

DESIGN AND DEVELOPMENT OF A NAMED

ENTITY BASED QUESTION ANSWERING SYSTEM
FOR MALAYALAM LANGUAGE

Thesis submitted by

Ms. Bindu.M.S

in fulfilment of the requirements for

the award of the degree of

DOCTOR OF PHILOSOPHY

under the
Faculty of Technology

DEPT. OF COMPUTER SCIENCE

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI 682022

2012

Certificate

This is to certify that the thesis entitled “DESIGN AND

DEVELOPMENT OF A NAMED ENTITY BASED QUESTION

ANSWERING SYSTEM FOR MALAYALAM LANGUAGE” submitted to

Cochin University of Science and Technology, in partial fulfilment of the

requirements for the award of the Degree of Doctor of Philosophy in Computer

Science is a record of original research work done by Mrs. Bindu.M.S (REG

NO:3705), during the period (2005-2012) of her study in the Department of

Computer Science at Cochin University of Science and Technology, under my

supervision and guidance and the work has not formed the basis for the award of

any Degree or Diploma.

 Signature of the Guide

Kochi- 22
Date:

Declaration

I, Bindu.M.S hereby declare that the thesis entitled “DESIGN AND

DEVELOPMENT OF A NAMED ENTITY BASED QUESTION

ANSWERING SYSTEM FOR MALAYALAM LANGUAGE” submitted to

Cochin University of Science and Technology, in partial fulfilment of the

requirements for the award of the Degree of Doctor of Philosophy in Computer

Science is a record of original and independent research work done by me during the

period 2005-2012 under the supervision of Dr. Sumam Mary Idicula, Professor,

Department of Computer Science, Cochin University of Science and Technology, and

it has not formed the basis for the award of any Degree or Diploma.

Signature of the Candidate
Kochi-22

Date:

Dedicated To

My Lord and Saviour

Jesus Christ

Acknowledgement

This thesis would not have been possible without the help and

support of many people:

First of all I thank God for strengthening me physically and

mentally without stumbling before the difficulties I faced during this PhD

work.

I express my sincere gratitude and indebtedness to my guide

Dr.Sumam Mary Idicula, Professor, Department of Computer Science,

Cochin University of Science and Technology for her valuable advice and

support throughout.

I would like to express my heartfelt gratitude to Dr. K. Paulose

Jacob, Head, Department of Computer Science, Cochin University of

Science and Technology for providing me all help and facilities from the

department.

I want to thank all the staff members of Computer Science

Department who have facilitated me to complete this work.

I am highly obliged to all my friends and all those who have

prayed for me.

Finally I would like to thank my husband and children for bearing

my difficulties, problems and burdens for the last six years.

Bindu.M.S

ABSTRACT

This is a Named Entity Based Question Answering System for Malayalam

Language. Although a vast amount of information is available today in digital

form, no effective information access mechanism exists to provide humans with

convenient information access. Information Retrieval and Question Answering

systems are the two mechanisms available now for information access.

Information systems typically return a long list of documents in response to a

user’s query which are to be skimmed by the user to determine whether they

contain an answer. But a Question Answering System allows the user to state

his/her information need as a natural language question and receives most

appropriate answer in a word or a sentence or a paragraph.

This system is based on Named Entity Tagging and Question Classification.

Document tagging extracts useful information from the documents which will be used

in finding the answer to the question. Question Classification extracts useful

information from the question to determine the type of the question and the way in

which the question is to be answered. Various Machine Learning methods are used to

tag the documents. Rule-Based Approach is used for Question Classification.

Malayalam belongs to the Dravidian family of languages and is one of the

four major languages of this family. It is one of the 22 Scheduled Languages of

India with official language status in the state of Kerala. It is spoken by 40 million

people. Malayalam is a morphologically rich agglutinative language and relatively

of free word order. Also Malayalam has a productive morphology that allows the

creation of complex words which are often highly ambiguous.

Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker,

Named Entity Tagger, and Compound Word Splitter are developed as a part of

this research work. No such tools were available for Malayalam language. Finite

State Transducer, High Order Conditional Random Field, Artificial Immunity

System Principles, and Support Vector Machines are the techniques used for the

design of these document preprocessing tools.

This research work describes how the Named Entity is used to represent

the documents. Single sentence questions are used to test the system. Overall

Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be

extended in several directions. The coverage of non-factoid questions can be

increased and also it can be extended to include open domain applications.

Reference Resolution and Word Sense Disambiguation techniques are suggested as

the future enhancements.

Contents

Cochin University of Science and Technology xiii

Chapter No Title Page No

1. Introduction.. 1-8

1.1 What is Question Answering?.. 2

1.2 General Architecture of a Question Answering System............................ 3

1.3 Motivation and Scope ... 4

1.4 Objectives .. 6

1.5 Road Map ... 7

1.6 Chapter Summary ... 8

2. Literature Survey ... 9-25

2.1 Approaches to Question Answering Systems ..9

2.2 History of Question Answering Systems ...13

2.3 Modern Question Answering Systems ...15

2.4 QA Systems for Indian languages ...21

2.5 Named Entity based QA Systems ...22

2.6 Chapter Summary ..25

3. Overview of Malayalam Language .. 27-41

3.1 Basic Word Types ..28

3.1.1 Nouns ..29

3.1.2 Pronouns ..30

3.1.3 Verbs ..31

3.1.4 Qualifiers..32

3.1.5 Dhyodhakam ..32

3.1.6 Affixes..32

3.2 Phrase Types ..36

3.2.1 Noun Phrase ...36

3.2.2 Verb Phrase ..37

Contents

Department of Computer Science xiv

3.2.3 Adverbial Phrase ..37

3.2.4 Adjectival Phrase ..37

3.2.5 Postpositional Phrase ...38

3.3 Malayalam Sentences ..38

3.3.1 Sentence Classification Based on Behaviour 38

3.3.2 Sentence Classification Based on Construction 39

3.4 Malayalam Sandhi ..40

3.5 Chapter Summary ...41

4. MaQAS- A Malayalam Question Answering System 43-66

4.1 System Architecture ...43

4.1.1 Indexing Module ..45

4.1.2 Question Analysis Module ..50

4.1.3 Answer Extraction Module ...62

4.2 Chapter Summary ..66

5. Compound Word Splitter ... 67-85

5.1 Malayalam Compound Word..68

5.2 Methods for Compound Word Splitting ..69

5.2.1 Most Probable Word Technique ..69

5.2.2 N-Gram Technique..70

5.2.3 Longest Match Technique ...71

5.2.4 Baseline Technique..71

5.2.5 Finite State Transducer ..72

5.2.6 Ad Hoc Rules..73

5.2.7 Hybrid Method ...74

5.2.8 Weighted FST ..75

5.3 Compound Word Analyzer for Indian Language78

5.4 Description of Malayalam Compound Word Splitter...............................82

5.5 Performance Evaluation ...90

5.6 Chapter Summary ..90

Contents

Cochin University of Science and Technology xv

6. Part-of-Speech Tagger... 91-119

6.1 Related Work ...92

6.2 Malayalam POS Tagging ..98

6.2.1 POS Tag Set for Malayalam ...99

6.2.2 POS Tagger for Malayalam...104

6.3 Results and Discussions ..116

6.4 Chapter Summary ..119

7. Phrase Chunker .. 121-135

7.1 Related Work ...122

7.2 Malayalam Phrase Chunker..126

7.2.1 Clause Identifier ...126

7.2.2 Phrase Separator...127

7.2.3 Phrase Tagger ...129

7.3 Performance Evaluation ...133

7.4 Chapter Summary ..135

8. Named Entity Tagger ... 137-154

8.1 Related Work ...138

8.2 Difficulties in Finding Named Entities in Malayalam Language..........144

8.3 Methodology- Support Vector Machines ...144

8.4 Malayalam NE Tagger..146

8.4.1 NE Marker..147

8.4.2 NE Identifier ...147

8.4.3 NE Classifier ...148

8.4.4 NE Disambiguator ..151

8.5 Performance Evaluation ...151

8.6 Chapter Summary ...153

9. Performance Evaluation .. 155-167

9.1 General Methods of Evaluation ...156

Contents

Department of Computer Science xvi

9.2 Evaluation Metrics ...157

9.3 MaQAS-Implementation ..159

9.4 Performance Evaluation of MaQAS..162

9.5 Analysis and Discussion of Results ...163

9.6 Chapter Summary ..167

10. Conclusion and Future Work ... 169-172

10.1 Contributions ...170

10.2 Future Work ..171

References.. 173-197

 List of Publications .. 199-200

 Appendices ... 201-214

Appendix A Stop Word List ..201

Appendix B Malayalam ISCII-Unicode Mapping Table203

Appendix C A View of Lexicon used in MaQAS204

Appendix D Performance of POS Tagger ...205

Appendix E Patterns for Phrase Identification......................................207

Appendix F Performance Evaluation of the AIS-based Phrase chunker208

Appendix G A Sample Malayalam Document ..209

Appendix H List of Sample Questions ...211

Appendix I Screen shots showing Output of MaQAS214

Contents

Cochin University of Science and Technology xvii

LIST OF TABLES
 Page No

3.1 Gender Suffixes of Nouns and Pronouns..34

3.2 Case-forms in Malayalam ...34

3.3 Verbs and Tenses..35

4.1 List of Possible Questions and Answers w.r.t Example A46

4.2 Patterns for Keyword Identification ..52

4.3 Classification of Question...56

4.4 Outputs of Various Stages of Answer Extraction Module65

5.1 Accuracy Comparison of Compound Word Splitting Methods77

5.2 Examples of Transformation and Addition/Deletion Algorithm84

5.3 State Table for the FST in Fig 5.1 ...86

5.4 Examples of Compound Words and Components ...89

6.1 Example of Case Relations ...101

6.2 Examples of VERB Tags ...101

6.3 POS Tags ..102

6.4 Examples of Postpositions..103

6.5 Output of Word Analyzer for example 3...107

6.6 Output of Tag Marker...109

6.7 Tagging Features ..113

6.8 Example of POS Tag Disambiguation ...114

6.9 Ouput of POS Tagger..115

6.10 A Typical Contingency Table ..117

6.11 Overall Performance of POS Tagger ..118

7.1 Phrase Tags ..129

7.2 Phrase Chunker output for Example 1 ...131

7.3 Phrase Chunker output for Example 2 ...132

List of tables

Department of Computer Science xviii

7.4 Final Output of Phrase Chunker ...133

7.5 Performance Evaluation of AIS based Phrase Chunker134

7.6 Overall Performance of Phrase Chunker ..134

8.1 Named Entity Tag Set ..148

8.2 NER Performance by Named Entity type ..152

8.3 Overall Performance of the Named Entity Tagger ...152

8.4 NE Tagging Examples ...154

9.1 Contingency Table ..158

9.2 Contingency Table Showing MaQAS output ..162

9.3 Performance of MaQAS..163

9.4 Performance According to Question Type ...165

9.5 Performance According to Answer Type ...166

9.6 Performance of Different Runs ..167

Contents

Cochin University of Science and Technology xix

LIST OF FIGURES

 Page No

1.1 A Standard Question Answering System.. 4

3.1 Basic Parts-of-Speech in Malayalam Language ... 28

4.1 System Architecture of MaQAS... 44

4.2 Named Entities and their Occurrences in a Document D1 48

4.3 Index Preparation ... 49

4.4 Question Analysis Module .. 51

4.5 Answer Extraction Module ... 62

4.6 Output of MaQAS ... 66

5.1 FST for Compound Word Splitter ... 85

5.2 Output of Compound Word Splitter.. 88

6.1 Block Diagram of POS Tagger.. 105

6.2 FST for Tag Marker.. 108

6.3 Graphical structure of chain-structured CRF’s .. 109

6.4 Screen Shot of POS Tagger Output ... 116

7.1 Detailed Architecture of Phrase Chunker .. 126

7.2 Working of Phrase Separator .. 128

7.3 Screen shot of Phrase Chunker... 132

8.1 Pairwise SVM Decision boundaries on a basic Problem 146

8.2 Block diagram of NE Tagger ... 147

9.1 Set Diagram Showing Elements of Precision and Recall 158

Contents

Department of Computer Science xx

This introductory chapter provides essential background to the area

of Question Answering. General Architecture of a Question

Answering System is discussed. It also provides the motivation

behind this research work and concludes the chapter with a

description on organization of this thesis.

Communication with computers is a dream of mankind since the

beginning of computer era. Since its inception in 1960 several key

developments had happened. The notable developments are Natural Language

Database Front Ends, Dialog systems, and Natural Language Understanding

systems. To have accurate and effective communication, computer must

understand Natural Language. Also it must produce responses in a natural way.

Natural Language Understanding (NLU) is a branch of Artificial Intelligence

(AI) that deals with the issues concerned with man-machine interface [1].

Information Retrieval (IR) and Question Answering Systems (QAS) are two

examples of NLU systems.

Information Retrieval, an example of human computer interaction, is

the art and science of retrieving from a collection of documents a subset that

serves the user’s purpose [2]. A system which has the capability to synthesize

Chapter-1

Department of Computer Science 2

an answer to a query by drawing on bodies of information which reside in

various parts of the knowledge base is called a Question Answering System [2].

IR systems do not have such deduction capability.

1.1 What is Question Answering?

Natural Language Processing (NLP) is a theoretically motivated range of

computational techniques for analysing and representing naturally occurring

texts at one or more levels of linguistic analysis for the purpose of achieving

human like language processing for a range of tasks or applications. It began as

a branch of Artificial Intelligence. NLP gives machines the ability to read and

understand the human language [1].

Information Retrieval is the area of study concerned with searching of

documents for information within documents and information about documents

(metadata). Information Extraction (IE) is a type of IR and its goal is to

automatically extract structured information from unstructured or semi

structured machine readable format. In most cases IE requires Natural

Language Processing [2].

 But a Question Answering System aims at automatically finding concise

answers to arbitrary questions phrased in natural language. Compared to standard

document retrieval systems which just return relevant documents to a query, a

QAS has to respond with a specific answer to Natural Language (NL) query.

Traditionally IR concentrates on finding whole documents while QAS tries to

provide only one or a small set of specific answers to an input question [2].

The idea of using computers to search for relevant pieces of

information was popularized through the article “As We May Think” [3] by

Vennevar Bush in 1945. Early IR systems came into existence in 1950s and

Introduction

Cochin University of Science and Technology 3

1960s. By 1970, several different techniques were evolved. The QA System

JASPER [4] was built for providing real time financial news to financial

traders. By the beginning of 1987, IE was spurred by a series of Message

Understanding Conferences (MUC). MUC [5] is a competition based

conference that focuses on the domains such as Naval, Terrorism, Satellite

Launch etc.

A question may be either a linguistic expression or a request made by

such an expression. Questions are normally asked using interrogatives.

Questions can be of different forms. This research work considers Factoid, List,

Definition, and Descriptive questions [6]. Factoids are those for which the

answer is a single fact. List questions are factoid questions that require more

than one answer. Unlike definition questions descriptive questions require a

more complex answer, usually constructed from multiple source documents.

Answers are given in response to questions or request for information.

There are many ways of describing an answer. As per Text REtrieval

Conference (TREC-8) definition, answer size is restricted to a string of up to 50

or 250 characters. This work also restricts the answer size according to TREC

norms [6].

1.2 General Architecture of a Question Answering System

The major goal of a QA System is to provide an accurate answer to a

user’s question. General Architecture of a QA System is shown in Fig 1.1. The

question analysis stage analyses the NL question and determines the type of

expected answer type. Based on the question analysis, a retrieval query is

formulated and posed to the retrieval stage. The retrieval component returns a

set of ranked list of documents which are further analysed by the document

Chapter-1

Department of Computer Science 4

analyzer based on the expected answer type. This component passes a list of

candidate answers to the answer selection module. This final stage returns a

single answer or a sorted list of answers to the user.

Fig 1.1 A Standard Question Answering System

1.3 Motivation and Scope

During Literature Survey it was noticed that no Question Answering

System existed for Malayalam language. The QAS of other languages are not

suitable for Malayalam due to the special complex features of this language.

Most of the QAS available in other languages are only document retrieval

systems whereas focus of this study is to develop an answer retrieval system for

Malayalam. Many of the QAS existing in other languages employ keyword

matching rather than Natural Language Understanding techniques.

Question Analysis

Document Analysis

Answer Selection

 Question

Document
Collection

Retrieval
Stage

Top 10 documents

Query

Type of Answer

Candidate Answers

Answer

Introduction

Cochin University of Science and Technology 5

Document preprocessing is an essential step in a QAS. But no tools were

available for the preprocessing of Malayalam language. Hence preprocessing

tools such as Part-of-Speech (POS) Tagger and Phrase Chunker are to be

developed. Also these tools required word level analysis as most of the words in

Malayalam language are compound words. Hence a Compound Word Splitter

for Malayalam language was also essential without which evolution of above

tools was impossible.

Named Entity (NE) is a meaning bearing word in a sentence. Meaning or

semantics is an important point to be considered in a QAS. It is possible to

include this fact in the development of NE-based index used for answer

identification. But, to the best of our knowledge, a Malayalam NE Tagger was

not available for this purpose.

This Question Answering System is designed to impart knowledge and

insight in Malayalam to a naive user who knows only the regional language.

Domain selected for this research work is the medical field dealing with the

health issues, causes and remedies of lifestyle and infectious diseases.

The above ideas led to the formulation of certain important research

questions like:

• How to develop a QAS for Malayalam language?

• How to store documents in a system?

• How to retrieve information?

• How to test and evaluate the system?

 To solve the above given main research questions, following sub

questions were also formulated

Chapter-1

Department of Computer Science 6

• What levels of NLP processing are required for this work such as

morphological, syntactic, and semantic analysis?

• Which are the tools to be developed for the above NLP processing?

• What kind of document representation should be followed?

• How to analyse different types of Malayalam questions?

• What is the type of the answer to be returned, word, sentence or

passage?

• What is the retrieval strategy to be followed?

• What are the metrics to be used for performance evaluation?

1.4 Objectives

As pointed out in the earlier section, this research work is an attempt to

design and develop a closed domain, monolingual QAS which is capable of

providing answers in a word/sentence for factoid and for a few non-factoid

types of questions by the deep linguistic analysis of Malayalam documents in

the corpus.

Therefore the main objectives of this research work are

 Conduct a detailed Literature Survey to understand the state of art in the

field of QAS

 Development of language processing tools like

• Compound Word Splitter

• Parts-of-Speech Tagger

• Phrase Chunker

Introduction

Cochin University of Science and Technology 7

• Named Entity Tagger

 Creation of Malayalam Lexicon

 Collection and storage of Malayalam documents pertaining to lifestyle

and infectious diseases

 Identification of pattern sets for question analysis

 Design of an answer retrieval scheme using double level index search.

1.5 Roadmap

This thesis is organized in ten chapters.

• Chapter 1 provides the description of a standard Question Answering

System.

• Chapter 2 deals with the existing approaches to QAS. Also a few QAS

available in other languages are discussed.

• An overview of Malayalam language is given in chapter 3.

• In Chapter 4, the architecture of Malayalam Question Answering

System, MaQAS is described. MaQAS has three main modules, each

one is explained with their design steps and working principles.

• A Compound Word Splitter using Finite State Transducer was

developed and its details are given in chapter 5.

• Chapter 6 describes Part-of-Speech Tagger, Tagset developed,

methodology adopted and its performance evaluation.

Chapter-1

Department of Computer Science 8

• Chapter 7 describes Phrase Chunker implementation. Artificial

Immunity System Principles and its application for the development of

Phrase Chunker are discussed in this chapter.

• Named Entity Tagger is described in chapter 8. Named Entity Tagset

with 26 tags was identified for medical domain.

• Experimental environment and results are discussed in Chapter 9.

Performance of MaQAS is mainly evaluated using the metrics precision

and recall which is also explained in this chapter.

• Chapter 10 concludes this work by summarizing the research

achievements and suggesting directions for future research.

1.6 Chapter Summary

The background, motivation and objectives of the work are clearly

mentioned in this chapter. General organization of a QAS is described. The

chapter concludes with a layout of the thesis. Brief description of different

approaches and types of QAS are discussed in chapter 2.

Various approaches to Question Answering Systems are

investigated. Both modern and earlier systems are discussed

to have a clear distinction of their features, issues in their

implementations, and the way in which they are handled.

Question Answering (QA), an important field of NLP, enables users to

ask questions in natural language and get precise answers instead of long list of

documents usually returned by search engines. When we trace back the history

of computers we could come across the research stories and various

developments that happened in various languages worldwide. QA Systems are

also available in Indian languages such as Hindi [7], and Telugu [8]. However,

no known work is available in Malayalam. Approaches to QA Systems and a

few systems developed in various languages are described below.

2.1 Approaches to Question Answering Systems

 QA System can be classified based on various factors such as domain of

QA, language used for input query and the retrieved answer, types of question

asked, kind of retrieved answers, levels of linguistics applied to the documents

in the corpus, and the answer resources. Accordingly QA Systems fall into open

Chapter-2

Department of Computer Science 10

domain or closed domain, monolingual or multilingual, factoid or non-factoid,

document or passage or answer retrieval, deep or shallow, and database or

Frequently Asked Questions (FAQ) or web QA Systems.

Open domain Question Answering System is an area of Natural

Language Processing research, aimed at providing human users with a

convenient and natural interface for accessing information. It deals with

questions about nearly everything [9]. These systems usually have much more

data available from which to extract the answer. ASKJEEVES [10] is the most

well-known open domain QA System. To answer unrestricted questions,

general ontologies and world knowledge would be useful. WordNet [11] and

Cyc [12] are two popular general resources used in many systems. WordNet is a

computational lexicon of English based on psycho-linguistic principles, created

and maintained at Princeton University. It encodes concepts interms of sets of

synonyms called synsets. Cyc is an AI project that attempt to assemble a

comprehensive ontology, a knowledge base of everyday commonsense

knowledge with the goal of enabling AI applications to perform human-like

reasoning. Closed domain Question Answering Systems deal with questions

under a specific domain (for example, medicine or automotive maintenance),

and can be seen as an easier task because NLP systems can exploit domain-

specific knowledge frequently formalized in ontologies [9]. Closed domain

refers to a situation where only limited types of questions are accepted. In a

closed domain QA, correct answers to a question may often be found in only

very few documents since the system does not have large retrieval set. Green’s

BASEBALL [13] system is a restricted domain QA System that only answers

questions about the US baseball league over a period of one year.

Literature Survey

Cochin University of Science and Technology 11

In a QA System, questions and answers are given in natural languages.

Hence QA Systems can be characterized by the source (question) and the target

(answer) languages. Based on these languages QA Systems are named as

monolingual [14], multilingual or cross-lingual systems [15]. TREC QA [6]

Track and New Trends in Computing and Informatics Research Question

Answering Challenge (NTCIR QAC) [16] are all monolingual QA Systems

which use the same source and target languages. Multilingual or cross lingual

systems allow users to interact with machines in their own language thus

providing easier and faster information access, but the documents in the corpus

are in a different language. This idea emerged in the year 2000.

Question types can also be used to categorize QAS. Different question

types may require different strategies to deal with them. There are three

question types– Factoid, List and Description. Factoid QA is the simplest as the

answers are named entities such as Location, Person, Organization etc. Some

Factoid QA Systems return short passages as answers while others return exact

answers. List QA is similar to Factoid QA except that a question may have

more than one answer.

Description QA [17] is more complex because it needs answers that

contain definitional information about the search term or describe some special

events. Special summarization techniques are required to minimize the answer

size.

Another classification is Shallow or Deep Systems, based on the level of

processing applied to the questions and documents [18]. Some Shallow QAS

use keyword based techniques to locate interesting passages and sentences from

the retrieved documents based on the answer type. Ranking is then done based

on syntactic features such as word order, location or similarity to query. But

Chapter-2

Department of Computer Science 12

question reformulation is not sufficient for Deep QA; more sophisticated

syntactic, semantic, and contextual processing must be performed to extract or

construct the answer. These techniques include Named Entity Recognition and

Classification (NERC).

The answer source is an important factor in designing a QA System.

Databases are the most popular answer sources that store structured data.

Structured Query Language (SQL) is used to retrieve data from databases.

LUNAR [19] developed to answer NL questions about the geological analysis

of rocks returned by the Apollo Moon Missions is an example of such a

database system. The performance of this system was excellent in terms of

accuracy achieved. FAQ represent another answer resource in various

commercial/business customer service systems. FAQ systems only focus on

processing input questions and matching them with FAQs. Like other systems

they don’t require question analysis and answer generation stages. For an input

question, if an appropriate FAQ is found, then using lookup table method

corresponding answer is retrieved [20]. Web QA uses search engines like

Google, Yahoo, Alta-Vista etc. to retrieve web pages that contain answers to the

questions. Some systems combine the web information with other answer

resources to achieve better QA performance. The Web based QA Systems such

as MULDER [21], NSIR [22], and ANSWERBUS [23] fall into the category

of domain independent QA Systems while START [24] is referred as domain

specific QA System. AQUAINT [25] corpus used in TREC QA Track consists

of newswire text data drawn from three sources. These kinds of corpora are

good sources for QA System research as the quality and quantity of the data are

good. News Papers are good sources for open domain QA research as their

contents are general and cover different domains.

Literature Survey

Cochin University of Science and Technology 13

Current QA Systems are either document/passage/sentence or answer

retrieval systems. In these systems, operation starts when a user posts a question

into the QA System. The QA System then analyses the question and finds one

or more answer candidates from its input sources. Once the answer candidates

are retrieved the QAS then evaluates the content of each one and scores them

based on the quality of their content. For these QA Systems, output is a

document or a passage or a sentence or the exact answer.

2.2 History of Question Answering Systems

Work on early QA Systems began in early 1960s. Two of the most

famous early systems are SHRDLU [26] and ELIZA [27]. SHRDLU simulated

the operation of a robot in a toy world (the "blocks world"), and it offered the

possibility to ask the robot questions about the state of the world. Again, the

strength of this system was the choice of a very specific domain and a very

simple world with rules of physics that were easy to encode in a computer

program. ELIZA, in contrast, simulated a conversation with a psychologist.

ELIZA was able to converse on any topic by resorting to very simple rules that

detected important words in the person's input. It had a very rudimentary way to

answer questions, and on its own it led to the development of a series of chatter

bots such as the ones that participate in the annual Loebner prize. These are

examples of Dialog systems mostly influenced by Turing test suggested by

Alan Turing [28].

Two of the most famous restricted domain QA Systems developed in the

1960s were BASEBALL and LUNAR. These systems were interfaced against

databases. BASEBALL system developed by Green Chomsky and Laughery

answered questions about the US baseball league over a period of one year. This

was done by using shallow language parsing techniques. Another system similar to

Chapter-2

Department of Computer Science 14

BASEBALL was developed by Woods and was named LUNAR. Both QA

Systems were very effective in their chosen domains. In fact, LUNAR was

demonstrated at a lunar science convention in 1971 and it was able to answer 90%

of the questions in its domain posed by people untrained on the system. Further

restricted-domain QA Systems were developed in the following years. The

common feature of all these systems is that they had a core database or knowledge

system that was hand-written by experts of the chosen domain.

The 1970s and 1980s saw the development of comprehensive theories in

computational linguistics, which led to the development of ambitious projects

in text comprehension and question answering. One example of such a system

was the Unix Consultant (UC), a system that answered questions pertaining to

the UNIX operating system [29]. The system had a comprehensive hand-crafted

knowledge base of its domain, and it aimed at phrasing the answer to

accommodate various types of users. Another project was LILOG [30], a text-

understanding system that operated on the domain of tourism information in a

German city. The systems developed in the UC and LILOG projects never went

past the stage of simple demonstrations, but they helped the development of

theories on computational linguistics and reasoning [23].

Over a period of time many open domain QA Systems have been

developed that allows questions on a multiple range of topics. Such systems

included START, ANSERBUS, BrainBoost [31], EPHYRA [32] and Qualim

[33]. START utilized a knowledge base to answer user’s question. Knowledge

base was first created automatically from unstructured Internet data. Then it

was used to answer natural language questions.

With the increased popularity of QA Systems TREC started the QA

track in 1999. In the late 1990s the annual Text Retrieval Conference included a

Literature Survey

Cochin University of Science and Technology 15

question-answering track which has been running till today. Systems

participating in this competition were expected to answer questions on any

topic by searching a corpus of text that varied from year to year. This

competition fostered research and development in open-domain text based

question answering. The best system of the 2004 competition achieved 77%

correct fact-based questions [34].

In 2007 the annual TREC included a blog data corpus for question

answering. The blog data corpus contained both "clean" English as well as

noisy text that include badly-formed English and spam. The introduction of

noisy text moved the question answering to a more realistic setting. Real-life

data is inherently noisy as people are less careful when writing in spontaneous

media like blogs. In early years the TREC data corpus consisted of only

newswire data that was very clean [35].

An increasing number of systems include the World Wide Web as one

more corpus of text. Currently there is an increasing interest in the integration

of question answering with web search. Ask.com is an early example of a

system, which was followed in subsequent years by other natural language

search engines. Google and Microsoft have also started to integrate question-

answering facilities in their search engines. However, these tools mostly work

by using shallow methods and return a list of documents.

2.3 Modern Question Answering Systems

Early systems mostly used keyword matching techniques while current

systems are based on linguistic principles.

Information Retrieval community has investigated many different

techniques to retrieve passages from large collections of documents for question

Chapter-2

Department of Computer Science 16

answering. The work discussed in [36] quantitatively compares the impact of

sliding windows and disjoint windows on the passage retrieval for question

answering. For the TREC factoid QA task, retrieval of sliding windows

outperforms retrieval of disjoint windows. For the task of retrieving answers to

why-questions from wikipedia data, the best retrieval model is Term Frequency

Inverse Document Frequency (TFIDF) and sliding windows give significantly

better results than disjoint windows. Here experiment is conducted with three

retrieval models, TFIDF, Okapi, and a language model based on the Killback-

Leibler divergence [37].

 In IR4QA system [38], first phase is query processing. This phase

produces a set of keywords. They are passed to the retrieval model which

outputs a list of relevant documents in order. The re-rank module adjusts the

ranking of these relevant documents by considering various features such as

frequency, position in paragraph, term’s distribution etc. This system just

provides satisfactory performance due to lack of query terms.

 In the above systems, query processing units separate keywords and

other unimportant words without considering any syntax or semantics of the

question. First phase of the work described in [39] is natural language query

processing which build the syntax representation of query, and transform it into

a semantic representation using transformation rules. This phase is designed

using fundamental ideas of W Cafe [40]. According to Chafe, syntax model is

built on the concept of relationship between words such as object, subject, verb,

and their Parts-of-Speech. The semantic model is built on Chafe’s point of view

about semantic structure; it is defined as the relationship between verb and its

arguments. Syntax structure is transformed into semantic structures by the

Semantic Deductive Generator component using predefined transformation

Literature Survey

Cochin University of Science and Technology 17

rules. From the semantic representation model of query, database queries

generator module will generate a set of database queries or SQL commands.

These commands are executed to get results.

 In [41] authors discuss a new model for question answering, which

improved the two main modules of QA System, question processing and answer

validation. This is an answer extraction model while previous systems were

either document or passage retrieval systems. In this model, first of all

questions are processed syntactically and semantically. This information is used

to classify the question and to determine answer type. Then the query

reformulation component converts the question into SQL statement. Then the

search engine finds candidate answer documents and sends them to answer

processing module to extract correct answer.

ASQA [42] is Question Answering System for complex questions. The

question processing module of this system uses surface text patterns to retrieve

a question’s topic. Documents are indexed by character based Indexing scheme.

This scheme is similar to the one used by the open source IR engine Lucene

[43]. Lucene is a high performance, full featured text search engine library.

Boolean search using AND, as well as OR, as keywords, are used to retrieve

documents relevant to the query. After retrieving the documents they are split

into several sentences. Sentence selection module uses co-occurrence based or

entropy based methods to find relevant sentences. This system is a sentence

retrieval system based on topics and uses Boolean strategy for retrieval where

character index is adopted. Retrieval performance is only 65%. No syntax or

semantic processing is used in this system.

A Question Answering System for Japanese is presented in [44]. First

stage of this system is a passage selection module. Each passage is of size three

Chapter-2

Department of Computer Science 18

consecutive sentences. After performing a preliminary analysis a passage

selection algorithm is used for ranking all passages in each document and

selects top N passages for further processing. Then each passage is scored using

the count of query terms, their occurrence in the passages, and their inverse

document frequency.

One of the important requirements for a QA System is to predict what

type of answer the question requires: a person name, location or organization.

In the above system they have defined 62 answer types and developed a method

that classifies questions into the answer types using the LSP’s (Lexico-

Semantic Pattern). LSP is a pattern that is expressed by lexical entries, part-of-

speech (POS), syntactic categories and semantic categories. Once answer type

of a question is determined entities belonging to the answer type within the

passages selected in the previous step are extracted. LSP grammar is

constructed for this purpose. After extracting answer candidates, some of them

are filtered out and the remaining answers are scored using a specific

expression.

Work presented in [45] is a web based QA System which retrieves

answers from web documents. The user’s question is transformed into an IR

query and delivered to the web search engines or ports. The retrieved

documents are linguistically analysed and prepared a semantic representation.

The semantic representations of questions and answers are compared to find

answers.

DefArabicQA [46] is a definitional QA System for Arabic language. This

system uses a pattern approach to identify exact and accurate definitions about

organization using web resources. Question analysis module identifies expected

answer type and topic using certain question patterns and interrogative pronoun of

Literature Survey

Cochin University of Science and Technology 19

the question. The passage retrieval module collects the top n snippets retrieved by

the web search engine. Then the definition extraction module extracts candidate

definitions from these snippets based on the question topic. Definitions are

identified with the help of lexical patterns. Definitions are ranked using statistical

approach and top-5 definitions are presented to the user.

QArabPro [47] is a rule based QA System for Arabic. Question

reformulation section process the input question and formulate the query. An IR

system is used to search and retrieve relevant documents which are constructed

using salton’s statistical Vector Space Model (VSM). Then the rules for each

WH questions are applied to the candidate document that contains the answer.

Each rule awards a certain number of points to each sentence in the document.

After applying the rules the sentence with the highest score is marked as the

answer.

Samir Tartir et al. [48] presented a Hybrid Natural Language Question

Answering System (NLQAS) on Scientific Linked Data sets as well as

Scientific Literature in the form of publications. SemanticQA processes

information need expressed in the form of NL query. Then it retrieves relevant

answers from well established Linked Data Sets (LDS). If the answer is not

found in LDS system it gathers all the relevant clues and conducts a semantic

search on relevant publication. The answers are extracted from these documents

and ranked using a novel measure the Semantic Answer score. This score

returns the best answer from relevant documents.

A QA System for Portuguese language is described in [49]. Once the

question is submitted, it is categorized according to question typology and

through an internal query a set of potentially relevant documents is retrieved.

Each document contains a list of sentences which were assigned the same

Chapter-2

Department of Computer Science 20

category as the questions. Sentences are weighted according to their semantic

relevance and similarity with the question. Next through specific answer

patterns these sentences are again examined and the parts containing possible

answers are extracted and weighted. Finally a single answer is chosen among all

candidates.

MAYA [50] is a QA System for Korean language that uses a predictive

answer indexer. Answer indexer extracts all answer candidates in a document in

indexing time. Then it gives scores to the adjacent content words that are

closely related with each answer candidate. Next it stores the weighted content

words with each candidate into a database. During retrieval time MAYA just

calculates the similarity between a user’s query and the candidates. Therefore it

minimizes the retrieval time and enhances the precision.

Log Answer [51] is QA System for German language. User enters a

question into the interface and Log Answer presents a list of answers to the

user. These are derived from an extensive knowledge base. This knowledge

base is obtained by translating a snapshot of entire German Wikipedia into a

semantic network representation in the Multi Net formalism. The question is

analysed by linguistic methods and then translated into a Multi Net [52] and

First Order Logic (FOL) representation. The Wikipedia contents are matched

against the given query combining retrieval and shallow linguistic methods.

They compute lists of features like the number of lexemes matching between

passage and question or the occurrence of proper names in the passage. A

Machine Learning based ranking technique uses these features to filter out the

most promising text passages resulting in upto 200 text passages which might

be relevant to the query. The FOL representation of these passages is

individually tested by theorem prover E-KRHyper [53] each in conjunction

Literature Survey

Cochin University of Science and Technology 21

with the background knowledge base and the logical query representation. The

proofs are ranked by a classifier and the highest ranked proofs or candidates are

translated back into NL answers that are displayed to the user.

RitsQA [54] is a system for non-factoid questions developed for

Japanese language. Question analyzer analyses the question pattern and

determines its type. IR module called Namazu is used to retrieve the top 100

documents. Also clue words are used to retrieve 10 snippets of Google search.

Then similarities between these two results are measured to reorder the

retrieved documents. Answer Extraction Module extracts paragraphs which

include linguistic clues and some clue words of question sentence. Extracted

paragraphs will be a target for answer strings.

Marsha QAS [55] is a Chinese Question Answering System. The query

processing module recognizes known question types and formulates queries for

the search engine. Most of these question types correspond to typical Named

Entity classes used in IE systems.

2.4 QA Systems for Indian Languages

QA System described in [7] was developed for HINDI language. Here

the question submitted by the user is analysed to identify its type. The question

is then parsed to separate the important keywords by identifying the domain

entities and filtering out stop words. The query formulation translates the

question into a set of queries that is given to the retrieval engine. The engine

returns top passages after weighting and ranking them. Finally answer selection

is done by selected passage analysis. The retrieval process is carried out using a

word level inverted index using all of the terms in the generated query. The

selected documents are ranked by locality based similarity heuristic. The

Chapter-2

Department of Computer Science 22

similarity between query and document is measured using the distance between

the keywords.

 Rami Reddy et al. [8] discusses a keyword based QA System for a huge

domain (i.e. for Railways), which aims at replying user’s questions in Telugu.

Telugu is an important language in India belonging to the Dravidian family and

spoken by the second large population in India. In this keyword based approach

the input query statement is analysed by the query analyzer which uses domain

ontology stored as knowledge base. The appropriate query frame is selected

based on the keywords and the tokens in the query statement. Each query frame

is associated with an SQL generation procedure which generates an SQL

statement. Once the SQL statement is generated it is triggered on the database

and the answer is retrieved. Each query frame has its corresponding answer

generator. Template based answer generation method is used for answer

generation. Each template consists of several slots. Those are filled by the

retrieved answer and tokens generated from the query. The answer will be sent

to the Dialogue Manager which will further send it to the user. This system

showed 96.34% of precision and 88.66% of dialogue success rate.

2.5 Named Entity Based QA Systems

Some NE based QA Systems are described in this section.

The main objective of QA4MRE [56] is to develop a methodology for

evaluating machine reading systems through question answering and reading

comprehension tests. Machine reading task obtains an in-depth understanding

of just one or a small number of texts. The task focuses on the reading of single

documents and identification of the correct answer to a question from a set of

possible answer options. The Conditional Random Field (CRF) -based Stanford

Literature Survey

Cochin University of Science and Technology 23

Named Entity Tagger 5 (NE Tagger) has been used to identify and mark the

named entities in the documents and queries.

The system discussed in [57] is an Answer Retrieval system based on

named entities. Here the NL question entered by the user is analysed and

processed which determines the kind of answer expected. The first phase is a

document retrieval phase that finds documents relevant to the question. Next is

the sentence selection phase. From the relevant documents found by the first

phase, all sentences are scored against the question. The sentences remaining

after the sentence selection phase are then analysed for named entities. All

named entities found in the sentences are considered to be possible answers to

the user question. The best answer (i.e. with the highest score and matching the

question type) is returned to the user. Instead of a list of relevant documents,

this QA System tries to find an exact answer to the question

ArabiQA [58] is a named entity based QA System for Arabic language.

Question analysis module of this system determines the type of the given

question, question keywords and the named entities appearing in the question.

Passage retrieval module retrieves passages which are estimated as relevant to

contain the answer. It uses a Distance Density Model to compare the n-grams

extracted from the question and the passage to determine the relevant passages.

Java Information Retrieval System (JIRS) searches for relevant passages and

assigns a weight to each one of them. The weight of a passage depends mainly

on the relevant question terms appearing in the passage. Named Entity

Recognition system tags all named entities within the relevant passage.

Candidate answers are selected eliminating NE which do not correspond to the

expected type of answer. Final list of candidate answers is decided by means of

a set of patterns.

Chapter-2

Department of Computer Science 24

IRSAW [59] is a system that combines IR with a deep linguistic analysis

of texts to obtain answers to NL questions in German language. The NL

question is transformed into an IR query and Meta information such as question

type and expected answer type is determined. Question and answer types are

calculated using a Naïve Bayer’s Classifier trained on features representing the

first N words of the question [60]. Answer types are Locations (LOC), Persons

(PER), Organizations (ORG) etc. Question types include yes-no questions,

essay questions and questions starting with WH words. IR query is sent to

external web sources which return result pages containing Uniform Resource

Locators (URL). The web contents referred to by an URL are retrieved and

converted into text. These texts are segmented into units and indexed and fed

into the local database. Several methods are employed to pinpoint answers. In

the InSicht subsystem a linguistic parser analyses the text segments and

prepares semantic network representation. Then the representations of questions

and texts are compared to find answers. The shallow technique for finding

answers in IRSAW is based on pattern matching. Each word in the passage is

assigned a set of tags including Part-of-Speech. These sequences of symbols are

analysed using context window to locate certain patterns. The pattern matching

returns an instantiation of the answer variables.

TextractQA [61] explains the role of IE in a QA application. There are

two components in this system, the question processor and text processor. The

question processing results are a list of keywords plus the information for

asking point. The question processor scans the question to search for question

words and maps them into corresponding NE types. On the text processing side

the question is first sent to a search engine and obtains top 200 documents for

further IE processing. This processing includes tokenization, POS Tagging, and

NE Tagging. Then the text matcher attempts to match the question template

Literature Survey

Cochin University of Science and Technology 25

with the processed documents for both the asking point and the keywords.

There are three levels of ranking schemes. Primary ranking is a count of how

many unique keywords are contained within a sentence. The secondary ranking

is based on the order in which the keywords appear in the sentence compared to

their order in the question. Tertiary ranking is based on whether there is an

exact match or a variant match for the key verb.

2.6 Chapter Summary

QA Systems are categorized based on various input and output factors.

The origin of QAS, and several systems developed later are described in detail.

Certain QA Systems developed were mainly different in the methodology used

and in the output. Even though many systems are available in English and

European languages, no such systems are available in Malayalam. Since this

research work is a NE based QA System, similar systems are also discussed in

this chapter.

Chapter-2

Department of Computer Science 26

Malayalam is the principal language of Kerala, the southern most

state of India. The word Malayalam probably originated from the

Malayalam/Tamil words “mala” meaning hill, and “elam”

meaning region. The word “malaelam” (hill region) was used to

refer to the land of Chera Kingdom. Kerala was a part of ancient

Chera Kingdom and when Kerala became a separate entity

“malaelam” became the name of its language ie “Malayalam”. The

name “Kerala” was derived from the word “Cheralam”.

Dravidian Languages were first recognized as an independent family in

1816 by Francis W Ellis, a British Civil servant. The term Dravidian (adjective

form of Dravida) was first employed by Robert A Caldwell. Dravidian

Languages, a family of some 75 languages is spoken primarily in South Asia.

These languages are divided into South, South-Central, Central and North

groups; these groups are further organized into 24 subgroups. The four major

literary languages – Telugu, Tamil, Malayalam, and Kannada – are recognized

by the constitution of India [62].

Malayalam belongs to the Dravidian family of languages and is spoken

by the people of Kerala. It is one of the 22 Scheduled Languages of India with

Chapter-3

Department of Computer Science 28

official language status in the State of Kerala and Lakshadweep Islands. It is

spoken by about 40 million people. In terms of the number of speakers

Malayalam ranks eighth among the fifteen major languages of India [63].

Malayalam first appeared in writing in the vazappalli inscription which

dates back about 830 AD. The ancient Malayalam script originated in 13th century

from a script known as vattezhuthu (round writing) a descendant of the

Brahmiscript. Now Malayalam character set consists of 73 basic letters [64] [65].

Malayalam is a morphologically rich agglutinative language and is

relatively of free order. Also Malayalam has a productive morphology that allows

the creation of complex words which are often highly ambiguous. Due to its

complexity, development of an NLP system for Malayalam is a tedious and time

consuming task. No tagged corpus or tag set is available for this language. NLP

systems developed in other languages are not suitable for Malayalam language due

to its differences in morphology, syntax, and lexical semantics.

Fig 3.1 Basic Parts-of-Speech in Malayalam Language

3.1 Basic Word Types

According to Keralapanineeyam written by Sri. A R Rajarajavarma

[66], a Malayalam word may fall into one of the categories given in Fig 3.1.

Overview of Malayalam Language

Cochin University of Science and Technology 29

In this thesis, words in Malayalam are represented in three forms–

using Malayalam font, transliterated version, and in English where

transliterated version is given in italics.

As given in Fig 3.1 Malayalam words (Sabdams) are classified as

‘vaachakam’ and ‘dyOthakam’. ‘vaachakam’ is further classified into namam

(noun), sarvanamam (pronoun), kriya (verb), and bhEdakam (qualifier).

‘dyOthakam’ has three sub-categories namely gathi (preposition), ghaTakam

(conjunction), and vyaakshEpakam (interjection). But most of the words in

Malayalam are compound words and such a word may consist of an arbitrary

number of prefixes, stems (nouns, verbs, pronouns etc.) and an arbitrary

number of suffixes [67]. Unlike English, Malayalam does not contain spaces or

other word boundaries between the constituents of the compound word.

Example of a compound word

െപാളിച്െചഴുതണെമŋാണ് (poLicchezhuthaNamennaN~) (It must be revised)

This word is a combination of five atoms as shown below.

െപാളി + എഴുത ് +അണം +എŋ ്+ആണ ് (verb +verb +suffix + dyOthakam

+Aux-Verb)

Basic POS shown in Fig 3.1 are explained in the sub-sections below.

3.1.1 Nouns

Noun is classified into concrete noun and abstract noun. The subclasses

of concrete nouns are proper nouns, common nouns, material nouns, and

collective nouns. Abstract noun is further classified into quality nouns and

verbal nouns.

Chapter-3

Department of Computer Science 30

Examples

1. Concrete Noun

sIm¨n (kochchi) (Cochin) – Proper Noun

]«Ww (paTTaNam) (city) – Common Noun

a®v (maNN~) (sand) – Material Noun

Iq«w (kooTTam) (group) – Collective Noun

2. Abstract Noun

Nncn (chiri) (laugh) – Quality Noun

\S¯w (naTaththam) (walk) – Verbal Noun

3.1.2 Pronouns

A pronoun is a word used instead of a Noun. This POS is mainly of three

types; First Person, Second Person, and Third Person.

Rm³ (njaan) (I) – First Person

\n§Ä (ningngaL) (you) – Second Person

Ah³ (avan) (he) – Third Person

Third Person is again classified into ten different forms [66].

Definite Pronoun can be of four types.

GXv (Eth~) (which) – Interrogative Pronoun

A (a) (that) – Demonstrative Pronoun

G (ae) (who) – ----- --- Relative Pronoun

Xsâ (thante) (your) – Reflexive Pronoun

Overview of Malayalam Language

Cochin University of Science and Technology 31

Indefinite Pronoun has six forms in Malayalam language.

Nne (chila) (some) – ------\m\m kÀh\maw (naanaa sarvanaamam)

C¶ (inna) (what) – \nÀ±nãhmNn (nirddishTavaachi)

FÃm (ellaa) (all) – kÀÆhmNn (sarvvavaachi)

an¡ (mikka) (most) – AwihmNn (amSavaachi)

aäv (mat~) (another) – A\ymÀ°Iw (anyaarththhakam)

hÃ (valla) (any) – A\mØhmNn (anaasthhavaachi)

3.1.3 Verbs

Verbs are divided into four categories based on their meaning,

behaviour, feature, and importance. The first classification is transitive verbs

and intransitive verbs. Another classification based on the behaviour is simple

verbs and causatives. Third type of classification is strong and weak verbs. Last

division is according to its importance and is named as finite and infinite verbs.

I−p (kaNTu) (saw) – Transitive Verb

Ipc°p∂p (kurakkunnu) (barking) – Intransitive Verb

]mSp∂p (paaTunnu) (singing) – Simple Verb

]mSn°p∂p (paaTikkunnu) (make one sung) – Causatives

hmbn°p∂p (vaayikkunnu) (reading) – Strong Verb

Xp∂p∂p (thunnunnu) (stitching) – Weak Verb

]dªp (paRanjnju) (told) – Finite Verb

HmSp¶ (OTunna) (running) – Infinite Verb

Chapter-3

Department of Computer Science 32

Infinite verb or participle is divided into t]sc¨w (pErechcham)

(Adjectival Participle), and hn\sb¨w (vinayechcham) (Adverbial Participle).

3.1.4 Qualifiers

Three types of qualifiers are there in Malayalam– qualifiers of nouns

(adjective), qualifiers of verbs (adverb), and qualifiers of qualifiers.

an∂p¶ (minnunna) (glittering) – Adjective

Dds¡ (uRakke) (loudly) – Adverb

hfsc (vaLare) (too) – Qualifier of Qualifier

3.1.5 Dhyodhakam

‘dyOthakam’ is classified into prepositions, conjunctions and

interjections [66]. In this work they are commonly referred as ‘dhyodhakams’.

apXÂ (muthal) (from) – gathi (preposition)

Dw (um) (and) – ghaTakam (conjunction)

Blm (aahaa) (sound showing wonder) – vyaakshEpakam (interjection)

3.1.6 Affixes

Malayalam words are combinations of the above mentioned basic word

types and affixes. Affixes are of three types- Prefix, Postfix, and Suffix [68].

Prefixes are used to obtain a subdam (sound) from a root word with

same or different meanings. Sometimes a new subdam might have an entirely

different or opposite meaning. There are three types of prefixes.

Overview of Malayalam Language

Cochin University of Science and Technology 33

First type - with opposite meaning.

Example - śതിപക്ഷം (prathipaksham) (opposite party) where ‘śതി’

(prathi) is the prefix.

Second type - same meaning but with emphasis

Example - kpkm[yw (susaadhyam) (that which is certainly possible) ‘സു’

(su) is the prefix

Third type - same meaning.

Example - śഭാഷണം (prabhaashaNam) (speech) ‘ś’ (pra) is the prefix

Postfix is mainly used for completing or changing the meaning of verbs.

They are of four types. In the following examples underlined portion of the

words are the postfixes.

1. കടŌകളċു (kaTannukaLanju) (escaped) –

േഭദകാļ śേയാഗം (bhEdakaanuprayOgam)

2. വūŌĕ് (varunnuNT~) (coming) –

കാലാļ śേയാഗം (kaalaanuprayOgam)

3. ഇÃmയിūŌ (illayirunnu) (was not available) –

പൂരണാļ śേയാഗം (pooraNaanuprayOgam)

4. വരūത് (vararuth) (should not come) –

നിേഷധാļśേയാഗം (nishEdhaanuprayOgam)

Suffix-Words in Malayalam have a strong inflectional component. For verbs

these inflections are based on tense, mood, aspect etc. For nouns and pronouns

inflections distinguish the categories of gender, number, and case. These

inflections called Suffixes are briefly described below.

Chapter-3

Department of Computer Science 34

A. NOUN- Suffixes

Table3.1 Gender Suffixes of Nouns and Pronouns

 Gender
<
Word type Masculine Feminine Neuter

Noun

Pronoun

A³ (an)

A³ (an)

C (i)

AÄ (aL)

Aw (am)

Xp (thu)

1. Nouns- Gender

In Malayalam language the gender of nouns can be masculine, feminine,

common, or neuter. Common gender suffixes are listed in Table 3.1.

AÑ³ (achchhan) (father) – masculine

A½ (amma) (mother) – feminine

shÅw (veLLam) (water) – neuter

]£n (pakshi) (bird) – common

2. Nouns- Number

A noun can be either singular or plural. No number suffixes are required

in singular form. A (a), AÀ (aR), amÀ (maaR), and IÄ (kaL) are the suffixes

used to obtain plural forms of the nouns.

Table 3.2 Case-forms in Malayalam

 Case suffix Example

\nÀt±inI (nirddESika) (Nominative)
{]Xn{KmlnI (prathigraahika) (Accusative)
kwtbmPnI (samyOjika) (Sociative)
Dt±inI(uddESika) (Dative)
{]tbmPnI (prayOjika) (Instrumental)
kw_ÔnI(sambandhika) (Possessive)
B[mcnI (aadhaarika) (Locative)

 No suffix
എ

ഓട ്

ക്ക ്ന ്
ആ Â

ഉെട sâ

ഇÂ കÂ

acw (maram)
acs¯ (maraththe)
act¯mSv (maraththOT)
ac¯n\v (maraththin~)
ac¯mÂ (maraththaal)
ac¯nsâ (maraththinte)
ac¯nÂ (maraththil)

Overview of Malayalam Language

Cochin University of Science and Technology 35

3. Nouns- Case

Suffixes used, to show the relationships of a noun to other words in the

sentence are called case suffixes. There are seven case-forms possible for a

noun. Table 3.2 shows the Case–forms and case suffixes available in

Malayalam.

B. VERB- Suffixes

1. Verb- Tense

There are mainly three tenses- Present Tense, Past Tense, and Future Tense.

Table 3.3 gives a few examples of root verbs, their various tenses, and

suffixes used.

Table 3.3 Verbs and Tenses

Root Verb `qXw (bhootham)
(Past)

hÀ¯am\w

(varththamaanam)
(Present)

`mhn (bhaavi)
(Future)

1) sImSv (koT)

 (give)

2) Dd§v (uRangng)

 (sleep)

sImSp¯p (koTuththu)

 (gave)

Dd§n (uRangngi)

(slept)

sImSp°p∂p(koTukkunnu)

(gives)

Dd§p∂p (uRangngunnu)

(sleeps)

sImSp°pw (koTukkum)

(will give)

Dd§pw(uRangngum)

 (will sleep)

Suffixes used in the first example are Xp (thu), D∂p (unnu), and Dw

(um) for Past, Present, and Future tenses. In the second example suffixes are C

(i), D∂p (unnu), and Dw (um) respectively.

2. Verb- Mood

The different modes or manners in which a Verb may be used to express

an action are called Moods. There are four Moods in Malayalam–Indicative,

Imperative, Potential, and Permissive.

Chapter-3

Department of Computer Science 36

The Indicative Mood is used to make a statement of fact and to ask a

question. No suffix is required for this purpose. Imperative Mood is used to

express a command, order, advice, request or prayer. To make such a statement

suffixes such as Bs« (aaTTe), Bepw (aalum), C³ (in), DI (uka) etc. are

used. Potential Mood is to create a feeling of duty, fate or habbit by way of

adding suffix `AWw’ (aNam) to the root verb. Mood which shows permission

is ‘Permissive’ and the suffix required is ‘Bw’ (aam).

FgpXn (ezhuthi) (wrote) – Indicative

FgpXs« (ezhuthaTTe) (shall I write) – Imperative

FgpXWw (ezhuthaNam) (I have to write) – Potential

FgpXmw (ezhuthaam) (I can write) – Permissive

3.Verb- Voice

Two voices are there for a verb – active and passive.

eg. cma³ cmhWs\ sIm∂p (raaman raavaNane konnu)

(Rama killed Ravana) –Active Voice

eg. cmhW³ cma\mÂ sImÃs¸«p (raavaNan raamanaal kollappeTTu)

 (Ravana was killed by Raman) –Passive Voice

A sentence in Active Voice is converted to Passive Voice by adding

‘BÂ’ (aal) suffix to the Subject and ‘s]«p’ (ppettu) suffix to the verb.

3.2 Phrase Types

Words are grouped together into phrases which are then joined to form

sentences. A sentence consists of different types of phrases.

Overview of Malayalam Language

Cochin University of Science and Technology 37

3.2.1 Noun Phrase

A noun phrase is a group of words that does the work of a noun. It

contains information about the noun. Normally this noun is a participant of the

action described by the verb. In the sentence ഇലയുെട പച്ചനിറം െചടിÐ

ഭക്ഷണംതയയ്ാറാÐŌ (ilayuTe pachchaniRam cheTikku bhakshaNam

thayyaARaakkunnu)(Green color of the leaves prepare food for the plant), the

underlined phrase is an example of noun phrase.

3.2.2 Verb Phrase

 Verb phrase is a constituent of a sentence that contains at least one verb

and its complements, objects or other modifiers that function syntactically as a

verb. In the previous example ഭക്ഷണം തയയ്ാറാÐŌ (bhakshaNam

thayyaARaakkunnu) (prepare food) is the verb phrase.

3.2.3 Adverbial Phrase

An adverbial phrase is a group of related words which plays the role of an

adverb. In the example കുളĠിെല െവƉം വƊിയt¸mÄ മÂസയ്ðÄ കിടŌ

പിടചു്ച (kuLaththile veLllLLam vatiyappOL malsyangaL kiTannu piTachchu)

(When the water in the pond dried up the fishes became restless), കുളĠിെല

െവƉം വƊിയt¸mÄ (kuLaththile veLllLLam vatiyappOL) is an example of

adverbial clause of time.

3.2.4 Adjectival Phrase

An adjective phrase is a group of words in a sentence that can function in

the same way as an adjective. Adjectives are used to modify nouns or pronouns.

Chapter-3

Department of Computer Science 38

They give additional details about the meaning of a noun. In the sentence below,

underlined phrase is an example of an adjectival phrase.

വിവാഹം കഴിċ് നഗരĠിേലക്ക് മടðിവŋ രാമ³ അച്ഛ sâ നിേയാഗĠാÂ

വനവാസĠിļ േപായി.

(vivaaham kazhinj nagaththilEkk maTangivanna raaman achchhante

niyOgaththaal vanavaasaththinu pOyi)

(Raman who returned to the city after marriage, went to the forest

according to the decision of his father)

3.2.5 Postpositional Phrase

In Malayalam language, prepositions come after the dependant noun

phrase and are called as postpositions. The postpositions indicate semantic

relationship of the dependant noun phrase to the context.

In the sentence AÑ\pw A½bpw IqSn h∂p (achchhanum ammayum kooTi

vannu) (father and mother came together), Dw (um) and IqSn (kooTi) are the

postpositions. AÑ\pw A½bpw IqSn (achchhanum ammayum kooTi) is the

postpositional phrase.

3.3 Malayalam Sentences

A sentence is a group of words that makes complete sense. They can be

classified according to their behaviour or construction.

3.3.1 Sentence Classification Based on Behaviour

Based on the behaviour, sentences can be classified into four types.

Overview of Malayalam Language

Cochin University of Science and Technology 39

Assertive sentence: This is a sentence that makes a statement.

e.g. കളിസ്ഥലĠിļ ്േവĕį നീളവും വീതീയും ഉĕ്

(kaListhhalaththinu~ vEnTathra nILavum vIthIyum uNt)

(Play ground has sufficient length and width.)

Interrogative sentence: This asks a question

e.g. ഹരി നിsâ അയÂക്കാരനേണാ? (Hari ninte ayal_kkaaranaNO) (Is Hari

your neighbor?)

Imperative sentence: This expresses a command, a request or a prayer.

e.g.ഞðÄക്കാവശയ്മുƉ ആഹാരം ഞðÄക്കിŋ് തേരണേമ

(njaNGaLkkaavaSyamuLLa Ahaaram njaNGaLKinn tharENamE)

(Give us this day our daily bread.)

Exclamatory sentence: They are used to express strong feeling, extreme

happiness, sorrow, and wonder.

e.g. അÃm! ആരാണ ് ഈ വഴി വūŋത ്(allaa! aaraaN~ ee vazhi varunnath)

(Oh! Who is coming this way?)

3.3.2 Sentence Classification Based on Construction

Sentences in Malayalam can be of three types based on the construction

– simple, complex and compound.

Simple sentences: This type contains only one main clause.

e.g. അക്ബ À മഹാനായ ചകര്വÀĠി ആയിūŌ (Akbar mahaanaaya

chakravarththi aayirunnu) (Akbar was a great emperor.)

Chapter-3

Department of Computer Science 40

Complex sentences: These sentences contain one principal clause and any

number of subordinate clauses.

കുളĠിെല െവƉം വƊിയt¸mÄ മÂസയ്ðÄ കിടŌ പിടചു്ച (kuLaththile

veLllLLam vatiyappOL malsyangaL kiTannu piTachchu) (When the water in

the pond dried up the fishes became restless)

Compound sentences: Compound sentences can have any number of principal

clauses.

e.g. അയാÄ വീčിെലĠി ചായ തയയ്ാറായിčുേĕാ എŋ് ഭാരയ്േയാട ് േചാദിചു്ച

(ayaAL vITTileththi chaaya thayyaaRAyiTTuNTO enn bhaaryayOT chOdichchu)

(He reached home and asked his wife whether tea was ready)

3.4 Malayalam Sandhi

‘Sandhi’ means ‘harmony’. When two words are united, certain changes

occur to the last letter of the first word and the first letter of the second word.

These changes are usually of four types.

1. ZznXzw (dvithvam) (Gemination)

ZznXzw (dvithvam) means two-fold; i.e. while joining two words, first
letter of the second word doubles.

acw (maram)+ sIm¼v (komp) = acs¡m¼v (marakkomp)

2. tem]w (lOpam)(Elision)

If an elision of vowel or consonant occurs during the union of two words

such a union is called ‘lOpa sandhi’.

t]mbn (pOyi) + CÃ (illa) = t]mbnÃ (pOyilla)

Overview of Malayalam Language

Cochin University of Science and Technology 41

3. BKaw (aagamam) (Augmentation)

A new consonant is coming between the words and this consonant is

either ‘b’ (ya), ‘a’ (ma), or \ (na).

Ae (ala) + Bgn (aazhi) = Aebmgn (alayaazhi)

Xncp (thiru) + BXnc (aathira) = XncphmXnc (thiruvaathira)

Icn (kari)+ N´ (chantha) = Icn©´ (karinchantha)

 4. BtZiw (aadESam) (Substitution)

Substitution of a vowel or consonant occurs between the two words

when they are combined and that is called BtZiw (aadESam).

hnSv (viT~) + Xp (thu) = hn«p (viTTu)

Ipfw (kuLam) + CÂ (il) = Ipf¯nÂ (kuLaththil)

3.5 Chapter Summary

Malayalam is a morphologically rich language. This chapter briefly

describes the Parts-of-Speech, phrases and different kinds of sentences

available in Malayalam language.

Chapter-3

Department of Computer Science 42

Modern QA Systems are mostly document or passage

retrieval systems. But users of QA Systems expect exact

answers rather than long list of documents or snippets of

documents. In this chapter, a QAS for Malayalam language

which retrieves exact answers is described.

A monolingual QAS named MaQAS is developed and this work is
capable of providing answers in a word or a sentence for factoid and a few non-
factoid type questions by the deep linguistic analysis of Malayalam documents
in the medical domain.

This work imparts knowledge to naive users regarding the causes,
reasons, remedies, etc. of lifestyle and infectious diseases. MaQAS analyses the
question given by the user and returns most relevant answer in a word or a
phrase or a sentence. Since named entities help us to extract the essence of the
text, MaQAS is developed as a Named Entity-based Question Answering
System. The Architecture of MaQAS is explained in the following sections.

4.1 System Architecture

Overall Architecture of MaQAS is shown in Fig 4.1. It consists of three

main modules– Indexing Module, Question Analysis Module, and Answer

Extraction Module.

Chapter-4

Department of Computer Science 44

Fig 4.1 System Architecture of MaQAS

Indexing Module processes all the documents in the corpus and

prepares a NE-based index. When a query is entered by the user, the Question

Analysis Module analyses the query sentence and determines its type. Also it

POS Tagger

Document
Corpus

Phrase Chunker

NE Tagger

Document
Preprocessor

 Indexing Engine

Indexing
Table

Question
Preprocessor

Keyword Selector

Question Classifier

Question Analysis
Module

Malayalam Query

 Sentence Retrieval

Ranking Module

Answer Retrieval

Search Engine

Answer Extraction
Module

Answers

Indexing Module

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 45

identifies keywords and other significant words. Keywords are useful in finding

the entity type of the expected answer and significant words help in determining

the final answer. These details are passed to the Answer Extraction Module.

Answer Extraction Module uses this information to search through the index

and extracts the most relevant answer from the corpus. Each module of MaQAS

is described below.

4.1.1 Indexing Module

This module processes all the documents entered into the system and

prepares an indexing scheme based on named entities.

There are two stages in this indexing module.

• Document Preprocessing

• Indexing Engine

Document Preprocessing

A general Question Answering System normally extracts keywords

from the user query and retrieves documents in which the keywords are

present. These retrieved documents are the candidate documents from which

answer sentences are selected and returned to the user. But sometimes,

keywords may not be directly present in the documents. At certain times,

meanings of the keywords and that of the words present in the documents may

not be the same. In such situations the results obtained are not accurate.

Keyword-matching technique is not used in MaQAS as Malayalam is

an agglutinative language. Instead of using keyword matching technique,

keywords meanings are used for answer retrieval. Such a system is

implemented with the help of Named Entity principles. Named Entities are the

Chapter-4

Department of Computer Science 46

important meaning bearing words in a sentence or a document. They aid in

extracting word meanings in the user query as well as in the documents.

Example A cmap]m¼ns\ hSnsIm−p sIm∂p

(raamu paampine vaTikoNTu konnu) (Ramu killed the snake with a stick)

The questions that can be asked, the expected answer type and respective

answers with respect to Example A are listed in Table 4.1

Table 4.1 List of Possible Questions and Answers w.r.t Example A

Questions Expected Answer
Type

Expected
Answer

1. BcmWv]m¼ns\ sIm¶Xv ?

(aaraaN~ paampine konnath~?)
(Who did kill the snake?)

2. cmap]m¼ns\ F´psIm−mWv

sIm¶Xv

(raamu paampine enthukoNTaaN~
konnath~
(How did Ramu kill the snake?)

3. cmap F´ns\bmWv sIm¶Xv

(raamu enthineyaaN~ konnath~)
(What did Ramu kill?)

AGENT

INSTRUMENT

OBJECT

Ramu

Stick

Snake

For all the questions given in Table 4.1, answer words are nouns but

their roles in the sentences are different. These words are Named Entities and

their roles are AGENT, INSTRUMENT, and OBJECT respectively.

Mostly role-carrying agents are Nouns (Proper Noun, Common Noun,

Pronoun), Adjectives and Adverbs. There are two stages in Named Entity-based

systems – NE Recognition (NER) and NE Classification (NEC). NER stage

identifies the Named Entity words and NEC assigns their roles. With respect to

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 47

the example A, function of NER is to identify the Named Entities ‘Ramu’,

‘Stick’, and ‘Snake’. NEC finds out their roles as ‘AGENT’, ‘INSTRUMENT’,

and ‘OBJECT’.

Example B

Blmcw Ign¨tijw cmap Dd§n

(aahaaram kazhichchaSEsham raamu uRangngi) (Ramu slept after food)

Suppose the question asked with respect to Example B is ‘Ft¸mgmWv cmap

Dd§nbXv?’ (eppOzhaaN~ raamu uRangngiyath~?) (When did Ramu sleep?), the

expected answer is ‘Blmcw Ign¨tijw‘ (aahaaram kazhichchaSEsham) (After

food) which is a phrase indicating ‘TIME’. This example shows that Named Entity

can also be a phrase while in Example A it was a word.

From the above examples it is clear that, NER require tools to identify

nouns, adjectives, adverbs and phrases. Tools to identify these POS and phrase

chunks are developed for Malayalam language. Word-level and context-level

features are essential for POS Tagging and Phrase Chunking. Owing to the

compounding nature, this feature extraction requires a Compound Word

Splitter which is also developed. Implementation details of Compound Word

Splitter are given in chapter 4. POS Tagger, Phrase Chunker, and NE Tagger

are described in the chapters 5, 6, and 7 respectively.

Document preprocessing stage preprocesses the documents with the help

of these tools and prepares NE tagged documents. Then the Indexing Engine

scans these documents to prepare the NE-based index.

Chapter-4

Department of Computer Science 48

Indexing Engine

To facilitate fast and accurate Information Retrieval, document indexing

techniques are used. Inverted Index is the most popular data structure used in

document retrieval systems. Since MaQAS is a NE-based QAS, Named Entity-

based indexing scheme is used.

Procedure for the preparation of NE-based index is given below. For

every NE tagged document, named entity list (N), and sentence occurrence lists

(O) are prepared and as shown in Fig 4.2.

Fig 4.2 Named Entities and their Occurrences in a Document D1

 N1 and O1 are the lists corresponding to document D1. N1 shows the

Named Entities that are identified in the document D1. Their point of occurrences

(the sentences in which these NEs are present) in the document D1 are given in O1.

For example, PERSON entity occurs in the sentences 1, 10, 15, 65 etc. DISEASE

entity occurs in sentences 0, 4, 17, 23 etc. In the same way, NE lists and occurrence

lists are prepared for the all 120 documents in the corpus. They are N1 to N120 and

O1 to O120. By analysing the Named Entity lists N1 to N120 a common NE list

E is prepared. For every entry in the list E, a list of documents in which that

PERSON

ORGANISATION

DISEASE

VIRUS

DATE

1, 10, 15, 65……

14, 32…

0, 4, 17, 23…

11, 16...

6, 21…

Named Entity List (N1) Occurrences (O1)

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 49

entity appears is maintained in the document list D. Fig 4.3 explains the

preparation of NE-based index.

Fig 4.3 Index Preparation

List E in Fig 4.3 contains 6 NEs. For each NE in E, a document list is

given in D. For example corresponding to PERSON entity in E, the list in D is

1, 2, 4, 9, and 109, i.e., PERSON entity exists in the documents D1, D2, D4,

D9, and D109. Then corresponding to D1, N1 contains the PERSON entity and

O1 contains the occurrence list. Thus the lists E and D form the first level index

and the lists N and O form the second level index.

In short, document pre-processing stage, processes all the documents in

the corpus and detects the named entities that occur in each one of them.

Indexing stage comprehends in which documents and in which sentences these

Occurrences (O1)
Document No.

List (D)

Chapter-4

Department of Computer Science 50

entities reside. Thus the document numbers and sentence numbers together

create a double-level index.

4.1.2 Question Analysis Module

Question processing is one of the main tasks of Question Answering

System and this is an initial step in the retrieval of relevant information. In

order to answer a question correctly one needs to understand what type of

information the question asks for. To identify the purpose of the question, it is

analysed in a number of ways and all those features which are helpful to

determine the expected answer type are extracted.

Main function of Question Analysis Module given in Fig 4.4 is to take

the input set of questions and convert them into a form that can be processed by

the Answer Extraction Module. This module extracts main keywords, expands

keyword terms, determines question type, and builds the semantic context

representation of the expected answer. This module consists of stages for

Question Preprocessing, Keyword Selection, and Question Classification.

Question Preprocessor removes unimportant words, from the question

that is to be submitted to the Keyword Selector stage. Function of Keyword

Selector is to identify primary and secondary keywords. These keywords help

the question classifier stage in determining the type of the question and the

expected answer type. Each of these stages are described below.

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 51

Fig 4.4 Question Analysis Module

Question Preprocessing

The Query/Question preprocessing includes stop word removal and

stemming. Stop words [69] are words which are filtered out prior to or after

processing of NL data or text. Any group of words can be chosen as the stop

words. Normally less important or short function words are removed as stop

words. In IR terms, common words which would appear to be of little value in

helping select documents matching a user need are called stop words.

Elimination of such words reduces the size of the index. Process of removing

such words is called stop word removal. There are many such words in

Malayalam language and a few are listed in Appendix A.

A stem is the portion of the word which is left after the removal of its

affixes. Frequently the user specifies a word in a query but only a variant of this

word is present in a relevant document. This reduces the chances of answer

Chapter-4

Department of Computer Science 52

detection and retrieval. Stemming [69] is useful for improving retrieval

performance because they reduce variants of the same root word to a common

concept. Also compound words in the question are decomposed to obtain their

root forms.

Keyword Selector

This module analyses each and every word of the question and identifies
the keywords. Keywords are identified by the Pattern Matching technique. Table
4.2 shows various first level keywords and patterns used for their detection. These
keywords are used by the Answer Extraction Module to find out the answers
relevant to the question. Keywords are mainly used for detecting the question type.

Table 4.2 Patterns for Keyword Identification

Question Type Pattern
Bcv (aar~) (who) "\u201a\u00a5[\u00af \u00b8].*"
GXv (aeth~) (which) "\u2021 [\u00b5]? \u02dc.*"
BÀ¡v (aaRkk) (whom) "\u201a\u00dc.*"
F{X (ethRa) (how much) "\u2020\u00bd\u02dc.*"
F´psIm−v (enthukonT~) (why) "\u2020 [\u00b5]? \u00d0.*"
Ft¸mÄ (eppOL) (when) "\u2020\u00b6\u00d4\u00af.*"
F§ns\ (eNGine)(how) "\u2020\u00c4 [\u00b0]? \u00b5\u0153.*"
FhnsS (eviTe) (where) "\u2020\u00aa\u00b0\u00b5\u201c.*"
F´v (enth~)(what) "\u2020 [\u00b5]? \u00d0.*"
F¶v (enn~)(when) "\u2020[\u00b5]?\u00d2\u00af.?[^\u00de].*"

Malayalam language keyboard and character encoding has been

standardized as Indian Script Code for Information Interchange (ISCII) which is

an 8-bit code. ISCII is defined in such a way that all Indian languages can use a

single character encoding scheme. User interface of MaQAS is developed using

Java that uses two byte Unicode characters. The Unicode standard is the

universal character-encoding standard used for representation of text for

computer processing. To render Malayalam text that uses MLB-TTIndulekha

font developed by C-DAC to Java Graphical User Interface (GUI), a mapping

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 53

from ISCII to Unicode is essential. This mapping table is given in Appendix B.

Patterns for keyword identification are prepared by referring ISCII to Unicode

mapping table.

Keyword Selector scans the input query and identifies primary keywords

such as Bcv (aar~) (who), GXv (Eth~) (which), Ft¸mÄ (eppOL) (when), etc.

These primary keywords give clear indication of expected answer type. But

words like F{X (ethRa) (how much), GXv (aeth) (which), etc. are less clear

about expected answer type. To solve such situation and to obtain most relevant

answers for the question, additional keywords are required and they are called

secondary or second level keywords. Second level keywords are also called

Question Focus.

Question Focus [70] is a word or a phrase in the question that solves the

question type ambiguity. This is a word close to the interrogative term that

supplies additional information about the type of the expected answer.

Detection of focus is important for extracting the answer from candidate

paragraphs. In the absence of expected answer type, correct answer is retrieved

using the noun phrase attached to the question phrase.

Working of Keyword Selector is explained with the following examples.

Example 1

BcmWv atednbbpsS hmIvkn³ I−p]nSn¨Xv?

(aaraaN~ malERiyayuTe vaaksin kaNTupiTichchath~?)

(Who invented the Vaccine for Malaria?)

Keyword Selector scans this question against the key patterns and

identifies BcmWv (aaraaN~) (who) as the primary keyword. This primary

Chapter-4

Department of Computer Science 54

keyword helps us to find out the question type as ‘who’ and expected answer

type as ‘PERSON’.

Example 2

GXv cmPy¡mcmWv tImfdbpsS {]Xnhn[n I−p]nSn¨Xv

(Eth~ raajyakkaaraaN~ kOLaRayuTe prathividhi kaNTupiTichchath~)

(Which country-men discovered the preventive for Cholera?)

Keyword selector identifies the primary keyword GXv (Eth~) (which).

But this keyword does not give any clue regarding the question or answer type.

Hence it is necessary to obtain secondary keywords. In the Example 2

‘cmPy¡mcmWv’ (raajyakkaaraaN~) (country-men) is the secondary keyword.

Primary and secondary keyword together solves the problem of question type

identification. Here, the words GXv cmPy¡mcmWv (Eth~ raajyakkaaraaN~)

(which country-men) determines the question type as ‘which’ and question

focus as ‘COUNTRY’.

Primary and secondary keywords determine the type of the question and

the expected answer. But to obtain the most appropriate answer, another group

of keywords are required. These key words are given more weightage than the

normal keywords which are called significant keywords [71]. Normally words

referring to the question object or noun phrases in the absence of question

object are considered as significant. Words that refers to the object of the

question is termed as Question object. In certain queries, Question focus and

question objects are the same.

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 55

Example 3

GXv sshdkmWv C³^vfpsh³k D−m¡p¶Xv?

(Eth~ vaiRasaaN~ inphLuvensa uNTaakkuth~?)

(Which virus causes Influenza?)

The keyword selector separates the primary keyword ‘GXv’

(Eth~)(Which) and the secondary keyword ‘sshdkmWv’ (vaiRasaaN~)

(virus) from the question given in Example 3. For the same question, the word

C³^vfpsh³k (inphLuvensa) (Influenza) is the question object. The

keywords GXv sshdkmWv (Eth~ vaiRasaaN~) (which virus) gives a clear

indication of both the question type and the expected answer type. But these

keywords are not indicating anything about “which virus it is asking for”. To

answer such a question correctly, information regarding the question object is

essential.

Example 4
GXv Xc¯nepÅ `£WamWv aª¸n¯ tcmKn Ignt¡−Xv

(Eth~ tharaththiluLLa bhakshaNamaaN~ manjnjappiththa rOgi

kazhikkENTath~)

(What kind of food can a Jauntice patient eat?)

Primary keyword –-- GXv (Eth~) (what)

Secondary keyword –-- `£WamWv (bhakshaNamaaN~) (food)

Question object –-- aª¸n¯ tcmKn Ignt¡−Xv (manjnjappiththa rOgi

kazhikkENTath~) (Jauntice patient can take)

Again in Example 4, primary and secondary keywords determine the

question and answer types but they do not give any indication of exact answer.

Chapter-4

Department of Computer Science 56

Question Classification

Keyword Selector obtains the primary, secondary, and the significant

keywords from the user query and sends them to the ‘Question Classification’ stage.

Table 4.3 Classification of Question

Question Type Question Focus Category of Question
Bcv (aar~) (who) Not required PERSON

GXv (aeth~) (which) tcmKw (rOgam)(disease)

sshdkv (vaiRas)(virus)

ImcWw (kaaraNam)

(reason)

Blmcw (aahaaram)

(food)

DISEASE

VIRUS

REASON

FOOD

F{X (ethRa) (how much) Zqcw (duuram) (distance)

Znhkw (divasam) (days)

DISTANCE

DAYS

F´psIm−v (enthukoNt~)(why) Not required REASON

F´mWv (enthaN~) (what) Not required DEFINITION/REASON

BcmWv (aaraaN~) (who is) Not required DEFINITION/PERSON

BÀ¡v (aaRkk~) (whom) Not required PERSON

Ft¸mÄ (eppOL) (when) Not required TIME

F§ns\ (eNGine) (how) Not required DESCRIPTION

FhnsS (eviTe) (where) Not required LOCATION

F¶v (enn~) (when) Not required DAY

Question Classification is the task that maps a question into one of the k

predetermined classes. This stage is needed to understand the expected answer

type before returning an answer. Assigning question classes can be

accomplished in a variety of ways. In this work a rule-based classifier is used

that classifies a question into fine grained categories and their corresponding

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 57

coarse categories. Classification [72] is done for finding the type of questions

and answers. The expected answer type is the semantic type of the entity

expected as the answer to the question. The answer type is helpful for factual

questions, but not for questions that require complex explanations.

Assigning a question type to the question is a crucial task as the entire

answer extraction relies on finding the correct question type and hence the

correct answer type. In some cases there are words that indicate the question

type directly, i.e., “who”, “where” etc. Some of these words can represent more

than one type. In such situations, other words (the words that can indicate

meaning) in the question need to be considered. Table 4.3 gives a list of

question categories that is decided with the help of various keywords separated

in the Keyword Selector stage.

Examples

A. ‘Ft¸mÄ’ (eppOL) (when) type Questions

These questions are of two types and always ask for a named entity

DATE. There are few questions which require a day or days as the answer.

1. F¶mWv Ip¯nshbv]v FSpt¡−Xv?

(ennaaN~ kuththiveyp~ eTukkENTath~?) (when to take the injection?)

2. Fs¶ms¡bmWv acp¶v e`n¡p¶Xv?

(ennoakkeyaaN~ marunn~ labhikkuth~?) (on what days medicine is available?)

3. F∂p apXÂ tcmKw]Icpw?

(ennu muthal rOgam pakarum?) (from which day disease will spread?)

For these three questions given above, primary keywords are F∂p

(ennu) (when) and referring Table 4.3 the question category is determined as

Chapter-4

Department of Computer Science 58

‘DAY’. In this type of questions secondary keywords are not required to find

out the question and answer types.

B. ‘Bcv’(aar~) (who) type Questions

There are three types of ‘who’ questions. Details are given below.

Who Definition

The question given below expects a ‘DEFINITION’ type answer.

4. BcmWv AtimI³? (aaraaN~ aSOkan) (who was Asoka?)

The primary keyword ‘Bcv’ (aar~) (who) is used to identify the question type.

Who List

5. Btcms¡bmWv tImfd]co£W¯nÂ]s¦Sp¯Xv?

 (aarOkkeyaaN~ kOLaRa pareekshaNaththil pangkeTuththath~?)

(Who all are participated in the cholera experiments?)

Answer type to ‘question 5’ is a ‘PERSON’ entity and it requires a list of

persons. In this example the word ‘Hs¡’ (okke) (all) is very important. The

classifier uses the primary keyword ‘Bcv’ (aar~) (who) and the secondary

word ‘Hs¡’ (okke) (all) to identify the answer type. Then the significant

keywords tImfd]co£W¯nÂ]s¦Sp¯Xv (kOLaRa pareekshaNaththil

pangkeTuththath~) (participated in the cholera experiments) aids in answer

extraction.

Who factoid

6. BcmWv tImfd I−p]nSn¨Xv?

(aaraaN~ kOLaRa kaNTupiTichchath~?)(Who discovered Cholera?)

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 59

Classification module assigns PERSON category to ‘question 6’. Even

though the primary keyword is the same as in ‘question 4’, answer type

identified is different since there is a significant keyword I−p]nSn¨Xv

(kaNTupiTichchath~) (discovered) after the secondary keyword tImfd

(kOLaRa) (Cholera).

C. ‘Bsc/ BcpsS’ (aare /aaruTe) (Whom/Whose) type Questions

Answer type for these questions are either OBJ or PERSON.

7. BÀ¡mWv tImfd BZyambn h¶Xv

(aarkkaaN~ kOLaRa aadyamaayi vannath~) (Who was affected by the cholera

the first time?)

8. BcpsS taÂt\m«¯nemWv]co£Ww XpS§nbXv

(aaruTe mElnO'ththilaaN~ pareekshaNam thuTangngiyath~)

(Under whose supervision was experiments started?)

Classifier assigns ‘OBJ’ category to question 7 and ‘PERSON’ category to

question 8.

D. ‘FhnsS’ (eviTe) (Where) type Questions

Answer type to this question is ‘LOCATION’.

9. FhnsSbmWv IcÄ ØnXnsN¿p¶Xv

(eviTeyaaN~ karaL sthhithicheyyuth~) (Where in the human body liver lies?)

The primary keyword ‘FhnsS’ (eviTe) (Where) is sufficient to identify the

answer type. Then the remaining words in the question (significant words) help

in answer extraction.

Chapter-4

Department of Computer Science 60

E. ‘GXv’ (aeth) (Which) type Questions

Answer type is decided by the question focus.

10. GXv sshdkmWv ^vfp D−m¡p¶Xv?

(Eth~ vaiRasaaN~ phLu uNTaakkuth~?) (Which virus causes flu?)

11. GXv Øe¯mWv Nn¡³ Kp\nb BZyambn I−Xv?

(Eth~ sthhalaththaaN~ chikkan guniya aadyamaayi kaNTath~)

(At which place Chikunguniya was first noticed?)

12. GXv kab¯mWv aª¸n¯w]Icp¶Xv?

(Eth~ samayaththaaN~ manjnjappiththam pakaruth~?)

(In which season Jauntice spreads?)

In each of these interrogatives 10, 11 and 12, underlined words

determines the expected answer type. They are VIRUS, LOCATION and TIME

respectively.

F. ‘F´v’ (enth~) (What) type Questions

13. F´mWv aª¸n¯w? (enthaaN~ manjnjappiththam?) (what is Jauntice?)

14. F´mWv tImfdbpsS ImcWw? (enthaaN~ kOLaRayuTe kaaraNam?)

 (what is the cause of cholera?)

In the questions 13 and 14, answer types are decided by the key words

and the question focus. ‘Question 13’ expects ‘DEFINITION’ type answer

while 14 expects ‘REASON’ type.

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 61

G. ‘F{X’ (eethRa) (How Many) type Questions

15. F{X Znhkw tcmKw \ne\nev¡pw?

(ethra divasam rOgam nilanilkkum?) (How many days the disease last?)

16. F{X Zqcw t]mIWw?

(ethra dooram pOkaNam?) (How much distance to cover?)

17. F{X kabw hn{ian¡Ww?

(ethra samayam viSramikkaNam?) (How much time to take rest?)

In questions 15, 16, and 17 the underlined words is the question focus

but, that itself is not sufficient to finalize the answer. Significant keywords in

the question are essential to determine the exact result.

H. ‘F´psIm−v’ (enthukoNT~) (Why) questions/ ‘F§ns\’(engngine)

(How) questions

These are the easiest question words to process and answer type to these

questions are REASON/DESCRIPTION.

18. F´psIm−v FbvUvkv _m[n¡p∂p?

(enthukoNT~ eyDs~ baadhikkunnu)(Why AIDS affects?)

19. F§ns\bmWv tImfd]Icp¶Xv ?

(engngineyaaN~ kOLaRa pakaruth~) (How Cholera spreads?)

Primary keywords in the questions 18 and 19 are used to determine the

question type and classifier assigns their answer types. This information along

with the significant keywords is sent to the answer extractor.

Chapter-4

Department of Computer Science 62

As explained above, Question Analysis Module scrutinizes the input

question and extracts all the information that can aid the answer retrieval

process. This module also finds out the question and answer types. Knowledge

that collected and derived from the input is then transferred to the Answer

Extraction Module which is described in the next section.

4.1.3 Answer Extraction Module

In many QA Systems answer extraction identifies the documents or

paragraphs in the document set that are likely to contain an answer [73]. Also in

the absence of indexing scheme the search engine scans every document in the

corpus which would take a considerable amount of time and computing power.

Answer Extraction Module in Fig 4.1 is redrawn and shown below.

Fig 4.5 Answer Extraction Module

Search Engine

Sentence Retrieval

Ranking Module

Answer Retrieval

Output of Question Analysis stage

Document list

Ranked Sentences

Retrieved Sentences

Answer

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 63

In this work, function of Answer Extraction Module is to produce exact

responses rather than paragraphs. This aim is facilitated by the four stages of

this module namely Search Engine, Sentence Retrieval, Ranking Module, and

Answer Retrieval.

Search Engine

A search engine’s job is to retrieve and present links to information as

relevant to search query as possible.

Suppose the input query is BcmWv aª¸n¯w I−p]nSn¨Xv

(aaraaN~ manjnjappiththam kaNTupiTichchath~)(Who discovered Jaundice?)

Question Analysis stage analyses the above question and identifies the primary

keyword BcmWv (aaraaN~) (who). This information is further used, to determine

the question type Bcv (aar~) (who) and expected answer type ‘PERSON’.

The search engine refers the index table given in Fig 4.3 and finds the

named entity ‘PERSON’ in the entity list E. For every entry in the entity list E

there is a corresponding entry in the D list. The D list entry shows that the

‘PERSON’ entity is present in the documents D1, D2, D4, D9 and D109. This

list of document numbers is fed to the Sentence Retrieval stage.

 Search Engine stage uses first level index. First level index contains

Named Entities and pointer to documents where that entity exist.

Sentence Retrieval

The sentence retrieval stage retrieves the sentences using the second level

index. Second level index contains Named Entity and pointer to sentences. The

entries in the document list D are used for identifying entity lists and respective

sentence lists. This sentence list is used for retrieving candidate sentences from

Chapter-4

Department of Computer Science 64

the documents. For the example mentioned above, the document numbers 1, 2, 4,

9 and 109 are used for identifying entity lists N1, N2, N4, N9, and N109 and

sentence lists O1, O2, O4, O9, and O109. By referring these lists all the sentences

are retrieved in which the entity ‘PERSON’ is present. From these five

documents, 16 sentences are retrieved which are ranked by the ranking module.

Ranking Module

Significant keywords are used for ranking the retrieved sentences. The

sentences retrieved are weighted according to the presence of these significant

words or terms. For Example, sentence in which 6 significant terms are present

is assigned a weight 6; a sentence with 3 terms is assigned a weight 3, and so

on. Then these sentences are assigned a rank based on the weight. The top

ranked 5 sentences are selected and used for the final answer retrieval.

Answer Retrieval

This final component of Answer Extraction Module selects the answer

from the top ranked sentence. The word or phrase who’s named entity matches

with the expected answer type is selected as the answer.

In short, Answer Retrieval Module identifies candidate sentences by

searching through the prior prepared double level index using the facts obtained

from the Question Analysis stage. These sentences are ranked based on various

factors and top ranked sentence is selected as the final candidate. With the help

of expected answer type answer is derived from the candidate sentence.

Consider the question

IcÄ ØnXnsN¿p¶Xv FhnsS? (karaL sthhithicheyyunnath~ eviTe)

(where does Liver exist?).

MaQAS: a Malayalam Question Answering System

Cochin University of Science and Technology 65

For the above question, sentence retrieval stage retrieves the following

five sentences.

Table 4.4 Outputs of Various Stages of Answer Extraction Module

Sentences Retrieved Entity
Identified Weight Rank

1. £œ²¬»«¥±¥Ì°Þ „š¥Ì°μú ª§˜²¢¯‹Ì¸

ª¯¥°μ¤ß‰à¾¸ μ˜¯È² ˜¯μ©¤¯—¸ ‰¥à

ð°˜°μüÛ²Ò˜¸.

2. £Ç]°Ì¶¥¯‹°¤²μ“ μ˜¯§°¤²¹ ‰´¬¸—£—°¤²μ“

μª¨²Ì£ö§ª²¹ £Çœ°¦£¯‰²Ò².

3. {]›¯œ£¯¤²¹ £§°œP§Ì°§³μ“]‰¥²Ò

μ®ÔμμÝÝ°−¸† Aª°‰−°˜ ¥¯P»Ä¨°§¯—¸

‰³“²˜§¯¤° ‰¯—μÔ“²Ò˜¸.

4. ‡˜² {]¯¤Ì°§²áªμ¥¤²¹ μ®ÔμμÝÝ°−¸†

£Ç]°Ì¹ ¡¯›°¾¯μ£Ã°§²¹ ‰²È°‰¨°§¯—¸

‰³“²˜Þ ¶¥¯‹−¯Î»˜

5. £œ²¬»«¥±¥Ì°Þ „š¥Ì°μú ª§˜²¢¯‹Ì¸

{]¯ü±¥Ì°œ² μ˜¯È² ˜¯μ©¤¯—¸ «¥±¥Ì°μ§

¥¯−{]½‰°¤‰¨°Þ œμß¯¥² ¢¯‹¹ œ“¾²Ò ‰¥à

ð°˜° μüÛ²Ò˜¸.

£œ²¬»«¥±¥Ì°Þ

„š¥Ì°μú

ª§˜²¢¯‹Ì¸

ª¯¥°μ¤ß‰à¾¸ μ˜¯È²

˜¯μ©¤¯—¸

2

0

0

0

2

1

100

100

100

2

Sentences retrieved, their weights and ranks assigned are given Table

4.4. Sentences with zero rank (no significant words present) are assigned a

bigger number as Rank. In this case it is 100. From the top ranked sentence

(rank=1), the phrase corresponding to the expected named entity ‘LOCATION’

is separated and it is displayed as the answer. Screen shot for the above example

is given in Fig 4.6. A few screenshots are given in Appendix I.

Chapter-4

Department of Computer Science 66

Fig 4.6 Output of MaQAS

4.2 Chapter Summary

Architecture of MaQAS is depicted in this chapter. Indexing Module

preprocesses all Malayalam documents and prepares a double level index.

Question Analysis Module analyses the user query and understands the type of

the expected answer. Then Answer Extraction Module searches through the

index and determines the location of candidate sentences. These sentences are

retrieved from the NE tagged documents and rank them. The Named Entity

which is expected as the result is extracted from the top ranked sentence and

returned to the user.

Understanding each and every word or sentence of the documents

in the corpus is essential to find an exact answer. Malayalam being

an agglutinative language most of the words in a Malayalam

document are compound words. The meanings of compound words

are not usually available in a dictionary or in a catalog. This fact

shows how important a compound word splitter is!

Compound word is a word composed of two or more words either in the

closed form, hyphenated form or in an open form [74]. Compounding is a

common phenomenon in Malayalam, Bengali, Greek etc. Owing to this

compounding or agglutinative nature 80-85% words in Malayalam documents

are compound words. Hence a compound word splitter is essential to split these

words into their components to deduce the word meaning.

IR and QA, two major tasks of NLU, require extensive knowledge of the

compound words to have effective communication between computers and

human. Compound word splitter is also an important preprocessing tool in NLP

applications.

Chapter-5

Department of Computer Science 68

5.1 Malayalam Compound Word

In Malayalam language, a compound word might contain any number of

prefixes, postfixes, suffixes, verbs, nouns, dhyodhakam, pronouns, adjectives,

adverbs and qualifiers. Unlike English, Malayalam compound words exist in

the closed form which does not contain spaces or other word boundaries.

Examples

ആസൂįണൈവഭവേĠാടുകൂടിയ

 (aasUthraNavaibhavaTHOTukUTiya) (with planning capability)

This Malayalam word is a combination of 5 atoms of different categories.

ആസൂįണം + ൈവഭവം + ഓടു v + കൂടി + അ

(noun + noun + suffix + verb + dhyodhakam)

െപാളിചെ്ചഴുതണെമŋാണ v (poLicchezhuthaNamennaN~)

(The write-up is to be renewed)

െപാളി + എഴുത ്+ അണം + എŋ് + ആണv

(verb + verb + suffix + dhyodhakam + Aux)

Malayalam has a large number of compound words. All these are

obtained by suitably combining the 10 atom types mentioned above [66]. A

few examples are given below.

1) Verb + Verb = Verb

 േകčു (heard) + പTnക്കണം(study) =േകčുപTnക്കണം (study by hearing)

 (kETTu + paTiKaNam = kETTu paTiKaNam)

2) Adverb + Verb = Verb

Compound Word Splitter

Cochin University of Science and Technology 69

 പĝെക്ക(slowly) + ഓടി (ran) = പĝെക്കേയാടി(ran slowly)

 (pathuKe + OTi= pathuKeyOTi)

3) Noun + Noun = Noun

 പന (palm tree) + കുരു (nut) = പന¦pരു(Seed of palm tree)

 (Pana + kuru = panankuru)

4) Adjective + Noun +Verb + postfix = Verb

 കറുĠ + ആന + ഓടി + tപാbn = കറുĠയാനേയാടിേപായി(black elephant

ran away)

 (KaRuTHa + aana+ OTi+ pOyi = kaRuTHayaanayOTipoyi)

5.2 Methods for Compound Word Splitting

 To split the compound word, different methods are available.

5.2.1 Most Probable Word Technique

Find all possible ways of breaking the compound word (C) into pieces

and choose the one with highest probability [75].

C = A]IS¯nem¡psa¶pw (ApakaTatthilaaKumennum)

(Will also be put into trouble)

Some possible ways of breaking this word include

1) aപ കടം iÂ ആ¡ uം e¶ uം

 (apa kaTam il aakka um enn um)

2) aപകടം iÂ ആ¡ uം e¶ uം

 (apakaTam il aakka um enn um)

3) aപകടം i ലാ¡v uം e¶ uം

Chapter-5

Department of Computer Science 70

 (apakaTam E laaK um enn um)

If the components are taken as S1 to SN and the corresponding

probability as Pr(S1) to Pr(SN) then the overall probability of the string is

Pr(S1…SN) = Pr(S1)*Pr(S2)*…………………*Pr(SN). Here the probabilities

are estimated by counting the occurrences in a selected corpus. The second case

has the highest probability as probability of aപകടം (apakaTam) is greater

compared to the probability of aപ (apa). Also the probability of ആ¡

(aaKa) is greater than that of ലാ¡v (laaK) in the selected corpus. This

approach produces many more entries, unnecessarily increasing the search time.

5.2.2 N- Gram Technique

The “N-gram” technique [76] is one approach to languages such as

Japanese, Chinese and Korean which use no spaces between words. It requires

less programming work on the back end and requires no dictionary or linguistic

rules. N-gram segmentation works by chopping text into segments n-characters

long, usually two to three characters. When “n” is two, a sliding window

isolates strings of two-characters long from the input text. Using n-gram

technique the above given word can be segmented into bigrams as follows:

A]]I IS S¯ ¯n ne em m¡ ¡p ps sa a¶ ¶p pw (apa paka

kaTa Taththa ththi ila laa aakka kku ume me manna nnu um). The number of

“false words” created by this segmentation process is relatively high and also in

this example number of genuine words is nil. This method gives many outputs

but poor result.

Compound Word Splitter

Cochin University of Science and Technology 71

5.2.3 Longest Match Technique

The basic idea is to search for the longest parts of the word (from left to

right). On a given string, a longest string-matching is first performed from left

hand side. Let the given compound word be S. Then find the longest string X in

the dictionary that is a prefix of S. Break this string off the beginning. Repeat

this process until there is no such string in which case the remainder of the

string is the last subcomponent [74].

e.g. ImcW§fp−mhmsa¦nepw (kaaraNangaLunTaavaamenkilum)

(though there may be reasons)

This word is split into sub-components as given below.

ImcWw IÄ D−v Bh Bw F¦nÂ Dw

(kaaraNam kaL uNT~ aava aam engkil um) where ആവ (aava) is not

the correct sub-component.

5.2.4 Baseline Technique

A simple approach is to choose the splits with as few components as

possible or selecting the split with the longest first component in case of a tie

[77]. This approach works quite well giving an accuracy of 85% on the

ambiguous compounds in our corpus.

e.g. s]cpamdnbn«pÅbmfmWv (perumaaRiyiTTuLLayaaLaaNa~)

(is a person who behaved)

Two possible splits of above word is given below

1. s]cpa Bdn C«v DÅ BÄ BWv (6 words)

 (peruma aaRi itt uLLa aaL aaN~)

Chapter-5

Department of Computer Science 72

2. s]cpamdv C C«v DÅ BÄ BWv (6 words)

 (perumaaR~ i itt uLLa aaL aaN~)

There are many possible combinations for this compound word. If we

consider the above two combinations with 6 components each, baseline method

selects the second suggestion since it has the longest first component.

5.2.5 Finite State Transducer (FST)

 FST uses morphological analysis, requires a dictionary and the

intelligence to recognize features of the language: punctuation, actual words,

word forms and affixes. For the non-weighted FST, a simple morphological

parsing method is used with the grammar rules where atoms are being classified

by their functionality.

The decomposition algorithm and simple FST methods try to find

substrings of the given words. The process looks for all valid decompositions of

the given word.

eg.t\SnsbSp¡pIbpamhWw (nETiyeTukkukayumaavaNam) (it should be

achieved)

The decompositions obtained are

1. t\Sn FSpv ¡v DI Dw B AWw

 (nETi eTu~ kk uka um aa aNam)

2. t\Sv Cb FSpv IpI Dw BhWw

 (nET iya eTu~ kuka um aavaNam)

Compound Word Splitter

Cochin University of Science and Technology 73

3. t\Sv Cb FSpv IpI Dw Bh AWw

 (nET iya eTu~ kuka um aava aNam)

To choose the correct interpretation some other mechanism is to be used.

5.2.6 Ad Hoc Rules

During the formation of compound words sometimes agamasandhi

(augmentation) [66] must be used and there will be addition of consonants ‘b’

(ya), ‘a’ (ma), or ‘h’ (va). But this will occur with certain word classes

only. Same way if lopasandhi (elision) [66] is used certain consonants or

vowels will be removed. Hence by checking the presence or absence of these

letters, correct interpretation of the suggestion can be made.

e.g. F¶nhnS§fnte¡ v (enniviTaNGaLilEK) (to the places mentioned)

1. F¶ ChnSw IÄ Ce G ¡v

 (enna iviTam kaL ila ae kk)

2. F¶ ChnSw IÄ CÂ G ¡v

(enna iviTam kaL il ae kk)

Here the ambiguity is resolved by checking the presence of ‘യ’ (ya)

after ‘ല’ (la). For the first combination, the compound word would be

F¶ + ChnSw + IÄ + Ce + G + ¡v = F¶nhnS§fnetb¡v

 (enna + iviTam + kaL + ila + ae + kk = enniviTaNGaLilayEyK)

The sub-steps of forming the compound word are given below

a) F¶ + ChnSw = F¶nhnSw (enna + iviTam = enniviTam)

b) F¶nhnSw + IÄ = F¶nhnS§Ä (enniviTam + kaL = enniviTangngaL)

Chapter-5

Department of Computer Science 74

c) F¶nhnS§Ä + Ce = F¶nhnS§fne

 (enniviTangngaL + ila = enniviTangngaLila)

d) F¶nhnS§fne + G = F¶nhnS§fnetb

 (enniviTangngaLila + ae = enniviTangngaLilayE)

e) F¶nhnS§fnetb + ¡v = F¶nhnS§fnetb¡v

 (enniviTangngaLilayE + kk = enniviTaNGaLilayEyK)

This compound word obtained is different from the original compound

word since (ഇല + ഏ = Cetb) (ila + ae = ilayE)

The second group of elements gives

F¶ + ChnSw + IÄ + CÂ + G + ¡v = F¶nhnS§fnte¡v

(enna + iviTam+ kaL+ il + ae + kk = enniviTaNGaLilEyK)

since (CÂ + ഏ= Cte) (il + ae = ilE)

5.2.7 Hybrid Method

Since the above methods make errors on the interpretation of different

compound words, various methods are combined to obtain higher accuracy than

individual methods. The hybrid system developed combines the baseline

technique with POS and Ad Hoc rules. This method has an accuracy of 92% on

the ambiguous compounds.

Xncn¨psIm−phcm\papÅ (thiricchukonTuvaraanumuLLa)

(to bring back also)

1. Xnc C ¨v sIm−pv hcv B³ Dw DÅ (8)

 (thira i chch konTu~ var~ aan um uLLa)

Compound Word Splitter

Cochin University of Science and Technology 75

2. Xncn ¨v sIm−pv hc B³ Dw DÅ (7)

 (thiri chch konTu~ vara aan um uLLa)

3. Xncn ¨v sIm− pv hcv B³ Dw DÅ (8)

 (thiri chch konTa u~ var~ aan um uLLa)

4. Xncn ¨v sIm−pv hcv B³ Dw DÅ (7)

 (thiri chch konTu~ var~ aan um uLLa)

In the previous example, 4 suggestions are given. (2) and (4) have less

number of components. Hybrid method takes combinations (2) and (4) and

checks the tagging of each component. ‘തിരി‘(thiri) can be a noun (candle) or

a verb (turn) and the suffix ‘¨v ‘(chch) is possible only with a verb. Same way

there is ambiguity between വര (vara) and വര v (var~). വര (vara) means

line. വര v means come. But suffix ‘B³’ (aan) can be used only with a verb.

Hence the ambiguity is solved and (4) is selected as the correct interpretation.

5.2.8 Weighted FST

Weighted FSTs (WFST) are like ordinary FSTs with input and output

symbols on arcs but they contain in addition a weight on every arc and every

final state. These weights are combined during traversal of the automation to

compute a weight for each path. To calculate weights various possibilities are

tried.

• Number of segments

• Assigning probability to each grammar rule

• Component frequency

Chapter-5

Department of Computer Science 76

1) Compound segment with equal weight

In this method decomposition with less number of segments is selected

as the correct morphological analysis [78]. To implement this technique equal

weights are assigned to each segment.

t\SnsbSp¡pIbpamhWw (nETiyeTukkukayumaavaNam) (it should be

achieved also)

With a segment weight 0.25 example given above gives overall weight

as follows.

t\Sn FSpv ¡v DI Dw B AWw

(nETi eTu~ kk uka um aa aNam)

<0.25*0.25*0.25*0.25*0.25*0.25*0.25>=<0.000061025> (1)

t\Sn FSpv ¡v DI Dw BhWw

(nETi eTu~ kk uka um aavaNam)

<0.25*0.25*0.25*0.25*0.25*0.25>=<0.0002441> (2)

t\Sv Cb FSp IpI Dw Bh AWw

(nETi iya eTu~ kuka um aava aNam)

 <0.25*0.25*0.25*0.25*0.25*0.25*0.25>=<0.000061025> (3)

2) Assigning probability to each grammar rule

FST uses grammar rules or morphological information to split the

compound words. When many decompositions are possible, probability of

grammar rule is considered to resolve the ambiguity [79].

Compound Word Splitter

Cochin University of Science and Technology 77

3) Component Frequency

Given the count of words in a corpus the splits with highest geometric

mean frequency of its parts Pi is chosen. The more frequent a word occurs in a

training corpus the bigger the statistical basis to estimate translation

probabilities [80].

ImcW§fp−mhmsa¦nepw (though there may be reasons)

(kaaraNangaLunTaavamenkilum)

Imc Ww IÄ D−v Bh Bw F¦nÂ Dw (4)

(kaara Nam kaL uNT~ aava aam engkil um)

ImcWw IÄ D−v Bh Bw F¦nÂ Dw (5)

(kaaraNam kaL uNT~ aava aam engkil um)

ImcWw IÄ D−v B Bw F¦nÂ Dw (6)

(kaaraNam kaL uNT~ aa aam engkil um)

Component frequency is used for the calculation of probability of occurrence

of each word. During the analysis, (6) is selected as the correct interpretation as

കാരണw (kaaraNam) has a higher frequency than കാര (kara) in (4), also ആ

(aa) in (6) has been referred to more times than ആവ (aava) in (4) and (5).

Accuracy comparison of above mentioned methods are given in table 5.1.

Table 5.1 Accuracy Comparison of Compound Word Splitting Methods

Method Accuracy
Most probable
N-gram
Longest Match
Finite State Transducer
Hybrid Method
Weighted FST

70%
25%
80%
90%
92%
98%

Chapter-5

Department of Computer Science 78

5.3 Compound Word Analyzer for Indian Languages

T. N. Vikram and Shalini R [81] developed a prototype of
morphological analyzer for Kannada language based on Finite State Machine.
This is just a prototype based on Finite State Machines and can simultaneously
serve as a stemmer, Part-of-Speech tagger and spell checker. This analyzer has
the capability to handle around 7000 distinct words from 500 distinct noun and
verb stems. But it is far from a being full- fledged morph analyzer as pronoun
and adjective morphology have not been included in this work. Also it does not
handle compound formation.

Shambhavi B. R and Dr. Ramakanth Kumar (2011) [82] developed a
paradigm based morphological generator and analyzer for Kannada language
using a trie based data structure. The disadvantage of trie is that it consumes
more memory as each node can have at most ‘y’ children, where y is the
alphabet count of the language. As a result it can handle up to maximum 3700
root words and around 88K inflected words.

MORPH- A network and process model for Kannada morphological
analysis/ generation was developed by K. Narayana Murthy (2001) [83] and the
performance of the system is 60 to 70% on general texts.

Ramasamy Veerappan et.al [84] explains the working of MAG- a system
for morphology analyzer and generator. Morphological analyzer was developed
using FST. This project was developed as a part of MT system from English to
Kannada. This model includes a lexicon, morphotactic, and orthographic rules.
It handles only simple morphology.

Uma Maheshwar Rao G. and Parameshwari K. of CALTS, University of
Hyderabad (2010) [85] attempted to develop a morphological analyzer and
generators for South Dravidian languages.

Compound Word Splitter

Cochin University of Science and Technology 79

Kiranmai.G et.al [86] presented a morphological analyzer for the
classical Dravidian language Telugu using machine learning approach. The
developed morphological analyzer is based on sequence labeling and training
by kernel methods, it captures the non-linear relationships and various
morphological features of Telugu language in a better and simpler way. This
approach is more efficient than other morphological analyzers which were
based on rules. In rule based approach every rule is depends on the previous
rule. So if one rule fails, it will affect the entire rule that follows. Regarding the
accuracy this system significantly achieves a very competitive accuracy of 94%
and 97% in case of Telugu Verbs and nouns.

[87] describes the development of an open-source morphological
analyzer for Bengali language using finite state technology. The morphological
analyzer/generator was developed as a part of a new language pair for Aper-
tium; hence the analyzer data conforms to Apertium's data format. The data for
the analyzer/generator is contained in the Bengali monolingual dictionary. This
morphological analyzer could also be used as a stemmer for any search engine
for Bengali language. It could also double as a spell checker.

For Bengali, unsupervised methodology is used in developing a
morphological analyzer system [88] and two-level morphology approach was
used to handle Bengali compound words. This paper introduces a simple, yet
highly effective algorithm for unsupervised morphological learning for Bengali,
an Indo–Aryan language that is highly inflectional in nature. When evaluated
on a set of 4,110 human-segmented Bengali words, our algorithm achieves an
F-score of 83%, substantially outperforming Linguistica, one of the most
widely-used unsupervised morphological parsers, by about 23%.

Rule based Morphological Analyzer were developed for Oriya and
Sanskrit languages. [89] deals with the analysis and design of Oriya
Morphological Analyzer (OMA). The major contents on which this OMA has

Chapter-5

Department of Computer Science 80

been built up with i) Pronoun Morphology, ii) Inflectional Morphology and iii)
Derivational Morphology. The OMA system is designed according to the object
oriented approach to increase its reusability, robustness and extensibility. It also
provides sufficient interface for applications involved in Oriya Machine
Translation (OMT), Word-Net for Oriya (OriNet), Oriya Spell Checker and
Oriya Grammar Checker.

[90] describes a Sanskrit morphological analyzer that identifies and
analyzes inflected noun-forms and verb-forms in any given sandhi-free text.
This system checks and labels each word as three basic POS categories -
subanta, tiṅanta, and avyaya. Thereafter, each subanta is sent for subanta
processing based on an example database and a rule database. The verbs are
examined based on a database of verb roots and forms as well by reverse
morphology based on Paninian techniques.

Authors of [91] describe a morphological analyzer for Marathi language
that is a paradigm based inflectional system combined with FSMs for modeling
the morphotactics. This morphological analyzer used a lexicon and inflection
rules for all paradigms. The accuracy obtained was as high as 97.18%. This
analyzer could not handle Derivational Morphology and compound words.

In Tamil language, the first step towards the preparation of
morphological analyzer for Tamil was initiated by Anusaraka group. Ganesan
(2007) [92] developed morphological analyzer for Tamil to analyze CIIL
corpus. Phonological and morphophonemic rules are taken into for building
morphological analyzer for Tamil. Resource Centre for Indian Language
Technological Solutions (RCILTS) -Tamil has prepared a morphological
analyzer (Atcharam) for Tamil. Finite automata state-table has been adopted for
developing this Tamil morphological analyzer [93].

Parameswari.K (2010) [94] developed a Tamil morphological analyzer
and generator using APERTIUM tool kit. This attempt involves a practical

Compound Word Splitter

Cochin University of Science and Technology 81

adoption of lttoolbox for the modern standard written Tamil in order to develop
an improvised open source morphological analyzer and generator. The tool uses
the computational algorithm Finite State Transducers (FST) for one-pass
analysis and generation, and the database is developed in the morphological
model called word and paradigm.

Vijay Sundar Ram R et.al (2010) [95] was designed Tamil
Morphological Analyzer using paradigm based approach and Finite State
Automata, which works efficiently in recursive tasks and considers only the
current state for having a transition. In this approach complex affixations are
easily handled by FSA and in the FSA, the required orthographic changes are
handled in every state. In this approach, they built a FSA using all possible
suffixes, categorize the root word lexicon based on paradigm approach to
optimize the number of orthographic rules and use morpho-syntax rules to get
the correct analysis for the given word.

Akshar bharati et.al (2001) [96] developed an algorithm for
unsupervised learning of morphological analysis and generation of
inflectionally rich languages. This algorithm uses the frequency of occurrences
of word forms in a raw corpus. They introduce the concept of “observable
paradigm “by forming equivalence classes of feature-structures which are not
obvious. Frequency of word forms for each equivalence class is collected from
such data for known paradigms. This method only depends on the frequencies
of the word forms in raw corpora and does not require any linguistic rules or
tagger. The performance of this system is dependant on the size of the corpora.

M.Ganesan (2007, 2009) [92] explained about a rule-based system for
the analysis and generation of Tamil corpora. Successive split method is used
for splitting the Tamil words. Initially all the words are treated as stems. In the
first pass these stems are split into new stems and suffixes based on the
similarity of the characters. They are split at the position where the two words

Chapter-5

Department of Computer Science 82

differ. The right substring is stored in a suffix list and the left sub string is kept
as a stem. In the second pass, the same procedure is followed, and the suffixes
are stored in a separate suffix list.

Uma Maheswar Rao (2004) [85] proposed a modular model that is based
on a hybrid approach which combines the two basic primary concepts of
analyzing word forms and Paradigm model. This architecture involves the
identification of different layers among the affixes, which enter into
concatenation to generate word forms.

Menon et.al (2009) [97] developed a Finite State Transducer (FST)
based morphological analyzer and generator. They have used AT &T Finite
State Machine to build this tool. The system is based on lexicon and
orthographic rules from a two level morphological system.

Deepa. S.R et.al [98] presented an algorithm for Hindi compound word
splitting. This algorithm has shown a correct split rate of about 85%. A trie
like structure is used to store and efficiently match the words. Also few
modifications are suggested to handle compound words.

The work presented in [99] is a morphological analyzer for Hindi
language. This uses the SFST (Stuttgart Finite State Transducer) tool for
generating the FST. A lexicon of root words is created. Rules are then added for
generating inflectional and derivational words from these root words. The
morph analyzer developed was used in a Part Of Speech Tagger based on
Stanford POS Tagger. It was tested with about 4000 inflectional, derivational
and compound words and gives approximately 97% correct results.

5.4 Description of Malayalam Compound Word Splitter

A compound word M is decomposed into its constituents M1 to Mi.To
find each constituent, the longest match method is adopted. When one
component, Mi, is separated, the remaining portion is sent to the Addition/

Compound Word Splitter

Cochin University of Science and Technology 83

Deletion algorithm. The component Mi is first searched in the lexicon and if it
is not found, Transformation algorithm is applied to obtain various forms of Mi
and again searching is carried out. Even after transformation, if not found in the
lexicon, process is repeated with next smaller substring of M. Working of
Transformation and Addition Deletion algorithms are explained in Table 5.2.

Methodology: Finite State Transducer (FST)

Formally, a Finite State Transducer T is a 6-tuple (Q, Σ, Γ, I, F, δ) such that:

• Q is a finite set, the set of states;

• Σ is a finite set, called the input alphabet;

• Γ is a finite set, called the output alphabet;

• I is a subset of Q, the set of initial states;

• F is a subset of Q, the set of final states; and δ is the transition relation.

FST is a machine which accepts a string and translates it into another
string. FST can also be used for generating and checking sequences [100].

A compound word is a sequence of Malayalam characters. To split this
sequence into substrings FST can be used.

Compound word splitter uses an FST with the following definition.

In the 6-tuple, set of states Q = {A, B, C, D, E, F, G, H}

Initial state I = {A}

Final states F = {C, D, E, F, G, H}

Input alphabet Σ = {compound words}

Output alphabet Γ = {valid simple Malayalam words}

Transition function δ = {NOUN, VERB, ADJECTIVE,…,
SUFFIX}

Chapter-5

Department of Computer Science 84

T
ab

le
 5

.2
 E

xa
m

pl
es

 o
f T

ra
ns

fo
rm

at
io

n
an

d
A

dd
iti

on
/D

el
et

io
n

A
lg

or
ith

m
s

Compound Word Splitter

Cochin University of Science and Technology 85

Fig 5.1 FST for Compound Word Splitter

The machine starts at state A and repeats the following process till the

word size becomes zero. At the current state, word type of the input word is

matched against the labels on the outgoing arcs and if a match is found, cross

that arc and move to the next state. The word whose match is found is

separated from the compound word and the remaining portion is taken as the

input word to the next state. If no match is found, longest match algorithm is

used to obtain the next longest word and continue the same process. Likewise,

all possible combinations are tried and still if no match is found go to the next

state without making any changes to the input word.

Referring to Fig 5.1, at state A all prefixes present consecutively are

separated from the incoming word W, and the remaining portion of W or new

W is sent to state B. At this state, consecutive adverbs or adjectives or qualifiers

are removed. Then automation enters into state C. If a verb or a noun or a

pronoun is present in the word W, it is separated and either enters into state D

(if the match is a verb) or E. At state D, search for postfix is carried out and at E

A
B C D E

F

G

H

Input
word

Chapter-5

Department of Computer Science 86

comparison is made for suffix/dhyodhakam. At state H if word size is zero

(x=0) process stops or else goes to the initial state.

Table 5.3 State Table for the FST in Fig 5.1

Present
State

Next state for X=1

Next
state
for

X=0

Prefix Adj Adv Quafr Noun Verb Postfix P.Noun Suffix Dhyo. Any
Symbol

A

B

C

D

E

F

G

H

A

C

C

E

H

H

H

A

B

C

C

E

H

H

H

A

B

C

C

E

H

H

H

A

B

C

C

E

H

H

H

A

B

C

E

E

H

H

H

A

B

C

D

E

H

H

H

A

B

C

E

E

H

H

H

A

B

C

E

E

H

H

H

A

B

C

E

E

F

F

F

A

B

C

E

E

G

G

F

A

Error

Error

C

D

E

F

G

H

e.g. ആസൂįണൈവഭവേĠാടുകൂടിയ (aasUthraNavaibhavaTHOTukUTiya)
(with planning capacity)

Working of compound word splitter for this input word is explained below.

Step1

Input word at state A is ആസൂįണൈവഭവേĠാടുകൂടിയ

(aasUthraNavaibhavaTHOTukUTiya) and no match is found at this state

against the list of PREFIX. Hence automation goes to state B.

Compound Word Splitter

Cochin University of Science and Technology 87

Step 2

Same word is processed at state B. Lists of ADJECTIVES, ADVERBS

and QUALIFIERS are compared with the compound words of longest to

smallest size. Again no match is found hence goes to state C.

Step 3

Above word is checked against the lists of NOUN, VERB and

PRONOUN. As mentioned before, various possibilities are compared and the

word ആസൂįണം (aasUthraNam) is separated from this compound word

ആസൂįണൈവഭവേĠാടുകൂടിയ (aasUthraNavaibhavaTHOTukUTiya). When

the longest word ആസൂįണ (aasUthraNa) is taken for comparison, different

combinations are tried and an identical entry is located only for the word

ആസൂįണം (aasUthraNam). Various alterations of words are obtained by the

transformation algorithm whose working is explained in table 5.2. Automation

continues at state E with the remaining word ൈവഭവേĠാടുകൂടിയ

(vaibhavaTHOTukUTiya).

Step 4

From state E process goes to state H. As the word size is not 0 at the

present state next state is A as given in table 5.3.

Above process is repeated 3 times detaching ആസൂįണം

(aasUthraNam) in the first cycle ൈവഭവം (vaibhavam) and HmSv (Oat) in the

second cycle കൂടി (kUTi) and a(a) in the third cycle.

Chapter-5

Department of Computer Science 88

 The compound word splitter splits the word

ആസൂįണൈവഭവേĠാടുകൂടിയ (aasUthraNavaibhavaTHOTukUTiya) into

five components as follows.

ആസൂįണം+ ൈവഭവം+ HmSv + കൂടി + അ

(aasUthraNam + vaibhavam + Oat + kUTi+ a)

(noun +noun + suffix+ verb+ dhyodhakam)

The traversal path of the machine during the decomposition of the above

compound word is A-B-C-D-E-H-A-B-C-E-F-H-A-B-C-D-E-G-H.

Fig 5.2 Output of Compound Word Splitter

Fig 5.2 shows the result of compound word splitter for the compound

word kpc£nXam¡m\mhntÃ (surakshithamaakkaanaavillE). Output of splitter

for this word is displayed as

kpc£nXw B¡ B³ B CÃ G (surakshitham aakka aan aa illa E)

Compound Word Splitter

Cochin University of Science and Technology 89

T
ab

le
 5

.4
 E

xa
m

pl
es

 o
f C

om
po

un
d

W
or

ds
 a

nd
 C

om
po

ne
nt

s

Chapter-5

Department of Computer Science 90

A few examples of, compound words and their constituents obtained by

the compound word splitter are listed in Table 5.4.

5.5 Performance Evaluation

The FST for compound word splitter was tested for about 4000 words

and 96% of the splits gave correct result. For testing the system, words are

selected from different corpuses and are analysed. Then a list of compound

words is prepared. The corpuses used are

• Malayala Manorama: compounds related to current affairs (Editorial

page) (year 2008).

• Mathrubhumi: compounds from the weekly (year 2008).

• Vanitha fortnightly.

Even though the selected lists are independent, 90% of compound words

are common in all the three lists.

5.6 Chapter Summary

Importance of compound word splitting in the field of QA and various

methods of the same are comprehended and learned. FST method is

comparatively superior to all other methods which gave an accuracy of 96%.

Complexity of Malayalam compound words is well studied and a FST based

compound word splitter is developed.

Part-of-Speech Tagging is an essential and important pre-

processing step in many NLP systems. Tagged corpora play a

significant role in Machine Translation, Information Retrieval,

Data Mining and QA Systems. In this QA System, POS Tagging is

needed for document pre-processing and index preparation. Each

document in the corpus is tokenized and tagged with an appropriate

POS tag. POS is one of the important features used in the NE

Recognition and Classification.

POS Tagging, also called grammatical tagging, is a principal issue in

Natural Language Processing. The purpose of this task is to assign part-of-

speech or other lexical class markers to each and every word in a document. In

English there are eight parts-of-speech such as noun, verb etc. But POS tags vary

according to the language and application [100].

Since 100 B.C humans are aware that language consists of several distinct

parts called POS. Those POS play a crucial role in many fields of linguistics. POS

is based on both its definition and its context or relationship with adjacent and

related words in a phrase, sentence or paragraph. Part-of-speech Tagging is harder

because some words can represent more than one POS at different times [101]. The

Chapter-6

Department of Computer Science 92

significance of part-of-speech for language processing is the large amount of

information they give about a word and its neighbour.

6.1 Related Work

The first major corpus of English for computer analysis was Brown

corpus [100] which was tagged with POS markers over many years. In the mid

1980s researchers in Europe began to use Hidden Markov Model (HMM) [102]

to disambiguate POS. In 1987 Steven J. DeRose [103] and Kenneth Ward

Church [104] independently developed algorithms to solve this problem.

A lot of work has been done in Parts-of-Speech Tagging of western

languages. These taggers mostly are implemented using stochastic or rule-based

methods. In [105] author projects the use of Transformation-Based Learning

(TBL) method to bootstrap the POS annotation results of English POS Tagger

by exploiting the POS information of the corresponding Vietnamese words. The

basic tagging step is achieved through the available POS Tagger (Brown) and

the correction step is achieved through the Transformation-Based Learning

method in which the information on the corresponding Vietnamese is used

through available word alignment in the English Vietnamese parallel Corpus

(EVC). A genetic algorithm for POS implementation is presented in [106]

which correctly tag 93.8% of sentences using bigrams and word POS

frequencies. This system is able to integrate statistical and rule-based

approaches into one system. Eric Bril described a rule-based POS Tagger which

automatically acquires rules and tags [101].

Rule-based techniques, and finite state machine morphological

dictionary are some of the techniques used in ANUBHARATI [107],

ANUVADHINI Machine Translation (MT) system for Bengali [108], and

Part-of-Speech Tagger

Cochin University of Science and Technology 93

Tamil spell checker [109]developed at Anna University, Chennai. In Tamil

spell checker, morphological dictionary is internally represented by a set of

FSTs that are automatically generated from a more general dictionary

containing morphological syntactic information. A Punjabi spell checker [110]

has been developed using Rule cum Dictionary-based method. It is a dictionary

with search algorithms, which search string matching, fuzzy search, suffix

stripping etc. Morphological stripping methods and paradigm-based FSTs are

some other techniques used in Text Analyzers. In Indian languages Natural

Language Processing tools are less as compared to English and other European

languages. In Hindi a rule-based POS Tagger developed by IIT, Bombay, has

been used in stemmer and morphological analyzer for Word Net project [111].

In Tamil, Anna university- K B Chandrasekhar (AU-KBC) research centre

developed a morph analyzer and a POS Tagger [112]. But it is a rule-based

system and its accuracy is less, and also showed word sense disambiguation

problem for machine translation system [113].

Automatic Part-of-Speech Tagging is an area of Natural Language

Processing where statistical techniques have been more successful than rule-

based methods. Rule-based Taggers have many advantages over these taggers

including vast reduction in stored information, the perspicuity of small set of

meaningful rules, ease of finding and implementing improvements to the tagger

and better probability from one tagset corpus genre or language to another.

Stochastic approaches have often been preferred to rule-based approaches

because of their robustness and their automatic training capabilities.

Smriti Singh et.al [114] have proposed a tagger for Hindi, that uses the

affix information stored in a word and assigns a POS tag using no contextual

information. By considering the previous and the next word in the verb group, it

Chapter-6

Department of Computer Science 94

correctly identifies the main verb and the auxiliaries. Lexicon lookup was used

for identifying the other POS categories.

Hidden Markov Model based tagger for Hindi was proposed by Manish

Shrivastava and Pushpak Bhattacharyya [115]. The authors attempted to utilize

the morphological richness of the languages without resorting to complex and

expensive analysis. The core idea of their approach was to explode the input in

order to increase the length of the input and to reduce the number of unique

types encountered during learning. This in turn increases the probability score

of the correct choice while simultaneously decreasing the ambiguity of the

choices at each stage.

Nidhi Mishra and Amit Mishra [116] proposed a Part-of-Speech Tagger

for Hindi Corpus in 2011. In the proposed method, the system scans the Hindi

corpus and then extracts the sentences and words from the given corpus. Also

the system search the tag pattern from database and display the tag of each

Hindi word like noun tag, adjective tag, number tag, verb tag etc.

Based on lexical sequence constraints, a POS tagger algorithm for Hindi

was proposed by Pradipta Ranjan Ray (2003) [117]. The proposed algorithm

acts as the first level of POS Tagger, using constraint propagation, based on

ontological information, morphological analysis information and lexical rules.

Even though the performance of the POS tagger has not been statistically tested

due to lack of lexical resources, it covers a wide range of language phenomenon

and accurately captures the four major local dependencies in Hindi.

Sivaji Bandyopadhyay et.al (2006) [118] came up with a rule-based

chunker for Bengali which gave an accuracy of 81.64 %. The chunker has been

developed using rule-based approach since adequate training data was not

available. The list of suffixes has been prepared for handling unknown words.

Part-of-Speech Tagger

Cochin University of Science and Technology 95

They used 435 suffixes; many of them usually appear at the end of verb, noun

and adjective words.

For Bengali, Sandipan et al., (2007) [119] have developed a corpus based

semisupervised learning algorithm for POS tagging based on HMMs. Their system

uses a small tagged corpus (500 sentences) and a large unannotated corpus along

with a Bengali morphological analyzer. When tested on a corpus of 100 sentences

(1003 words), their system obtained an accuracy of 95%.

Hammad Ali [120] developed a Baum-Welch trained HMM tagger for

the Bangla language. Training is performed in order to learn the underlying

HMM parameters. This HMM could then be used to perform tagging on a

corpus and tested to obtain the accuracy figures. The complete work was

divided into the following phases: 1) collect corpus and tagset, 2) search for

implementation of Baum-Welch algorithm, 3) perform training and 4) test

against gold standard for accuracy.

Debasri Chakrabarti [121] proposed a rule based Parts-of-Speech tagger

for Bangla with layered tagging. There are four levels of Tagging which also

handles the tagging of multi verb expressions. In the first level ambiguous basic

category of a word is assigned. Disambiguation rules are applied in the second

level with more detail morphological information. At the third level multi word

verbs are tagged and the fourth or the final level is the level of local word

grouping or chunking.

A rule based part-of-speech tagging approach was used for Punjabi

[122]. This tagger uses handwritten linguistic rules to disambiguate the part-of-

speech information, which is possible for a given word, based on the context

Chapter-6

Department of Computer Science 96

information. A tagset for use in this part-of-speech tagger has also been devised

to incorporate all the grammatical properties that will be helpful in the later

stages of grammar checking based on these tags.

Sreeganesh implemented a rule-based tagger for Telugu [123]. In the

initial stage Telugu morphological analyzer analyses the input text. Then tagset

is added. Around 524 morpho-syntactic rules do the disambiguation.

Avinesh et.al [124] proposed a Telugu tagger with a performance of

77.37%. In [125] three taggers are developed with accuracies 98.0%, 92.1%,

and 87.8% respectively.

A SVM based POS tagger is explained in [126]. Multiclass SVM is used

for classification. The tagset contained only 8 tags and overall accuracy

obtained was 86.25% for passages which contains unknown words.

Approach presented in the paper [127] is a machine learning model. It

uses supervised as well as unsupervised techniques. It uses a CRF to

statistically tag the test corpus. The CRF is trained using features over a tagged

and untagged data. Initially a rule based tagging code is run on the test data.

This code used both machine learning and rule based features for tagging. It

gave an accuracy of 86.43%. Then a CRF tool is used to test the data. It gave an

accuracy of 89.90%.

A morphology driven Manipuri tagger is explained in [128]. This tagger

was tested with 3784 sentences containing 10917 unique words. This tagger

showed accuracy of 69%. Further this tagger is improved using CRF and SVM

[129] and obtained accuracies of 72.04% and 74.38% respectively.

Part-of-Speech Tagger

Cochin University of Science and Technology 97

Antony P J and Soman KP [130] of Amrita University, Coimbatore

proposed statistical approach to build a POS tagger for Kannada language using

SVM. They have proposed a tagset consisting of 30 tags. The proposed POS tagger

for Kannada language is based on supervised machine learning approach. The Part-

of-Speech tagger for Kannada language was modeled using SVM kernel.

A rule-based POS tagger for Tamil was developed and tested by

Dr.Arulmozhi P et.al [131]. This system gives only the major tags and the sub

tags are overlooked during evaluation. A hybrid POS tagger for Tamil using

HMM technique and a rule based system was also developed [132]. Parts of

speech tagging scheme, tags a word in a sentence with its parts of speech. It is

done in three stages: pre-editing, automatic tag assignment, and manual post-

editing. In pre-editing, the corpus is converted to a suitable format to assign a

POS tag to each word or word combination. Because of orthographic similarity

one word may have several possible POS tags. After the initial assignment of

possible POS, words are manually corrected to disambiguate words in texts.

Kathambam attaches parts of speech tags to the words of a given Tamil

document. It uses heuristic rules based on Tamil linguistics for tagging and does

not use either the dictionary or the morphological analyzer. It gives 80% efficiency

for large documents, uses 12 heuristic rules and identifies the tags based on gender,

tense and case markers. Standalone words are checked with the lists stored in the

tagger. It uses ‘Fill in rule’ to tag ‘unknown words. It also uses bigram for

identifying the unknown word using the previous word category.

Lakshmana Pandian S and Geetha T V (2009) [133] developed CRF

Models for Tamil Part of Speech Tagging and Chunking. This method avoids a

fundamental limitation of Maximum Entropy Markov models (MEMMs) and

Chapter-6

Department of Computer Science 98

other discriminative Markov models. The Language models are developed

using CRF and designed based on morphological information of Tamil.

Selvam and Natarajan (2009) [134] have developed a rule based

morphological analyzer and POS Tagger for Tamil. They improved the above

systems using Projection and Induction techniques. Rule based morphological

analyzer and POS tagger can be built from well defined morphological rules of

Tamil. They applied alignment and projection techniques for projecting POS tags,

and alignment, lemmatization and morphological induction techniques for inducing

root words from English to Tamil. Categorical information and root words are

obtained from POS projection and morphological induction respectively from

English via alignment across sentence aligned corpora. They generated more than

600 POS tags for rule based morphological analysis and POS tagging.

6.2 Malayalam POS Tagging

POS Tagging is the process of identifying and labelling each word in a

sentence with corresponding POS. Fixed word order languages like English

have specific structure for a sentence. Therefore POS assignment in these

languages can be done using the grammar rules. Malayalam is a free word order

language; hence words can appear in any order in a sentence. But within a

phrase, words are in a specific related order.

Since most of the words in a Malayalam document are compound words

decomposition of these words into their constituents is extremely necessary for

finalizing their POS tag. Sometimes more than one morphological analysis and

hence more than one POS may occur for a single word. A correct resolution of

this kind of ambiguity for each occurrence of the word is crucial in QA

Systems. A large percentage of words also show ambiguity regarding lexical

Part-of-Speech Tagger

Cochin University of Science and Technology 99

category. Hence to determine the POS of a word in Malayalam language,

grammar rules themselves are not sufficient but both word and contextual levels

of information are necessary.

Currently available tagsets for other languages are only giving

importance to the morphological and syntactical properties of the language

while the tagset developed considers the semantic features of the language. In

many other languages, they have used tagset derived from Penn Tree Bank

[100] or Brown corpus for POS Tagging. But these tagsets are not sufficient for

POS Tagging in Malayalam. MaQAS needed a POS tagset which gives

importance to semantics in its development.

6.2.1 POS Tagset for Malayalam

A tagset with 52 tags is developed by manually tagging different documents

from various newspapers and various fields. This tagset contains POS tags

necessary for Information Retrieval and Question Answering tasks in Malayalam

language. POS tagset developed for this work is given in Table 6.3. The method

used to find the POS tags and a few tagging examples are given below.

Noun

In this system nouns without suffixes and nouns with gender or plural

suffixes are considered as ‘NOUN’ whereas the Penn tagset, a standard tagset

used for English, makes distinction between noun singular, noun plural,

common nouns, proper nouns etc. Nouns which are acting as agents are given

the tag, NOUN which has three subcategories proper noun, pronoun and noun.

Example 1: കുčി പാÂ കുടിചു്ച (kuTTi paal kuTichchu) (child drank milk)

Chapter-6

Department of Computer Science 100

In this example, the words, both child and milk, are nouns without

suffixes. But the noun, child, is the agent of the action and milk is the object of

the action; therefore ‘NOUN’ tag is assigned to child and ‘OBJECT’ (OBJ) tag

is assigned to milk.

Example 2. കുčികÄ പാÂ കുടിചു്ച (kuTTikaL paal kuTichchu)(children

drank milk)

In example 2 the word ‘children’ (noun with plural suffix) is also

assigned the POS tag ‘NOUN’.

Noun with Case Suffix

When a noun occurs in a sentence with case suffix, POS tag of that noun

is determined by the associated case. Here the case suffix changes the role of

the word in the sentence. Case indicates a relation between noun and a verb

[67]. Relation indicated by each case suffix is different. Hence separate POS

tags are assigned to each unique case which are shown in Table 6.1.

Examples
രാ÷വിsâ അŧ േപായി (raajuvinte amma pOyi) (Raju’s mother has gone)

രാ÷ അŧെയ അടിചു്ച (raaju ammaye aTichchu) (Raju slapped his mother)

രാ÷ അŧേയാട് സംസാരിചു്ച (raaju ammayOT samsaarichchu) (Raju talked to his
mother)

രാ÷ A½¡vv സാരി വാðി (raaju ammaykk saari vaangi) (Raju bought a saree for his
mother)

രാ÷ വടിയാÂ മകെന അടിചു്ച (raaju vaTiyaal makane aTichchu) (Raju beat his son
with a stick)

കമല അŧയുെട സാരി വാðി (kamala ammayuTe saari vaangi) (Kamala got her
mother’s saree)

കമല ൈദവĠിÂ ആŻയിചു്ച (kamala daivaththil aaSrayichchu) (Kamala
depended on God)

Part-of-Speech Tagger

Cochin University of Science and Technology 101

Table 6.1 Example of Case Relations

Case Relation suffix Example POS Tag

Nominative
Accusative
Sociative
Dative
Instrumental
Possessive
Locative

No suffix
എ

ഓട ്

ക്ക ്ന ്
ആ Â

ഉെട sâ

ഇÂ കÂ

അŧ (amma)
അŧെയ(ammaye)
അŧേയാട(്ammayOT)
അŧയ്ക്ക (്ammaykk)
അŧയാ Â(ammaayal)
അŧയുെട(ammayuTe)
അŧയി Â(ammayil)

NOUN

ACC

SOC

DAT

INST

GEN

All the underlined words in the above examples except the first are nouns

but with case suffix. They are not agents of action but their case endings show

the relationship of theirs to the agent and the main verbs.

Table 6.2 Examples of VERB Tags

Example Role of underlined word Tag
രാ÷വിsâഅŧ േപായി
വാðിയ േപന

വരാ³ പറċു

Verb
Adjectival Participle
Adverbial Participle

VERB
AdjP
AdvP

Verbs

Finite verbs are tagged with VERB tag. Infinite verbs are divided into

adjectival participle and adverbial participle. Adjectival participle relies on nouns and

adverbial participle on verbs. All the three forms function distinctly [67]. Table 6.2

gives examples of VERB tags.

Examples

1. രാ÷വിsâ അŧ േപായി (raajuvinte amma pOyi) (Raju’s mother has gone)

Here the word േപായി is marked as finite verb and the corresponding

POS tag is ‘VERB’.

2. വാðിയ േപന (vaangiya pEna) (pen which was bought)

Chapter-6

Department of Computer Science 102

Adjectival participle വാðിയ is given the tag ‘AdjP’.

3. വരാ³ പറċു (varaan paRanju) (told to come)

The tag ‘AdvP’ is assigned to the Adverbial participle വരാ³.

Table 6.3 POS Tags

TAG DESCRIPTION TAG DESCRIPTION
NOUN Noun AdvP Adverbial Participle
PN Proper Noun AdvT Adverbial clause of Time
RN Pronoun AdvPl Adverbial clause of Place
ACC Accusative AdvPr Adverbial clause of Purpose
DAT Dative AdvR Adverbial clause of Result
GEN Genitive or Possessive AdvSe Adverbial clause of Reason
LOC Locative AdvCo Adverbial clause of Comparison
SOC Sociative Adv-S Adverbial clause of Supposition
INST Instrumental AdvC Adverbial clause of Condition
OBJ Object AdjQl Adj clause of Quality
RES Reason AdjQn Adj clause of Quantity

PSP1 Postposition Type1 AdjD Adj clause of Description

PSP2 Postposition Type2 AdjN Adj clause of Number

PSP3 Postposition Type3 AdjI Adj clause of Interrogation

PSP4 Postposition Type4 AdjE Adj clause of Exclamation

PSP5 Postposition Type5 SourceP Source- Place(Noun+PSP2)

PSP6 Postposition Type6 DestP Destination-Place (Noun+PSP3)

PSP7 Postposition Type7 LikeP Word Showing Similarity (Noun+ PSP 9)

PSP8 Postposition Type8 ListP Word indicating a list(Noun+PSP11)

PSP9 Postposition Type9 TimeP Word indicating Time(Noun +PSP 8)

PSP10 Postposition Type10 ThruP Word indicating a path or friendship
(Noun+PSP5)

PSP11 Postposition Type11 SYM Symbol

VERB Verb CN Cardinal Number

AuxV Auxiliary Verb ON Ordinal Number

AdjP Adjectival Participle INT1 Wh Words

Adv Adverb INT2 Yes/No Words

Part-of-Speech Tagger

Cochin University of Science and Technology 103

Postposition

This is a word used along with a noun or a pronoun to show how it is

related to something else. Each postposition is assigned a different POS as they

serve different roles. ‘PSP1’ to ‘PSP11’ are the tags assigned to different

postpositions which are listed in table 6.4.

Table 6.4 Examples of Postpositions

Word Tag Word Tag
sIm−v

apXÂ

hsc

\n¶v h¨v taÂ

IqSn

]än th−n adn¨v

PSP1

PSP2

PSP3

PSP4

PSP5

PSP6

ImcWw

XpS§n

t]mse

t\tc

sXm«v

PSP7

PSP8

PSP9

PSP10

PSP11

Adjectives

An adjective is a word that adds to the meaning of the noun. It is

working as a qualifier of the noun. There are different kinds of adjectives.
Adjective indicates quality, number, quantity etc. The POS tag varies according

to the type of the adjective. Examples are AdjQl, AdjN, AdjQn.

Adverbs

An adverb adds something to the meaning of a verb, adjective or

another adverb. Adverb indicates time, condition, reason etc. POS tags

corresponding to these are AdvT, AdvC, and AdvR.

Examples of Adjectives and Adverbs

Adjectives

 Adjective of Quality - AdjQ \Ã

Chapter-6

Department of Computer Science 104

 Adjective of Quantity - AdjQn \ndsb

 Adjective of Number - AdjN Hmtcm¶v

 Demonstrative Adjective - AdjD CXv

Adverbs

 Adverbial clause of Time - AdvT apXÂ

 Adverbial clause of Place - AdvPl AhnsS

 Adverbial clause of Condition - AdvC BÂ

 Adverbial clause of Purpose - AdvPr Bbn

Examples of other POS

 SourceP - sIm¨napXÂ

 DestP - sImÃwhsc

 LikeP - AtimIs\t]mse

 ListP - D¸psXm«v

 TimeP - A∂XpS§n

 ThruP - BImi¯neqsS

6.2.2 Part-of-Speech Tagger for Malayalam

Fig.6.1 shows the block diagram of the POS Tagger which was

developed. Working of this tagger is as follows. The input document is divided

into tokens. Then each token is sent to the Word Analyzer for the detailed

analysis. Word Checker checks the word and determines whether it is a

compound word or root word. If it is a root word, the Word Type Identifier

Part-of-Speech Tagger

Cochin University of Science and Technology 105

assigns suitable tags using the information from the lexicon. A view of lexicon,

prepared for this work is given in Appendix C.

Fig 6.1 Block Diagram of POS Tagger

 Tokenizer

Document

Word Analyzer

Lexicon

Word Checker Word Type
Identifier

Tag Marker
Compound word splitter Root Tag

Detector
Word Tag
Detector

Tag Disambiguator
Sliding Window

Feature Detector

Statistical Analyzer

Tagged Document

single tag?

No

Yes

Tag Finalizer

Chapter-6

Department of Computer Science 106

If the token is a compound word, the morphological details and the

constituents of it are determined by the Compound word splitter. The Tag

Marker assigns to each token, all possible POS tags with the help of

information provided by the Word Analyzer and the Compound word splitter.

Root Tag Detector assigns POS tags of the root words and the Word Tag

Detector assigns POS tags of the compound words. If the tag is not unique or

ambiguous, ambiguity is resolved by the Tag Disambiguator. Extended

Conditional Random Field (ECRF) is the methodology used for the Tag

Disambiguator. It uses contextual information to solve the ambiguity and

eliminates all but one tag.

Tokenizer

Complete document can be assumed as a string of characters. Tokenization

is the process of splitting a string of characters into lexical elements such as words

and punctuations. This task is done by locating word boundaries.

Input to the Tokenizer block in Fig 6.1 is a document in Malayalam. During

the tokenization process each sentence of the document is taken and splits into

words or co-occurrence patterns. Multi part words are one of the main issues arise

while tagging. These words are considered as single words to keep the semantic

information intact for the purpose of efficient information extraction.

Word Analyzer

Word Analyzer checks each token to see whether it is present in the

lexicon or not. Lexicon has all the root words along with its POS information. If

it is present in the lexicon then it is a simple word and the word is labelled with

POS details retrieved from the lexicon. Else the token is a compound word and it

is labelled with <CW> tag.

Part-of-Speech Tagger

Cochin University of Science and Technology 107

Table 6.5 Output of Word Analyzer for Example 3

Token Tag

കമല (kamala) < Noun>
അŧയുെട (ammayuTe) <CW>
സാരി(saari) < Noun>
വാðി (vaangi) <CW>

Example 3 കമല അŧയുെട സാരി വാðി (kamala ammayuTe saari vaangi)

(Kamala got her mother’s sari)

For this sentence, Word Analyzer produces the output shown in Table 6.5.

Tag Marker

Tag Marker uses the information provided by the Word Analyzer and

marks the token with the most appropriate POS tag. It is designed with a Finite

State Transducer as shown in Fig 6.2. Tokens marked with <CW> tags are sent

to the Compound word splitter one by one and then receive the constituents of

the words along with their POS information. Next the Tag Marker assigns

suitable tags to each compound word based on the constituents. Sometimes

there will be different valid decompositions possible for a compound word and

in such cases the word will be marked with multiple tags.

For the FST in Fig 6.2 following elements form the tuple.

Initial state – A

Final states - {B, C,..Z}

Input Alphabet - {NOUN, VERB…, DHYODHAKAM}

Output alphabet - {Any POS from the tagset}

Transition function - {any valid POS}

Chapter-6

Department of Computer Science 108

Fig 6.2 FST for Tag Marker

Example

 For the word നഗരĠിേലക്ക ് (nagaraththilEkk) (towards the city),

Compound word splitter produces the following output.

നഗരം<NOUN> iÂ<C6> ഏക്ക<്PSP4>

(nagaram<NOUN> il <C6> aekk<PSP4>)

Then the FST for the Tag Marker takes <NOUN> <C6> <PSP4> as the

input string and by traversing the path A-B-D-E produces the output ‘LOC’.

i.e., the POS for the word നഗരĠിേലക്ക ് (nagaraththilEkk) is ‘LOC’. Output

of Tag Marker for a few examples are given in table 6.6.

B

F

E

D

C

A
 Tag Word

C2/SOC
C6/Loc

PSP4/Loc

PSP1/INST
Noun/Noun

G
H

I

K J

Verb
End1/Adjp

Advp1/AdvT

Advp8/AdvC

Adv/Adv

L

Adj /Adj

C1-C6 Case Markers

PSP4/Loc
Noun/Noun

M
PSP5/ThruP N

C5/GEN

Part-of-Speech Tagger

Cochin University of Science and Technology 109

Table 6.6 Output of Tag Marker

Word POS string Traversal
Path

POS
tag

Ip«n (kutti) (child)
sNdnbIp«n(cheRiyakutti)(small child)
sNdnbIp«nbpsS(cheRiyakuttiyuTe)
(of the small child)
sNdnbIp«ntbmSpIqsS
(cheRiyakuttiyOTukUTe)
(with the small child)

Noun

Adj + Noun

Adj + Noun+Suffix-C5

Adj +Noun+Suffix-C2+PSP5

A-B

A-L-B

A-L-B-N

A-L-B-C-M

NOUN

NOUN

GEN

ThruP

Tag Disambiguator

Tag Marker assigns each input token a POS tag or multiple tags. Tokens

with multiple tags are sent to the Disambiguator to solve the tag ambiguity

which removes all tags except one. Output of Tag Disambiguator is a string of

all tokens along with their POS tags.

Fig 6.3 Graphical structure of chain-structured CRFs

Methodology

Tag Disambiguator is implemented using High Order Conditional Random

Field or Extended CRF. It is an undirected graphical model in which each vertex

represents a random variable whose probability distribution is to be inferred and

each edge represents a dependency between two random variables [135][136].

Chapter-6

Department of Computer Science 110

Considering Fig 6.3, X={X1 …XN} and Y= {Y1…YN} are two sets of

random fields. For the given input sequence X, Y represents a hidden state

variable and CRF’s define conditional probability distributions P (Y|X) over the

input sequence. Sometimes the conditional dependency of each Yi on X will be

defined through a fixed set of feature functions (potential functions) of the form

f (i, Yi-1, Yi, X). The model assigns each feature a numerical weight and

combines them to determine the probability of a certain value for Yi. CRF’s can

contain any number of feature functions and the feature function can inspect the

entire input sequence X at any point during inference. CRF’s are extended into

high order models by making each Yi dependent on a fixed number of previous

variables Yi-o ... Yi-1.

POS Tagging can be modelled as a sequence labelling task where

X=X1X2X3...Xn represents an input sequence of words and Y= Y1Y2Y3...Yn

represents corresponding POS label sequence. The general label sequence Y has

the highest probability of occurrence for the word sequence X among all

possible label sequences, that is, Y = argmax {Pr (Y|X)}. Referring Fig 6.3, a

word X can be assigned any one of the labels Y1 to Yn and the relation between

X and these labels are determined by the various feature functions. The relation

which computes to the maximum probability is the best choice and hence

corresponding label or tag is selected.

Main features for POS Tagging have been identified based on the word

combination and word context. Following are the features used for POS

Tagging in Malayalam.

• Constituents of current word: These determine the POS tag of the word as

noun, verb etc.

Part-of-Speech Tagger

Cochin University of Science and Technology 111

• Context word features: Preceding (pw) and following words (nw) of the

current word. pw1, pw2, pw3, nw1, nw2, nw3 are the features selected for

this work.

• POS information: POS of previous words and successive words

• Digits or symbols present: If the word contains digits they are marked

with ‘NUMBER’ POS (cardinal number (CN) or ordinal number (ON)).

• Lexicon feature: It contains Malayalam root words and their basic POS

information such as noun, verb, adjective, adverb etc.

• Inflection lists: After analysing various classes of words inflection lists of

nouns, verbs, and participles are prepared to improve the performance of

the POS Tagger.

Example: aവ³ െവƉമുĕ ്ഉടുġ. (avan veLLamunT uTuththu)

 (He wore white Dhoti.)

Word Analyzer checks each word of this sentence and produces the

following output.

aവ³< NOUN> െവƉമുĕ ്<CW> ഉടുġ<CW>

(avan <NOUN> veLLamunT <CW> uTuththu<CW>)

Then the Tag Marker sends the last two words with the <CW> tag to the

Compound word splitter which decomposes these words into its constituents as

shown below.

Chapter-6

Department of Computer Science 112

െവƉമുĕ് െവƉം+ ഉĕ് (noun + verb)

 െവƉ+മുĕ ്(adjective +noun)

veLLamunT veLLam+unT (noun+verb)

 veLLa +munT (adjective +noun)

ഉടുġ uടു + u (verb +suffix)

uTuththu uTu +u (verb+suffix)

The Tag Marker finalizes the POS tag of the word ഉടുġ (uTuththu) as

‘VERB’. The word െവƉമുĕ ് (veLLamunT) can be a verb or a noun as the

POS of the compound word is based on the POS of the tail component of the

compound word. This situation is solved by the Disambiguator. For the

Disambiguator, input sentence represents X and corresponding POS represents

Y. According to the principles of CRF, each POS Yi, is dependant on the

corresponding word of the sentence X. But in Malayalam language, Yi is not

only based on Xi but also on certain other features mentioned above.

Probability Calculation

In the sentence Ah³ െവƉമുĕ ്ഉടുġ (avan veLLamunT uTuththu)

the word െവƉമുĕ ് (veLLamunT) has two POS tags VERB and NOUN. For

this sentence Tag Marker produces the following output.

Ah³ < NOUN> െവƉമുĕ ്< VERB/ NOUN>ഉടുġ <VERB>

(avan <NOUN> veLLamunT <VERB/NOUN> uTuththu <VERB>)

Table 6.7 gives possible POS tags of successive and preceding words of

VERB and that of a NOUN in question.

Part-of-Speech Tagger

Cochin University of Science and Technology 113

Table 6.7 Tagging Features

VERB NOUN

POS i-1 = adv

POS i-1 = noun

POS i-1 = advP

POS i-1 = verb

POS i-1 =PSP

POS i+1 = AuxV

POS i+1 = verb

Probability of POSi-1 = 1/5

Probability of POS i+1= ½

POS i-1 = adj

POS i-1 =adjP

POS i-1 = noun

POS i+1 = noun

POS i+1 =verb

POS i+1 = adv

POS i+1 = advp

POS i+1 = adj

POS i+1 = PSP

Probability of POSi-1 = 1/3

Probability of POS i+1= 1/6

Considering the above example

 P (VERB| െവƉമുĕv(veLLamunT)) = sum of the probabilities of the features

 = probability of the preceding word + probability of the following word

 = 1/5+0=1/5=0.2 ---- (1)

Similarly P (NOUN | െവƉമുĕ ്(veLLamunT)) = 1/3+1/6=1/2=0.5----------(2)

P (Y|X) = maximum of (1) and (2) and hence POS label NOUN is assigned to

the word െവƉമുĕ ്(veLLamunT).

Chapter-6

Department of Computer Science 114

When this same word occur in a sentence അവിെട െവƉമുĕ ് (aviTe

veLLamunT) Disambiguator calculates the conditional probability P (verb|

െവƉമുĕ ്(veLLamunT)) =1/5 and P (noun| െവƉമുĕv (veLLamunT)) = 0 and

then finalizes the POS label as VERB. Above two examples of Tag

Disambiguation are summarized in Table 6.8.

Table 6.8 Example of POS Tag Disambiguation

Word Sentence Probability Calculation Max
Value

POS
Tag

shÅap−v

(veLLamunT)

1) Ah³ shÅap−v DSp¯p.

(avan veLLamunT uTuththu)

2) AhnsS shÅap−v

(aviTe veLLamunT)

P (VERB| veLLamunT) =1/5+ 0

 = 1/5 =0.2

P (NOUN | veLLamunT) =

 1/3+1/6=1/2=0.5

P (verb| veLLamunT) =1/5 =0.2

P (noun| veLLamunT) = 0

0.5

0.2

NOUN

VERB

E.g. വിവാഹം കഴിċ ് നഗരĠിേലക്ക ് മടðിവŋ രാമ³ അച്ഛ sâ

നിേയാഗĠാÂ വനവാസĠിļ േപായി

(vivaaham kazhinj nagaththilEkk maTangivanna raaman achchhante

niyOgaththaal vanavaasaththinu pOyi)

(Raman who returned to city after marriage, went to lead forest-life by the

instruction of his father)

 Table 6.9 lists the outputs of Word Analyzer, Compound word splitter

and Tag Marker for sentence given above. Fig 6.4 shows the output of POS

Tagger for the same sentence.

Part-of-Speech Tagger

Cochin University of Science and Technology 115

Table 6.9 Ouput of POS Tagger
Stage 1 Output of Word Analyzer Stage 2 Output of Compound Word Splitter Stage 3 Output of Tag Marker

വിവാഹം <NCW Noun>

(vivaaham<NCW Noun>)

വിവാഹw<NOUN>

(vivaaham< NOUN>)

കഴിċ ് <CW>

(kazhinj <CW>)

കഴി <verb> ċv<suffix>

(kazhi <verb> nnj <suffix>)j

കഴിċv <AdvT>

 (kazhinj <AdvT>)

നഗരĠിേലക്ക ് <CW>

(nagaththilEkk <CW>)

നഗരം<Noun> ഇÂ <suffix>

ഏക്ക<്suffix>

(nagaram<Noun>il <suffix> aek

<suffix>)

നഗരĠിേലക്ക ്<LOC>

(nagaththilEkk <LOC>)

മടðിവŋ <CW>

(maTangivanna <CW>)

മടðി<verb> വŋ<AdjP>

(maTangi <verb>vanna<<AdjP>)

മടðിവŋ<AdjP>

(maTangivanna < AdjP>)

രാമ³ <NCW Proper noun>

(raaman <NCW Proper noun>)

രാമ³ <Noun>

(raaman <Noun>)

അച്ഛ sâ <CW>

(aachchhante<CW>)

അച്ഛ ³<Noun> sâ<suffix>

(achchhn<Noun>nte <suffix>)

അച്ഛ sâ<GEN>

(achchhnte<GEN>)

നിേയാഗĠാÂ <CW>

(niyOgaththaal <CW>)

 നിേയാഗം <Noun>ആÂ<suffix>

(niyOgam <Noun> aal<suffix>)

നിേയാഗĠാÂ <RES>

(niyOgaththaal <RES>)

വനവാസĠിļ <CW>

(vanavaasaththinu<CW>)

വനവാസം<Noun> ന ്<suffix>

(vanavaasam<Noun> ni~<suffix>)

വനവാസĠിļ<DAT>

(vanavaasaththinu<DAT>)

േപായി <CW>

(pOyi<CW>)

 േപാ<verb> ഇ<suffix>

(pO<verb>I <suffix>)

േപായി <VERB>

(pOyi<VERB>)

Chapter-6

Department of Computer Science 116

Fig 6.4 Screen shot of POS Tagger Output

6.3 Results and Discussion

The performance evaluation of the POS Tagger is carried out using the

standardized evaluation techniques like precision and recall, where precision is

defined as the ratio of correct number of token tag pair sequence in the output to

total number of token tag pair that appears in the output and recall is the ratio of

correct number of token tag pair sequence to the number of correct token tag

pair that is possible [137].

POS Tagger results were analysed using a confusion matrix or

contingency table. A contingency table is a simple performance analysis tool

typically used in classification tasks and IR scenarios.

Part-of-Speech Tagger

Cochin University of Science and Technology 117

Table 6.10 A Typical Contingency Table

Contingency Table
Actual Class

Positive Negative

Predicted
Class

Positive True Positive
(Correct Result)

False Positive
(Unexpected Result)

Negative False Negative
(Missing Result)

True Negative
(Correct absence of Result)

A 2*2 contingency table is shown in Table 6.10. The entries in the table

have the following meaning in the context of POS labelling.

True Positive – number of correct predictions that an instance is +ve

False Positive – number of incorrect predictions that an instance is +ve

False Negative – number of incorrect predictions that an instance is -ve

True Negative – number of correct predictions that an instance is –ve

The recall or true positive rate is defined as the ratio of the number of true

positives to the elements actually belonging to the positive class.

Recall = True Positive / (True Positive + False Negative)

The precision or positive predictive value is defined as the ratio of the number

of true positives to the elements labeled as belonging to the positive class.

Precision = True Positive / (True Positive + False Positive)

Documents from Malayalam dailies Malayala Manorama, Mathrubhumi,

Karshaka Sree, and few text books pertaining to five different fields were

selected as the test corpus. These documents were texts with simple, compound

and complex sentences and 95% of these words were compound words. Totally

2352 sentences were tested and obtained an average precision of about 92% and

Chapter-6

Department of Computer Science 118

recall of 94%. Some words were not correctly tagged since all features were not

included in the system. Performance evaluation details are listed in Appendix D.

Table 6.11 Overall Performance of the POS Tagger

Predicted Actual

Pos

Neg

Total
 Pos 10947 951 11898

Neg 698 53 751
Total 11645 1004 12649

Average precision and recall can be obtained from the contingency table

shown in Table 6.11.

TP = 10947 FP = 951 FN = 698 TN = 53

Average Precision = 10947 / (10947+951) = 92.0 %

Average Recall = 10947 / (10947+698) = 94.0 %

• This approach is accurate and efficient for a language like Malayalam

since it considers language level and word level features.

• Malayalam language has no specific structure for a sentence. Hence it is

very difficult to assign POS tag for a word; many times a word will have

multiple tags. This problem is solved in this system by taking into

account the contextual information.

• A POS tagset is developed which is unique in its nature as it reflects

morphological, syntactical and semantic features of the language.

Part-of-Speech Tagger

Cochin University of Science and Technology 119

6.4 Chapter Summary

POS Tagging is the first and one of the important stages of document

preprocessing. POS tags necessary for Malayalam document tagging and their

method of development is described in this chapter. A study of, POS Taggers

available in other languages are done and is also given in this chapter. A detailed

discussion of Malayalam POS Tagger design, development and implementation is

conducted.

Chapter-6

Department of Computer Science 120

In this work, phrase chunking is the second phase of document

preprocessing. Chunker identifies and divides sentences into

syntactically correlated word groups. An Artificial Immunity System

(AIS)-based phrase chunker is discussed which identifies and labels

each phrase chunk with suitable phrase tag. Phrase tag is one of the

important language dependant feature used for Named Entity

Recognition and Classification.

QA is the task of automatically answering a question given in natural

language. In order to find the answer, the question is analysed, and the type of

expected answers is determined. Then the answer retrieval module retrieves

either a document, passage, or a phrase as the answer to the query. Questions

such as ‘when’, ‘where’, ‘what’, ‘why’ etc. mostly return an answer that

contains a noun, a noun phrase or a prepositional phrase. Hence identification

of phrases is an essential preprocessing step in QA Systems.

Phrase chunks can be identified and separated either by chunking or by

way of full parsing. Abney [138] has proposed text chunking as a useful step

for full parsing since it lays foundation for further levels of analysis. Abney

describes chunking as a natural phenomenon in the following words.

“(when I read) (a sentence) (I read it) (a chunk) (at a time)”

Chapter-7

Department of Computer Science 122

Full parsing [139] is the syntactic analysis of a text, made up of tokens

to determine the grammatical structure with respect to a given formal grammar.

By this analysis it will be clear how words are combined to get phrases and

phrases into sentences. Full parsing is an extremely difficult process for

morphologically rich language like Malayalam. Also it is expensive and is not

very robust. But chunking is more robust, efficient, faster, and sufficient for

many applications.

Chunking is a shallow parsing technique also called light parsing for

extracting non-overlapping segments from a stream of data [140]. A typical

chunk consists of a single context word surrounded by a constellation of

function words and each chunk contains a head word. Some words in a sentence

may not be grouped into a chunk. A phrase chunker identifies phrases like verb

phrase, noun phrase etc. in a sentence but does not either specify their internal

structure or their role in the main sentence.

7.1 Related Work

The Artificial Immunity System Principle is explored in intelligent

robotics system [141]. Authors of [141] have implemented a behaviour

arbitration mechanism for the robots to choose the best option when an abnormal

situation arises. Nasser Omer Sahel Ba-Karait et al. [142] explains the use of

negative selection algorithm for the classification of Electroencephalography

(EEG) signals and proved that this method reveals very promising performance.

The general purpose algorithm based on the clonal selection and affinity

maturation process in an adaptive immunity system is presented in [143] which is

capable of solving complex engineering tasks like multimodal and combinatorial

optimization. Clonal selection algorithms are applied for edge detection problems

Phrase Chunker

Cochin University of Science and Technology 123

in pattern recognition and computer vision [144]. The principle of hyper

mutation and receptor editing are exploited for the above purpose. Akshat Kumar

and Shivashankar B Nair described the working of English Grammar checking

system using adaptive immunity system [145].

In Hindi [146], Tamil [147], Telugu [148], Bengali [149] languages

several works are reported but they are mainly using statistical approaches like

Conditional Random Field (CRF), Hidden Markov Model (HMM) and

Maximum Entropy Markov Models (MEMM). In Tamil a few taggers are

developed employing Support Vector Machines (SVM) [150] and they obtained

a tagging accuracy of 95.82%.

Many researchers have used various machine learning methods and their

combinations for chunking. Noun phrase chunking is an important and useful

task in many natural language applications and it is studied well in languages

such as English [151] and French [140]. But for a less privileged language like

Malayalam, Corpus-based NLP tasks are at deadlock due to the unavailability

of lexicons and taggers.

[152] describe experiences in building an HMM based Part-Of-Speech

(POS) tagger and statistical chunker for 3 Indian languages-Bengali, Hindi and

Telugu. For chunking, the training data is used to extract chunk pattern

templates defined as a sequence of POS tags. These templates, in conjunction

with the POS tag of the word following the chunk, are used to decide chunk

boundaries in the unannotated text. A dynamic programming algorithm is used

to find the best possible chunk sequence. The chunk accuracies obtained are

67.52 for Bengali, 69.98 for Hindi and 68.32 for Telugu.

Chapter-7

Department of Computer Science 124

Pattabhi R.K Rao et.al [153] presents a Transformational-Based

Learning (TBL) approach for text chunking. In this technique of chunking, a

single base rule (or a few base rules) is provided to the system, and the other

rules are learned by system itself during the training phase for reorganization of

the chunks. This system is designed to work with three of the Indian languages

namely Hindi, Bengali and Telugu.

In [154] authors describe a rule-based chunker that has been developed

and tested on the Bengali development test set and demonstrated 85.88%

accuracy. This chunker has then been tested on the Hindi and Telegu

development sets and demonstrated 73.88% and 55.96% accuracies. The

chunking system has demonstrated 80.63%, 71.65% and 53.15% accuracies

with the unannotated Bengali, Hindi and Telegu test sets.

Paper [155] presents the building of POS Tagger and Chunk Tagger

using Decision Forests and also focuses on the investigation towards exploring

different methods for Parts-Of-Speech Tagging of Indian languages using sub-

words as units. For chunking this system used 2-tag scheme. Features used for

chunking are 2-level context of POS Tags namely present, previous, previous-

previous, next and next-next word POS Tags. The two models POS Tagger and

Chunk Tagger were tested with 3 different Indian languages Hindi, Bengali,

Telugu and achieved the accuracies as 69.92%, 70.99%, 74.74% and 69.35%,

60.08%, 77.20% respectively.

A computational framework for chunking based on valency theory and

feature structures has been described in [156]. This paper also draws an

analogy of chunk formation in free order languages with the bonding of atoms,

Phrase Chunker

Cochin University of Science and Technology 125

radicals or molecules to form complex chemical structures. A chunker has been

implemented for Bengali using this approach with considerably good accuracy.

A rule based model [157] is developed using 21 linguistic rules for

automatic VP chunking. A 100,000 word Urdu corpus is manually tagged with

VP chunk tags. The corpus is then used to develop a hybrid approach using

HMM based statistical chunking and correction rules. The technique is

enhanced by changing chunking direction and merging chunk and POS tags.

The automatically chunked data is compared with manually tagged held-out

data to identify and analyze the errors. Based on the analysis, correction rules

are extracted to address the errors. By applying these rules after statistical

tagging, further improvement is achieved in chunking accuracy. The results of

all experiments are reported with maximum overall accuracy of 98.44%

achieved using hybrid approach with extended tagset.

In this work phrase chunker is implemented using a novel approach based

on Artificial Immunity System. AIS is a new branch of AI used for intelligent

problem solving technique in optimization and scheduling using the theory of

human immunity system. AIS algorithms are more efficient than the classical

heuristic scheduling algorithms. Also they are more successful than Genetic

algorithms [158]. There are three algorithms widely applied: clonal selection

algorithms [143], immune network algorithms [159] and negative selection

algorithms [142]. AIS theory is not yet used for the development of phrase

chunker. It is easy and possible to make any modifications to an AIS-based

system as this system works on the principle of generation and deletion of

self/non-self patterns.

Chapter-7

Department of Computer Science 126

7.2 Malayalam Phrase Chunker

Fig 7.1 Detailed Architecture of Phrase Chunker

Phrase Chunker which is the second stage of document preprocessing

module takes the output of POS Tagger and labels it with phrase tags. Clause

identifier in Fig 7.1 identifies and separates the clauses from the sentences

using a rule base. Then the phrase separator separates the phrases from each of

these clauses and phrase tagger attaches appropriate phrase tags to them.

7.2.1 Clause Identifier

Malayalam sentences are mostly complex or compound sentences

containing multiple clauses. Hence clause identification is an essential step of

phrase chunking. Clause identifier identifies and separates clauses from the

sentences using a rule base and gives the output to the phrase separator.

Root

Affixes

Dictionary
POS
Tagged Document

Clause Identifier

Phrase Separator

Phrase Tagger

Rule base

Phrase tagged document

T Cells

Clauses

Phrases

Phrase Chunker

Cochin University of Science and Technology 127

To obtain the clauses it is necessary to find out where a clause begins

and where it ends. The POS tags assigned to each and every token in the

sentence is used to determine these boundaries. Normally main clause ends with

a verb and a subordinate clause ends with an infinite verb. This module

identifies clauses with the help of handcrafted linguistic rules. A clause may

end either with a verb, Auxiliary verb, Adjectival participle or an Adverbial

participle.

In the rules given below, N, N+1, N+2, N+3 are the positions of the current

word and the three words following the current word. Examples of the rules are:

Rule 1: IF N+1 adjp N+2 Noun then separate clause

Rule 2: IF N+1 adjp N+2 adjp N+3 Noun then separate clause

Rule 3: IF N+1 advp then separate clause

7.2.2 Phrase Separator

Each clause obtained in the previous step is taken one by one and sent to

the phrase separator. All the phrases corresponding to each clause is identified

and separated. Then they are labelled with phrase tags.

Methodology

Phrase Separator (PS) is implemented using the principles of human

immune system. There are two levels of defence mechanism in human body.

First level of defence called innate immune system is available since birth and

is regulated by white blood cells. Innate immune system defends the external

organisms by making barriers such as mucus, low PH, saliva etc. Second level

of defence is called adaptive immune system. This defence is pathogen specific

and is controlled by Lymphocytes consisting of T-cells and B-cells. When a

Chapter-7

Department of Computer Science 128

specific pathogen enters the human body the T-cells with the specific receptors

recognizes and tries to destroy them. In case, the number of cells to attack the

invading pathogen is insufficient then they are multiplied by clonal selection

and attack the pathogen [143].

In a phrase separator a POS tagged clause is the input. Using the phrase

grammar the POS tag string can be analysed to identify the phrase chunks. In an

AIS-based phrase chunker the POS tag string can be assumed as a pathogen. A

pathogen can be identified by the corresponding T-cells. Since the number of

valid phrase chunks identified for Malayalam language is thirty two, there are

32 different T-cells to identify the phrase chunks. T-cells which recognize the

valid phrase chunks are called self cells and others are called non self cells

[160]. POS patterns for phrase identification are given in Appendix E. Once T-

cells are created, the system is ready to work like an Artificial Immune System.

i.e. the T-cells are mature enough to detect the presence of incoming phrase

chunks (pathogens). If the chunks are detected, they are separated (thrown out)

from the incoming clause.

Fig 7.2 Working of Phrase Separator

Working of Phrase Separator is described in Fig 7.2. The PS module

accepts a stream of words with the corresponding POS tags as input and group

sub-sequences of words and tags that most likely form a phrase. Here, the

phrase identifier groups every sequence and POS tag string separator separates

Recognize
Output of

Clause
Identifier

T Cells

 Phrase

Self Detected
Select Process Activated

 Yes

No
Output

POS
Tag String

Repeat

Phrase Chunker

Cochin University of Science and Technology 129

the POS tag string from the word-tag sequence. Every subgroup of tags is

compared to every pattern in the self set. If there is no match found then the

tested pattern is of non self and a process is activated to reject the incoming

phrase. If the tested pattern matches any self pattern then “accept” process is

activated. This action is continued until all the clauses are split into phrases.

Table 7.1 Phrase Tags

Tag Descriptions Tag Description
NP Noun phrase AdvpC Adverbial clause of Condition
VP Verb Phase AdvpRe Adverbial clause of Reason
NP-Acc Noun phrase-Accusative AdvpS Adverbial clause of Supposition
NP-Dat Noun phrase-Dative AdvpCo Adverbial clause of Comparison
NP-Gen Noun phrase-Genitive AdjpQl Adjectival phrase of Quality
NP-Loc Noun phrase-Locative AdjpQn Adjectival phrase of Quantity
NP-Soc Noun phrase-Sociative AdjpN Adjectival phrase of Number
NP-Obj Noun phrase-Object AdjpE Adjectival phrase of Emphasis
NP-Inst Noun phrase-Instrumental AdjpI Adjectival phrase of Imperative
NP-Res Noun phrase-Reason AdjpD Adjectival phrase of Description
AdjNP Adjectival Participle of phrase ThruPP Noun Phrase- Path
AdVP Adverbial Participle of phrase ListPP Noun Phrase -Group
AdvpT Adverbial clause of Time LikePP Noun Phrase -Similarity
AdvpPr Adverbial clause of Purpose SourcePP Noun Phrase -Source
AdvpR Adverbial clause of Result DestPP Noun Phrase -Destination
AdvpP Adverbial clause of Place TimePP Noun Phrase -Time

 7.2.3 Phrase Tagger

This module assigns suitable phrase tags to the output of Phrase

Separator. Phrase tags are listed in Table 7.1.

Examples

1. നീ നŋായി പTnച്ചാÂ നിനക്ക ്ഫസȄ ¢്mസ ്ലഭിÐം.

 (nI nannaayi paThichchaal ninakk fast klaas labhikkum

(If you study well you will get first class.)

Chapter-7

Department of Computer Science 130

POS Tagger produces the following output for the above sentence.

നീ <RN>നŋായി <Adv> പTnച്ചാÂ <AdvC> നിനക്ക് <Dat> ഫസȄ ¢്mസ്

<OBJ> ലഭിÐം<VERB>

nI <RN> nannaayi <Adv> paThichchaal<AdvC> ninakk<Dat> fast klaas

<OBJ> labhikkum<VERB>

This POS tagged sentence is divided into two clauses as follows.

Clause 1: നീ നŋായി പTnച്ചാÂ (nI nannaayi paThichchaal) (subordinate

clause)

Clause 2: നിനക്ക് ഫസȄ ¢്mസ ് ലഭിÐം (ninakk fast klaas labhikkum) (main

clause)

Corresponding to Example 1 two clauses are identified and they are

given as input to phrase seperator. From each of those clauses, phrases are

separated and labelled with phrase tags.

Input to phrase separator

Clause 1: നീ <RN>നŋായി <Adv> പTnച്ചാÂ <AdvC>

 nI <RN> nannaayi <Adv> paThichchaal <AdvC>
Clause 2: നിനക്ക ്<DAT> ഫസȄ ¢്mസ ്<OBJ> ലഭിÐം <VERB>
 ninakk <DAT> fast klaas <OBJ>labhikkum<VERB>

Steps of processing clause 1

Step1: form the POS tag string <RN><Adv><AdvC> from clause 1

Step 2: this POS pattern is checked with all entries in the self set. Since this POS

tag string forms an invalid pattern no match is found and hence this

phrase is rejected.

Step 3: Next the pattern <RN><Adv> is checked which is also rejected.

Phrase Chunker

Cochin University of Science and Technology 131

Step 4: Pattern <RN > is sent to the self set, match is found. As <RN> forms a

valid noun phrase it is recognized by the self set and “accept” process

is activated, i.e. നീ (nI) <RN> is a noun phrase and this word is

identified as <NP>.

Step 5: <Adv><AdvC> pattern is then sent to the test, since it is a valid phrase,

chunker marks നŋായി പTnച്ചാÂ (nannaayi paThichchaal) with

phrase tag <AdvpC>.

Similarly, corresponding to clause 2, three phrases are obtained which

are shown below.

നിനക്ക ്<NP-Dat> ഫസȄ ¢്mസ ്< NP-Obj> ലഭിÐം<VP>

ninakk <NP-Dat> fast klaas <NP-Obj> labhikkum <VP>

Phrase chunker output for the above example is listed in table 7.2.

Table 7.2 Phrase Chunker output for Example 1

Clauses POS Tag
 String

Detected
String

Phrase
Tag

1) നീ <RN> നŋായി <Adv> പTnച്ചാÂ (<AdvC>

(nI <RN> nannaayi <Adv> paThichchaal <AdvC>

2)നിനക്ക് <DAT> ഫസȄ ¢്mസ് <OBJ> ലഭിÐം <VERB>

(ninakk <DAT> fast klaas <OBJ> labhikkum <VP>

RN Adv AdvC

DAT OBJ VERB

RN

Adv AdvC

DAT

OBJ

VERB

NP

AdvpC

NP-Dat

NP-Obj

VP

2. പിtäŋ് എÃmവūം െവളുřിെനഴുേŋÂക്കണെമŋ് അřൂř³ ആþാപിചു്ച

(pitEnn ellaavarum veLuppinezhunnElkkaNamenn appUppan aajnjaapichchu)

(Grand father instructed all of them to get up next day early in the morning)

POS Tagger produces following output for the above sentence.

പിtäŋ് <Adv>എÃmവūം<RN> െവളുřിെനഴുേŋÂക്കണെമŋ ്<VERB>

അřൂř³ <NOUN>ആþാപിചു്ച <VERB>

PitEnn<Adv> ellaavarum<RN> veLuppinezhunnElkkaNamen~<VERB>

appUppan <NOUN> aajnjaapichch u<VERB>

Chapter-7

Department of Computer Science 132

Then the clause identifier separates the clauses as shown below.

Clause1:പിtäŋ് എÃmവūം െവളുřിെനഴുേŋÂക്കണെമŋ്

 (PitEnn ellaavarum veLuppinezhunnElkkaNamenn)

Clause 2: അřൂř³ ആþാപിചു്ച.

 (appUppan aajnjaapichchu)

For the above two clauses phrase chunker produces the output as shown

in table 7.3

Table 7.3 Phrase Chunker output for Example 2

Clauses POS string
Detected

String
Phrase

Tag
1) പിtäŋ ്<Adv>എÃmവūം<RN>
െവളുřിെനഴുേŋÂക്കണെമŋ<്VERB>

(PitEnn<Adv> ellaavarum<noun-RN>

veLuppinezhunnElkkaNamenn~<VERB>)
2) അřൂř³<NOUN>ആþാപിചു്ച <VERB>

appUppan <NOUN> aajnjaapichchu<VERB>

Adv RN VERB

NOUN VERB

Adv VERB

RN

NOUN
VERB

VP

NP

NP
VP

Fig 7.3 Screen shot of Phrase Chunker

Phrase Chunker

Cochin University of Science and Technology 133

Fig 7.3 describes the output of Phrase Chunker for the sentence

3. വിവാഹം കഴിċ ് നഗരĠിേലക്ക ് മടðിവŋ രാമ³ അച്ഛ sâ

നിേയാഗĠാÂ വനവാസĠിļ േപായി

(vivaaham kazhinj nagaththilEkk maTangivanna raaman achchhante

niyOgaththaal vanavaasaththinu pOyi)

(Raman who returned to city after marriage, went to forest according to the

decision of his father)

The phrases identified are listed below in table 7.4

Table 7.4 Final Output of Phrase Chunker

Phrases Phrase Tag
1)വിവാഹം കഴിċ ് (vivaaham kazhinj)
2)വിവാഹം കഴിċ ്നഗരĠിേലക്ക ്മടðിവŋ രാമ³
(vivaaham kazhinj nagaththilEkk maTangivanna raaman)

3)അച്ഛ sâ നിേയാഗĠാÂ (achchhante niyOgaththaal)

4)അച്ഛ sâ നിേയാഗĠാÂ വനവാസĠിļ േപായി
(achchhante niyOgaththaal vanavaasaththinu pOyi)

AdvT

AdjNP

AdvC

VP

7.3 Performance Evaluation

The performance of the phrase chunker was evaluated using the

standardized techniques like precision, recall, and F-score where precision is

defined as a ratio of number of correct chunks to the number of chunks in the

output and recall is the ratio of number of correct chunks to the number of

chunks in the test data.

Chapter-7

Department of Computer Science 134

Table 7.5 Performance Evaluation of the AIS-based Phrase Chunker

Chunk Precision Recall F-Score
NP 93.5% 92.6% 93.0%
VP 96.7% 97.1% 96.9%
NP-Obj 92.0% 92.2% 92.1%
NP-Dat 96.4% 97.0% 96.7%
NP-Acc 94.3% 95.2% 94.7%
NP-Gen 91.0% 90.5% 90.7%
NP-Loc 87.9% 88.3% 88.1%
NP-Soc 95.0% 95.0% 95.0%
NP-Inst 92.8% 91.4% 92.1%

F-score = 2*recall*precision/ recall+ precision [161]. Precision, recall and F-

score obtained for certain types of chunks are shown in table 7.5. Complete list

is given in appendix F.

Documents related to five different fields were selected as the test

corpus. All types of sentences were tested. Average precision is 91.3% and

recall 90.6%. Out of 5647 phrase chunks tested, 4671 chunks gave the results

correctly. 447 failure cases are identified where phrases were not in proper

order and also overlapping phrases were present. To separate the phrases

correctly, the word order within the phrase has to be corrected.

Table 7.6 Overall Performance of the Phrase Chunker

Predicted

Actual
Pos Neg Total

Pos 4671 447 5118

Neg 482 47 529
Total 5153 494 5647

 Average precision and recall can be obtained from the contingency table

shown in table 7.6.

Phrase Chunker

Cochin University of Science and Technology 135

TP = 4671 FP = 447 FN = 482 TN = 47

Average Precision = 4671 / (4671+447) = 91.3 %

Average Recall = 4671 / (4671+482) = 90.6 %

This phrase chunker is less complex and has high speed due to the

reduced number of computations. Without much difficulty, system can be

updated just by updating the self/non self cell patterns.

7.4 Chapter Summary

Phrase chunking and its importance in a QA System are discussed. Various

approaches to chunking, and methods adopted in different languages are described.

A thorough investigation of Artificial Immune Systems is done and its application

for phrase chunking is explained. A phrase tagset with 32 tags is also developed.

Chapter-7

Department of Computer Science 136

Named Entity Recognition and Classification is an important

preprocessing step in all NLU applications. Named Entities are

words or word sequences which usually cannot be found in common

dictionaries and yet encapsulate important information that can be

useful for the semantic interpretation of texts. Hence they are

helpful in understanding natural language documents. Support

Vector Machine-based NE Tagger for Malayalam language is

discussed in this chapter.

 A QA System becomes most effective when it understands the question

given by the user and returns the appropriate answer from the collection of

documents in the corpus. Answer selection is another important aspect that

requires understanding of NL documents. Both of these issues demand the

identification of semantic information which can be decided by the Named

Entities present in the question or texts in the corpus.

Named Entities are words or word sequences which usually cannot be

found in common dictionaries and yet encapsulate important information that

can be useful for the semantic interpretation of texts. The term “named entity”

Chapter-8

Department of Computer Science 138

now widely used in natural language processing was first introduced in 1995 by

the sixth Message Understanding Conference (MUC-6) [162]. At that time

MUC was focusing on the information retrieval tasks, where structured

information of company and defence related activities were extracted from

unstructured text such as newspaper articles. Then people noticed that

references to the entities such as names including person names, location

names, organization names and numerical expressions including date, time,

amount etc. were essential to recognize information units for accurate

information retrieval. Identifying these entities is one of the important tasks of

IE and was called Named Entity Recognition and Classification. The NE task

that was first introduced as a part of the MUC 6 (MUC 1995) evaluation

exercise was continued in MUC 7(MUC 1998) [163]. This formulation of NE

task defined 7 types of NE: PERSON, ORGANISATION, LOCATION, DATE,

TIME, MONEY and PERCENTAGE.

NEs are theoretically identified and classified using phonological,

morphological, semantic, and syntactic properties of linguistic forms that act as

the targets of linguistic rules and operations. Two kinds of features are

commonly used – internal and external. Internal features are provided from

within the sequence of words that constitute the entity and external features are

those that can be obtained by the context in which entities appear [164].

8.1 Related Work

Various techniques available for solving NER problems are statistical

machine learning techniques, rule-based systems and hybrid approaches.

Machine learning methods are using either supervised learning or unsupervised

learning techniques. Statistical methods require large amount of manually

annotated training data. A few commonly used statistical methods are Hidden

Named Entity Tagger

Cochin University of Science and Technology 139

Markov Model, Maximum Entropy Markov Model, and Conditional Random

Field. Sequence labelling problem can be solved very efficiently with the help

of HMM. The conditional probabilistic characteristics of CRF and MEMM are

very useful for the development of Named Entity Recognition (NER) systems.

MEMM is having a label biasing problem. But all the machine learning

techniques require large relevant corpuses which is unavailable in Malayalam.

Machine learning methods are cost effective and do not need much of language

expertise. In [165] authors describe an NER system using CRF. This system

uses different contextual information of the words along with both language

independent and language dependant features. GuoDong Zhou and Jian Su

[166] described a HMM based on the mutual information independence

assumption where they claimed that their system reached ‘near human’

performance. NER system based on MEMM is presented in [167].

Grammar-based techniques are used for creating NER systems that

obtain better precision but at the cost of lower recall and months of work by

experienced computational linguistics [168]. Rule-based approaches lack the

ability of coping with the problems of robustness and portability. Each new

source of text requires significant tweaking of rules to maintain optional

performance and the maintenance cost is quite high. Rule-based systems

perform the best especially for specialized applications. [169] introduces a rule-

based system that used handcrafted rules and this approach gave them better

performance than the CRF method.

Hybrid methods either use combinations of different machine learning

methods or combinations of rule-based and machine learning methods. In [170]

authors present an NE recognition tool for Portuguese. It has two components–

rule-based components for recognition of number expressions and hybrid

Chapter-8

Department of Computer Science 140

component for names. Lot of work has been reported in the field of NER for

English and European languages.

Research indicates that NER systems developed for one domain do not

typically perform well on another domain.

Asif Ekbal et.al [171] reports the development of a Named Entity

Recognition (NER) system for Bengali using the statistical Conditional

Random Fields (CRFs). The system makes use of the different contextual

information of the words along with the variety of features that are helpful in

predicting the various named entity classes. A portion of the partially NE

tagged Bengali news corpus, developed from the archive of a leading Bengali

newspaper available in the web, and has been used to develop the system. The

training set consists of 150K words and has been manually annotated with a NE

tagset of seventeen tags. Experimental results of average Recall, Precision and

F-Score values of 93.8%, 87.8% and 90.7%, respectively.

Bengali NER system in [172] used SVM approach for its development.

Training set contained 130,000 words with 16 NE tags using BIE model for

PERSON, LOC, and ORG entities. This model includes gazetteers for names of

persons, locations, organization, and miscellaneous. The evaluation reported a

goo F-Measure of 91.8%.

Hasan et.al (2009) [173] presented a learning-based Named Entity

Recognizer for Bengali that donot rely on manually constructed gazetteers in

which they developed two architectures for the NER system. The corpus

consisting of 77942 words is tagged with one of 26 tags in the tagset defined by

IIT Hyderabad where they used CRF++ to train the POS tagging model.

Evaluation results shows that the recognizer achieved an improvement of 7.5%

in F-measure over a baseline recognizer.

Named Entity Tagger

Cochin University of Science and Technology 141

B. B. Chaudhuri and S. Bhattacharya [174] have proposed a three-stage

approach of named- entity detection. The stages are based on the use of Named-

Entity (NE) dictionary, rules for named-entity and left-right co- occurrence

statistics. Corpus of Anandabazar Patrika has been used from the year 2001-

2004. Experimental results have shown the average recall, precision and f-

measure to be 85.50%, 94.24% and 89.51%.

Vijayakrishna and Sobha L [175] developed a domain focused Tamil

NER for tourism using CRF. The tag set contained106 tags. Morphological

analysis, POS tagging, NP Chunking and NE annotation are done manually on

the corpus. This corpus is divided into training data (80%) and test data (20%).

CRF model is then trained with the training data. A total of 4059 NEs are tested

and obtained an overall F-Measure of 80.44%.

S Lakshmana Pandian [176] describes a hybrid 3-stage NER system for

Tamil. There are 3 phases namely shallow parsing, shallow semantic parsing,

and statistical processing. Statistical processing uses E-M algorithm which

takes inputs from both shallow parsing and semantic parsing stages. Average F-

Measure values obtained is 72.72%. This system uses both linguistic and

statistical methods.

[177] describes NER system for Hindi using CRF approach. The training

set has been manually annotated with a NE tag set of 12 tags. The performance

of the system has shown improvements by using the Part-of-Speech information

of the current and surrounding words, name list, location name list, organization

list, person prefix gazetteers list etc. It has been observed that using prefix and

suffix feature helped a lot in improving the results. This system has achieved

Precision, Recall and F-score of 72.78%, 65.82% and 70.45% respectively.

CRF++ toolkit was used for training and testing data.

Chapter-8

Department of Computer Science 142

Saha et.al [178] describes the development of Hindi NER using MEMM

approach. The training data consisted about 234K words collected from the

newspaper “Dainik Jagaran”. It was evaluated against a blind test corpus of 25K

words having four classes –PERSON, ORGANISATION, LOCATION, and

DATE. This system is able to achieve an f-value of 81.52%, using a hybrid set

of features including traditional NER features augmented with gazetteer lists

and extracted context patterns.

Amit Goyal describes [179] a NER system for Hindi language using

CRF approach which also identifies nested entities. This method was evaluated

on test set 1 and test set 2 and attains a maximal F1 measure around 49.2 and

nested F1 measure around 50.1 for test-set 1; maximal F1 measure around

44.97 and nested F1 measure 43.70 around for test-set 2 and F-measure of

58.85% on development set.

Authors of [180] describes the application of Conditional Random Fields

(CRFs) with feature induction to a Hindi named entity recognition task. They

discover relevant features by providing a large array of lexical test and using

feature induction to construct the features that increases the conditional

likelihood. Combination of Gaussian prior and early-stopping based on the

results of 10-fold cross validation is used to reduce over fitting.

Gupta and Arora (2009) [181] describes the observation made from the

experiment conducted on CRF model for developing Hindi NER. It shows some

features which makes the development of NER system complex. It also

describes the different approaches for NER. The data used for the training of

the model was taken from Tourism domain and it is manually tagged in IOB

format.

Named Entity Tagger

Cochin University of Science and Technology 143

Biswas et.al [182] presented a hybrid system for Oriya NER that applies

both ME and HMM and some handcrafted rules to recognize NEs. Firstly the

ME model is used to identify the named entities from the corpus and then this

tagged corpus is regarded as training data for HMM which is used for final

tagging. The annotated data used in the system is in IOB format. The F-

Measure obtained was between 75% and 90%.

[183] explains a Telugu NER system by using MEMM approach. The

corpus was collected from various newspapers. The system makes use of the

different contextual information of the words and gazetteer list was also

prepared manually or semi-automatically from the corpus and came out with an

F-Measure of 72.07% for PERSON, 60.76%, 68.40%, and 45.28% for ORG,

LOC, and others respectively.

A CRF-based NER system is explained in [184]. This describes the

working of a noun tagger. This system was trained with a manually tagged data

of 13425 words and tested on a data set of 6223 words. F-Measure obtained in

various experiments is between 80% and 97%. This work is only for single

word NEs. No POS Tagger or Chunker information is used for this work.

In [185] authors present the experiments conducted as a part of NER for

South and South East Asian Languages (NERSSEAL) Competition with

various feature combinations for Telugu NER. It is also observed that the prefix

and suffix information helps a lot in finding the class of the token. The best

performing model gave an Fβ=1 measure of 44.91.

Authors of [186] describe a handcrafted rule-based NER for Assamese.

A corpus of about 50000 words of Assamese online Pratidin article was first

manually tagged. This tagged corpus is then analyzed to form the rules.

Chapter-8

Department of Computer Science 144

8.2 Difficulties in Finding Named Entities in Malayalam Language

NER in Malayalam language is a difficult task since it is not case

sensitive as English and other European languages. Owing to its agglutinative

nature most of the words are compound words and hence NE of these words

cannot be determined directly. The world of NE is “open” since new Person,

Location, and Organization names are coming up regularly. It is impossible to

add all these NEs to a dictionary and it is a time consuming task. Another

problem is that the same word can be grouped into several NE types.

8.3 Methodology- Support Vector Machines

Support Vector Machine proposed by Vapnik is a set of machine learning

algorithms based on statistical methods. It is known as one of the best supervised

learning algorithms and has been successfully applied to natural language tasks

such as text categorization [187], phrase chunking [188], POS Tagging [189],

data classification [190] etc. This algorithm analyses data and recognizes patterns

used for statistical classification and regression analysis [191].

Assigning a Named Entity label to a word in the sentence can be taken

as a classification problem. SVM is normally used for solving binary

classification problems but can be extended to solve multiclass problems such

as Named Entity Classification (NEC). Linguistic features are mapped to SVM

feature vectors and setting these features to 1 if it exists or else 0 otherwise.

These feature vectors are used to decide whether a word is an NE or not, and

the specific class of NE to which the word belongs.

Named Entity Tagger

Cochin University of Science and Technology 145

Multiclass SVM

Multiclass SVMs are usually implemented by combining several two-

class SVMs. Popular methods for doing this are: one-versus-all method using

Winner-Takes-All (WTA) strategy, one-versus-one method implemented by

Max-Wins Voting (MWV), Directed Acyclic Graph-SVM (DAG-SVM), and

error-correcting codes [192].

For a given multiclass problem, M will denote the number of classes and

ωi, i = 1... M will denote the M classes. For binary classification the two classes

are referred as positive and negative. A binary classifier will be assumed to

produce an output function that gives relatively large values for examples from

the positive class and relatively small values for examples belonging to the

negative class.

WTA SVM

WTA SVM constructs M binary classifiers. The ith classifier output

function ρi is trained, taking the examples from ωi as positive and the examples

from all other classes as negative. For a new example x, WTA SVM strategy

assigns it to the class with the largest value of ρi.

MWV SVM

This method constructs one binary classifier for every pair of distinct

classes and so, all together M (M − 1)/2 binary classifiers are constructed. The

binary classifier Cij is trained in taking the examples from ωi as positive and the

examples from ωj as negative. For a new example x, if classifier Cij says x is in

class ωi, then the vote for class ωi is added by one. Otherwise, the vote for class

ωj is increased by one. After each of the M (M−1)/2 binary classifiers makes its

vote, MWV strategy assigns x to the class with the largest number of votes.

Chapter-8

Department of Computer Science 146

 A

 B

 C

B

A

A

C

B

C

Fig 8.1 Diagram of Pairwise SVM Decision boundaries on a basic Problem

For example, in Fig 8.1 there are three classes A, B, and C. Using MWV

strategy, 3*(3-1)/2= 3 binary classifiers are created namely CAB, CBC, and CCA.

CAB classifies word in the test data as of class A or class B by increasing the

count corresponding to A or B. CBC and CCA repeats the same process and

increases the count corresponding A or B or C. Repeating this strategy, each

word in the test data is assigned a class label either as A or B or C.

8.4 Malayalam NE Tagger

This tagger takes a document marked with POS and phrase tags, and

produces an NE tagged document. Block diagram of Malayalam NE Tagger is

given in Fig 8.2. There are mainly four modules, NE marker, NE identifier, NE

classifier, and NE Disambiguator. NE Marker determines whether a token is a

Named Entity or not. NE identifier categorizes an entity as sole-entity,

constituent-entity, or dependant-entity. If a particular token is an entity, then it

is classified as one of the 26 predefined categories. Sometimes it might not be

possible to tag a token with a single NE tag, and then NE Disambiguator solves

the issue using the Gazetteer lists and assigns the token an NE tag.

Named Entity Tagger

Cochin University of Science and Technology 147

Fig 8.2 Block Diagram of NE Tagger

8.4.1 NE Marker

The function of this module is to classify the incoming tokens into an

NE or NOT-AN-NE (NAN). For this purpose, it checks the POS tag of each

token in the input document. Words which have POS other than ‘VERB’,

‘AuxV’, and postpositions are decided as named entities and label them with

‘NE’ tag while all other tokens are assigned a ‘NAN’ tag.

8.4.2 NE Identifier

Once an ‘NE’ tag is assigned to a token, next step is to determine its type

whether it is sole entity, constituent entity, or dependant entity. A word which can

 NE Marker

 NE Identifier

NE Disambiguator

Sliding Window Feature Extractor

SVM Classifier NE Classifier

Document with POS and phrase

NE tagged document

Chapter-8

Department of Computer Science 148

act as an entity irrespective of its surroundings is called a sole entity. A word which

cannot stand as a sole NE can be combined with other words to form an NE. Such

words are constituent entities. Owing to the presence of certain surrounding words,

a word can become an entity which is called dependant entity.

Table 8.1 Named Entity Tagset

NE Tagset
DISEASE

MEDICINE

TREATMENT

ORGANISATION

PERSON

LOCATION

VIRUS

PRECAUTION

FOOD

DEFINITION

REASON

ELEMENT

AGE

MEDIUM

FUNCTION

REST

DESCRIPTION

SYMPTOM

TIME

DATE

COLOR

TEST

OBJECT

JOURNAL

COUNTRY

AGENT

8.4.3 NE Classifier

The NE Classifier determines the NE classes of all entity tokens in the

document. An NE tagset is designed for this work and it contains 26 NE tags

which are listed in Table 8.1.

To classify an entity into one of these 26 tags, SVM is used. During the

training phase, features are extracted from the training data and classifiers are

designed for each named entity. For classification, features are extracted from

the current document and are encoded as vectors. If the entity is a sole entity

Named Entity Tagger

Cochin University of Science and Technology 149

internal or external features are not required for classification since the entity

itself determines its NE. In the case of a constituent entity, internal features

(internal to the word) are used for the classification while a dependant entity

uses external features or surrounding features. The features used for NER and

classification are given below.

For a constituent entity internal features are extracted to form a feature

vector. Dependant entity uses a sliding window and feature extractor to obtain

the external features. Once the feature vector of the input token is ready, WTA

strategy of Multiclass SVM can be used to determine the NE label.

Features used for Named Entity Identification and Classification

In this system clues present as inner word (internal feature) and context

word (external features) are used for NE identification and classification. Some

of these features are Language Independent Features while others are Language

Dependant Features [193].

Language Independent Feature

Word Prefix/Suffix

Prefix/Suffix information of a word and its surrounding words are useful

for highly inflected language like Malayalam. Word suffix information is useful

to identify the named entities. Variable length suffixes can be matched against

the list of suffixes for different classes of NEs. A list of linguistic suffixes

(verbs, adjectives, adverbs, nouns) is prepared which helps to recognize ‘Not a

Named Entity’ cases. Certain suffixes are helpful in detecting Named Entities

such as PERSON, LOCATION etc.

Chapter-8

Department of Computer Science 150

Digit Information

This gives word level orthographic information. If a word contains digits

or special symbols, corresponding feature is set to 1; otherwise 0. Three features

are considered depending upon the presence of digits and/or the number of

tokens, combination of digits and symbols. These features are helpful in

recognizing DATE expressions, TIME expressions, AGE expressions etc.

Length of the Word

If the length of the word is greater than two, the feature ‘Length’ is set to

1; otherwise it is set to 0. Named Entities, since they are nouns/noun phrases or

open class entities they are rarely shorter words.

Word position

There are two features corresponding to word position. The feature ‘First

Word’ is set to 1 if the current word is the first word of the sentence; or else set

to 0 and the feature ‘Last Word ‘is set to 1 if the given word is the last word of

the sentence.

Frequent Word List

According to Luhn, words with very high frequency and very low frequency

are not sense carrying agents, they are either rare words or closed class words.

Surrounding Words

Previous and subsequent words of a particular word are used as features.

This feature is multivalued. Different window sizes were used for different

domains in different experiments.

NE Information

The NE tags of the previous words are used as a dynamic feature.

Named Entity Tagger

Cochin University of Science and Technology 151

Language Dependant Feature

Parts of Speech Information

POS of the current word and the surrounding words are important to

recognize NEs. POS also indicates whether the word is a ‘stand alone word’ or

part of a phrase.

Phrase Chunk Information

Certain NEs are noun phrases which appear either directly or as a part of

other phrases such as postpositional phrases.

8.4.4 NE Disambiguator

Gazetteer lists are created for the names of diseases, persons and

locations. In case NE Classifier cannot decide the final NE tag of the token,

decision is made by this module.

8.5 Performance Evaluation

Its performance is evaluated using standardized techniques precision,

recall and F-score where precision is defined as a ratio of number of correct NE

tags in the output to the number of NE tags in the output and recall is the ratio

of number of correct NE tags in the output to the number of NE tags in the test

data. Fscore = 2*recall*precision/ (recall+ precision) [194]. Documents in the

corpus were selected from the medical domain. Then 4000 sentences were

randomly selected for training and 700 sentences as test set. Precision, recall,

and F-score obtained for certain NE tags are shown in Table 8.2. Highest recall

is 96.21% for the entity LOCATION and highest precision for the entity

JOURNAL. Highest F-Score is obtained for the named entity JOURNAL.

Chapter-8

Department of Computer Science 152

Table 8.2 NER Performance by Named Entity Type

Named Entity Recall Precision F-Measure

PERSON
ORGANISATION
LOCATION
DISEASE
SYMPTOM
REASON
AGE
TIME
DATE
DESCRIPTION
VIRUS
JOURNAL
MEDICINE
MEDIUM
PRECAUTION
TREATMENT
FOOD
DEFINITION
ELEMENT
FUNCTION
REST
COLOR
TEST
OBJECT
COUNTRY
AGENT

95.32
89.25
96.21
88.41
86.38
82.18
87.64
90.40
92.67
91.20
95.47
96.00
92.87
74.49
78.34
88.00
87.04
87.00
88.24
84.52
87.64
79.28
81.65
78.43
79.36
80.14

94.28
88.46
95.30
89.53
84.14
83.60
89.43
92.52
91.45
90.16
94.50
97.23
94.75
76.28
75.65
86.50
92.56
91.03
89.21
85.31
91.45
82.71
82.27
81.10
85.42
81.16

94.78
88.85
95.75
88.97
85.25
82.88
88.52
91.44
92.05
90.68
94.98
96.61
93.80
75.37
76.97
87.24
89.72
88.97
88.77
84.91
89.50
80.96
81.46
79.74
82.28
80.65

Average 86.90 87.90 87.70

Table 8.3 Overall Performance of the Named Entity Tagger

Predicted Actual
Pos Neg Total

Pos
743 102 845

Neg 113 53 166

Total 856 155 1011

Named Entity Tagger

Cochin University of Science and Technology 153

The contingency table given above shows the overall performance of

Named Entity Tagger.

 TP = 743 FN= 113 FP = 102 TN= 166

Average Precision = 743 / (743+102) = 87.9 %

Average Recall = 743 / (743+113) = 86.9 %

Table 8.4 gives a few examples of Named Entities identified and

corresponding NE tags assigned. Underlined word/phrase/sentence is the

Named Entity identified.

8.6 Chapter Summary

NER plays an important role in the design of an accurate answer

retrieval and efficient MT system. The objective of NER is to categorize all NE

words in a document into predefined classes like PERSON, LOCATION,

DISEASE etc.

Twenty six Named Entity tags were identified for a closed domain QA

System in the medical domain. An SVM based NER system is designed and its

details are discussed in this chapter. Results show that Multiclass SVM is a

promising method for Malayalam NE classification and recognition. Approach

presented here requires linguistic preprocessing of the document text such as

morphological analysis, POS Tagging and phrase chunking.

Chapter-8

Department of Computer Science 154

Table 8.4 NE Tag Examples

NE TAG Examples and the Named Entity

TREATMENT

SYMPTOM

MEDICINE

REST

AGE

ELEMENT

DEFN

TEST

പ³ÜËª°½«£ª²¹ „Ô²¹ μ‰¯©²Ô²¹ ‰²¦Ç Â³¶¾¯−¸ ‰³“²˜§²á ‚®¯¥ª²¹ ‚—¸

ƒ· ¶¥¯‹¹ ‰”°œ£ß¯ÌªÜ¾²á £²Š»ü°‰°Þ−¯ œ°Ü¶Í«Äà

(pURNNa viSramavum uppum kozhuppum kuRanja glukkOs kUTuthaluLLa

aahaaravum aaN~ ii rOgam kaThinamallaaththavaRakkuaLLar

mukhyachikilsaa nirddESangaL)
üÜÍ° ˆ¯¾¯œ¹ ª¤μ¦¥°Å°Þ †Ò± ¶¥¯‹§À—Äà „Ê¯‰¯¹

(chhaRddi oaakkaanam vayaRerichchil ennI rOgalakSHaNangaL

unTaakaam)

ƒúÜμý¶¦¯É †Ò £¥²Ò¸ (intaRpheRON enna marunn)
£Çപ°Ì¹ ˜±ÜÅμÔ“²Ì°¤¯Þ £³Ò² œ¯§¸ ‚©¸ü ª°½«£μ£“²¾—¹.

(manjappiththam thIRchchappeTuththiyaal mUnn naal~ aazhcha

viSRamameTukkaNam)
‡˜² ½പ¯¤Ì°§²áªμ¥¤²¹ μ®ÔμμÝÝ°−¸† £Çപ°Ì¹ ¡¯›°¾¯μ£Ã°§²¹

‰²È°‰¨°§¯—¸ ‰³“²˜Þ ¶¥¯‹−¯Î»˜.

(aethu praayaththiluLLavareyum heppataitis A manjappiththam
baadhikkaamenkilum kuTTikaLilaaN~ kUTuthal rOgasaaddhyatha)

¥øÌ°Þ μ¡Þ¦³¡°Ï അ˜°‰¥°¾²Ò˜² £³§£¯—¸ «¥±¥Ì°œ¸ £Çœ°¦¹ „Ê¯‰²Ò˜

(rakthaththil belRUbin athikarikkunnathu mUlamaaN~ SarIraththin~
manjaniRam unTaakunnath~)

£Çപ°Ì¹ ‰¥¨°μœ ¡¯›°¾²Ò ¶¥¯‹£¯—¸

(manjappiththam karaLine baadhikkunna rOgamaAN~)

†Å¸¡°†−¸†S° (echch~ bi es~ e Ti)

In this chapter various performance evaluation techniques that can

be used for QA Systems are discussed. The experimental details and

various methods of MaQAS evaluation are also described.

In Information Retrieval systems, user query request is inherently vague

and the retrieved documents are not exact answers and hence they have to be

ranked according to their relevance to the query. Such relevance ranking

introduces a component which plays central role in IR that determines how

precise the answer set is. This type of evaluation is referred to as retrieval

performance evaluation [195]. Such an evaluation is based on a test reference

collection and on an evaluation measure. The test reference collection consists

of a collection of documents, a set of sample information requests, and a set of

relevant documents for each sample information request. Given a retrieval

strategy S, the evaluation measure quantifies the similarity between the set of

documents retrieved by S and the set of relevant documents.

When considering the performance evaluation of IR systems, we should

first consider the retrieval task that is to be evaluated. For instance, the retrieval

task could simply consist of a query processed in batch mode or of a whole

Chapter-9

Department of Computer Science 156

interactive session. Batch and interactive query tasks are quite distinct processes

and thus their evaluations are also distinct. Besides the nature of the query

request one has to consider the environment where the evaluation will take

place and the type of interface used. Evaluation of experiment performed in a

laboratory might be quite distinct from evaluation of experiments carried out in

real life situation.

9.1 General Methods of Evaluation

From previous chapters it is evident that the QA Systems are not just made

up of a single component but a series of components working together to achieve

the final goal. Though the final goal of a QA System is to obtain a correct answer

to the question asked, each of the individual components within the system has

their own goals which eventually lead to the final goal. Thus the performances of

the individual components are likely to influence the entire QA task.

Black-box Evaluation Approach –Here the performance of the system is

considered as whole without caring much about the performance of individual

components [196]. Thus the final answer from the system is compared with the

question asked to evaluate the QA System. A correct answer is what is expected

from a QA System but there could be more than one correct answer for a given

question. Thus the QA System needs to find out all possible final answers.

Glass-box Evaluation Approach – Here each of the individual components of

QA Systems are evaluated with appropriate methods particular to that component

[196]. The goal is to have optimal performances for each individual component

which will ultimately lead to a better overall performance of the QA System.

Interactive Setting - Evaluation Scenario (setting) determines the appropriate

evaluation metrics. An example task for interactive setting is finding out the

Performance Evaluation

Cochin University of Science and Technology 157

answers for a questionnaire. The performance of the system is measured in

terms of the average number of questions attempted, the average number of

questions answered correctly, and the time taken to fill out the questionnaire.

Non-Interactive Setting - In a batch (or non-interactive) setting, the ability of

the system is measured by finding the relevant documents corresponding to a

query and ranking them accordingly [197].

9.2 Evaluation Metrics

To accurately measure the performance of a QA System we need matrices

that can provide good indication on how the system would perform in real world

scenario. In QA it is important to retrieve documents that contain the answer or part

of the answer that will satisfy the user question. There are a number of evaluation

measures that can be used to compare the performance of the various retrieval

techniques. Each measure highlights a different aspect and use of several measures

to describe the performance of a system is more revealing than using a single

measure. On the other hand, when comparing systems, it is often more convenient

to use a single measure and the choice depends on the purpose of the retrieval

system and the context in which it is used.

Precision and Recall

These are the most commonly used indicators to measure IR retrieval

quality. Precision of the system is the fraction of retrieved material that is actually

relevant. Recall is defined as the fraction of relevant material actually retrieved in

answer to a search request [198]. Precision can be seen as a measure of exactness

or quality whereas recall is a measure of completeness or quantity. High recall

means that a system returned most of the relevant results. High precision means

Chapter-9

Department of Computer Science 158

that the system returned more relevant results than irrelevant. Precision and recall

are depicted in fig 9.1.

Consider a sample information request I. Given that |Rr| be the number

of relevant documents retrieved, |Rj| be the number of irrelevant documents

retrieved and |Nr| be the number of relevant documents not retrieved, then the

precision and recall are given by the following equations.

Precision= |Rr|/ (|Rr|+|Rj|) = A ∩ B / B

Recall= |Rr|/ (|Rr|+|Nr|) = A ∩ B / A

Fig 9.1 Set Diagram Showing Elements of Precision and Recall

Precision and recall can also be defined by a contingency table. This
table is normally used in classification tasks. A typical contingency table used
in IR systems is shown below.

Table 9.1 Contingency Table

Total Documents(D) Relevant (A) Non-Relevant (A’)
Retrieved
(Predicted +ve) (B)

TP = A ∩ B
(true +ves)

FP= A’ ∩ B
(false +ves)

Not Retrieved
(Predicted -ve) (B’)

FN= A ∩ B’
(false -ves)

TN= A’ ∩ B’
(true –ves)

TP = Number of true positives
FP = Number of false positives
TN = Number of true negatives
FN = Number of false negatives

Relevant but
not Retrieved
(Nr)

Retrieved Retrieved
 And but not
Relevant relevant
(Rr) (Rj)

A
B

Performance Evaluation

Cochin University of Science and Technology 159

True positives are documents deemed relevant by both the human expert

and the information retrieval system. False positives are returned by the IR

system, but were reckoned irrelevant to the query by the human expert. False

negatives are documents relevant to the query which are not found by the

system. True negatives are not returned by the system and are considered

irrelevant by the human expert.

Accuracy = (TP+TN)/ (TP+FP+TN+FN)

Precision = TP / (TP+FP)

Recall = TP / (TP+FN)

F-Measure

F-Measure or F-Score can be defined as harmonic mean of precision and

recall. It is a measure of system’s accuracy. It considers both the precision P

and recall R to compute the score.

F-Measure F = 2* P*R / (P + R)

F-Measure reaches its best value at 1 and worst score at 0. It is 0 when

no relevant documents have been retrieved and is 1 when all ranked documents

are relevant. The harmonic mean F assumes a high value only when both recall

and precision are high [69].

9.3 MaQAS –Implementation

MaQAS accepts questions in simple sentences, analyses them, and

returns answers in a single word, phrase, or sentence. The platform used for the

implementation of MaQAS is given below.

Chapter-9

Department of Computer Science 160

Platform Used

An Intel Core2 Duo CPU 2.00 GHz with 2GB RAM and 150GB Hard

disk was used. Operating System was Windows XP.

Database: My SQL Version 4.1.14

Language: J2SDK 1.4.2

Testing Environment

The corpus was prepared by collecting documents from medical books,

journals, and health magazines like “Arogyam” (health). Test questions were

gathered from various users around us. This system was tested with hundreds of

different types of questions. A sample document and a set of sample questions

are given below.

Sample Document

a\pjyicoc¯nÂ DZc¯nsâ heXp`mK v̄ hmcnsbÃpIÄ¡v sXm«p

XmsgbmWv IcÄ ØnXnsN¿p¶Xv. {][m\ambpw sl¸ssäänkv F

sshdkpIfmWv]SÀ∂p]nSn¡p¶ aª]n¯¯n\p ImcWw. {][m\ambpw

aen\Pe¯neqsS]Icp¶ sl¸ssäänkv F AhnIknX cmPy§fnemWv

IqSpXembn ImWs¸Sp¶Xv. GXp {]mb¯nepÅhscbpw sl¸ssäänkv F

aª¸n¯w _m[n¡msa¦nepw Ip«nIfnemWv IqSpXÂ tcmKkm²yX.

]IÀ¨hym[nbmb aª]n¯w hÀj¯nseÃm¡mehpw]SÀ ∂p]nSn¡msa¦nepw

ag¡me¯mWp tcmKw IqSpXÂ hym]IamIp¶Xv. aen\Pew D]tbmKn v̈

IgpInb]ghÀ¤§Ä,]¨¡dnIÄ Ch D]tbmKn¡p¶XneqsSbpw tcmKw

]Icmw.

Performance Evaluation

Cochin University of Science and Technology 161

Transliterated version of above document is given below.

manushyaSrareeraththil udaraththinte valathubhaagathth~ vaariyellukaLkk~

thottu thaazheyaaN~ karaL sthhithicheyyuth~. pradhaanamaayum heppataitis~

e vaiRasukaLaaN~ paTarnnupiTikkunna manjnjapiththaththinu kaaraNam.

pradhaanamaayum malinajalaththilooTe pakarunna heppataitis~ e avikasitha

raajyangngaLilaaN~ kooTuthalaayi kaaNappeTunnath~ Ethu

praayaththiluLLavareyum heppataitis~ e manjnjappiththam

baadhikkaamengkilum kuTTikaLilaaN~ kooTuthal rOgasaaddhyatha

pakarchchavyaadhiyaaya manjnjapiththam varshaththilellaakkaalavum paTar

nnupiTikkaamengkilum mazhakkaalaththaaNu rOgam kooTuthal

vyaapakamaakunnath~. malinajalam upayOgichch~ kazhukiya

pazhavarggangngaL, pachchakkaRikaL iva upayOgikkunnathilooTeyum rOgam

pakaraam.

Sample Questions

a. F´mWv aª¸n¯w? (enthaaN~ manjnjappiththam?) (what is

Jauntice?)

b. aª¸n¯w F¶mÂ F´mWv? (manjnjappiththam ennaal enthaaN~?)

(what is meant by Jauntice?)

c. F§s\ NnInÕn¡Ww? (engngane chikithsikkaNam?) (how to treat?)

d. F´mWv acp¶v? (enthaaN~ marunn~?) (what is the medicine?)

e. F´p NnInÕbmWv aª¸n¯¯n\pÅXv? (enthu chikithsayaaN~

manjnjappiththaththinuLLath~ ?)(what is the treatment for Jauntice?)

An example of a document available in the corpus and types of questions

used for testing the system are listed in Appendix G and H respectively.

Chapter-9

Department of Computer Science 162

MaQAS performance was evaluated employing various measures and its

details are vividly portrayed below.

9.4 Performance Evaluation of MaQAS

Evaluation criteria do a major job in the completeness of performance

analysis. The question set was first divided into ten different categories based

on the question type and then into 26 categories based on the expected NE type.

These questions were then fed into the QAS one by one and the retrieved

answers were analysed. MaQAS was evaluated using the measures precision,

recall, and F-Measure. Table 9.2 shows the test results of MaQAS for a

particular run. It gives the following information.

Total number of questions asked = 200

Number of answers present in the corpus = 171 (147+24)

Number of questions correctly answered = 147

Number of questions wrongly answered = 19

Number of answers present in the corpus but not retrieved = 24

Answers which were not relevant = 10

Table 9.2 Contingency Table Showing MaQAS output

Number of Answers Relevant Not-relevant
Retrieved

Not retrieved

 147 19

 24 10

 True Positives (TP) = 147

 False Positives (FP) = 19

 True Negatives (TN) = 10

 False Negatives (FN) = 24

Performance Evaluation

Cochin University of Science and Technology 163

 Precision (P) = TP / (TP+FP) =147/ (147+19) = 88.5%

 Recall (R) = TP / (TP+FN) =147/ (147+24) = 85.9%

 F-Measure = 2*P*R/ (P+R) = 2*88.5*85.9/ (88.5+85.9) = 87.2%

9.5 Analysis and Discussion of Results

Performance of MaQAS was evaluated by measuring its ability to

retrieve all and only relevant information. MaQAS performance is strongly

dependant on NE Tagging and correct processing of the queries. The system

achieved an overall precision of 88.5% and 85.9% of recall. There is a tradeoff

between precision (P) and recall(R). Higher the value of P lower will be the

value of recall and vice versa. The F-Measure is the harmonic mean of P and R.

Referring to Table 9.2 it is clear that for 200 questions asked, 166

answers were retrieved out of which 147 answers were relevant to the query and

19 were non-relevant. Even though 24 other relevant answers existed in the

corpus they were not extracted because some of the question patterns were not

recognized properly or semantics was not sufficient enough to identify the

required NE. In this work, retrieval scheme is purely based on named entities.

Hence all the sentences with the candidate entities are retrieved. But all these

entities might not be the answers to the question.

Table 9.3 Performance of MaQAS

Questions

Relevant
Answer

Retrieved
Answers

Correct
Output

Recall Precision F-
Measure

200

173

166

147

85.9

88.5

87.2

Chapter-9

Department of Computer Science 164

The overall performance of MaQAS is given in Table 9.3. Precision of

88.5% shows that the answers retrieved are correct answers and only very few

non-relevant answers are retrieved. Percentage of recall is less than precision

and is 85.9%. This can certainly be improved by providing a WordNet facility.

While raising the questions no restriction is kept to avoid any bias that may

affect the system performance. Question patterns were prepared just

considering the question keyword. No considerations were given to other words

which are present in the question as different users might use different

combinations of words or phrases. It is not possible to consider all word

combinations that can occur in a query and also is not an efficient practice. If a

WordNet is present, it can be used during the identification of secondary

keywords of question analysis phase which will certainly increase the recall

value.

Table 9.4 describes the performance of MaQAS based on question type.

Factoid and certain non-factoid questions were only considered in this work.

Yes/No questions are not considered in the design of MaQAS and hence still it

remains as a research topic. Poor performances of other question types are

mainly due to the disability of correct identifications of NE from the question

analysis phase. Handling of ‘HOW’ and ‘WHY’ type questions are the most

difficult because they mostly require answers spreading over more than one

sentence or paragraph. These questions sometimes require deep semantic

processing of the sentences and identification of more keywords to detect the

presence of explanations, intentions, justifications etc.

Performance Evaluation

Cochin University of Science and Technology 165

Table 9.4 Performance According to Question Type

Question
type

No.of
questions

Retrieved
Answers

Correct
Answers

Wrong
Answers

Relevant
Not-

Retrieved
Precision Recall F-

Measure

Who

Where

What

Why

Which

When

How

How

much

Others

Yes/No

5

11

48

6

53

14

26

9

18

10

4

6

44

4

49

12

23

4

15

5

3

5

42

3

46

10

18

4

13

3

1

1

2

1

3

2

5

0

2

2

0

2

2

2

4

2

5

1

4

2

75

83.3

95.5

75.0

93.9

83.3

78.3

100

86.7

60.0

100

71.4

95.5

60.0

92.0

83.3

78.3

80.0

76.5

60.0

85.7

76.9

95.5

66.7

92.0

83.3

78.3

88.9

81.3

60.0

Total 200 166 147 19 24

Performance based on expected answer type is listed in Table 9.5. No

answer is retrieved for ‘ORGANISATION’ type questions. This is because no

organization NE is present in the index. Though this entity is not present in the

documents presently tagged, it might be required in future. Named Entity

‘ORGANISATION’ is considered in the tag list since it is noticed during the

question analysis phase that many user questions had this. At the same time

100% accuracy is obtained for ‘REST’ type questions. The failures in NE

Tagging, question analysis phase and unavailability of appropriate answers in

the corpus are the reasons behind the reduced performance rate in other

question types.

Chapter-9

Department of Computer Science 166

Table 9.5 Performance According to Answer Type

Answer Type No. of
questions

Retrieved
Answers

Correct
Answer

Wrong
Answer

Relevant
Not-Retrieved

DISEASE

MEDICINE

TREATMENT

ORGANISATION

PERSON

LOCATION

VIRUS

PRECAUTION

FOOD

DEFINITION

REASON

ELEMENT

AGE

MEDIUM

FUNCTION

REST

DESCRIPTION

SYMPTOM

TIME

COLOR

TEST

OBJECT

JOURNAL

COUNTRY

AGENT

DATE

6

8

12

4

6

11

7

14

11

7

13

4

4

10

5

8

6

6

10

6

8

2

4

4

9

6

4

6

10

0

5

9

6

12

11

6

11

4

3

9

4

8

6

4

9

5

6

2

4

3

8

5

4

6

9

0

4

7

5

11

10

6

10

4

3

7

4

8

4

4

8

5

6

2

3

2

8

4

1

0

1

0

1

2

1

1

1

0

1

0

0

2

0

0

2

0

1

0

0

0

1

1

0

1

0

1

1

0

0

2

1

2

1

0

4

0

0

1

0

0

2

1

1

0

0

0

1

2

1

1

Performance Evaluation

Cochin University of Science and Technology 167

Table 9.6 Performance of Different Runs

Run ID
Total

Questions
Retrieved
Answers

Correct
Answers

Wrong
Answers

Relevant Precision Recall Accuracy

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

112

97

63

150

170

45

200

98

92

57

141

122

39

166

90

82

45

121

104

38

147

8

10

12

20

18

1

19

108

95

60

148

134

40

171

91.8

89.1

78.9

85.1

85.2

97.4

88.5

83.3

86.3

75.0

81.7

77.6

95.0

85.9

80.3

84.5

71.4

80.7

61.2

84.4

78.5

Questions were collected from seven users of different walks of life and

the respective results are shown in Table 9.6.

9.6 Chapter Summary

Performance evaluation of MaQAS is discussed in this chapter. General

measures used to evaluate the performance of QA Systems are described. Then

the analysis and discussion of experiments conducted to test the system

MaQAS is presented. The experimental results show that the Named Entity

Based approach is a successful method for QAS. In addition to keyword

matching, use of the deep analysis of the text helps to improve the performance

of the system. Double level index not only reduced the run time overhead but

also increased the speed of answer retrieval.

Chapter-9

Department of Computer Science 168

Main contributions of this research work are highlighted in this

chapter. Some open issues in the design of Malayalam QAS are

discussed and the ways in which they could be addressed in future

work are proposed.

This research work is about the development of a QAS for Malayalam

language. MaQAS extracts answers suitable to the type of question using

Named Entity techniques. Question Answering Systems available in other

languages are mostly document or passage retrieval systems or sometimes

extract answers just by keyword or pattern matching techniques. In this system,

question is analysed and type of the expected answer is identified. Then double

level indexing scheme is used to extract possible candidate sentences from the

preprocessed documents. These sentences are ranked and top scored sentence is

used as answer candidate from which the Named Entity that matches the

question type is separated.

In this approach, various Natural Language Processing tools are used for

the analysis of both the question and the documents. The most important part of

this system is the document preprocessor which performs morphological

analysis, syntactic analysis and semantic analysis. These stages tag each word

of the document with POS, phrase, and NE tags. Next important stage is a

Chapter-10

Department of Computer Science 170

question classifier which uses pattern matching and rules that have been

formulated by observing a bank of sample questions. This system classifies the

input queries by the question type and the type of answer. From the question,

main keywords and secondary keywords or phrases are extracted to retrieve the

answer from the preprocessed documents.

This system performs deep linguistic processing of the documents and

prepares NE based index. During runtime, no overhead is present for document

processing. MaQAS when tested with Factoid, Definition, List, and Descriptive

questions gave a recall of 85.9% and precision of 88.5%.

10.1. Contributions

A major contribution of this work is the design and development of an

innovative QA System for Malayalam language which focus on efficiency and

robustness. The most relevant contributions of MaQAS are highlighted below.

 Question Answering Systems require understanding of both questions

and documents. This needs morphological, syntactical and semantic

analysis of natural language sentences. Since no NLP tools were

available for Malayalam language, tools like Compound Word Splitter,

POS Tagger, Phrase Chunker and Named Entity Tagger were

developed.

 Special POS and Phrase Tagsets are designed.

 Most of the QA Systems perform document retrieval and sequential

search of the query over the entire document collection. This system

adopted a double level indexing scheme which facilitates the direct

retrieval of candidate sentences.

Conclusion

Cochin University of Science and Technology 171

 Traditional systems consider only proper nouns as NEs while MaQAS

define every role carrying agent as a NE.

 No need to restructure the question entered by the user while majority of

the systems translate the input questions to a Boolean query or a SQL

statement.

10.2. Future Work

 QAS developed in this work is restricted to handle questions from the

domain of lifestyle and infectious diseases. This can be extended to any area

(open domain QA System) making it beneficial to the society at large.

 This research work can be extended to include Anaphora Resolution

techniques since it presents a big challenge to QAS. Anaphora is a natural

language expression used, to refer an entity that has been previously introduced

in the document or in the question. The pronouns and definite noun phrases

found during the pattern matching process of question analysis phase have to be

linked to the correct antecedent in order to identify the exact question target.

This will be helpful in extracting complete and meaningful answers.

Identification of the “references” is essential to understand and process the

documents in the corpus. Accuracy of NE identification and index preparation

is solely dependant on proper understanding of the documents. Hence

Reference Resolution has an important role in the index preparation stage.

 Another direction in which this work can be extended is to include the

facility of Word Sense Disambiguation (WSD). Word and their meanings

provide appropriate bits necessary to construct the NE-based document

representation and for key word extraction. A word can have multiple senses

and hence, it is necessary to discover which sense of the word is used in the

Chapter-10

Department of Computer Science 172

documents and in the query. Various relations exist between words and their

senses. Some of them are Homonymy, Polysemy, Synonymy, and Hyponymy.

Homonymy and Polysemy issues reduce the precision of a QAS by leading a

system to return answers irrelevant to the user’s information need. Synonymy

and Hyponymy reduce the recall by causing the retrieval system without

identifying the relevant answers. WordNet and WSD techniques can solve such

word sense issues.

[1] James Allen, “Natural Language Understanding”, The Benjamin

Cummings Publishing Company, 2nd Edition,1995

[2] Dan Moldovan, Mihai Surdeanu, “ On the Role of Information Retrieval

and Information Extraction in Question Answering Systems”, LNAI

2700 pp. 29-147, 2003, © Springer-Verlag Berlin Heidelberg 2003

[3] Vennevar Bush, “ As We May Think”, The Atlantic, July 1945

[4] Peggy M Anderson, Philip J Hayes,Alison K Huettner, Linda M

Schmandt, Irene B Nirenburg,Steven P Weinstein, “ Automatic

Extraction of Facts from Press Releases to Generate News Stories”, 3rd

Conference on Applied NLP, 1992, pp. 170-177, © ACL

[5] Beth M Sundheim, Nancy M Chinchor, “ Survey of Message

Understanding Conferences” , Proceedings of the Workshop on Human

Language Technology, 1993, pp. 56-60

[6] E.M. Voorhees, D. Harman, “Overview of eighth Text REtrieval

Conference”, TREC-8, National Institute of Standards and Technology,

November, 1999.

[7] Praveen Kumar, Shrikant Kashyap, Ankush Mittal.Sumit Gupta, “A Query

Answering system for E- Learning Hindi Documents”, South Asian

Language Review, Vol XIII Nos 1&2, January- June 2003.

[8] Rami Reddy, Nandi Reddy, Sivaji Bandyopadhyay, “ Dialogue Based

Question Answering System in Telugu”, EACL 2006 Workshop on

Multilingual Question Answering - MLQA06 pp 53-60

References

Department of Computer Science 174

[9] Tomek Strzalkowski, Sanda M. Harabagiu, “Advances in Open Domain

Question Answering”, Text, Speech and Language Technology Series,

SpringerLink: Bucher, Vol. 32, Springer 2006.

[10] “Ask Jeeves”, http://www.ask.com

[11] George A Miller, “WordNet: A Lexical Database for English”,

Communication of ACM, Vol. 38 (11), pp 39-41, Nov 1995

[12] Douglas. B. Lenal, “Cyc - : A Large Scale Investment in Knowledge

Infrastructure”, Communication of ACM, Vol. 38 (11), pp 33-38, Nov

1995

[13] Green W, Chomsky C, and Laugherty K., “BASEBALL: An automatic

question answerer”, Proceedings of the Western Joint Computer

Conference, p.p. 219-224 San Francisco, CA, USA, 1961

[14] Edward Whittaker, J Hamonic, D Yang, Tor Klingberg, Sadaoki Furui,

“Monolingual Web-based Factoid Question Answering in Chinese Swedish

English and Japanese”, Workshop on Multilingual QA MLQA06, pp 45-52,

2006

[15] Nikesh P L, Sumam Mary Idicula, David Peter S, “English-Malayalam

Cross-Lingual Information Retrieval – an Experience”, IEEE International

Conference on Electro/Information Technology, Iowa University, Ames,

IA, USA, May18-20,2008

[16] Noriko Kando, “Overview of 7th NTCIR Workshop”, Proceedings of

NTCIR-2 Workshop, Tokyo, Japan, 2001

[17] Abolfazl Keighobadi Lamjiri, Julien Dubac, Leila Kosseim, Sabine

Bergler, “Indexing Low Frequency Information for Question

References

Cochin University of Science and Technology 175

Answering”, Conference RIAO2007, Pittsburg P A, USA, May 30 - June

1,2007

[18] Chirstan Grant, Clint P.George, Joir-dan Gumbs,Joseph N.Wilson, Peter

J.Dobbins, “Morpheus : A Deep Web Question Answering System”,

iiWAS2010,8-10 Nov,2010, Paris, France, © ACM

[19] W.A. Woods, “Semantics and Quantification in Natural Language Question

Answering”, Advances in Computers,Vol.17,1978,Academic Press

[20] Robin D. Burke, Kristian J. Hammond, Vladimir Kulyukin, Steven L.

Lytinen, Noriko Tomuro, Scott Schoenberg , “Question Answering from

Frequently Asked Question Files”, AI Magazine, Vol.18, No.2,1997, AAAI

[21] Codi Kwok, Oren Etzioni, Daniel S.Weld, “Scaling Question Answering

to the Web”, ACM Transactions on Information Systems, Vol.19, No.3,

July 2001 pp. 242-262

[22] Dragomir Radev, Weiguo Fan, Hong Qi, Harris Wu, Amardeep Grewal,

“Probabilistic Question Answering on the Web”, WWW2002,May 7-

11,2002, Honolulu, Hawaii,USA, ACM

[23] Zhiping Zheng, “AnswerBus Question Answering System”, Proceedings

of Second International Conference on Human Language Technology

HLT ’02, pp 399-404, 2002

[24] Boris Katz, Gary Borchardt, Sue Felshin, “Natural Language Annotations for

Question Answering”, AQUAINT Phase II , AAAI, 2006

[25] Pawel Kowalezyk, Ingrid Zukerman, Michael Niemann, “ Analysing the

Effects of Query Class on Document Retrieval Performance”, AI- 2004,

LNAI 3339, pp 550-561, 2004

[26] Terry Winograd, “Understanding Natural Language”, University Press.

References

Department of Computer Science 176

[27] Waizenbaum, Joseph, “ Eliza-A Computer Program for the study of

Natural Language Communication between Man and Machine”,

Communications of the Association for Computing Machinery , 9

1996,pp. 36-45

[28] RamiReddy NandiReddy, Sivaji Bandyopadhyay, “ Dialogue based

Question Answering System in Telugu” , EACL 2006 Workshop on

Multilingual Question Answering -MLQA06

[29] David N.Chin, “Knowledge Structures in UC, the UNIX Consultant”,

National Science Foundation

[30] Otthein Herzog, Claus- Rainer Rollinger, “Text Understanding in

LILOG, Integrating Computational Linguistics and AI”, LNCS 546

Springer 1991.

[31] BrainBoost, Question Answering Systems: website: http://www.answer.com

[32] N. Schlaefer, P. Gieselmann, and G. Sautter. “The Ephyra QA system at

TREC 2006”, Proceedings of the Fifteenth Text REtrieval Conference, 2006.

[33] Wendy G. Lehnert, “The Process of Question Answering - A Computer

Simulation of Cognition”, American Journal of Computational

Linguistics, Volume 6, Number 3-4, July - December 1980

[34] E.M. Voorhees, Buckland, Proceedings of 13th Text Retrieval

Conference, TREC 2004

[35] E.M. Voorhees, “Overview of TREC 2007”, Proceedings of 16th Text

Retrieval Conference, TREC 2007

[36] Mahboob Alam Khalid,Susan Verberne, “ Passage Retrieval for Question

Answering using Sliding Windows”,Coling 2008, Proceedings of the 2nd

References

Cochin University of Science and Technology 177

workshop on Information Retrieval for Question Answering (IR4QA) pp (26-

33) Manchaster,UK,August 2008.

[37] Graham Bennett, Falk Scholar, Alexandra Uitdenbogerd , “A

comparative study of Probabilistic and Language Models for Information

Retrieval”,19th Australian Database Conference (ADC

2008),Wollongong, Australia, January 2008 Kill

[38] I-chien Liu, Lun-Wei Ku, Kuang-Lua Chen and Hsin-Idsi Chen.

“NTUBROWS System for NTCIR-7 IR for Question Answering”,

Proceedings of NTCIR-7 Workshop meeting, December 16- 19, 2008

Tokyo, Japan.

[39] Nguyen Tuan Dang, Do Thi Thanh Tuyen, “Natural Language Question

Answering model Applied to Document Retrieval System”. World

Academy of Sciences, Engineering and Technology 51, 2009

[40] W.cafe, “Linguistics and Human Knowledge”, Georgetown University

Monograph Series on Language and Linguistics 24, pp 57-69

[41] Mohammed Reza Kangavari, Samira Ghandchi, Manak Golpour, “

Information Retrieval: Improving Question Answering systems by Query

Reformulation andAnswer Validation”, World Academy of sciences,

Engg.and Technology 48,2008

[42] Yi-Hsun Lee, Cheng Wei Lee,Cheng-Lung Sung,Mon-Tin Tzou, “Complex

Question Answering System with ASQA at NTCIR7 ACLIA”, Proceedings

of NTCIR workshop meeting, Dec 16-19,2008,Tokyo,Japan

[43] Christian Middleton, “Open Source Search Engines- Modern Information

Retrieval”, Addison Wesley, pp 1-25,2010

References

Department of Computer Science 178

[44] Seungwoo Lee, Gary Geunbae Lee, “SiteQ/J:A Question Answering

System for Japanese”, 3rd NTCIR Workshop Sep-Oct 2002

[45] Johannes Leveling, “Role of IR in the Question Answering System IRSAW”,

Information Retrieval workshop, 9-11 Oct 2006,Hildeshiem

[46] Omar Trigui, Lamia Hadrich, Belguith Paolo Rosso, “DefArabicQA:Arabic

Definition Question Answering System”, TREC-2009.

[47] Mohammed Akour, Sameer Abufardeh, Kenneth Magel, Qasem Al-

Radaideh, “QArabPro:A Rule Bsed Question Answering

System”,American Journal of Applied Sciences 8(6), pp 652-661,2011

[48] Samir Tartir, I.Budak Arpinar,Mustafa Nural, “Question Answering in

Linked Data for scientific Exploration”, Web Science Conference, 2010,

April 26-27, 2010, USA

[49] Carlos Amaral, Helena Figueira, Andre Martins Afonso Mendes, Pedro

Mendes, Claudia Pinto, “Priberam’s Question Answering System for

Portuguese”,1999

[50] Harksoo Kim, Kyungsun Kim, Gary Geunbae Lee,Jungyun Seo, “

MAYA: A Fast Question Answering System Based on a Predictive

Answer Indexer”, in proceedings of the 39th Annual Meeting of the

Association for Computational Linguistics (ACL'01), Workshop on

Open-Domain Question Answering, 2001

[51] Tiansi Dong, Ulrich Furbach, “ A Natural Language Question

Answering System as a Participant in Human Q&A Portals”, Proceedings

of 22nd International Joint Conference on Artificial Intelligence,pp 2430-

2435

References

Cochin University of Science and Technology 179

[52] Hermann Helbig, “Knowledge Representation and the Semantics of

Natural Language”, Springer, 2006.

[53] P. Baumgartner, U. Furbach, M. Gross-Hardt, T. Kleemann and C. Wernhard,

“KRHyper Inside - Model Based Deduction in Applications”, Proc. CADE-

19 Workshop on Novel Applications of Deduction Systems, 2003.

[54] Junichi Fukumoto, “ Question Answering System for Non-factoid Type

Questions and Automatic Evaluation Based on BE Method”, Proceedings

of NTCIR-6 Workshop Meeting, May 15-18, 2007, Tokyo, Japan

[55] Xiaoyan Li and W.Bruce Soft, “Evaluating Question Answering Techniques

in Chineese”, HLT ’01 Proceedings of the 1st International Conference on

Human Language Technology Research pp 1-6, ACL,USA 2001

[56] Partha Pakray, Pinaki Bhasker, Somanath Banerjee, Bidhan Chandrapal ,

Sivaji Bandyopadhayay, Alexander Gelbukh, “A Hybrid Question

Answering System Based on Information Retrieval and Answer

Validation”, QA4MRE@CLEF 2011, 19-22 September 2011

[57] Diego Molla, Menno Van Zannen, “Answer Finder”, CLEF 2007

Workshop, Budapet, Hungary,2007

[58] Yassine Benajiba, Paolo Rosso, Abdelouahid Lyhyaoui, “Implementation of

ArabiQA Question Answering System’s Components” , Proceedings of

International Colloquium on Arabic Language Processing 2007.

[59] Johannes Leveling, “Intelligent Information Retrieval on the Basis of a

Semantically Annotated Web”, CNI Spring 2007 Task Force Meeting,

April 16-17, 2007, Phoenix, AZ

References

Department of Computer Science 180

[60] Sa-Jeong Ko, Jung Hyun Lee, “Feature Selection Using Association Word

Mining for Classification”, Proceedings of the 12th International Conference

on Database and Expert System Applications pp 211-220

[61] Rohini Srihari,Wei Li, “A Question Answering System Supported by

Information Extraction”, Proceedings of 6th Conference on Applied

Natural Language Processing, pp- 166-172, USA, 2000

[62] Bhadriraju Krishnamurthi, “The Dravidian Languages”, Cambridge

University Press, 2003

[63] http://www.kerala/language.htm

[64] http://www.karmakeralam.com/literature/language-literature-of-

kerala.html

[65] http://www.keralacafe.com/kerala-language/index.htm

[66] A .R .Rajarajavarma, “ Keralapanineeyam”, National Book Stall,

Kottayam, 2000.

[67] Dr.C.K.Chandrasekharan Nair, “Adisthana Vyakaranam”, Kerala Bhasha

Institute, Thiruvananthapuram, 1997

[68] Prof. K.S.Narayana Pillai(1995), “Adhunika Malayala Vyakaranam”, Kerala

Bhasha Institute, Thiruvananthapuram

[69] Ricardo A Baeza-Yates, Berthier Riberio Neto, “ Modern Information

Retrieval”, Addison-Wesley Longman Publishing Co. Inc,

Boston,USA,1999.

[70] Marcin Skowron,Kenji Araki , “Effectiveness of Combined Features for

Machine Learning Based Question Classification”, Journal of Natural

Language Processing 12(6), pp 63-83, 2005

References

Cochin University of Science and Technology 181

[71] Vicado Jose Luis , Ferranadez Antonio, “A Semantic Approach to

Question Answering Systems”, TREC -9, 2000

[72] Xin Li, Dan Roth, “Learning Question Classifiers”, Proceedings of the

19th International Conference on Computational Linguistics (COLING),

Taipei,Taiwan,2002 pp- 556-562

[73] Alessander Moschitti, Sanda Harabagiu, “A Novel Approach to Focus

Identification in Question Answering Systems”, Workshop on

Pragmatics of Question Answering”, 2004

[74] Ralf D Brown, “Corpus Driven Splitting of Compound Words”, In

Proceedings of Ninth international Conference on Theoretical and

Methodological Issues in Machine Translation (TMI-2002), Keihanna,

Japan, March 13-17

[75] Philippi Koehn, Kevin Knight, “Emprical Methods for compound Word

Splitting”, Proceedings of 11th Conference of European Chapter of

Association of Computational Linguistics, pp. 187-193, 2003

[76] Robert Hecht, Jürgen Riedler, Gerhard Backfried, “Fitting German into

N-Gram Language Models”, LNAI 2448, pp- 341-346,2002,Springer-

Verlag

[77] Kann, V., R. Domeij, J. Hollman, M. Tillenius, “ Implementation

Aspects and Applications of a Spelling Correction Algorithm”, NADA

report TRITA-NA-9813, 1998.

[78] Anne schiller, “German compound word analysis with wfsc”,

Proceedings of the Fifth International Workshop of Finite State Methods

in Natural Language Processing,Helsinki,2005

References

Department of Computer Science 182

[79] Ulrike Rackow, Ido Dagan, Ulrike Schwall, “Automatic Translation of

Noun Compounds”, Proceedings of COLING, Aug 23-28, 1992 , pp.

1249-1253

[80] L. Karttunen, “ Applications of FST in Natural Language Processing”,

Proceedings of CIAA-2000, LNCS, Springer Verlag

[81] T.N. Vikram & Shalini R, (2007), “Development of Prototype

Morphological Analyzer for the South Indian Language of Kannada”,

Lecture Notes in Computer Science: Proceedings of the 10th

international conference on Asian digital libraries: looking back 10 years

and forging new frontiers. Vol.4822/2007, 109-116.

[82] Shambhavi. B.R, Dr. Ramakanth Kumar P, Srividya K, Jyothi B J ,

Spoorti Kundargi, Varsha shastri, “Kannada Morphological Analyser and

Generator using Trie”, International Journal of Computer Science and

297 Network Security (IJCSNS) Vol 11 No. 1, Jan 2011, pp 112-116

[83] K. Narayana Murthy, "Issues in the Design of a Spell Checker for

Morphologically Rich Languages", 3rd International Conference on

South Asian Languages, ICOSAL-3, 4th to 6th January 2001, University

of Hyderabad

[84] Ramasamy Veerappan, Antony P.J, S.Saravanan, and Dr.Soman.K.P, “A

Rule-based Kannada Morphological Analyser and Generator using FST”,

IJCA vol 27(10) August 2011.

[85] Uma Maheswara Rao G, Parameshwari K: CALTS, University of

Hyderabad, “On the description of morphological data for morphological

analyzers and generators: A case of Telugu, Tamil and Kannada”, 2010.

[86] Kiranmai.G, Mallika K, Anandkumar N, Dhanalakshmi V, and Soman

K.P, “Morphological Analyser for Telugu Using Support Vector

Machines”, ICT 2010, pp.430-433, Springer-Verlag.

References

Cochin University of Science and Technology 183

[87] Abu Zaher, Md.Faridee, Francis M Tayers, “Development of a

Morphological Analyser for Bengali”, Proceedings of First International

Workshop on Free/Open Source Rule-based Machine Translation”, pp.

43-50, November 2009.

[88] Sajib Dasgupta and Vincent Ng., “.Unsupervised Morphological Parsing

of Bengali”. In the journal of Language Resources and Evaluation, 2007.

40:3-4, pp 311-330

[89] Mohanty, S., Santi. P.K., Adhikary, K.P.D. 2004., “Analysis and Design

of Oriya Morphological Analyser: Some Tests with OriNet”, In

Proceeding of symposium on Indian Morphology, phonology and

Language Engineering, IIT Kharagpur

[90] Girish Nath Jha., Muktanand Agarwal., Subash., Sudhir K

Mishra.,DiwakarMishra., Manji Bhadra Surjit K Singh, “Inflectional

Morphology Analyzer for Sanskrit”, Sanskrit CL, pp. 219-238, 2009,

Springer-Verlag

[91] Mugdha Bapat , Harshada Gune, and Pushpak Bhattacharyya, “A

Paradigm-Based Finite State Morphological Analyzer for Marathi”,

Proceedings of the First Workshop on South and Southeast Asian Natural

Language Processing, pp. 26-34, 23rd International Conference on CL

(COLING), August 2010.

[92] Ganesan M (2007), “Morph and POS Tagger for Tamil” (Software),

Annamalai University, Annamalai Nagar.

[93] Anandan P, Ranjani Parthasarathy and Geetha T.V (2002),

“Morphological Analyzer for Tamil”, ICON 2002, RCILTS-Tamil, Anna

University, India.

[94] Parameshwari K, “An Implementation of APERTIUM Morphological

Analyzer and Generator for Tamil”, Language in India

References

Department of Computer Science 184

www.languageinindia.c o m. 11:5 M ay 2011, Special Volume: Problems

of Parsing in Indian Languages, 2011

[95] Vijay Sundar Ram R, Menaka S and Sobha Lalitha Devi (2010), “Tamil

Morphological Analyser”, In Mona Parakh (ed.) Morphological Analyser

For Indian Languages, CIIL, Mysore, pp. 1 -18.

[96] Akshar Bharat, Rajeev Sangal, S. M. Bendre, Pavan Kumar and

Aishwarya, “Unsupervised improvement of morphological analyzer for

inflectionally rich languages,” Proceedings of the NLPRS, pp. 685-692,

2001.

[97] Menon A. G.; Saravanan S; Loganathan R; Soman K. P. (2009): Amrita

Morph Analyzer and Generator for Tamil: A Rule-Based Approach, TIC,

Cologne, Germany, pp. 239-243.

[98] Deepa. S.R, Kalika Bali, A.G. Ramakrishnan, and Partha Pratim

Talukdar, “Automatic Generation of Compound Word Lexicon for Hindi

Speech Synthesis”, Language Resources and Evaluation Conference

(LREC), 2004.

[99] Deepak Kumar, Manjeet Singh, and Seema Shukla, “FST Based

Morphological Analyzer for Hindi Language”, First International

Conference on Emerging Trends in Engineering and Technology, IEEE

Computer Society-2008.

[100] Daniel Jurafsky and James H Martin, “Speech and Language

Processing”,AI Pearson Education Series in AI.,First Indian Print 2002.

[101] Eric Brill, “A Simple Rule Based POS Taggar”, Proceedings of the third

Conference on Applied Computational Linguistics, Torento, Italy, 1992.

[102] J Kupiec, “Robust Part-of-Speech Tagging using a Hidden Markov

Model”, Computer Speech and Language, vol 6, pp 225-242, 1992

References

Cochin University of Science and Technology 185

[103] Steven J. DeRose, “Grammatical Category Disambiguation by Statistical

Optimization”, Computational Linguistics Vol 14(1), pp 31-39

[104] Kenneth Ward Church, “A Stochastic Parts Program and Noun Phrase

Parser for Unrestricted Text”, Proceedings of the Second Coference on

Applied Natural Language Processing ANLC’ 88,1988, PP 136-143

[105] Dinh Dien, Hong Kien, “Part of Speech Taggar for English Vietnamese

Bilingual Corpus”,HLT-NAACL 2003 Workshop Building and Using

Parallel Texts Data Driven Machine Translation and Beyond pp88-

95,Edmonton,May-June 2003.

[106] K.T Lua, “POS Tagging of Chinese Sentences using Genetic

Algorithms”, Conference on Chinese Computing 1996 4-7 June National

University of Singapore pp 45-49.

[107] R. M. K Sinha, “An Engineering Perspective of Machine Translation,

AnglaBharti-II and AnuBharti-II Architectures”,Proceedings of

International Symposium on MT, NLP and Translation Support

Systems”, Tata McGraw Hill, NewDelhi, pp 134-138,2004

[108] Kommaluri Vijayanad, Ramalingam Subramanian, “Anuvadini:An

Automatic example-based Machine Translation System for Bengali into

Assamese and Oriya”, Proceedings of First National Symposium on

Modelling and Shallow Parsing of Indian Languages, Bombay,India, 2006

[109] Vijay Sunder Ram R, ChandraMouli N, Bhuvaneswari P, Ananda Priya

J, B Kumara Shanmugam, “Hybrid Approach for Developing a Tamil

Spell Checker”, Proceedings of International Conference on Natural

Language Processing, pp 111-114, 2005

References

Department of Computer Science 186

[110] Gurpeet Singh Lehal, “Design and Implementing of Punjabi Spell

Checker”,International Journal of Systemics, Cyberrnetics and

Informatics, pp 70-75, 2007

[111] Manish Shrivastava and Pushpak Bhattacharyya, “Hindi POS Tagger

Using Naive Stemming: Harnessing Morphological Information Without

Extensive Linguistic Knowledge”, International Conference on NLP

(ICON08), Pune, India, December, 2008

[112] Dhanalakshmi V, Anand Kumar , Shiva Prasad G, Soman K.P ,

Rajendran S, “Tamil POS using Linear Programming”, International

Journal of Recent Trends in Engineering vol 1 no.2 May 2007.

[113] Chirag Patel and Karthik Gali, “POS tagging for Gujarathi using

CRF”,Proceedings of the IJCNLP-08 Workshop on NLP for lLess

Privileged Languages pp 117-122.

[114] Smriti Singh, Kuhoo Gupta, Manish Shrivastava and Pushpak

Bhattacharyya (2006), “Morphological richness offsets resource demand

– experiences in constructing a pos tagger for Hindi”, Proceedings of the

COLING/ACL 2006,Sydney, Australia Main Conference Poster

Sessions, pp. 779–786.

[115] Manish Shrivastava and Pushpak Bhattacharyya, “Hindi POS Tagger

Using Naive Stemming: Harnessing Morphological Information Without

Extensive Linguistic Knowledge”, International Conference on NLP

(ICON08), Pune, India, December, 2008.

[116] Nidhi Mishra Amit Mishra (2011), “Part of Speech Tagging for Hindi

Corpus”, International Conference on Communication Systems and

Network Technologies.

References

Cochin University of Science and Technology 187

[117] Pradipta Ranjan Ray, Harish V., Sudeshna Sarkar and Anupam Basu,

(2003) “Part of Speech Tagging and Local Word Grouping Techniques

for Natural Language Parsing in Hindi” , Indian Institute of Technology,

Kharagpur,INDIA

[118] Sivaji Bandyopadhyay, Asif Ekbal and Debasish Halder (2006), “HMM

based POS Tagger and Rule-based Chunker for Bengali”, Proceedings of

NLPAI Machine Learning Workshop on Part Of Speech and Chunking

for Indian Languages.

[119] Sandipan Dandapat (2007), “Part Of Speech Tagging and Chunking with

Maximum Entropy Model”, Proceedings of IJCAI Workshop on Shallow

Parsing for South Asian Languages.

[120] Hammad Ali (2010), “An Unsupervised Parts-of-Speech Tagger for the

Bangla language”, Department of Computer Science, University of

British Columbia. 2010.

[121] Debasri Chakrabarti (2011), “Layered Parts of Speech Tagging for

Bangla”, Language in India www.languageinindia.com, May 2011,

Special Volume:Problems of Parsing in Indian Languages.

[122] Dinesh Kumar and Gurpreet Singh Josan,(2010), “Part of Speech

Taggers for Morphologically Rich Indian Languages: A Survey”,

International Journal of Computer Applications (0975 – 8887) Volume6–

No.5, September, 2010

[123] T. Sreeganesh, “Telugu POS Tagging in WSD”, Language of India, vol

6(8) August 2006.

[124] Avinesh PVS and Karthik Gali, “POS Tagging and Chunking Using CRF

and TBL”, Proceedings of the IJCAI and the Workshop on SPSAL, pp.

21-24.

References

Department of Computer Science 188

[125] Rama Sree, R.J Kusuma Kumari P, “Combining POS Taggers for

Improved Accuracy to Create Telugu Annotated Text for IR”, Tirupati.

[126] G. Sindiya Binulal, P. Anand Goud, K.P Soman, “A SVM Based

Approach to Telugu POS Tagging Using SVM Tool”, International

Journal of Recent Trends in Engg.”, Vol 1(2), May 2009

[127] Chirag Patel and Karthik Gali, “POS Tagging for Gujarati Using CRF”,

Proceedings of the IJCNLP-08 workshop on NLP for Less Privileged

Languages”, Hyderabad, pp. 117-122.

[128] Thodam Doren Singh and Sivaji Bandyopadhayay, “Morphology Driven

Manipuri POS tagger”, Proceedings of IJCNLP-08 Workshop on NLP,

pp. 91-98

[129] Thodam Doren Singh and Sivaji Bandyopadhayay, “Manipuri POS

Tagging Using CRF and SVM: A Language Independent Approach”,

Proceedings of ICON-2008: Sixth International Conference on NLP.

[130] Antony P.J and K.P. Soman. 2010, “ Kernel Based Part of Speech Tagger

for Kannada”, In Machine Learning and Cybernetics (ICMLC), 2010

International Conference on, volume 4, pages 2139 –2144, July.

[131] Arulmozhi P, Sobha L, Kumara Shanmugam. B (2004), “Parts of Speech

Tagger for Tamil”, Proceedings of the Symposium on Indian

Morphology, Phonology & Language Engineering, Indian Institute of

Technology, Kharagpur.

[132] Arulmozhi P and Sobha L (2006), “A Hybrid POS Tagger for a

Relatively Free Word Order Language”, Proceedings of MSPIL-2006,

Indian Institute of Technology, Bombay.

[133] Lakshmana Pandian S and Geetha T V (2009), “CRF Models for Tamil

Part of Speech Tagging and Chunking “, Proceedings of the 22nd

ICCPOL

References

Cochin University of Science and Technology 189

[134] M. Selvam, A.M. Natarajan (2009), “Improvement of Rule Based

Morphological Analysis and POS Tagging in Tamil Language via

Projection and Induction Techniques”, International Journal of

Computers, Issue 4, Vol 3, 2009.

[135] Isabelle Tellier , Iris Eshkol Samer Taalab and Jean –Philippe Prost,

“POS tagging for Oral text with CRF and Category Decomposition”, 11th

International Conference on Intelligent Text Processing and

Computational Linguistics Romania-2010.

[136] Hanna.M.Wallach, “Conditional Random Fields”,University of

Pennsylvania CIS Technical Report MS-CIS-04-21.

[137] Ghassan Kannan, Riyad-al-Shalabi and Majdi Sawalha, “Improving

Arabic Information Retrieval System Using Part of Speech

Tagging”,Information Technology Journal 4(1) 32-37,2005

[138] Steven P. Abney, “ Parsing by chunks”, Kluwer Academic Publishers

(1991), pp. 257–278.

[139] Yoshimasa Tsurnoka , Junichi Tsujii, Sophia Ananiadou, “Fast ful

Parsing by Linear Chain Conditional Random Field(2005)”,Proceedings

of 12th Conference of the European Chapter of the ACL, pp 790-798.

[140] Ramashaw, M. P. Marcus(1995), “ Text chunking using transformation-

based learning”, Proceedings of the Third ACL Workshop on Very Large

Corpora (1995).

[141] Chingtham Tejbanta Singh , Shivashankar.B Nair(2005), “An Artificial

Immune system for a Multi agent Robotics System”,World Academy of

sciences Engineering and Technology 2005.

References

Department of Computer Science 190

[142] Nasser Omer Sahel Ba-Karait, Siti Mariyam Shamsuddin, Rubita

Sudirman (2009), “Swarm Negative Selection Algorithm for

Electroencephalogram Signals Classification”,Journal of Computer

Science 5(12) pp 998-1005,2009.

[143] Leandro N De Castro, Fernando J Van Zuben(2002), “Learning and

Optimization using the Clonal Selection Principle”, IEEE Transactions

on Evolutionary Computation Special Issue on Artificial Immune System

vol 6 No.3 pp 239-251,2002.

[144] Fangjia Li,Shangee Gao,Wee Wang and Zheng Tag(2007), “An Adaptive

clonal Selection selection Algorithm for Edge Linking Problem”,

IJCSNS International Journal of Computer Science and Network Security

vol 9 , No.7 July 2007.

[145] Akshat Kumar, Shivashankar B Nair(2007), “Artificial Immune System

Based Approach for English Grammar Checking”, LNCS pp348-387.

[146] Akshay Singh, Sushma Bendre, Rajeev Sangal, “HMM Based Chunker

for Hindi”, Proceedings of IJCNLP-05: The Second International Joint

Conference on Natural Language Processing, October, 2005

[147] Sobha. L, Vijay Sunder Ram R, “Noun Phrase Chunking in Tamil”,

Proceedings of the First National Symposium on Modelling and Shallow

Parsing of Indian Languages MSPIL-06,April 2006

[148] Avinesh . PVS, Karthik G, “POS Tagging and Chunking using CRF and

Transformatiom Based Learning”, Proceedings of Workshop on Shallow

Parsing for South Asian Languages IJCAI, 2007

[149] Sandipan Dandapat, “POS Tagging and Chunking With Maximum

Entropy Model”, Proceedings of Workshop on Shallow Parsing for South

Asian Languages IJCAI, 2007

References

Cochin University of Science and Technology 191

[150] Danalakshmi. V, PadmavathY. P, Anand K.M, Soman K.P, Rajendran S,

“Chunker for Tamil”, International Conference on Advances in Recent

Technologies in Communication and Computing, 2009

[151] Ruy L Milidiu, Cicero Nogueira dos Santos, Julio C Duarte, “Phrase

Chunking using Entropy Guided Trandformation Learning”, Proceedings

of ACL-08, Human Language Technology, pp 647-655, June 2008

[152] G.M. Ravi Sastry , Sourish Chaudhuri and P. Nagender Reddy, “An

HMM based Part-Of-Speech tagger and statistical chunker for 3 Indian

languages”, SPSAL 2007

[153] Pattabhi R K Rao T, Vijay Sundar Ram R, Vijayakrishna R and Sobha L

(2007), “A Text Chunker and Hybrid POS Tagger for Indian

Languages”, AU-KBC Research Centre, MIT Campus, Anna University,

Chromepet, Chennai, 2007.

[154] Asif Ekbal, Samiran Mandal and Sivaji Bandyopadhyay (2007), “POS

Tagging Using HMM and Rule-based Chunking”, Workshop on shallow

parsing in South Asian languages.

[155] Sathish Chandra Pammi and Kishore Prahallad (2007), “POS Tagging

and Chunking using Decision Forests”, Workshop on shallow parsing in

South Asian languages, 2007.

shiva.iiit.ac.in/SPSAL2007/proceedings.php.

[156] Dipanjan Das, Monojit Choudhary, Sudeshna Sarkar, and Anupam Basu,

“An Affinity Based Greedy Approach Towards Chunking for Indian

Languages”, Proceedings of International Conference on Natural

Language Processing, ICON 2005.

References

Department of Computer Science 192

[157] Wajid Ali, Sarmad Hussaion, “A Hybrid Approach to Urdu verb Phase

Chunking”, Proceedings of the 8th Workshop on Asian Language

Resources, pages 136–142,Beijing, China, 21-22 August 2010.

[158] Dong Hwa Kim, Kye Young Lee(2002), “Neural Networks Control by

Immune Network Algorithm Based Auto Weight Function Tuning”,

Proceedings of IJCNN, Vol.2, pp. 1469-1474.

[159] Leandro N De Castro, Jon Timmis, “An Immune Network for

Multimodal Function Optimization”, Proceedings of IEEE Congress on

Evolutionary Computation CEC ’02, pp 699-674, 2002

[160] Stephani Forest, Alan S Perelson, Lawrence Allen,Rajesh Cherukuri(1994),

“Self-Nonself Discrimination in a computer”, Proceedings of 1994 IEEE

Symposium on Research in Security and Privacy.

[161] Simon M Garrett (2005), “How do we evaluate Artificial Immune

System”, Evolutionary Computation 13(2):145-178.

[162] Ali Elsebai, Farid Meziane , Fatina Zihra Belkredim, “A Rule Based

Persons Names Arabic Extraction System”, Communications of IBIMA,

vol.11, 2009

[163] Mark Stevenson, Robert Gaizauskas, “Improving Named Entity

Recognition Using Annotated Corpora”, Proceedings of the LREC

Workshop –Information Extraction meets Corpus Linguistics,2000,

Athens, Greece

[164] Asif Ekbal, Rejwanul Haque, Amitava Das, Venkateswarlu Poka, Sivaji

Bandyopadhyay, “Language Independent Named Entity Recognition in

Indian Languages”, Proceedings of the IJCNLP-08 Workshop on NER

for South and South East Asian Languages, pages 33–40,Hyderabad,

India, January 2008.

References

Cochin University of Science and Technology 193

[165] Burr Settles, “ Biomedical Named Entity Recognition Using Conditional

Random Fields and Rich Feature Sets”, Proceedings of the COLING

2004 International Joint Workshop on Natural Language Processing in

Biomedicine and its Applications (NLPBA). Geneva, Switzerland. 2004.

[166] GuoDong Zhou, Jian Su, “ Named Entity Recognition using an HMM-

based Chunk Tagger”, Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics (ACL), Philadelphia, July

2002, pp. 473-480

[167] Mohammad Hasanuzzaman, Asif Ekbal, Sivaji Bandyopadhyay, “

Maximum Entropy Approach for Named Entity Recognition in Bengali

and Hindi”, International Journal of Recent Trends in Engineering, Vol.

1,No.1, May 2009

[168] Hayssam Traboulsi, “Arabic Named Entity Recognition: A Local

Grammar Based Approach”, Proceedings of the International

Multiconference on Computer Science and Information Technology, pp

139-143, October 2009

[169] Kashif Riaz , “Rule-based Named Entity Recognition in Urdu”,

Proceedings of the 2010 Named Entities Workshop, ACL 2010, pp

126–135, Uppsala, Sweden, 16 July 2010.

[170] E. Ferreira, J. Balsa, A. Branco, “Combining Rule-based and Statistical

methods for Named Entity Recognition in Portuguese”, V Workshop em

Tecnologia da Informa¸c˜ao e da Linguagem Humana, pages 1615–1624,

2007.

[171] Asif. Ekbal, R. Haque, and S. Bandyopadhyay, “Named Entity

Recognition in Bengali: A Conditional Random Field,” in Proceedings of

ICON, India, pp. 123–128.

References

Department of Computer Science 194

[172] Asif. Ekbal and S. Bandyopadhyay, “Bengali Named Entity Recognition

using Support Vector Machine,” in Proceedings of the IJCNLP-08

Workshop on NER for South and South East Asian languages,

Hyderabad, India, January 2008, pp. 51–58.

[173] K.S. Hasan, M. U.R Rahman, and V. Ng, “Learning -Based Named

Entity Recognition for Morphologically-Rich Resource-Scare

Languages”, In Proceedings of the 12th Conference of the European

Chapter of the ACL, Athens, Greece, 2009, pp. 354–362

[174] B. B. Chaudhuri and S. Bhattacharya, “An Experiment on Automatic

Detection of Named Entities in Bangla,” in Proceedings of the IJCNLP-

08 Workshop on NER for South and South East Asian languages,

Hyderabad, India, January 2008, pp. 75–82.

[175] Vijayakrishna. R and Sobha. L, “Domain focused Named Entity

Recognizer for Tamil using Conditional Random Fields,” in Proceedings

of the IJCNLP-08 Workshop on NER for South and South East Asian

languages, Hyderabad, India, 2008, pp. 59–66.

[176] S. Lakshamana Pandian, Krishna. Aravind. Pavithra, and T.V. Geetha,

“Hybrid Three-stage Named Entity Recognizer for Tamil,” INFOS2008,

March 2008.

[177] Rajesh Sharma, Vishal Goyal, “NER System for Hindi Using CRF

Approach”, ICISIL, 2011, PP. 31-35, Springer-Verlag.

[178] S. K. Saha, S. Sarkar, and P. Mitra, “A Hybrid Feature Set based

Maximum Entropy Hindi Named Entity Recognition,” in Proceedings of

the 3rd International Joint Conference on NLP, Hyderabad, India,

January 2008, pp. 343–349.

References

Cochin University of Science and Technology 195

[179] Amit Goyal, “Named Entity Recognition for South Asian Languages,” in

Proceedings of the IJCNLP-08 Workshop on NER for South and South-

East Asian Languages, Hyderabad, India, Jan 2008, pp. 89–96.

[180] W. Li and A. McCallum, “Rapid Development of Hindi Named Entity

Recognition using Conditional Random Fields and Feature Induction

(Short Paper),” ACM Transactions on Computational Logic, pp. 290–

294, Sept 2003.

[181] P. K. Gupta and S. Arora, “An Approach for Named Entity Recognition

System for Hindi: An Experimental Study,” in Proceedings of ASCNT-

2009, CDAC, Noida, India, pp. 103–108.

[182] S.Biswas, S.P.Mohanty, S.Acharya, and S.Mohanty, “A Hybrid Oriya

Named Entity Recognition system,” in Proceedings of the CoNLL,

Edmonton, Canada, 2003.

[183] G. Raju, B.Srinivasu, D. S. V. Raju, and K. Kumar, “Named Entity

Recognition for Telegu using Maximum Entropy Model,” Journal of

Theoretical and Applied Information Technology, vol. 3, pp. 125–130, 2010.

[184] P.Srikanth and K. N. Murthy, “Named Entity Recognition for Telegu,”

,in Proceedings of the IJCNLP-08 Workshop on NER for South and

South East Asian languages, Hyderabad, India, Jan 2008, pp. 41–50.

[185] P. M. Shishtla, K. Gali, P. Pingali, and V. Varma, “Experiments in

Telegu NER: A Conditional Random Field Approach,” in Proceedings of

the IJCNLP-08 Workshop on NER for South and South East Asian

languages, Hyderabad, India, January 2008, pp. 105–110.

[186] Padmaja Sharma, Utpal Sharma, and Jugal Kalita, “The First Towards

Assamese Named Entity Recognition”, Brisbane Convention Centre,

Australia, September 2010

References

Department of Computer Science 196

[187] Thorsten Joachims, “Text Categorization with Support Vector Machines:

Learning with Many Relevant Features”, European Conference on

Machine Learning”, 1998

[188] Taku Kudoh, Yuji Matsumoto, “Chunking with Support Vector

Machines”, Second Meeting of the North American Chapter of the

Association for Computational Linguistics on Language Technologies

NAACL ’01, pp 1-8, 2001

[189] Tetsuji Nakagawa, Taku Kudoh, Yuji Matsumoto, “Unknown Word

Guessing and POS Tagging with Support Vector Machines”, Proceedings

of the Sixth Natural Language Processing Pacific Rim Symposium, 2001

[190] Durgesh K.Srivastava, Lekha Bhambhu, “Data Classification using

Support Vector Machines”, Journal of Theoretical and Applied

Information Technology, pp 1-7, vol 12(1), 2009

[191] Hyeran Byun, Seong-Whan Lee, “Applications of Support Vector Machines

for Pattern Recognition: A Survey”, LNCS 2388, pp 213-236, 2002

[192] Gjorgji Madzarov, Dejan Gjorgjevikj and Ivan Chorbev, “ A Multi-class

SVM Classifier Utilizing Binary Decision Tree”, Informatica 33 (2009)

233-241

[193] Asif Ekbal and Sivaji Bandyopadhyay, “Named Entity Recognition

Using Appropriate Unlabeled Data, Post-processing and

Voting”,Informatica 34 (2010) 55–76

[194] Sujan Kumar Saha , Shashi Narayan, Sudeshna Sarkar, Pabitra Mitra, “ A

composite kernel for named entity recognition”, Pattern Recognition

Letters (2010),Elsevier

References

Cochin University of Science and Technology 197

[195] Christopher D Manning, Prabhakar Raghavan, Hinrich Schutze,

“Introduction to Information Retrieval”, Cambridge University Press,

2008.

[196] Sarra El Ayari, Brigitte Grau, “A Framework of Evaluation for Question

Answering Systems”, ECIR 2009, LNCS 5478, pp. 744-748, 2009, ©

Springer-Verlag Berlin Heidelberg 2009.

[197] S.Quarteroni, S.Manandher, “Designing an Interactive Open Domain

Question Answering System”, Natural Language Engineering 1(1): 1-23,

2008, Cambridge University Press.

[198] Ghassan Kannan, Awni Hammouri, Riyad Al-shalabi, Majdi Swaha, “A

New Question Answering System for the Arabic Language”, American

Journal of Applied Sciences 6(4), pp. 797-805,2009

References

Department of Computer Science 198

A) Publications in International Refereed Journals

1. Bindu.M.S, Sumam Mary Idicula, “Compound Word Generation and

Analysis in Malayalam for the Purpose of Information Retrieval”,

International Journal of Computer Science and Information Technology

(IJCSIT), Vol.2, No.2, Dec. 2009.

2. Bindu.M.S, Sumam Mary Idicula, “Named Entity Recognizer

Employing Multiclass Support Vector Machines for the Development

of Question Answering Systems”, International Journal of Computer

Applications (IJCA), Vol.25, No.10, July 2011.

3. Bindu.M.S, Sumam Mary Idicula, “High Order Conditional Random

Field Based Part of Speech Tagger for Malayalam -a Highly

Agglutinative Language”, International Journal of Advanced Research in

Computer Science (IJARCS), Vol.2, No.5, Sep. 2011.

4. Bindu.M.S, Sumam Mary Idicula, “A Hybrid Model for Phrase Chunking

Employing Artificial Immunity System and Rule Based Methods”,

International Journal of Artificial Intelligence and Applications (IJAIA),

Vol 2, No.4 October 2011.

5. Bindu.M.S, Sumam Mary Idicula, “Named Entity Identifier for Malayalam

Using Linguistic Principles Employing Statistical Methods”, International

Journal of Computer Science Issues (IJCSI), vol.8, No.4 July 2011.

Publications

Department of Computer Science 200

B) Papers in International Conferences

1. Bindu.M.S, Sumam Mary Idicula, “Analysis of Malayalam Compound

Words and Implementation of a Compound Word Splitter Tool Using

Finite State Models”, International Conference on Modeling and

Simulation (MS 09) India 1-3 Dec 2009.Organised by CET, Trivandrum

and AMSE, France.

2. Bindu.M.S, Sumam Mary Idicula, “Experimental Analysis of N-gram

and Vector Space Language Models and Development of a Hybrid

Model for Malayalam Document Representation”, International

Conference on Modeling and Simulation (MS ‘09) India 1-3 Dec 2009.

3. Bindu.M.S, Sumam Mary Idicula, “Malayalam Text Classification

Using an Enhanced N-gram Based Vector Space Model for Health

Applications”, The third International Conference on Semantic E-

Business and Enterprise Computing,15-17 September, 2010. Organized

by AJCE, Kanjirappally and Kingston University, UK

C) Papers in National Conferences

1. Bindu.M.S, Sumam Mary Idicula, “Compound Word Generation and

Analysis in Malayalam for the Purpose of Information Retrieval”, A

National Conference on Computer Science and Information

Technology”, 25-26 November 2009. Organized by University of

Calicut and NIMIT (Best Paper Award)

APPENDIX A

STOP WORD LIST
km[mcW KXnbnÂ (saadhaaraNa gathiyil)]n¶oSv (pinneeT~)
hsc (vare) F¶nh (enniva)

Cu (ee) Xosc (theere
Cfw (iLam) Iq«ambn (kooTTamaayi)
sNdnb (cheRiya) apXepÅ (muthaluLLa)
A¶v (ann~) aäv (mat~)
AXn\nsS (athiniTe) CXn\nsS (ithiniTe)
Xs¶ (thane) Nnet¸mÄ (chilappOL)
s]s«¶v (peTTenn~) hfsc (vaLare)
C¯cw (iththaram) ChnsS (iviTe)
AhnsS (aviTe) Ht«sd (oTTERe)
AXpt]mse (athupOle) AXnsâ (athinte)
CXnsâ (ithinte) D−mIp¶ (uNTaakunn)
F{Xtbm (ethrayO) F¶nhbnse (ennivayile)
[mcmfw (dhaaraaLam) {][m\ (pradhaana)
CtXmsS (ithOTe) ap³t]Xs¶ (munpEthanne)
AXns\Ipdn¨v (athinekkuRichch~)]camh[n (paramaavadhi)
XmaknbmsX (thaamasiyaathe) klmbn¡pw (sahaayikkum)
Aev]amb (alpamaaya) Bhiyw (aavaSyam)
At§bäw (angngEyatam)]cn[nhsc (paridhivare)
Hcp (oru) CXÃmsX (ithallaathe)
C\n (ini) am{Xw (maathram)
]e (pala) AtX(athE)
{ItaW (kramENa) IqSpXembn (kooTuthalaayi)
{]kXpX (prasathutha) Bb (aaya)
XpSÀ¶v (thuTarnn~) hfsc (vaLare)
F¶mÂ (ennaal) Hcn¡epw(orikkalum)
GXm\pw (Ethaanum) \nanj§Ä¡v (nimishangngaLkk~)
D]tbmKn¨p (upayOgichchu)]et¸mgpw (palappOzhum)
]qÀ®ambn (poorNNamaayi) th−hn[w(vEnTavidham)
IgnhXpw (kazhivathum) AYhm(athhavaa)
XÂ^eambn (thalphalamaayi)]cn[nhsc (paridhivare)
]cn]qÀ®amtbm paripoorNNamaayO `mKnIamtbm(bhaagikamaayO)

Appendixes

Department of Computer Science 202

]ckv]cw (parasparam)]eXpw (palathum)

\ntÈjw (niSSEsham) X½nÂ (thammil)
sam¯amtbm(moththamaayO) KpcpXcamb (gurutharamaaya)
hyàambn (vyakthamaayi) thK¯nÂ (vEgaththil)
{i²sImSp¯v (SraddhakoTuthth~)
LS\m]cambn (ghaTanaaparamaayi)

Appendixes

Cochin University of Science and Technology 203

APPENDIX B

Malayalam ISCII-Unicode Mapping Table

Appendixes

Department of Computer Science 204

APPENDIX C

A View of Lexicon used in MaQAS

Type field - Noun/verb/Adj/Adv/PSP/Suffix
Mean 1 - SL/PL/T1/T2/T3
Mean 2 - M/F/N/C
Mean 3 - C1-C6 / R1-R2
Mean 4 - 0 or 1(Human or non-human)
SL - Singular
PL - Plural
T1 - Past tense
T2 - Present Tense
T3 - Future Tense
M - Masculine Gender
F - Feminine Gender
C - Common Gender
N - Neuter Gender
C1-C6 - Case suffixes
R1-R2 - Active/Passive voice

Appendixes

Cochin University of Science and Technology 205

APPENDIX D

Performance of POS Tagger
POS Tag Precision (%) Recall (%) F-Score (%)
NOUN 87.3 94.6 90.8
PN 98.0 97.1 97.6
RN 90.2 95.2 92.6
ACC 95.6 97.0 96.3
DAT 92.3 96.2 94.2
GEN 91.0 95.5 93.2
LOC 90.5 94.3 92.4
SOC 89.1 95.0 92.0
INST 95.5 91.4 93.4
OBJ 93.3 89.7 91.5
RES 90.6 88.5 89.5
PSP1 94.0 95.8 94.9
PSP2 95.6 93.2 94.4
PSP3 94.1 94.0 94.1
PSP4 95.3 93.1 94.2
PSP5 96.4 95.4 95.9
PSP6 92.3 97.9 95.0
PSP7 94.5 92.1 93.3
PSP8 96.6 93.6 95.1
PSP9 95.2 92.3 93.7
PSP10 94.4 95.2 94.8
PSP11 94.0 91.9 92.9
VERB 86.5 94.2 90.2
AdjP 84.9 91.4 88.0
Adv 83.7 89.6 86.6
AdvP 92.3 96.7 94.5
AuxV 89.2 94.3 91.7
AdvT 89.7 95.3 92.4
AdvPl 91.4 97.3 94.3
AdvPr 94.1 92.9 93.5
AdvR 90.5 95.5 92.9
AdvSe 91.9 93.0 92.5
AdvCo 92.4 95.1 93.7
Adv-S 93.2 96.2 94.7

Appendixes

Department of Computer Science 206

AdvC 90.3 95.7 92.9
AdjQl 94.6 93.6 94.1
AdjQn 90.5 92.2 91.3
AdjD 89.6 90.7 90.2
Adjn 90.3 96.0 93.1
AdjI 91.5 92.0 91.8
AdjE 88.4 90.4 89.4
SourceP 95.6 93.4 94.5
DestP 92.5 96.7 94.6
LikeP 87.4 93.0 90.1
ListP 88.7 91.5 90.1
TimeP 90.5 93.0 91.7
ThruP 93.1 92.5 92.8
Sym 96.6 94.7 95.6
CN 94.3 96.2 95.2
ON 87.4 93.6 90.4
INT1 96.0 97.4 96.7
INT2 93.4 94.3 93.8

Average Value 92.0 94.0 93.0

Appendixes

Cochin University of Science and Technology 207

APPENDIX E

Patterns for Phrase Identification
Sl. No Phrase POS Patterns

1 NP NOUN/ PN/ RN
2 VP VERB/AuxV
3 NP-Acc ACC
4 NP-Dat DAT
5 NP-Gen GEN

6 NP-Loc LOC/NOUN PSP4/NOUN PSP2 NOUN PSP3/
SourceP NOUN PSP3/SourceP DestP

7 NP-Soc SOC
8 NP-Obj OBJ/ACC PSP6
9 NP-Inst INST/ GEN INST/NOUN PSP1/PN PSP1/RN PSP1

10 NP-Res RES/NOUN PSP7/PN PSP7/RN PSP7
11 AdjNP AdjP NOUN/AdjP PN/AdjP RN
12 AdVP AdvP / Adv AdvP
13 AdvpT AdvT / Adv AdvT
14 AdvpPr AdvPr / Adv AdvPr
15 AdvpR AdvR / Adv AdvR
16 AdvpP AdvPl / Adv AdvPl
17 AdvpC AdvC / Adv AdvC
18 AdvpRe AdvRe / Adv AdvRe
19 AdvpS AdvS / Adv AdvS
20 AdvpCo AdvCo / Adv AdvCo
21 AdjpQl AdjQl / Adj AdvQl
22 AdjpQn AdjQn / Adj AdjQn
23 AdjpN AdjN / Adj AdjN
24 AdjpE AdjE / Adj AdjE
25 AdjpI AdjI / Adj AdjI
26 AdjpD AdjD / Adj AdjD
26 SourcePP NOUN PSP2/PN PSP 2/RN PSP 2/SourceP
27 ListPP NOUN PSP11 NOUN PSP3/NOUN PSP2 DestP
29 LikePP ACC PSP 9
30 ThruPP LOC PSP5
31 DestPP NOUN PSP3/PN PSP3/GEN PSP10/DestP
32 TimePP RN PSP8/AdjN SourceP PSP8

Appendixes

Department of Computer Science 208

APPENDIX F
Performance Evaluation of the AIS-based Phrase chunker

Chunk Precision (%) Recall (%) F-Score (%)
NP 93.5 92.6 93.0
VP 96.7 97.1 96.9
NP-Obj 92.0 92.2 92.1
NP-Dat 96.4 97.0 96.7
NP-Acc 94.3 95.2 94.7
NP-Gen 91.0 90.5 90.7
NP-Loc 87.9 88.3 88.1
NP-Soc 95.0 95.0 95.0
NP-Inst 92.8 91.4 92.1
NP-Res 90.7 89.7 90.2
AdjNP 89.7 88.5 89.1
AdvP 93.5 91.8 92.6
AdvpPr 86.3 85.2 85.7
AdvpR 93.4 92.0 92.7
AdvpP 94.6 93.1 93.8
AdvpC 88.3 85.4 86.8
AdvpS 88.0 87.9 88.0
AdvpT 87.2 86.1 86.6
AdvpRe 92.8 93.6 93.2
AdvpCo 91.3 92.3 91.7
AdjpQ 91.4 89.5 90.4
AdjpQn 89.2 88.9 89.0
AdjpN 95.1 94.2 94.6
AdjpE 92.3 91.4 91.8
Adjpl 87.9 86.6 87.2
AdjpD 87.4 86.0 86.7
ListPP 88.6 87.3 87.9
ThruPP 85.5 86.7 86.0
LikePP 87.8 88.1 87.9
TimePP 94.1 94.7 94.4
SourcePP 92.7 91.1 91.9
DestPP 93.2 89.8 91.5
Average Value 91.3 90.6 90.9

Appendixes

Cochin University of Science and Technology 209

APPENDIX G

A Sample Malayalam Document

tImfd hn{_ntbm F¶dnbs¸Sp¶ AWp¡fmWv tImfdbp−m¡p¶Xv.
sNdpIpSens\bmWv Cu AWq¡Ä _m[n¡p¶Xv.Cu AWp¡Ä AXniàamb
hnjabw D−m¡p∂p. sNdpIpSense tImi§sf B{Ian¡p¶Xnsâ ^eambn
icoc¯n\mhiyamb tkmUnb¯nsâ BKncWw XSÊs¸SpIbpw Pehpw
t¢mssdUv Awihpw \ãs¸SpIbpw sN¿p∂p.Cu tcmK¯nsâ AWp¡Ä
icoc¯nse¯n aWn¡pdpIÄ¡pÅnÂ tcmKw {]Xy£s¸Sp∂p.

tcmKnbpsS hnkÀPyhkvXp¡fnÂ\n∂pw {]mWnIÄ hgn `£W¯nepw
shÅ¯nepsa¯p¶ AWp¡fmWv tcmKap−m¡p¶Xv.aeoakamb
Npäp]mSpIfnÂ Xn§n¸mÀ ¡p¶ IpSpw_§fnse Ip«nIfnepw apXnÀ¶hcnepw
Cu AkpJw hfsc s]s«¶v]SÀ∂p]nSn¡mdp−v.

hfsc s]s«∂p −mIp¶ hbdnf¡hpw OÀ±nbpamWv CXnsâ e£W§Ä.
hbdpthZ\, aq{XXSÊw, aknepIfnse sImfp¯n¸nSn¡Â
F¶nhbpap−mIpw. XpS¡¯nÂ ae¯n\v aª\ndw ImWp∂p. OÀ±nbpsS
IqsS¯s¶ hbdnf¡hpw ImWp∂p.]o¶nSv aehpw OÀ±nbpw
Acn¡mSnt]msebmbn¯ocp∂p.

OÀ±nbpsS IqsS ss_Â ImWpIbnÃ. OÀ±n¨pw AXnkcn¨pw {ItaW
icoc¯nse Pemwiw \ãs¸Sp¶Xp sIm−v tcmKn A]IS\nebnÂ
F¯mdp−v. XWp¯v hc− sXmen, Ipgnªp XmW I®pIÄ, DW§nhc−
\m¡v, Np−pIÄ,]\n F¶nh A]ISIcamb e£W§fmWv. càaÀ±w
Ipdªv]Äkv In«mXncn¡pI, InX¸v F¶o e£W§fpw A]ISIc§fmWv.

tImfdsbXpSÀ¶v InUv\nbpsS {]hÀ¯\w \ne¨v bpdoanb, càNw{IaWw
\ne¡pI, {Km³ {Ko³, \ntamWnb hbÀ, KmÄ»mUÀ, I®pIÄ,]tcm«nUv
{KÙn F¶nhbnse AWp_m[, iàamb]\n F¶nh D−mImw.

H BÀ Fkv emb\nbpw Icn¡n³ shÅw,]©kmcbpw D¸pw tNÀ¯ shÅw
F¶nhsbÃmw D]tbmKn¡Ww. Jccq]¯nepÅ `£Ww Hgnhm¡n
emb\nIÄXs¶ Ign¡p¶XmWv BZyZnhk§fnÂ DNnXw. aeoakamb
Npäp]mSpIfnÂ\n∂v tcmKnsb amän¸mÀ¸n¡Ww.]qÀWhn{iaw BhiyamWv.

Appendixes

Department of Computer Science 210

Transliterated document

kOLaRa vibriyO ennaRiyappeTunna aNukkaLaaN~ kOLaRayuNTaakkunnath~.
cheRukuTalineyaaN~ ee aNookkaL baadhikkunnath~.ee aNukkaL athiSakthamaaya
vishamayam uNTaakkunnu.cheRukuTalile kOSangngaLe aakramikkunnathinte
phalamaayi SareeraththinaavaSyamaaya sODiyaththinte aagiraNam
thaTassappeTukayum jalavum kLORaiD~ am_Savum nashTappeTukayum
cheyyunnu.ee rOgaththinte aNukkaL Sareeraththileththi maNikkuRukaL kkuLLil
rOgam prathyakshappeTunnu.

rOgiyuTe visar_jyavasthukkaLil_ninnu praaNikaL vazhi bhakshaNaththilum
veLLaththilumeththunna aNukkaLaaN~ rOgamuNTaakkunnath~.maleemasamaaya
chutupaaTukaLil thingngippaar kkunna kuTum_bangngaLile kuTTikaLilum
muthir_nnavarilum ee asukham vaLare peTTenn~ paTar nnu piTikkaaRuNT~.

vaLare peTTennuNTaakunna vayaRiLakkavum chhar_ddiyumaaN~ ithinte
lakshaNangngaL. vayaRuvEdana, moothrathaTassam, masilukaLile
koLuththippiTikkal ennivayumuNTaakum.thuTakkaththil malaththin~ manjnjaniRam
kaaNunnu. chhar_ddiyuTe kooTeththanne vayaRiLakkavum kaaNunnu. peenniT~
malavum chhar_ddiyum arikkaaTipOleyaayiththeerunnu.

chhar_ddiyuTe kooTe bail kaaNukayilla. chhar_ddichchum athisarichchum kramENa
Sareeraththile jalaam_Sam nashTappeTunnathu koNT~ rOgi apakaTanilayil
eththaaRuNT~. thaNuthth~ varaNTa tholi, kuzhinjnju thaaNa kaNNukaL,
uNangngivaraNTa naakk~, chuNTukaL, pani enniva apakaTakaramaaya
lakshaNangngaLaaN~. rakthamar_ddam kuRanjnj~ paLs~ kiTTaathirikkuka, kithapp~
ennee lakshaNangngaLum apakaTakarangngaLaaN~.

kOLaRayethuTarnn~ kiDniyuTe pravar_ththanam nilachch~ yuReemiya,
rakthacham_kramaNam nilaykkuka, graan green, nyumONiya vayar, gaaL_bLaaDar,
kaNNukaL, parOTTiD~ granthhi ennivayile aNubaadha, Sakthamaaya pani enniva
uNTaakaam.

o aar es~ laayaniyum karikkin veLLam, panjchasaarayum uppum chEr_ththa veLLam
ennivayellaam upayOgikkaNam. khararoopaththiluLLa bhakshaNam ozhivaakki
laayanikaL_thanne kazhikkunnathaaN~ aadyadivasangngaLil uchitham.
maleemasamaaya chutupaaTukaLil_ninnu rOgiye maatippaar_ppikkaNam.
poor_NaviSramam aavaSyamaaN~

Appendixes

Cochin University of Science and Technology 211

APPENDIX H

LIST OF SAMPLE QUESTIONS

aª¸n¯w F§s\bmWv D−mIp¶Xv?

(manjnjappiththam engnganeyaaN~ uNTaakuth~ ?)

Ft¸mgmWv aª¸n¯w]Icp¶Xv ?

(eppOzhaaN~ manjnjappiththam pakaruth~ ?)
F´mWv aª¸n¯¯nsâ ImcW§Ä ?

(enthaaN~ manjnjappiththaththinte kaaraNangngaL ?)

FXp acp¶mWv aª¸n¯¯n\v D]tbmKn¡p¶Xv ?

(ethu marunnaaN~ manjnjappiththaththin~ upayOgikkuth~ ?)
Fs´ms¡bmWv {]Xnhn[nIÄ ?

(enthokkeyaaN~ prathividhikaL ?)
NnInÕcoXnIÄ GsXms¡ ?

(chikithsareethikaL Ethokke ?)

FXp {]mb¡mscbmWv aª¸n¯w _m[n¡p¶Xv ?

(ethu praayakkaareyaaN~ manjnjappiththam baadhikkuth~ ?)

GXp sshdkmWv aª¸n¯w D−m¡p¶Xv ?

(Ethu vaiRasaaN~ manjnjappiththam uNTaakkuth~ ?)

G{X Znhkw sIm−v aª¸n¯w t`ZamIpw ?

(Ethra divasam koNT~ manjnjappiththam bhEdamaakum ?)

F§ns\bmWv Cu tcmKw]Icp¶Xv ?

(engngineyaaN~ ee rOgam pakaruth~ ?)

GXp sSÌmWv aª¸n¯w Xncn¨dnbm³ D]tbmKn¡p¶Xv ?

(Ethu TestaaN~ manjnjappiththam thirichchaRiyaan upayOgikkuth~ ?)

F´lmcw Ign¡mw ?(enthahaaram kazhikkaam ?)

Appendixes

Department of Computer Science 212

F´p ap≥IcpXemWv th−Xv ?

enthu mungkaruthalaaN~ vENTath~ ?
F´mWv e£W§Ä ?

enthaaN~ lakshaNangngaL ?

GXp kab¯mWv AkpJw]Icp¶Xv ?

Ethu samayaththaaN~ asukham pakaruth~ ?
aª¸n¯w F¶mÂ F´mWv ?

manjnjappiththam ennaal enthaaN~ ?

BcmWv aª¸n¯¯nsâ acp¶v I−p¸nSn¨Xv ?

aaraaN~ manjnjappiththaththinte marunn~ kaNTuppiTichchath~ ?

{]Xntcm[Ip¯nshbv]pt−m ?

prathirOdhakkuththiveypuNTO ?

F§ns\bmWv Cu tcmKw]Icp¶Xv ?

engngineyaaN~ ee rOgam pakaruth~ ?

FXp Ahbhs¯bmWv Cu tcmKw _m[n°p¶Xv ?

ethu avayavaththeyaaN~ ee rOgam baadhikkuth~ ?

FXp I¼\nbmWv CXn\v acp¶v D−m°p¶Xv ?

ethu kampaniyaaN~ ithin~ marunn~ uNTaakkuth~ ?
FXp PohnbmWv Cu tcmKw]IÀ¯p¶Xv ?

ethu jeeviyaaN~ ee rOgam pakar_ththuth~ ?
BcmWv aª¸n¯w I−p]nSn¨Xv ?

aaraaN~ manjnjappiththam kaNTupiTichchath~ ?

F´mWv aª\nd¯n\p ImcWw ?

enthaaN~ manjnjaniRaththinu kaaraNam ?
aª¸n¯¯nsâ A\´^e§Ä Gh ?

manjnjappiththaththinte ananthaphalangngaL Eva ?
F§ns\bmWv aª¸n¯w Xncn¨dnbpI ?

engngineyaaN~ manjnjappiththam thirichchaRiyuka ?

Appendixes

Cochin University of Science and Technology 213

GXp cmPy¡mcmWv Cu tcmKw I−p]nSn¨Xv ?

Ethu raajyakkaaraaN~ ee rOgam kaNTupiTichchath~ ?

Ft¸mgmWv Ip¯nshbv]v FSpt¡−Xv ?

eppOzhaaN~ kuththiveyp~ eTukkENTath~ ?
Icfnsâ D]tbmKw F´mWv ?

karaLinte upayOgam enthaaN~ ?
FhnsSbmWv IcÄ ØnXnsN¿p¶Xv ?

eviTeyaaN~ karaL sthhithicheyyuth~ ?

GXp hgnbmWv CXp]Icp¶Xv ?

Ethu vazhiyaaN~ ithu pakaruth~ ?
Blmc¯nÂ Fs´ms¡ {i²n¡Ww?

aahaaraththil enthokke SraddhikkaNam?

GXp I¼\nbmWv aª¸n¯¯nsâ acp¶v D−m°p¶Xv

Ethu kampaniyaaN~ manjnjappiththaththinte marunn~ uNTaakkuth~

aª¸n¯w Xncn¨dnbm\pÅ sSÌv GXmWv

manjnjappiththam thirichchaRiyaanuLLa Test~ EthaaN~

GXp kab¯mWv aª¸n¯w]Icp¶Xv

Ethu samayaththaaN~ manjnjappiththam pakaruth~

Appendixes

Department of Computer Science 214

Appendix I

Screen shots showing Output of MaQAS

Appendixes

Cochin University of Science and Technology 215

Appendixes

Department of Computer Science 216

	DESIGN AND DEVELOPMENT OF A NAMEDENTITY BASED QUESTION ANSWERING SYSTEMFOR MALAYALAM LANGUAGE
	Certificate
	Declaration
	Dedication

	Acknowledgement
	Abstract

	contents

	List of tables
	List of figures
	chapter 1

	chapter 2

	chapter 3

	chapter 4

	chapter 5

	chapter 6

	chapter 7

	chapter 8

	chapter 9
	chapter 10

	References

	publications

	Appendix

