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Preface.

Chaos is currently one of the most exciting topics in non-linear systems re­

search. Simply put, a chaotic system is a deterministic system that exhibits com­

plex behaviour. This is due to the existence of intrinsic trajectory instability of

the dynamical system. It becomes difficult to understand the complex system in a

predictable way, though the law of evolution is completely known. For this rea­

son a statistical description is needed to understand the probabilistic behaviour in

these systems. Concepts borrowed from thennodynamics and statistical mechan­

ics are found to be useful in the qualitative and quantitative description of chaotic

systems.

The study of simple chaotic maps for non-equilibrium processes in statistical

physics has been one of the central themes in the theory of chaotic dynamical

systems. Recently, many works have been carried out on deterministic diffusion

in spatially extended one-dimensional maps This can be related to real physical

systems such as Josephson junctions in the presence of microwave radiation and

parametrically driven oscillators. Transport due to chaos is an important problem

in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffu­

sion coefficient in terms of the periodic orbits of the system in the form of cycle

expansions. But the fact is that the chaotic motion in such spatially extended maps

has two complementary aspects- - diffusion and interrnittency. These are related

to the time evolution of the probability density function which is approximately

Gaussian by central limit theorem. We noticed that the characteristic function



method introduced by Fujisaka and his co-workers is a very powerful tool for

analysing both these aspects of chaotic motion. The theory based on character­

istic function actually provides a thermodynamic formalism for chaotic systems

It can be applied to other types of chaos-induced diffusion also, such as the one

arising in statistics of trajectory separation. We noted that there is a close con­

nection between cycle expansion technique and characteristic function method. It

was found that this connection can be exploited to enhance the applicability of

the cycle expansion technique. In this way, we found that cycle expansion can be

used to analyse the probability density function in chaotic maps. In our research

studies we have successfully applied the characteristic function method and cy­

cle expansion technique for analysing some chaotic maps. We introduced in this

connection, two classes of chaotic maps with variable shape by generalizing two

types of maps well known in literature.

This thesis is organized as follows: The first chapter provides an introduction

to the basic concepts and theories needed for understanding the thesis. Fundamen­

tal ideas pertaining to periodic orbit, Frobenius-Perron operator, invariant density,

topological conjugation, Markov partition etc are very briefly presented. Then

we give the salient features of the characteristic function method somewhat in

detail because a proper understanding of the same is quite essential for the the­

sis. The first chapter also contains an elementary introduction to cycle expansion

technique.

In chapter 2 we discuss statistics of trajectory separation in one-dimensional

maps For any one dimensional map, fluctuations of local expansion rates pro­

duce fluctuations in the distance between nearby trajectories (trajectory separa­

tion). Fujisaka and his co-workers have shown that these fluctuations of local

expansion rates produce a diffusion in the time evolution of trajectory separation.

According to central limit theorem, the probability density function of the log­

arithmic distance between nearby trajectories will be approximately Gaussian

We examine the validity of Gaussian approximation by studying the case of pe­
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riod three boundary map as an example Analysis using characteristic function

method reveals that in general the PDF shows appreciable deviation from Gaus­

sian fonn. Approximation will be valid only if the standard deviation of LER is

very small. The result is relevant to a class of one-dimensional maps conjugate

to the PTB map. Exact expressions for quantities like diffusion coefficient and
moments are evaluated.

In chapter 3, we generalize the spatially extended one-dimensional map in­

troduced by R. Anuso. The generalized piecewise linear map (GPL map) pro­

posed by us has a variable peak-shape and can have integer heights. We analyse

the chaotic motion and its shape dependence in this map, using the characteristic

function method. Exact expression for diffusion coefficient is obtained which re­

duces to the result of Artuso as a special case. Fluctuation spectrum obtainable

from the characteristic function is used to analyse the probability density func­

tion. We note that the diffusion coefficient and the probability density function

are highly influenced by the shape of the map. The important finding is that the

non-Gaussian character of the probability density function and interrnittency in­

crease with increasing flatness and peak -height.

In chapter 4, we introduce a generalization of the map introduced by H.C.

Tseng et al. The resulting map has a variable peak-shape and fractional peak­

height, less than unity. We prove that for almost all arbitrary values of peak-height,

these maps are Markov mappings. As such we call these generalized piecewise

linear Markov maps. Closed form expressions for diffusion coefficient giving pre­

viously obtained results as special cases are derived in all cases. We show how the

probability density function can be analysed using fluctuation spectrum obtainable

from the characteristic function. Shape of the map is found to have a crucial role

in determining the diffusion coefficient, interrnittency and the probability density

function. Our generalized piecewise linear maps are very good approximations

to the sinusoidal maps which can be studied only numerically. We anticipate that

these maps will be useful in the time series analysis of chaotic systems.
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In Chapter 5, we show that cycle expansion technique which is usually applied

for the evaluation of exact diffusion coefficient has more applications in the study

of chaos- induced diffusion systems. This is done by linking it with the charac­

teristic function method. We show how periodic orbits can be used to obtain the

exact diffusion coefficient and fluctuation spectrum. The two complementary as­

pects of chaos—induced diffusion—diffusion and intermittency—can be analysed

using the probability density function obtainable from fluctuation spectrum. We

also present illustrative examples for the two types of systems referred to above ­

chaotic diffusion in spatially extended maps and the one associated with statistics

of trajectory separation.

A part of the work reported in this thesis has been published in the form of

two research papers. Two more papers have been prepared and communicated for

pubhcauon

1. “Statistics of trajectory separation in one-dimensional maps"—S. Ra­

jagopalan and M. Sabir, Indian Journal of Physics 74 A (4), 439—445(2000).

I\) . “Analysis of chaotic motion and its shape dependence in a generalized

piecewise linear map”—S. Rajagopalan and M. Sabir, Physical Review E

Vol 63, O5 720l(200l).

3. “Analysis of diffusion and intermittency in generalized piecewise linear

Markov maps with fractional peak-height”—S. Rajagopalan and M. Sabir,

communicated to Physical Review E.

4."Periodic orbits and the complementary dynamics of diffusion and interrnit—

tency in chaotic maps”—S. Rajagopalan and M. Sabir, communicated to

Physical Review E.

Kochi—22, RAJAGOPALAN S.
4-3-2002.



viii

Acknowledgments

I wish to place on record my indebtedness to Dr. M. Sabir, Professor of

Physics, for his keen interest, invaluable guidance and supervision throughout the

course of my research studies. The stimulating and illuminating discussions we

had on the subject were extremely beneficial for me to complete this work. Let me

express my deep sense of gratitude to Dr. Elizabeth Mathai, Professor and Head

of the Department of Physics, Cochin University of Science and Technology, for

the interest she has shown in my studies. I am extremely thankful to other faculty

members of the Department of Physics for their support and encouragement.

Let me gratefully acknowledge the assistance I have received from my fellow

research scholars. I would like to thank all the members of the library and non­

teaching staff of the Department for their kind hearted co-operation during the

course of my research.

I wish to express my gratitude to the Principal, Sree Krishna College, Guru­

vayur for giving me permission tojoin for part time research. Completion of this

work would not have been possible without the support of my colleagues. I would
like to thank all of them.

I am extremely grateful to my wife Geetha Devi, son Arjun Sankar and daugh­

ter Lakshmi Devi for their understanding and unstinted support. My elder brother

Dr. S. V. G. Menon, senior scientist at Bhabha Atomic Research Centre, Mumbai

has helped me a lot in my work. Let me express my gratitude to him for the same.

I would like to thank Beeta Transcription Services, Tripunithura for their pa­

tience and efficiency in preparing the BTEX version of this thesis. Thanks are also

due to M. M. Book Binders, South Kalamassery for the neat binding.

RAJAGOPALAN S.



Contents

Preface

Acknowledgments

I Introduction.

1.1 Essentials of chaotic maps.
1.1.1

1.1.2

1.1.3

1.1.4

Characterization of chaotic motion.

Topological conjugation.

Markov partition and symbolic dynamics.

Transition to chaos: Different routes.

1.2 Diffusion and interrnittency in chaotic maps:

Theory based on characteristic function.
1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

Basic dynamics and characteristic function.

Probability density function (PDF).

Exponents ,u and a.

Fluctuation spectrum alo ).

Evaluation of characteristic function A7.

Order (1 time correlation function Q5“

Thermodynamic formalism: connection with other theo­
ries.

1.3 Cycle expansion.

viii

\O\l\)Ui,_.

10

13

14

15

18

19



CONTENTS

2 Statistics of trajectory separation in one-dimensional maps.
2.1 Introduction.

2.2 Statistics of trajectory separation in one-dimensional maps: Char­
acteristic function method.

2.3 Statistics of trajectory separation for the period-three boundary map.
2.3.1 Characteristic function and diffusion coefficient:

2.3.2 Moments and probability density function:
2.4 Results and conclusions.

Appendix—A.

2.6 Appendix B.

3 Analysis of chaotic motion and its shape dependence in a generalized

piecewise linear map.
3.1 Introduction.

3.2 Model and characteristic function method.

3.3 Characteristic function, diffusion coefficient

and fluctuation spectrum.

3.3.1 Special cases.

3.3.2 Limiting forms.

3.3.3 Shape dependence of diffusion coefficient and fluctuation

spectrum.
3.4 Results and conclusions.

4 Analysis of diffusion and intermittency in generalized piecewise linear

Markov maps with fractional peak height.
4.1 Introduction.

4.2 GPLM models and characteristic function

method.

4.3 Exact results for diffusion coefficients.

4.4 Variation of diffusion coefficient and fluctuation spectrum.

44

44

46

50

53

53

54

58

59

60

65



CONTENTS xi
4.5 Results and conclusions. 784.6 Appendix A. 814.7 Appendix B. 82

5 Periodic orbits and the complementary dynamics of diffusion and in­

termittency in chaotic maps. 845.1 Introduction. 84
5.2 Probability density function via periodic orbits. 86
5.3 Illustrative examples. 90

5.3.1 Spatially extended piecewise linear maps. 90
5.3.2 Dynamics of local expansion rates. 98

5.4 Results and conclusions. 107



Chapter 1.

Introduction.

1.1 Essentials of chaotic maps.

Today it is well known that even very low-dimensional, simple deterministic sys­

tems can exhibit an unpredictable, quasi-stochastic long-time behaviour. It has

become common to call this phenomenon ‘chaos’ The first system of this kind,

namely the three body problem of classical mechanics, was investigated by Henri

Poincare at the end ofnineteenth century [1]. Since then a large number of dynam­

ical systems that exhibit chaotic behaviour have become known. Subsequent note­

worthy early mathematical work on chaotic dynamics includes that of G. Birkhoff

in the 19205, M. L. Cartwright and J. E. Littlewood in the 19405, S. Smale in the

19603, and Soviet mathematicians, notably A. N. Kolmogorov and his co-workers.

For non-linear systems, chaos appears to be a generic rather than an exotic phe­
nonwnon.

The time evolution of a dynamical system is determined by a deterministic

evolution equation. For continuous-time dynamical systems it is a differential

equafion.

—¥=F(.r) (1.1)
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and for discrete-time dynamical systems it is a recurrence relation known as a

map or mapping. A map in a cl-dimensional space with appropriate co-ordinates

(Cartesian co-ordinates, for example) is given by

1't+1= fl-Tr) (1-2)
where

1, = (:cll),.'cl2), $5“) (1.3)
is a vector in X, the phase space. Phase space is the set of all possible values of
the co-ordinates.

f=(f“’..f”’....,.f”’> (1.4)
is a vector—valued function. The dynamical system is called ‘nonlinear’ if the

function f(.r) is nonlinear. Only nonlinear maps can exhibit chaotic behaviour.

We start with an initial point To and, iterate it step by step. Each point .1, is called

an iterate. In a computer experiment, the number of iteration steps is very large —

say of the order of 10*‘ or larger. The sequence of iterates ro. .r1..1-2. is called

a trajectory. It describes the motion of a point in the space X Suppose each step

from :1‘, to I,“ takes the same time. Then the entire time is proportional to t,

the total number of steps. We adopt the convention of calling the length of the

trajectory the ‘time’

A trajectory may either become periodic, or stay aperiodic forever. In the

first case after a certain number t of iterations, the iterates approach a sequence

;r,. .r,+1.:r,+2.. ..r,+5, satisfying

L7.'¢+E : If
The sequence .r,. .r,+1. .r,+-2. . ..r,.;5_1 is calledapeiiodic orbit or cycle of f. The

smallest possible 5 satisfying the above equation is called the length of the cycle.
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A periodic orbit of length .f = 1 is called a fixed point of the map f A fixed point

17' is given by 3:‘ = f(z") (1.6)
A periodic orbit of length § can be regarded as a fixed point of the 5-times iterated

function

f‘<:c) = f(f(f(- f<:c)))) (6 times) (1.7)
Hence one can restrict the discussion of periodic orbits to the discussion of fixed

points.

It can be noted that the long -time behaviour of a non-linear map for a generic

initial value is totally different for different kinds of maps. One can distinguish be­

tween so called Hamiltonian dynamical systems and dissipate dynamical systems.

A Hamiltonian system is one which conserves the volume of an arbitrary volume

element of the phase space during the time evolution. For a dissipative system, a

small phase space volume either shrinks or expands and this usually depends on

the position 1 in the phase space. In this case, a large number of trajectories ap­

proach a certain subset A of the phase space X in the limit if —> 00. The subset _—l

is called an attractor. There may be one or several attractors. In low-dimensional

systems in many cases, there isjust one attractor which attracts almost all trajec­

tories. In further discussion we limit ourself to dissipative systems.

One possible type of attractor is a stable fixed point. The fixed point 1-‘

is called stable, if a large number of trajectories is attracted to it. For a one­

dimensional map a Taylor series expansion of f(:r) around 2”‘ shows that this will

happen only if I f’(:r") [< 1. This means that a stable fixed point for a 1-D map

is characterized by the fact that its neighborhood is contracted under the action of

f­

More generally, the attractor of a map may also be a stable periodic orbit of

length 5. The periodic orbit of length 5 is called stable, if the corresponding fixed
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point f5 is stable. In this case the vicinity of the periodic orbit is contracting, and

thus a large number of trajectories is attracted to it. An unstable periodic orbit is

not an attractor, because it repels trajectories.

Chaotic attractors may have an extremely complicated structure (especially in

dimensions d 2 '2). For such attractors there is at least one direction of the phase

space where small distances expand on average. But in spite of that they are

confined to a finite phase space. They often have a fractal structure [8—l0]. This

means that we observe a complicated structure on arbitrary length scales, which

can be described by a ‘non—integer dimension’ Attractors with this property are

called strange attractors [5—7, 40].

The logistic map [5, 16-18] has played an important role in the development

of the theory ofnonlinear dynamical systems. This is a one-dimensional map with

range [-1,1] of the real axis. The map is defined by

f(.1')=1—;l:r2 (1.8)
/,1. is called the control parameter with possible values p E [0. '2]. Familiar exam­

ples of two dimensional maps are (1) The Henon map [19] (2) Maps of Kaplan­

Yorke type [20—23] (3) The standard map [7, 24].

One-dimensional non—inver1ible maps are the simplest systems capable of

chaotic motion [5, 6]. They serve as a convenient starting point for the study

of chaos. A surprisingly large proportion of phenomena encountered in higher

dimensional systems is already present in some fonn in one-dimensional maps.

As such, in this thesis, we have focused attention on the study of 1 — D chaotic

maps.

There are many excellent textbooks giving detailed description of the different

aspects of chaotic dynamics. We have listed a few of them in the bibliography [5­

7, 24-28].
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1.1.1 Characterization of chaotic motion.

A dynamical system is said to be chaotic if it possesses sensitive dependence on

initial conditions. For a chaotic map, separation between two trajectories gener­

ated by very close initial values will increase exponentially and in the long run

totally different trajectories will be produced.

We consider below certain quantitative measures for characterizing chaotic

motion. Let us consider a one-dimensional discrete process 17;.“ = f(.r,) (t =

O, 1.2.. .). We are interested in the long-time average of a function G'(J:,),

1 NG'(x,)  (1.9)
Let us take an attractor Q and assume that f ( .2) is ergodic in Q [24—29]. Namely,

periodic orbits in Q are all unstable and there exists a unique absolutely continuous

invariant measure so that the long-time average (1.9) can be replaced by the space

average

<G($)>E/f2dIp(I)G(I) (1.10)
for almost all initial values 3:0, where

p(;I:) E 5(;7:t — r) (1.11)

is the invariant density independent of 9:0.

Let H be an operator defined as,

Ham 2  dy G<y)6<r<y> — as) = ZG<y.>/ l f’(y.-) I, (1.12)

where y,- is the i—th solution off(y,-) = :r in the attractor Q and f’(2;) = a.f(x)/a.’:r.

It can be shown that [S-7] H determines the time evolution of the density of
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iterates p,(ar). The density at time (t + 1) can be obtained from that at time t as

mMfl=W@) (MD
H ,- defined in this fashion, is called the Frobenius-Perron operator. For ergodic

systems, as t —> oo, p,(.r) becomes stationary (time independent). This gives the

invariant density /)(.1')

Mfl=WM OW
Therefore the ergodicity of f in 9 would be equivalent to the existence ofa unique

solution of (1.14) everywhere in 0.

One important quantity which characterizes dynamical processes is the Lya­

punov exponent which takes the form [5—7, 24-30].

. 1 d ,.
/\ E \llI1] —,1n|d—f<—‘)(a-)|, (a- e O.) _,ky 1 ->001 Cl?

1\'—1

_ =A1.i3:x%1§=;1n l.f’(.f‘”(rr))l (1.15)
l,._V

This represents the mean expansion rate of the difference between two nearby

orbits. If /\(_.T) > 0, thin the orbit f")(.1‘) is unstable. The érgodicity leads, for
almost all 1, to

A = fndrr/)(.r)ln | f'(.1-)| (1.16)
The time-correlation functions of ergodic processes are given by [31].

CmnwawNm»mmw2[amwuWmwm. um’\ Q
It

This can be transformed into 4
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C.<v;W) = (W) I I?r’W<r)> (1.18)
where [:1 is the linear operator introduced by Mori et al [31].

Ham 2 LHio(.-c)G(m)1 (1.19)
p(~'r)

1.1.2 Topological conjugation.

Sometimes it is useful to change co-ordinates such that the transformed map is

simpler or has other advantages. Such a transformation to new co-ordinates is

called a topological conjugation. It connects a map with an equivalent one. Sup­

pose the map f(;r) and _f(.?) are topologically conjugated. Then there is a conju­

gating function h yielding

.1? = h.(.1.-) (1.20)
We have

&/
~31

-1. + .—­

H
L”. /\ "9 -. ‘x.7 (1.21).r,,+, = f(.1',1

Then the following is fulfilled

fl-Tr):-i'1+1= h-(~Tr+1) = h(f(1'rll = h(f(h_1(5'2)l) (1-22)

We have assumed that /1“ exists. The composition of the three functions /2“, f

and h gives us f

1.1.3 Markov partition and symbolic dynamics.

To apply a statistical description to mappings we require a partition of the phase

space to subsets. Suppose we make a partition of the phase space into cells 1,, of

different sizes. Each cell is labeled by an index 1/. The cells are disjoint and cover
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the entire phase space X. That is

R

1, fl 1, = <:r> (null set); U 1, = X (1.23)
.,=i

Partitions with these properties are called cells.

Suppose we iterate a certain initial value 10 with the map f The point .170 will

be in some cell. Suppose 1/0 is its index. Let the second iterate be in cell with index

1/1, third in 1/2 and so on. So the sequence of cells will be 1'0 —; yo. 1/1. 1/2,. .1/,.

Suppose each cell 1,, has a symbol. Then these symbols will be appearing in

the above sequence. A mapping from phase space to the symbol space is called

‘symbolic dynamics’ [7]. It describes the trajectory in a coarse-grained way. As

the size of the starting cell 120 is finite and as it contains many initial values 10,

a given symbol sequence of finite length if can be associated with many different

sequences 10. T1, . .1‘, of iterates. On the other hand, not all symbol sequences

may be allowed in general.

Among the allowed symbolic sequences some will occur more frequently than

others. Hence we can attribute to each sequence I/0,. ., u, a certain probability

P(z/0,. .u,) that it is observed. The hierarchy of all such probabilities with I =

0. 1. 2, defines a stochastic process. Below we define two kinds of processes
[7].

Let P(i/, lug, .1/,_1) represent the conditional probability which is the prob­

ability of the event ix, provided we have observed the sequence I/0. . . . i/,_1 before.

If the conditional probability does not depend on the entire history z/0. .1/,_1,

but on the last event 1/,_1 only, the symbolic stochastic process is called a Markov

chain. This means a Markov chain has the property

P(VtlV0a- -1/1-1) ‘—‘ Pl!/ill/r—1) (1-243)

Another important concept is that of a t_o£c>“logi<_:_al_ Markov _chain defined by the
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P(Vtll/0: - ~-14-1) = 0

if and only if P(1/,]t/,_1) = 0 or P(V,_1[1/0,. .1/,_2) = 0 (l.24b)

The meaning is the following: There are two ways in which the conditional prob­

ability P(z/,|1/0....i/,_1) to cell 1/, can be zero. Either it is not possible to reach

the cell 12, from the cell 14.] or the sequence i/0, . .14-] is already forbidden.

In general the stochastic process generated by a map f will be neither a

Markov chain nor a topological Markov chain but a complicated non-Markovian

process. Character of the process will depend on the partition chosen. But for

some maps a partition indeed exists that makes the corresponding stochastic

process a topological Markov chain. Such a partition is called a Markov partition.

Technically one usually defines a Markov partition by a topological property

of the partition, that is to say essentially by the fact that—atleast in the one­

dimensional case—edges of the partition are mapped again onto edges [7]. For a

generic chaotic map one does not know whether a Markov partition exists. Even

if it does exist, there is no simple way to find it.

1.1.4 Transition to chaos: Different routes.

Different routes have been proposed for transition of a physical system from reg­

ular motion to chaotic motion. Feigenbaum analysed a logistic map of the fonn

(1.8) and noticed that the iterates oscillate in time between stable values (fixed

points) whose number doubles at distinct values of an external parameter. This

continues until the number of fixed points become infinite at a finite parameter

value, when the iterates become irregular. Feigenbaum noticed that the results are

not restricted to logistic model but are in fact universal and are valid for every 1-D

maps with a single maximum. There have been many theoretical and experimental

studies [5, 6, 17, 32] on Feigenbaum route.

In the intermittency route [5, 6. 33-39], discovered by Manneville and Pomeau
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the signal which behaves regularly (or laminarly) in time becomes interrupted by

statistically distributed periods of irregular motion (intermittent bursts). The av­

erage number of these bursts increases with the variation of an external control

parameter until the motion becomes completely chaotic. This route also has uni­
versal features.

A third route has been found by Ruelle and Takens [40] and Newhouse [41].

Much earlier, Landau [42] had considered turbulence in time as the limit of an

infinite sequence of instabilities each of which creates a new frequency. Ruelle,

Takens and Newhouse showed that after only two instabilities, in the third step,

the trajectory becomes attracted to a bounded region of phase spacewhich are

called strange attractors.

1.2 Diffusion and intermittency in chaotic maps:

Theory based on characteristic function.

We give below the salient features of the characteristic function based theory for

analysing diffusion and interrnittency in chaotic systems. The theory has been

developed by Fujisaka and his co-workers. The authors have set forth different

aspects of the theory in a series of papers [43—54].

The theory can be applied to analyse diffusion and interrnittency aspects of

chaos-induced diffusion systems. Research studies on the possible applications of

the theory form the subject matter of the subsequent chapters.

1.2.1 Basic dynamics and characteristic function.

Consider the dynamics of :1‘. governed by

.‘lf.|_.1 : B(-Tf).—1[.  : 0, 1.2.
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with A0 = 1, where B(z,) is a certain steady, positive definite function of 1:,

generated by

.'Et+1 = f(.Tg)  S It <
The statistical dynamics of A, can be discussed with the q-order moment (A3),
-00 < < oo . Multi licativit of the modulation B suogests one to introduce9 P Y o.

1-]

A4 = q‘1t1_ir;1ot’1In(_4f) = q‘1 1'1 ln(eXp{qE:1n B(:cs)}), (1.27)
5:0

where  - ) is the average over the steady ensemble /3(1) satisfying the Frobenius­

Perron equation p(:c) = Hp(:c). Hence

= fig) exp(qAqt), (1.28)
where Q5”) is non singular in the sense that lim,_,x, t" In Q5“ = 0. Therefore

Aq turns out to play a significant role in the long—time dynamics of A,. We call it

the characteristic function. By making use of the inequality (Afq) 2  ie.,
q(/\gq — Ag) 2 0, Ag turns out to be monotonical

dAq/(Iq 2 0 (1.29)
Consider the cumulant expansion

= exp{qA0t + :((ln .‘-1,- /\0t)")cq"/71?}, (1.30)
71:2

where  . .)L.is the cumulant average. The above expansion indicates that Aq can

be expanded as a power series

A,, =A0+Dq+O(q2), (1.31)
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where

A0 = tli’mGt'1(ln.4,) = (In B(:r)), (1.32)
D = tlin; at/2t. 0, E ((lnA, — (lnA,))2). (1.33)

A0 is the drift velocity of (ln .~1,)(= A01), and D the diffusion coefficient charac­

terizing the diffusion law 0, 2 '2Dt fort >> T, 7 being the correlation time of

In B(rt). From eqs.(l.29) and (1.33) we note that D 2 0.

We note that D can be transformed into [55—57]

Os.

D— °+:C, (1.34)
1:1

-7
if C, decays faster than at 1" C‘, is the double-time correlation function [31, 32,

58, 59] defined as

C;5_1,=(6lnB(:r5). 6l11B(.r;)) (1.35)

Note that C|,_,l can be evaluated using eq (1.17). One has to put l-" = ll’ =
61nB=lnB—Agand1=|s—1[

For q —> 0, one obtains

Aq = /\0 + Dq (1.36)
and fort >> T

x exp{q(A0 + Dq)t} (1.37)
Assuming that Ail. exists, and furthermore that Aq can be expanded as

A, = A5,, — Asa" + Om“), (1.38)

as q —> 600, (9 = i), where X6 is defined by A; = lini(,_.g¢,—. $3; and is non­
negative because of eq (1.29). Hence the q order moment is asymptotically given
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by(t—>c>candq—>0c>c)

cx exp{()\goc,q — )tf9)t} (1.39)

Note that the asymptotic form (1.38) is quite different from (1.31). These behav­

iors have a close connection with the violation of the Gaussian approximation for

theflprobability distribution.

1.2.2 Probability density function (PDF).

From eq(l.25), we get

ln.4,+1 = ln _.~’1,+ln B(1',). (1.40)

which can be integrated to yield In .4, = 2:; ln B(.z~5). Ifln .4, is assumed to be

Gaussian (the central limit theorem) as t —> -:x:, the distribution for :1, takes the

log-normal form [55, 60]

1 1 —A t)2
P((L.f)2’ \/.)__Fa ex1){— } (1.41)...I| f ..r f

as t ——> oc. The q-order moment evaluated using the above PDF is

2 exp(q)\0t + cnqiz/'2) o< exp{q(/\0 + Dq)f}. (1.42)

Here we used a, 2 ‘2Dt fort >> 7. This indicates that /\q takes the form (1.36)

independently of q. Conversely, we can say that eqn5.(l.36) and (1.37) will be

valid if the probability density function (PDF) of ln _-1, is Gaussian, which hap­

pens when the PDF of In B(:n,) is Gaussian. But, usually the PDF of ln B(.r,)

is not Gaussian. Even then, the PDF of In :1, is approximately Gaussian due to

central limit theorem, though it also has a non-Gaussian component. The first two

terms in the expansion of /\q can be attributed to the effect of Gaussian compo­
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nent of the PDF. Which of the two component, Gaussian or non—Gaussian, will

show its effect, depends on the value of q. Note that /\q reduces to the form (1.36)

when | q |< b, b being the convergence radius. In this range of q, one can assufne

Gaussian approximation for the PDF and moments (A?) are given almost exactly

by eq(1.37). On the contrary, for |q| > b, Aq is given by eq.(1.38) and  by

eq.(l.39). Gaussian approximation for the PDF can no longer be assumed in this

case. This finding can be explained further in the following way. The temporal

evolution of (B(a:,))‘7 strongly depends on q. When | q |< b, the fiuctuations in

(B(a:,))‘7 get suppressed. As such the non—Gaussian character of In .4, (resulting

from fiuctuations of ln B(xt)) does not become apparent. Central limit theorem

gives moments almost exactly. For | q |> b, fluctuations in (B(_r,))‘7 get ampli­

fied. Non-Gaussian character of In A, become conspicuous now and the moments

deviate from (1.37) and behave like (1.39). That is , asymptotic laws for lower

order moments are not valid for higher order moments. Amplitude fiuctuations in

B(x,) (equivalently in In A,) is called intermittency.

Here after the regions of q called corresponding to (1.31) and (1.38) will be

called diffusion and intennittency branch. Their boundaries can be estimated

roughly as qg = ’\":°‘D"—A", (0 = :t)

It should be noted that the intermittency mentioned above is slightly different

from that discussed by Manneville and Pomeau (See section 1.1.4). They use the

word in relation to the dynamics av,“ = f(1,), as a route by which .1, becomes

chaotic. Here we mean the interrnittency of B(:z:,) (or In A,) which is a function

of ar, which we assume, is already chaotic.

1.2.3 Exponents ,u and 0.

To analyse deviation from Gaussian PDF, Fujisaka et al put forward exponents ,1!

and a. They are defined in relation to the dimensionless structure function [61].

am) 2 (.4?)/(.4f)”/2 02(1) = 1. (1.43)
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From eq (1.28) 6,,(1) o< exp{q(/\q — /\2)t}. 0q(t) —> oo both forq < 0 and q > ‘2,

and 6q(t_) —> 0 for 0 < q < 2, ast ——> oo. Skewness S and flatness F are equal to

193 and 04 respectively. Exponents ,u and a are defined through

(.43) 2 (_4,‘)?e“’, S ~ F” (1.44)

In terms of Ag, they are given by

/1='3()\2—/\1)-i U=3(/\3—)\2)/41/\4 —)\2)- (1-45)

which are non negative.

Diffusion branch approximation for q = 1 ~ 4 gives the limiting values

p=2D, cr=3/8 (1.46)
On the other hand, if we assume intennittency branch approximation for q = 1 ~

41, the limiting values are

0 = 1/2, (1.47)
Comparison of ,u and 0 with the limiting values, enables us to find the range

of parameter in _f(.1'), for which q = 1 ~ 4 will be in the diffusion branch. For

this range of q, PDF of In .-1, can be assumed to be Gaussian.

1.2.4 Fluctuation spectrum 0(a).

In eq. (1.25), we defined the dynamics of A,. Equivalently, one can consider the

dynamics of the local time average a, of a time series

{'1lJ}='ll0.U1.‘ll—2 (1.48)
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1at = -2 11,- (1.49)

where

uj = u(;rJ) = ln B(1t]-) (1.50)
Characteristic function x\,, (eq (1.27)) is defined as [47, 49-54].

1 , 1
/\q =  E ln(exp(qtcx,)) (1.51)

The long time average 00,; = lim,_+.,o % 2;; U1‘ is no longer a fluctuating quan­
tity. Note that it is equal to /\0, the drift velocity. Similarly, the diffusion coefficient

D can be related to the variance of a, through

((a, — am?) 2 g (1.52)
Let P,(o) represent the probability that or, takes values between a and oz + do-.

This is related to the fluctuation spectrum 0(a) through [52, 54]

Pt(a) ~ \/fexp[—a(a)t] .(1.53)

In some references the factor (/2 is not shown, it being pan of normalization

constant and also independent of 01. Note that P,(a) ——> 6(a - am) as t ——> oo.

Pt(a) is related to /\q as [47, 52-54]

Aq = —% mino,[a(a) — qa] (1.54)

by employing the saddle point technique. This is equivalent to Legendre transform

2%
dq

(1.55)0(0) = q
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It can be easily proved that [53]

d_oz > 0. d2a(a)dq ‘ ‘ dd’­
when q = 0, we get 0 = 0 at a = ox, = AD. This is the single minimal value of

> 0. (1.56)
0(0).

For |q| < b the asymptotic law (1.36) gives

0' = /\0 + 2Dq (1.57)
._ 2

0(0) = (14%). (1.58)
The parabola (1.58) agrees with the central limit theorem result and is valid for

|o — A0] << 1o(q = b) — /\o|. On the other hand, for l9q >> b, (6 = :l:), we

generally get
1 1

A,, 2 A50, — E [:6 — cge.-\’p(—77al€1llJ (1.59)

where 7.»). C9, and 1).; are positive constants. Its Legendre transformation gives

a 2 A900 — 9Cg‘I]9 exp(—7;g|q[), (1.60)

a(o):i—i|a—A.,,.,,|1n (1.61)7'9 no la - /\6:<-l
where 115 ~ O(1/b) and (£9 E €Cg7]g. The derivative (Ia(a)/(lo logarithmically

diverges as 0 —> Am,

The existence of the convergence radius b means that the statistical characteri s­

tics described with /\,, can be, roughly speaking, divided into three types q << —b;

M << b: (1 >> b, which can never be perturbatively connected to each other. In

the sense that the parameter q selectively singles out the statistical characteristics

relevant to it. it is called the filtering parameter.
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1.2.5 Evaluation of characteristic function /\q.

For evaluating ,\., one can use the linear operator defined by Mori et al (Section

1.1.1). Using eqns (1.19), (1.27), we get [43]

1. = 11-1 11321-1 ln((B(.1'))" f1(B(J.~))1 1?(B(.1:))v) (1.62)
t—1

If I:I(B(.L'))” is a constant for the entire range of x (0 g I < 1), evaluation

of Aq using the above equation becomes tnvial as in the case of Bernoulli map

[43]. If this is not the case,one can get /\,, using the linear operator Hq defined as

[49—53]

l

H.G1r) =  my) — z)e1"‘“G1y)c1y

= H[e7"‘“G(.z:)] (1.63)
with H0 = H‘. From equations (1.25) and (1.63), it is easy to prove that

1

(.13) = / [H.,]*p(.1-)c1.: (1.64)0

Consider the eigen value equation of H,

Hqv¢»§,"’(x) = 6g">t~;"’(.r) n = 0,1,2, N (1.65)

Let

995°’ > |o§"| 2 |¢>f,2’l <1.66>
Using equations (1.27), (1.64) we note that the characteristic function /\q can be
obtained as

A. = gln 63°’ (1.67)
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where o'f,0) = max,,{Re g6l,")}. It is easy to prove that C55,” is not degenerate [51].

The meaning of other ei gen values is pointed out in the next subsection.

1.2.6 Order q time correlation function Qt”).

So far nothing has been mentioned about Qfq), the function appearing in eq (1.28).

For asymptotic behaviour, it is insignificant as lim,_,.,:, t“ ln 9” = 0. It depends

on time only very slowly. One can find that Ag describes the most dominant, ie.

global behaviour of (.4?) while the non-global characteristics are contained in Q?”

[49—52]. Suppose {uj} is purely stochastic. Then Q5“ = 1. If {ul} is periodic,

then Q5“ is periodic with the same period. For a general chaotic dynamics Q3”) is

neither unity nor a periodic function and contains information different from that

in /\q. It is known as order q time correlation function. It provides information

regarding the temporal correlations in {Uj}. Q,(q) can be expanded as [49—52]

$9) = Jgo) + E:1J(§"l€—(‘!v(:n)+iuv£"))t (168)

where 1
J”) = 53")!‘ ‘i,.*"((]")(rr)d1‘ (1.69)0

pm = Z .--g"’—u-;")(a:) (1.70)I - ( ) ,< ) ­Zn denotes the summation except n = 0. 7.," and log" satisfy

‘(Til

4%: = €—(-y.‘,")+iwf,"’) (L71)
élolq
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{u~;")} and {~,'§")} are the sets of characteristic frequencies and decay rates of

motions embedded in {Uj}.

1.2.7 Thermodynamic formalism: connection with other theo­
ries.

From the relations between q, /\q, a and 0(0), one can note that these quantities

are corresponding respectively to inverse temperature (=  with the Boltzman
constant 193 and the temperature T of the system), the Helmholtz free energy, the

internal energy and entropy in thermodynamics. Hence the fiuctuation spectrum

theory is called a thermodynamic formalism [7, 14, 62-70]. It can be noticed

further that the present approach has some similarity with some other theories on

chaotic dynamics. Special reference is to be made of (1) multifractal theory [1 1­

l5] (2) velocity structure functions in developed turbulence [71]. These theories

also aim at global characterization. They are also thermodynamic formalisms.

In literature one can find a number of related works on strange attractors [2, 3],

diffusion limited aggregations [72,73] and time correlations of intemiittent maps

[76]. Feigenbaum et al [4] have tried to study the correlations in strange objects

in connection with global characterization. This is similar to the time correlation

function discussed in the precious section. In ref [74, 75] one can find a similar

approach to fiuctuations utilizing the concept of generalized entropy.

1.3 Cycle expansion.

Cycle expansion [7, 62—64, 77-81] provides perturbation theory for chaotic sys­

tems of low dimensional phase space. The essence of this method is to express

averages over chaotic orbits in terms of unstable short periodic orbits. The im­

ponance of periodic orbits has been already noted in the mathematical works on

dynamical systems [1, 82]. Cycle expansion is actually the physics application of
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the dynamical systems theory developed in [62—64, 80, 81].

Cycle expansion is an expansion on the dynamical g' function of a dynamical

system, which is obtained by the transfer operator technique. Transfer operator L

is a linear evolution operator of the system which detemiines the evolution of the

system under the detenninistic map 1,1.) = f(:ct). The evolution operator used in

the evaluation of the escape rate of a repeller is an example. The kernel of escape

rate of a repeller is [77,79]

L(;l/1-r) = 5(y - f(4v))- (1.72)

Since the evolution of the system is completely determined by L, the evaluation

of its eigen spectrum is the most important issue in the discussion of its dynamical

propenies. The eigen spectrum of L is related to the following determinant:

det(1— :L) = exp[trln(1— :L)]

Tl= exp [— Z Z—tr(L”)] (1.73)n=l

Due to the fact that tr( L") picks up contributions from all repeats of prime cycles

p (prime cycle explained below)

tr(L") = Z npt;/"P, (1.74)
np|n

where npln denotes that up is a divisor of n. The above determinant can be rewrit­
[CH 35

det(1— :L) = H,,(1— z""tp). (1.75)

In eq (1.75) all pn'me cycles p should appear in the product. The dynamical Q’
function is defined as
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g"1(:)=det(1—.:L)=l'l,,(1—Tp). (1.76)

where Tp = :"'’t,,. Eq (1.76) is exact and no approximation has been used up to

this point. It is now clear that the eigen spectrum of L can be obtained from the

zeros of Q“

To show how cycle expansion can be done, we expand the Euler product (1.76)

9--1 2 Hp” ‘ Tp)=1' X: TPl+P2+---Pk‘
PIP2---Pk

TPl+P?+---+Pk : (—1)k+1TPlTP2 Tpk (L77)

One may be tempted to think that the value of : should be very small so that the

infinite sum makes sense. Actually this is not necessary, because the infinite sum
will be truncated to a finite sum due to cancellation. To show how cancellation

occurs, we take the example of the binary dynamics generated by a tent map. We

have,

C-1 =(1- T0111 ‘ T1111“ Ttolll ‘ T100)­

=1—T0 - T1 — T10 — T100 — T110. - T0+1" T0+o1— (1-78)

where the prime cycles are denoted by the symbolic sequences of two unrestricted

symbols {0. 1}. A prime cycle is a single traversal of the orbit; its label is a non­

repeating symbol string. There is only one prime cycle for each cyclic pennutation

class. For example p = 0011 = 1001 = 1100 = 0110 is prime butfi = 01 is
not prime (bar denotes a symbol sequence with infinitely repeating basic block).

The reorganization is done by grouping the terms of the same total symbol string
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length

C-1 :1‘ To " Tl - [Tot — Ton]

— [(T1oo — T10Tol + (T101 - T1oT1ll — (1-79)

It is obvious in this expansion that To and T1 are the most important quantities

since all longer orbits can be pieced together from them approximately. All the

periodic orbits which cannot be approximated by shorter orbits are called funda­

mental cycles. In the above example, the fundamental cycles are To and T1. The

terms of the same total length which are grouped together in the brackets of(l.79)

are called the curvature corrections c,,, where n denotes the total length. If all cur­

vature corrections vanish, then C“ is exactly given in terms of the fundamental

cycles and this is the spirit of cycle expansion. For the case in which c,, are non

vanishing, cycle expansion provides a systematic way to carry out corrections.

For the case of binary dynamics generated by the tent map, it can be shown that

all curvature corrections vanish identically. This is due to the unifonn slope of

line segments. In fact for all simple cases such as piecewise linear mapping the
cancellation is exact.

In the case of binary dynamics generated by a tent map, all sequences of sym­

bols in the alphabet {0, 1} can be realised as a physical trajectory. The symbolic

dynamics, in this case, is described by a complete unrestncted grammar. If some

sequences are not allowed, we say that the symbolic dynamics is ‘pruned’ The

word is suggested by ‘pruning’ of the branches corresponding to forbidden se­

quences for symbolic dynamics organised by a hierarchical tree. In such cases,

the alphabet must be supplemented by a set of pruning rules which is called prun­

ing grammar.

Cycle expansion provides a powerful tool for the analysis of deterministic

chaos. For illustrating various aspects of the technique,Artuso et al have applied

it [78] to a series of low-dimensional dynamically generated strange sets: the
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skew Ulam map, the period-doubling repeller, the Henon-type strange sets and the

irrational winding set for circle maps. Cycle expansion can be used for evaluating

the decay rates of time correlations in chaotic dynamical systems [79]. Recently,

many authors have applied this technique to evaluate exact diffusion coefficient in

spatially extended maps exhibiting deterministic diffusion [95—97].

There is a connection between the cycle expansion technique and Fujisaka’s

characteristic fuction method. Exploiting this connection we found that the appli­

cability of the cycle expansion for analysing chaos—induced diffusion systems can

be enhanced. This work forms the subject matter of chapter 5.



Chapter 2.

Statistics of trajectory separation in

one-dimensional maps.

2.1 Introduction.

One—dimensional transformations have proved to be useful for discovering and un­

derstanding properties of Hamiltonian systems and dissipate dynamical systems.

Outstanding examples are Bernoulli shifts and 3 transformations in ergodic the­

ory [29, 83], and the I-Ienon dissipative mapping [19] and logistic model [l6—l8]

for the onset of fluid turbulence. These have led to a deeper understanding of

chaotic orbits and also to the discovery of new dynamic scaling laws in the vicin­

ity of transition points [5, 17, 84, 85]. They are the simplest systems capable of

chaotic motion. Piecewise linear maps. in particular, are very useful models for

explaining the mechanisms leading to deterministic chaos [5, 6].

For one-dimensional map of the form:

.T(+] :_f(.Tf).  (0<.I'g <

IQ LII
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the distance between nearby trajectories evolves in time as

dt+1 = lf,(~'5t)ldt + Oidg) (2-2)

d, exponentially grows in course of time, on the average, with the rate x\, the Lya—

punov exponent (see subsection1.1. 1) when it is positive. The trajectory becomes

unstable and is called chaotic. If A is negative then d, exponentially shrinks in the

course of time and the trajectory is stable. Since the local expansion rate (LER)

ln |f’(:c,)l [7, 53-55, 88] strongly depends on the phase point .r,, the trajectory

separation fiuctuates from

d, = c10e“+ 0(d3,), (2.3)
do being the initial separation. Fujisaka and co.worl<ers [55] have shown that these

fiuctuations will produce a diffusion in the temporal evolution of trajectory sep­

aration. The probability density function (PDF) of trajectory separation for large

t will be approximately log-norrnal according to central limit theorem. Equiva­

lently, the PDF of the logarithmic separation will be Gaussian [43, 53, 55, 88]. It

is this Gaussian component of PDF which leads to the diffusion of logarithmic dis­

tance between trajectories. Non-Gaussian component results from intermittency

(in time) of the above stochastic process. This diffusion and intermittency are

complementary aspects. This nature of trajectory separation is a matter of great

theoretical interest as it arises in all one-dimensional maps [7, 53-55, 86-88].

In this chapter, we study the statistics of trajectory separation for a period-three

boundary map (PTB Map). The motivations are the following:

(i) It is a piecewise linear map and hence can be studied analytically. The study

of trajectory separation of this map can bring out the relevant conditions

for the validity of log-normal approximation for PDF. The result will be

applicable to a class of 1 — D maps conjugate to the PTB map. This map
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has a step like invariant density. So the result will not be influenced by the

uniformity of the invariant density.

(ii) The inference can be extended to stochastic motion in spatially extended

maps [5, 24, 57, 58, 89-106]. Deterministic diffusion generated by such

maps can account for the behavior of Josephson junctions [107—l09] and of

parametiically driven oscillators [110].

(iii) It can provide a mathematical model to any chaotic series exhibiting deter­

ministic diffusion. It can have applications in physical systems like Brown­
ian motion.

We use Fujisaka’s general theory based on characteristic function [43—54] to

discuss the above dynamics. In Section 2.2, we describe how this can be done.

In section 2.3, we consider the statistics of trajectory separation for the PTB

map. Exact expressions for characteristic function and diffusion coefficient are

obtained. Though we use the method suggested by Fujisaka, the procedure by

which characteristic function is evaluated has not been reported so far. In sec­

tion 2.3, the statistical quantities like moments and PDF are also got. To study

variation from Gaussian character we evaluate the exponents /.1 and J defined in

subsection 1.2.3. In section 2.4 we analyse the results and discuss the significance

and applications.

2.2 Statistics of trajectory separation in one-dimensional

maps: Characteristic function method.

For every one dimensional map (eq. (2.1)) if we start with the nearby trajectory

do (<< 1) at the initial time, d, becomes of the order of unity at the saturation time

t,(z /\‘1ln dg‘ ). In the time range 0 < t < t,. In d, linearly depends on time, on

the average, slope being equal to A. Fort 2 1,, d, is bounded by the scale of the



CHAPTER 2. STATISTICS OF TRAJECTORY SEPARATION 28

state space (z 1). In statistics of trajectory separation, we study the fiuctuation

effect of local expansion rates In |f'(I)l on the dynamical behavior of d, in the

above time range [55]. In the limit, do —> 0 the dynamics (2.2) can be written as

Lf+1 = |f’(-Trllln (2-4)
Using L, instead of (1, corresponds to taking the limit its —> oo as do —> 0 i.e.

there does not occur any cutoff time. Therefore if we neglect fluctuations of local

expansion rates, we will get L, oz 6“ till t = 90

Equation(2.4) can be integrated to yield

f—1

ln L, = ln L0 + Zln|_f’(1-s)[. z> 0 (2.5)
:0

with the initial distance L0. Since I, is uniquely determined by .10, L, is also a

unique function 0f.r0. Therefore the average evolution of (2.5) is given by

(In L,) = In L0 + /\t (2.6)
where (. ) is the average over a steady ensemble p(.r) (invariant density). Note

that x\, the Lyapunov exponent can be written as

(ln(L,/140))
f

The fluctuation of In L, from the average motion(2.6) is measured with variance

A = = (ln  (2.7)

0', = ((ln L, — (111 L,))'-’) (2.8)
This variance can be shown to be proportional to t for if > T, -r being the corre­

lation time of ln |f’(;i-,)| [55]. Hence we can define a diffusion coefficient D for
In L, as

D = lim _a—f. f> T (2.9)
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This is similar to the deterministic diffusion studied in spatially extended maps by

several authors [5, 24, 57, 58, 89-106].

Referring to section 1.2, it is quite easy to note that the dynamics (2.4) can

be studied using Fujisaka’s characteristic function method. In eq. 1.25 we have to
make the substitutions

.4: = Lfi B(-T) = |f'(~T)| (2-10)
The assumption L0 = 1 will only change the scale of trajectory separation. Note

that in this case A0 (characteristic function A4 with q = 0 ) will become equal

to the Lyapunov exponent /\ (eq (2.7)). D is the diffusion coefficient of In L,,

the logarithmic separation between nearby trajectories. Variation from Gaussian

character of the PDF can be analysed using exponents ,u and 0 introduced in sub­
section 1.2.3.

2.3 Statistics of trajectory separation for the period­

three boundary map.

2.3.1 Characteristic function and diffusion coefficient:

In this section, we consider the statistics of trajectory separation for the period­

three boundary map (figure 2.1) defined by

[‘—"—“’l:r + c (0 5 m 5 <2). ml)
[;](1—;r) (C < :1? 31).

The three points, c. 1, 0 are periodic points of period three, satisfying 1‘ = f‘3’(;r).

In subsection 1.1.1 we defined the operator H as

Ham = / dyG(y>6my>—a->= Zeta.)/I.r'<y.)I (2.12)0
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I

X

Figure 2.1: A transformation with the period—three boundary (PTB map) —f(.r)
vs 1'. On both axes units are arbitrary.
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y,- is the ith solution of f(y,-) = :r in the attractor Q. For the PTB map.

— G . .
Haw : <1 c) on 1 (0 s r 5 c) (113)

l(,+L.,]G(y1)+l1— c)G(y2), (c < a: :1),

where

y1=[(1:c)](I-C): y2=1—(1-C)-7: (2.14)
Invariant density p(.T) is given by

Hplr) = pl-T) (2.15)

=’" ’ ‘ ‘ (2.16)
Lyapunov exponent becomes

A0: (111 = [ J{-clnc—(1—c)l11(1—c)} (2.17)(1 + c)

Since A0 > O the PTB map will produce trajectory instability.

For evaluating /\q we use the linear operator introduced by Mon et al (subsec­

tion l.l.l). The linear operator in eq. (1.19) takes the form

/\ G'(y;»). (0 g :1‘ 3 c)HG'(.1') = (2.18)
<—‘G'(y1)+'I.1-c)G'(y2), (c<~'I*< 1)

From the above equation, we note that fi|f’(.r)[“ is not a constant for the entire

range of .r. When }A[|f’(.z-)1? is constant, the evaluation of /\q using eq.(l.62)

will become trivial, as in the case of Bernoulli map [43]. One can show that for
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a tent map also this is the case. In fact, tent map gives the same result as the

Bernoulli map. In contrast to these trivia] cases, the PTB map produces temporal

correlations. Referring to subsection 1.2.5, we note that usually in such cases one

has to solve the eigen value equation for the linear operator H q for evaluating /\q.

However, here we show a new procedure for getting Aq using 1? (eq (2.18)) in eq

(1.62).

Let us denote the function inside the expectation sign  ) in eq. (1.62) by

F,. We note that it will be a step function for all 75. Let F,(1) and F,(2) denote the

values of this function for0 3 :5 3 c and c < 1 3 1 respectively

Fi<1>=[1‘“]°,n(2)=[ 1c 1—c ‘I

(2.19)

First we show that F1(1) > F1(‘2) guarantees F,(l) > F,(2) by mathemati­

cal induction. Assume F,(1) > F,(‘2) => F,+1(1) > F,+1('2). We can prove

Ft+2(1) > Fr+2(2)­

= (1—c)qF,(y2)= <1‘ C)qF,('2) (2.20)C C
since c < yg < 1. Similarly,

1

1—cFr+1('3l = < )qlCFr(y1)+(1‘ ClFr(I92)l

=< 1 )1 [cF,(1) + (1 — c)F,(2)], (0 < y1< c) (2.21)1—c

Ft+2(1)=<1—C)q< 1 )q[cF,(1)+(1—c)F,(‘2)] (2.22)c 1—c
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Ft+2(2)=<1:c>q

x {C<1;c>q 5(2) + (1 — c) (1 i Cy [cF,(1) + (1 — c)F,(‘2)]} (2.23)

Using assumed condition, we note

F,+.2(1)—F,+2(-2)><1'°>q< 1 )q[cF,(1)+(1—c)F,(‘2)]C

_(11 )q[c(1’°>qF,(2)+(1—c)<1'c>qF,(2)] >0 (2.24)—C C C
The proof will be complete if F1(l) > F,(‘2) => F-2(1) > F2(2). This can be

easily verified. Similarly, we can prove F1(1) < F1(‘2) 2:» F,(1) < F,(‘2) and

171(1) = F1(‘2) => F,(1) = Ft(‘2). Using p(:E), the expectation value (Ft) appear­

ing in eq.(l.62) can be written as

t=t+1gives

(Fm-1): (1:6) (1:6)? Fz(‘2)+1:C(1iC> [cF¢(1)+ (1 — c)F¢(2)6](2.2 )

Some rearrangement will give us

[C(l:C)q+((1:c))q
+
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From results obtained above, we note the quantity inside the curly bracket will be

less than 1, when ( 1C)q aé  It will be equal to 1 when (#)° =1- 1—c
Using results obtained above, we note

(Ft+1)= 1 [C<1_C)q+( lc>q](Fr>(1—Xr)-. (0S.Xt<1)(1 +c) c 1—
2.28)

This gives

1 1- 4 1 ° ’
(F,)= {(1+C) [c( CC) +<1_C)  9, (0<9g1), (2.29)

where

9 = Hi-;l(1 — xi). (2.30)
Eqs. (1.62) and (2.29) give

1 , 1 1 1 1—c q 1 q 1 _ 1
/\"=:111iiv].~j<1T1n<Ff>=dln(1+c) [C< c > +(1—c)]+E:l—l»n;.TlnQ

(2.31)

Since (F,) is the expectation value of absolute quantities, we note from eq. (2.29)

that 9 will not tend to zero ast —> cc, 0 < 9 3 1. Therefore,

1lim — In 9 = 0 (2.32)
r—>:c I

We provide a rigorous mathematical proof for this in the Appendix A. It may

be noted that Q in the above equation is the same as Q5”) in eq.(1.28) and is

relevant to the correlations in |f’(1-,)}. The above equation actually proves that

li1n,_,,x, § in Q3”) = 0, for the present case. One can put Qfq) z 1 for large values

oft.Thus 1 1 1_C q 1 qA =— 2.q q111(1+C)|:c< C ) +<1_C)] (33)
Lyapunov exponent A0 (= Iim7_,0 A2.) evaluated from Aqagrees with eq.(2.l7)
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as it should. This shows the correctness of Ag. A lengthy calculation gives the

diffusion coefficient D (= limq_,0

p:.3{ 1 in[“‘°’2]}2 (2.34)C

2.3.2 Moments and probability density function:

Asymptotic law for moments as lq| —> O can be obtained by substituting A0 and D

in eq.(1.37)

(L3) 2. 5"‘T°", (2.35)
where

'2 7°7r‘" ‘'—TL2

5 : cl:-Cc(]_ _c)—(11+—cc); T :  —c) ]-( +) [ J

Probability density function corresponding to this, can be assumed to be log­
normal.

P(L,,t) e—_[ln(L’S_t)]2} (2.37)
1

The following limits can be arrived at, after lengthy calculations. c‘ is the

solution ofc in the range 0 < c < 1 for which  =  c‘ = —3‘2‘/E =
0.381966. — 1/\+oo = max in (1 C), in (2.38)c (1 — c)

/\_oo = max In (1 — C),ln 1 , (2.39)c (1 — c)

/\I+ = ln(1+ c), (c > C‘), (2-40)
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ln(1+ c), (c < c‘),

X. = ln(1':C), (c > c')', (2-41)
0, (c: c‘).

Using these limits, we get the asymptotic law for moments as q —> ice from

eq.(1.39)

F (c>c“;q>0) (c<c";q<0),
f

(L3):   (c<c'; q>0) (c>c":_ q<0), (2.42)
(c=c‘: q+ve or-ve).

Interrnittency exponent p and exponent a can be evaluated exactly as

(1+ )[t+(1— )4]2”‘  ‘W’
In /lI+c) c2+(l-L-)6

‘ lc+(1—c)‘]?
(1-‘e--:) c3+(l—c)3

1n( c[c+(l—c)“]2

0";

2.4 Results and conclusions.

1. It follows from Fujisaka’s general theory that Gaussian approximation for

In L, is valid for moments with gq_ —> 0 whereas non-Gaussian components

of PDF will become dominant for moments with q —+ :l:oo. Whether a

given value of q is in the diffusion branch or intermittency branch will be

detennined by the value of c. Their boundaries are roughly estimated as

(,9 = '—D—. (9 = i. (2.45)
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0 0.2 0.4 0.6 0.8 1
C

Figure 2.2: Intennittency exponent ;t along with its limiting values pain and pin,
vs c for the PTB map. On both axes units are arbitrary.
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0.2

0.1

0 0.2 0.4 0.6 0.8 1
C

Figure 2.3: Exponent (7 vs c for PTB map. On both axes units are arbitrary.
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The condition for Gaussian approximation to hold good for a given value of

q(sayq=1~4)isq— < q< 61+

The curves ,u and 0 for the PTB map along with their limiting values

can reveal the real implications of the above condition. These are shown in

figures 2.2 and 2.3. Interrnittency exponent p is found to be globally similar

to um, except around c = c‘ That is Gaussian approximation will hold good

only when c is around c", say 0.375 < c < 0.4. The average amplitude of

In ]f’(:r)] in the above range can be obtained as .037 which is only 7.7% of

its value at c"(0.481'2). This is very small.

Characteristic exponent and diffusion coefficient are invariant under con­

jugation (see Appendix B). So the above result will be applicable for a fam­

ily of one-dimensional maps conjugate to the PTB map. These conjugations

can have non-linear portions and hence LER (ln |f’(.r)|) can have contin­

uous pans also. From the above results, the following conclusions can be
anived at.

(a) PDF of trajectory separation for large t is approximately log normal

according to central limit theorem. Even for relatively lower order

moments (q = 1 ~ 4) this will be valid only when the standard devia­

tion of LER is very small (say, less than 7.7% of its mean value). For

higher values of q , the standard deviation has to be still less. For most

of the parameter values this condition will not be satisfied. Hence, in

general, the PDF of trajectory separation will show appreciable depar­

ture from |og—norrnal distribution. For |q| —> 0. these non-log normal

components will get suppressed. When log nomial approximation is

valid, the moments will be given by eq. (2.35). Otherwise moments

can be obtained using eq. (2.42)

(b) Non-Gaussianity of ln L,, results from non-Gaussianity of local ex­

pansion rates (In |f’(.1‘)|_). Therefore in general, the PDF of LER will
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have appreciable non-Gaussian components even when their standard

deviation is very small. These non—Gaussian components influence

even relatively lower order moments like q = 1 ~ 4. These results

agree with the numerical results on logistic map as reported in refer­

ence [88]. The above conclusions are relevant to a class of 1-D maps

conjugate to the PTB map.

2. Recently many works have been carried out on the stochastic motion in

spatially extended, one-dimensional, periodic maps ascending along the

bisector. They are used to describe deterministic diffusion of a dynam­

ical variable. Example of such systems are: Josephson junctions in the

presence of microwave radiation and parametrically driven oscillators. Fu­

jisaka’s method can be applied to study stochastic motion in such maps with

.B(.T) = €A(I). _l(.1') being thejump number [43]. From the above analysis,

we note that stochastic motion in such maps will become more and more

Gaussian when jump numbers become closer, i.e., when the peaks of the

extended maps come closer to the bisector.

3. Chaotic states occur widely in natural phenomena, but closed form mathe­

matical models are rarely available. Linear maps are good approximations

useful in analysing and predicting chaotic experimental data [25]. For ex­

ample, they have been used in Chua circuits [lll]. With c very near to c‘,

the PTB map can describe deterministic diffusion of any dynamical variable

(X = In L,). Around c‘ it gives the statistical properties of a Brownian

motion with a drift velocity A0. Like logistic map, it is a map with a single

maximum. So it can be a good approximation for systems where the logistic

models are applied.

4. We have followed a new procedure for deriving Ag. The proposed method

for systems with temporal correlations requires the solution of the eigen
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value equation for the linear operator Hq defined in subsection 1.2.5. In­

stead, we compared values of the integral for successive values of t and

took the limit t ——> oo of the ratio. It will be applicable to systems where

such comparison can be made.

2.5 Appendix-A.

To prove 1 1 "1
tli'rri)i;i—ln9=1li_’r:1c? ln(1—/\,-)=0, (Al)

1:1

we note,
4 7 — ‘—’£ " 9 _

qr: C. <,1-.>q <1._>q X m.) ml) (A2)(3) +476) 5(2) + cm)
Let  > (’—:5)q The requirement x,+1 < ,\, implies

Ft(1)Fr+1l.-2) < Ft+1(l)Ft(2) (A3)

Substituting for F,+1(1), F,+2(‘2) eq (A3) leads to

Fr+1l1lFr+2l-(3) > Fr+2l1)Ft+1(2) (A4)

i.e., \,+2 > \,+1. Since eq.(A3) is true fort = 1, we get by mathematical induc­
tion

\i>\2<\a>x4<\s (A5)
We examine the variation of alternate terms. The requirement \,+2 < \,

reduces to equation (A3). Substitutions reveal that eq. (A3) will be valid with

t = t + '2. Moreover \_-5 < M. This gives ­
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I 2 3 4 5 6 7 3 9
O

ln(1_X2)

-- 1n(1—x4)
A._ I \ ‘7c~~..Jn<1-xg‘I \\ ’ \\ ‘T :“~ 1 1­: II \ ll \ ,7 \\ ‘~q(:_¥_8)_“_E I \ II \ I’ \\ // ‘-—_

Figure 2.4: Variation pattern of terms ln(1 — X,) for different values off in the
case of PTB map. ln(1 — X,-) tends to a finite limit :' (negative) as 1' —> oc­

,\'1>X3>,\5> X7 (A6)
Similarly,

X2 < \4 < X6 (A7)
Same result will be valid for  <  When =  \,­

will be zeroes. Figure(4) shows the pattern of variation of ln(1 — \ ,~). We note

lim,_,O0 } Z’-"i ln(1 — \,~) will converge as two sums (one for odd values of 2' andZ:

other for even values of: to a finite(negative) limit. This proves eq. (A1).

2.6 Appendix B.

It is easy to prove that the characteristic function Aq associated with the statistics

of trajectory separation is invariant under conjugation [43]. For a mapping .1‘ M1 =
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f(3:,), Ag is defined as

1-1

A., = q‘1}3gt"1n<H1f'<ms)I*> (B1):0

Let :17 E (iv,-..%,) be a one-to-one transformation ofar i = h(:1'). (;r = h“(.1‘r)).

The dynamical law for :3, can be written as

“I “Hi-Tt+1= h(f(h_l(-it)» (452) (B2)

The characteristic function of the mapping (B2) is

f—1

/\q = (1-1 lim 1-1 ln(H |_f/(z;)|4)m1-}-3:
5:0

f-l

= <1" t1_iggt"1n(eXP{qZ:1nlf’(Is)| + q1nlh'(:ri)//I'(;r)|})= (133)
5:0

where (- )co,, E  d;i/3(.ti-) -- , and ;3(.i‘) = p(:r)/I/2’(.r)| the invariant distribu­
tion for i.

One can show the invariance of characteristic function under conjugation in

the following way. First, assume the inequality 0 < r < |h’(.r,)//i’(.-r)| < R < oc

with certain constants rand R for any choice of the initial values .1‘ and t. Inserting

the inequality into (B3) yields :\q = /\q. Even ifthe above inequality does not hold,

one can note that Z:;06ln]f’(.r5)| 2 O(\/I) and ln|/2’(.r,)/h’(;r)| = O(t°),
which implies the term In |h’(.r,)/h.’(.r)| has no contribution to Sq: This means

A, = /\

It is easy to note that Lyapunov exponent also is invariant under conjugation

‘I

since its value is equal to /\0. Same is the case with diffusion coefficient D since- d,\
D : llITlq_,0 T9"q .



Chapter 3.

Analysis of chaotic motion and its

shape dependence in a generalized

piecewise linear map.

3.1 Introduction.

In physics and mathematics diffusion has been a subject of interest since the end

of nineteenth century. One of the famous mechanisms is given by the thermal

agitation of molecules and such motion has been named Brownian motion. It can

be modeled theoretically by particle motion under the influence of a stochastic
force term.

A diffusion like behaviour of a dynamical variable has been observed recently

in a variety of physical systems. The amplitude of thermal noise, always present

in experiments, is far too small to account for the observed diffusive behaviour.

Examples of such systems are Josephson junctions in the presence of microwave

radiation [l07—109] and parametrically driven oscillators [1 10]. Recently, an ex­

planation of this phenomenon has been given in terms of deterministic diffusion

which can be noticed in simple spatially extended one dimensional maps which

44
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are periodic along the bisector [5, 24. 57. 58. 89-106]. Transport due to chaos

has become an outstanding problem in Hamiltonian dynamics also, both from a

theoretical point of view (random processes exhibited by deterministic systems

[1 12]), and in view of possible applications in different physical contexts, as ce­

lestial mechanics, confinement problems and so on.

Recently, some exactly solvable models of spatially extended 1-D maps have

been analysed [95-97]. We note that the only aim in these studies is the evaluation

of the exact diffusion coefficient using a cycle expansion technique [7, 62-64, 77­

81]. It is a well known fact that the chaotic dynamics in spatially extended maps

has two complementary aspects - diffusion and interinittency. These are related

to the probability distribution which is approximately Gaussian by central limit

theorem. Fujisaka's characteristic function method is a useful tool for analysing

both these aspects of stochasticity in such maps. In this chapter, we apply the

characteristic function method [43—54] to analyse the chaotic motion in a gener­

alized piecewise linear (GPL) map with a variable shape. It is a generalization of

the exactly solvable model introduced by Anuso [95] allowing analytical study.

Exact expression for diffusion coefficient and a parametric representation for the

fluctuation spectrum relating to the probability density function (PDF) are ob­

tained. Generalization permits the study of the dependence of these quantities on

the shape of the map. We also get analytically limiting forms of the above quan­

tities when the peak shape becomes flat. We note that GPL map with fiat peak is

more suited to describe systems exhibiting interrnittency in time. It can be noted

that the generalization brings the map in [95] nearer to sinusoidal maps studied

numerically in ref [58, 89—9l]. A similar shape dependent piecewise linear model

has been examined by S. Grossmann and S. Thomae [94] from the point of view
of correlation times.

In section 3.2, we introduce the generalized piecewise linear (GPL) map and

show how the characteristic function method introduced by Fujisaka et al can be

applied to analyse the chaotic motion in it. Exact expressions for characteristic
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function and diffusion coefficient and a parametric representation of fluctuation

spectrum are obtained in section 3.3. We also discuss special cases of GPL models

and limiting forms of the above mentioned quantities. The result of Artuso is

regained as a special case of our general formula. Shape dependence of diffusion

coefficient and fiuctuation spectrum also is examined in section 3.3. Section 3.4
is devoted to results and conclusions.

3.2 Model and characteristic function method.

Chaos-induced diffusion systems have a general form [5, 43]

XH_1= X, + P,(Xt) = 1r’}(_-XQ), P,(X +1) = P,(X) (3.1)

V;

where r is a control parameter. The sinusoidal map P,(.\) = 1' sin(2HX) is an

example [58, 89-91]. After the decomposition X: = M + .r, where N, is the cell

number in which X, is located, and .rt, (0 3 I, < 1) the distance measured from

the relative origin X = M, eq. (3.1) can be uniquely rewritten as two dynamical
laws:

N,“ = N; + A(.r,). ext“ =  (3.2)
Here All-) is the jumping number defined as the largest integer smaller than x +

P,(.r) andis free from N, and f(x) = :z:+P,(.i:) —A(1:),satisfying0 3 f(-.13) <1.

f(:tr) is the reduced map of the extended map (3.1).

We analyse a piecewise linear map with variable shape of the type in fig.3.l.

In the general case, the extended 1-D map consists of linear segments with slopes

:l:m,-,1" = 0, 1, ,h, m,- < m,--1. For the cells on the bisector, the slope magni­

tude is mo. For the 1"” cell above and below this cell on bisector, the slope magni­

tude changes to m,-. In the general case, the reduced map consists of k = 4h + 3

linear segments. For 1: increasing from 1 to 4h. + 3, these line segments have

T7707 rnla Tn?-. 'Tn*h.7 —Tnh.1—T-nh-la 'Tn‘01—Tn17 —rn'27 — Tn'h7 Tn’/‘H
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2 m -m .1 11 , b. ‘
m.m  O0 m- 0>2 0 g .>4­ . _m m. 1 1

-1

-2 .‘ 1-Z -1 o 1 2
X

Figure 3.1: Generalised Piecewise Linear (GPL) map with a variable shape with
h = 1. On both axes units are arbitrary.
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m,,_,, 777,2, m,, mo, and m,-s satisfy the relation

3 '“ 4— + _ = 1 (3.3)
7T1-0  m,­

The extended map can be generated from the reduced map by giving suitable

jump numbers A(:c ). For is increasing from 1 to (4h + 3), the jump numbers 3(1)

(constant fora line segment) are 0, 1,2, h, h, h. — 1, 2,1,0,-1, -2, ,-/7,
—h, —(h — 1). — 2, -1, 0. Figs.3.1 and 3.2 show the map and the reduced map
for}: = 1.

Referring to section 1.2 we note that map (3.1) can be studied using the char­

acteristic function method [43—54]. We have seen that in this method, the dy­

namics of _-1, governed by A,+, = B(a-,).-1, (t = 0,1,2, ) with .40 = 1 is
studied. B(.r,) is a steady function of 1-, which evolves according to the chaotic

map 1:,“ = f(.1r,)(_O S 1, < 1) [43]. Equivalently, we have seen that one can con­

sider the dynamics ofthe local time average ofa time series C1, = %  ln B(;r,)
[47, 49-54]. Map (3.1) can be treated by putting A, = exp(N, — NU): B(;r) =

exp(A(.1r)). We put N0 = 0. Then a, =  The long time dynamics of Y, can be
discussed with the aid of Fujisaka’s characteristic function

Aq =  —§—l11[(exp(q1\',))] (3.4)

(exp(qN,)) is average over a steady ensemble and is the q-order moment of

exp( N, ). /\q can be expanded in the series ofcumulants. The expansion converges

for lql < b, b being the convergence radius. b separates three typical regions of q:

(q << —b. Iql << bzq >> b). For lql << b, we found that Ag can be approxi­
mated as

/\q = A0 + D q (3.5)
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X

Figure 3.2: Reduced map of GPL map in fig.3.1. On both axes units are arbitrary.
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where /\0 is the drift velocity defined as,

A,\rtA0 = am = lim — (3.6)
f—>oo t

D is the diffusion coefficient given by

or, = ((N, — A002) as 2 D t (3.7)

for large values of t. at is the variance of M. In section 1.2.2 it was shown

that the asymptotic PDF of a, has a Gaussian component (central limit theorem)

and a non—Gaussian component. For |q| << b, the moment < exp(q N,) > is

determined by the Gaussian component. This is called the diffusion branch of q.

For |q[ >> b, it is determined by the non-Gaussian component and this range is

the intermittency branch of q.

The probability density P,(a-) that o, takes values between cr and cr + do can

be obtained as P,(o) ~ \/fexp[—a(a)t]. cr(a) is the fluctuation spectrum and

P,(ot) —> 6(o — am) as t —> oo. We have seen that P,’(a) can be obtained from x\,

in parametric form using the Legendre transform 0 = fi(qA,,), 0(a) = q’j";/\q.

3.3 Characteristic function, diffusion coefficient

and fluctuation spectrum.

For simplicity, we first consider the case with h = 1. The reduced map consists of

7 line segments with slopes (from left) m0.m1, —m1, —m0, -7711, ni1,nz0. These

satisfy (3.3). The operator H (subsection 1.1.1) in the present case becomes

. _ : 7 Gigi.) : 7 Gtyu
HG”) .Z11.f'<yt>I  lml

(3.8)
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where yr. is the A-"‘ solution of f(yt.) = I and f’(.1:) =  (.1-). Ink is the slope
of the 1;” line segment of the reduced map. The invariant density p(.v) can be
obtained as the solution of

Hp(;1:) =  (3.9)
We note that p(.1r) is uniform in the interval 0 g .r 3 1 (p(.r) = 1). The Lyapunov

exponent A can be obtained as 3 4
/\ = ——1n(m0)+ —— ln(m1) (3.10)7710 ml

Since -m,- > 1, it is easy to note that A > 0 and therefore the reduced map is always

chaotic.

To evaluate /\q we can use the linear operator defined by Mon" et al (eq.(1. 19))

HG'(.r) = —H[G(r)p(;t)] (3.11)
/\

For our model H = H. Characteristic function Aq can be evaluated as (eq.(l.62))

A? = 3 lim -1-ln( 6°“ £1 6"“ F1 em F1 e°~“-I ) _(3.12)q t->-.\:~ t :1
A(;r), the jump numbers which are constant over a line segment are (from left)

0, +1, +1, 0, -1, -1, 0. Hence we get from eqs.(3.8) and (3.11)

3 ’)ffeqm = '—+;e"+—e"’
TTLQ T711 T7113 4= —— + —— cosh(_q) (3.13)
T710 TTZ1

Using this in eq.(3.12) we have

1 3 4x\,, = — ln[— + — cosh(q)] (3.14)
q TTIQ TTL1
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The result can be generalized for integer values of h. Slope of the line seg­

ments mi. and jump numbers A(:r) are given in sec._3.2. Again, slopes satisfy

relation (3.3). Eq.(3.9) again leads to uniform invariant density p(.‘l‘) = 1. Lya­

punov exponent /\ is given by

3 " 4
/\ = To ln(m0) + Z R ln(m1~) (3.15)1:1 I

Since m,- > 1, it can be easily proved that /\ > 0, again making the map fully

chaotic. Evaluation of Ag using eq.(3.12) gives

1 3 " 4
Ag = —1n[— + Z 5 c.osh(7'. q)] (3.16)777, 771q 0 i = 1 I

It is easy to verify that the drift velocity /\0 = 0, always. The diffusion coeffi­
cient D is obtained as

. d " 21:2D = hm —Aq = — (3.17)q—»0 dq . m.,­1:1

To obtain or and a(o) one can effect the Legendre transfomis given in sec­

tion 3.2. Relation between a and fiuctuation spectrum 0(0) can be got in the

parametric form.
ELI  sir1h(-liq)C1’ = ———'e_ (3.l8a)

mio + 21:1  Cosh(zq)

EL fisinhliql 3 h 4 .0(0) = c1 — ln[— + Z — c0sh(zq)] (3.l8b)
m + 21:1: cosh(2q) T770 ‘:1 ml

q = 0 gives a = 0: 0(0) = 0. If+q gives +a, —q will give —a without changing

0(0). ie. 0(a) is a symmetric function of 0. It can also be noted that maximum

value of at is obtained by putting q —> oc. We have

Omar =12 a<om.,,> = Int?) (3.19)
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3.3.1 Special cases.

In the special case when all m.-’s are equal (=mo), eq.(3.l7) can be summed to

obtain a closed form expression for D. in this case, eq.(3.3) gives m0 = 3 + 4/1

and we get
h(h +1)(‘2h +1)D = A 3.20:3(4h + 3) ( )

With/1+1 :13,
()3 -1)/3(‘2,L3 -1)D :

3(43 -1)
(3.21)

which reduces to D = 2/7 forfi = ‘2. These results have been obtained previously

in ref. [95].

Closed fonn expression can be got also for the special case m,-/m,--1 = r = a

Constant, 0 < r < 1. Then m,- = mo-r‘. From eq.3.3, we have

4(1—rh)
7710 = 3 +

Summation appearing in eq.(3.l7) can be performed for this special case using

the above values of mo and m,» and an exact analytical expression for diffusion

coefficient can be obtained. We get

'2[h2 + (1 — ‘Zh — 2/z2)r + (h +1)2r2 — rh+1— rh+2]

D _ [3vr"(1— r) + V-l(1— r")](1—‘r)2 (3.23)

For every -r between 0 and 1, the above model becomes an exactly solvable case

with D given by eq.(3.23).

3.3.2 Limiting forms.

Limiting forms of the above quantities can be obtained for a constant h as the peak

shape becomes maximum flat. These can be arrived at by taking limit r —+ 0.
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From eq.(3.23), we find that D behaves like

h2D=—
'2

(3.24)

Note from eq.(3.22) that the above limit can also be obtained by putting m,- —>

oc(i = 0, h — 1) and mh —> 4. Applying this we get

1

li_rr6)\q = 3ln[cosh(qh)] (3.25)
limo’ = h.tanh(qh) (3.26)
r—l0

One can also obtain the following limiting form for 0(a). For r —> 0 we get

, hz — 02 h + or O
l1_r;r3cr(a)=ln[ W 1‘/2[E—_—O] /2" (3.27)

3.3.3 Shape dependence of diffusion coefficient and fluctuation

spectrum.

In fig.3.3 we plot diffusion coefficient versus r for /2 = ‘2. It can be observed

that D increases with increasing flatness of the peak shape. D vanes from 0.9 to

2 when 7‘ is varied from 1 to 0. Increasing h, keeping m, = m.0(17 = 1,2 /2)

appears to have more influence on increasing D. This is because D = 2/7 = 0.29

for h = 1, whereas it goes to 0.909 forh = 3 (eq. (3.20)).

For Iql << I), /\q is approximately given by eq. (3.5). This range of q will give

small (absolute) values of a. a and 0(0) take the form (eqs. (1.57) and (1.58))

a = A0 + 2Dq (3.28)
0(0) : l"T‘1;‘t>_)i (3.29)

For the present model A0 = 0 and generally D is given by eq.(3.l7). For lql >> 5,
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0.5 I I I I |’I ‘Iii I I I H I I I I ‘I I I I I
0.0 0.2 0.4 0.6 0.8 1,0

I‘

Figure 3.3: Variation of diffusion coefficient D with 1* for /2 = 2. On both axes
units are arbitrary.



CHAPTER 3. ANALYSIS OF CHAOTIC MOTION 56

/\q behaves like eq. (1.38). This range of q gives the extreme values of 0. 0 and

0(0) are given by (1.60) and (1.61) respectively.

0 3 /\eoc. — 969779 9-\’P("779 M) (3-30)1 1 .
0(0) z — — —|0 — x€,,.|1n[‘%] (331)T5 1]); |0 - /\g,;.;,|

where A900 and the positive constants 75, C5 and 179 (6 = :t) can be shown to be

1

ln( %)
7'I7.h

)\+9c, = h: /\_C,;, = —h:_ 7+ = 'r_ =

c+ = c_ = 77+ = 77- = +1 (3.32)
772.h_1

The probability distribution function for _'\",, the distance from the origin, can

be obtained using the fluctuation spectrum 0(0). From eq. (1.53), we have

1 ~ —ex -0 — .P(\") 1 [ (N)t] (333)f \/f P t
P,(.N) being the PDF that N, takes values between N and N + dN. This PDF

is approximately Gaussian by central limit theorem. In fig. 3.4 we plot 0(0) for

different maps and compare with the Gaussian form given in eq.(3.29). Actu­

ally eq.(3.29) which is applicable for small (absolute) values of 0 represents the

Gaussian part of 0(0). Eq.(3.3l), is applicable for extreme values of 0- and it

represents the non-Gaussian part of 0(0). From this equation and also from fig.

$6,“) logarithmically diverges at extreme values

of 0. For Gaussian approximation to hold good in this range of 0, it follows that

3.4, we note that the derivative

the slope of a(0 )represented by eq. (3.29) should tend to a maximum. This will

happen when D tends to a minimum. It becomes clear that the non-Gaussian char­

acter of the PDF will increase with increasing peak-height and flatness of the map.

Among these two factors increase in /2. appears to have more influence in produc­
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Figure 3.4: Fluctuation Spectrum 0(a) versus at for different cases. Solid lines
represent actual 0(a) while dotted lines give corresponding Gaussian forms. (a)
/7, = 1, m0 = m1 = 7 (b) /2 :1, mo = 100, m1 = 4.123? (C) h = 2, mo =
771.1 '= 7722 = 11. On both axes units are arbitrary.
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ing non-Gaussian character of the PDF. Thus, we find that intermittency in the

generalized piecewise linear map increases with increasing flatness and the height

of the peak, though the influence become more pronounced when the height is
increased.

3.4 Results and conclusions.

In this chapter we applied the characteristic function formalism to analyse a gener­

alized piecewise linear map and derived exact expressions for diffusion coefficient

and characteristic function. Previous result on closed form expression for diffu­

sion coefficient is obtained as a special case. The fiuctuation spectrum relating to

the probability distribution is got in a parametric form. Analysis of the PDF with

fluctuation spectrum brings out that non-Gaussian character of the PDF increases

with increasing peak-height and flatness ofthe map, height exercising more effect.

This is important when one selects models for describing experiments relating to

diffusion. For example, systems exhibiting chaotic motion similar to Brownian

motion should have a Gaussian distribution. GPL Maps with linear segments hav­

ing constant slope and minimum peak-height are useful in cases like this. Maps

with greater height with peaks becoming more flat will be best suited in describing

diffusion systems showing intermittency in time. With flatness becoming maxi­

mum, diffusion coefficient behaves like  h being the peak-height. Correspond­
ing limiting forms for characteristic function and fluctuation spectrum are also

obtained. The limiting form of fluctuation spectrum is quite different from the

Gaussian fonrr following from central limit theorem.



Chapter 4.

Analysis of diffusion and

intermittency in generalized

piecewise linear Markov maps with

fractional peak height.

4.1 Introduction.

In the last chapter we analysed the chaotic motion and its shape dependence in

a generalized piecewise linear (GPL) map. We found that the complementary

dynamics of diffusion and intennittency in spatially extended maps of this kind

can be analysed very effectively using the characteristic function method proposed

by Fujisaka et al. GPL maps have variable peak—shape and integer peak-heights.

In this chapter we introduce another class of spatially extended piecewise linear

maps with variable peak-shape. Peak-height in this case can take fractional values

less than unity. These are generalizations of the maps discussed by Tseng et al

[96].We prove that for almost all arbitrary values of fractional peak—height, these

are exactly solvable Markov mappings. Hence we call these maps generalized

59
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piecewise linear Markov (GPLM) maps. Applying characteristic function method,

we derive closed form expressions for diffusion coefficient from which the results

obtained previously by Tseng et al can be regained as special cases. We show

how fiuctuation spectrum obtainable from characteristic function can be used to

investigate probability density function (PDF). The dependence of these quantities

on the shape the map is analysed. We note that intermittency and non-Gaussian

character of the PDF can be related to the shape of the map. GPLM maps with

fiat peaks is found to be more suited in time series analysis of systems showing

interinittency whereas those with sharp peaks are to be prefened for describing

diffusive behaviour similar to Brownian motion. Another significance of the result

is that conjecture regarding the fractal nature of diffusion coefficient for piecewise

linear maps [98] is found to be non justifiable, it being analytical and exact in all

cases. GPLM maps are very good approximations for sinusoidal maps which can

be analysed only numerically [58, 89-91]. We note that shape dependence of

chaotic motion has been investigated for a similar model in [94].

In section 4.2, we introduce the generalized piecewise linear Markov (GPLM)

maps and show how the characteristic function method can be applied to study the

chaotic motion in them. In section 4.3, we give the derivation of exact diffusion

coefficient in each case. In section 4.4, we discuss the variation of diffusion coef­

ficient with the shape of the map and how PDF can be analysed using fluctuation

spectrum. Section 4.5 is devoted to results and conclusions.

4.2 GPLM models and characteristic function

method.

We consider in this paper generalized piecewise linear Markov maps with frac­

tional peak-heights and variable shape ascending along the bisector as shown in

fig(4.l). The map consists of linear segments with slopes mo and ml, 1771 _<_ 17:0.
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For the cells on the bisector, the slope magnitude is mo. For cells above and below

this cell on the bisector, the slope magnitude changes to m 1. The peak-height in

these Cells above and below the bisector is denoted as 11. Note that in [96], we

get a special case of this with m0 = ml. In chapter 3 we found that such chaos

induced diffusion systems can be represented as [5, 43].

_\’,+, = X, + P,(X,) = Y,(X,), P,(X +1) = P,.(_.\’) (4.1)

r being the control parameter. After the decomposition X, = N, + .1, where N, is

the cell number in which X, is located and :c,, (0 3 1:, < 1) the distance measured

from the relative origin X = N,, the equation (4.1) becomes two dynamical laws.

:l\/9+1 '2 Ar; + .vA(.Tf), 11714.1 Z f(.Tf)

A(.1') is thejumping number defined as the largest integer smaller than .17 + P,(1')

and is free from N, and f(x) = 1 + P,.(;1') — A(:r), (0 3 f(.r) < 1) is the
reduced map of the extended map represented by eq.(4.1). One can note that our

generalized map is a very good approximation for the sinusoidal map P,(X) =

r sin(‘2nX) which has been studied numerically in ref [58, 89-91].

The figure 4.2 show the reduced maps of the 6 cases of GPLM maps which

we consider in this paper. Each of them consists of 7 linear segments marked as

solid lines. From left these segments have slopes mg, m,, -1771, —mo, -1721, m,,

mg. The extended map can be generated from the reduced map by giving, suitable

jump numbers A(I) (constant for a line segment). These jump numbers (from

left) are 0. 1. 1.0. -1. -1.0. The dotted lines show the Markov partition of the

interval [0. 1]. The partition points get mapped on to other partition points by the

map f(a-). In between two partition points map is linear. Hence the reduced maps

f(.r) are piecewise linear Markov maps.

We note that the map (4.1) can be studied using Fujisaka’s characteristic func­

tion method: We have to put A, = exp(N, — N0) and B(1') = exp(A(.r)). Then
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Y. [X]
o >

tol
X 0

Figure 4.1: Generalized piece wise linear Markov map (GPLM map) with frac­
tional peak height and variable shape ascending along the bisector. The slope
magnitude of line segments in the cells on the bisector is mo. In cells above and
below the bisector the slope magnitude changes to ml. On both axes units are
arbitrary.
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(a) (b)
: ------------------------------------------ -- :l.. .3 .................................. ..

F ___________________________________________________________________________________ ..

L. .................................................................................... __o , I o ,(c) (d)
E ........................................ .. i...
‘ L. ..................................... .. H L.

________________________________________ __ L --     -­

(6) (0
Figure 4.2: Reduced maps of the 6 cases (a to f) of GPLM maps. The 3 longer
line segments have slope magnitude mo and the 4 shorter line segments have slope
magnitude -ml. On both axes units are arbitrary.
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11] = A(:zrJ-). We put N0 = 0 for convenience. Then at, =  For studying the
long time dynamics of A, or a,, one has to evaluate the characteristic function x\.,.

Referring to subsection 1.2.5 we note that for evaluating A,,, one requires the eigen

values of the linear operator H 4 (eq. (1.63)). The advantage of Markov partition­

ing of the reduced map f (at) is that the eigenvalue problem of the operator H q can

be reduced to that of the generalized transition matrix of a 7 state Markov model.

Let the 12”‘ partition from the left be denoted as I,,. Let 6,, be the length of the

u”‘ partition, f[,, the constant slop of the corresponding line segment and A, the

corresponding jump number. The operator H (section1.l. 1) can be represented by

a T x 7 matrix as [87].

Hm, = PW |f;1'1 ,u.u :12. 7 (4.3)
with

FM, :1 iff(I,,) I_D I,‘

= 0 otherwise (4.4)
For a proof see Appendix A. The transition matrix is given by [7, 50, 87]_ 6Hun; Z Hulxf
Fm, satisfy the normalisation condition

Z Fm, = 1 (4.6)
[J

Invariant probabilities p,, can be obtained as the solution of [7, 50].

p = Hp (4.7)
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where p = CO](])1,])2,])3,])4.]J5,p5,])7). From 1}, one can evaluate the invariant

densities p,,.

pu = 72.,/6., (4.3)
Then, the generalised transistion matrix is given by [49, 50, 52]

(fiq)‘_“/ = FM?“ (4.9)
It is an easy matter to verify that the eigenvalues of the generalized transition

matrix fig and those of the linear operator Hq will be the same. Transition matrix

7 can be obtained from fig (putting q = 0). Invariant probabilities and invariant

densities can be evaluated using eq. (4.7) and (4.8) respectively.

4.3 Exact results for diffusion coefficients.

We take the six cases of GPLM maps one by one. To avoid negative Lyapunov ex­

ponents and stable periodic orbits, we consider only maps expanding everywhere

ie, m0,m1 > 1. In each case m0 = ml corresponds to the reduced map discussed

in [96]. For all reduced maps shown in fig. 4.2 it is easy to note that- h.()1=(S4=6','=: (52=(S3=(S5=($6=j

This means mo and m, should always satisfy

3 4/1
ITIO T711

:1 (4.11)
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Case 1.

Consider fig (4.2a). We note that mic = h. Solving this relation with equation
eq.(4.1l), we get

m0 = % ml = % (4.12)
Generalization permits the peak height h to vary continuously such that % < h 3

i. When h increases from 1/ T to 1/4, it can be noted that mg decreases from T
to 4 whereas ml increases from 1 to 4. Therefore, in the range of h given above,

both mo and ml are greater than 1 and always mo 2 ml ensun'ng that map is

‘everywhere expanding’ Transition matrix I7”, and the generalised transition

matrix (Hq),,,, are given by eq. (4.5) and eq.(4.9) respectively. We get

I h e" e9 /2. 0 0 h '
(%) 0 0 (L?) 0 0 V13")

_ (Eli) 0 0 l?) 0 0 (11%)(H.,)l.,= /2 0 0 /2 0 0 h (4.13)
<%) o 0 (L?) o 0 ('2/3")
(1-43h) O O  0 0 (1-:13h)
_ h 0 0 h 6“? e“? h J

q = 0 in the above matrix gives fill, which can be used for obtaining invariant

probabilities p,, (eq. (4.7)). We get

_ _ (1—h) _ _ _ _(1—3h) d _ h.
P1—P7—'#(2_3h‘)P2—P3-P5’P6—fi(2_3h)an P4——fi_3h

Using eq (4.8), the invariant densities can be evaluated as

(1 —3h.) 1
/31:/)T: /)2:/)3:/)4:/75:P6: (4-1413)



CHAPTER 4. ANALYSIS OF DIFFUSION AND IN TERMI TTENC Y 67

Note that p,, and p,,, 1/ = 1. ‘2 T are all positive. Hence Lyapunov exponent eval­

uated from /\ = 2” ln ]m,,|p,, is positive ensuring that the map is fully chaotic.

Solution of the eigenvalue equation for F? shows that five out of the seven eigen­

values are zeros. The remaining 2 eigen values are the solutions of the quadratic

equation.

oj—3ho,,—(1—:3h)coshq=0 (4.15)
We have

_ 3h.i. /9/12 + 4(1— 3h) coshq (416)
-)04

Hence, from eq. (1.67),

1 In 3/2 -i- 9/12 + 4(1— 3h) cosh qq 2
Drift velocity /\0 and diffusion coefficient D can be evaluated from Aq using

eq. (1.31).

(4.17)

A0 = 1113(1)/\q = 0 (4.18)
(4.19)

It can be noted that for h = i (ie. mo = m]) the above expression for D reduces
to D = 0.1, the result obtained previously in [96].

Case 2.

On examining fig (4.2b) it can be noted that 7-H‘-0 + -73-’ = h. This relation can be

solved with eq.(4.11) and we get 1 h= 4.2411-1 '7“ 1—3/2. ( 0)7770 =
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J3
—4"—1. When /2 increases from i to EIn this case h varies such that i < h 5 4 ,

mo decreases from infinity to (\/5+ 2), whereas ml increases from 1 to (\/5+ '2).

Hence in the above range of h, mo and ml are greater than 1 and always mo 2 m,.

Thus the reduced map is expanding everywhere. Transition matrix I-1-,“, and the

generalised transition matrix (H q),,,, can be considered as in case 1. Invariant

probabilities evaluated from 7,“, (eq. (4.7)) are

(4h—1) (1—3h)
P1=P7=wT_T) P2=P6=m

'’3 ‘ P5 =  P4 =  “W
Invariant densities, p,, become (eq.(4.8))

P1:/)2=Pe=P7= 6h1_1 P3=P4=Ps= (4-21b)
p,, and p,,, 1/ = 1, '2, ,7 are all positive which means Lyapunov exponent /\

is positive. Thus the map is fully chaotic. On_ solving the eigen value equation for

Hq, we find that four eigenvalues are zeros. The remaining 3 are to be obtained

as the solutions of the general cubic equation.

coj+.~1¢§+ B¢q + C = 0 (4.22)
With

1. — h
A =—[3(4h—1)+L1h3 )coshq](1 -317)? 1-3/2. (1—:3h)?
B = /12 + ‘2(-1/1—l)( h )coshq C = (4h -1) h? (4.23)

Though the general cubic equation can be solved by Cardon’s method, we note

that for arbitrary values of h. and q, the solution will be very cumbersome. But, for



CHAPTER 4. ANALYSIS OF DIFFUSION AND INTERIVH TTENC Y 69

evaluating analytical expression for D, the solution with q = O is sufficient. The

solution set is 1, “‘3h), — 4h — 1 T . The maximum amono these solutionsh h. c
is 1. That is, gag“), the maximum eigenvalue required for the evaluation of Ag

(eq. (1.67)) satisfy eq. (4.22) and reduces to ¢f,°’ = 1 as q —> 0. In this case it

is easy to show that the limits yielding drift velocity A0 and diffusion coefficient

D can be expressed in terms of (di’(93)—)q=0 and (%:(§i)q=0. These can be got byin

differentiating the equation satisfied by 413°’ and also applying ¢§,°’ = 1. We get

(M10) 1 A + BA0 = ( “’ )q=0 = — fig (4.24)dq (3 + 2.4 + B) 0q:

1 d? "°’ 1 i(A+ B)
D = 3( ‘D; )., 0 = -3 “*4 (4.25)_ dq - (3+‘2A+B) 0q:

For the present case, we obtain the following values

A0 = 0 (4.26)
2h. 3h — 1 — 2h

2 48/13 — 44122 +12}; -1

It can be easily verified that the above expression for D reduces to D = 1‘—0\/5 for

h = £:'—1 (m0 = ml), the result obtained previously in [96].

Case 3.

We consider fig (4.2c), In addition to the relation given by eq. (4.11), we note

i = 1 — 2h. On solving,7710

(4.28)
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3 h. < 0.5. When h increases from the lower limit to theIn this case (—‘/1%‘)

upper limit, -mo increases from (5_f/F) to infinity whereas ml decreases from
45—\/1-7 _

alwa 5 mo > m. . The invariant robabilities cot from H ,, arey _ 1 P o I-1to 2. Hence in the above range of /2, mo and ml are greater than 1 and

12%: (1—-‘2h)h _ ___ _ (3h.—1)h" " 6/22-4/1+1 ”””’3"’°"""2(6h2—4/1+1)
(1—‘2h)2=4 .29P‘ 6/12-4/2+1 (4 3)

From ]J,,, one can obtain the invariant densities,

_ _ _ _ _ _ h _ (1-2/1.)
/J1—P2—P3—/)a—P6—Pr— (6h2_4h+1) P4—j:?(6h2_4/1+1)

(4.29b)

Since these are all positive, /\ is positive. Thus, the reduced map is an expanding

map and is fully chaotic. Solution of the eigenvalue equation of (H9) reveals that

four eigenvalues are zeros. The remaining 3 eigenvalues are obtainable as the

solutions of the general cubic given by eq. (4.22) with

2(3/i—1)T
(3h -1)? +4(1—‘2h)(3h -1)

/12

A = —[3(] — ‘2/2.) + cosh q]

B: cosh q

(321-1)?
h

C = —(1 — 2h.) hz (4.30)

The solution set of eq. (4.22) with q = O is {1.  (1 — ‘2lz)(—3",%1l}. As in case

2, we note that in this case also 03°’ : 1. Hence /\0 and D can be evaluated using

equations (4.24) and (4.25). We get

A0 = 0 (4.31)
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h(1‘2/1.2 —— Th +1)D:
(—1‘2h3 +14/12 —— 6h. + 1)

(4.32)

The result presented in [96], D =  17, can be obtained as a special case from

eq. (4.32) by putting h. = £871, the case with m0 = ml.

Case 4.

From fig (4.2d) we note that h+ £7 + "140 = 1. Solving this relation with eq. (4.11),
we get

_ 1 _ 2/1
‘2/1-1 ""‘2—3hmg (4.33)

8It is easy to note that 0.5 < /1 3 ‘/3-3”. When /1 increases from 0.5 to

4 whereas ml increases from 2 to  Thusmo decreases from infinity to 1
mo,m1 > 1 and always mo 3 ml in the range of /1 shown. As in previous cases,

7,“, gives the invariant probabilities.

___ (2/I-1)/I _ _ _ _ (‘2—3h)h
P‘"P"‘2(:3h—i)(1—h)””’"”3"’5”’6‘4(3h,-1)(1—/7)

_(-2/1-1)
p4_——(3h_1) (4.34a)

Invariant densities, in this case, are h 1: : : - : : - ___ -4- = -T _ 4
pi /)2 pa pa pa p. 2(3h_1)(1_h) P-I (3h_1) (43 b)

/\ is positive, since 71,, and ,0, all are positive. Hence the reduced map is fully

chaotic. Eigen value equation of (Hq) shows that four eigenvalues are zeros. The
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remaining 3 eigenvalues are the solutions of the general cubic eq. (4.22) with

. . _: I .~_ ‘.2 .H_:
A = —[I3(2/1—1)+ C0sh q] B = +2(2/1—1)() 3h) Coshq

2—:h. 7
C: (2h—1)%L (4.35)

Forq = 0, the solution set is {1. (gfh), —(‘2h — 1)(:h31‘—)}. ¢{,°’ = 1 and therefore

/\0 and D can be evaluated using equations eq. (4.24) and eq. (4.25). We get

D _ h(2 — 3h)(1— h)
’ 2(—6/23 +11/12 — 6h +1)

(4.37)

It is an easy matter to verify that the above expression reduces to D = 1/ 8+ 838 \/33

when /2. = @ (ie, -mo = m1)), obtained previously in [96].

Case 5.

L = 1. On solving this relation withOne can note from Fig(4.2e) that h + %‘T + mo
eq. (4.11), we have 1 h

3-4}: ’"‘:3h-2
In this generalisation we allow h to vary in the range % g /1 < 0.75. When /2

(4.38)7770-:

is increasing from &— to .75, mo increases from 3 + 2/2 to infinity whereas mi
decreases from 3 + 2/2 to  This means in the above range of h m0,m., > 1

(mo 2 1771) ie, the map is an expanding one. Invariant probabilities obtained from

Fware

_ _(1—/i)(3—4h) _ _(3h—2)(1—/i)
”“”" (6/i2—s/i+3) p*’”‘3" (6/i2—sh+3)

-2/.—13/-2 2/._1 3-4/i,,3:,,5:<;_> ,,4=<t?><__> (4_39.,(6/17 — 8/2 + 3) 6/12 — 8}? + 3
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We get the invariant densities as

(1—/1.) _ _ _ (2/2-1)
(6/1'3-8h+.‘3)p3—p4_p5_(6/29-8/2+3)

(4.39b)

p,, and p, are positive ensuring that A is positive. So, the map is fully chaotic. On

P1=P-2:/>6:/97=

solving the eigenvalue equation of (H7) we note that four eigenvalues are zeros.

The remaining 3 are the solutions of the general cubic eq. (4.22) with

.4 = —[3(:3—4/2.) +4%i)' —‘_'Z . —;
(‘3/‘—lfi7i+4(:3—4h)fl/I-3

C = —(3 — 4/t)

cosh q]

B=3 cosh q

(3h -2)?
h? (4.40)

when q = 0 the solution set reduces to {1. 3h,1'2, (3 -4/2 ) (3,152)  That is, 03”’ = 1.

Hence A0 and D can be evaluated using eqs. (4.24) and (4.25). We get

A0 = 0 (4.41)
_ h(3h. — 2)('2h -1)
‘ 14/12 — 6/13 -11/1 + 3

When m0 = rm, /1 =  Eq. (4.42) gives D =  the result reported in [96].

(442)

Case 6.

Finally we consider fig(4.2f). We have the relation h + E1: = 1 in addition to
eq. (4.11). On solving

1 = 4/’ (4.43)
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where we substituted cl = §(1 — h); cg =  From Ag we can obtain A0 and D
as A0 = 0 (4.48)

h 3h — 2D _ ( >_ ——: 4.49-2(3h2 — 4h + 2) ( )
This expression reduces to D = i + iifix/33 for h = ‘—”%@ (ie mo = rm), the
result obtained previously in [96].

4.4 Variation of diffusion coefficient and fluctuation

spectrum.

The figure (4.3) show the variation of D with parameter h. In all cases we note

that the diffusion coefficient D increases when the peak—shape becomes flat. In

figure 4.2(b, c, and d) this effect is found to be very remarkable. In these cases

D-tends to infinity as the peak shape becomes maximum flat.

When the characteristic function x\, is known, the fluctuation spectrum per­

taining to the probability density function can be obtained in a parametric form

effecting the Legendre transforms mentioned in subsection 1.2.4. We take case 6

as an example, though the conclusions are valid in all cases. Using eqs. (1.55) and

(4.47) we have

cg sinh q[,/cf + c§cosh2q + 2—“:*f1 coshq + cg cosh q+02
\/cf + cg coshz q +  cosh q x [c1+ cg cosh q + \/cf + cg cosh? q + 2—%—C1 cosh q]

(4.50)

2 cosh q] + qa (4.51)
2c1c

0(0) = —ln [cl + cg coshq + \/cf + cg cosh? q +

When q is replaced by —q, 0 becomes —a, 0(a) does not change, ie, cr(o) is a

symmetric function of a. 1II'lIq_,g¢\- o(«9 = :t) give the extreme values of o. For
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Figure 4.3: Variation of diffusion coefficient D with peak height h for the 6 cases
of GPLM maps (a to f) in Fig. 4.2. On both axes units are arbitrary.
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!q| << b, using eqs. (1.36) and (1.55), one can get 0(a) as a function of a. We get

0' = A0 + 2Dq (4.52)

_ (0 — A0)?0(0) ’ 4jD (4.53)
For the present case /\0 and D are given by equations eq. (4.48) and eq. (4.49).

For 0q >> b, eqs. (1.55) and (1.59) give

a z A903 — 6Cg1]9 exp(—17g|ql) (4.54)
1 1

47(0) ~ — — —ya _ A,,,.,|1n[ “" ] (4.55)7'9 779 I0 “ ’\6:c-l
where 179 ~ O(-;-) and (£9 E 6C9’I]g. For case 6 we get the following values.

1 _ _ _4h(1—h)_
_—j—]n(ih_), c+—c_—————(3h._2).3h—2

72+ = 77- = 1

(4.56)

The probability distribution function for N), the distance from the origin, can

be obtained using the fiuctuation spectrum or(a). From eq. (1.53) we have

I ' ~ — x — — .P(\') 1 [ (N)t] (457), \/t. e p 0 t
P,(_'\") being the PDF that N , takes values between N and N + d]\'. This PDF

is approximately Gaussian by central limit theorem. In fact eq. (4.53) gives the

part of 0(a) corresponding to the Gaussian part of the PDF, which is valid for

lqi << b, is, low absolute values of a. In fig(4.4) we plot 0(0) against a. For com­

pan'son the Gaussian form eq. (4.53) also is shown. When a approaches extreme

points deviation from Gaussian character is noticed. At these points figure 4.4
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and eq. (4.55) show that the derivative dis) diverges logarithmically. For Gaus­

sian approximation to hold good in this part of the curve one has to maximise the

slope. Since slope is inversely proportional to D (eq. (4.53)) we note that Gaus­

sian character will become more pronounced when D is a minimum. That is, for

a particular kind of Markov map, maps with sharp peaks exhibit more Gaussian

character than those with fiat peaks.

4.5 Results and conclusions.

From the observations made above, we note that the shape of the map has con­

siderable infiuence in determining the diffusion coefficient and the PDF. For all

GPLM maps, the Gaussian character of the PDF will become stronger when

the diffusion coefficient D is a minimum which happens when the peak-shape

becomes sharp. Conversely, when the maps become more and more flat, non­

Gaussian character of the PDF predominates as a result of intermittency. This fact

becomes important in time series analysis of experimental data of chaotic systems

exhibiting deterministic diffusion [I13]. For describing chaotic motion similar to

Brownian motion, maps showing Gaussian PDF is necessary. GPLM maps with

constant slope are more suited for this. On the contrary, for systems showing

interrnittency maps with fiat peaks will have to be preferred.

We note that in maps shown in figures 4.2 (b, c and d) diffusion coefficient

tends to infinity as the peak-shape becomes maximum fiat. This remarkable de­

pendence is to be attributed to the effect of pruning. For example, in fig 4.2b we

note that the probability for the phase point to move from one short line segment

with A(.r) = +1 to another short line segment ;\(.r) = -1 is reduced when the

peak-shape becomes fiat. This means, the probability forjumping numbers can­

celling each other becomes less resulting in large value of A}. Standard deviation

of N, increases and this leads to large value of diffusion coefficient.

Considering the variation of D with the height of the map (when the line seg­
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1.6 G (00
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-1.6 -1.2 —.8 —.4 0 .4 .8 1.2 1.6
(I.

Figure 4.4: Fluctuation spectrum a(a) vs a for the map shown in Fig. 4.2(f)
[h. = 0.9]. Solid line with black dots represents actual 0(a) while the dotted line
with small squares gives the corresponding Gaussian form. On both axes units are
arbitrary.
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‘ments have the same slope), we note that there is a difference between the present

case and the generalized piecewise linear (GPL) map discussed in chapter 3. In

the GP]; map it was found that as the peak-height (taking integer values) is in­

creased, D increases appreciably. When mg = ml, in the case of GPLM maps,

D increases first with height, and then it decreases. D for case 3 has a maximum

value of 0.48507. For case 1 and 6 it is 0.1 and 0.29351 respectively. This is

understandable because in the case of GPLM map, no change in jump numbers

occur as height is incresed. The remarkable increase in diffusion coefficient is

solely due to the change in invariant density.

In this paper, we have shown that for a wide range of fractional peak height

‘h.’ in the interval [0, 1] an exactly solvable GPLM model exists. The ranges of /1

for which maps are not available are [0-0.142], [0.3125-0.39], [0.594—0.7], [.75­

.84]. The range [0—0.l42] has been excluded in case 1, since in this range of /2.,

the GPLM map will not be expanding everywhere since ml is less than 1. For all

other cases in the interval [0. 1] a GPLM map exists when the parameter /2 is varied

continuously. Our generalized maps are very good approximations for sine maps

which can be treated only numerically. Looking through literature we note that so

far there has been no such analytical results for exactly solvable maps when peak­

height is varied continuously. We expect that these models will be very useful in

time series analysis of [113] chaotic systems showing diffusion.

Finally we want to make a comment regarding the conclusion in ref [98],

where a piecewise linear mapping with Markov partition has been shown to ex­

hibit a fractal diffusion coefficient as the peak-height I2. is varied. The conjecture

of the authors that fractal nature might be a characteristic of all piecewise linear

maps is not justifiable since D is analytical and exact in all of our GPLM maps.

We note that fractal nature of D stems from the fact that piecewise linear map­

pings of [98] have line segments with equal slopes. When line segments have

equal slopes, Markov partitioning will be different for different values of /2, re­

sulting in a change in the order of the transition matrix. In our GPLM maps, we
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have considered line segments with unequal slopes so that Markov partitioning

and order of the transition matrix will not change. When h is varied, there will

be no topological instability and hence GPLM maps do not give rise to fractal
diffusion coefficient.

4.6 Appendix A.

It is easy to prove that the operator H can be represented by a T X 7 matrix as far

as it operates on a step function on the Markov partition. For example note that

invariant density p(.L') is a step function. We define

_ 1 ifre I“,Ix',,(x) = (A1)
0 otherwise

Then any step function G(.r) can be written as G'(J;) = 22:1 G'L,[\'u(r). Further
let us define

1 if HIV) 2 1 ,Fuv = “ (A2)
0 otherwise

Then

H1\'u(;v) = Z.11’u(r)Tw|fLl“ (A3)
Ham = Z:ZG#I1'#($)l"#,|f;[_1= Zci;,1\;(x) (A4)

H

where f,’, denotes the value of the slope f’(:r) in the partition 1,, and

GH : ZG#Fuulf;l_1 (A5)
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We find that the operator H transforms a step function G(1‘) to a step function

C?(:r) = ELL G], I\'u(.r). This means that H can be represented by T X 7 matrix

Huv = Fuvlf;/z|—1

4.7 Appendix B.

(A6)

We give below the generalized transition matrix (Fq)L, ,, for the different cases
from2to6.
Case2.

'(4/2-1)   (4/1-1) 0 0 (4/1-1)’
<1—3h)  “‘i"’°° (I-322) 0 0 <1—3h>
(1-3/2.) 0 0 (1-3/2) 0 0 (1-3/1)

(Eh, = (4/2-1) 0 0 (4/1-1) 0 0 (4/2-1)
(1-3/1) 0 0 (1-3/2) 0 0 (1-3/2)
(1-3/2) 0 0 (1—3h) “'3,’j’*" 9% (1-3/7)
_(4/2-1) 0 0 (4/1-1) ”"‘,§"°  (4/1-1)

Case3.

'(1—-2/2.) “"§_""” “'ff’°“ (1—2h) 0 0 (1--2/2)
(3h—1) (3h—l)e‘7 (3h—1)e9 (311-1) 0 O (3h-1)2 2h 2h 2 2
(3h—1) (3h-l)e9 (3h—1)e‘7 (3h—1) 0 O (3/1-1)_ '2 2h 2h 2 2(Hq),,,,= (1-2/1.) 0 0 (1—2h) 0 0 (1-2/2)
(3h—1) 0 0 (3h—1) (3h-—1)e"' (3h—lh)e“7 (3/1-1)2 2 2h 2 2
(3h—1) 0 0 (3h—1) (3+.—1)e-4 (3h—1)e“' (3h-1)2 2 2h 2h 2

_(1—‘2h) 0 0 (1-2/2)  “"2,’;"'° (1-2/7.)



Case 4.

Case 5.

Case 6.
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W2/1. — 1) 1 ‘?’",j’*° (21; -1) 0 0 (2/1-1)"
(2-3h) (2—3h)e<I (2—3h)e‘T (2—3h) (2—3h)2 2h 2h 2 0 0
(2—3h) (2-3h)e9 (2—3h)e" (2—3h) 0 O (2-31-1)2 2h 2h 2 2

(2h _1) (2h-hl)c" (2h-h1)€" (211 _1) 3% (QLEEE (3/7 __1)
(2—3h) (2—3h) (2—3h)e“7 (2—3h)e"' (2—3h)—— 0 02 2 2h 2h 2
(2~3h) (2—3h) (2—3h) -4 (2—3h)e“1 (2—3h)2 0 0 2 2he 2h 2

_(2h.— 1) 0 0 (2/1- 1) 2 ‘2"',§>'~’ ” (2/1 — 1)_

'(3—4h.)   (3—4h) 0 0 (3—4h)_
(3/2 — 2) ‘3"‘,f’°" ‘—3";,f’L" (3h — 2') 0 0 (:3h — 2)
(3h _ 2) iii (3’;h'-"'2 (3/1 _ 2) ii (3"',':’3‘"° (3/1 — 2)
(3 — 4/1.)  ‘—3";[‘—’” (3 — 4/1) ‘ifii ‘3—“,’;’°‘° 13- 4/1)
(3/1- 2) ‘Lfll  (3/1 — 2) 9:131:41 <sh—:)=="’ (31; — 2)
(3/7 — 2) 0 0 (3/1 — 2) ‘~"’1+f"5’—" <3”-,f>°“’ (3h — 2)

(3— I1):-v (3-41):-4 ._(3—4h) 0 0 (13-421) “T 4h (.3—4h.)1

(1-12) “-,f>E" <1-pf“ (1 —h) 0 0 (1-/7)‘
(3h—2) (3h—2)e‘7 (3h—2)e‘7 (3h—2) (3h-2)e“7 (3h—2)e“7 (3h—2)4 h -h 4/1 -lh 4
(3h—2) (3ht2)e‘7 (3h:2)e" (3h4—2) (3h—2)e“7 (3h—21)e"’ (3h—2)

(11,) (1—4E)e? (1—4E)6" (1:11) (1—71§e‘° (I—}1)e"' 11:“
1311-2) (3h—2)c9 (3h—2)e" (3h—2) (3h-2)e"7 (3h—2)e‘9 (3h—2)4 4h -lh 4 4h 4h 4
(3h-2) (3h—2)e° (3h—2)e4 (3h—2) (3h—2)e"7 (3h—'2)e“7 (3I2—2)4 4h -1}: 4 4h 4h -1

_(1—h) 0 0 (1—h)   (1-/))_



Chapter 5.

Periodic orbits and the

complementary dynamics of

diffusion and intermittency in

chaotic maps.

5.1 Introduction.

In chapter 3 and 4, we introduced two classes of spatially extended maps climbing

along the bisector — GPL maps and GPLM maps — exibiting deterministic dif­

fusion. We introduced these maps by genralising the maps studied by R. Anuso

and Tseng et al. GPL maps have van'able peak-shape and can take integer peak­

heights. GPLM maps also have variable peak-shape but peak-height in this case

can take fractional values less than unity. For analysing the chaotic motion and its

shape dependence in these maps, we applied the characteristic function method

introduced by Fujisaka and his co—wo1-kers. We found that this method is a better

tool than the cycle expansion technique applied by Artuso and Tseng et.al. Cycle

expansion, it appears, aims only at the evaluation of exact diffusion coefficient.

84
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But, as we have seen, the chaotic motion in such spatially extended maps has

two complementary aspects — diffusion and intermittency. Characteristic func­

tion method is a powerful tool for analysing both these aspects of stochasticity in

such maps. It can be noted that this method can be applied to study other types of

chaos-induced diffusion like the one produced by fluctuations of local expansion

rates (LER).

One can note that there is a close connection between the characteristic func­

tion method and the cycle expansion technique. Though this connection between

cycle expansion technique and characteristic function method has been hinted in

literature [77, 79], we note that it can be exploited further so as to enhance the

applicability of cycle expansion technique. In this paper we show how periodic

orbits can be used for analysing the probability density function (PDF) of chaotic

maps. PDF based on fluctuation spectrum can be used for studying not only diffu­

sion but intermittency aspects ofchaotic motion also. Analysis ofexactly solvable

piecewise linear mappings has been added as illustrative examples for both types

of dynamics referred to above - chaotic diffusion in spatially extended maps and

the one associated with LER (statistics of trajectory separation). Periodic orbit

expansion is a perturbation theory and can be applied to even situations where

analytical treatment is not possible. Hence an attempt for enhancing the applica­

bility of cycle expansion technique assumes significance. Moreover, an approach

based on periodic orbits will play a major role in understanding quantum counter

part of classical chaotic transport.

In section 5.2, we discuss the connection between Fujisaka’s theory and cy­

cle expansion technique. Then we show how cycle expansion can be used for

obtaining the fluctuation spectrum relating to the PDF. In section 5.3, illustrative

examples are presented. Section 5.4 is devoted to results and conclusions.
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5.2 Probability density function via periodic orbits.

The salient features of the characteristic function based theory of diffusion and

intermittency developed by Fujisaka et al have been presented in chapter 1. Some

of the most important relations appearing in the theory are rewritten below for the

sake of completeness.

Using characten stic function, one can study the dynamics of .4, governed by

f'1g+1: B(1';)/'11 t: 0,1,2,
with .40 = 1. B(;r,) is a steady positive-definite function ofx, evolving according

to the chaotic map 17f+1:   S Cry <
Equivalently, one can study the dynamics of the local time average at, of a time

series {uj} = 110. u1.'u2.'u3

14,- (5.3)
where u] = u(.rJ-) = lnB(a:J-). The long time dynamics of .-1, (or at) can be

analysed using Aq, the characteristic function1 1 1 1
/\q = — lim —ln<.4‘,’>= — lim—ln<exp(qto,)> (5.4)q t—>v:-:v q r—rm If

< A? > is the average over a steady ensemble and is the q-order moment of A,.

Cumulant expansion of Aq converges for lq] < b, where b is the convergence

radius. In this range of q we can make the approximation

Aq = A0 + Dq (5.5)
A0 is the long time average 0.1., = lim,_m l/12::-1,15 which is no longer a fluc­
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tuating quantity. It is called the drift velocity. D is the diffusion coefficient satis­

fying, ((a, — a.,3)'2) z % for large it. On the other hand for 0q >> b(6 = :l:) A4
can be set as

1 1
Ag 2 /‘em - -l— - ca eXp(—nelq|)l (5.6)

q Ta

where T9, C9 and 179 are positive constants.

For evaluating /\q one has to solve the eigenvalue equation for the linear oper­

ator Hq defined by (eq. (1.63))

Hqcm % /15(f(y) — x>e°“‘“G<y>dy = Hte°“‘“G(:c>1 (5.7)

H0 = H gives the operator defined by eq. (1.12). Let the eigenvalues q:'>.(,"),

n = 0.1,-2- be ordered as eff’) 2 |¢».‘,"| 2 |¢5f’|. Then,

A = 3 1neg°> (5.8)
where G530’ = ma.xn{Re qbq")}.

In order to determine the spectrum of H q one can study the Fredholm deter­

minant d(:) = [1 — :H,,] for complex 2. It's zeros give the reciprocal eigenvalues

of Hq. To evaluate a’, one can use the standard relations [77].

00 Zn

d = det[l — zHq] = exp[— 2 :tr(Hq)"] (5.9)
11:1

The technical utility of introducing Fredholm determinant stems from the possi­

bility of expressing trace in eq.(5.9) in terms of fixed point of f" We can write

[77,113].

ex 7:3 u fj 2:‘ )tr[(Hq)"l= Z  (5.10)r-emu")

where J E DIf"|.,,=_,- and the sum extends over the fixed points :r'‘ of f” In
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higher dimensional cases one has to replace |1 - J| with det I1 — J]. The summa­

tion over the fixed points of f " can be convened to a summation over all the prime

cycles in a standard way[77]. In general the 11”‘ order trace picks up contributions

from all repeats of prime cycles (a/b means that a is a divisor of b).

tr((Hq)”) = Z n,,1;;/"P (5.11)
Pv"P/'1

p denoting a prime cycle with period n,,, 15,, being the contribution from this prime

cycle. Then [77]

det[1— :H,] = exp(— Z Z (snptpy) = exp(Z ln (1 — :"Pt,,))
P

7‘r=l p
= H(1— ;"v1,,) (5.12)

P

Note that t,, is given by the summand of eq. (5.10) with n = np and .1‘ = IP;

IP being one of the points in the prime cycle denoted by’ p. For expanding maps

|J| > 1 so that
00

11- Jl" = |J|" Zr” (5.13)
m=0

Making these substitutions, one can note from eq. (5.10) and eq. (5.12) that the

Fredholm determinant cl can be written as an infinite product of inverse C functions

at = H c,;‘<:.q) (5.14)
=0

where Z: (f__ :"Pexp ’-‘:“<qu.J(zp>>1
cm‘(:.q1= 1'[(1— fjjm. 1 (5.15)p.IpEpc(f*‘)
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Let 5; denote the zeros of (1. If

:30’ < pg”) 3 1:32)) g (5.16)
Then, we have

_ 1 1 _ 1 40)Ag q ln75)- — -6 ln-q
The asymptotic (t —> oo) PDF of at has a Gaussian component resulting from

central limit theorem and a non-Gaussian component. For Iql << b, the q-order

moment in eq. (5.4) is determined by the Gaussian component. This range of

q is the diffusion branch of q. When Iql >> b, non-Gaussian component will

predominate and this range of q is the intennittency branch. For writing the PDF

P,(a) where a, takes the value between a and a + do, one can use the fluctuation

spectrum a(o ).

P,(a) ~ \/texp(—a(a)t) (5.18)
As if —> oo, Pt(O) —> <5(a — am). a and 0(0) can be obtained from /\,, in a

parametric form.

a = d—:(q,\q), 0(a) = q2%,\,, (5.19)
In terms of :30) this becomes1 d q d

O : -—E(fiE(;—'-£0): 0(0) 2 In 3570) — Eglgo)

For q << b, Aq is approximately given by eq. (5.5). In this case one can get

a = A0 + '2Dq (5.21)

0(a) ‘ (0%/\0)2 (5.22)
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where A0 and D can be evaluated using eq. (5.17).

1A0 = lim/\ = — lim —ln .-<0) (5.23)
q—i»0 q q-)0 q 9

, dA . d 1
D = iglggqi = -333 d—q(E1n:;°>) (5.24)

For 0q >> I), (6 = i) the approximation for Aq (eq. (5.6)) leads to

1

ln:,§°’ R3 -q/\9oo + [E — C9 exp(—na|<1l)l (525)

T9, Cg and rye being positive constants. Eq.(5.20) gives

or w ’\9r':o — Gcene exP(-nalql) (5.26)

1

—la — /\9,_~,o| ln[
77:?

C10 ] (5.27)1

0(0) z T—6 |:T%Q‘|
where (£9 E (369775. From P, (a) one can obtain the distribution of ln.~'1) or A,. PDF

of a and lnA¢ will be approximately Gaussian by central limit theorem but that

of A, will be log normal. In fact eq. (5.22) and eq. (5.27) give respectively the

Gaussian and non—Gaussian components of the PDF. Thus, 0'(a) can be used for

studying the complementary dynamics of diffusion and intermittency in chaotic

maps.

5.3 Illustrative examples.

5.3.1 Spatially extended piecewise linear maps.

As the first example, let us consider case 1 of the spatially extended maps (GPLM

models) we analysed in chapter 4. The extended map shown in fig. 4.1 consists of
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linear segments with slopes mo and m1, m1 3 mo. For the cells on the bisector,

the slope magnitude is mo. For cells above and below this bisector, the slope

magnitude changes to ml. The peak height in these cells is represented as h. We

know that climbing maps of this type can be represented as

X,“ = X, + P,(_\’,) = Y,(_\’,); P.(X +1) = P,(X) (5.28)

r being the control parameter. With the decomposition X, = N, + r,, where

N, is the cell number in which X, is located and 2:), (0 g 2:, < 1) the distance

measured from the relative origin X = N,, the above equation reduces to two

dynamical laws

-’V'z+1 = N: + A(17t) $c+1 =  (5-29)

A(.1:) is thejumping number defined as the largest integer smaller than .2 + P,(.1:)

and is free from M and f(.r) = 2: + P,(:c) — A(:r), 0 3 f(:z:) < 1. f(x) is
the reduced map of the extended map. The reduced map corresponding to case

1 of GPLM maps (fig. 4.221) is redrawn in fig. 5.1 in which solid lines represent

f (.17) and the dotted lines show the Markov partitions. Extended map can be gen­

erated from the reduced map by giving suitable jump numbers A(a:) (constant for

a line segment). In chapter 4, we have considered this problem using Fujisaka’s

characteristic function method, by putting

4:6‘ ,\r_;’ :4-(I) . =, =&' =. t _p(. , N0), B(.r) e u(:z:) A(:::), at t with No 0
(5.30)

Here we treat the problem within the context of cycle expansion. From

eq. (5.15) we get
.- , _ _2"*’exp(0pq)
e..fi(.,q)—1'[(1 ————WJ;n > (5.31)P
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._______ -L-__-L-_--L_ _______

Figure 5.1: Reduced map of the GPLM map (case 1) analysed in chapter 4. The
slope magnitude of the 3 longer linear segments is mo, whereas the slope mag­
nitude of the 4 shorter segments is ml. Dotted lines indicate Markov partitions.
Symbols for the 7 branches of f(;r) are also shown. On both axes units are arbi­
trary.
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where we substituted

n,,—1 np—l
exp Z ('qu(fj(Ip))) = exp 2 (qA(fj(wp))) = e><p(0pq) (5.32)j=0 j=0

Note that op is the integer part of Y,"”(:z,,), 1,, being a periodic point of a p-cycle.

The above expression for g’,;1(z, q) is the same as the one in [95 — 97].Thus the

jumping number 13(2) is the required symbolic dynamics. For locating the first

zero of d, usually one focus attention on

cits. q) = H<1— T.) <5-33>
P

where
'7'"? /'Tp = " e:\p(UPq)

|Jpl

is the weight factor.

Let us denote the seven branches of f“ (.1) by the symbol 1/ = 1, 2, 3 7(from

left). Let 1,, be the slope of the line segment. [1 = 17 = mo; [2 = 15 = ml;

13 = 15 = —m1; [4 = —mo. From fig. 5.1 we note that the slope magnitudes are

connected by relations.

3 4h.— + — = 1 (5.35)
T710 mi}

1h = — (5.36)
7720

On solving we get
1mo = E (5.37)

4hm1 = 1_3h (5.38)
We consider the situation  < h 5  In this range of /1. mo and ml are greater
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than 1. ie, the map is an expanding one. Also mg 2 ml. Let A, denote the

jumping number for the branch with symbol 1/. They are (from left) 0, +1, +1, 0,

-1, -1, 0. By observing backward iterations of f(:tr) in fig. 5.1, one finds that the

following sub-sequences are forbidden

-24-, -27-, --2-2-, -23-, -25-. -26­
-:34-. -3'-. -3-2-. -33-. -37-, -36­' ' 7 ’ 3 (5.39)-51-, -54-, -52-, -53-. -55-, -56­
—61—, -64-, -62-, -63-, -65-. ~66­

The pruning rule [77, 78] implies that “2” and “3” must always be followed by “l”

and and “6” by “7” The dynamics is an unrestricted symbolic dynamics with

the alphabet {l, 4, 7, 21, 31, 57, 67}. Let z',j, k- -- represent a symbol sequence

indicating line segments which contain the periodic points of a prime cycle. Due

to unifonnity of slope for a line segment we have

T,"j_k_,, =  X T_,- X Ti, X (5.40)

This means that the curvatures [77, 78, 95 — 97] will vanish exactly. Thus the zeta

function Cg‘ (2, q) can be expanded as

C0—1(Z.q)—_—1—T1-T4—T7—Tg1—T31—T57—T57

We note
:1 e.\'p(A,-q) :2 e.\'p[(A, + A‘,-)q]Ti =Ilil J llillljl

Using eqs. (5.37,5.38,5.42), in eq. (5.41) it can be found that 53°’ is the first zero

of the following equation.

T; = (5.42)
1- 3/22 — (1 — 3/1):? cos hq = 0 (5.43)
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from which .~;°) = 2 (5.44)
3/1 + 9h? + 4(1— 3h) cos hq

We get A0 and D using eqs. (5.23) and (5.24)

A0 = 0 (5.45)
_ <1 - 3h)
‘ 2(9 — 3h_,
D (5.46)

Note that eq. (5.24) is the general relation for obtaining D. The relation given in

[95 — 97]. 1 02
D = —§EI3;;°>|,=0 (5.47)

is only a special case of the relation (5.24) and is applicable only when A0 = 0. In

a map like the one in fig. 4.1, because of symmetry, the drift velocity /\o is always

zero. But it is not true generally.

From eq. (5.20), Oz and 0(a) are obtained as

O‘ _ (1 — 3h)sin hq
3h\/(9/4)/22 + (1 — 3h)cos hq + ghz + 2(1— 3/1) cos hq

3h 9
0(0) = — ln[-9- + (/ Eh’ + (1 — 3h)cos hq] + qa (5.49)

The limiting forms eqs. (5.21) and (5.22) applicable for ]q{ << b (small values of

cr) can be considered with the above values for A0 and D. For considering the

(5.48)

limiting form eqs. (5.26) and (5.27) for |q[ >> b, ie extreme regions of a, we get
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the following constants using eq. (5.25).

1 3h
)1/2 C+=C-=”'o 77+=TI—=2(1 — 3/1) (550)l\D|I—­

Note that the expression for diffusion coefficient D we got (eq. (5.46)) using

cycle expansion technique is exactly the same as the one derived in chapter 4 for

case 1 (eq (4.19)). In fig. 4.3a we have shown the variation of D with h. It is

easy to note that D increases when the map becomes more and more flat (when h

decreases from i to  mo increases from 4 to 7 whereas my decreases from 4 to
1). From fiuctuation spectrum 0(a), one can obtain the PDF of N,, the distance

from the origin. From eq. (5.18), we have

P,(.\') ~ %e_\'p[—a(%)t] (5.51)
P,(_/V) being the PDF that V, takes values between N and N + d.\'. This PDF

is approximately Gaussian by central limit theorem. Infact eq. (5.22) corresponds

to the Gaussian part of the PDF which is applicable for small values of or and

eq. (5.27) corresponds to the non-Gaussian pan applicable for extreme values of or.

In fig. 5.2 we show the variation of 0(0) with at along with Gaussian form. From
da(a)

do

extreme values of ct. Since the slope ofcr(a) in eq. (5.22) is inversely proportional

this graph and also from eq. (5.27) one notes that diverges logarithmically at

to D, one finds that for minimising deviation from Gaussian character of the PDF,

one has to minimise D ie, the peak-shape should become sharp. Conversely when

the map becomes fi-at, the PDF exhibits more non-Gaussian character since the

dynamics exhibits intennittency.

As the second example, let us consider the generalized piecewise linear (GPL)

map which we analysed in chapter 3. The reduced map shown in fig. 3.2 has 7

line segments and the resulting climbing map has a peak height /2 = 1. Gener­
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Figure 5.2: Fluctuation spectrum 0(0) vs at pertaining to the spatially extended
map generated by Fig. 5.1 (h = 0.2). Solid line with black dots represents actual
0(0) while dotted line with small squares gives the corresponding Gaussian form.
On both axes units are arbitrary.
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expansion for Q07‘ gives

Q-c)—1(5-(1)=1_T1"‘T4 — T7 — T21 ' T31‘ T57 — T67 (5-60)1 23 I11)“ 3 |1il”|17|"T,- = T,“ = ——‘— (5.61)|1i| J |1«'||1j|
It follows from (5.37), (5.38), (5.61).

11 «-1 2 4 -1— . : — — ’: = .621 3(h)4 4 (1—3h)q 0 (5 )
from which

9A0’ = ‘ (5.63)
=1 3(}11_)q—1+\/9(%)2(q—l)+16(#)q—1

One can obtain (eqs. (5.23) and (5.24))

-3/1 ln/1 + (1 — 3/1) ln(—4—)A = “3" 5.64° (2 - 3/2) ( )
3h(1 — 3/7) 4/22 9= T ' 5.65D ‘2(2—3h)3[|n(1—3h)] ( )

From eq. (5.20) we get

a—{—ln/1><( 1+1?“ 1“_L;3?h)9-1+1)+§ln(1_“T)x(%)q—1} (566)

11+ )1 T ‘.,—6<.+(.f,,11—1l\/1 T %(%>v-I

E
<3)""—' \/S—)(l)'2‘°71>+4( 4 >~-11+qo (5.67)‘2 /1 4 /7 1-3/1

One can consider the limiting forms of 0(a), given by eqs. (5.22) and (5.27)

(Gaussian and non-Gaussian pans respectively). For the Gaussian part A0 and D

0(0) = — ln[

are given above. We can evaluate the following constants using eq. (5.25)
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1 1—3l2 1-3/2
/\+,:o : * In/I -_+_ _—'  C+ -—— 9,12  =   J4 . 1 3 h'-’ ./\_.\_I‘ 1/2 _:_ _=_ 1/2n(1-3/2) T ln(1—3h)1/2 ‘2(1 -3/1)

1n‘l—3.“t)

t;,_ =  (5.68)
As the second example, we consider f(:L-) given by the reduced map of the

GPL model discussed in chapter 3. The dynamics is an unrestricted symbolic

dynamics with the alphabet {1. 2. .(4h + 3)}. Curvatures cancel exactly and

the cycle expansion is given by

g'0"1(:.q) = 1- T1— — 'T(4h+3) (5.69)

which implies
h

1 — :[:3m.g," + 2 4m;'‘‘] = 0 (5.70)
i=l

from which
1-(0l _

"J _ -'3n13—1 + 2:! 41712-1. (5.71)
We get

3 ” 4/\Q =- E l1'l7TIO  Z  IHTTZ,z"1

%0( lnmo)2 -!- ::1=1mil( lnm,-)3 —  lnmg +  i lnm,]2D = O ‘ '“- (5.73)
As shown in chapter 3, we can consider a special case with

T11,‘ = I‘ 0 < 7' < 1 (5.74)
7771-1
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The problem becomes an exactly solvable one for all values of 7'. Solving with

eq. (5.52) we have

_ 3 + 4(1—rh)
7770 — . rh(1—T)

m.- = 'I7707‘i (5.76)
(5.75)

Summations appearing in eqs. (5.72) and (5.73) can be performed and we get

I 4 (rh -1) 7" 41m‘ /2
/\0 :  ll]-7710 ‘l’  ln7770 + ( lnr) X T _  — 7710 X (r _1)1‘h

(5.77)

_ 2( |nr)2{4v' — h2rh — (II + 5)(h +1)r"+' + h[5h +12)rh+2 _ 3(/1+ 1)?r"+~"- + r2h'H + 3r2"+3lD U_,-)?[_‘_,.h_3,.h+l]2
(5.73)

o and 0(0) can be got from eq. (5.71) using eq. (5.20) as

rh+q+1 _ (/1 + 1),.hq+q+1 + /“.(h+2)q

0 = ‘"7"-0 ‘V 4 W‘ X { (37./1+1 + ,.;.+q _ 47~(h+])q)(1._7.q) } (5-79)

_ 3 h+l + ,h+q _4 (h+1)q0(0) = - ln{7ngq 1)r ]}+ qo (5.80)
7.}! (T _ .,.q)

Using the values of A0 and D Gaussian component applicable for small values of

o(q << b) can be obtained from eq. (5.22). Non-Gaussian component correspond­

ing to extreme values of a are given by eq. (5.27). The constants appearing in
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Figure 5.3: Variation of diffusion coefficient D pertaining to the dynamics of
local expansion rates with /1 for the map shown in Fig. 5.1. On both axes units are
arbitrary.

equation (5.27) are given by 1 4 1
’\+->0: lnmo 1+- C+—3—r 7I+- ln(;)1 1
,\_,N = lnmh T_ = mh c_ = r 77- = ln(—-) (5.81)ln(T) I“

where m.h = rnorl‘

Fig. 5.3 shows the variation of D with h for the map (GPLM) in fig. 5.1.

As it decreases from § to  the difference between slope magnitudes of the line
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Y

Figure 5.4: Vanation of diffusion coefficient D pertaining to the dynamics of local
expansion rates with r for the reduced map of GPL model analysed in chapter 3.
(with /2 = 2 Eq.(5.78)). On both axes units are arbitrary.
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Figure 5.5: Fluctuation spectrum 0(a) vs a in relation to the dynamics of local
expansion rates for the map in fig. 5.1 (h = 0.‘2).Solid line with black dots rep­
resents actual a(o‘) while dotted line with small squares gives the corresponding
Gaussian form. On both axes units are arbitrary.

segments increases and hence diffusion coefficient increases. Fig. 5.4 shows the

variation of D with r for the second example ie. the GPL map with h = 2. Here

note that as r decreases from 1 to around 0.1, slope magnitudes becomes more
and more different and as such D increases. When 1‘ is decreased further to zero

the probability for the phase point to fall on line segments with slopes mo and ml

(both tending to oo) tends to zero. The probability will be maximum for the line

segments forming the peaks. All these segments have the same slope magnitude

m2 = 4. Hence D will decrease. The variation of 0(a) with a along with the

Gaussian form eq. (5.22) for the map shown in fig. 5.1 is shown in fig. 5.5 with

h. = 0.2. Fig. 5.6 shows the same variation for the second example (GPL map

with /z = '2; r = 0.5). As in the case of spatially extended maps, one can reach the

conclusion that Gaussian approximation for the PDF will become more and more
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c (on)

1.8

1.4

Figure 5.6: Fluctuation spectrum 0(0) vs 0 in relation to the dynamics of local to
expansion rates for the reduced map of the GPL model (chapter 3) (with h = ‘Z,
r = 0.5). Solid line with with black dots represents actual 0(0) while dotted line
with small squares gives the corresponding Gaussian form. On both axes units are
arbirary.
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valid when diffusion coefficient D -'7 0. This happens when the line segments

have almost the same slope.

5.4 Results and conclusions.

In this paper, we show how periodic expansion technique can be used to obtain the

probability density in connection with the chaotic maps producing chaos—induced

diffusion. We have shown, how cycle expansion can give the fluctuation spec­

trum which in turn can provide the PDF. PDF has two components - a Gaussian

component resulting from central limit theorem and a non—Gaussian component.

These lead to a complementary dynamics of diffusion and intermittency in chaos­

induced diffusion systems. Our aim is to demonstrate that periodic orbits can

be used to analyse the PDF and this complementary dynamics of diffusion and

intermittency rather thanjust obtaining the exact diffusion coefficient.

As examples, we have discussed exactly solvable piecewise linear maps for

two types of chaos—induced diffusion (1) deterministic diffusion in spatially ex­

tended climbing maps (2) diffusion associated with the dynamics of local expan­

sion rates (trajectory separation statistics). In both cases, we have shown that for

enhancing the Gaussian character of the PDF one has to minimise the diffusion

coefficient. In this case diffusive characteristics will predominate over intermit­

tency and moments will be determined by D. In the context of spatially extended

systems this means that maps with sharp peaks show more Gaussian character

than those with flat peaks. This fact is beneficial in the time series analysis of

chaotic systems showing diffusion. For describing systems like Brownian motion

one should use maps with sharp peaks. For describing systems showing interrnit­

tency in time, maps with flat peaks are more suitable. In statistics of trajectory

separation resulting from the fluctuations of local expansion rates, logarithmic

separation of the trajectory will show more Gaussian character if the studied map

has almost the same slope within the interval [0, 1]. Otherwise non-Gaussian char­
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acteristics and intermittency will predominate.

Periodic orbit expansion is a perturbation method and hence can be applied

to get approximate results for systems where analytical treatment is not possible.

Moreover, as observed by Dana [1 14], an approach to chaos-induced diffusion via

hierarchical skeleton of periodic orbits should play a major role in the study of

the quantum counter part of classical chaotic transport [115]. The reason is that

classical periodic orbits are relevant in the study of energy spectrum as well as

structure of wave functions at least in the semi-classical regime [116, 117]. In the

light of these, we feel that an attempt to enhance the applicability of periodic orbit

expansion has both theoretical and practical significance.
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