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chapter 1

;_n'rRo1>Uc'.rIoH

In this thesis we attempt to make a probabilistic
analysis of some physically realizable, though complex,
storage and queueing models. It is essentially a mathe­
matical study of the stochastic processes underlying
these models. Our aim is to have an improved understand­
ing of the behaviour of such models, that may widen their
applicability. Different inventory systems with randon1
lead times, vacation to the server, bulk demands, varying
ordering levels, etc. are considered. Also we study some
finite and infinite capacity queueing systems with bulk
service and vacation to the server and obtain the transient
solution in certain cases. Each chapter in the thesis is
provided with self introduction and some important refer­
ences. This chapter gives a brief general introduction
to the subject matter and related topics.

1.1 INVENTOBI smog;

An inventory is an amcunt of material stored for
the purpose of sale or production. Ehe inventory models
are usually characterized by the demand pattern and the



policy for replenishing the stock in.the store. The
two basic types of policy for replenishment are
(i) the ordering cycle policy under which.orders for

replenishment are placed at regular intervals of time
of length.!, (ii) the (s,S) policy under which orders
are placed as and when the stock in the store plus the
quantity already on order falls to some fixed level a.
The replenishments ordered under any of these policies
are assumed to arrive after a time lag L, which may be
fixed or a random variable. This time lag L is called
‘lead time’. During a lead time the inventory level
may fall to zero. The time duration for which the level
of inventory continuously remains at zero is called a
dry period.

A valuable review of the problems in the probability
theory of storage systems is given by Gani [l957]. A
systematic account of probabilistic treatment in the study
of inventory systems using renewal theoretic arguments is
given in Arrow, Karlin and Scarf [l958]. Hadley and
Whitin [1963] deals with.the applications of such models
to practical situations. Tijms [1972] gives a detailed
analysis of the inventory systems under (s,S) policy.



The cost analysis of different inventory systems is given
in Naddor [1966]. 1 practical treatment of the (13.8) lost
sales model can be found in the recent books by Silver and

Peterson [1984] and Tijms [l986].

Veinott [1966] gives a detailed review of the work
carried out in (s,S) inventory systems up to 1966. We
refer to the monograph by Ryshikov [1973] for inventory
systems with random lead times. Gross and Harris [1971]
and Gross, Harris and Lechner [1971] deal with one for one
ordering inventory policies with state dependent lead times.
Sivazlian [1974] considers an (s,S) inventory model in which
unit demands of items occur with arbitrary interar-rival times
between demands, but lead time is assumed to be zero. His
results are extended by Srinivasan [1979] to the case in
which lead times are independent and identically distributed
random variables having a general distribution. Sahin[l979]
considers an (s,S) inventory system in which demand quanti­
ties are random but lead time is a constant. Again in 1983
Sahin discussed an inventory system in which the int er­
arrival times between consecutive demands, quantities
demanded and lead times are all independent and generally
distributed sequences of independent and identically dis­
tributed random variables. He obtained the binomial



moments for the inventory deficit. Thangaraj and
Ramanarayanan [1983] consider an inventory system with
random lead times and having two ordering levels.

Kalpakam and Ariviringnan [1985] deals with an inventory

system having one exhibiting item subject to random
failure. Daniel and Ramanarayanan [1987 a,b] consider
inventory systems with vacation to the server during
dry period.

1.2 _g§EUEING THEORY

Queueing theory is a well developed branch of
applied probability theory. Historically, the subject
of queueing theory has been developed largely in the.
context of telephone traffic engineering. Over the past
three decades, steady progress has been made towards
solving increasingly difficult and realistic queueing
models.

A queueing model is usually defined in terms of
three characteristics-- the input process, the service
mechanism and the queue discipline. The input process
describes the sequence of requests for service. Often
the input process is specified in terms of the distribution
of the lengths of time between consecutive customer arrival



instants. The service mechanism is the category that
includes such characteristics as the number 01’ servers

and the lengths of time that customers hold the servers.
The queue discipline deals uith.the rule by which ‘
customers are taken for service.

For the single server queue a busy period is the
time interval during which the server is continuously
busy.i.e. it is the length of time from the instant the
(previously idle) server is seized until it next becomes
idle. The time between the starting points of two consecu­
tive busy periods is called a busy cycle. The actual
waiting time in the queue of a customer is defined as the
time between the moment of his arrival and the moment at

which his service starts. The virtual waiting time at
time t is the actual waiting time of a customer if he had
arrived at time t.

For a complete reference on the earlier works
of queueing theory we refer to the bibliographies given
in the books by Syski [1960], Saaty [1961], Takacs [1962],
Prabhu [l965], Cooper [Z1972], Gross and Harris [1974], ­
Neuts [1981] and Hedhi [i984]. F



M/G/l queueing models where the server is not
available over occasional intervals of time has been

considered by many authors. The times, when the server
is not available are called vacations (also referred to
as rest). A queueing model in which the server goes
for vacation whenever the system becomes empty is an

‘exhaustive service system’. This model has been studied
by Miller [l964], Cooper [l970], Levy and Yechiali [I975].
Shantikumar [l990], Scholl and Kleinrock [l983], Lee [1994]
‘and Fuhrmann [l98d]. M/G/l queueing systems without
exhaustive service is studied by Neuts and Ramalhoto[l984],
Ali and Neuts [1984] and Fuhrmann and Cooper [l985].
Daniel [1985] discusses several interesting models with
vacation to the server. Doshi [1985] considers the G/G/l
exhaustive service system and proves that the ‘decomposition
property‘ holds.G/G/1 vacation system with Bernoulli
schedules is considered by Keilson and Servi [l986].
For a complete survey of the queueing systems with ’
vacations, we refer to Doshi [l986].

1. 3 Homggglong

In this section we introduce the following notations,
that may be frequently used in the thesis.



* denotes the convolution operator.

f*n(x) is the n-fold convolution of f(x) with itself.

For a distribution function F(x);'§(x) = l-F(x)
1 if i=351' o if 1,433 is the Kronecker delta function given by 61j={­

[x] denotes the integral part of x.

ya B(.) is the Gamma density function with parameters a and 5.9

I: B(,) is the Gamma distribution function with parameters a and 5.9

E(X) is the expectation of the random.variable I.

We define the convolution of two matrices A and B

as follows. If A(t) = [a1j(t)] is a matrix of order m x p
and B(t) = [bij(t)] is a matrix of order p x n, then

L*B(t) = [cij(t)] is a matrix of order m x n whose elements
P

are given by c1j(t) = Egi aiE*bkj(t).

1.4 RENEWAL THEORY

Let {lit n=l,2, ...} be a sequnce of nonnegative
independent random variables with a common distribution function

n
F(x). Let S0 = O and for n91, Sn: LE 11,=1



Define lI(t) - supinf shat}
00

If u -.= I x dF(x), which we assume to exist, by the strong0
8

law of large numbers we have 39 —-> p as n —-> (I: with

probability 1. Hence, for finite 1;, Sn Q t only finitely
often and so H(t) < m with probability 1. The process

{N(t), t >,o_} is a Renewal process.

It is easy to note that H(t) ‘>,n<.-;» Sn 5 1:.

Using this one may obtain, P {N(t)=n} an F*n(t)-F*n+l(t).

Let M(t) = E(N(t)); l!(t) is called the renewal function and

“3 -x-nit can be shown that )I(t) . Z P (t).n: l
Let m(t) = M'(t); n(t) is called the renewal density function

®

and m(t) ::-= 2,1 f*n(t) if the density function f(x)=F'(x)n=
exists.

Suppose {IN :1 = 1,2, ...} is a sequence of independ­
ent nonnegative random variables with X1 having distribution
function G( x) and 5 for n>1 having distribution function F( x).

11

Let So= o and Sn: 1X-3111 for n31.



Define HD(t) = sup in lsnet} , HD(t) is called a Delayed
renewal process or a Modified renewal process.

Here we have, P {HD(15)=D} -= G&F*n'1(t)—G»r*n(t) .

The modified renewal function is l!D(t) -= E( (t)) andND

C.’ +1-n-1
MD(t) = Z Gar (t). The modified renewal density

n-—- 1

function is mD(t) = }1D'(t) and it is given by
°° ‘H1-1

mD(t) = Z gaef (t), under the additional assumptionn= 1

that the density function 5(1) an G'(x) and f( x) = F'(x)
enlst .

For more details of the renewal theory we refer
to Cox [1962] .

1.5. iUM.MA.RY OF Tj_E VOBK INCLUDED IN THIS THESIS

In the second chapter we consider three models

on (s,S) inventory systems with finite backlog of demands
and vacation to the server. In all the models the inter­
arrival times of demands and lead times are independent
sequences of independent and identically distributed

random variables having general distributions. In the
first two models, whenever the inventory becomes dry,
the server goes for vacation. In the third model when
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the inventory becomes dry, a local purchase is made accord­
ing to the availability and the server goes for vacation
only if the local purchase is impossible. the vacation
period is also random with a general distribution. It
the server returns from vacation before the realization
of the order, he permits a finite number of demands to
wait. All the demands arriving during the'vacation period
of the server are lost. In the first and third model,
order size is a constant and in the second mdel the order
size can vary according to the inventory level. Using
renewal theory, the inventory level and queue size
probabilities are presented explicitly.

In chapter 3, we derive expressions to find the
correlation between lead time and dry period for (s,S)
inventory systems and finite capacity dam models. Also,
assuming exponential distributions for interarrival times
of demands and lead times, simple expressions for the joint
moments are obtained.

Fourth chapter deals with.an (8,3) policy inventory
system under the assumption that intervals of time between
successive demand points, quantities demanded at these points
and lead times are independent sequences of independent and
identically distributed random variables. Interarrival tines



of demands and lead times follow general distributions.

The quantity demanded each time is a discrete random
variable taking values between two integers a and b such
that s <a 2’-.b<S-s. Backlogging of demands are not allowed.
Exact expressions for the system size probabilities are
derived.

In chapter 5, we consider an inventory system in
vhich.an ordering level is decided according to the number
of demands during the previous lead time. Interarrival
times of demands and lead times are generally distributed
random variables and each demand is for one unit. All the

demands that occur during the inventory dry period are lost.
Using renewal theoretic arguments we derive the inventory
level probabilities. Also we discuss the correlation between
the number of demands in a lead time and the next dry period.

G/Ha’b/1 queueing system.witb.vacation to the server
is considered in chapter'6. The service time is exponentially

distributed with parameter pi, if 1 is the size of the batch
being served. The vacation periods are also exponentially
distributed. Matrix-geometric method of Neuts is used to
find the steady state probabilities of the system size.
The structure of the matrix geometric equation is not simple
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and is not yielding to any easy algorithmic approach for
solution in the general set up. Probability distribution
of waiting time is given explicitly.

In chapter 7, we consider a finite capacity M/G/1
queueing system with server going for vacation whenever
there is no unit in the system. The vacation periods are
independent and identically distributed random variables
having a general probability distribution function. The
capacity of the waiting room is finite and all the demands
that arrive when the waiting room is full are lost. Using
renewal theory, we derive the transient system size
probabilities at arbitrary time points. Also we derive
expressions for the probability distribution of virtual
waiting time in the queue at any time t.

In the last chapter we consider an H/Ga’b/l queueing
system with a waiting room that allows only a maximum of 'b'

customers to wait at any time. A minimummof 'a' customers
are required to start a service and the server goes for
vacation whenever he finds less than 'a' customers in the
waiting room.after a service. If the server returns from
facation to find less than 'a' customers waiting, he begins
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another vacation immediately. Here also expressions for
the time dependent system size probabilities at arbitrary
time points are derived.

The expressions we derive are complicated and
hence do not easily yield to give numerical solutions.
Developing algorithms for these will be quite worthwhile
work.



Chapter 2

INVENTORY szsmns WITH g-Inns memos or

DEHANDS;A_ND VACATION TO THE sERvnR*

2.1. INTRODUCTION

The probabilistic analysis of (s,S) inventory
models using renewal theoretic arguments is considered
by many authors. For instance, Arrow, Karlin and.Scarf
[1958] and Tijms [1972] contain detailed treatment of
thesermodels. Sivazlian [1974] deals with a continuous
review (s,S) inventory system vith general interarrival
distributions between unit demands. Srinivasan [1979]
considers the system.with general demand arrival times,
random lead times and unit demands. Thangaraj and

Ramanarayanan [1983] consider an inventory system with

two ordering levels. Daniel and Ramanarayanan [l987a,b]
consider several models allowing vacation to the server
during dry period.

In this chapteriwe consider three models of
(s,S) policy inventory systems with.finite backlog of
demands and rest time for the server. In all the models,
the interarrival times of demands and lead times are

independent sequences of independent and identically

*To appear in Cahiers du C.E.R.0. Vol.29, 1987.

14
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distributed random variables having general distributions.
In the first two models, whenever the inventory becomes

dry, the server goes for vacation. In the third model,
when the inventory becomes dry, a local purchase is made
according to the availability of the item and'the server
goes for vacation only if the local purchase is impossible.
The vacation period is also random with a general distri­
bution. If the server returns from vacation before the
realization of the order, he permits a finite number of
demands to wait. All the demands arriving during the
vacation period of the server are lost. In the first and
third model, order size is a constant and in the second
model the order size can.vary according to the inventory
level.

In all these models, the intervals between placing
successive orders are independent and identically distribut­
ed random variables. We calculate its probability density
function and using renewal theory we derive'the inventory
level and queue size probabilities explicitly.

Now we introduce the following notations.

sfS(.) Probability density function of the time between
placing two successive orders.
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fs 1(x)dx:= Probability that the stock level dropsI
to i in (x,x+dx) due to the first demand
served after the replenishment, given at
time zero the order is placed.

ookm = 2: r*'*<x>
n= 0

en

qua) = '2: 3r;““<x>n: o

For 1 .-’= 1 é. S,

ni(t) = Probability that the stock level is i at
time t, given at time zero the inventory
size is S.

no(t) = Probability that the inventory is dry and
there is no waiting of demands at time t,
given at time zero the inventory level is S.

n_i(t) = Probability that there are i demands waiting
at time t, given the inventory level at tins
zero is S.

2.2. DESCRIPTION 0} MODEL-l

In this section we give the details of the assump­
tions of this model. The maximum capacity of the store is S.
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The interoccurrence times of demands are independent and
identically distributed random.variables with distribution
function P(.) and density function I(.). Demands occur
for one unit at a time. Whenever the inventory level falls
to s, an order is placed for a quantity S-s. The lead
time is a random variable with distribution function G( .)
and density function g(.). When the inventory becomes dry
(i.e. the inventory level falls to zero) the server goes
for vacation for a random period with probability distri­
bution function H(.) and density function h(.). All the
demands that arrive during the rest time of the server are
lost. During the inventory dry period, arriving demands
are permitted to wait for service only after the rest time
of the server, subject to a maximum of size S—2s-l. They
are served when the order is realized. It may be noted
that since the size of the order ‘S-st‘ minus the maximum

queue length S—2s—l is s+l, we avoid placing a new order

when an order is not realized. Finally we assume that,
the interoccurrence times of demands, lead times and rest
times are all independent.

In order to calculate the inventory level and
queue size probabilities, we find the transition time
probability density functions. It is easy to note that
for S-sé ii-S-1,



18

I
f8'1(I) = I f*3"'1<u) [e<x)*-am] f(x—u)du .. <1)G .

Also,

I _._ 11
is s_s_1(x) = J r 5(a) J k(v)[H(x-u)-I-I(v)]9 O O ..

[G{x)—G(u)] f(x-u-v)dv du .. (2)

To write down equation (2) consider the inter­
th demandarrival (o,x). A1; 11 in this interval, the 3

occurs. During (u,u+v) several dmands are lost and at
u+v a demand is lost. The server who goes for rest at u
returns only after u+v but before 1:. The order placed at
time zero is realized in (u,x) and a demand occurs at 1.

We get for 8+1 5 1 4.4 S-8--2,

x *8 1-11 I-11-V
fs'i(x) = of f (u) of k(v) of [H(w+v)-H(v):.|:f(w)

I-u-V-W

of r*‘S'9'i"“’<y) tau)-e<u+v+w+y>1

f( 1-11-v-w)dy dw dv du .. (3)
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To obtain equation (3) consider the interval (o,x).
it u the sth demand occurs. Demands are lost during (u,u+v)

and at u+v a demand is lost. Server returns during
(u+v, u+v+r) after rest. (S-s-i-1) demands arrive and
wait for service before the order is realized and a demand
occurs at 1.

Considering the fact that when the queue size
during the lead time is S-23-1, further arriving demands
are lost, we get,

1 1-11 x-u-v
:fs’a(x) = of :*‘’‘(u) 05 k(v) O5 [a(e+v)-n(v))r(e)

If-u-V-wk*f*( s'28'2) ( y) [G( ::)-G( u+v+v+y)]0

f( I-11-‘V-W-y) dy dw dv du . . (4)

Using (1), (2), (3) and (4) we find the probability density
function of the time between successive orders as,

S-1

8fB( 1) = 3:8 3fs’i(u) f*(i's)(x-u)du .. (5)
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2.3..2HE INVENTORY LEVEL AND QUEUE SIZE PROBABILITIES

'S(t) =

‘1(t) 3

+

It is easy to obtain,

i'(’c) + jtI*S'°(u) tfuqh) G(t-n-v)'f'(t-u-v)dv du .. (6)o 0
Also for s+l.<.1 e’-.8-1,

[F¥S*i(t) _ F*S-i+l‘t)] + K f*S“3‘u) :?u§(V)O

1;-u-v S_ *
Z fa j(w) [F*'1 ''i( t-u-V-V)--F J"i+l(1:--u-v-w) ]i=1 ’

dw dv du

t ‘I:-u 1:-u-V
6s_s,1 of :f*s'3(u) of q(v) of f*°(v)[G(t-u—v)-G(w)]

-H-( ‘I3-11-V-V) dw dv du

t t-u 1:-u-V * t-u--v-w
634,1 of f*s'°(u) of q(V) OS 1’ SW) of k(y)

[H(1:-u-7-w)-H( y) ] [G-( t-11-V) - G-( I) ]'IE"( t-u-1-w-y)

dy dw dv du .. (7)

The first term on the right side equation (7) is
the probability that exactly S-1 demands occur and the second
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term is the probability that the inventory level drops
to s, several orders are placed and realized, a transi­
tion from level s to level j occurs and after which
exactly 3-i demands occur. the last two terms are written
considering the realization of an order during the inventory
dry period. For i = 3-8, the third term is the probability
that the inventory level is S-s at time t due to the realiza­
tion of order before t but the server taking rest. For i=S-s,
the fourth term is the probability that the inventory level
becomes S—s due to the realization of an order, rest period
of the server is over but no demand has occured after his
return.

Now for 1 5158, we get,

t t—u
aim = f :r*S'°<u) 5 q(v)e<t-u-v>[r*°'i(t-u-v) ­o o

P*s'i+l(t--u-v)]dv du .. (8)

Using the argument that during the inventory dry
period (1) the server is absent or (ii) he is present but
demands have not arrived after his rest time, we find,
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t 1:- t­
x°(1=) = I f*s'°(u) fuqh) TH?-u-V) In-v1’*°(v)O O 0

'1i(t-u-v—u)dw dv du

+ Itf*‘°“'3(u) tfuq(v) EU‘--u-V) ti-u-'f*'(w) tin-:(-3)O O O 0
[H(t-upv-w)-H(y)I§(t-u~v—v-y)dy dw dv du

o- (9)
Also for 15-.15.-S-28-2,

t_i(t) = F f*S'°(u) tfuqh) 7G'(t-u-v) t?u.'f*8(v) tfuw-;(y)O O 0 O
1;... .. .. _
ju V W y[H(y+z)-H(y)] 1’(z)[F*i'l(’=-u-V-V-3-2) —

0

F*1(t—u-v-w—y-zjdz dy dw dv du .. (10)

To obtain equation (10) we consider the interval
(o,t). At 11 the (S-e)th demand occurs. During (u,n+v)
several orders are placed and realized. At u+v an order
is placed but not realized up to 1:. At u+v+v inventory
becomes dry. During (u+v+w, u+v+w+y) several demands are

lost and at u+v+w+y a demand is lost. The next demand
occurs at u+v+w+y+z and the server returns during
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(u+v+v+y, u+v+v+y+z). Exactly 1-1 demands occur in

(u+v+w+y+z , x) .

considering thm maximum size of the backlog is
8-2 s—l , Ire find , t t- t­
1:__(S_2s_1)(t)= I :*3'°(u) ;“q(v)?;(1~.-u..v) }u'§*°(w)0 O 0

t-u-v—w t-u-v--w-y
I k(y) ‘j f(z) [H(y+z)-H(y)]O O *

r*S'23’2(t—u.v-w_y-z)dz dy dw dv du .. (11)

2.4 DESCRIPTION OF HODEL;2

In this model also we assume that the demands occur

in accordance with a general renewal process and the lead
time distribution for an order is general. Let F(x) be
the distribution function of the interoccurrence times of
demands and let f(x) be the corresponding probability
density function. Demands are for one unit at a time.
Maximum capacity of the store is S and an order is placed
whenever the inventory level falls to s. The lead time
distribution and density functions are respectively G(x)
and g( 1:). After the lead time, an agent arrives and he
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can supply 3 units, S-s 9:! 58. If the inventory level
is i, o -1.1 as, he supplies S-i units and so the inventory

'becomes full after each replenishment. When the inventory
becomes dry, the server goes for rest for a random time
those distribution and density functions are H(x) and h(x)
respectively. During the inventory dry period, arriving
demands are permitted to wait for service only after the
rest time of the server subject to a maximum of size S—s-l.
They are served when the order is realized. Here we may
note that since the maximum size of an order 8 minus the

maximum queue length S-3-l is s+l, we avoid placing a new

order when an order is not realized. Also we assume that
the interarrival times of demands, lead times and rest
times are all independent.

Here we obtain the transition time density function
as follows:

8-1 x *1 [ d xf*B( )f8’S_1(x) = fig g f (u) G(x)-G(u)?f(x-u) u + g u

xpu
; k(v)[G(x)-G-(u)][H(x-u)-H(v)]f(x--u-v)dv du (12)

o

The first term corresponds to the case that the s to 8-1
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transition occurs before the inventory becomes dry. to
write the second term we consider the interval (0,1).
At u the inventory becomes dry. During (u,u+v) several
demands are lost and at u+v a demand is lost. Next
demand occurs at x. During (u,x) the order is realized
and during (u+v,x) the server returns.

For s-1-lei =’-.S-2, we have,

x *8 xpu x-usv
fs i(x) = 5 f (u) if k(v) ‘( [H(w+v)—H(v)]f(w)’ o o o

I-11-V-W
1 r*S"“2( y) is x)-e< u+v+v+y)] ~0

f(xeupv-w)dy dw dv du .. (13)

To write down equation (13) consider the interval (o,x).
At u the sth demand occurs. Demands are lost during
(u,u+v) and at u+v a demand is lost. Server returns during
(u+v, u+v+w) after rest. S-i-1 demands arrive and wait
for service before the order is realized and a demand occurs
at x.

Now,
X- U.-V

fS’S(x) = 3f*3(u) :j.uk(v) O‘ [H(w+v)-H(v)]i‘(w)
I-11-V-W
J k*f*S'8"2( X) [G( ::)-G( u+v+w+y)]O ­
f(x—u~I-w—y)dy dw dv du .. (14)



26

Then we have,

3-1 1 *i_8
8138(1) = 1% OJ fs’1(u) 1’ (x-u)du .. (15)

2.5. INVENTORY LEVEL QIDQQUEUE SIZE PROBABILITIES

Here we give the inventory level probabilities.
It is easily seen that,

1tS(t) = ?(t) 4- ts :f*S's(u) tj-uq(v) tj-u-V :il f*i(w)O O 0 =0
[G( t-u-V) - G (U) ]-f‘( t-u-v-tr) dw dv du

+ tf f*S's(u) ti-uq(v) tf-u-;*s(w) Tu-V-wk(y)O O O 0
[H( t-u-V-V) -Ht 3)] [G( t-u-v)- G( v)]

§’(t-u-v-w-y)dy dw dv du

+ ts fies-S( u) tj-uq(v) ‘bf-u-v:f*s(w) ‘H-(t-‘D.-V-W)o o o
[G(t—u-V)-G(w)]dw dv du .. (16)
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The first term is the probability that no demand has
occured during (o,t) . The second term is the probability
that during (o,t) several orders are realized, the last
order placed is realized before the inventory becomes dry
and no demand has occurred after its realization. The

third term is the probability that the inventory level is
S immediately after a dry period and the server is avail­
able. The fourth term is the same case when the server
is taking rest.

For 5+1-1-i 4.3-1, we get,

aim = tr“ *°"i’(t>—r*‘S'i*1’(t)1 +t5 r*""“(u) tj-uq(v>-- o 0
H1" Silt (w) [r*‘1“i)(»c..u.v-w) ­0 3:1 593
P*(j-i+l)(t-11-V-U)]di' dv du .. (17)

Now for 15153,

t 1:­
11:i(t) = j r*-°*’3(u) juq(v)‘é(t..u..v) [p*‘-’*"1(t..u..v) ­O O

F*s'i"'1( t-u-v)]dv du .. (18)
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Also,
I t t—u t—upv
1r°(t) = g:*5"’(u) g cm) G(t-u-V) ; r*°(u)o o o

TI(t—u-V-1!) dw dv du

t t-u t-upv
+ gt-*S'S(u) j q_(V)E-(1:-u-V) 3 r*‘°’(w)o o o
t-usv-w. _
J k(y) [E(t-upv~w)—H(y)]F(t-upv-w—y)dy dw dv duO ­

-o (19)

Now we find the queue size probabilities as follows.
For 1-_’=i:’:S-s-2,

t t-u t-u—v
-n_i<t> = §r*'-”"9(u) 5 q(v)e<t-u-v) 1 r**-"(w>o o o

t-U97-W t-upv-w—y Aj k(y) j [H(y+z)-H(y)]f(z)o o
[F#i"l(t-usv-w-y-z)- F%i(t-upv-w-y-z)]dz dy dw dv du

.. (20)

To obtain equation (20) consider the interval (o,t).
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it u the (S-s)*h demand occurs. During (u,u+v) several
orders are placed and realized. it u+v an order is placed
but not realized up to t. At u+v+w inventory becomes dry.
During (u+v+w, u+v+w+y) several demands are lost and at

u+v+v+y a demand is lost. The next demand occurs at
u+v+w+y+z and the server returns during (u+v+w+y,

u+v+w+y+z). Exactly i-l demands occur in (u+v+w+y+z,x).

Finally,

t_(s_s_1)(t) = 3 f*S'°(n) :5-uq(v)T%(t-u-V) :j-u-vf*°(v)

:5'“""k< y) :s'u"'”r< z) [ac y+z)-H( yn

r"'S"s‘2(t—u.v-w-y—z)dz dy aw dv du .. (21)

2.6 DESCRIPTION OF HOQEL-5

Here we consider an (s,S) inventory system with
the following assumptions. The interarrival times of demands
are independent and identically distributed random variables
with distribution function F(x) and density function f(x).
Demands are for one unit at a time. S is the maximum

capacity of the store. Hhen.the inventory level falls to s,
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an order for S-s units is placed. Lead times are independ­
ent and identically distributed random variables with
distribution function G(x) and density function g(x).
Whenever the inventory level drops'to zero, if the item
is available, s units are brought to the store immediately
at an additional cost. Irrespective of the time, let p be
the probability that the item is available and let q: l-p
be the probability that it is not available. When the
inventory level drops to zero, if the item is not available,
the store is closed for a random length.of time, having
distribution function H(x) and density function h(x).
All the demands that arrive during this closed period is
lost. If the store is opened before the realization of
the order, no local purchase is made, but backlogging of
demands is allowed to a maximum of S-2s-1 units. is the

difference between the order size and the maximum queue
length is s+l, we avoid placing a new order when an order
has not realized. Interarrival times of demands, lead
times and store closing periods are all assumed to be
independent.

Here also using the notations introduced for
transition probabilities, we obtain the following relations.
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For S-8 51 5-8-1,

I
is i(I) = J .§E f*s+nB-i-l(u) fin[G(x)—G(u)]f(x-u)du (22)’ 0 n= 0

To obtain (22) consider the interval (o,x).
Whenever the level hit the zero level, local purchase
was possible and all the demands are met in (o,u) and a
demand is met at time u. The replenishment occurs in
(u,x) and the first demand after u occurs at 1.

For 1 = S—s—l, we easily get,I I-11
rS,S_,,_1(x> = {D31 r*’‘S<u>p’‘'1q ( k<v>[n(x-u)-Hm]o = o

[G(x)-G(u)] f(x-u--v)dv du (23)

Also for s+l /_-1 es-s-2,

I m I-U. I-11-V
fs’i(x) 3 5 ;; r*“(u) pn-lq (k(v) ( [H(v+v)—H(v)]f(w)o n: 1 o o "

X-U.-V-U

OJ f*S"°'i'2(y) [G(x)-G(u+v+v+y)]
f(x»upv-w-y)dy dw dv du .. (24)
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x 00 x-u xpuyv
rS,S<x> = j z r*“°(u> p“"1q J km 3 [H<w+v)-H(v>1r<w)o n: 1 o o ”

I-I1-V-W x ­
I 1’ 3'23 2 k(y) [G{x)-G(u+v+w+y)]0 ­
f(x-upv-U-y)dy dw dv du .. (25)

Thus we get the probability density function of the time
between placing two successive orders as,

3-1 x *1_s
8fs(x) = 3:: S fs’i(u) f (x-u)du .. (26)=8 0

27. INVENTORY LEVEL g._ND QHUEUE SIZE PROBABILITIE§

We get,

t t-u. O0 t-upv
-s=S(t> ='x=~(t)+f r*S‘*‘(u> Sqm 2: j p“ :c*”S(w>o o D: ° 0

[G(t-u-7)-G(w)] ‘f~(t—u.v-u)dv dv du .. (27)
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Equation (27) is written considering the cases
(1) No demand occurs upto time t, (11) In order is placed
at u, many orders are placed and realized and the last
order is placed at u+v. Then several local purchase are
made and at u+v+w, the level is s and the order is re­
plenished in (w,x) but no demand occurs in (w,x).

For 8+1 {-1 4.-S-1, it is easily seen that,

*1”) = [F*S""<t>-r*S'i*1(t>1 + ? r*‘°’‘‘''<u> tfuqtv)- o o
t-u-v

as E fB’j(U')[F*(j-i)(t-11-V-U) —

F*(j'i+l)(t-u-v--11)] dv av du

t t-u t-u-v an _
+ 6S_s'1 of f*s'8(u) of q(v) of El 19” lq f*n°(v)

[G(t-u-V)-G(w)] 'fi( t-u-v-w) dw dv du

t t-u t-u-v oo _ ~
+ 6s_s,i OI f*s"s(u) of q(V) 0] El P" lq f*nS('-r)

t-u~v-w
J k( 3') [H(t-u-V-V)-H(y)] [G(t—u-V)-G(w)]0

'f‘(t-u-v-w—y) dy dw dv du .. (28)
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Now for 15153,t t­
ni(t) = ‘I f*s'8(u) ‘Inq(v) '63 (*6-u-v) E p'‘''1o o n: 1

[r*("°"1)(t-u—v)-r*("”"‘*1)(t—u—v)]av du .. (29)

When the inventory is dry and when there is no demand
being backlogged, we have two mutually exxflnsive cases.

Let,

uO°(t) = Probability that the store is closed
and the inventory level is zero, given
the level at time zero is S.

Also let,

u°°(t) = Probability that the inventory is dry,
the store is open and there is no waiting
of demands at time t, given at time zero
inventory level is S.

Then we have,

t t-u t-U97
n °(t) = GI f*S's(u)° 05 q<v>'é(t-u-v) 5 §'ilp“‘1q.r*‘“‘(w)0 ¥

fi(t-upv-w)dw dv du .. (30)
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‘t 13­
u°°<t> -.- 5 r*3'°<u> Jnq(v>'é<t-u-v)0 0

15-11-17 co t--u-v-V
I Z p“'1q r*"S<u> I km0 B" 1 o
[H(t-u-v-w)-H(y)] in-u.v..w—y)dy aw dv du .. (31)

The queue size probabilities are obtained as follows.
For 1 5- 1 4.4 S-2s-2,

t-u 1:--u-v
f-KS-S(u) J q(v) -G-_(t_u_v) I E P11-lq f<l6Il8(w)O 0 BFon...-‘c.+

1:;i(‘t) =

t-u-v-H t-u-v— V­
j rm 5 ’[a<y+z)-H<y)1r(z)O O
*([F —u»v-w-y-z)-F*i(t-uyv-w—y-2)]dz dy dw dv du

.- (32)
Finally we have,

t- t-u--Vt u _ *
1t_(s_28_l)(t) = of :f*S'8(u) of q(v) G-(1:-u-v) OJ 1' S(w)

t-u-V-w t-u-v--w­
J km 1 32) [a<y+z>-Hm]o o «­
-IFS-28-2F (t-upv-w-y-z)dz dy dw dv du .. (33)
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Remarks

The probabilities calculated in the above models
may be used for finding the expected cost during (o,t).
We assume that the inventory carrying cost per unit 18
'a' units per unit time and queue maintaining cost per
demand is 'b' units per unit time. Then we find the
expected cost during (o,t) as,

S 1: d 13
E(C('t)) = Z 119. j 1:n(u)du + Z mb J1t_m( u)dun==l 0 m=l 0

where C(t) is the total cost during (o,t). For models
1 and 3, d = S-2s—l and for model 2, d = S-S-1.



non Invnmonins ma DAMS

3.1 _;_NraoI>UcTIoN

A detailed review of inventory systems was given

by Gani [1957] and applications of such models to practical
situations, are provided by Hadley and Uhittin [l953].
Moran [1959] gave the probability theory of a dam and later
it was further extended by several authors. In many of
the models developed, under the assumptions of general
distributions.for interarrival times of demands and lead
times (time between seasons), the system size probabilit­
ies are obtained. For instance one may refer Sahin[l979],
Srinivasan [l979], Thangaraj and Ramanarayanan [1983]
Roes [l970]. But the relationsobtained are too involved
to yield for any further analysis.

So far, the correlation between lead times (time
between seasons) and storage dry periods have not been
studied at any depth. In this chapter we develop some
simple results and use it to find the correlation between
lead time and dry period for (s,S) policy inventory systems
and finite capacity, continuous demand dam models. Also

37
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in some particular cases simple expressions for the
joint mments are obtained.

3.2. §9ME GEHEEQL RESULg§

Let X and Y be two positive independent random

variables with probability distribution functions P(x)
and G(x) and probability density functions f(x) and g(x)

respectively. Define a random variable 2 as

{I—Y 1: I>YZ :: 0 otherwise

The joint density functions of I and Z is given by

f(x)-(‘X x) for no and x>o
f(x,z) = 1’(x)g(x--z) for z>o and zsx .. (1)

0 otherwise

[ Here f(x,z) is not a proper probability density function,
for, non zero probability is attached with a set of
Lebesgue measure zero. But f(x,z) can be used for our
computations.]



The Double Laplace Stieltj as Transform (DLST) of I

and Z is given by

® __ m I _ _
E(o sxwnz) as I I-5: :t’(x). G(x)dx + I I 9 $1 1”o o o

f( x) g( 1-z)dz (1:

After some simplifications we get,

3(e"5X""Z) = °fe"5‘ :f(x)dx — n °j°e"5"'"‘1'(x)O 0
feny G(y)dy dx .. (2)0

Now differentiating (2) partially with respect to ‘la
and putting$= o and n = c, we obtain after changing the
Sign.

oo x13(2) = J :f(x) I G(y)dy dx .. (3)O 0
Similarly taking the second partialderivative with
respect to ‘n and putting $= o, n = 0, we get

oo 1 yE(Z’) = 2 Jf(x)j jG(z)dz dy dx .. (4)o o o
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How differentiating equation (2) partially with
respect to n and then with respect to 5 and putting n=o,
5:0, we obtain,

00 I
1=.'(xz) .-= jx f(x) je(y)ay dx .. (5)O 0
Using (3) and (5) the covariance of X and Z can

be found. From (3) and (4) the variance of Z is calculated
and so the correlation between X and Z can be obtained.

Similarly we can compute the correlation between

Y and Z as follows. The joint density functions of Y and Z
(as in the earlier case, here also it is not a proper
density function) can be easily written as,

F(y) 3(3) for z -= 0. F>0
:E(y,z) an g(y) i’(y+z) for z > 0, y>o .. (6)

0 otherwise

Hence DLST of Y and Z is,

E(e'5Y"nZ) = ofoe "5ye(y) F(y)dy +
0

‘In ?0'$y'n”e(y) f(y+z)dz d30 O
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This can be simplified into the form,

E(e''$Y''"z) - °J°0'$’e(y) I-‘(y)dy +
O

of e-$y+ny8(Y) °Joe'nxf(x)d:x dy .. (7)o 0
Then we find that,

E(YZ)
oo oo _s y gm 5 r(x)dx dy .. (8)0 Y

Then as in the earlier case, the correlation between
Y and Z can be calculated.

3.3 ON §s,S) POLICY INVENTORY SYSTEMS

Consider an (s,S) policy inventory system under
the assumption that the interarrival times of demands
and lead times are independent sequences of independent
and identically distributed random variables with general
distributions and the demands are for one unit at a time.
Let H(::) be the cumulative distribution function (c.d.f)
of interarrival times of demands and let h( x) be the
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corresponding probability density function (p.d.f).
Also let F(x) be the c.d.f of lead times and let f(x)
be its p.d.f. The order is placed whenever the inventory
level falls to s. Hence the time for the inventory to
become dry is the time needed for the occurrence of s
demands which is the sum of s independent and identically
distributed random variables having c.d.f H(x). There­
fore H*3(x), the s-fold convolution of H(x) with itself,
is the c.d.f of the time to dry.

In section 3.2, if we take I as the lead time and
Y as the time to dry, then Z will be the dry period. X is
having c.d.f F(x) and Y is with c.d.f H*‘’( 1). Substituting
these distribution functions in the earlier equations,
the correlation between lead time and dry period and
time to dry and dry period can be obtained.

Now we study a special case in which both the
interarrival times of demands and lead times are exponentially
distributed.Let _AxH(I) = 1-8-91 and "“(I) = 1 - 8
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Using the equations in section 3.2 we get,

(1)

(ii)

(iii)

(iv)

(V)

(Vi)

The expected dry period, E(Z) =

E (z')

mm) =

Cov(I, Z)=

E(Yz)

Cov(Y,Z)=

U

|.»

,1...DO

>l'~ >:.|+=

(-5%,-J”>'|l-'

<35)“

(T1_+p__’\)e (_gp+fit+’-\)\8)

<35)“ <*“’},:;‘“ )

(35;-;‘>°< 3-3-A )

<-55>” air‘:
Then the correlewion between X and Z is given by

F(x9 Z) ‘'3
p(p+>~ + As)

' (|.1+/\)\[2.)\2(‘|"l'§'£"')3 '- I12

and the correlation between Y and Z is given by

3’(Y,z) -.=
-)\uV‘§

(u+«\) 2/\’ (-9-:4\)'3-:4’
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Remark:

the expected length of dry period can be increased
or decreased using (1) by decreasing or increasing the
value of e. A pre-planned dry period will be useful for
doing activities like clearing the accounts, cleaning
the store etc. Also note that covariance of I and Z is
positive and the covariance of Y and Z is negative.

3.4. ON Dgn MODELS WITH.CONTINUOUS DEMANDS

We consider a dam with a finite capacity C. Time
zero is a season epoch and the dam gets water of random
amount H having c.d.f H(x) and p.d.f. n(x). Hence the
water contained in the dam initially is N if H50 and
it is C if H>C. The next season occurs after a random
time having c.d.f. F(x). Demands for water occur with
int erarrival times having c.d.1' H(:x) and density function
m(x). The quantity demanded each time is random with
c.d.:f. K(x).

Let Pk Prob {the dam survives k demands}

f K*k( x)n(x)dx + K*k(C) 31(0)0
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Let pi = Prob {the dam becomes empty due to the
ith demand}

= 1,2’ 000
Then pi = P - P

-Then the time to dry the dam is a random variable having
c.d.f

I °° xiG(::) = I 2: pin: (s)ds -- (9)0 i=1
Here also if we take I as be time between seasons and Y

as the time to dry, Z will be the dry period. So results
of Section 3.2 can be used to find the correlation between
the time between seasons and dam dry periods.

Consider a special case in which the time between
1seasons having c.d.f F(x) = l—e** and time between demands

having c.d.f M(x) = 1-e'px.

oo- = ._E_
Let ¢p(s) .. 1:351 pie and let 1' |H_’\

Then the followingzrelations can be obtained
(using the equations in 3.2).



(i) The expected dry period,

2(2) = —,%— «pm.-)

(:1) mm = —f—; «pm

(iii) E(XZ)
$1 *P'(r) + -5‘; <P(r)- s _1_

(lv) Cov(X.Z) = $2 ‘P (r) + M <P(r)

_.E_._ ¢Pa(r)(V) E(YZ)
A(A+p)’

ll

(vi) Cov(Y.Z) = -2- 9='(r) - fill «pm)‘()‘+p)2 AP
Then the correlation between X and Z is obtained as

Eréfl-32 @'(r) + @(r)A+ p?(x,z) =
f2<P(r7 - <P"(H

and the correlation between Y and Z is obtained as

5%: <P'(r) — <p'(l) ¢(r)+1.1 .S’<Y.z) = —
,[<P" (17 + 2‘?'(l)-T‘P'(j)‘] "'J?<P( 1'7-<P‘(r)



Chapter 4

AN INVENTORY SYSTEM VLH RANDOM LEAD

firms mam BULK DEMANDS

4;l INTRODUCTION

In this chapter we consider an (s,S) policy
inventory system under the assumption that intervals
of time between successive demand points, quantities
demanded at these points and lead times are independent

sequences of independent and identically distributed
random'variables. All the demands that occur during.
an inventory dry period are lost. We derive expressions
for the inventory level probabilities explicitly.

Gross, Harris and Lechner [1971] considered
(S—l,S) inventory models with bulk demand and state

dependent lead times. They have assumed that inter­
arrival times of demands and lead times are exponentially
distributed random variables and obtained the expected
inventory cost in order to obtain an optimal value of S.
Srinivasan [1979] considers an (s,S) policy inventory
system with general demand arrival times, random lead
times and unit demands. In this paper, he has given
the explicit expression of the probability mass function

47
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of the stock level at any time t as well as other
statistical characteristics governing the actual sales
and shortages. Thangaraj and Ramanarayanan [1983]

considered an inventory system with two ordering levels.
Sahin [1979] considers (s,S) inventory systems in which
the quantity demanded is random but the lead time is a
constant and full backlogging is allowed. He derives
time dependent and stationary distribution of inventory
position and on hand inventory and discusses some results
for the characterization of the optimal policies. Also
Sahin [1983] considered an (s,S) inventory model with
random lead times and bulk demand and obtained the

binomial moments of the time dependent and limiting

distributions of inventory deficit.

In section 4.2 we give details of the assumptions
and notations used in this chapter. The transition tine
probabilities are given in 4.3 and in 4.4, the exact
expressions for the inventory level probabilities are
written.

4.2 THE MODEL AND PRELIMINARIES

S is the maximum capacity oi’ the ware house and

s is the ordering level. The interarrival times of demands
are independent and identically distributed random variables
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with c.d.f. F(x) and p.d.f. 1(1). The quantity demanded
each time is a discrete random variable taking the value

1 with probability pi. The minimum quantity demanded is
'a' and the maximum quantity that can he demanded is ‘b’;
where a and b are two integers such that 3 ca s.b<S-s.

h
Then Z,

i=a
such that o 91 as, an order is placed for S-1 units. Lead

pi--l. Whenever the inventory level falls to i

times are i.i.d random variables having probability
distribution function G( x) and density function g( 1).
When the inventory level is i, if a demand occurs for
more than i units, all the 1 units are given. No demand
is allowed to wait during the inventory dry period. The
interarrival times of demands, quantities demanded and
lead times are all independent. Finally we assume that
at time zero the inventory is full and the demand process
starts.

Let

1:i(t) e Prob {there are 1 units in the system at
time t/ at time zero the level is S and
demand process starts}

b

em) .-= 2: pix-1ir-a

Pk(n) an the coefficient of rk in [ <p(r) ]n
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For i>J >0,

let ni_3(x) = §°:° r*“(x) ri_j‘”’n=l

For i > o

oo at-n b (n-1) b
let hi'°(x) ‘ 3231 f (X) é§%+1 2i’k iii P3

Consider the time points at which the first demand
after each order realization occurs and look at the invent­
ory level at these points. 8 is the level at time zero
and if S (S-s-b 5 Q 5 S-a) is the level after the first
transition (i.e. due to the first demand occurring after
the first order realization, the inventory level becomes '5 )

Let rS’$ (1) denote the probability density function of the
transition time. Similarly if $ is the inventory level at
one such time point and if n is the level at the next such
time point (ie. the time point at which the first demand

after the next order realization occurs), then fQ’n( x)
denotes the transition time probability density function
(S-s-b .4 5,1} 5, S-a). These transitions can occur with a
dry period during lead time or without a dry period during

lead time. Let if-1,J.(x) denote the transition time
probability density function with a dry period and let
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zfi j(x) denote the transition time probability density9

function without a dry period.

Let

= ( fS’S_8__'b(x)9 fs’s_B_b+1(x)!"’9fS’s_a(x))

(it is a vector of order b+s-a-t-1)

Now we introduce a square natrix of order b+e-a+1 given by,

"'1f 000 fs-s-b,s-s-b(") S-9-b,S—a(x)

“:(x) =

fS-a,S-s-b(x) ' ' ° fS-a,S-a( I)
J

flo
Let H: (x) be the identity matrix of order b-I-s-a+l and
for n21 let F*n( x) be the n-fold convolution of the
matrix |F(x) with itself.

Th 0° *n911 (IS x- X F )(x) is a vector of order b+s--a+1.n: o



Let

Fn(x) = (_;_‘3«)(- E)“-—*n) (1) be the (‘I1-8+3-1-b+1)thn: 0 11

coordinate of this vector, where ‘n = S-s-b, ..., S—a.

4.3. TRANSITION TILE PROQQBILITIES

The following relations for the transition time
probabilities can be obtained easily.

For S-s-b ,5 <5 -.2 S-a

3 X-I1
E0 hs,1( “) I £1 f*n( V)0 I1‘:

I
1fS,§ ( X) 2: I0

[G( I-u)-G(v)]pS_1__: f( x-u-v)dv du

For s-bsfi $8.-a

if: 28: hS’i(u) G(x-u)pB_$ f(x-u)du= 0 i=0
Then for 5 satisfying S—b 5. 3 £8-a, we have

fS’$(x)= 1rS,$(x) + 2rS,i(x)

52

.. (1)

.. (2)

-- (3)

.. (4)
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and for S-8-b .4 3 £ 8-b—1 we have

fS,$(x) =  oo
For 3'3-bé Sp 11 58-8.,

I 3 1-11 ® *n
1f$"‘(x) = 0} go h$'1(u) o5 Elf (V)

[G(x-u)-G(v)]pS_i_,nf(x-u-v)dv du .. (6)

Also for S-b.é'néS—a and S-8-b £- 5 5 S-3.

3: 8
2f$,n(x) = of j-E0 hs’i(u) G(x-u) ps_nf(x—u)du .. (7)

Then we have

lf$'n(x) + 2f$’,n(x) for S—b £11 £8-a
.. (8)

and f (x) = 113$ “(:0 for S-S-b £1) £8-b-1’­

4.4. INVENTORY LEVEL PROBABILITIES

Now we give the relations for system size probabilities.
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t
hS'$ ( 1) ?( t-x) G-( t-::) dx1IS(17) = 711:) + 52:1

t t-1x
+ ShS,°(x) J nEof*n(v)[G(t-1)-G(v)]'f'(t--v)dv dx0 o "

tS—a s _
+ Z Z I Fer-h i(x) F(t-x)G-(t-x)dxn=S-s-b i=1 0 “ "' .. (9)t t-xs­
+ :8‘ jwh om §:° r*’°<v)n=S-s—b O n n’ 11:: o

[G4(t-x)-G(v)] 'i*(t_v)dv 6.:

The above expression is written considering the following
mutually exclusive and exhaustive cases: (1) no demand

during (o,t), (ii) first order is placed at level 5;! o,
no demand occurs thereafter and order is realized,
(iii) first order is made at level zero, several demands
are lost, order is realized but no demand after the
realj zation of order, (iv) several orders are realized,
an order is made at level i 5:! 0, but no demand occurs and
the order is realized, (v) several orders are realized, an
order is made at level zero, several demands are lost,
order is realized but no demand occurs.
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Now for 151 és,

t t—x
uS_i<t> = jnS,i<x> J £21 r*“<v>[e<t-x)-e(v>10 0

‘f( t—x-V) dv dxt t-x
+ SE {rem icx) E r*”<v)Tjzs-S-b O 1. TI’. 0 D: 1

[G(t-x)-G(v)] ?(t—x—v)dv dx .. (10)

To get (10) we have to consider two cases: (1) first
order is made at level i for S-i units, inventory becomes
dry due to a demand, order is realized and then no demand
occurs, (ii) several orders are realized, an order is
made at level i for S-i units, inventory becomes dry,
order is realized and no demand occurs.

For S-s—l é i 6 S-a+l,

For S-s-b .4, i ‘.4. S-a

t _ S-a
ui(t) = 05 hs'i(u) F(t~u)du nggiat _ t __

ojFnK-hn'i(u)F(t-u)du + of Fi(u)F(t-u)du (12)
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The equation (12) is written considering the
cases: (i) the level drops to i from S and remains
in it, (ii) several orders are realized and level becomes
:1 due to a demand after the last order realization, and
then it becomes 1 due to further demands, (iii) several
orders are. realized and the level becomes 1 due to a.
demand after the last order realization and no demand
OCCIIIS 0

For s+l -1- i -1- S-s-b-1, let 1: .-= max { i+a, S-s-b} , than

t _ t S_a
1:i(t) = S hS’1(u) F(t-u)du +[ j'2=:k (1.3-» hj’1)(u)O O

§(t-u)du .. (13)
In deriving (13) we considered the cases: (i) From S the
level drops to i and remains there, (ii) several orders
are realized and j is the level due to a demand after the
last order realization and level drops to i due to further
demands .

Next for 151.63,

‘I:

aim = f hS,i(x) $~(t-x) ‘§(t-x)ax
0 S--a 1; __ _
+ 2 §(F3*hj’1)(x) F(t-1) G-(t—x)dx .. (14)

:)=S-8-b 0
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To arrive at equation (14) consider the exclusive cases:
(i) first order is made at i and no demand occurs and
order is not realized, (ii) several orders are realized
and the level becomes j due to the first demand after
the last order realization and the next order is placed
at level i; no demand occurs and order not realized.

Finally, t t
1:°(t) = f hS,°(u) 'c';(t-u)au + Z jhs,i(x)

0 i=1 0

'§(t—x) F(t—x)dx + gig (FJ*hj °)(uy§(t-u)duj=S-8-b '
tS-a s _

+ ‘Z Z: {(p.x-h. i)(u)G(t-u)F(t-u)du (15)j.-.S-s-b 1:10 3 3'

Equation (15) is written considering the cases: (i) first
order is made at level zero and it is not realized, (ii)
first order is made at level 1 ¥ 0 and then a demand occurs
and order is not realized, (iii) several orders are
realized, and then an order is made at level zero and it
is not realized upto time t, (iv) several orders are
realized, an order is made at level i 9! 0 which is not
realized upto time t and a demand occurs.



Ohapt er-5

gfi INVENTORY SYSTEM WITH RANDOM LE§Q TIMES

AND VARYING ORDERING LEVELS

5.1 INTRODUCTION

In the study of inventory problems, usually two
basic types of policy for replenishing the stock of an
item in a store are considered. (1) The ordering cycle
policy, under which orders for replenishments are placed
at regular intervals of time of length T, (ii) The (s,S)
policy, under which orders are placed as and when the stock
in the store, plus any quantity already on order, falls to
some fixed level s. IIn both the cases the-quantity to be
ordered is calculated so as to bring the amount in stock
plus the amount on order, upto some fixed level S. The
replenishments ordered under any of these policies are
assumed to arrive after a time lag, which may be either
fixed or a random variable. If a demand arises at a time
when there is no stock in the store, there is said to be
a shortage. Then in some models the customer has to wait
until the next replenishment takes place and in some
models the customer will leave the system.unsatisfied.

In this chapter we consider a continuous review
inventory system in which the capacity of the store is a

58
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fixed number S, but the ordering level in one cycle is
decided according to the number of demands during the
previous lead time. The interarrival times of demands
and lead times are independent sequences of independent
and identically distributed random.variables. The
demands occur for one unit at a time and no backlogging
of demands is allowed. We derive expressions for the
stock level probabilities and give some relations to find
the correlation between the number of demands during a
lead time and the next inventory dry period.

5.2 gL_SSU‘MPTIONS or mm MOD§_L_

The maximum capacity of the store is S and we
assume that the inventory is full at time zero. The
demands occur for one unit at a time and the time intervals
between the arrivals of two consecutive demands constitute

a family of independent and identically distributed random
variables having the common probability distribution
function F(x) and density function f(x). The ordering
policy for replenishment of the item is as follows. We
fix a number c such that S-c>-c as the highest ordering
level. The first order is placed at fixed level s (0 es ac)
and the remaining orders are placed at levels decided
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according to the number of demands during the previous
lead time. An order is placed at a level i if there were
i demands during the previous lead time such that 0 5i so.
If the number of demands during a lead time is more than c,
we make the next order at c only. Each time order is
placed to fill the inventory. The lead times are independ­
ent and identically distributedirandom variables with
probability distribution function G(x) and density function
g(x). Backlogging of demands is not allowed. Also we
assume that interarrival times of demands and lead times

are independent sequences of random variables.

5.3 Noumlons

Let
ni(t) = Prob {the inventory level is i at

time t/ the inventory level at
time zero is S}

For o£-.Q, néc, let

fQ’n(x)dx = Probability that the ordering level nis reached in (x,x+dx)given the previous
order was placed at time zero when the
ordering level was 3 .

i.e. x) is the probability density function of thef
$afi(

transition time between two consecutive ordering points
given the ordering levels at these Points.
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Let
_i_?B(x) = (1'S’o(x), f8'l(x), ..., I (x)), it is as,c

vector of order c+l.

We define a. square matrix of order c+1 given by:

f (x) . . . fo’c( x)

IF(x) = I

Let fl?*°(x) be the identity matrix of order c+1 and for
1121, let lF*n(x) be the n-fold convolution of IF( 1:) with
itself.

‘3(‘ ­

(f S 8* _£s)(x) is the vector obtained by convoluting each
element of the vector §S(x) by the function f*S"s( x).

03

Then (f*S's« feet 2 lF*n )(x) is a vector of order c+1.n,-_ 0

Let Ki(x) be the (i+l)th coordinate of the vector
®

(f*S-2 28* ZF*n)(x), where i = 0,1, ..., c.n: o
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5.4 THE TRANSITION TIME PROBABILITIE§

In this section we give the relations for the
transition time pobability density functions. Here Q and n
are such that o.4$.nsc.

Fm: $<n<c,

I ‘ll
Sm J I f*n(v) [G(u)-G(v)] f(u-V)O O

H) J''\ H
En’

II

f*(S'$'n'1)(x-u)dv du (1)

:$,,,(x> = 1 J E r*”*°(v) [e(u)-e<v>1r<u-v)O 0 n= 0

f*S-$'C'l(x-u)dv du (2)
Also,

x u *$f (x) = J If (V) [G(u)—G(v)] f(u-V)$'$ o o
r S‘25"1(-x-u)dv du (3)

For o<:n-(Q,

rwu) = f }1**“(v) [e<u>-em) r<u-v)O O

r*s‘2"’1( x-u) dv du (4)
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Also, I
r$,o<x) = 0; am) an) r*S'1<x.u>au (5)

5.5 INVENTORY LEVEL PROBABILITIES

Now we compute the exact expressions for the

system size probabilities at any time t.

For 0,4345,

"s—3(t) = [I-*3<t> - F*3*1<t>1 + ftf“"*°"S(u>O

[F-*3 ( t-u) -F*3 ”1( t--u) ]e( t--u) du

c 1:
+ i%:l J Ki(u) [F*j(t-u)-F*j+l(t-u)]G(t—u)du= + o

+ H fx1<u> tfu §:° r*"*1(v> tfu"Ee<v+y)-e<v>Ji=o o 0 n= 0 o ­
f( y) [Fig -i-]'( t-u--v-y)-F*j -1( t--u—v-y) ] dy dv d‘

J t t-u :1. *1‘
+ 2.‘. IKi(u) I Z. f (V) G(v)i=1 0 0 15:1

[F*i'k( t-U.-V)--F*1-k+1(t--11-'7) ] dv du

t-u
+ fKj(u) I £0 f*n+3(v) -P"(t-u--V)[G(t-u)-G(t--u-v)]d*o o ­11:0

(6)
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The above equation is obtained by considering the
cases (i) there are exactly 3 demands up to time t, (ii) the
first order is placed at time u, then exactly j demands
occur in ( u,t ) and order is replenished before time t.
(iii) Several orders are placed and the last order is
placed at level i and at time u; where i;>j. Then exactly
j demands occur in (u,t) and order is replenished before t.
(iv) Several orders are placed and the last order is placed
at level i (<13) and at time u. Then at or prior to a
demand occuring at v the inventory becomes dry, the next
demand occurs at y and the order is replenished in (v,y)
and then exactly j-i-l demands occurs before time t.
(v) Many orders are realized and the last order before
time t is placed at u when the level is i (5,j). The
number of demands during lead time is k(£;i) and then
exactly i-k demands occur. (vi) the last order before
time t is placed at u when the level is j and the inventary
becomes dry before replenishment, no demand occurs after
replenishment.

Now,

(t) = [F*S(t) - F*S*1(t)1+ Itr*S’S(u)us-s O
t—u oo _
I E: f*n+Sfv) F(t-usv)o n: o

[G(t-u) - G(t-u—v)] dv du
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It r*‘~"'8<u> ti” 2% r**‘(v) em0 o ­
[F*S-k(13-11-V) -F*S_k+1(t—u-v)]dv du

29: ]tKi(u) [F*°(t-u)-r*S*1(t-u)] G(t-u)dui=S+l O

f KB(u) tfu E r*n*°(v)T-(t-u.v)0 O 11: O
[G(t-u) - G(t-u-v)]dv du

t t-u s *1‘
of Ks(u) of 51 f (v) G(v)

'[F*s'k(1:-u-v) - 1a*S'k*1(t-u.v)]av du

E f K.(u) 4?‘ E :e*”+3<v) tIuE§(v+y>-e(v>1r(y)j=o o 3 0 n= 0 0
[F*9"3“1(t-u-v-y)-F*“'3 Lt-u-v-y) Jay av du

Sf 1;; mu) tfu  r*“(v)e(v>[1r*S“‘(t-u-v)—r*S"‘*1(t-u-v)Jdv aw3:1 0 3 o kl ~
(7)
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Equation (7) is written considering the
following cases. (i) Exactly s demands up to time t.
(ii) the first order is placed at u, the inventary becomes
dry during the lead time and no demand occurs after the
replenishment (iii) the first order is placed at u, then
there are k (5.8) demands during lead time and exactly s-k
demands after the replenishment (iv) the last order before
time t is placed at u when the level is i (> s) and exactly
s demands occurs in (u,t) and replenishment is done before t.
(v) the last order is placed at level s, the invetory
becomes dry during lead time and no demand occurs after
replenishment (vi) the last order is placed at level s
and there are k (4.8) demands before replenishment and s-k
demands after replenishment (vii) the last order is placed
at u and the level is j; the inventory becomes dry and exactly
s-j demands occur after the replenishment (viii) the last
order is placed at u when the level is j and the kth demand
after time u occurs at v and the replenishment occur in
@nu+v);then there are exactly s-k demands in the interval
(u+v,t).

Next, for s<;j-4c

as-3“) = [F44-j(t)_F-kj+l(t)] + jtf'K-S-S(u)tI-11 £0 fa:-n+s(v)O 0 I1: 0t- - .
I u v[e<v+y>-em] r<y)[r*3*S'1<t-u-v-y) ­0

*°.
F 3 3 (t—u-v-y)]dy dv du



+
t
I r

O

0
Z

i=j+l

t
Jxjtu)O

‘b

<§Kj(u)

3-1
_Z1:0

3°-1

i=1

0

*S_B( u) tj-u
0

‘t

J K1(u) J
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él:*“(v) c.(v)1r"""“(t-u..v) ..

aej -k-+1F (1:-u-v)] dv du

15 . .
of Ki(u) [F*J(t-u) - F*3+l(‘b-u)] G(t-u)du

1:-u co5 Z0 n= 0 r*‘‘’'3 (v)i'( 1:-u-V) [G( t-u) -G( 1:-u--v) ]dv du

1;...

J u %lr*“(v) G(v) [r*3"‘( t..u.v)..1=-*3"‘*1
(t-u-V) ']dv du0 _

‘I:-u--V

I [G(v+y)-G(v)] fly)
O

1;-u  f*n+i(v)
O 11': O

[F*j"i'l(t-u-V-y) - F*j_1(t-u-v-y)]dy dv du

£'"“(v) em [r*3""( t-u.v)-r*-‘5“"*1(t_u.v)]
dv du

1
2‘.
L1

(8)
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To derive equation (8) consider the following
cases (1) Exactly 3 demands up to time t (11) the first
order is placed at u, inventory becomes dry and exactly
j-s demands occur after replenishment (iii) the first
order is placed at u, then the kth demand occurs only
after replenishment and exactly j-k more demands occur
after that (iv) the last order is placed at u when the
level is i (>-j) and exactly j demands occur in (u,t) and
replenishment occurs before t. (v) After realizing many
orders, the last order is placed at level j, the inventory
becomes dry before replenishment and there are no demands

after replenishment (vi) the last order is placed at level j
and at time u, then the kth demand occurs at u+v and order
is realized before u+v and in the interval (u+v,t) exactly
j—k demands occur (vii) the last order is placed at a
level i(<.j), the inventory becomes dry and exactly j—i
demands occur after the replenishment (viii) the last order
is placed at a level i (< j) and at time u, then the kth
demand occur at u+v and order is realized in (u, u+v);
exactly j-k demands occur in (u+v, t).

Now,

nS_c(t) = [r*°<t>- r*°*1<t)1 + ;tr*S“-“<u) tfu >°:° r*"*B(v)O O n: O
t- ­
In v[G(v+y)-G(v)]f(y) [F*°"8'l(’c-u-—v-y)­

O

F*c-8(t-upv-y)] dy dv du
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* 1&3‘-‘*3-8(u) tfu 2% 1'“k(v) G(v) [F*°'k(’c-u-V) ­o o k=l
F*°“k*1(t—u.v)] dv du

t t—u. 00 * ‘_
+ IKc(u) j z r ”*°(v) F(t-u-V)[G(t-u)-G(t-u-v)]dv duO 0 I1: 0

(9)
1;­

+ ffia of Ki(u) 6fu.E§i f*k(v) G{v)[F*c-k(t—upv) ­

F*°'k+l(t-u9v)]dv du

c—l t t— t— —
+ :1 J Kim 1“ § r*n*i<v) In ‘['e<v+y)-e<v)‘.1r(y)i=0 0 o n= 0 0 ~

[F*°‘i“1(t—u.v—y) — F*°‘i(t—u.v—y)]dy dv du

The above equation is written considering the
cases (i) there are exactly c demands upto time t (ii) the
first order is placed at u, then the inventory becomes dry
and exactly c—s demands after replenishment occurs. (iii) the

th demand after that occursfirst demand is placed at u, the k
at u+v and the replenishment happens in (u,u+v) and in
(u+v,t) exactly c-k demands occur. (iv) After realizing
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many orders, the last order is placed at u when the level
is c and in (u, u+v) there are more than c demands. The
replenishment occurs in (u+v,t) and no demand occurs.
(v) the last order is placed at level 1 at time u; the
kth demand occurs at u+v and in (u,u+v) the replenishment
happens and in (u+v,t) there are exactly c-k demands.
(vi ) the last order is placed at u when the level is 1,
the inventory becomes dry and then there are exactly c-i
demands after the replenishment.

For S-c >3 > c,

“am = £r*S‘3(t> - r*‘>"3'*1(t>1 + t5f*‘°"°<u)0

t-u oo t--u­
Z fine-S(v) of v[G(v+y)-G(v)]0 11:0

f(y) [F*S"S‘j"l(t-usv-y)-F*S"S'j(t—u»v-y)]dy dv du

+ t! f*S‘S(u) tfu 23 :?’‘‘‘(v) e(v) [F*S'k‘3(t-u-v) ­o o b l
*S- k-j +lF (t--u-v)] dv du (10)
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c t t-u. oo n+1 t—upv
+ Z jK1(u)°j Z! (v) I [G(v+y)-G(v)]f(y)i=0 0 n: o o ­

[F*S"i—j‘l(t-uyv-y)- F*s-1-J(t-usv-y)]dy dv du

+ Z It Kim) tin .§r""(v> em [r*S““'3<t-u-v) ­i=l O O kr-1
F*S-k'j+l(t-usv)] dv du

Equation (10) is obtained by considering the cases
(i) exactly S-j demands up to time t (ii) the first
order is placed at u and then the inventory becomes dry
and there are exactly S-s-j demands after the replenishment
(iii) first order is placed at u and the kth demand occurs
at u+v and replenishment occurs in (u,u+v) and there are
exactly S—k-j demands in (u+v,t) (iv) After realizing
many orders, the last order is placed at u when the level
is i, inventory becomes dry and there are exactly S-i-j
demands after replenishment (v) the last order is placed
at level i at time u, the kth demand occur at u+v and

replenishment occur in (u,u+v) and there are S-k-j demands
in the interval (u+v,t).
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How,

,nc(_t) =  _  + Jt f*S-'3(u)
Ot- t- ­

In 2°:° r*"*“<v) 5“[e(v+y)-e(v)Jr(y>0 n= 0 O
*8‘ S""C""].(  S"[F t-u--v-y)-F °(t—u-v-y)]dy dv du

+ ff”-S(u) t!-u Z8 :f*k(v) G(v)o 0 19:1
[F*S-k_c(t-11-?) - F*S-k-°+l(t-u-v)]dv du

t+ I Kc(u) ?(t-u) T}( 1:-u) du (11)o

-l t t— t- ­
+ 3: J x_,._(u) J“ 3 r*”*i(v> ju v[e<v+y)-e(v)3r<y)i=0 0 o n: o o

[ F*s"i"°'l(t-u-v-y) - F*S'i'°(t-u-v-y)]dy dv du

c-1 t 1:-u i *4!+ _ I Ki(u) J X f (V) G(v)1:0 0 O “
[F*S—k'c(t-u-v) - F16-k-c+1(t-u-v)]dv du
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Equation (11) is written by considering the cases
(i) exactly S-c demands up to time t (ii) first order
is placed at u, then the inventory becomes dry before
replenishment and exactly S-s-c demands occur after the
replenishment (iii) first order is placed at u, then the
kth demand occur at u+v and the order is replenished in
(u,u+v), then exactly S-k-c demands occur in (u+v,t).
(iv) After realizing many orders, the last order is placed
at u when the level is c, then no demand occurs and the
order is not materialized (V) the last order before time t
is placed at u when the level is i and the inventory becomes
dry before the replenishment and there are exactly S-i-c
demands after the replenishment (vi) the last order is
placed at level i and at time u and the kth denand.occurs
at u+v and order is replenished in (u,u+v), there are
exactly S—k-c demands after the replenishment.

For c>j >s, we have

*3-3 *s-3+1 t *s-s1:j(t) = [F (t) — F (t)] + 51' (u)- o
t—u j-s-1 t—u- 7

Z r*n*S(v) J [G(v+y)-G(v)'] rm0 n=o o
[F*S'S-j"l(t-u-v-y) — F*S-S"j(t—u-v-y)]dy dv du



F f*S"'3( )
o

c t
.2. I K1”)1:3 0

c t
.2: I Kih‘)1:3 0

3-1 1:
. I Ki(u)1:0 0

i=1

jj

F*S-k-j +1

i_.[F* “(t­

Z‘I:-uj
‘ls.-.0O

F*S—k-j +1

u)

(t-u-v) ]dv du

_ Firi-j +1

(‘I3--11--V) ]dv du

t—u j-i-1ZO I1-"=0
. t-u-V

f*n+l( V) I
O

( t-u) ]7}( 1'.-u) du

Z f*k(v) G(v) [F*s’k'3(t—u-v) ­

(12)

f*k(v) G(v) [F*S'k'j(t-u-V) ­

[G(v+y)-G(v)]f(y)
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[F*S"i'j"l( t—u-v-y)-F*S'i'j(t-u-v-y)]dy dv du
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To obtain equation (12) we consider the cases
(i) exactly S—:] demands up to time t (11) the first order
is placed at u and the inventory becomes dry and exactly
S-s-j demands occur after the replenishment (iii) the

th demand occursfirst order is placed at u, then the k
at u+v and order is replenished in (u,u+v) and exactly
S-k-j demands after replenishment (iv) After realizing
many orders, the last order is placed at u.when the level
is i and it is not realized but exactly i-j demands occur.
(v) The last order is placed at level i at time u, the kth
demand occurs at u+v and order is realized in (u,u+v) and
exactly S-k-j demands in (u+v,t). (vi) the last order is
placed at u when the level is i and then the inventory
becomes dry (but total number of demands during lead time
is 4.3) and then S-i-j demands occur after replenishment.
(vii) the last order is placed at level i, then the kth
(k gi) demand occurs at u+v and replenishment occurs in
(u,u+v) , then there are exactly S-k-j demands in the
interval (u+v, t).

Now for léj 5 s,

‘Il;j('t) = 1jff*S_S(u) E(t..u) [1-*S‘3(t-u)-r*“’“3+1(t-u)yau0 .
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4, It f"S'S<u> tfu 35:1 :*"<v> em [r*S“'3<t-u—v) ­0 O k=l
F*S"k'j+l(t-u-v)]dv du

‘- t t- 3-1-1 * t­
+ 3:1 jK1(u) g” z :“*i(v> Iw[G(v+y)-G(v)]r(y)i=0 0 0 n = o 0

[F*S'i"j'1(t-upv-y) — F*S’i'j(t-upv-yfldy dv du

‘-1 ‘I2 '13- 1
"'  1 1 Kim) In 1:21 f*k(v) G(V)[F*S'k'3(’c-u-V) ­2L= O O ‘-7

F*s"k‘j+l(t-upv)] dv du

° t - *1-j xi-3+1
+ ifij df Ki(u) G(t-u) [F (t-u) ~ F (t-u)]du

13 13- .
+ .0. I Ki(u) In 1:23? f*k(v) G(v) [F*s'k'3(’0-u-V) ­1:3 0 0 =0*S—k-j+l (13)F (t-uyv)] dv du

To arrive at (13) we have to consider the cases
(i) the first order is placed at u and in (u,t) exactly
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s—j demands occur and order is not realized, (ii) first
demand is placed at u, the kth demand (for k«cj) occurs
at u+v and replenishment happens in (u,u+v), then there
are exactly S-k—j demands in (u+v,t) (iii) After realiz­
ing many orders, the last order before time t is placed
at u when the level is i and the inventory becomes dry
and there are exactly S-1-j demands after replenishment
(iv) the last order is placed at level i and at time u,
then the kth demand occurs at u+v and order is realized

in (u,u+v) and there are S—k-j demands in (u+v,t).
(v) the last order is placed at level i (3 j), order is
not realized, but there are i—j demands. (vi) the last
order before time t is placed at u when the level is i
(23). the kth demand (for k4:j) occurs at u+v and order
is realized in (u,u+v), then there are S—k-j demands in
the interval (u+v,t).

Finally we have,

t
1z°(t) = I r*S"'S(u) 'é(t-u) F*S(t-u)du

O

c t _ *i+ Z,‘ I Ki(u) G(t-u) F (t-u)du (14)i=0 0
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The above equation is written considering the
cases (i) the first order is placed at u and there are
at least s demands in (u,t), but order is not realized
up to t (ii) After realizing many orders, the last order
is placed at u when the level is i, that order is not
realized upto t, but there are at least i demands in the
interval (u,t) .

5.6 on THE CORRELATION BETWEEN NUMBER OF DEIQNDS
DURING A LEAD TIME AND THE NEXT INVENTORY

DRY PERIOD.

Depending upon the number of demands during one

lead time, define the random.variable J as follows. The
random variable J takes the value j if there are j demnds
during the lead time, provided j is less than c. If there
are more than c-l demands during that lead time, J takes
the value c. Thus J is the ordering level that we fix for
the next order. Also let Z be the duration of the dry period
during the next lead time. Applying the method used in
Chapter 3 we derive expressions to find the correlation
between J and Z.

For o_z_.jsc, let pj = Prob {J .—. 3}

then ® . .
1.: jg(y) [F*3(y)-F*3*1(y)]dy if 3 .-= 0,l,...,c-1

0P:
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Q) *0and pc = J e(y) F (y)dy0

Here pj is the probability that the second ordering level
is j and so the inventory will become dry if there are at
least j demands during that lead time. Here we easily
obtain,

00 ..
P{J=3. Z-—-0} = p. j g(y) F*j(y)dy. 0-"'-3 50

OJ

G) .
P{J=.-j, zazéz-+-dz: pj( jg(y)i’*J(y-z)dy)dzz

for z>-o ando-4-jéc

Then the Double Laplace Stieltjes transform of J and 2
will be given by,

c . a> _ .
E(e"nZ 1'J) -= 2 P3. r3 I g(y) F*3(y)dyj=o o

C - C) CD ~
+ Z pa-1'3 I 8"” Jg(y)f*3(y—z)dy dzj=o o z

After some simplifications we get

E(e-nz rJ) 3 .
C . C

J:

F*j(x)dx dy (15)



Now the expected dry period is given by

a ­
Em) 2 _ -5-1’-lE(e nz 1;)‘ 11=o. m1

= Z0: P3 CF g(y) §F*j(X)dX <15’ (16)j=o o o

-. (3.02 e r IT'|=O, 3:11

c a: y x *3= 2 Z pj Ie(y) J Jr‘ (u)du <11: <13 (17)J=O O O 0
Also

3’ -nz J= (E(JZ) arm E e r )) “:0, E1

=  Jpn. T’ gm 5J'r*3<x)ax dy (18)3:0 o 0
Then as in chapter 3, the variance of J and Z can be
computed and hence the correlation between J and Z can be
obtained.



Chapter 6

on A GENERAL LRRIVAL, BULK gsnvics QUEUE

WITH VACATIONS TO THE SERVE

6.1. INTRODUCTION

Single arrival and bulk service queueing systems
have been considered by several authors. Bailey [1954]
and Downton [1955] considered single server queues I
having Poisson input, intermittently available server
and service in batches of a fixed maximum size. The
usual bulk service rule in which the service is done

in batches of a fixed maximum size and the server may

wait if he finds none in the queue on a completion of
service is considered by Jaiswal [1960] and Chaudhry
and Templeton [I972]. A general bulk service rule was
introduced by Neuts [1967] where a minimum of 'a' units
are needed to start a service and a maximum of 'b' units
can be served at a time and he obtained the transition
probabilities of the number of customers in the system
for the model M/Ga’b/1. Then Borthakur [1971] obtained
the steady state probabilities of the queue size for the
model M/M9'b/l. Ghare [l968] has studied a multichannel
queueing system with bulk service. Also Curry and
Feldman [1985] considers an M/Ma’b/l system with state
dependent service parameters.

81
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In all the queueing models discussed above, an
idle server remains alert awaiting a new arrival and
will commence service immediately upon the customer's

arrival. The effect of rest periods in queueing models
is studied by many authors. Scholl and Kleinrock [1983]
discusses M/G/l queues with vacations to the server. P
Assuming the steady state exists, Fuhrmann and Cooper

[1985] shows that for a class of M/G/l queueing systems
with generalized vacations, the 'decomposition property‘
holds.

M/Ma’b/l queueing systems with vacations to the
server is considered by Radarajan and Subramanian [l984].­
A more detailed and explicit expressions for M/Ma’b/1 F
queues with.vacation to the server and state dependent
service rates is given by Daniel [1985]. In this chapter
we extend these to a queue with general arrival distribut­

ions. Hatrix-geometric approach of Neuts [1981] is
utilized. As will be seen, the structure of the matrix­
geometric equation is not simple and will not be yielding
to any easy algorithmic approach for solutions in the
general set up.

In section 6.2 we give details of the model and in
section 6.3 we obtain the transition probability matrix.
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Matrixvgeometric solution of the system is written in
section 6.4 and finally in section 6.5 we give the
waiting time distribution explicitly.

6.2. THE MODEL

We consider a queueing system in which interarrival
times are independent and identically distributed random
variables with a general probability distribution function
G(x) and let g(x) be the corresponding probability density
function. The units are served in batches according to
a bulk service rule that, a minimum of 'a' units are needed
to start the service and a maximum of ‘b’ units can be served
at a time. Service time is an exponentially distributed

random variable with parameter pi if i is the batch size
being served. it any time immediately after a service
if the server finds less than 'a' units in the system,
he goes for rest for a random period which is exponentially
distributed with parameter a. If after the rest completion
the server finds again less than 'a' units in the queue,
he remains idle and starts service when queue size becomes
Ial.

Observing the system just prior to the arrival points,
we can obtain an imbedded Markov chain with the following

state space.
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S = {(1,7) for i>,o; (11.1) for 051 -..’=a-l; (1,3) for iaa,

a«_c_;];’-ld.n {i,b}}

Here the state (i,V) for iao denotes that there are 1
units in the system and server is under vacation. The
state (1,1) for o -£iéa—l denotes that there are 1
units in the system and server is idle. The state (i,j)
for i as, a-3;] émin {_i,b_} denote that there are :|. units
in the system and a batch of j units is being served.
We shall denote the level i by i, which is the ardered
vector of all possible states having i as the first
component.

i.e., for oéiéa-1, i = ((i,V),(i,I)) is a 2-vector
for aéiéb, _i = ((i,V),(i,a),...,(i,i))is a i-a+2 vector
for i>b, ((i,V),(i,a),...,(i,b))is a b—a-I-2 vectorII-"

II

6.3. TRANSITION PROBABILITY rgggnlx

The pattern of the transition probability matrix P
will depend on the values 01’ a and b. We shall write the
matrix P in the block partitioned form with the assumption
that (b-a-1) 4 a. In the case of (b-a-l),>.. 9. also P can be
written similarly.
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Let P = [glfli >/O be the block partitioned form of P.
.12. 0

We shall note that if 1 is a level with m states and j

is a level with n tatoe, then A13 is 9. matrix of order
m x n. The matrices A11 for all iao are zero matrices
and L“ for all 1 go and j>i+l are also zero matrices.
The non zero A13 '5 are given in the following:

For i = o,°l, ..., a-2,

‘1,1+l 3

wher e a §og( x) in dz° 0
oo

30 = j g(x) (l-e ‘‘‘‘)dx0

For i = a-1,

30 31
‘a l =' '8‘ 0 a2

00

where 9.0 -= g g(x) {ax dxo

oo I _ -|.1(x-u)as g( 1) are an e a (111 dx3'1 o o
9.2 = j 3(1) e dz



For 1 = a, ..., b-'1,

where

Also,

where

L1,1+l

"11

arr

“1,i—a+3

IS

’ O
311

“12

821

22
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00 --p. 1
5g( x)e a+r"2 dx, 1' > 1

o

°?8( I) 1? Q e"m e-pi+1( x.u)du dx0 o
0 01: hex-His e

[an]

:? g(x) of ya’l-is-ypa’l(u) e “(X u)du d:

of g(x) :7a,2(u)ua e-“am-u)du dx

:3? g(::) 0? Tue 1(u) e °‘("'“)du <1:

I e(::) E a e"““pa e-P (X-u)du dx
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1 = 8.,  000, H’

‘i,o '3 [are]
oo 1 - (I-11)where = g( x) 7 1w (u)e a du dxall 05 OJ a,l pi+l,l
oo x -p.1+l(x-u)

312 1:: 055(1) of 'ra’2(u) ui+l e du dx

are = 0 otherwise

For 1 = a, a+l, ..., b-1

A:I.,l = [are]
co x -p. u _ _

where ai_a+2’l = I 8(1) 3 pi e 1 “(X u)du dxo o
on x -p u _ _

ai_a+2’2 = J g(x) J pi e 1 ae “(X u)du dx

ars = 0 otherwise

Similarly, A1 1 for 1 .-.= a+£-1, ..., b-1 will have the 1”‘9

row from the last as nonzero and all other rows will be zeros.
Expres sions are similar .
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Now.i’or1= b, b+l,  ,

where

Again

where

Also

where

Ai’i+1 = [era] is a (b—a+2)x(b-a+2) matrix

S00 g( x) e'ax dz“L1 ' 0
00 —p x

an = I ah!) 8 a+r-2 dx, r>l0

an an _au -pb( 1-u)
a1’b_a+2 = of g(x) oft: e e dn dx

are = 0 otherwise

‘b+a-1.b " ‘b+a,b+1 "‘ -‘-b+a+1,b+2 =  “ [32:31 (337)

on x -pan —pb(x—u)a2’b_a+2 = ( g(x) §’pa e e du dx0 0
ars = 0 otherwise

Ab+a,b 1b+a+l,b+l = Ab+a+2,b+2 = °°° = [ars?

00 I -p u -p (x--u)
a3.b-a+2 = J 3(1) g pa+1 ° 8+1 e b du dx

a = 0 otherwise
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Similarly,
... u [a‘b+a+2,b 3 ‘b+a+3,b+1 = rs]

-pa+2u 'pb(x'u)00 I
where a4,b-a+2 = J 3(1) g"a+2 9 9 du dx

0 otherwisellaI8

Proceeding like this, we have,

A211-1,b ' ‘'2b,b+l 3:  ' [31-3;‘

°° " '”b("u)du dx
where aflab-3+2 = °Sg(x)°J Y¢91*YPb9]-(u) 0

1: -ubu -ub( x-u)a)

ab-a+2,b-a+2= or am ems e am

ars = 0 otherwise

Proceeding further,

A2b+a—l.b '3 “2b+a.b+l = ’”=[ are 1

00 I -pb(x-u)
where a.2’b_a+2 = 0! 8(1:) (§Ypa,1-x‘rpb,1(u)e du dx

a = 0 otherwiseIS

b 3   = 000 and so On.9 9



o 4 QTRIL GEOHETBIC SOLUTION

Deleting all the rows and columns upto b-1 from the
atria: P and using the notations,

’e get ,

0

IO’

0 3

0

Mi 0«Fe Jo

Mob-a+l Mob-a Mg-a-l
o

0 Hb- a-I-lnob-a

mi 0
Mi #0

‘D-I-1 b+2 ... ’b+a-1 b+a b+a+1 ... 2b—]. 2

O

O

2

O
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Let _:_: be the stationary probability vector satisfying
_;P=_;a.nd;_ga=1,where3==(l,1, ...)T , then 5
has a modified matrix geometric form (Neuts [1981] ).

We can partition _1_c in the form,

as = (30. $1. on. _25a__1. ga. --o. ;:b_1. 51,. gbfl.  )

where 51 is a vector having its order equal to the order
of i. For 1 >1), we can look for solution of the form

x. := 5bRi"b where R is a square matrix of order b-a-1-2,-1
which is called the rate matrix and is explained in
Neuts [1981] ,

Using :5 P .-. _;, we get0 0
-1‘-bmo * -9-‘b+a "1 * -xb-1-a+l M; *  * 521: Mb-a-I-1 ”’

-’—‘2b+a "% * 3-‘2b+a+1 M: "  “ 531: Mlb-a+l *

Using 51 =.- ;bR1"b for 1 >1:

a+l o b 0
H2 -1-  +_xbR I-1b_a+l +b b+ 1 2b

§bR +81% + _;bR 3* M‘; +  +3193 Mlb_a_'_1

o
gbldo + _1_;bRaMl + _1_cb R

+
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Using _x_b>Q we get,

b-a+l b-a+l
Mo + Z Ra+i-1 Mel) + Z Rb-s-a+i-1 Hi+ H. = Ri=1 1:1

00 b+a-1
i.e. Mo -1- Z Z Rkb+a+i"l H: = B -— (A)1:: 0 i=1

The minimal solution ( 2, 0) of the equation (A) will gLve
the rate matrix R and thus for 1 >b, the mtrix—geometric

solutionis given by 51 = _x_i__l R.

The vector (30, 31, ..., _x_b) can be obtained by solving
the system, r- "l0 A0 0 ... 00 O  .00 0

a___l,o o o[30 9319 0 '_1_-b?‘ =[§ov.§l: 0 ° 0 afib]

Lb-1,0 Ab-1,1  Ab-l,b
Y1 Y2

9-‘ CD '1‘
PH

0 4­ 0 0 4' IN0' am
P-I IB

IF‘
In’)

I I-'
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oo b—a kY ___ Z. Z‘-Rb+a+i1"’h°"'° 1 kg 0 1 = O ‘(k+1)b+a-1-1,o

°° “'3 kb+a-+1
Y2 = ‘b,1 * Z Z 3 ‘(k+1)b+a—1,1k: 0 i=0

Y = Z 2- R +a+i 2 Mi& O 1 == 1

6.5 WAITING TIME DISTRIBUTION

The waiting time of a new arrival depends on the
state of the server at the arrival point. An arriving
unit may find the server in one of the following states.
(a) Server is idle, (b) Server is working, (c) Server is
under vacation.

(a) Server is idle.

Let (1,1) for 151 521-1 be the state of the system
when the arrival occurs. Let U be the waiting time of the
arriving unit in the queue. The unit has to wait for the
arrival of next a~i—l units.

Therefore P {V at} = G*( 3"i'1) (t)
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(b) Server is working

Let (1,3) be the state or the system just prior
to the arrival of the unit, where i ,>,a, agj énrln {i,b} .
Let K :: 1-3 - [1—;1]b. Then the waiting time of that unit
in the queue is as follows.

p{wst}= f;j’l*F;b,[%_1](t), if Kaa-1

Now for K -4: a-1

00

P {wet} = {{;j,1* pb’[1_;)j_](t)} Z e*n(t)n=a-k-1

t
+ Z 0! [:’j’l*{;b.[i—;;i]*[1.l(“)

<e‘”< u)-e*‘*1< u) ) a G” “"“"1’<t-u)

(c) Server is under vacation

Let (i,V) be the state of the system.just prior to
the arrival of the unit.

Let K: 1- [%']b.
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at Fall
and if K < a-1,

®

1’{"“}= {11.1* »,,,.[%1“"} >3 Gm“)n=a- k—1

a-k-2 1:
*' Z I ’:z.2* f::,,.[%]‘“)

O1;-=0

<e*’(u) - e*”*1(u>) ae*‘a"“"‘1’(t-u)



Chapter 7

FINITE C CITY M G 1 UEUEING T PI

WITH VACATION§gT0 THE SERVER

7.1 INTRODUCTION

In this chapter we consider a single server
queueing system with the server going for vacation
whenever there is no unit in the system. The rest times
are independent and identically distributed random variab­
les having a general probability distribution function.
The arrival process is Poisson. He assume that the
capacity of the waiting room is a fixed positive integer
and all the arrivals taking place when the waiting room
is full are lost. The service times of units are independ­
ent and identically distributed random variables with a
general probability distribution function. Using renewal
theoretic arguments we derive the transient solution for
the system size probabilities at arbitrary time points.
Also we obtain expressions for the probability distribution
of the virtual waiting time in the queue at any time t.

Several authors have considered M/G/1 queues with

vacations to the server. See for example Miller [1964] and

96
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Scholl and Kleinrock [1983]. They have all treated the
situations where the steady state exists and investigated
the system size probabilities at the departure points.
Assuming the steady state exists, Fuhrmann and Oooper[l985]
shows that for a class of M/G/1 queueing systems with
generalized vacations, the ‘decomposition property’ holds.
That is, the (stationary) number of customers present in
the system at a random time point is distributed as the
sum of two ar more independent:random variables, one of
which is the (stationary) number of customers present in
the corresponding standard M/G/1 queue (ie. the server is
always available) at a random point in time. For a
complete reference on vacation models one may refer to
Doshi [l986].

Physical and economic considerations reveal that
many realistic waiting line systems have only finite
capacity. Under such conditions the arrivals are not
accepted to the system if the waiting room is full.
Cohen [1976] gives a detailed account of M/G/K loss
systems. Lee [1984] investigates the stationary behaviour
of a finite capacity M/G/1 queue with vacation time and
exhaustive service. In the literature, very few results
are available giving the time dependent system size
probabilities of Non-Poisson queues.
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In section 7.2, we give the details of the assump­
tions and notations used in this chapter; together with the
different probability density functions used in section 7.3.
In section 7.3 the transient system size pobabilities are
derived. Section 7.4 deals with the virtual waiting time
in the queue at any time t.

7.2 DESCRIPTION or THE MC)D§__L

The arrival of customers to the system is accord­
ing to a homogeneous Poisson process of rate p. Service
times are independent and identically distributed random
variables with distribution function G(.) and'density
function g(.). The waitingiroom is of finite capacity
c(:>o). All the arrivals taking place when the waiting
room is full are lost.

Input gigging >' Service Ougputfi
Poisson capacity C station general

At time zero the system starts with ‘a’ (>-o)
units if the waiting room. The server takes all the 'a'
units to the service station and serves them.one by one
in the order of their arrival. When all the 'a' units are
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served, the server goes back to the waitingzroom. If
there is at least one unit waiting, he takes all of them
to the service station and serves then.one by one. If
there is no unit in the waiting room, the server goes
for vacation for a random duration having distribution
function H(.) and density function h(.). If'the server
returns from.a vacation to find no customer waiting, he
begins another vacation immediately, independent of the
previous one and having the same distribution function
H(.). This process is continued until there is atleast
one unit in the waitingiroom.

For j = 0,1, ..., c—l, let pj(x) be the pobability
that there are exactly j arrivalsduring an interval of

length x and let uC(x) be the pobability that there are
atleast c arrivals during an interval of'length x.

Then
-ux J’

-'-’ e  9 j = 0,1, 000’ C-1
, 5f9k2A a/«.§~a.

~JAr
an —ux jand u(x) = 2: ° .2“)c j: C 3.
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For 0 .c.i,j «so, let

fij(x) dx = Probability that starting at time zero,the service of i units is over in the
interval (x,x+dx) and there are ;| arrivals
accepted to the system in (o,x].

Then *1
i = 1,2’ 000, C,

‘ (fil(I)9 00': fic(x))

Also let

;°(x) = (flan),  rco<x>>T
(It is a column vector of order c)

Now define a square matrix of order c, given by

131(1)  f1c(x)1
llIR 1:)

900000

fc1(x) ... fcc(x)
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LetIF*°(xJ be the identity matrix of order c and fior
n 21, lI’m(x) be the n-fold convolution of the matrix !F(x)
with itself.

G)

Then, for i=l,2,...,c,(_§i at }:IF*n)(x) is a vector ofn: 0

order e. Let K%(x) be the 1th coordinate of the vector
0° %n(31 at Z #7 )(x); where léi,£ é c.n: 0

Also let,

xitx) = (11% _s°f IF *’°* :0) (x) (2)n= 0

Let Fi(x) be the probability density function of
a busy period initiated by i customers.ie, the probability
that the busy period initiated by i units is over between
X and x+dx. Then we have,

rim -= riom +Ki<x) <3)
The renewal points of the process are those time

points at which the server goes for rest after a busy
period. Let Z be the time between two such successive
renewal points, then the probability density function of
Z is obtained as,
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k(z) as Pizczéz-i-dz}

z on “n z c
- of uo(u) 13:20 h (u)uf h(v-u) jg ui(v-u)

Fi(z-v)dv du. (4)
Then the renewal density function of the delayed renewal
process is given by

oomu) = 2; (F;-k*”)(u) (5)11:0

Finally, the state space of the system is

S = i(i,j){ osi, jéc} where, for i = o,l,...c,
(i,o) denotes the state that there are 1 units in the
waiting room and server is under vacation. For 1 £3‘ 5 c
and o/_— i so, (i,j) denotes the state that there are i
units in the waiting room and there are 3 units in the
service station including the one being served.

7.3 THE SYSTEM Slgfl PROBABILITIES

Let Pij(t) = The probability that the system is in
state (1,3) at time t given the system
starts with 'a' units at time zero.
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considering all the mutually exclusive and exhaustive
cases, the following relations can be written.

i '5 O,l,...,C,

t t co *m
Pio(t) n of M(u) it ;§;o po(v-u)h (v-u)

"fi(t-v) p1(t-v)dv du (6)
The above equation is obtained as follows.

Consider the interval (o,t). Many busy cycles are over
prior to time u and the last busy period is over at u
and the server goes for vacation. In (u,v), many vacation
periods are over but no unit arrives in the waiting room.
Finally the vacation started at v is not over up to time t
and there are i arrivals during (17,12).

For ozjga and osi-1-c,

2 (t) = [G*‘a‘3)(t) — e*‘a'3*1’(t)] u1(t) +1:]

ti K‘;'<u> [e*“'”<t-u) - e*“‘3*1’<t-u>1pi<t-u)au0 =3 ~
1: 1; oo “'1 1:

+ §I'I(u) I E h (V-u) u°(v--u) jh(w-V)O u E: O V
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£53 p1(u-v) [G%(£-J)(t-V) — G*(£-j+l)(t-w)]p1(t-w)dw dv du

tt
h*“'(v-u) nah-u) Jh(v-v) 2°: up-v) 1 (7)V 121

t t oo
+ _{H(u) I ZO 11 % WO

E, xfiw-w) [G*(k"'3)(t-y)-G*("'3*1)(t-y)]ui(t-3')dy aw av em"3

To obtain equation (7) the following mutually
exclusive cases are to be considered (1) starting the
service process at time zero, exactly a-j services are over
upto time t during which time there are i arrivals (ii) The
busy period is not over, but after many services, at time u,
the server takes a batch of size 9 to the service station
and exactly Q-j services are over and there are i arrivals
during the interval (u,t). (iii) After many busy cycles,
the last busy period is over at u and after the vacations
the server starts service with 9. units and W and then
exactly’ E-j services are over during which time i arrivals
occur. (iv) As in the last case after many busy cycles,
a busy period is started with R units and then after many
service cycles, at time y the server takes a batch of 1:
units to the service station at time y of which exactly k-j
units are served out and i arrivals occur during the
interval (y,t).
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Now forazj-_<c and oéisc

Pij(t) V: 0}’ Egj K?(u) [G*(1-J)(t-u)-G*(£-j+l)(t-u)¥pi(t-u)du

t t co *m t
+ I M(u) I ‘Z: h. (v-u) pO(v-u) ‘f h(w—v)o u. n: o v
25. u1(w—v) td*“'3’(t-w>- e*“‘3*1’<t-w>11:

t '0 oo an
pi(t-H)dW dv du + J M(u) I 2: h. (v-u)o u m: o

t c t c Q
uo(v-u) VI h(w-V) E1 u£(w-V) {S Ej Kk(y—-W)

[G*(k'j)(t-y)-G*(k‘j+l)(t-y)]pi(t-yjdy dw dv du (8)

To arrive at equation (8) we need just consider the cases
of (ii), (iii) and (iv) of equation (7).

7.4 VIRTUAL \LAI'I‘ING TIME IN THE QUEUE

The virtual waiting time in the queue at time t is
aefineo as the waiting time of a unit in the queue if it
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were to arrive at time t. (See Takacs [1962] ). In our
model, a queue in the waiting room is shifted as such to
the service station. So an arrival has to wait in a queue
in the waitingzroom and then in a queue in the service

station until he is taken for service. Let Wt be the virtual
waiting time at time t. Assuming that the virtual customer
arriving at time t is accepted even if the waiting room is

full, we compute the probability distribution of Vt,
conditional to the state of the system at tim t and it is
enough because the system size probabilities are already
given. we consider the following cases separately.

case (i): The state is (i,j) for o «.41 so, o<j so,
so that the server is working.

Then t c
P §U ex} = j Z. Ka(u) G*1+1(t+x-u)dut 0 2:3 1

tt 00 *m
-1-] M(u) I Z 11 (V-u) uo(v-u)0 11 ID: 0

c t c n
Jinn:-v) 2: up-v) 5 zxkcy-w)u 2:1 U kzj
Gfk+i(t+x~y)dy dw dv du (9)



Case (11): The server is taking rest and the state is
(1,0) for léisc. In this case we can
easily obtain,

1: 17
P {iitéxfz I }1(u) I go h*m(v—u) po(v-u)o 11

13+:

t; h(w-V) é*i(t+x—w)dw dv du

Case (iii): The server is taking rest and state is (o,o)

Then

'17 1:
P {Wtsx} = J H(u) I g‘, h*m(v—u) p.o(v-u)o u m=o

[H(t+x~v)-H(t-v)] dv du
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Chapter 8

on ; FINITE CAPACITY HlGg'bl;%9UEUEING SYSTEM

WITH vaggpxons T0 ran snnvsn

8.1 INTRODUCTION

Bailey [1954] carried out the first mathematical
investigation of queues involving batch service. He
studied the stationary behaviour of a single server queue
having simple Poisson input, intermittently available
server and service in batches of a fixed maximum size.

This study was followed by a series of papers involving
the treatment of queueing processes with group arrival
or batch service. Neuts [l967], Borthakur [1971] and
Medhi [1975] deal with queueing systems with Poisson
input and bulk service. More complex waiting line systems
in which customers arrive in groups of random size and
are served in groups of random size, are also considered
by many authors. Keilson [1962] discusses the MI/éy/1
queue using supplementary variable technique. Bhat[l964]
analyses the imbedded Markov chains of Mx/éY/1 and .
GX/HY/l queueing systems using fluctuation.theary.

In this chapter we consider a single server queue­
ing system with Poisson input, general batch service and a
waiting room that allows only a maximum of 'b' customers
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to wait at any time. A minimum of 'a' customers are
required to start a service and the server goes for a
vacation whenever he finds less than ‘a’ customers in
the waiting room after a service. If the server
returns from a vacation to find less than ‘at’ customers
waiting, he begins another vacation immediately. Here
also we derive expressions for the time dependent system
size probabilities at arbitrary time points.

Section 8.2 contains the details of the assump­
tions and notations used in this chapter. The different
probability density functions used in section 8.3 are
also derived in this section. In section 8.3 expressions
for the system size probabilities at arbitrary tine points
are given.

8.2 DESCRIPTION OF THE MODEL

The arrival of customers into the system is accord­
ing to a homogeneous Poisson process of rate 11. The units
are served in batches according to a bulk service rule,
namely, a minimum of ‘a’ units are needed to start a
service and a maximum of ’b' units can be served at a time.

Service times are independent random variables having

distribution function Gi(.), if i is the size of the batch
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being served and let g1(.) be the corresponding
probability density function. The waiting room is of
capacity 'b', so that each service is started with all
the units that are waiting for service at that time.
All the arrivals taking place when the waiting room
is full are lost.

At time zero, the system starts with 'r' units;
agr -1-b. At any time immediately after a service, if
the server finds at least ‘a’ customers waiting, all
of them are taken for service. If he finds less than
'a' customers in the system, he goes for vacation for a
random period having probability distribution function
H(.) and probability density function h(.). If the
server returns from a vacation to find less than 'a'
units waiting, he begins another vacation immediately,
independent of the previous one and having the same
distribution function H(.). This process is continued
until there are at least ‘a’ units in the waiting room.

For j = 0,1, ..., b-1, let pj(x) be the probability
that there are exactly :1 arrivals during an interval of

length x and let pb(x) be the probability that there are
at least b arrivals during an interval of length x.
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Then

3

l’j(I) = 0 pxgpx) ’ J = 0919 0°09 b'l

H (X) = 253 e.px€”x)jb Jzb J.
For aéiéb and 053° g._b, let

fij(x)dx = Probability that starting at time zero,the service of a batch of size 1 units
is over in the interval (x,x+dx) and
there are j accepted arrivals during
the interval (o,x].

Then fij(x) = gi(x) uj(x) (1)
For angi éb, let ;i(x) = (fia(x), fi(a+1)(x),...,fib(x));

it is a vector of order b-a+l.

Now define a square matrix of order b—a+l, given by

# faa(x) ...... fab(x)T

Hr(x) =

fba(x) ...... fbb(x)L J



112

Also we define a. matrix 61(1) of order (b-e+l) x a givm
by

‘F:ao(x)  l)(x)-1fa(a­

€..(x) .= I

f-bo(X) coo  a_l)(X) xL ­
Let fl:*°(x) be the identity matrix of order (b—a+l) and
for 11 al, !F*n(x) be the n-fold convolution of H:-(1) with. c” in
itself. Then for at.’-i éb, (£146 2 F )(x) will be 9.n: o

an

vector of order b-a+l and (§i* Z Fkn, 6.)(x) will be an: 0
vector of order a.

For n -= a, a+1, ..., b, let M:.L](x) be the (n-a+l)th coordinateco m ,0of (__i_‘i% Z? )(x) and for n = o,l, ..., a-1, let Ki(x)I1: 0

th . 00 sen
be the (n+1) coordinate of (_:I§ix EH7 * 6, )(x).n=o

Thus we obtain the probability density function of a busy
period, starting with i units and ending with 11 units left
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over, as

F2(x) = fin(x) + K2(x) for aéi éb and (2)
051] 1-'a-1

As described earlier, at any time immediately
after a service if the server finds less than 'a‘ customers
in the system, he goes for a vacation and the vacations
are repeated until he finds at least 'a' customers in the
system. Vacation periods are assumed to be independent
and identically distributed random variables with distri­
bution function H(.) and density function h(.). For

0 .43’ sa-1 and ask éb, let hjk(x)dx be the probability
that after a busy period the server goes for a vacation
at time zero, when there were j units waiting and after
many vacations, the next busy period starts in (x,x+dx)
when there are k units in the system.

Then

I °° 11*“ "34 m > < )6:
hjk(x) = OJ mE:° (u) Egg p1(u x-u pk_!_j x-u u

for o 4;] ga-1 and aékéb (3)
and

x 00 *m a-j-1 bh.b(x) -= j Z h (u) Z is (u)h(x-u) E: Lg,-_(x-u)du3 o n: 0 1:0 3 =b—£—j
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Now we look at the time points at which the
busy periods start and obtain the probability density
function of the time between two such consecutive points.

For a..<.-.i, kéb, let

bik(x)dz = Probability that a busy period is started
at time zero with i units in the system
and the next busy period begins in the time
interval (x,x+dx} with k units in the system.

x a-1 n
Then bik(x) - of ggi Fi(u) hnk(x-u)du (4)

Now we define a vector of order (b—a+l) by

2r(x) ll (bra(x). br(a+l)(x) 9---. hrb(x))

Also define a square matrix of order (b—a+l) by,

b (X) ... bab(x)W
E3(I) = ­

Lbba(x) ... bbb(x)
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Let [B*°(x) denote the identity matrix of order (b-a-+1)
and for n 21, let B*n(x) be the n-fold convolution of the

"3 xn
matrix B(x) with itself. Then (yr; :13 )(x) is an: 0

vector of order (b-a+l). For a {-3 sh, let Bj(x) be the
®

(j-a+l)th coordinate of (_‘!_)r-I4 Z B*n)(x).'n= 0

Finally the state space of the system is given by

S as {(1,3) I asisb, o:<..‘]_<b}U{(o,j)l osj sh}

For ac'_.i éb, the state (i,3) denotes that a batch of 1
units is being served and there are j units waiting at
that time. Also (0,3) denotes the state that server is
under vacation and there are 3' units waiting in the system.

8.3. THE SYSTEM SIZE PROBABILI‘1‘IE§

For i = o, a, a+l, ...,b and j = 0,1, ...,b,

Let Pij(t) = The prohability that the state of the
system is (1.3) at time t, given the
system starts with 1: units at tine
zero.
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Considering all the mutually exclusive and

exhaustive cases, the following relations can be obtained.

For ogj.-’:b,__ t
Prj(t) = Gr(t) p3.(t) + of rim) "ér(t-u)uj(t—u)du

b t t
+ Z _f Bn(u) 5Mf](v-u) '§r(t-v)pj(t—v)dv du (5)1'|=‘-8. O 11

+ 3'Br(u) Ef(t—uJ uj(t-u)du

To obtain equation (5) consider the cases (1)

service of the first batch is not over up to time t and
there are j arrivals during this time (ii) the first busy
period is not over, a batch of size r is being served
and j arrivals has taken place (iii) Many busy cycles
are over, the last busy period starts with n units, then
after many service completions a batch of size r is being
served and there are j arrivals (iv) Many busy cycles
are over, the last busy period starts with r units, then
no service completion but j arrivals occur.
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=0,l, O00,  000, 13-1,  000, by
t .

.(t) = j'M;(u)'fii(t-u) pj(t-u)duOb t t _
-I- Z I B (u) f M1(v-u) Gi(t-v) p.(t-v)dv du (6)n=a o n u n 3

t
+ of Bi(u) §i(t-u) uj(t-u)du

Equation (6) is derived considering the cases
(i) the first busy period is not over and a batch of
size i is being served during which time there are j
arrivals (ii) Many busy cycles are over and the last
busy period is started with n units. Then after many
service completion, a batch of size i is being served
and there are j arrivals (iii) Many busy cycles are
over by time u, the last busy period starts with i units
and their service is not over up to time t and there are
j arrivals.

Now for j = 0,1, ..., a-l, we get

t b t 3 k
Poj(t) = dj 4;; Bn(u) uy fig; Fn(v-u)pj_k(t-v)dv du

t 3 k+ I 2: FI_(u) pj_k(’G-u)d11 (7)o k=o
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To write down equation (7), we consider the
cases (1) Many busy cycles are over and last busy period
is started with n units and ends with k units left over
at time v and then j—k arrivals in (u,t] (ii) the first
busy period is over with k units left over at time u and
then j-k arrivals.

For j = a,a+l, ..., b—l,

t b t a-1 k t 00 *m
Poj(t) = of &E%'Bn(uJ ux fig? n(v-u) J’ gioh (v-u)

a-k-1 _
Egg p1(w-v) H(t-w) pj_k_1(t-w)dw dv du

t a—l k t 00 W a-k-l+ I I F (u) I Z 11 (v-u) Z: +1 (V-u)o k=o r u m=o g=o 3

fi(t-v) pj_k_K(t-v)dv du (9)
To obtain equation (8) we consider the cases (1)

Many busy cycles are over and the last busy period starts
with n units and ends with k units left over and then many
vacation periods are over and only 9 arrivals during this
period and the next vacation period not over during which
there are j-k—Q arrivals (ii) the first busy period is
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over with k units left over in the system at tim u,
then many vacation periods are over during;which only 2
arrivals take place and the next vacation is not over
up to time t and there are j-k-Q arrivals.

Finally,

t b t a—l k t 00 *m
Po,o(t) -..= OJ Ea Bn(u) uf IE0 F,n(v-u) J E0 h (w-V)

a—k-1 _ b
22% p£(w-v) H(t—w) ii%ik-£ pi(t-w)dw dv du

t a-1 k t oo fin a-k-l+ I 22' F (u) I Z 11 (V-u) E: u (V-u)o k=o r u m=o {=0 1
b

‘fi(t-v) _§%:k £pi(t~v)dv du (9)1:: _

Equation (9) is written considering the cases
(i) many busy cycles are over and the last busy period
started with 11 units is over with 1: units left over in the
system and then many vacaticn periods are over during which
time R arrivals take place; the next vacation is not over
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up to time t and there are at least b—k~L arrivals
(ii) the first busy period is over with k units left
in the system, then many vacation periods are over during
which 1 arrivals take place; the next vacation is not over
up to time t and there are at least b~k—f arrivals.

Remark:

As in the previous chapter, the probability
distribution of the virtual waiting time in the queue
at any time t can be written conditional to the state
of the system at time t.
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