 
o 0 

pi and P being the marginals of F. 

The drawback of above definitions is that neither Arnold's nor 

Taguchi's definition has an economic interpretation. Koshevoy and 

Mosler (1996) have provided an extension of the usual Lorenz curve of 

the univariate distribution to the multivariate case, which does have an 

economic interpretation. For a given probability distribution in non­

negative d space, d~ 1, they define and investigate the Lorenz zonoid 

and the Lorenz surface, which are sets in (d+1)space. The surface 

equals the usual Lorenz curve when d= 1. They interpreted the Lorenz 

surface as the endowments of economic units in dcommodities. . . 

1.4 The Gini-index 

For a non-negative random variable with distribution function 

F(x) and a finite mean J.i, the Gini-index [Gini, (1912)] is defined in 

terms of mean difference as 

G = _1 I I Ix- yj dF(x) dF(y). 
2J.i 

(1.4.1) 

As a function of Lorenz curve it can also be defined as [Frosin, (1988)] 

twice the area between the Lorenz curve and the diagonal segment 

joining the points (0,0) and (1,1). That is 

"" 
G = 1-2 I F,(x) dF(x) (1.4.2) 

o 
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or 
1 

G = 1 - 2 J L(p) dp. (1.4.3) 
o 

The line segment jOining the points (0,0) and (1,1) is known as line of 

equal distribution or egalitarian line. The value of G lies between 0 

and 1,with G= 0 representing perfect equality and G= 1 representing 

perfect inequality. The Gini-index is also referred to literature under 

the names, coefficient of concentration, Lorenz concentration ratio, 

and the Gini-coafficient. 

Chakrabarthy (1982) points out that the analysis and criticism of 

Gini-index and Lorenz curve constitute a major part of the growing 

literature on inequality, its measurement and interpretation and stated 

that Lorenz curve and Gini-index have remained the most popular and 

powerful tool in the analysis of size distribution of income, both 

empirical and theoretical. 

Based on his axiomatic approach, Takayama (1979) 

recommended the Gini coefficient of the income distribution censored 

at the poverty line as a proper measure of poverty. For a detailed 

discussion of poverty indices based on Gini-index, we refer to Sen 

(1976), Foster (1984) and Sen (1986). 

The Loren"z curve and the Gini-index find applications in several 

branches of learning. They have been extensively used in the study of 

inequality of distributions. For, example, they have been used in 

connection with studies of distribution of income by Kakwani and 

Podder (1976), Gastwirth (1972), and regional disparities in the house 

hold consumption in India by Bhattacharya and Mahalanobis (1967), 

and Chatterjee and Bhattacharya (1974), concentration of domestic 

manufacturing establishment output by Enhorn (1962), business 
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Recently, in connection with their study on ordering and 

asymptotic properties of residual income distribution, Belzunce, Candel 

and Ruiz (1998) introduce a measure of income gap ratio among the 

rich, defined by 

p.(t) = t 
1- ----

E(XI X> t) 

t = 1--
m,t) 

(1.4.6) 

1.5 Total time on test transform 

For the random variable X considered in section 1.4, the total 

time on test (TTT) transform }-(l(t) corresponding to F is defined by 

the relation 

F'(I) 

}-(l(t) = J F(u) du. (1.5.1 ) 
o 

The scaled TTT transform [Barlow and Campo (1975)] is defined as 

1 F'(I) 

;(t) = - f F(u) duo (1.5.2) 

where 

f1. 0 

co 

f1. = J F(u) du is the expectation of X 
o 

The TTT transform determines the distribution through the relation 

I .!!...- }-(l(U) 
Fl(t) = f du du. (1.5.3) 

o (1- u) 

In view of (1.5.3), properties of F may be studied and verified through 

that of }-(l(t) or ;(t). This aspect was studied by Barlow, Bartholoma, 

Bremmer and Brunk (1972) and subsequently by Barlow and Campo 

(1975), Barlow (1979), Klefsjo (1982), Suresh (1987), and Oeshpande 

and Suresh (1990). 
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The scaled total time on test transform (1.5.2) is similar to the 

Lorenz curve L(p) defined in (1.3.2), in many respects. Its shape is like 

that of Lorenz curve, but it is concave rather than convex. Chandra and 

Singpurwalla (1981) have mentioned certain relationships between the 

Lorenz curve and the Gini-index using the TTT transform. They noted 

that Lorenz curve and TTT transform are connected by the relation 

L(p) = -1 (1- p) P-l(p) + rjJ(p) , for 0 :5; p :5; 1 (1.5.4) 
J.l 

Also they define the cumulative total time on test transform as 

1 1 

V = - f /-t1(u) du (1.5.5) 
J.l 0 

and they showed that the Gini-index G is related to TTT transform by 

G = 1-V (1.5.6) 

Further the above relation was used to derive a test for exponentiality 

based on the Gini.;.index, identical to the one based on the total time on 

test transform. 

Pham and Turkkan (1994) has listed the following properties of 

the TTT -curve, which are analogous to that of Lorenz curve. 

(i) rjJ(t) strictly increases within the unit square, with 

rjJ(O) = 0 and rjJ(1) = 1. Moreover 

and 

rjJ( F(J.l) ) = 1- EIX - J.l1 
2J.l 

rjJ(m) = rjJ(~) = ~ + ( m-EIX-~ ) _1 . 
2 2 2J.l 

(ii) In the unit square, the area between the TTT-curve and 

the Lorenz curve is equal to the area below the Lorenz curve. 

The area above the TTT-curve is coincide with that of the Gini­

index. 
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(iii) When Fl(p) is continuous, L(p) and ,p(p) are related by 

L(p) = (1- p) j ,p(t) 2 dt, 0 ~ P ~ 1 
o (1- t) 

Pham and Turkkan (1994) also listed some applications of 

Lorenz curve and TTT-curve in the Reliability context. 

(i) G is the area above the TTT-curve in the unit square. Hence 

o s G ::; 1, with the extreme values corresponding respectively to the 

most IFR and most DFR distributions. 

(ii) G=O implies (a) Lorenz cu rve coincide with the diagonal and 

(b) TTT-curve is the upper side of the unit square 

( ~(F) = 1, 0 < F::; 1, ,p(0) = 0 ). The corresponding distribution is 

degenerate, concentrated at /i. In economic terms this corresponds to 

the situation where each element of the population receives the same 

income /i. 

(iii) G=1 implies that, both the Lorenz curve and TTT-curve are 

on the lower side of the unit square, L(F) = ,p(F) = 0, 0 ::; F::; 1 and 

L(1) = ,p(1) = 1. F(x) is then the limit Pareto distribution. In this situation 

every element of the population receives no income, except one, which 

receives the total. 

1.6 The entropy measure 

The Shannon entropy [Shannon (1948)] has been extensively 

used as a measure of income inequality. If there are N individuals in a 

society, there are N non-negative amounts of individual income, which 

adds up to the total income. Each of the individual earns non-negative 

fractions Y"Y2""'YN of total income where y, 's are non-negative 

numbers which· add up to one. When there is equality of income 



23 

Y1 = Y2 = ... = YN = ~ and in the case of complete inequality y, = 1 for 
N 

some i and zero for each i:t: j. The quantity 

H(y) = f Yi log (~) 
i=1 y, 

(1.6.1 ) 

is the entropy of income shares. A measure of income inequality is 

defined as 
N 

10gN - H(y) = L Yi 10g(Ny,) (1.6.2) 
'=1 

where 10gN is the maximum value that H(y) can attain. Perfect equality . . 

is achieved when there is maximum entropy. 

Let X be a non-negative random variable with distribution 

function F(x) and with a finite mean f.J, Theil (1967) used the quantity 

1 '" X 
RF = - J x log- f(x) dx 

f.J 0 f.J 

= E(; log ;) (1.6.3) 

as a reasonable measure of income inequality. 

Recently, Ebrahimi (1996) defines the residual entropy function 

as the Shannon's entropy associated with the residual life distribution, 

that is, the Sh~nnon's entropy associated with the random variable 

(X-t) truncated at t>O. This has the form 

H(f,t) = - "'J ~x) 10 ~x) dx. 
t F(t) g F(t) 

(1.6.4) can also be written as 

1 '" 
H(f,t) = 10gF(t) - =- J f(x) log f(x) dx. 

F(t) t 

(1.6.4) 

(1.6.5) 

The residual entropy function can be expressed in terms of the 

failure rate encountered in section 1.2, through the relation 
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1 Cl) 

H(f, I) = 1- =- J f(x) log /i...x) dx 
F(/) t 

(1.6.6) 

H(f,/) measures the expected uncertainty contained in the conditional 

density of (X-I) given X> 1 about the predictability of remaining 

lifetime of the component. It may be noticed that -00 ~ H(f,/) ~ 00 and 

H(f, 0) reduces to Shannon's entropy defined over (0,00). It is 

established that H(f,/) determines the distribution uniquely. 

Bhattacharjee (1993) stress the importance of considering the 

random variable Y = X - I1 X> I, in the context of income distributions. 

He interpreted it as, for any threshold I, the residual holding of the 

amount of wealth in excess of a threshold lamong those who own at 

least as much. The residual entropy function in the discrete time 

domain is studied by Rajesh and Nair (1998). Further, characterization 

results associated with the geometric distribution using the functional 

form of the residual entropy function are also obtained. 

1.7 Geometric vitality function 

Let X be a non-negative variable admitting an absolutely 

continuous distribution function, F(x}, with respect to Lebesgue 

measure on (O,L) , where 

L = inf {x : F(x) = 1}. 

with E(X) < 00, Nair and Rajesh (2000) defines the geometric vitality 

function G(/), for I> ° as 

log G(t) = E( log X 1 X> I) 

1 Cl) 

= =- J log x f(x) dx. 
F(/) t 

(1.7.1) 

In the Reliability context, if X represents the life length of a 

component, G(/) represents the geometric mean of lifetime of the 



25 

components which has survived up to time t. (1.7.1) can also be 

written as 

log (G(tt)) = _1 } F(x) dx. 
F(t) 1 X 

(1.7.2) 

The following properties of geometric vitality function have been 

established. 

. (i) 

(i i) 

(i i i) 

(iv) 

log G(t) is non-decreasing 

lim log G(t) = E ( 10gX) 
1-+0 

m.,t) ~ log G(t), for all t>O 

If ti...t) = !...(t) is the failure rate of X then 
F(t) 

! log G(t) 
=...=..:....-~-

log G(t) . 
t 

ti...t) (1.7.3) 

It is further established that geometric vitality function determines the 

distribution uniquely. 

The utility of the geometric mean to obtain summary measures of 

income inequality is evident form the works of Orq, Patil and Taillie 

(1983). If the random variable X represents the income of people in a 

locality, the geometric vitality function, being the geometric mean of 

the income of people whose income greater than a threshold t can be 

reasonably be taken as a summary measure of income inequality. 

1.8 Some inference problems 

Moothathu (1985a, 1985b, 1985c and 1989a) has obtained the 

maximum likelihood estimators (M LE) of the Lorenz curve and the Gini­

index for the exponential, Pareto and log normal distributions in the 

classical framework. He showed that each of these MLEs is strongly 

consistent, converges in the ,rh mean and has obtained their exact 
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distributions. Moothathu (1989b) has obtained the uniformly minimum 

variance unbiased estimator for the Gini-index of the log normal 

distribution along with its variance. Further the best estimate for the 

Lorenz curve, and the Gini-index of the Pareto distribution, along with 

its variance have been obtained. 

The Bayesian approach to estimation in specific distributions 

assumes the existence of a joint probability measure on (0x X), 

where 0 E IRk is the parametric space corresponding to a vector of 

parameters fl. = (01,02, ... ,On) and X is the sample space. The joint 

measure is determined through a prior measure on 0and the 

conditional measure on X for a given 0 in 0 whic'h in turn provides 

the posterior measure on 0for a specified x in X along with a 

marginal measure on X. In this formulation the posterior density 

function of 0 can be obtained through Bayes theorem as [Raiffa and 

Schlaifer (1961)] 

1 ( 0 I ~) = ,p( 0 ) /( ~ I 0 ) C( ~ ) (1.8.1) 

where ,p(0) is the prior density and C(~) is a normalizing constant 

independent of 0 given by 

J 1(0 I~) d) = C(~) J ,p(0) /(~I 0) dO = 1 (1.8.2) 
e e 

For mathematical tractability it is common to use the conjugate prior to 

arrive at the desired posterior distribution. In finding point estimate of 

() we employ either the mode of (1.8.1) or make use of the quadratic 

loss function 

(1.8.3) 

to prescribe the estimate as one that minimizes 

E(L(O(~)-O)) = J (O(~)-Or 1(01~) dO 
e 

(1.8.4) 

or 

(1.8.5) 
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The expected loss, resulting from the use of (1.8.5) as the estimator of 

e, is the posterior variance of e. Since (1.8.5) is calculated for a 

specific sample point ~, some times it is of advantage to look at the 

8ayes risk 

R(o,e) = ff L(o,e) 1(~le) ~(e) d~de ( 1.8.6) 
ex 

1.9 Present study 

The present work is organized into six chapters. After the 

present introductory chapter, which focuses attention on a brief review 

of the basic concepts, in chapter 2 we define certain measures of 

income inequality for the truncated distributions and study the effect of 

truncation upon these measures. It is shown that the Pareto 

distribution is the only distribution for which these measures are 

unaffected by truncation. Characterization results in respect of some 

specific models such as exponential, Pareto and finite range based on 

the functional form of these measures are also discussed. 

Considering the importance of the study of disparity of a 

population with respect to more than one attribute, in chapter 3, we 

extend the Gini-index to the bivariate setup. Although several 

extensions of Gini-index are available in the literature, they are not 

mathematically tractable from the point of view of characterization of 

probability distributions. In the present chapter we provide a definition 

for the Gini-index in higher dimensions, similar to that of the definition 

of the vector valued failure rate reviewed in section 1.2. 

Characterization problems associated with certain bivariate models 

such as the Gumbel's bivariate exponential, bivariate Pareto and 

bivariate finite range based on the form of the bivariate Gini-index are 

also investigated. 

An important measure, used in Reliability theory, to measure the 

stability of the component is the residual entropy function. This 
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concept can advantageously used as a measure of inequality of 

truncated distri~utions. In chapter 4 we extend th.is concept to the 

bivariate setup and provide characterization results for some bivariate 

models using the same. 

The geometric mean comes up as a handy tool in the 

measurement of income inequality. The geometric vitality function 

being the geometric mean of the truncated random variable can be 

advantageously utilized to measure inequality of the truncated 

distributions. This concept is being extended to the bivariate setup in 

chapter 5.Apart from this the bivariate exponential, bivariate Pareto 

and the bivariate finite range models are characterized using the form 

of the bivariate geometric vitality function. 

Even though a lot of work has been carried out on the problem of 

estimation of the Lorenz curve and Gini-index in the classical frame 

work, only very little work seems to have been done' in this area using 

Bayesian concepts. In chapter 6 we look into problem of estimation of 

the Lorenz curve, Gini-index and variance of logarithms for the Pareto 

distribution using Bayesian techniques. Estimation is carried out in two 

situations namely when the scale parameter is known and the scale 

parameter is unknown. Also a comparison of the estimates is done 

using data generated from the Pareto population. It is established that 

the estimates provided by the Bayesian procedure are better than the 

classical estimates from the point of view of reduction in variance. 

Utilizing a relationship between the Lorenz curve and the TTT 

transform, discussed in section (1.5), we also provide estimators for 

the TTTtransform in the Pareto situation. 



Chapter 11 

Characterization of probability distributions based on 

truncated versions of certain measures of 

income inequality 

2.1 Introduction 

As pointed out !n the previous chapter, the Lorenz curve, defined 

by (1.3.1), and the Gini-index, defined by (1.4.1), has been extensively 

used in literature as reasonable measures of income inequality. 

Properties of these measures as well as characterization of probability 

distributions using this concept had been a hot area of research during 

the middle of the twentieth century. Apart from these measures, the 

variance of logarithms as well as the entropy indices are also 

advantageously used to measure income inequality. However an in­

depth study on the truncated version of these measures does not seem 

to have been undertaken so far. Recently a lot of interest seems to 

have been evoked in using certain concepts in Reliability theory such 

as the failure rate and mean residual life function, for the study of 

income distributions. In the present chapter we look into the problem of 

characterization of probability distributions using the truncated 

versions of the above-mentioned concepts. 

2.2 The Lorenz Curve 

The Lorenz curve of a distribution of income is defined as that 

fraction of the total income owned by the lowest ,Jh fraction of the 

population as a function of p ,(0 ~ p ~ 1). Assume that Xis a non­

negative random variable with distribution function F(x) such that 

E(X) < 00. Denote by 
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1- L(t) 
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= _1_ F'(t) 
1+ r{/) F{/) 

In view of (1.2.6) and (1.2.20) the above equation simplifies to 

L '(I) I (1 + r'{ I)) = , as claimed. 
1- L{/) r{/) (I + r{/)) 

Observing that (2.2.2) is a differential equation of the first order in 

L{/) or r{/) , L(t) can be solved in terms of r{/) or vice versa. Hence the 

knowledge of the Lorenz curve is sufficient to determine the mean 

residual life function and that of r{/) is sufficient to determine L{/). 

The above relationship can be advantageously used to obtain a 

characterization result for the Pareto type-1 distribution in terms of a 

functional relationship between the Lorenz curve and the mean 

residual life function, which is given as theorem 2.2. 

Theorem 2.2 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution with £(X) < 00. If L(t) represents the 

Lorenz curve and r(t) the mean residual life function, then the 

relationship 

L'(t) 
1- L{/) 

= 
1 

r(t) 
(2.2.6) 

holds for all real I~ 0 if and only if X follows the Pareto type-1 

distribution with survival function 

F{x) = (:J, x~a, a>1 (2.2.7) 

Proof 

When (2.2.6) holds using (2.2.2) we get 

I (1 + r'{/)) = I + r(t) 
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or 

t r'(t) - r(t) = O. 

This gives 

r(t) = kt, with k> O. 

Using the relation (1.2.21) we get (2.2.7) as claimed .. 

Conversely when the distribution of Xis specified by (2.2.7) by 

direct calculations we get 

( )

-<8-1) 

L(t) = 1-; , r(t) t 
and the validity of (2.2.6) is = --

a-1 

straightforward. 

Our next theorem provides a characterization result for a family 

of distributions using a possible relationship between the Lorenz curve 

and the mean residual life function. 

Theorem 2.3 

Let Xbe a non-negative random variable admitting an absolutely 

continuous distribution such that £(X) < co. The relationship 

L'(t) 

. 1- L(t) 

kt 
= -r(-t)--:(-t +-r-(t-:""")) ' k > O . (2.2.8) 

holds for all real t~ 0 if and only if X follows anyone of the following 

distributions according as k=1, k>1 and k<1 respectively. 

(i) the exponential distribution with survival function 

F(x) = e-;'x ,x~ 0, ..t> 0 

(ii) the Pareto distribution with survival function 

F(x) = (~)8 ,x ~ 0, a> 1, 0 < a < co 
x+a 

(iii) the finite range distribution with survival function 

F(x) = (1- ~ r ,0 < x < R, c> 1 

(2.2.9) 

(2.2.10) 

(2.2.11) 



33 

Proof 

When (2.2.8) holds using (2.2.2) we get 

I ,'(I) + I = k I. 

The above equation gives 

,(1) = (k-1) I+c. 

From Mukherjee and Roy (1986), reviewed in section 1.2, the above 

relation is characteristic to (2.2.9) for k= 1, (2.2.10) for k> 1 and 

(2.2.11) for k< 1. Hence Xfollows anyone of the three distributions. 

The if part of the theorem follows from the expressions for L(I) 

and r(/)given below. 

Distribution L(/) ,(1) 

Exponential 1 - (1 + IA.) e-I)· 1 
A. 

Pareto 1-a1l-1 (I+atB (al+a) 
I+a --
a-1 

Finite range 1 (I r R-I 
1- R (R + cl) 1- R 

c+1 

The following theorem provides a characterization result for the 

Pearson family of distributions by the form of L'(/). 
L(t) 

Theorem 2.4 

For the random variable considered in theorem 2.3, the 

relationship 

L'(I) = 
L(I) 

kt k 
----f7, k, 110, a" Cl;. > 0, Cl;. >-
11o+a,I+Cl;. 2 

(2.2.12) 

holds for all real I~ 0 if and only if X belongs to the Pearson family of 

distributions specified by 

f'(I) -(I + cl) . - = -.....:.....----'--=-f with d= b" d,ba,b,,4 > 0,24> 1. (2.2.13) 
1(/) bo + b,1+ 4 
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Proof 

When (2.2.12) holds we have 

L'(t) k f 
L(f) = C10 + a, f + ~ f . 

Using the definition (2.2.2) we get 

fl(f) (C1o+a, f+~ f) = !!.!. JXI(X) dx. 
J.l 11 0 

Differentiating with respect to f and rearranging the terms we get 

or 

I'(f) 
-= 
I(f) 

(k-2~) f-a, 

C1o+a,f+~f 

_f'(_f) = __ ----=--(t_+ ......:d)~ . 
f 

,as claImed. 
l(t) be + b, f + 4 

with d= a, ,bo = c10 ,b,= a, and 4= ~ 
2~ - k 2~ - k 2~ - k 2~ - k 

Conversely when (2.2.13) holds we have 

f'(t) (be +b, f+4 f) = - (t+d) I(f) 

or 

:f {/(t) (bo +b,f+4f)}- I(f) (24f+b,) = -(t+d) l(t). 

Integrating with respect to f and simplifying we get 

I I 

I(f) (bo +b1f+4f) = -(1-24) Jxf(x)dx-(d-b,) J/(X)dX. 
o 0 

Using the definition of L(f) and also applying the condition d= b, we get 

L'(t) (bo+b,f+4f) = (24-1) fL(t) 

or 

L'(t) = __ k_f_-':-f' where k=24-1. 
L(t) be +b, f+4 . 

This is of the form (2.2.12). 
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2.3 The Gini-index 

In this section we look into the problem of characterization of 

probability distributions using the truncated form of the Gini-index 

considered in section (1.4). First we establish a relationship between 

the Gini-index and the vitality function, defined by (1.2.36). 

Theorem 2.5 

Let Xbe a non-negative, non-degenerate random variable 

admitting an absolutely continuous distribution and with a finite mean. 

If m..t) represents the vitality function, F(t) the survival function and 

G(t) the truncated Gini-index then the following relationship holds 

1 '" 
(1-G(t)) rrI,J) = t + -=.2 J f?"(x)dx (2.3.1) 

r (t) t 

Proof 

From (1.4.4) we have 

2 j (F( x) - F(t)) x.!.( x) dx _ j x.!.( x) dx = G( t) j x.!.( x) dx. 
t F( t) F(t) t F( t) t F(t) 

The above equation can be written as 

2'" 2(1-F(t))", '" '" 
=- Ix f(x) F(x) dx- Ix f(x) dx- Ix f(x) dx = G(t) Ix f(x)dx 
F(t) t F(t) t t t 

or 

'" 2 '" 
(1-G(t)) Ixf(x) dx = =- Ixf(x) F(x) dx. (2.3.2) 

t F(t) t 

Integrating the right hand side of equation (2.3.2) by parts we get 

GO 1 GO 

(1- G(t)) Ix f(x) dx = t F(t) + =- I f?"(x) dx. 
t F(t) t 

Using equation (1.2.36) we get 

1 GO 

(1-G(t)) rrl...t) = t + -=.2 I f?"(x) dx as claimed. 
r (t) t 
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The above relationship provides a handy tool to compute the 

Gini-index for distributions, which have a closed form for the survival 

function and the vitality function. The following theorem provides a 

relationship between the Gini-index G(/), the vitality function rrl.../) and 

the failu re rate /i.../). 

Theorem 2.6 

For the random variable X considered in theorem 2.5 if 

~t)represents the failure rate, G'(I) the first derivative of the Gini­

index and rrl.../) the vitality function then the following relationship 

holds. 

G(/) rrl.../) = /i.../) [(G(/)-1) rrl.../) + 1 (6(/)+1) J(2.3.3) 

Proof 

Using (2.3.1) we have 

1 '" 
(1-G(/)) rrl.../) = 1 + ~ J F(x)dx. 

,... (I) I 

Differentiating with respect to 1 and simplifying we get 

(1-G(/)) m'(/)-rrl.../) G'(/) = ';;/) j F(x) dx. 
,... (I) I 

Using the relationship (1.2.6) and (2.3.1) we get 

(1-G(/)) m'(t)-rrl.../) G'(I) = 2/i.../) ((1-G(/))rrl... /)-/). 

Since rrl.../) = 1+ r(l), the above equation can be written as 

(1- G(/)) (1 + r'(I)) - rrl.../) G'(/) = 2/i.../)r(/) - 21 /i.../) G(/) - 2/i.../) G(/) - 2/i.../) r(l) G(/). 

or 

G(I) rrl.../) = /i.../) [ G(/) r(l)-r(l)+2 IG(/)]. 

Using (1.2.36), (2.3.3) is immediate from the above equation. 

In the sequel we look into the situation where the truncated Gini­

index is a constant. 
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Theorem 2.7 

Let Xbe a non-negative random variable admitting an absolutely 

continuous distribution such that £(X) < 00. If G(t) is the truncated Gini­

index defined by (1.4.4), then the relationship 

G(t) = k (2.3.4) 

where k is a constant holds for all real t~ 0 if and only if Xfollows the 

Pareto type-1 distribution with survival function (2.2.7). 

Proof 

When (2.3.4) holds using (2.3.1) we have 

1 Cl) 

(1- k) m.t) = t + -=.2 J F(x) dx 
,.. (t) I 

or 

(1-k) m.t) F(t) = tF(t)+ j F(x) dx. 

Differentiating both sides with respect to t and simplifying we get 

-2 (1- k) m.t) t(t) + (1- k) m'(t) 'F(t) = -2 t t(t). 

Using (1.2.6) and (1.2.36) in the above equation we get 

-2 (1-k) th(t)-(1-k) (1+r'(t)) = -2 th(t). 

Using (1.2.20), the above equation simplifies to 

2k 
r(t) = - t. 

1-k 

The desired form for F(t) is immediate upon using (1.2.21). 

Conversely when the distribution of X is specified by (2.2.7) by 

direct calculations we get 

G(t) = _1_ and the sufficiency part follows. 
2a-1 

Bhattacharjee (1993) stress the role of anti-aging distributions in 

Reliability theory as reflecting the features of skewness and heavy tails 

typical of wealth distributions. Our next result provides a 
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characterization theorem for the exponential distribution using a 

functional relationship between the Gini-index and the vitality function. 

Theorem 2.8 

Let Xbe a non-negative random variable admitting an absolutely 

continuous distribution such that E(X) < 00. If G(/) be the truncated 

Gini-index and m(/)be the vitality function, then a relationship of the 

form 

G(/) m(/) = G(O) m(0) (2.3.5) 

holds for all real 1 ~ 0 if and only if Xfollows the exponential 

distribution with survival function specified in (2.2.9). 

Proof 

When (2.3.5) holds, from (2.3.1) we have 

(m(/)-G(0) m(0)) F(/) = IF(/)+ 1 F(x) dx. 
t 

Differentiating the above equation with respect to I, in view of (1.2.6) 

we can write 

- 2 1 tl../) = ni (I) - 2 ( m(t) - G(O) m(0) ) tl../). 

Using (1.2.36) and (1.2.20) the above equation can be written as 

(1+/(/)) (2 G(O) m(O)-r(/)) = O. (2.3.6) 

(2.3.6) gives 

r(t) = 2 G(O) m(0) (2.3.7) 

or 

r(/) = - 1 + c. (2.3.8) 

The later solution (2.3.8) leads to the trivial case where the distribution 

is degenerate. Observing that the constancy of the mean residual life 

function is characteristic to the exponential model, the only if part 

follows from (2.3.7). 

The sufficiency part follows from the expressions for G(/) and 

1 1 
ni.t) namely G(/) = 2+2 A 1 and m(/) = 1 + A' 
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The following theorem provides a characterization for a family of 

distributions using a possible relationship between the truncated Gini­

index and the vitality function. 

Theorem 2.9 

For the random variable X considered in theorem 2.8 the 

relationship 

(1- G( I)) m.. I) = a + b I ,a > 0, b > O. (2.3.9) 

holds for all real I ~ 0 if and only if X follows (2.2.9), (2.2.10) and 

(2.2.11) according as b= 1, b> 1 and b< 1 respectively. 

Proof 

When (2.3.9) holds, we have from (2.3.1) 

co 

1f!(/) + J f!(x) dx = (a + bl) f!(/). 
t . 

Differentiating the above equation with respect to I we get 

-2tf(t) = - 2 a t(t) - 2 b I t(t) + b F(t). 

Using (1.2.6) the above equation can be written as 

-2 1f1.. I) = -2 a f1../) - 2 b I f1../) + b. 

This gives 

1 
=---

A + BI 
f1../) 

where A = 2a and B = 2 (b-1) 
b b 

(2.3.10) 

The only if part follows from Mukherjee and Roy (1986) reviewed 

in section 1.2. That is (2.3.10) is characteristic to the exponential 

distribution for B= 1, the Pareto distribution for B> 1 and the finite 

range distribution for B<1. Using the relationship between band B the 

only if part follows. 
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The if part of the theorem follows from the expression for G(/) 

and m.,/) given below. 

Distribution m., I) G(/) 

1 1 1+-
A 2+2,1. 1 Exponential 

Pareto 
a+al (2aa_1) (:++;/) a-1 
R+cl 

(C:1) (:::1) c+1 Finite range 

We now look into the problem of characterizing the family of 

distributions considered in theorem 2.9 using a possible relationship 

between the truncated Gini-index and the income gap ratio defined by 

(1.4.6). 

Theorem 2.10 

Let Xbe a non-negative random variable admitting an absolutely 

continuous distribution such that E(X) < 00. Let p.(I) be defined as in 

(1.4.6). Then the relationship 

G(/) = k p. (I) ,0 < k < 1 (2.3.11) 

holds for all real I~ ° if and only if X follows the distributions 

1 1 
specified by (2.2.9), (2.2.10) and (2.2.11) according as k= 2' k>"2 and 

k<.! respectively. 
2 

Proof 

When (2.3.11) holds using (2.3.1) we have 

(1-k p.(I) ) m.,/) = 1 + ~1 j F(x) dx. 
r (I) t 

Using (1.4.6), the above equation simplifies to 
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rrl..t) F(t) - k rrl..t) F(t) + k t F(t) = t F(t) + j F(x) dx. 
t 

Differentiating the above equation with respect to t and rearranging 

the terms we get 

-2 (1- k) rrl..t) h(t) + (1- k) m'(t) - 2k t h(t) + k = -2 t h(t). 

Using (1.2.36) and (1.2.20) the above equation reduces to 

This gives 

or 

2 kt (1+r'(t)) (1-k) (1+r'(t)) -2 kt (1+r'(t)) +k = O. 
~~ ~~ 

r'(t) 

r(t) 

= 
2k-1 
1-k 

2k-1 
=--t+c 

1-k 
(2.3.12) 

From Mukherjee and Roy (1986), reviewed in section 1.2, (2.3.12) is 

characteristic to the exponential distribution for k= ~ I the Pareto 

distribution for k>~ and the finite range distribution for k<~. Hence 
2 2 

Xfollows anyone of the three distributions. 

The if part of the theorem follows from the expression for G(t) 

and p.(t) given below. 

Distribution p.(t) G(t) 

Exponential 
1 1 

1 +..t t 2+2..t t 

Pareto 
a+t (2a~-1) (:++;t) a+at 

Finite range 
R-t (C~1) (::;t) R+ct 
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The following theorem provides a characterization for the Pareto 

type-1 distribution using a possible relationship between G(t) and P·(t). 

Theorem 2.11 

For the random variable X considered in theorem 2.10 the 

relationship 

G(t) = 
p'(t) 

2 - p'(t) 
(2.3.13) 

holds for all real t ~ 0 if and only if X follows the Pareto type-1 

distribution with survival function specified by (2.2.7). 

Proof 

When (2.3.13) holds, we have from (2.3.1) 

( 1 - p'(~)) m,t) = t + ~1 j f!(x) dx. 
2 - P (t) r (t) t 

The above equation simplifies to 

2 t m,t) 
t + m,t) 

1 '" 
= t + ~ J f!(x) dx. 

r (t) t . 

Differentiating both sides with respect to t we get 

2frri(t) + 2nr(t) (1-th(t)) +2fh(t) = O. 

Using the relationship ml(t) = 1 + rl(t) and equation (1.2.20) we get 

;(t) (2 f+2 tr(t))-2 tr(t)-2 r2(t) = O. 

The solution of the above differential equation is 

r(t) = (a-1) t. 

Using the relationship (1.2.21) we get the desired form for F(t). 

Conversely for the Pareto distribution specified by (2.2.7) by 

direct calculation we get G(t) = -1-and p'(t) = .! from which (2.3.13) 
2a-1 a 

is immediate. 
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Using the Gini-index for the random variable 

X,(t) = XIX<t, considered by Sen (1986), we give below a 

characterization for the Power function distribution as theorem 2.12. 

Theorem 2.12 

Let Xbe a non-negative random variable admitting an absolutely 

continuous distribution such that E{X) < 00. Let G,{t) represent the 

Gini-index defined in (1.4.5). Then the relationship 

G,{t) = k ,0 < k < 1 (2.3.14) 

where k is a constant, holds for all real t ~ 0 if and only if X follow 

the Power function distribution with survival function 

F{x) = 1-(;r ,0 ~ x :s; b e, b ~ 0 (2.3.15) 

Proof 

When (2.3.14) holds, using (1.4.5) we have 

1 _ 2 I' (1- F{Y)) t{y) d -
E( XI X < t) 0 Y F(t) F(t) r - k. 

The above equation can be written as 

2 I' (1- F{Y)) t{y) d = 1- k I' f{) d 
o Y F(t) F(t) r F(t) oY Y r· 

or 

, , , F{) 
2 Iy t{y) dy-(1-k) Iy t{y) dy = 2 Iy --L t{y) dy. 

o 0 0 F(t) 

This gives 
, , 

(k+1) F(t) Iy t{y) dy = 2 Iy F{y) t{y) dy. (2.3.16) 
o o 

Differentiating (2.3.16) with respect to t and simplifying we get 
, 

(k+1) Iyt{y) dy= (1-k) tF{t). (2.3.17) 
o 

Differentiating (2.3.17) with respect to t we get 

(k+ 1) t t(t) = (1- k) t t(t) + (1- k) F(t) 
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or 

f(t) = (1- k) ! 
F(t) 2k t 

44 

!!... 10 F(t) = (1- k) !. 
dt g 2k t 

The above equation gives 
l-k 

F(t) = t 2k c. 

From which 
l-k 

F(t) = 1-t2k c as desired. 

Conversely for the Power function distribution specified by 

(2.3.15) by direct calculations we get G,(t) = _1_. as claimed. 
2c+1 

2.4 The Variance of Logarithms 

The Variance of logarithms. denoted by ~ is defined as the 

variance applied to the distribution of logarithm of incomes. Let X be a 

non-negative random variable admitting an absolutely continuous 

distribution function F(x). The variance of logarithms (Gibrat (1931)) is 

defined as 

= E (logx-E(logx))2. 

For the random variable X,(t) = XI X> t. ~takes the form 

1 co 

~(t) = =-- J (IogX)2 f(x) dx - (logG(t))2 
F(t) t 

(2.4.1 ) 

(2.4.2) 

where 10gG(t) is the geometric vitality function defined in Nair and 

Rajesh (2000). namely 

log G( t) = E ( log X I X> t) 

1 co 

= =-- J logx f(x) dx. 
F(t) t 

(2.4.3) 
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We first look into the situation where ~(t) is a constant. 

Theorem 2.13 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution function with finite mean and let ~(t) 

denote the truncated variance of logarithm defined in (2.4.2), then the 

relationship 

~(t) = k ,k > 0 (2.4.4) 

where k is a constant holds for all real t~ 0 if and only if Xfollows the 

Pareto type-1 distribution with survival function specified by (2.2.7). 

Proof 

When (2.4.4) holds, using (2.4.2) we have 
00 

J (logx)2 t(x) dx- F(t) (logG(t)t = k F(t). 
t 

Differentiating the above equation with respect to t and rearranging 

the terms we get 

- (log t)2 t(t) - 2 F(t) log G(t) G'(t) + t(t) (log G(t) t = - k t(t). 
G(t) 

Using (1.2.6) we get 

- (Iogtt Ji..t) - 210gG(t) G'(t) + Ji..t) (logG(t)t=- kJi..t) (2.4.5) 
G(t) 

From (2.4.3) we have 
00 

F(t) log G(t) = J log x t(x) dx. 
I 

Differentiating (2.4.6) with respect to t we get 

G'(t) 
G(t) - Ji..t) log G(t) = - Ji..t) log t 

or 

G'(t) = Ji..t) log G(t) - Ji..t) log t. 
G(t) 

Using (2.4.7) in equation (2.4.5) we get 

(2.4.6) 

(2.4.7) 
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- (Iogft t(/) + 2 t(/) log I log G(/) - t(/) (log G(/) t = - k t(/). 

The above equation simplifies to 

- (Ioglt + 210g1 10gG(/) - (logG(/)t = - k 

or 

( log G( I) -log I t = k 

or 

log G(/) = P, where P = Jk is a constant. 
I 

The only if part follows from Nair and Rajesh (2000). 

Conversely for the Pareto distribution specified in (2.2.7) by 

direct calculation, we get ~(I) = ;, as stipulated in the theorem. 

Our next result provides a characterization theorem for the 

Pareto distribution using a functional relationship between the 

truncated version of the variance of logarithms and the geometric 

vitality function. 

Theorem 2.14 

For the random variable X considered in theorem 2.13 let ~(I) 

denote the truncated variance of logarithm, and log G(/) the geometric 

vitality function. Then a relationship of the form 

~ (I) = (lOg ~/) J (2.4.8) 

holds for all real I ~ 0 if and only if Xfollow the Pareto type-1 

distribution with survival function specified in (2.2.7). 

Proof 

When (2.4.8) holds, we have from (2.4.2) 

! (logx)2 f(x) dx - F(I) (logG(/)t = F(I) (lOg ~/)J. 

Differentiating the above equation with respect to I we get 
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- (log/)2 1(/)-2 F(/) 10gG(/) G'(/) + 1(1) (logG(/)t 
G(/) 

= 2 F(/) (logG(/)-log/) (G'(/) _!I _ t(t) (IOgG(/))2. 
G(/) I) I 

Using (1.2.6) the above equation can be written as 

- (log/)2 ti,./) -2 10gG(/) G'(/) + ti,./) (logG(/)t 
G(/) 

(
G'(/) 1) (G(/))2 = 2 (logG(/)-log/) --- - ti,./) log- . 
G(/) I I 

or 

- (log/)2 ti,./) -2 10gG(/) G'(/) + ti,./) (logG(/))2 
G(/) 

G'(t) G'(t) = 2 10gG(/) --210g1 -- ti,./) ((109G(/))2 + (log It -210gG(/)log I). 
G(/) G(/) 

The above equation simplifies to 

~n ~n 2 - 4 10gG(/) - + 2 ti,./) (logG(/)t = -2 log 1- - - 10gG(/) 
G(n G(n I 

Using (2.4.7) we have 

-4 (logG(/))2 ti,./) + 4 10gG(/) ti,./) log/+2 ti,./) (logG(n)2 

= 2 (log 1)2 ti,./) - ~ log G(/) + 2 log I 
I I 

or 

-2 ti,. n (log G( 1))2 + 4 log G( I) ti,. I) log I = (log 1)2 ti,. I) - ! log G( I) +! log I. 
I I 

This gives 

(Ioglt + (logG(/))2 -2 log I 10gG(/) = _1_ 10gG(/) + _1_logl 
I ti,./) I ti,./) 

or 

log G(/) = _1_. 
I I ti,./) 

(2.4.9) 

Using (1.7.3), equation (2.4.9) reduces to 
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~ = ! 10gG(t). 

The above equation gives 

log G(t) = log t + €f9c 

or 

log G(t) = c 
t 

The only if part follows from Nair and Rajesh (2000). 

Conversely for the Pareto distribution specified by (2.2.7) by 

direct calculation we get ~(t) = ~ and log G(t) = .:!. from which (2.4.8) 
a t a 

is immediate. 

The following theorem provides a characterization result for the 

Pareto distribution using a functional relationship between the 

Geometric vitality function defined by (1.7.1) and the vitality function 

defined by (1.2.36). 

Theorem 2.15 

Let X be a non-negative random variable admitting an 

absolutely contin uous distribution function such that £(X) < 00. If rrl..,t) 

represents the vitality function and log G(t)the geometric vitality 

function, then the relationship 

10gG(t) - logrrl..,t) = k ,k > 0 (2.4.10) 

where k is a constant holds for all real t~ 0 if and only if Xfollows the 

Pareto type-1 distribution with survival function specified by (2.2.7). 

Proof 

When (2.4.10) holds using (2.4.3) we have 

co [1 co ] S log x f(x) dx - 'F(t) log =- Slog x f(x) dx = 
I F(t) I 

k F(t). 

Differentiating with respect to t we get 
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- 1 {-It(l) "'I It(/)} ( 1 "'I ) -log I t(/) - F(/) '" --=--+ X t(x) dx ~ + t(t) log =- x t(x) dx 
_1 IX t(x) dx F(/) I ,.. (I) F(/) I 

F(/) I 

= - k t(/). 

The above equation simplifies to 

I t(/) 
- log I t(t) + t(t) log m(/) + - - t(t) = -k t(/) 

m(/) 

or 

I 
10gm(/) + - = 1 - k+ log/. 

m(/) 

Differentiating (2.4.11) with respect to I we get 

m'(/) + m(/) - I m(/) = ! 
m(/) rrr(/) I 

or 

,[1 I] 1 1 
m (I) m(/) - rrr(t) + m(/) = t' 

Solving the above differential equation we get 

I 
m(/) = d where d > 0 

or 

r(t) = (~ -1) I. 

Using (1.2.21) we get the required form for F(/). 

(2.4.11) 

Conversely for the Pareto distribution specified in (2.2.7) we 

al 
have m(/) = - and 

a-1 

immediate. 

1 
log G(/) = - + log I from which (2.4.10) is 

a 

2.5 The Theil's entropy 

The utility of the Theil's entropy in the context of measurement 

of income inequality is highlighted in section (1.6). For the random 
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variable X,(t) = XI X> I, the Theils entropy defined by (1.6.3) takes 

the form 

1 to 

RA I) = fx logx f(x) dx - 10gm:/) m: I) F(t) t 

(2.5.1) 

The following theorem focuses attention on the constancy of (2.5.1). 

Theorem 2.16 

Let X be a non-negative random variable admitting an 

absolutely continuous distribution function such· that £(X) < C(). If 

RF(/) denotes the truncated Theils entropy defined in (2.5.1) then the 

relationship 

(2.5.2) 

where k is a constant, holds if and only if Xfollows the Pareto 

distribution specified in (2.2.7). 

Proof 

When (2.5.2) holds we have from (2.5.1) 
to 

f x log x f( x) dx = (k + log m: I)) m: I) F(t). 
t 

Differentiating the above equation with respect to 1 and simplifying the 

resulting expression we get 

-/log/fl.../) = ni (t) + (k + log m: I)) (ni (t) - m: I) fI... I) ) . 

In view of (1.2.20) a'nd (1.2.37) the above equation gives 

'I log 1 (1+r'(t)) = (I (k+log[/+r(t)]) -r(t)) (1+r'(t)) 

Solving the above differential equation we get 

r(t) = kl 

where k is a constant. Using the relation (1.2.21) we get (2.2.7) as 

claimed. Conversely, for the Pareto distribution specified in (2.2.7). by 

direct calculations we get 

1 a-1 
RF(/) = - + log-

a-1 a 

and the sufficiency part follows. 



Chapter III 

The bivariate Gini-index 

3.1 Introduction 

The need for including more than one attribute in the analysis of 

economic inequality is emphasized in the works. of Atkinson and 

Bourguignon (1982,1989), Kolm (1977), Maasoumi (1986), Maasoumi 

and Nickelsbu rg (1988), Mosler (1994a), Rietveld (1990) and Slottje 

(1987). Arnold (1987) has given a definition for the Lorenz curve in the 

bivariate setup. The problem of extending the Gini-index to higher 

dimensions was also considered by Koshevoy and Mosler (1996,1997). 

The utility of the truncated form of the Gini-index in the univariate 

setup is being mentioned in section (1.4). In the present chapter, we 

propose a measure of income inequality for the truncated variable in 

the bivariate setup and look into the problem of characterizing certain 

bivariate probability distributions using this measure. 

3.2 Bivariate Gini-index 

As pointed out in section (1.2), in the reliability context, the 

failure rate for a two dimensional random vector is defined in two ways. 

[(1.2.13) and (1.2.14)]. Analogous to the vector valued failure rate, we 

propose-a definition for the Gini-index in the bivariate setup and look 

into the problem of characterization of probability distributions by the 

form of the bivariate Gini-index. 

Let X= (X;,X2 ) represent a bivariate random vector, where X, 

and X2 represents two attributes of measuring income in a population. 

The random variable ~ = X;I X2 > 12 corresponds to the distribution of 

X; subject to the condition that X2 is greater than an amount equal to 
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t2 • Using the terminology used by Ord, Patil and Taillie (1983), quoted 

in section (1.4), one can define the Gini-index for the random variable 

Y, as 

00 

G,(t"t2 ) = 2 f F(x"t,,/2 ) dF,(x"t,,/2 ) -1 
4 

where F(xl'/l ,/2) is the distribution function of Y, namely 

(3.2.1 ) 

Similarly for the random variable ~ = x2 1 X, > I, the Gini-index turns out 

to be 
00 

~(t" 12) = 2 f F(x2, 1" 12) d~(X2' 1" 12) -1 
Iz 

where F(x2 ,t,,/2 ) is the distribution function of ~ defined by 

and ~(x2,/1'/2) is the first moment distribution of ~ given by 

Definition 3.1 

(3.2.2) 

For a non-negative random vector X = (Xl' X2 ) admitting an 

absolutely continuous distribution function, we define the bivariate Gini 

index for the truncated distribution as the vector 

(3.2.3) 
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where G,(~, t2 ) and ~(~, t2 ) are defined as in (3.2.1) and (3.2.2) 

respectively. 

Let X = (X;, X2 ) represent two attributes of income, say income 

from the land and income from the employment. Suppose among the 

population of individuals whose income in one of the components, say 

X2' exceeds a certain threshold value say t2, then G,(~,t2) measures 

the disparity of income in source one. Similarly, ~(~,t2) measures the 

disparity of income from the second source subject to the condition 

that the income from the other source exceeded a threshold value say 

~. Hence G(~,t2) can be viewed as a measure of inequality when the 

two factors are taken into consideration simultaneously. 

3.3 Characterization Theorems 

In this section, we discuss characterization theorems associated 

with some bivariate models based on the functional form of the 

bivariate truncated Gini-index. We first establish a relationship 

between the Gini-index defined by (3.2.3) and the vitality function 

defined by (1.2.39), which is useful for the calculation of bivariate Gini­

index for particular distributions as well as for establishing 

characterization theorems, in the sequel. 

Theorem 3.1 

Let X = (X;, X2 ) be a non-negative, non-degenerate random vector 

admitting an absolutely continuous distribution function. If 

ml(~,t2)' i=1,2 represents the components of the bivariate vitality 

function defined' by (1.2.40) and ~(~,t2), i=1,2 represents the 

components of the bivariate Gini index defined by (3.2.3), then the 

following relationship holds. 
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Proof 

From the definition (3.2.1). we get 

a -
- ~(1,./2) <Of x ~F(x.t) dx = 2 "'f x, [F(/,.!3)-F(X,./2)) - ax;F(x,./

2
) dx, 

F(/,./2) 't ' ax,' , 2' ~ F(/,./2) F(/,./2) 

The above equation can be written as 

(3.3.2). 

or 

This gives 

(1- ~(I,. 12)) ( I, + 1 j F(X,./2) dX,) = I, + F 1 j F (x,. 12) dx, . 
F(I,. 12) ~ (1,./2) 't 

The above equation can be written as 

1 "'-
( 1 - ~ (I,. 12) ) ( I, + r, (I,. 12)) = I, + F f F (X,. 12) dx, . 

(1,./2) 't 

(3.3.1) with i = 1 is immediate from the above equation. The proof for 

;=2 is similar. 

In the following theorem we look into the property of the 

bivariate Gini-index from the point of view of truncation invariance. 
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Theorem 3.2 

Let X = (X;, X2 ) be a non-negative random vector admitting an 

absolutely continuous distribution with respect to Lebesgue measure in 

the support of (a"oo)x(~,oo). The relation 

1 
G,(t"t2) = i,j = 1,2, i * j 

a, + b, log tj 
(3.3.3) 

where a"b, are constants, holds for all real t, ,t2 ~ 0 if and only if X is 

distributed as the bivariate Pareto type- I distribution with survival 

function specified by 

Proof 

When (3.3.3) holds, with i = 1, using equation (3.3.2) we get 

Differentiating with respect to t, and rearranging the terms we get 

Differentiating (3.3.5) with respect to tl we get 

( 1 + 1 ) ( F(t" t2) + tl ~ F(t" t2)) = a, + ~ log t2 at1 · 

This gives 

t, aF(t"t2) ( 1 hi) 0 
=--'-- -:....:.....:.;.. + + a, + '1 ogt2 = . 
F(tl,t2) at, 

The solution of the above partial differential equation is 

F(t" t2) = r 1 - S, - lit Iogt. C
1
(t2) 

(3.3.5) 

(3.3.6) 

where C1(t2) is independent t,. Proceeding on similar lines with i=2 in 

(3.3.3) one can also obtain 

PI(I. I.) I. - 1 - Bz - ~ Ioglt c. (I.) 
1'2 = 2 21 (3.3.7) 



where C2(t1) is independent of 12, 

When t, = 1, in (3.3.6) we get 

C1(t2) = F2(t2) 

Thus, (3.3.6) becomes 
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F(t,,/2) = F2(t2) (1- a, - ~ log~ 

In a similar manner, when 12 = 1, (3.3.7) reads as 

C2(t1) = F1(t,) 

so that 

F(t,,/2) = F1(t1) 12-
1- a, -l2 log/, 

When 12 = 1, in (3.3.8) we get 

F1(t,) = t, -1- a, 

and from (3.3.9) we have 

F(t"1
2

) = r 1 -a, 1
2

- 1 -a,-l2 log/, 

Similarly when 11 = 1 in (3.3.10) we have 

F2(t2) = 12-
1 - a, 

and from (3.3.8) we get 

A(t t) - t - 1 - a, t- 1 - a, - ~ Jog/z 
1'2 - 2 1 

From (3.3.10) and (3.3.11) we get 

t -1-a, t - 1 - a, - l2 Jog/, - t - 1 - a, t- 1 - a, - ~ Jog~ 
1 2 - 2 1 • 

(3.3.8) 

(3.3.9) 

(3.3.10) 

(3.3.11) 

Taking logarithm on both sides and rearranging the terms in the above 

equation, we get 

b, = 4 = b (say) 

From (3.3.11) we get the desired fo rm fo r F(t" 12 ) • 

Conversely, when the distribution of X is specified by (3.3.4), by 

direct calculations we get 

1 () .i.j~1.2 .i~j. t. 
2a,-1 + 20 log -L 

81 

so that the conditions of the theorem are satisfied. 
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In the following theorem, we look into the situation where 

(1-G,(tl,/2 )) mi(t,,/2 ) is linear in li ,i=1,2. 

Theorem 3.3 

Let X = (Xl' X2 ) be a non-negative, non-degenerate random vector 

admitting an absolutely continuous distribution function. The 

relationship 

( 1- Gi(/l' 12 ) ) mi(t,.t2 ) = A~ + Bi(lj),i, j = 1,2 ,i '" j (3.3.12) 

where Bi(tj) are non-negative functions of Ij holds for all t,.t2 ~ 0 if and 

only if X follows 

(i) the Gumbels bivariate exponential distribution with survival function 

F(t,,/2) = e-J.,tl-A.z~-(Jtl~ ,A,,~>0,/1'/2>0,0 ~ e ~ A,~ (3.3.13) 

if A = 1 

(ii) the bivariate Pareto type-I! distribution with survival function 

F(t"12) = ( 1 + S, t, + B..! 12 + bt, 12 ) - c ,/1 ,/2 > 0 ,s"B..!,c > 0 

,0 ~ b ~ (c+1) s,B..! (3.3.14) 

if A > 1 and 

(iii) the bivariate finite-range distribution with survival function 

F(t"12) = ( 1 - P1t, - P2/2 + qt,12 ) d, 0< t, < -.!..,O < 12 < 1-Plt, 
Pl P2 - qt, 

if A < 1. 

Proof 

When (3.3.12) holds with i = 1, using (3.3.1) we have 
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or 

j F(xl' 12) dx, = ( (A-1)1, + 8,(12) ) F(l1'/2)· 
I, 

Differentiating with respect to 1" we get 

- F(I,,/2) = (A-1) F(I,,/2) + ( (A-1) I, + 8,(/2) ) 2F(I,,/2) ~F(/1'/2) 
al, 

The above equation simplifies to 

1 aF(I"12) A 
=--- -~::..:... = ------
F(I"12) al, 2(A-1) I, + 8,(/2) 

Denoting by h = ( 11,(1,,/2) ,hz(I,,/2) ), the vector valued failure rate 

discussed in Johnson and Kotz (1975), using (1.2.15) the above 

equation gives 

1 
11, ( 1" 12 ) = ....",.2--:(--:A---::1)----:=2-B=-:-"( -,...) . 

- 1 12 
A I, + A 

Proceeding on similar lines with i = 2, we also get 

1 
hz(I,,/2 ) = 2 (A-1) 2 ~(~)' 

A 12 + A 

The above expressions for hj (I,,/2 ) ,j = 1, 2 are reciprocal linear in If" 

The rest of the proof follows from Roy (1989) reviewed in section 1.2. 

The if part of the theorem follows from the expressions for 

(1 1'::( )) ( ). b t 1 (2C ) t (1 + ~/2) d 
-...., 1,,/2 ~ 1,,/2 gIven y 1 + 2(A, + Ill) , 2c-1 1 + (2c-1)(a, + b1

2
) an 

(2!~1)1, + (2d~~~/~qI2) respectively for distributions specified by 

(3.3.13), (3.3.14) and (3.3.15) with similar expression for 

(1-~(1,,/2)) 177:!(1,,/2 ). Hence the condition of the theorem holds. 

Corollary 3.1 

When () = 0 in (3.3.13), we have 

F(I" 12) = exp ( - A,I, - ~/2 ) (3.3.16) 
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so that Xl and X2 are independent and exponentially distributed. In 

this set up the relation takes the form 

1 = t. + -, 
I 2,1, , i=1,2 

which is characteristic to (3.3.16). 

Corollary 3.2 

When b= 0 in (3.3.14), we have 

F(i,,/2 ) = (1 + a, /1 + ~/2rc ,i,,/2 >O,c>O (3.3.17) 

which is the model obtained by Lindley and Singpurwalla (1986) under 

a different set of conditions. In this case, the property 

(1-G,(tl,/2 )) mi (tl,/2 ) = -- I, + ,1,1=1,2,1*1. ( 
2c ) (1 + all) .. .. 

2c-1 a,(2c-1) 

is characteristic to (3.3.17). It may be noted that the right-hand side of 

the above equation is a linear function of /1 and 12 , 

The following theorem provides a characterization for the three 

distributions considered in the above theorem based on the 

relationship between the bivariate Gini-index defined in (3.2.3) and the 

bivariate mean residual life function defined in (1.2.25). 

Theorem 3.4 

For the random vector Xconsidered in theorem 3.3 the 

relationship 

(1-G,(i,,/2 )) m,(tl,/2 ) = I, + k,,(tl,/2 ) J=1,2 J*j,k>O. (3.3.18) 

holds for all /1 ,/2 ~ 0 if and only if X follows anyone of the three 

distributions specified by (3.3.13), (3.3.14) and (3.3.15) respectively 

1 1 1 
according as k=- k<- and k>-. 

2' 2 2 

Proof 

When (3.3.18) holds with i=1, using (3.3.1), we have 
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or 
.., 
f F(X1,t2) dx, = k r,(I"t2) F(I"t2)· 
I, 

Differentiating with respect to I, we get 

2 k r,(I"t2) 1 aF(t"t2) + k ar,(t"t2) = -1. 
F(I" t2) al, al, 

Using the relationships (1.2.15) and (1.2.30), the above equation can 

be written as 

1-k 
~(I" t2) r,(I" t2) = T· 

Proceeding on similar lines with i = 2, one can also get 

1-k 
~(I"t2) '2(I"t2) = T· 

The rest of the proof follows from Roy (1989), reviewed in section 1.2. 

The if part of the theorem follows from the expressions for 

( 1-~(I"t2) ) m,(I"t2) and r,(I"t2) given below with similar expressions 

for (1-~(I"t2)) n;(I"t2) and '2(I"t2). 

Distribution (1-~(tl't2)) m,(I"t2) r,(I" t2) 

(i) exponential t 1 ( 1 ) 1 
1 +'2 A, +tl} A, + Bt2 

(ii) Pareto t c-1 ( I, (1+~t2)) 
1 + 2c-1 c-1 + (a, + bt2)(C-1) 

I, 1 + ~t2 -+ 
c-1 (a, + bt2)(C-1) 

(iii) finite-range t d + 1 ( -I, (1- P2t2) ) 
1 + 2d + 1 d + 1 + (A - qt2)(d + 1) 

-I, 1- P2 t2 --+ 
d + 1 (Pl - qt2)( d + 1) 
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Instead of the mean residual life function if we consider the 

bivariate failure rate, we get a characterization for the three 

distributions considered in theorem 3.4, which we state as theorem 3.5 

below. 

Theorem 3.5 

For the random vector X considered in theorem 3.4, the 

relationship 

= I, + k 1 ,i = 1,2 
h,(t"12 ) 

(3.3.19) 

holds for all 1,,/2 ~ 0 if and only if X follows anyone of the three 

distributions specified by (3.3.13),(3.3.14) and (3.3.15) respectively 

1 1 1 
according as k = - , k > - and k < -. 

2 2 2 

Proof 

When (3.3.19) holds using (3.3.1) we have 

or 

I, + F 1 j F (x" 12 ) dx, = 
(1,,/2 ) I, 

j F (x" 12 ) dx, = k F (t" 12 ) z(t,,/2 ) 

I, 

Differentiating with respect to t" we get 

= k F(t t) az(t"12 ) + 2 k A(t t) aF(t,,/2 ) z(t" t
2

) 

" 2 at " 2 at . , , 
or 

-1 = k az(t,,/2 ) + 2 k z(t t) 1 aF(t,,/2 ) 

at, "2 F(t"1
2

) at, 

Using (1.2.15), the above equation gives 
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or 

az(t,,/2) 2k-1 
----:....:........::..:.. = --

at, k 

Solving the above partial differential equation, we get 

(
2k-1) z(t,,/2) = -k- t, + c,(/2) 

where c,(/2 ) is independent I,. This gives 

Proceeding on similar lines with i = 2, we get 

1 
h.z(t,,/2) = (2k-1) . 

-k- 12 + c2(t,) 

The rest of the proof follows from Roy (1989), mentioned in section 

1.2. 

The if part of the theorem follows from the expressions for 

( 1- 6,(t" 12) ) m,(t,,/2) and h,(t,,/2) given below with similar expressions 

for ( 1-~(/,,/2) ) m.z(t,,/2) and h.z(/,,/2). 

Distribution ( 1- 6,(t" 12) ) m, (I" 12) h,(/,,/2) 

(i) exponential t 1 ( 1 ) 
1 

, +"2 A,+I/) A, + 012 

(ii) Pareto t, + 
(1 + a,t, + ~/2 + bt,12) c (a, + b12) 

(2c-1) (a, + b12) (1 + a,t, + ~/2 + bt,12) 

(iii) finite-range t, + 
1- p,l, - P2 /2 + qt,12 d (p, - q12) 

(1 + 2d) (p, - q12) 1- p,t, - P2 /2 + qt,12 
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The following theorem provides a characterization result for the 

bivariate Pareto type-1 distribution using a possible relationship 

between the Gini-index and the vitality function in the bivariate setup. 

Theorem 3.6 

For the random vector X considered in theorem 3.5, the 

relationship 

G( ) - m,(1,,12) - ~ . - 12 , 1,,12 - ,I - , 
m,(I" (2) + I, 

(3.3.20) 

holds for all 1" 12 ~ 0 if and only if X follow the bivariate Pareto 

distribution with survival function (3.3.4). 

Proof 

When (3.3.20) holds with i=1, using (3.3.1), we get 

2 I, m, (I" (2 ) 1 <DJ ~( ) d = I, + ~ J- x,,12 X, 
I, + m, (I" (2 ) J- (1" (2 ) '1 

(3.3.21 ) 

or 

2 I, m, (I" (2) ~ (1" (2) = I, (I, + m, (1" (2)) ~ (1" (2) + (I, + m, (I" (2)) j ~ (x" (2) dx,. 
4 

Differentiating with respect to I, and rearranging the terms we get 

2 t (t t) 1 aF(I,,12) + t am,(1,,12) + (t t) = 
, m, l' 2 at' at m, " 2 F(I"(2) , , 

21,2 1 aF(I,,12) +21,-(m,(I,,12)+ 1,)+(1+ am,(I,,~))_ 1 . jF(X,,12)dX,. 
F(I"(2) al, al, ~(1,,12)'l 

Using the relationships (1.2.15) and (3.3.21), the above equation can 

be written as 

-2 I, m, (I" (2) 17, (1,,12)( I, + m, (1" (2)) + I, (I, + m,(I" (2)) am, (1,,12) + m, (1,,12)( I, + m, (1" (2)) 
al, 

= -2 1,2 17,(1" (2) (I, + m, (1" (2)) + I, (I, + m, (I" (2)) - m, (1" (2) (I, + m, (I" (2)) + 

(1 + a~~'(2)) + (1,m,(1,,12)-1,2). 
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or 

-2 I, m,2(tl,/2) 11,(1,,12) + 2 1,2 ~ 111,(1,,/2) + 2 111,2(1,,/2) = -2 1,311,(1,,/2). 
al, . 

Using (1.2.44) and simplifying, we get 

-21,m12 (I" 12)~ 177,(1,,/2) + (21,2 ~ 177,(1,,/2) + 2177,2(1" 12))( m1(I" 12) - 1,) = -21,3 ~ m1(I" 12) 
~ ~ ~ 

or 

-2 I, ~ 111,(1,,/2) + 2 1,2 ~Iog 177,(1" 12) + 2 111,(1,,/2) - 21, = o. 
al, al, 

On solving the above partial differential equation, we get 

m,(tl,/2) = C1(t2) I, 

where C1(t2) is a function of 12 alone. This gives 

'1(1,,/2) = ( c1(/2)-1 ) 11 ,c1(/2) is a function of 12• 

Proceeding on similar lines with i = 2, in (3.3.20), we get 

'2(1,,/2) = ( c2(1,)-1 ) 12 ,c2(1,) is a function of 1,. 

Using the pair of identities for the survival function of X=(X"X2 ) in 

terms of the components of the bivariate MRLF, specified in (1.2.28), 

(1.2.29) and inserting the values of '1(1,,/2) and '2(1,,/2), we get 

-A( ) a,~ { 1 I ( I, ) 1 I ( 12 )} t, t = - exp - og - - og -
1 2 1,/2 (Cl(~) -1) a, (c2(1,) -1) ~ 

(3.3.22) 

and 

-A( ) a,~ { 1 I ( I, ) 1 I ( 12 )} 
1,,12 = 1,/2 exp - (C1(t2) -1) og a; - (c2(a,) -1) og ~ (3.3.23) 

Equating (3.3.22) and (3.3.23), we get 

{ 1 I (I,) 1 I (/2)} exp - (Cl(~) -1) og a, - (c2(1,) -1) og ~ 

- exp{ - 1 10g(.i) _ 1 log (lL)} (3.3.24) 
(C,(t2) -1) a, (c2(a,) -1) ~ 

Setting a, = 1 ,i=1,2 ,i:l:-j, (3.3.24) can be wr.itten as 
c,(aj ) -1 
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exp {- a1 log (.i) - 1 log (!L)} = exp {- 1 log (.i) - a2 log (!L)} 
~ . (c2(/1)-1) 8z (C1(t2)-1) . ~ 8z 

(3.3.25) 

or 

( 1 -a) 10g(.i) - ( 1 -a ) 10g(!L) (C1(t2) -1) 1 ~ - (c2(f,) -1) 2 8z' 

Dividing both sides by 10g( ~) 10g(!) we get 

1 _ a 10!L = 1 _ a lo.i ( ) ( ( )J_1 ( J ( ( )J-
1 

(C
1
(/

2
) -1) 1 g 8z (c

2
(f,) -1) 2 g ~ 

This means that each quantity should be a constant, say (), 

independent of 11 and 12 , Thus, 

1 = a1 + () log(;) 
(c1(/2 ) -1) -z 

and 

1 = a2 + () log ( ~ ) . 
( c2 ( f,) - 1) -, 

1 1 
Inserting values of and in (3.3.24), the required 

(C1(t2)-1) (c2(f,)-1) 

distribution is obtained. 

The if part of the theorem follows from the expressions for 

G,(t,,/2) and ~(/1' 12) given by ( ) and 11 

2a1 -1 + 2(}log ! 

a1 + (}IOg( ~) 
a1 + () log ( ~ ) -1 

1 

respectively,wit~ similar expressions for ~(/1'/2) and 17lz(/1,/2). 
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The following theorem provides a characterization result for the 

three distributions considered in theorem 3.6 based on a functional 

relationship between the bivaraite Gini-index defined in (3.2.3) and the 

bivariate vitality function defined in (1.2.39). 

Theorem 3.7 

For the random vector X considered in theorem 3.6, the relation 

G,(I,,/2 ) = k (1- I, ), ;=1,2, k>O (3.3.26) 
m,(I,,/2 ) 

holds for all 1" 12 ~ 0 if and only if X follows anyone of the three 

distributions specified by (3.3.13), (3.3.14) and (3.3.15) respectively 

according as k=..:!. ,k>..:!. and k<..:!.. 
2 2 2 

Proof 

When (3.3.26) holds with ;=1 using (3.3.1) we have 

( 1 - k (1- m,(;', 1
2
)) J m,(I,,/2 ) = I, + F 1 j f!(x"12 ) dx,. 

- (I" 12 ) ~ 

Using the relation (1.2.43), we get 

or 

(1-k) r,(I,,/2 ) f!(I"12 ) = j f!(x"12 ) dx,. 

" 
Differentiating with respect to 1" we get 

2(1-k) r.(t t) A(t t) aF(I,,/2 ) + (1-k) ar,(I,,/2 ) f!(t t) = - f!(t t). 
1 l' 2 l' 2 at at l' 2 l' 2 

1 1 

Using the equations (1.2.30) and (1.2.15), the above equation takes 

the form 



This gives. 
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k 
h.,(~.t2) r,(~.t2) = -. 

1-k 

Similar expression can be obtained for 1;(~.t2) '2(~.t2). The rest of the 

proof is analogous to that of theorem 3.4. 

The if part of the theorem follows from the expressions for 

G,(~.t2) and ( 1 - ~ J given below. 
~(~. t2 ) 

Distribution ~(~. t2) (1 ~) 
~(~. t2) 

(i) exponential 
1 1 

2(1 + ~A, + ~ tl}) A, + Bt2 

(ii) Pareto c (1 + a,~ + ~t2 + b~t2) (1 + a,tl +~t2 +b~t2) 
(2c-1) (1 + ~t2 + ca,~ + bc~t2) (1 + ~t2 + ca,~ + bc~t2) 

(iii) finite-range d (1- A~ - P2t2 + q~t2) (1- A~ - P2t2 + q~t2) 
(1 + 2d) (1 + dPl tl - P2t2 - dq~t2) (1 + dpl~ - P2t2 - dq~t2) 



Chapter IV 

Bivariate residual entropy function 

4.1 Introduction 

The residual entropy function has been extensively used in 

Reliability theory as a measure of the stability of a component or a 

device. Characterization of probability distributions based on certain 

relationships between the residual entropy function and other 

Reliability concepts are discussed in Nair and Rajesh (1998). In 

addition to the common measures of income inequality such as 

variance, coefficient of variation, Lorenz curve, Gini-index etc, the 

Shannon's entropy has been advantageously used as a handy tool to 

measure income inequality. The utility of this measure is highlighted in 

the works of Theil (1967) and Hart (1971). Ord, Patil and Taillie (1983) 

has used the truncated form of the entropy measure as a measure for 

examining the inequality of income of persons whose income exceeds 

a specified limit. In this chapter we extend this concept to higher 

dimensions and look into the problem of characterizing some bivariate 

models based on the functional form of the residual entropy function. 

4.2.Bivariate residual entropy function 

In the univariate setup, Ebrahimi (1996) defines the residual 

entropy function as the Shannon's entropy associated with the residual 

life distribution, namely 

H(f t) = - "'J ~x) 10 ~x) dx. 
, t F(t) g F(t) 

(4.2.1) 

(4.2.1) can also be written as 

1 '" 
H (f, t) = 1 - -=- J f(x) log ~x) dx. 

F(t) t 
(4.2.2) 
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One of the main problems encountered while extending a 

univariate concept to higher dimensions is that it cannot be done in a 

unique way. Accordingly several extensions are possible for (4.2.1) in 

the bivariate setup. A natural extension for (4.2.1) to the bivariate 

setup can be obtained by replacing I(x) by 1(X;,x2) and F(x) by F(X;,x2). 

This is given below as definition 4.1 

Definition 4.1 

Let X=(Xl' X2 ) be a non-negative bivariate random vector 

admitting an absolutely continuous distribution function with probability 

density function f(x1,x2 )and survival function F(X1,X2), .For t = (I, ,/2 )in 

R;, we define the bivariate residual entropy function through the 

relation 

H (/,/1,/2) = - jj 1(X;,x2) log 1(X;,x2) dx; dX2 (4.2.3) 
H F(I" 12) F(I" 12) 

If Y=(Y"l-;), where l'j = Xj-IjlX,>I"X2>/2,j=1,2, the survival 

function and density function of Y are respectively 

G-( ) F(Y1+I,'Y2+ /2) Y
1

, Y
2 

= ---"'-'=,..-'"-~----':.;.. 
F(I, ,/2) 

and 

( ) _ 1 (Y1 + I, , Y2 + 12) 
9 Y1'Y2 - F(I, ,/2) 

The Shannon's entropy associated with Y, namely 

er"" 
H (g) = - J J g(Y1'Y2) log g(Y1'Y2) dy1 dy2· (4.2.4) 

00 

(4.2.4) simplify to (4.2.3) under the transmission Xj = Yj + Ij , j=1,2. 

So (4.2.3) can be viewed as the Shannon's entropy associated with the 

residual life distribution .If X=(Xl'X2 ) represents the life times of the 

components in a two-component system, (4.2.3) can be viewed as a 
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measure of the stability of the system when the components have 

survived up to time 1 = ( t"t2 ). (4.2.3) can also be written as 

In the sequel, we obtain a representation for the residual entropy 

function in terms of the bivariate failure rate. Denote by 

li.t" t2) = {(tl' t2) 
F(t" t2) 

the (scalar) failure rate [Basu(1971) land 

with 

li..tl,t2) = ( ~(tl't2) ,~(tl,t2) ) 

a - . 
hj (t"t2) = - - log F(t"t2) ,}=1,2 atj 

(4.2.6) 

(4.2.7) 

the vector valued failure rate (Johnson and Kotz (197S)).Observing 

that (4.2.3) can be written as 

we get 

(4.2.9) 

Since li.t" t2) does not determine the distribution uniquely, in view of 

(4.2.9), the bivariate residual entropy function does not determine the 

distribution uniquely. 

If X = (~, X2 ) represents the lifetime of the components in a 

two component system, ~ = ~ I X2 > t2 corresponds to the life length of 
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the first component subject to the condition that the second component 

has survived up to time 12 • The residual entropy of Y,namely 

simplifies to 

(4.2.10) 

Observing that F(t,,/2) = F( I, I X2 > 12) F2(t2), where F;(t;) = P(X, > I,) ,i = 1,2 

(4.2.10) simplifies to 

() 1 "'J 8F(x,,/2 ) 10 h(X t) dx ) 11, 1,1,,/2 = 1 + F{l t) ax g,'1 l' 2 1· (4.2.11 
l' 2't 1 

Similarly, the residual entropy function of >-; = X2 1 Xl > I, simplifies to 

H2(I,t,,/2) = 1 + 1 1 8F(t"x2) log h,(t"x2) dX
2 

• (4.2.12) 
F(t" 12 ) ~ ax l 

Analogous to the definition of vector valued failure, rate we give 

below an alternative definition for the residual entropy function. 

Definition 4.2 

For a non-negative random vector X = (X;, X2 ) admitting an 

absolutely continuous distribution function, the bivariate residual 

entropy function is defined as the vector 

(4.2.13) 

where 11,(1,1,,/2) arid H2(1,t,,/2) are given by (4.2.11) and (4.2.12). 

If X = (X;, X2 ) is a bivariate random vector representing the 

wealth of two populations, with the random variable Xl representing 

the wealth of the first population and the random variable X2 

representing the wealth of the second population, then 11, (1,1,,/2) 

measures the expected uncertainty contained in the distribution of the 
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amount of wealth of the first population subject to the condition that 

the wealth of the second population exceeds a thre.shold 12 , Similarly 

H2 (t, I" (2 ) measures the expected uncertainty contained in the 

distribution of the amount of wealth of the second population subject to 

the condition that the wealth of the first population exceeds a threshold 

1,. Hence H(t,t,,/2 )can be viewed as a measure of the expected 

uncertainty contained in the distribution of the amount of wealth when 

the two factors are taken into consideration simultaneously. 

4.3 Characterization theorems 

In this section, we look into the problem of characterizing certain 

bivariate models based on the functional form of H(t,t,,/2 ). We first 

examine the situation where H(t,1,,/2 ) is constant in I. 

Theorem 4.1 

Let X = (X" X2 ) be a non-negative, non-degenerate random vector 

admitting an absolutely continuous distribution function with respect to 

Lebsegue measure such that H(t,1,,/2 ) < co. A relation of the form 

(4.3.1) 

holds if and only if X is distributed as the bivariate exponential 

distribution with independent (exponential) marginals. 

Proof 

When (4.3.1) holds with ;= 1, using (4.2.11) we have 

(c, -1) 1=(1" (2) = j aF(x" (2) log h,(x" (2) dx, . 
t, ax, 

Differentiating the above equation with respect to 1" we get 

(c.-1) aF(I,,/2) - _ aF(t,,/2) I h,(t t) 
, at - at og " 2 • , , 
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SI·nce aF(/l,/2) 0 th b t·· -.;....:......;""'- > , e a ove equa Ion gives 
al, 

logh,(1,,/2 ) = A, > 0 

where A, = e (1-C,). Proceeding along similar lines with (4.2.12), we get 

t;.(t1' 12 ) = fP-C.) = ~ > o. 
From Galambos and Kotz (1978), we have 

F(I,,/2) = exp( -A,I, - ~/2) ,1,,12 ~ o. (4.3.2) 

as claimed. 

Conversely, when the distribution of X is specified by (4.3.2), by 

direct calculations we get 

H, (t, 11' 12 ) = 1 - log A., ,i = 1,2 

so that the condition of the theorem holds. 

The following theorem looks into the situation where H(t,1,,/2 ) is 

log linear in I,. 

Theorem 4.2 

For the random vector X considered in the theorem 4.1, the 

relation 

(4.3.3) 

where b,(tj) are non-negative, non-increasing functions of Ij > 0 holds if 

and only if X is distributed as 

(i) the Gumbels bivariate exponential distribution with survival function 

F(/1' 12 ) = e- ~~ - ~~ -IIII~ , A,,~ > 0 ,11 ,/2 > 0 ,0 ~ B ~ A,~ (4.3.4) 

if a = 0 

(ii) the bivariate Pareto type-I! distribution with survival function 

F(/1' 12) = (1 + ~/l+ ~/2 + bI,/2 )-C ,1,,/2 > o,~,~,c> 0 

,0 ~ b ~ (c + 1) ~~ (4.3.5) 

if a > 0 and 
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(iii) the bivariate finite-range distribution with survival function 

F(t"t2) = (1 - Plt, - P2t2 + qt,t2 ) d, 0 < t, < ~,O < t2 < 1-pll 
Pl P2 - qt, 

,Pl' P2 > 0, 1-d ~ ~ ~ 1,d > 0 (4.3.6) 
P1P2 

if a < O. 

Proof 

When (4.3.3) holds with i=1, we have 

F(t"t2) log (at, +b,(t2)) = F(t"t2) + 1 aF(x"t2) log h,(x"t2) dX1 • (4.3.7) 
l 8x1 1 

Differentiating (4.3.7) with respect to tl and rearranging the terms, we 

get 

Denoting by 

c1(t" t2) = h,(t" t2) [at, + b,(t2)], 

(4.3.8) takes the form 

C1(t"t2) [log'1(t"t2)-1] = a 

Differentiating with respect to t" (4.3.9) reads as 

logc
1
(t"t2) ac1(t"t2) = 0 

at, 

The solution to (4.3.10) is 

c1(t" t2) = Z;(t2) 

where Z;(t2) is independent t,. 

(4.3.8) 

(4.3.9) 

(4.3.9) 

(4.3.10) 

(4.3.11) 

Differentiating (4.3.9) with respect to t2 and proceeding along the 

same line, we also get 

C1(t1, t2 ) = ~(t,) 
where ~(t,) is a function of t, alone. 

(4.3.12) 

For (4.3.12) and (4.3.11) to hold simultaneously, we should have 

C1(tl,t2 ) = k, (4.3.13) 
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where k1 is a constant. Similarly, when (4.3.3) holds with i=2, we also 

get 

c1(t,. t2 ) = k2 

where k2 is a constant. 

(4.3.14) 

We now show that the values of k1 and k2 in equations (4.3.13) and 

(4.3.14) are the same. With C1(/1,t2)=k,. (4.3.9) read as 

k, (logk1-1) = A. 

Similarly, we can also have 

This gives 

k2 (log k2 -1) = A. 

!!J... = log k2 - 1 
k2 logk1 -1 

If k1 > k2' !!J... > 1 so that 
k2 

or 

logk2 -1 > 1 
logk, -1 

log k2 -1 > log k, -1 

since logk2 -1 and logk, -1 must be of the same sign for !!J...>1. This 
k2 

gives k2 > k, which is a contradiction. Similarly k, < k2 also leads to a 

contradiction. Assume 

k, = k2 = k(say). 

This gives 

so that 

Similarly, we can also have 
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The rest of the proof follows from Roy (1989), reviewed in section 1.2. 

The if part of the theorem follows from the expressions for H1(f,~,t2) 

given by 
[ 

1 f ) 
1+- 1+-e C e C 1+ t 

1-log (a1 + Bt2 ), 1-log _ ~ + ~ 2 
C C c(~+bt2) 

and 

-e d 

[ 

1-.!. 

log ----et ~ + respectively for distributions specified by 

(4.3.4), (4.3.5) and (4.3.6) with the similar expression for H2(f,~,t2)' 

Hence the condition of the theorem holds. 

The following theorem gives a characterization of Hi(f,~, t2 ) with 

the bivariate failure rate hi(~,t2)J= 1,2. 

Theorem 4.3 

For the random vector X considered in theorem 4.2, a 

relationship of the form 

HM,~,t2) = k - logh,(~,t2) J=1,2 (4.3.15) 

where hi(~,t2) are the components of the bivariate failure rate, holds for 

all real ~, t2 ~ 0 if and only if X follow anyone of the three distributions 

specified by (4.3.4), (4.3.5) and (4.3.6) respectively according as 

k=1,k>1 and k<1. 

Proof 

When (4.3.15) holds, using (4.2.11), we can write 

[k-log~(~,t2)] F(~,t2) = F(~,t2) + j aF(x"t2) log~(x"t2) dx,. 
t aX, 
1 

Differentiating with respect to t1 and rearranging the terms, we get 

1 a~(~,t2) = k-1. 
t{(~,t2) a~ 
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If u(~,t2)= 1 , the above equation turn out to be 
h, (~, t2 ) 

whose solution is 

u(~,t2) = (k-1) tl + Cl 

where Cl is a constant. This gives, 

h 1(t 1 , t2) = [(k-1) tl + cd- 1
• 

Proceeding along similar lines, one can also get 

h2(t1, t2) = [(k-1) t2 + C2r
1

. 

where C2 is a constant. This shows that the components of the vector 

valued failure rate are reciprocal linear. The rest of the proof is 

analogous to that of theorem 4.2. 

The if part follows from the expression for Hl (fl' t1 , t2) given by 

1-log(a
1
+Bt2) , 1+..:!.+ log (1+~~+8:!t2+b~ t2) and 

c C(~+bt2) 

1- ..:!.+Iog (1- Pl~ - p/2 + q~t2) and that of hl (tl, t2) given by a
1 
+ B t2, 

d d(p1 - qt2 ) 

C(~+bt2) and the distribution is 

specified by (4.3.4), (4.3.5) and (4.3.6) respectively ,with similar 

exp ressio n for H2(f, t1 , t2) and h2(t1 , t2). 



Chapter V 

Bivatiate Geometric Vitality function 

5.1 Introduction 

The vitality function, extensively studied by Kupka and Loo 

(1989) in connection with their studies on ageing process, provides a 

useful tool in modelling lifetime data. Kotz and shanbag (1980) has 

used this concept, without specifying the name, to obtain 

characterization results for some lifetime distributions. Where as the 

hazard rate reflects the risk of sudden death within a life span, the 

vitality function provides a more realistic measure of the failure pattern 

in the sense that it is expressed in terms of increased average life 

span. The vitality function, defined by 

m (t) = E( X I X> t ) (5.1.1) 

can be interpreted as the average lifespan of components whose age 

exceeds t. Bhattacharjee (1993) pOints out the relevance of this 

concept in income studies. (5.1.1) can be viewed as the average 

income of persons whose income exceeds the level t. Based on the 

geometric mean of the residual lifetime of the components, Nair and 

Rajesh (2000) has introduced a new measure, namely geometric 

vitality function. In connection with income studies, the geometric 

vitality function defined in Nair and Rajesh (2000) shall be interpreted 

as the geometric mean of the income of people whose income is 

greater than a threshold t. In other words, it represents the geometric 

mean of the income of wealthy people. 

In the present chapter, we extend this concept to the bivariate 

setup. Further, we look into the problem of characterizing certain 

bivaraite models using the functional form of the geometric vitality 

function. 



79 

5.2 Blvarlate geometric vitality function 

For a random variable X admitting an absolutely continuous 

distribution function with respect to Lebsegue measure on (-«>, L), 

where 

L = inf { x: F(x) = 1 }, 

Nair and Rajesh (2000) defines the geometric vitality function through 

the relationship 

10gG(/) = E(logXIX~/) 

1 ., 
= - f logx f(x) dx. 

F(/) 1 

(5.2.1 ) 

Let X = (X" X2 ) represents a bivariate random vector measuring 

two attributes of income in a population. The random variable 

Y, = X,I X2 > 12 corresponds to the distribution of X, subject to the 

condition that X2 is greater than an amount equal to 12 • One can 

define the geometric vitality function G,(t,,/2) for the random variable Y, 

through the relationship 

1 ., 
logG,(t,,/2) = f log X; f(X; I X2 > 12) dx; (5.2.2) 

F(t, I X2 > 12 ) I, 

(5.2.2) can also be written as 

°109(G,(;,,/2 )) = =--1_ j F(x;,/2) dX;. 
F(t" 12 ) I, X; 

(5.2.3) 

Similarly for the random variable >-; = X2 1 X, > I" the geometric 

vitality function ~(t,,/2) turns out to be 

(5.2.4) 

(5.2.4) simplifies to 

109(G2(;2,,/2)) = =--1_ j F(/"x2) dx2. 
F(t,,/2 ) ~ x2 

(5.2.5) 
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Definition 5.1 

For a non-negative random vector X = (XI' X2 ) admitting an 

absolutely continuous distribution function, the bivariate geometric 

vitality function is defined as the vector 

logG(t"t2) = ( logG,(t"t2) ,logG2(t"t2) ) (5.2.6) 

where log~(t"t2) and log G2(t"t2) are given by (5.2.2) and (5.2.4) 

respectively. 

represents a bivariate random vector 

representing income of two populations, with the random variable X, 

representing the income of the first population and the random variable 

X2 representing the income of the second population. Then ~(t"t2) 

defines the geometric mean of the first population subject to the 

condition that the income of the second population exceeds a threshold 

t2. Similarly, ~(t"t2) provides the geometric mean of the second 

population when the income of the first population exceeds a threshold 

1,. Hence G(t"t2)can be viewed as an index, which represents the 

geometric mean of X, under the conditions specified. 

5.3 Characterization Theorems 

In this section, we look into the problem of characterizing some 

well-known bivariate models by the form of the bivariate geometric 

vitality function. In the following theorem, we look into the situation 

where 10g( Gi(~,t2)) ,i = 1,2 is locally constant. 

Theorem 5.1 

Let X = (X" X2 ) be a non-negative random vector admitting an 

absolutely continuous distribution function with respect to Lebesgue 

measure. The relation 
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109(
G;(t,,/2 )) = 1 ,'j'=12 , ..... j. ab>O (531) 

1 b I (1) " "...." . . 
; a+ og/ 

holds for all t,.t2 ~ 0 if and only if X follows the Pareto type-1 

distribution specified by 

Proof 

When (5.3.1) holds with i = 1 using (5.2.3) we have 

1 <>Of F(x;,/2 ) d _ 1 
!Xl - -----

F(t,,/2 ) ~ X; a+ b log(l2) 

Differentiating with respect to t, we get 

or 

1 aF(t,.t2) = (a+b~09(/2)). 
F( t,.t2 ) at, 

Using (1.2.15) we get 

Proceeding on similar lines with i = 2, we also get 

I; ( t,.t
2

) = a + b log (t,) . 
12 

(5.3.2) 

Using the pair of identities for the survival function given by (1.2.16) 

and (1.2.17), we get 

F( t,.t,) = exp( - (a + blog(a,» log ( ~) - (a + blog(t,» 10g( ~ )). (5.3.3) 

and 

F(V,) = exp( -(a+bI09(a,))109(~) - (a+blog(t,» 10g(~)} (5.3.4) 
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Equating (5.3.3) and (5.3.4) and setting a, = a + b logal ,i,j=1,2, i;t. j 

we get 

exp( ~,I09(~) -(a+ bI09(t,»)I09(!)) = exp( --a.IOg(!) -(a+ bI09(t,»)I09( ~)) 
(5.3.5) 

(5.3.5) can also be written as 

(a+ blog(t,) -a,) (IOg(!) r = (a+ blog(t,) -a,) (IOg(~) r (5.3.6) 
For (5.3.6) to hold we should have both sides equal to a constant, say 

(). This gives 

(5.3.7) 

and 

a + blog(~) = a2 + () 10g( ~). (5.3.8) 

Using (5.3.7) and (5.3.8) in equation (5.3.5) we get the required 

distribution (5.3.2) 

The if part of the theorem follows from the expression of 

109(~(;,'/2)) given by 1 t with similar expression for 
a1 + () log(~) 

~ 

The following theorem provides a characterization result for a 

family of distributions using a possible relationship between the 

bivariate geometric vitality function and the reciprocal moment of X, 

given X2 > 12 • 
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Theorem 5.2 

Let X = (X;, X2 ) be a non-negative random vector admitting an 

absolutely continuous distribution function with respect to Lebesgue 

measure. The relationship 

IOg( G'(;"t2)) = A + B,(tj) R(I"t2) ,i,j=1,2,i*i (5.3.9) 

where B,(t/) are non-negative functions of tj and 

(5.3.10) 

is the reciprocal moment of X; given X2 > t2 holds for all tl.t2 ~ 0 if and 

only if X is distributed as 

(i) the Gumbels bivariate exponential distribution with survival function 

F(I,.t
2

) = e- .1,'1- ~~ - 8'1~ , A,,~ > 0 ,t
1 
,t

2 
> 0 ,0 ~ () ~ A,~ (5.3.11) 

if A = 0 

(ii) the bivariate Pareto type-II distribution with survival function 

F(1"t2) = ( 1 + a, 1,+ ~ t2 + bl, t2 ) -c ,I, ,t2 > 0 ,a,,~,c > 0 

,0 ~ b ~ (c+1) a,~ (5.3.12) 

if A > 0 and 

(iii) the bivariate finite-range distribution with survival function 

F( ) (1 ) d 10 1-pll 1" t2 = - Pll, - P2 t2 + q I,t2 ' 0 < I, < -, < t2 < -..;;....:...:.... 
P1 P2 - ql, 

if A < O. 

Proof 

When (5.3.10) holds with i = 1, using (5.2.3) we have 

1 "'s F(Xl,t2) ( ) 
( 

dXl = A + 8,(t2 ) R(t1.t2 ) 

F l"t2 )'1 Xl . 
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or 

Differentiating with respect to t1 we get 

Using (1.2.15), the above equation gives 

. h (I. I.) _ 1 
''I "2 - A I. + B (I. ) 

1 1 2 

Proceeding on similar line with i = 2, we get 

h (I. I.) _ 1 
'"2 l' 2 - A t2 + ~(t,)' 

The rest of the proof follows from Roy (1989). 

Conversely when the distribution of X = (X;, X2 ) is specified 

above by (5.3.11), (5.3.12) 

expressions for 10g( G,(;"t2 )) 

and (5.3.13) calculations yield the 

as 1 ). + (1 + 8:!t2 ) R(I.,I.) and 
A-,+Bt2 c C(a,+bt2) 12 

-1 + (1-P2t2) 
--';"'--'-=-=....,.. R(t1,t2 ) respectively, so that the condition of the 

d d(P1-qt2 ) 

theorem holds. 

The following theorem provides a characterization result for the 

bivariate Pareto type-1 distribution specified in (5.3.2) using a possible 

relationship between the bivariate geometric vitality function and the 

bivariate residual entropy function defined in (4.2.13). 

Theorem 5.3 

Let X = (X" X2 ) be a non-negative random vector admitting an 

absolutely continuous distribution function with components of the 
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geometric vitality function logGA~,t2) and the residual entropy function 

H"f,~,t2),i=1,2. Then the relationship 

Hi(f,~,t2) - logG,,~,t2) = 1 - log(a + blogtj ) ,i,j=1,2 ,i"#j (5.3.14) 

holds for all real ~,t2 ~o if and only if X follows the Pareto type-1 

distribution with survival function specified in (5.3.2). 

Proof 

When (5.3.14) holds with i=1 using (4.2.11) and (5.2.2) we have 

1 "'SaA(X t) 1 "'s aA(x t) 1+ l' 2 log~(~,t2)dX1 + log~ l' 2 dX1 =1-log(a+blogt2) 
F( ~, t2 ) t. &<1 F( ~, t2 ) t. &<1 , , 

or 

"'s aF(x1' t2) I h( t) d "'s I aF(~, t2) d A-(t t) I ( bl t) og '., ~'2 x1 + og ~ x1 = - l' 2 og a + og 2 . 
" &<1 ~ &<1 

Differentiating with respect to t1 and rearranging the terms we get 

aF(~, t2) I h(t t) _ I t aF(~, t2) __ I ( bl t) aF(~, t2) og '., l' 2 og 1 - og a + og 2 . 
a~ at1 a~ 

The above equation can be written as 

~(~,t2) = a + b logt2 . 
~ 

Proceeding on similar lines with i = 2, we get 

~(~,t2) = a + b log~ . 
t2 

Rest of the proof is analogous to that of theorem 5.1 and hence 

omitted. 

If part of the theorem follows from the expression for 

10g( GA~,t2))and Hi(f,~,t2) for the Pareto distribution specified by (5.3.2) 

1 
----=-t-and 1 + 
a1 +Blog(~) 

~ 

respectively. 

[

a1 + BI09(~)] 
1 t -log ~,i, j = 1, 2,i "# j 

a
1 
+Blog(~) ~ 

~ 
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The following theorem provides a characterization of the 

bivariate weibull distribution using a possible relationship between the 

geometric vitality function and the bivariate residual entropy function. 

Theorem 5.4 

For the random vector X = (~, X2 ) considered in the above 

theorem the relationship 

HI(t,~,t2) + (p-1) logG,(t,tl't2) = 1- logp(a,+bt/) J,j=1,2 J;t:j(5.3.15) 

holds for all real ~,t2 ~o if and only if X follows the bivariate weibull 

distribution with survival function specified by 

F(~,t2) = exp(-a1~P-a2t/-B~Pt/) ,~,t2~O ,al'a2 ,P>O ,B>O(5.3.16) 

Proof 

When (5.3.15) holds with i = 1 using (5.2.2) we get 

H,(t,~,t2) F(~,t2) -(p-1) j 10gX; 8F(X;,t2) dX1 = F(~,t2) (1-logp(a1 +bt/)) 
t Ox1 I 

Differentiating with respect to ~ and rearranging the terms we get 

8H,(t,~,t2) () () ( )_ ( ( P)) H, f,~, t2 ~(~, t2) - P -1 log ~~(t1' t2) - - 1-log p a1 + bt2 ~(~, t2) 
8~ 

Using the relation 

we get 

C1 (a1 + bt/ ) . 
~(~,t2) = t P- 1 ' where c1 > 0 IS a constant. 

1 

Proceeding on similar lines with i = 2 one can also get 

c2 (a2 + b~P) . 
I;(~, t2 ) = t P-1 ' where c2 > 0 IS a constant. 

2 

Using the pair of identities for the survival function of F(X;,x2 ) specified 

in (1.2.16) and (1.2.17) we get 
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AI" I,) ~ exp( - U~p) ~'-P - c( a~ : ;~P) I,'-P] (5.3.17) 

and 

A(l l) = exp(- ( ca2 ) l2-P _ c(a1 +bl/) l2-P] 
1'2 2-P 2 2-P 1 

(5.3.18) 

Equating (5.3.17) and (5.3.18) and rearranging the terms 

exp(- a,ttfl - c(a2 + bl'p) 12
2-fl ] = exp(- a2/2

2-P _ c(a1 + bl/) ItP] (5.3.19) 
2-P 2-P 

or 

(
c(a1 + bl/) ] 2-P (c(a2 + bl,P) ] 2-P 

a1 I, = -a2 12 2-P 2-P 

Dividing both sides by t,2-P I/-P we get 

1 2 a2 t1
2-P for all t1,t2 (5.3.20) ( 

c( a1 + bl/) _ a] l 2-P = (c( a2 + bt,P) ] 
2-P 2-P 

For equation (5.3.20) to hold each term should be a constant. This 

gives 

c(a1 +bl/) B t2-P --'----'- = a1 + 2 
2-P 

(5.3.21 ) 

and 

c( a2 + bt,P) 2-P . = a2+Bt, . 
2-P 

(5.3.22) 

Inserting (5.3.21) and (5.3.22) in (5.3.19) we get the required 

distribution. 

Conversely when the distribution of X is specified by (5.3.16) by 

direct calculations we get 

() ( P) P-1 "'JI 8'F(X,,/2 )d H, 1,1,,12 = 1- logp a1 +B/2 + ogx, x1 • 
F(t,,/2 ) 4 8x1 

The validity of (5.3.15) is straightforward. 
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The following theorem provides a characterization of the 

bivariate Pareto type-1 distribution using a possible relationship 

between the bivariate geometric vitality function and the bivariate 

mean residual life function. 

Theorem 5.5 

For the random vector X = (X" X2 ) considered in theorem 5.4 the 

relationship 

(5.3.23) 

holds for all real 1,,/2 ~ 0 if and only if X follows the bivariate Pareto 

type-1 distribution specified by (5.3.1). 

Proof 

When (5.3.23) holds with i = 1, using (5.2.3) we get 

1 <Cf F( x" 12 ) d _ r,(1,,/2 ) Xi - ---'-~~ 

F( 1,,/2 ) 't X, I, + r, (1,,/2 ) 

or 

( ) 
<Cf F(X,,/2 ) <C

f 
-( ) 

- I, + r,(I" 12 ) dx, = F x,,/2 dx,. 
't X, I, 

Differentiating with respect to I, we have 

or 

The solution of the above partial differential equation is 

r, (/" 12 ) = C, (t2) I, 

where c,(/2 ) is independent 1,. 

Proceeding on similar line with i = 2, we also get 

'2(1,,/2) = c2(1,) 12 
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The rest of the proof is analogous to that of theorem 3.6 and hence 

omitted. 

The if part of the theorem follows from the expression for 

'1(1" t2 ) 

I, + '1(1" t2 ) 

given by 
1 

with similar t ' 
() log(~) 

~ 



Chapter VI 

Estimation of certain measures 

of income inequality using 8ayesian techniques 

6.1 Introduction 

The problem of estimation of Lorenz curve and Gini-index in the 

classical framework has been investigated by Gastwirth (1972), 

Moothathu (1985a, 1990). However only very little work seems to have 

been done using the Bayesian techniques while estimating measures of 

income inequality. Motivated by this in the present chapter we look into 

the problem of estimation of the Lorenz curve, Gini-index and the 

variance of logarithms using ideas from Bayesian inference. Further a 

comparison of the estimates obtained from the classical and Bayesian 

methods is under taken using their variances. 

6.2 The model 

Let ~, X2 ,. •• Xn is a random sample from the Pareto distribution, with 

density function 

f( x,a,e) = a ea x-(a+1) , X 2! e > 0, a > 1. (6.2.1) 

For the model (6.2.1), by straight forward calculations the Lorenz curve, 

Gini-index and the variance of logarithms simplifies receptively to 

and 

1-.! 
L (p) = 1 - (1- p) a, 0 < p < 1 

G = (2a-1t1 

v= _1 
# 

(6.2.2) 

(6.2.3) 

(6.2.4) 
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6.3 Estimation of Lorenz curve 

In this section we obtain the 8ayes estimate of the Lorenz cu rve 

under the two alternatives namely (i) when the scale parameter B is 

known and (ii) when B is unknown. 

Estimation with known B 

For the model (6.2.1), when B is known, the likelihood function can 

be written as 

(6.3.1 ) 

where 

I = :t In(XI). 
1=1 B 

Estimation of the parameters a and B in the 8ayesian framework 

has been studied by Malik (1970), Zellener (1971), Sin ha and Howlder 

(1980), Arnold and Press (1983) and Jeevanand and Nair (1992). We 

presently look into the problem of estimating L(p) as such. Since B is 

known the form of the likelihood function provides a conjugate prior with 

density function 

"() C ....r-1 -fa I' 0 g a = 2 a e ,r, ,a > (6.3.2) 

The symbol C with various suffixes stands for the normalizing constants. 

The posterior density from (6.3.1) and (6.3.2) tu rns out to be 

f( al K) = C3 am-1 e-aT 
, a ~ 0 (6.3.3) 

whe re T = I + I' ,m = n + r. 

From (6.2.2) we have the representation of a as 

a = __ lo-=g..:....(1_-~p..:....) __ 
log(1- p) -log(1- L) 

and 

da log(1- p) - = - ----.;;;;....;...---=--'-----;:-
dL (1- L) (log(1- p) -log(1- L)t 

(6.3.4) 

(6.3.5) 
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Using (6.3.4) and (6.3.5) the posterior distribution of L turns to be 

-T ( log{1 p) )m (1- p)Iog(1-PI-log(1-LI -

f{L\x) = [C (p,0)]-1 log{1- p) -log{1- L) ,0 < L < P (6.3.6) 
- 4 (1- L)(log{1- p) -log{1- L)) 

where 

-T ( I (1) )m P d (1- p)log(1-PI-log(1-LI og - P 
C ( p, d) = J _t. _ log{1- p) -log{1- L) dL. (6.3.7) 

4 ° (1- L) (log{1- p) -log{1- L)) 

(6.3.7) can be solved by numerical integration. One can have estimators 

for L by specifying appropriate loss functions and (6.3.6). Under the 

quadratic loss function the Bayes estimator turns out to be 

(6.3.8) 

with Bayes risk 

(6.3.9) 

Estimation with unknown () 

The most general and perhaps a more realistic situation is when 

both the shape and scale parameters are unknown. In this case the 

likelihood can be written as 

(6.3.10) 

where 

n 

Z = L logx;. 
;c1 

The kernel of the .Iikelihood suggests the following the joint prior density 

of a and () (conjugate prior) 

g{ a,()) = C6 a()n'Se-ar ,a>1, 05.()5.()o' ()o,f,z' > ° 
where f,n' and z' are prior parameters. 

(6.3.11) 

Using (6.3.10) and (6.3.11) the posterior distribution turn out to be 

f{a,()\~) = C,~()Ns-1e-sZ, a>1, 05. () 5. min{()o,X;1) (6.3.12) 
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where 

z= z+ z' , m= n+ r, N= n+ n', X(1) = min(X, ... , Xn) 

Further from (6.2.2) we get the representation of a as 

log(1- p) 
a = ---=-:...--=-~-

log(1- p) -log(1- L) 
(6.3.13) 

Under the transformation u = Band (6.3.13) we get the Jacobian of 

transformation as 

da 

1v1 = dL 
dB 
dL 

da 

du 
dB 
du 

log(1- p) = ---~~~--~ 
(1- L) (log(1- p) -log(1- L))2 

Now using the transformation (a,B) to (L,u) we get the joint posterior 

density of Land u, as 

-z ,j 1og(1-p) )-1 ( 1 (1) )m (1- p)Iog(1-P)-IOQ(1-L) U"llog(1-P)-IOQ(1-L) og - P log(1- p) 

~(L, I ) - C. log(1- p) -log(1- L) 0 L 
/' U 5. - 8 2' < < P 

(1- L) (log(1- p) -log(1- L)) 

(6.3.14) 

Integrating out u from (6.3.14) we get the posterior density of L as 

90 

f (L 15.) = J f (L, u 15.) du. 
o 

This gives 

f(L x) = c. log(1- p) log(1- p) 
( )

m-1 

1- 8 log(1- p) -log(1- L) (1- L) (log(1- p) -log(1- L) )2 

( ( ) J 
( 1Dg('-P))N log(1- p) IDg(l-p)-IDg('-L) 

X exp - z () . 
log(1- p) -log(1- L) 0 
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The above equation can be written as 

{(L x) = G. log(1- p) log(1- p) 
( )

171-1 

1- 8 log(1- p) -log(1- L) (1- L) (log(1- p) -log(1- L) )2 

x exp( - ( log(1- p) ) AJ 
log(1- p) -log(1- L) 

where 

A = Z - Nlogeo 

Rearranging the terms in (6.3.15) we get 

(6.3.15) 

-A ( log(1 p~ )m (1- P )1og(1-Pl-log(1-Ll - I 

((Llx) = [G.(p,O)]-1 log(1-p)-log(1-L) ,O<L<p(6.3.16) 
- 9 (1- L) (log(1- p) -log(1- L)) 

where 

-A ( I (1) )m (1- )1og(1-Pl-Iog(1-Ll og - P 
C. (p, d) = Pf ~ P log(1- p) -log(1- L) dL 
9' 0 (1-L) (log(1-p)-log(1-L)) 

(6.3.17) 

Under the quadratic loss, the Bayes estimate and the corresponding risk 

of the Lorenz curve is given by 

(6.3.18) 

and 

(6.3.19) 

6.4 Estimation of Gini-index 

In this section we obtain the Bayes estimate of the Gini-index given 

by (6.2.3), under the two alternatives namely (i) the scale parameter e is 

known and (ii) e is unknown. 
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Estimation with known () 

From (6.2.3) we have 

G+1 
a= --

2G 
(6.4.1 ) 

and 

da 1 
dG = - 2 (j2 (6.4.2) 

From (6.4.1) and (6.4.2), in view of (6.3.3) we get the posterior 

distribution of G as 

f( GIK) = [C~~r (~~1rH e-(~~)T , 0 < G < 1 (6.4.3) 

where 

Bayes estimate of Gunder quadratic loss function is 

G, = ~o(1) 
~o(O) 

and the expected loss when (6.4.5) is used as estimate is 

R( r.: G) = ~o(2) _ (G)2 
""'1" ~o(O) , 

(6.4.5) 

(6.4.5) 

(6.4.6) 

To evaluate (6.4.5) and (6.4.6) we seek numerical integration. 

Estimation when 0 is unknown. 

From (6.2.3) we have 

G+1 
a= --

2G 
(6.4.7) 

Taking u=O and from (6.4.7), the Jacobian of transformation is 

1 
1'-'1 = 2(j2 

Using the transformation (a, 0) to (G, u), In view of (6.3.12) we get the 

joint posterior density of (G, u) as 
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c. (G 1)m JG+1) N 1 (G+1)Z 
f (G UIX) = _11_ --+- 2G - e- 2G 0 < G < 1, 0 < u < Ba 
'- 2~ 2G ' 

(6.4.8) 

Integrating out u from (6.4.8) we get the posterior density of G as 

lJo 

f(GI~) = f f(G,ul~) du (6.4.9) 
o 

or 

f(Glx) = C,1 G+ 1 B 2G e- 2G 
( )

nl-1 (G+1)N (G+1)Z 
- 2~ 2G 0 

The above equation can be written as 

f(Glx) = [C,2(O)t (G+1)nl-1 e-(~~)A, 0 < G < 1,A = Z-Nlog()a (6.4.10) 
- 2~ 2G 

where 

1 ,-.d ( )nl-1 J G+1)A 
C. (cl) = f _u_ G+1 el.2G dG 

12 2~ 2G o 
(6.4.11) 

8ayes estimate of G under the quadratic loss function is 

(;2 = C,2(1) (6.4.12) 
C,2(O) 

and the expected loss when (6.4.12) is used as estimate is 

R(~, (;2) = i,:~~~ - ({;2 r (6.4.13) 

The estimates can now be obtained using numerical integration. 

6.5 Estimation of the variance of logarithms 

In this section we provide the 8ayes estimate of the variance of 

logarithms (6.2.4) under the two alternative namely (i) the scale 

parameter () is known and (ii) () is unknown. 

Estimation with known () 

From (6.2.4), we can find 
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1 S' v 0 a = JV mce > (6.5.1 ) 

and 

da 1 

dV = - 2V% 
(6.5.2) 

Using (6.5.1), (6.5.2), and the posterior density (6.3.3) we get the 

posterior distribution of Vas 

fWI,r) = [C:~r' (]v r' ex+]v T) .0 < V < 1 (6.5.3) 

where 

1 Vd ( 1 )(m-l) (1) 
C,3(d) = I -3 - exp -- T dv 

o 2V2 JV JV 
(6.5.4) 

The above integral can be written as 

(
1 )m-2d 

C,3(d) = T Im-2d, T (6.5.6) 

where la,z is the incomplete Gamma function, defined by 

GO 

la,z = I ~-le-1 dt (6.5.7) 
z 

8ayes estimate of Vunder the quadratic loss function is 

V. = C,3(1) 
1 C,3(O) 

(6.5.8) 

and the 8ayes risk is 

R( v. V) = C,3(2) _ (Vl)2 
,,1 C,3(O) 

(6.5.9) 

To evaluate (6.5.8) and (6.5.9) we seek numerical integration. 

Estimation with unknown () 

From (6.2.4) we get 

1 
a= -

JV 
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Taking U= (), the above equation provides the Jacobian of transformation 

J as 

1 
J= -3 

2v2 

Using the transformation (a, ()) to (V, u) and using the posterior density 

(6.3.12) we get the joint posterior distribution of (V,u) as 

c. (1)m 1 N-1 _ 1 Z 
f ( V, Ul~) = 1~ r.; UTv e Tv , 0 < V < 1, 0 < U < ()o 

2V2 vV 
(6.5.10) 

Integrating out u from (6.5.10) we get the posterior density of V as 

80 

f ( V I ~) = J f (V, u I~) du 
o 

or 

= 1S ~ ~ e-rv, A = Z - Nlog()o' 0 < V < 1 
[C. (0) r ( )nH 1 A 

2V2 vV 

where 

1 Vd ( 1 )<m-1) (1 ) 
C,s(d) = J -3 - exp -- A dv 

o 2V2 Fv Fv 
(6.5.13) can be written as 

(
1 )m-2d 

C,s(d) = A Im-2d,A 

where la,z is defined in (6.5.7). 

Bayes estimate of Vunder the quadratic loss function is 

~ = C,s(1) 
C,s(O) 

and the 8ayes risk is 

R(~, V2) = C,s(2) - (V2 r 
C,s(O) 

(6.5.11) 

(6 . .5.12) 

(6.5.13) 

(6.5.14) 

(6.5.15) 

(6.5.16) 

To evaluate (6.5.15) and (6.5.16) we seek numerical integration. 
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6.6. Discussion 

r<­
S'~.2 
ABO 

In this section we compare the 8ayes estimate of the Lorenz curve 

and the Gini-index with corresponding classical estimates of the same in 

terms of their variance (empirical value is taken). For this purpose the 

criteria used is the risks improvement (RI) factor, defined as 

RI (%) = Variance of the m.l.e - Variance of the new estimate x 1 00 
Variance of the m.l.e 

In the absence of the real data we compare the estimates empirically by 

generating observations from the Pareto distribution. The samples of 

sizes n=15, 20, 25, 35 were generated for different values of the 

parameter. First we compare the 8ayes estimate of Lorenz curve defined 

in (6.3.8) with the maximum likelihood estimate of Lorenz curve 

(Moothathu (1990)) defined by 

p, = max (0, 1- (1- P y-f, ) (6.6. 1 ) 

and 

(
1 n (X ))-' a, = - ~ log -' 
n /z, () 

The comparison of the 8ayes estimate of Lorenz curve with the classical 

estimate is presented in Table 6.1.Also we find the average, variance and 

bias of the estimate. 

Now we compare the 8ayes estimate of Gini-index defined in 

(6.4.5) with the UMVUE estimate (Moothathu (1990)) defined by 

:in = ,F, ( 1; n; ~ ) - 1 

where ,F,(a;b,x) is the Kummer's function defined by 

with ~ 

., (a) x' 
,F, ( a; b; x) = L -' -I ,.0 (b), r. 

= f 10g(XJ). 
J~' () 

(6.6.2) 
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The results are presented in Table 6.2. 

Finally to study the robustness of the hyper-parameters on the 

posterior density and 8ayes estimates, we adopted the procedure given 

by Sinha (1980). He suggested that a 8ayes estimate is robust with 

respect to its hyper-parameters if it leads to a high (min) index of the 
max 

estimate for the varying value of those hyper-parameters and is robust 

with respect to the posterior density if the graphs of the posterior 

densities for different values of the hyper-parameters coincide. For 

this, we calculate the (min) index for each of the hyper-parameters by 
max 

keeping the others fixed for different values of the population parameters 

for a sample of size n=15, 20, 25, 35. Also we made several plots of the 

posterior density. Table 6.3 gives the (min) index of the estimate of 
max . 

Lorenz curve when () unknown for various values of the hyper-parameters 

when n'=O,1,2and ,',z'=O,1,2,3,4. Table 6.4 gives the (min) index of the 
max 

estimate of Gini-index when () unknown for various values of the hyper­

parameters specified above. Table 6.5 and Table 6.6 gives the (min) 
max 

index of the estimates of Lorenz curve and Gini-index when () known for 

various values of the hyper-parameters as /' = ,= 0,1,2,3,4. Also we give 

the posterior plots for the Lorenz curve and Gini-index under the two 

alternatives (i) when () known and (ii) when () unknown corresponding to 

the hyper-parameter taking the values ,= 0,1,2,3 keeping the other hyper-

parameters fixed as n', " = 0,1,2. 

The conclusions from the empirical study are 

1.The bias and the expected loss become smaller as the sample size 

increases. 

2.The 8ayes estimate in both cases performs better than that of the 

classical estimate. 
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3.The 8ayes estimate and the posterior density are robust to all values of 

the hyper-parameters. 

In the same way in Table 6.5 we find the average, variance and 

bias of the 8ayes estimate of variance of logarithm. Also in table 6.6 and 

table 6.7 respectively gives the (min) index of the estimate of variance 
max 

of logarithm when () known and unknown for various values of the hyper­

parameters. Figure 6.5 and 6.6 gives the posterior plot under the two 

situations. The plot shows that 8ayes estimate and the posterior density 

are robust to all values of the hyper parameters. 

6.7 Estimation of Total time on test transform 

The importance and role of total time on test transform in income 

studies as well as various relationships with the Lorenz curve and Gini­

index are discussed in section 1.S.ln this section we find the 8ayes 

estimate of the total time on test transform of the Pareto type-1 model 

under the two alternative namely when the scale parameter is known and 

unknown. 

Estimation with known () 

Let X" X2""Xn is a random sample from the Pareto distribution, with 

density function (6.2.1). Then by straightforward calculations the total 

time on test transform simplifies to 

B-' 
(1- t)s 

;(t) = 1 - , a ~ 1,0 :c; t :c; 1 
a 

(6.7.1) 

From the above equation we get 

a = _ ___ --"lo,=:.g(.:.,..1_---.:.t) ___ -:::;" 

[
( -1 +;) log(1- t)] 

Pr oductlog ( 
1- t) 

(6.7.2) 
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where Productlog[z] gives the principal solution for w in z = w eW ,which 

can be viewed as a generalization of logarithm. 

da 
exp(pr oa'uctlog[ (-1 + ~~ ~7(1- t)]J (1- t) 

- = 
d~ 

( [ ]J 
( 6 . 7 . 3 ) 

( -1 + ~ t 1 + Pr oductlog (-1 + ~ ~ ~Otg (1- t) 

From (6.7.1) and (6.7.2), in view of (6.3.3) we get the posterior 

distribution of ~ as 

m 

-log(1- t} 

Pr OductI0
9
[( -1 + ~)log(1- t}] 

(1- t) 
f(~ I~} = ---------:;--------'--:-----=----::r------::;'-<-

(-1 +~) (1 + Pr OductI09[( -1 + ~)log(1- t) ) 
. ~-n 

O<~<1 (6.7.4) 

where 

m 

-log(1- t} 

Pr OductI0
9
[( -1 + ~)log(1- t}] 

1 ~d (1- t) 
G;s (I, d) = f -- ----~(,-----'----=-[ -=-------=]~) ----=.~ (6.7.5) 

o (1-~) (-1+~) 1+Productlog (-1+~)log(1-t) 
(1- t) 

(6.7.5) can be solved by numerical integration. One can have estimators 

for ~ by specifying appropriate loss function and using (6.7.4). Under the 

quadratic loss function the 8ayes estimator turns out to be 

(6.7.6) 

with 8ayes risk 

~ 

R (~1'~1) (6.7.7) 
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Estimation with unknown B 

From (6.7.1) we get 

a = _ log(1- t) 

Pr OductI09[( -1 + ;)log(1- t)] 
(1- t) 

(6.7.8) 

Taking u= B, the above equation provides the Jacobian of transformation 

J as 

J= 

exp(pr odUCII09[ (-1 + gS;~~(l-I)]J (1-1) 

(-1 + gS)' (1 +Pr odUCII09[ (-1 + gS;~;(l-I)]J 
(6.7.9) 

Using the transformation (a,B) to (;,u) we get the joint posterior density of 

(;,u) as 

f (;, u I.!) = C,7 [ ] 
Pr oductlog (-1 + ;) log(1- t) 

(1- t) 

-log(1- t) 

-log(1- t) 
exp -z -------;:--=-=------'------= 

Pr OductI09 [( -1 + ;)log(1- t)] 
(1- t) 

exp(pr odUCII09[ (-1 + gS;~;(l-l) ]}1-1) 

(-1 + gS)' (1 + Pr odUcl109[ (-1 + gS;~;(l-I)]) 

o < ; < 1 ,0 :s; B :s; Bo (6.7.10) 

Integrating out u from (6.7.10) we get the posterior density of ; as 

80 

f(;I.!) = J f(;,ul.!) du 
o 
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This gives 

(6.7.11) 

where 

(6.7.12) 

Bayes estimate of tP under quadratic loss function is 

A G;8 [/,1] 
tP2 = ---.:..:::~~ 

G;8[/,O] 
(6.7.13) 

and the expected loss when (6.7.13) is used as estimate is 

A G;8[/,2] (A)2 
R(tP2,tP2) = G;8[/,1] - tP2 (6.7.14) 

To evaluate (6.7.13) and (6.7.14) we seek numerical integration. 

In table 6.7 we calculate the mean, variance and bias of the 

estimate of total time on test transform. Also in table 6.6 and table 6.7 

respectively give the (min) index of the estimate of· total time on test 
max 

transform when () known and unknown for various values of the hyper­

parameters. Figure 6.5 and 6.6 gives the posterior plot under the two 

situations. The plot shows that Bayes estimate and the posterior density 

are robust to all values of the hyper parameters. 
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Future Study 

Several problems have opened out during the present investigation. Most of the 

works on residual entropy function, Gini-index, etc are centered around the continuous 

case and only very little work seems to have been done in the discrete domain. It seems 

that analogous to the continuous case, definition and properties of the above-mentioned 

concepts in the discrete time domain can be formulated. 

Properties of the entropy indices for weighted distributions, as well as mixtures of 

distributions, are another problem to be investigated. Apart from this the behaviour of 

these indices in the context of additive and multiplicative damage models is yet to be 

studied. 

Estimation of measures of income inequality, of some other distributions, such as 

exponential, Pareto type-II and finite range in the Bayesian framework is yet another 

problem to be examined. 

A related concept is the distance between two populations, studied by Kullback 

and Leibler (1951) .A study of the properties and characterizations based on the 

truncated form of the Kullback-Leibler directed divergence and other distance functions 

seems to be in order. Hopefully some answers to these problems will be presented in a 

future work. 
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Table 6.1 

a=2, () =1, n=20, p = 0.2 when () is known .Actual Value of L is .10553 

Bayes Estimate l Classical 

t'=r=O t'=r=1 t'=r=2 t'=1, r=2 Estimate 

f3 
0.10183 0.10612 0.10349 0.10607 0.11045 

0.10152 0.10514 0.10434 0.10282 0.11601 

0.10141 0.10692 0.10201 0.10829 0.11092 

0.10126 0.10527 0.10281 0.10789 0.11040 

0.10194 0.10684 0.10326 0.10336 0.11753 

Average 0.10159 0.10606 0.10318 0.10569 0.11306 

Variance 8.157E·!I 7.0552E· 7 7.3847E-7 6.35253E-6 11.7947E-6 

Bias -0.00394 0.00053 -0.00235 0.00016 0.00753 

RI 99.3084 99.4018 99.3739 99.4614 

Table 6.2 

a=2, () =1, n=20 when () is known. Actual Value of G is 0.33333 
...... Classical Bayes Estimate G 

t'=r=O t'=r=1 t'=r=2 t'=1, r=2 Estimate 
~ 

A. 

0.32745 0.33475 0.33587 0.33894 0.28029 

0.32301 0.33792 0.32764 0.33049 0.27463 

0.33108 0.33996 0.33589 0.34559 0.24559 

0.32971 0.32830 0.32604 0.33159 0.23881 

0.33512 0.33797 0.33939 0.32508 0.26477 

Average 0.32921 0.33578 0.33297 0.33434 0.26082 

Variance 0.0000200 0.0000209 0.0000337 0.0000640 0.000325 

Bias -0.00412 0.00245 -0.00036 0.00101 -0.07251 

RI 93.8462 93.5692 89.6308 80.3077 
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Table 6.3 

Estimate of Lorenz curve when (J unknown. 

(n=20,a=2,O=1,p=.2) 

r Min 
--

n' z· 0 1 2 3 4 Max 

0 .101695 .106014 .10035 .108859 .108241 .921835 

1 .104647 .106446 .101539 .104534 .108743 .933752 

0 2 .100634 .100553 .102999 .100895 .105017 .957493 

3 .100202 .102584 .102552 .101697 .108098 .926955 

4 .105605 .105226 .105563 .104355 .101017 .956555 

Min - .948838 .944639 .950617 .926841 .93326 
Max 

0 .107518 .108515 .109367 .100819 .107325 .921841 

1 .109447 .109182 .102144 .104657 .105725 .933274 

1 2 .103078 .108894 .106754 .106647 .102472 .941025 

3 .103759 .104986 .106965 .105032 .101627 .950096 

4 .105396 .108608 .10428 .101193 .105696 .931727 

Min - .941807 .961569 .933956 .945352 .946909 
Max 

0 .106483 .107941 .104393 .10231 .104433 .947833 

1 .103724 .104268 .106464 .100827 .105416 .947053 

2 2 .10622 .102937 .109393 .104251 .104398 .969092 

3 .100152 .104624 .102921 .104415 .107506 .931595 

4 .102798 .10082 .104811 .104701 .105383 .956701 

Min .940545 .934029 .940837 .962999 .97109 -
Max 
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Table 6.4 

Estimate of Gini-index when () unknown. 

(n=20,a=2, () =1) 

r Min --
n' z· 0 1 2 3 4 Max 

0 .33641 .32783 0.32518 0.31575 0.32727 0.93857 

1 .31217 .33874 0.31826 0.33839 0.33688 0.92254 

0 2 .33968 0.34901 0.34885 0.32433 0.32209 0.92286 

3 .33610 0.3338 0.34057 0.34037 0.32965 0.96792 

4 .33889 0.33735 0.33601 0.33899 0.34856 0.96403 

Min - .91903 .93931 0.91231 0.90632 0.92406 
Max 

0 0.32394 0.32828 0.33967 0.34342 0.32997 0.94327 

1 0.33891 0.33387 0.34112 0.32258 0.32563 0.94564 

1 2 0.32484 0.32429 0.33439 0.34925 0.32943 0.92856 

3 0.34264 0.34598 0.32610 0.34367 0.34302 0.94254 

4 0.33484 0.34223 0.34281 0.33775 0.32111 0.93669 

Min - 0.94542 0.93732 0.95126 0.93863 0.93611 
Max 

0 0.33871 0.32288 0.33882 0.33619 0.32025 0.94519 

1 0.33476 0.32339 0.33385 0.32867 0.34679 0.93256 

2 2 0.32765 0.32010 0.32729 0.32538 0.32255 0.97696 

3 0.32509 0.33754 0.32089 0.33929 0.33027 0.95811 

4 0.33113 0.32597 0.32746 0.33525 0.32678 0.97234 

Min - 0.95979 0.94835 0.94709 0.95898 0.92347 
Max 
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Table 6.5 

Estimate of Lorenz curve when () known. 

(n=20,a=2, () =1,p=. 2) 

r Min --
t' 0 1 2 3 4 Max 

0 .10543 0.10219 0.10477 0.10272 0.10683 0.95657 

1 0.10503 0.10289 0.10699 0.10783 0.10787 0.95383 

2 0.10548 0.10469 0.10504 0.10249 0.10329 0.97165 

3 0.10207 0.10578 0.10574 0.10657 0.10278 0.95777 

4 0.10428 0.10378 0.10532 0.10525 0.10705 0.97412 

Min 0.96767 0.96606 0.97925 0.95013 0.95281 
Mm: 

Table 6.6 

Estimate of Gini-index when () known. 

(n=20,a=2, () =1) 

r Min 
--

t' 0 1 2 3 4 Max 

0 0.33327 0.32978 0.3330 0.34146 0.34621 0.95253 

1 0.32199 0.33906 0.32691 0.33553 0.32622 0.94965 

2 0.33801 0.33913 0.33646 0.34214 0.32683 0.95527 

3 0.34729 0.33215 0.32878 0.3250 0.32916 0.93584 

4 0.35301 0.32767 0.34210 0.34348 0.32743 0.92755 

Min 0.91213 0.96438 0.95558 0.94619 0.94226 
Mm: 
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Table 6.7 

a = 2, () = 1, n = 20 When () is known, Actual Value of V is 0.25 

" Bayes Estimate V 

1'=r=O 1'=r=l 1'=r=2 1'= 1,r = 2 1'= 2,r= 1 

0.24765 0.24743 0.25984 0.25714 0.25141 

0.25497 0.25506 0.24482 0.24113 0.24892 

0.24532 0.24134 0.25953 0.24623 0.24951 

0.25938 0.25940 0.24278 0.25362 0.25432 

0.25030 0.24852 0.24056 0.25058 0.24539 

Average 0.25152 0.25035 0.24951 0.24974 0.24991 

Variance 

Bias 

0.00003214 0.00004928 0.00008863 0.00003924 0.00001082 

0.001524 0.00035 -0.000494 -0.00026 -0.00009 

Table 6.8 

Estimate of the variance of logarithms when () known. 

(n=20,a=2, () =1) 

r Min --,. 0 1 2 3 4 Max 

0 0.25641 0.25053 0.24643 0.25312 0.24628 0.96049 

1 0.24579 0.25163 0.24838 0.25275 0.25267 0.97246 

2 0.25213 0.24796 0.24776 0.25346 0.25232 0.97751 

3 0.25361 0.24491 0.24623 0.24582 0.25162 0.96569 

4 0.24468 0.24605 0.24749 0.25177 0.24541 0.97184 

5 0.24727 0.24795 0.24857 0.25342 0.25744 0.96050 

6 0.25789 0.25371 0.25153 0.25079 0.25960 0.96606 

7 0.25001 0.25471 0.24703 0.25327 0.25126 0.96985 

Min 0.94878 0.96153 0.97893 0.96986 0.94534 
Max 
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Table 6.9 

Estimate of the variance of logarithm when () unknown 

(n=20,a=2, () =1) 

r 

z' 0 1 2 3 4 

0 0.24503 0.25217 0.25096 0.25149 0.25299 

1 0.25169 0.24822 0.24321 0.25288 0.25192 

2 0.25741 0.25990 0.25799 0.24390 0.24982 

3 0.25167 0.25427 0.24797 0.25166 0.24479 

4 0.25538 0.25362 0.24842 0.25948 0.24302 

Min - 0.95191 0.95506 0.94271 0.93996 0.96059 
Max 

0 0.24677 0.25400 0.25092 0.24839 0.24984 

1 0.25453 0.24268 0.24572 0.24789 0.25247 

2 0.25074 0.25132 0.25228 0.24748 0.24683 

3 0.24749 0.24311 0.24734 0.25443 0.24395 

4 0.24398 0.24648 0.24915 0.24594 0.25011 

Min - 0.95855 0.95543 0.97399 0.96663 0.96625 
Max 

0 0.25324 0.24876 0.25240 0.24499 0.24506 

1 0.24545 0.24889 0.25979 0.24793 0.24848 

2 0.24771 0.25413 0.25119 0.25839 0.24721 

3 0.24887 0.25028 0.24872 0.24548 0.24265 

4 0.25511 0.24370 0.24924 0.25217 0.24976 

Min - 0.96213 0.95896 0.95739 0.94814 0.97153 
Max 

Min --
Max 

0.96854 

0.96309 

0.93844 

0.96272 

0.93657 

0.97154 

0.95262 

0.97839 

0.95851 

0.97549 

0.96742 

0.94480 

0.97900 

0.96951 

0.95527 
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Table 6.10 

a = 2, () = 1, n = 20, t = 0.2 When () is known, Actual Value of rjJ is .55279 

A 

Bayes Estimate rjJ 

t'=r=O t'=r=l t'=r=2 t'= 1,r = 2 

0.55784 0.55684 0.55404 0.55299 

0.55942 0.55982 0.55275 0.56353 

0.55829 0.55697 0.55688 0.55788 

0.55079 0.55309 0.55911 0.55092 

0.55915 0.56442 0.56405 0.55349 

Average 0.55710 0.55823 0.55737 0.55576 

Variance 0.00001284 0.00001769 0.00002008 0.00002527 

Bias 0.00431 0.00544 0.00458 0.00297 

Table 6.11 

Estimate of the TTT-Transform when () known. 

(n=20,a=2, () =1,p=. 2) 

r 

t' 0 1 2 3 4 

0 0.54493 0.54498 0.55706 0.55536 0.54861 

1 0.54473 0.55128 0.55564 0.55052 0.54698 

2 0.54676 0.54066 0.55733 0.54057 0.54497 

3 0.55051 0.54154 0.54981 0.54173 0.55046 

4 0.55839 0.54978 0.55979 0.54696 0.54346 

5 0.54660 0.55289 0.54305 0.54649 0.54452 

6 0.55649 0.55021 0.54685 0.55915 0.54302 

7 0.54366 0.55181 0.55698 0.55406 0.55150 

Min 0.97695 0.97788 0.97438 0.96677 0.98762 
Max 

t'= 2,r = 1 

0.55199 

0.55826 

0.55688 

0.54868 

0.5587 

0.55490 

0.00001920 

0.00211 

Min --
Max 

0.98782 

0.98037 

0.96993 

0.98371 

0.97083 

0.98220 

0.97115 

0.97609 
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Table 6.12 

Estimate of the TTItransform when (J unknown. 

(n=20,a=2, (J =1,t=. 2) 

r Min --
n' z' 0 1 2 3 4 Max 

0 0.54727 0.54736 0.55600 0.54009 0.54749 0.97139 

1 0.54252 0.55213 0.54236 0.54283 0.55859 0.97095 

0 2 0.55935 0.55544 0.54603 0.54665 0.54554 0.97531 

3 0.54864 0.54655 0.55354 0.54355 0.54945 0.98195 

4 0.54107 0.54309 0.55522 0.55058 0.54885 0.97452 

Min - 0.96732 0.97777 0.97547 0.98095 0.97664 
Max 

0 0.55042 0.54959 0.54854 0.55609 0.55867 0.98187 

1 0.55729 0.55835 0.55135 0.55547 0.54245 0.97152 

1 2 0.54409 0.54806 0.54155 0.54593 0.55433 0.97695 

3 0.55463 0.54104 0.54138 0.55558 0.55128 0.97383 

4 0.54085 0.54837 0.55024 0.55809 0.54441 0.96911 

Min - 0.9705 0.96899 0.98192 0.97821 0.97097 
Max 

0 0.54727 0.54755 0.55068 0.54607 0.54918 0.99163 

1 0.55363 0.55765 0.54375 0.55378 0.55973 0.97145 

2 2 0.54227 0.54092 0.54901 0.55186 0.~519 0.98018 

3 0.54998 0.54599 0.55367 0.55603 0.55469 0.98194 

4 0.55275 0.54983 0.54746 0.55795 0.55433 0.98119 

Min - 0.97948 0.96999 0.98208 0.97871 0.97402 
Max 
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Figure 6.1 

Posterior Plot for Lorenz curve 

when () known. 
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Figure 6.2 

Posterior Plot for Lorenz curve 

when () unknown. 
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Figure 6.3 

Posterior Plot for Gini-index 

when () known. 
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Figure 6.4 

Posterior Plot for Gini-index 

when () unknown. 
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Figure 6.5 

Posterior Plot for variance of logarithms 

when () known. 
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Figure 6.6 

Posterior Plot for variance of logarithms 

when () unknown 
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Figure 6.7 

Posterior Plot for total time on test transform 

when (J known 
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Posterior Plot for total time on test transform 

when (J unknown 
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