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Chapter 0

INTRODUCTION

Mathematical models are often used to describe

physical realities. However, the physical realities are

imprecise while the mathematical concepts are required to be

precise and perfect. Even mathematicians like H. Poincare

worried about this. He observed that mathematical models

are over idealizations, for instance, he said that only in

Mathematics, equality is a transitive relation. A first

attempt to save this situation was perhaps given by K.

Menger in 1951 by introducing the concept of statistical

metric space in which the distance between points is a

probability distribution on the set of nonnegative real

numbers rather than a mere nonnegative real number. Other

attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A.

Sklar and others. An aspect in common to all these
approaches is that they model impreciseness in a
probabilistic manner. They are not able to deal with
situations in which impreciseness is not apparently of a

probabilistic nature.



L.A. zadeh gave a convincing way out to this

through his pioneering paper of 1965. This was a beginning

of a new discipline in Mathematics - Fuzzy set theory. The

characteristic function of a set assigns a value of either 1

or 0 to each individual in the universal set, thereby
discriminating between members and nonmembers of the crisp

set under consideration. This function can be generalized

such that the values assigned to the elements of the
universal set fall within a specified range and indicate the

membership grade of these elements in the set under

consideration. Larger values denote higher degrees of set

membership, such a function is called a membership function

and the set defined by it a fuzzy set. More specifically,

any fuzzy subset of a set X is a member belonging to the set

Ix, the set of all functions from X to the unit interval I.

An ordinary set thus becomes a special case of fuzzy set

with a membership function which is reduced to the well

known two valued (either 0 or 1) characteristic function.

The definitions, theorems, proofs and so on of

fuzzy set theory always hold for nonfuzzy sets. Because of



this generalization, the theory of fuzzy sets has a wider

scope of applicability than classical set theory in solving

problems that involve, to some degree, subjective
evaluation. Fuzzy set theory has now become a major area of

research and finds applications in various fields like

artificial intelligence, image processing, biological and

medical sciences, operation research, economics,
geography, so on and so forth. Our interest of fuzzy set

theory is in its application to the theory of functional

analysis, especially to the theory of semi inner product

spaces.

with the aim of carrying over Hilbert space type

arguments to the theory of Banach spaces Lumer[LUM]

introduced the concept of semi inner product space with a

more general axiom system than that of inner product space.

The importance of semi inner product space is that, whether

the norm satisfies the parallelogram law or not, every
normed space can be represented as a semi inner product so

that the theory of operators on Banach spaces can be
penetrated by Hilbert space type arguments. But Giles [GI]



observed that the generality of the axiom system defining

the semi inner product is a serious limitation on any
extensive development of a theory of semi inner product

space parallel to that of Hilbert spaces. He, therefore

imposed further restrictions on the semi inner product to

make further developments. He thus obtained an analogue of

the Riesz representation theorem for semi inner product

spaces. The theory of semi inner product has been studied

by several mathematicians like Nath, Husain, Malviya,

Torrance, etc.

To give a fuzzy analogue to this theory we require

the concept of fuzzy real number. This was introduced by

Hutton, B[HU] and Rodabaugh, S.E [ROD]. Our definition

slightly differs from this with an additional minor
restriction. The definition given by Clementina Felbin

[CL1] is entirely different.

The concept of fuzzy metric was introduced by

Kaleva, O and Seikkala,s [KA;SE]. Morsi, N.N [M02] provided
a method for introducing fuzzy pseudo-metric topologies on



sets and fuzzy pseudo-normed topologies on vector spaces

over R or C which will be fuzzy linear topologies.
Katsaras,A.K and Liu, D.B [K;L] introduced the notion of

fuzzy vector spaces and fuzzy topological vector spaces.

Krishna, S.V and Sarma, K.K.M [KR ;SA2] studied about the2

fuzzy continuity of linear maps on vector spaces.

Clementina Felbin [CF2] established the completion
of a fuzzy normed linear space. Abdel wahab M. El-Abyad and

Hassan M.E1-Hamouly [A;H] succeeded in defining fuzzy inner

product on an M(I) module. Parallel to this we are able to

introduce the concept of fuzzy semi inner product.

To say it briefly this thesis is confined to
introducing and developing a theory of fuzzy semi inner

product spaces.

AN OVERVIEW OF THE MAIN RESULTS OF THIS THESIS

The thesis comprises six chapters and an introduction to the

subject.



Chapter 1

In this chapter we give a brief summary of the

arithmetic of fuzzy real numbers and the fuzzy normed

algebra M(I). Also we explain a few preliminary definitions

and results required in the later chapters. Fuzzy real
numbers are introduced by Hutton, B [HU] and Rodabaugh, S.E

[ROD]. Our definition slightly differs from this with an
additional minor restriction. The definition of Clementina

Felbin [CL1] is entirely different. The notations of [HU]
and [M;Y] are retained inspite of the slight difference in

the concept.

Chapter 2

Kaleva, 0 [KA] introduced the notion of completion

of fuzzy metric spaces. Mashhour, A.S & Morsi, N.N [M;M]

defined M(I), a fuzzy normed algebra, whose underlying space

is the smallest real vector space including all nonnegative

fuzzy real numbers. Clementina Felbin [CF2] established the
completion of a fuzzy normed linear space. In this chapter



we construct a real commutative algebra C(I) from M(I)

analogous to the construction of the algebra of complex

numbers from that of reals. We establish the existence of

unique fuzzy completions M'(I) of M(I) and C'(I) of C(I).

However, this is essentially different from the works of

Felbin and Kaleva. For example our definition of R(I) and

R*(I) are different from those of Felbin. Finally, we prove

certain results about C'(I) - like that it is not an
integral domain and it is a commutative algebra.

Chapter 3

In this chapter using the completion M'(I) of M(I)

we give a fuzzy extension of real Hahn-Banach theorem. Some

consequences of this extension are obtained. The idea of

real fuzzy linear functional on fuzzy normed linear space is

introduced. Some of its properties are studied. In the
complex case we get only a slightly weaker analogue for the

Hahn-Banach theorem, than the one in the crisp case.

Chapter 4

Lumer,G [LUM] introduced the notion of semi inner



product space with a more general axiom system than that of

inner product space. Parallel to this on a C'(I) module we

are able to introduce the notion of fuzzy semi inner

product. We prove that a fuzzy semi inner product generates

a fuzzy norm and further that every fuzzy normed space can

be made into a fuzzy semi inner product space. Also the

notion of a fuzzy orthogonal set is introduced. Existence

of a complete fuzzy orthogonal set is established. The

concept of generalized fuzzy semi inner product is
introduced.

Chapter 5

In this chapter we extend the idea of fuzzy semi

inner product space of crisp points to that of fuzzy points.

The notion of orthogonality on the fuzzy semi inner product

of fuzzy points is introduced. Some of its properties are

studied. Also the concepts like fuzzy numerical range of

‘fuzzy linear maps‘ on the set of fuzzy points is introduced

and some results are obtained.



Chapter 6

In this chapter the concept of the category of

semi inner product spaces and that of fuzzy semi inner

product spaces are introduced. Relation of the category of

fuzzy semi inner product spaces with the categories of semi

inner product spaces, fuzzy topological spaces and
topological spaces are studied. We conclude with a more

general approach to fuzzy semi inner product spaces by

introducing the category of semi inner products in a given

concrete category.



Chapter 1

PRELIMINARIES

1.0 INTRODUCTION

In this chapter we give a brief summary of the

arithmetic of fuzzy real numbers and the fuzzy normed

algebra M(I). Also we explain a few preliminary definitions

and results required in the later chapters. Fuzzy real

numbers are introduced by Hutton,B [HU] and Rodabaugh,

S.E[ROD]. Our definition slightly differs from this with an

additional minor restriction. The definition of Clementina

Felbin [CL1] is entirely different. The notations of
[HU]and [M;Y] are retained inspite of the slight difference

in the concept.

1.1 FUZZY REAL NUMBER

Definition 1.1.1

A fuzzy real number n is a nonincreasing, left continuous
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function from the set of real numbers R into I = [0,1] with

n (-m+) = 1 and n (t) = 0 for some t e R. The set of all

fuzzy real numbers will be denoted by R(I). The partial

ordering 2 on R(I) is just its natural ordering as a set of

real functions. The set of all reals R is canonically
embedded in R(I) in the following way.

A real number r is identified with the fuzzy real

number fe R(I) given by: for t e R

*The set of all nonnegative fuzzy real numbers R (I) is

defined by

a*(1) = {n e R(I): n 2 6}.

Note 1.1.2

(i) The above definition differs from the standard
definition given by Hutton, B[HU] and Rodabaugh,

S.E[ROD] in the additional condition n (t) = O for some

t e R. We retain the same notation R(I) for our
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restricted set and later also in the further
development, we ignore the difference in choosing our

notations.

(ii) Clementina F [CL1]has given a different definition for
fuzzy real number as a fuzzy set on R.

Definition 1.1.3 [ROD]

Let n and B be two fuzzy real numbers in R(I), then

(i) Addition of fuzzy real numbers 9 is defined on R(I) by

(77 9 f3)(s) = Sup{n (t) A (3 (s-t)=t e R}

(ii) Scalar multiplication by a nonnegative r e R is defined

on R(I) by rn = 6, if r = 0

(rn)(s) = n (s/r), if r>0, where s e R.

Proposition 1.1.4 [M;Y]

(i) Addition and scalar multiplication preserve the order 2

on R(I).

(ii) For n,fi and a e R(I) we have n 9 3 Z a 0 3, iff n 2 a.
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Definition 1.1.5 [ROD]

Multiplication of two nonnegative fuzzy real numbers n

and E is defined by

1 if s S 0
(" 3’ (S) = { sup{n (b) A ((5/b):b>o} if s > o

where s e R

Note 1.1.6

(i) n and E be two fuzzy real numbers such that
n (a) = 0 and E(b) = 0 then rn (ra) = 0,

(n 9 E)(a+b) = o and (n E)(ab) = 0.

(ii) It may be noted that addition and scalar
multiplication are well defined on R(I), and R*(I)

is closed under multiplication.

Remark 1.1.7

If n,fl e R*(I) then

(i) n 6 B = H 0 n
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(377(ii) 12 ff
(iii) n o = 0
(iv) ni=77

Definition 1.1.8 [HU]

For every r e R, the fuzzy subset Lr of R(I) is defined by:

for n e R(I), Lr(n) = 1-n (r). It is obvious that the real
function Lr(n) is left continuous and nondecreasing in r,
and is nonincreasing in n.

1.2 THE N-EUCLIDEAN ALGEBRA M(I)

Definition 1.2.1 [M;H]

The set M(I) is the Cartesian product R*(I)xR*(I) modulo the

equivalence relation rxl defined by (n,fi).~¢ (n',fl')

iff n 0 fl‘ = n'0 3.

A member of M (I) is denoted simply by any one of its

representative ordered pairs.

The partial order 2 on M(I) is defined by (n,B) 2 (n',fl')
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iff n 6 fi'Z n'0 3.
*

The set M (I) is defined by

*
M (I)

{(n.r3_> e n<I>:<n.m 2 <6.6)}

{(n.fl) 6 M(I)=n 3 3}

R*(I) is canonically embedded in M(I) by identifying each

n e R*(I) with (n,6) e M(I), while R is canonically embedded

in M(I) as follows

for r e R, r is identified with (E,6) e M(I) if r 2 o and
with

(6,(-E)) e M(I) if r < 0.

Definition 1.2.2 [M;H]

Addition 9 and scalar multiplication are defined on M(I) by

(i) (n.fi) 9 (n',B') = (D 9 n',fi 0 3').

(tn,tfi) if t 2 o
(ii) Let t E R then t(T]:fl) = {  ltln) if t < 0
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Definition 1.2.3 [KA3]

A fuzzy pseudo-norm on a real or complex vector space XI I * 0 I Iis a function H H X —+ R (I) which satisfies for x,y e X

and S in the field

(i) Hsxfl = |s| Hxfl
(ii) Hx+yH S HxH$HyH such H H is called a fuzzy norm if in

addition it satisfies

(iii)HxH>5 for every nonzero x e X.

Definition 1.2.4 [H;M]

The N-Euclidean norm on M(I) is the fuzzy norm Ell] defined

by for (mfi) 6 M(I)

[:((n,(a)1] = inf {a e R*(I):o1 2 (mm s. a 2 (p,n)}

= inf { a e R*(I):a 0 B 2 n 8 a 6 n 2 3}

where a = (a,6) according to the embedding of R*(I) in M(I).
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Proposition 1.2.5 [M;Y]

(1) For n.f3 e a*<x>, n2<f32 in n < rs... 2 . .(11) For every n E R (I), there exists a unique square root

6 in R*(I) such that flz = n.

(iii)The partial order 2 on M(I) is preserved
*

multiplication by elements of M (1).

Remark 1.2.6

(i)

(ii) [3(n.6)Z] =

If (am e um then C(<a,m)] = C(<rs,a)£I
*

n for n e R (I).

Definition 1.2.7 [H;Y]

Multiplication on M(I) is defined by:

(d,fi). (d',fi') 6 M(I)for

(a,fi) (a',fl') = (aa'® 33' afl'0 flu‘).

Remark 1.2.8

With respect to the addition defined above H(I)

under

is an
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abelian group where (fi,a) is the additive inverse of (a,fi)

ie 9 (0.3) = ((9.0!)­

Theorem 1.2.9 [M;Y]

(i) Multiplication on M(I) is well defined.

(ii) The canonical embedding of R and R*(I) into H(I)

preserve multiplication.

(iii) Under addition, scalar multiplication and
multiplication M(I) is a real associative and
commutative algebra with unit element (l,5).

(iv) M(I) is not an integral domain.

Proposition 1.2.10 [M;Y]

(i) M*(I) is closed under multiplication.

(ii) The partial order 2 on M(I) is preserved under
multiplication by elements of M*(I).* 2 2(iii) For a,fi,7 e R (I), a 2 (B,y) iff a Z (fi,y) and
a Z (y,B).

(iv) For (a,ra) e M(I), we have (ot,{3)2e M*(I).
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Proposition 1.2.11 [M;M]

(i) If (a,fl) 6 M*(I) then

[:(<a,m§] = int {y e R*(I)=r 2 <a,m}.

(ii) For (a,fi) e M(I)

[:((a,p)j] 2 = |j(a,m2§] = inf {x e R*(1):x 2 (a,r;)2}.

(iii) For (a.{3).(7.f) E M(I)

l:((ot,f3)(2’-f)Z| S [3(ot.f3)Z] B(2’,E)Z]

Definition 1.2.12 [M:M]

Let U be a fuzzy subset of a universe X and let

a 6 I1 = [0,1). The a -.cut of U is the crisp subset of X

U(a) = {x e X:U(x) > a}.

By considering a fuzzy real number n e R*(I) as a fuzzy

subset of R, we find immediately that each a - cut n(a) of n
is an interval in R of the form [0,t] or [0,t). Where

t = V{x e R:n (x) > a}. Thus n(a) can be identified with the
number t. It is obvious that the a - cuts preserve the three
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*
operations on R (I) in the following sense:

*

for every n, E e R (I), a e I1 and r 2 0 we have

(i) (n 9 E)(a)= n(a)+ 8(a)

(ii) (rn)(a)= rn(a)
(iii) (n E)(a)= n(a) 5(a)
(iv) n 5 5 iff n(a) 5 :(a),v a e 11.

Definition 1.2.13 [H;M]

Let (n,E) e M(I) and a e I We define the a - cut of1.

(n,f) to be the real number

(T7rE)(a)" T7(a)‘ E(a)'

Proposition 1.2.14 [H:M]

(i) The a - cut (n,E)(a is well defined on M(I).)

(ii) (n,E) = (a,fl) in M(I) iff they have same indexed
family of a - cuts.

(iii)(n,E) e u*(1) iff V a e 11. (n,E)(a)2 0.
(iv) For each fixed a e I1, a - cuts is an order

preserving real algebra homomorphism from M(I) onto R.
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Proposition 1.2.15* 2Let n, H e R (I) then n fl Z n iff 3 2 n.

Proof:

V a e In 3 Z n2 iff (n B) > (n2)(a), 1(0)­

iff n(a)fi(a)2 n(a)n(a), V a e I1

iff (n)(a)(n(a)- n(a)) 2 o, v a e 11

when n(a)= 0, fl(a)Z n(a), V a e I1

when n(a)# 0, fi(a)2 n(a)

ie n B Z n2 iff fi(a)Z n(a), V a 6 11
ie iff B Z n.

Definition 1.2.16

A sequence (nn,En) in M(I) is said to be Cauchy

it ”“‘ [:((nn.En) e (nm.fm)Z] = 6.n—>(n

m—>cn
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Definition 1.2.17 [LUH]

A real or complex vector space E is called semi inner

product space, if to every pair of elements x,y in E, there

corresponds a number [x,y], called semi inner product with

the following properties

(i) [x+y.zl = [x.z] + [L2]

[kx,y] = k[x,y], x, y, z in E and A scalar

(ii) [x,x]>0 for x i 0

(iii)|[x,yl|2 5 [x,x][y.yl­



CHAPTER 2

THE REAL COMMUTATIVE ALGEBRA C(I) AND ITS COMPLETION*

2.0 INTRODUCTION

Kaleva, 0 [KA] introduced the notion of completion

of fuzzy metric spaces. Mashhour, A S 8 Morsi, N.N [M;M]

defined M(I), a fuzzy normed algebra, whose underlying space

is the smallest real vector space including all nonnegative

fuzzy real numbers. Clementina Felbin [CL2] established the
completion of a fuzzy normed linear space.

In this chapter we construct, a real commutative

algebra C(I) from M(I) analogous to the construction of the

algebra of complex numbers from that of reals. We establish

the existence of unique fuzzy completions M'(I) of M(I) and

C'(I) of C(I). However, this is essentially different from

the works of Felbin and Kaleva. For example, our definition
*of R(I) and R (I) are different from those of Felbin.

*
Some results contained in this chapter have been included

in a paper accepted for publication in The Journal of Fuzzy
Mathematics.



24

Finally, we prove certain results about C'(I) - like that it

is not an integral domain and that it is a commutative

algebra.

2.1 FUZZY NORMED BLGEBRB C(I)

Definition 2.1.1

Define C(I) =  8' 0755') E M(I)}
ie C(I) = M(I) X M(I)

On C(I) addition, multiplication and scalar multiplication

are defined by

<<n1,:l>,<n'1,:'1)> + (<n2.:2>.<n'2,€'2>>

= ((n1»E1) 9 (n2,E2) (n'l.E'1) 6 (n'2.E'2))

((n1.E1),(n'1,E'1)) x ((n2.E2).(n'2,E'2))

= ((n1.E1) (n2.E2) 9 (n'l.E'l) (n'2.E'2),

<n1.t1> <n5.:5 > e (ni.Ei) (n2,E2))
Let t e R then
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t((n,E).(n'.E')) = (t(n.E),t(n',E'))­

Note 2.1.2

(i) It can be easily verified that C(I) is a real
commutative algebra.

(ii) M(I) can be embedded in C(I) by representing each

(n,E) e M<I) by ((n.E).(5,5)) e c<I>.

Definition 2.1.3

Define [((n.E),(n'.E'))] = [Z(n.t)20 (n',€')2Z]1/2

Proposition 2.1.4

Treating C(I) as a real vector space E ] defined
above is a fuzzy norm on C(I).

Proof:

(i) [((n.E).(n'.f'))] = E1<n,z>2e (n'.E')2I]1/2 = 6

This is true iff (n,E)2e (n',z')2= (6,6)
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iii ((n.E),(n'.E')) = <<o.6).(o,o>>.

(ii) Let t e R, t # 0, consider

[t((n.f),(n'.€'))] = EXt2((n.E)20 (n'.E')2)X]1/2

s |t| E1(n,E)29 <n',:'>2I]1’2

ie [t<<n.z>,<n',z'>>] s |t| [((n.£).(n'.E'))] (a)
also

[<<n,:>.<n',z'>>] = § x t<<n,:>.<n'.z'>>]

s T§T [t<<n.z>.(n',£'>)]

ie |t|[((n.£).(n',E'))] s [t<<n.€),<n'.t'>)] (b)
by (a) 5- (b)

[t<<n.:>,<n'.:'>>] = |t| [((n.E).(n'.E'))]

(iii) [((n1,Z1),(ni.Ei)) + <<n2.z2>,<n;,z5>>]’=

I I I 2
[((n1.E1) e <n2.z2>.<ni.z1) e (n2.£2))]
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[:(<<n1.:1> e <n2,:2))2e ((ni.fi) e <n;.z;>>2z1

|:((n1,E1)2<9 (n2.é‘2)2¢> 2(n1.E1)(n2.E2)9 (ni,Ei)2

o <n5.:;,>2e 2<n;,zi><n;,z5>D

C((n1.E1)2e (ni.Ei)2Z] 0 |:((n2.E2)20 <n5.:5>2D

0 2E((n1.E1)(n2.E2) 6 (ni.£‘i)(n§,E§))J

[[((‘n1.Z1),(ni.2.‘i))]]20 [[<<n2.z2>.<n§.z.;,>>]]2

e 2|:(((n1.E1)(n2.E2) e <ni.zi><n;,zp>"

e ((n1,E1)(n2,{‘2) e <ni,zp<n;,z;>>2IJ1”

[[((n1.E1),(ni,Ei))]]2¢ [[<<n2,z2>.(n;,z;))]]2

e 2[[((nl.E1)(n2.E2) e <ni.zp<n5,z;,>,

(n1.{‘1)(n2.E2) e <ni,z1><n;..z5>>]]

|[((n1.E1).(ni,{‘i))]]26 [[<<n2,z2),<n5.z5)>]]2

so 2[[((n1.El).9 (ni.t‘i)) x <<n2,:‘2>,(n5,a‘._;>)]]
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s [((n1.E1).(ni.Ei))]20 [<<n2.z2>.(n§,z;>>]2

w 2[((n1.E1),(ni.Ei))] [((n2.E2),(né,E§))]

ie, [[((n1.£‘1),(ni.£‘i)) + <<n2,»:2>.<n;.r:.;,>>]]’

s [[[((n1.E1).(ni.€i))]| e [[<<n2.z2>.<n;.z;>>]]]2

ie, [((n1.El),(ni.Ei)) + <<n2.£2>.(n5.t5))]

s [((n1.E1).(ni.Ei))] a [<<n2.z2>.<n5,z;>>].

Note 2.1.5

The subset c1(I) = {((n,:),(6,6))| 77,: e 15(1)} of on) is
a partially ordered set with the partial order defined by

_ _ > _ _((n1.E1).(0.0)) - ((n2.E2).(0,0))

iff (n1.E1) Z (n2.E2).

2.2 FUZZY COMPLETION OF H(I)

Notation 2.2.1

The a level set of EK(nn,£n) 9 (n,f)£] denoted by
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|:((nn.En) e (n.E))Z| (a)= {t 6 R=[3(nn.En) 9 (n.f)I] (t) 2 at}

This is identified by Xa((nn,En) 9 (n,Z)), the maximal
element of the above set.

Theorem 2.2.2

There is a complete fuzzy normed space <M'(I), [K {]'> such

that M(I) is congruent to a dense subset of M'(I),say M0(I)
and the fuzzy norm on M'(I) extends the fuzzy norm on M(I).

Proof:

On the class of all Cauchy sequences in <M(I), E1 X]>

consider the relation +4 defined by {(nn,En)} ++ {(nA,(&)}

iff lim 1:((nn,zn) e (n;1,:r'1))j =6.
n—>oo

That is iff lim Xa((nn,En) 9 (n$,E$)) = 0, V a 6 (0,1]. It
n—+m

can be easily verified that ++ is an equivalence relation.

The collection of all equivalence classes is denoted by

H'(I)- Let [n.E] & [0,6] 6 M'(I) and {(nn:En)} 6 [DIE] and

{(0n,fin)} 6 [a,fi]- Then {(nn,En) 0 (an.fin)} is a Cauchy

sequence. Also if {(n$:E$)} E [n.f] {(dA.flg)} 6 [a.fi] so
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that {(nn.En)} H {(77r'1.EI'1)}. {(0ln.fin)} H {(0Ir'l.f31'1)}. then

{(nn,En) e (an.fin)} ++ {<n;,z;> e <a;,n;)}.
Define [n,z] e [a,B] to be the class to which
{(nn,En) 9 (an.fin)} belongs. If r E R and {(nn,En)} 6 [VIC].

define r[n,E] as the class containing {r(nn,En)}. M'(I)
together with these operations is a linear space.

On H'(I) define []Z]' as follows.

Let [n,E] e u'<x> and {(nn.En)} e [n.€].

Define E1[n.E]X]'(a)= [0.Aa[n.E]]

= to. 11m Ka(nn.fn)]­
n—+(o

Here after we denote EX[n.f]Z]'(a) by Ka[n,{].

Proceeding as in the proof given by Clementina Felbin [CL2]
we can prove that [K[]' is a fuzzy norm.

Next to show M'(I) contains an every where dense

subspace M0(I) congruent to M(I). Define ¢: M(I) -4 M'(I) by
setting ¢ (n,E) as the equivalence class to which the
repeated sequence {(n,E),(n,E)...} belongs.
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Then for all a e (0,l]

EK¢ (n.E) 9 ¢ (n',f')I]'(u)= Ka((n.E) 9 (n'.f'))

= [:((n.&‘) 9 (n',E')):] (0)

ie- [396 (mt) 9 ¢ (n'.E'))Z| '= E((n.f) e (n',E')Z]

ie. ¢ is an isometry.

Let Ho(I) = ¢ (M(I))

To show that H37?) = M'(I)

Let [W516 M'(I) and {(T?n»5n)} E [71:51

since {(nn,En)} is Cauchy, given 5 > 0 & a e (0,l] there
exists N such that V m,n Z N

>\d((77n»{‘n) 9 (77m,?m)) < 49

Consider {¢ (nn,En)} e M0(I) c M'(I), then

E([n.E] 9 ¢ (nn.En)Z] '(a)= lim >\a((nm.Em) 6 (nn.En))
111-—ND

for n 2 N R.H.S is less than 5

-9 [][n,E] 9 ¢ (nn,fn)Z]'—+ 5 as n -4 m.
ie, given [n,f] e M'(I) it is possible to construct a

sequence of points in Mo(I) converging to [n,£]. Hence

MO I) = M'(I).
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¢ is a 1-1 mapping of M(I) onto Mo(I). It is easy to prove
¢ is linear.

To prove M'(I) is complete with respect to []{]' consider

first a special type of Cauchy sequence

{¢ (n1.E1).¢ <n2,:2).....¢ <nn.:n>....}

where {(ni,Ei),(ni,Ei)....} 6 ¢ (ni.fi). i = l.2.--­
consider the sequence {(nn,En)} obtained by taking the

isometric pre-images of {¢ (nn,fn)}.

Since {¢ (nn,fn)} is Cauchy in M'(I) and ¢ is an isometry we
have

EM (nn.fn) e c» (nm.£m))]  E((nn.En) e (nm.Em)D this

implies that {(nn,En)} is Cauchy and belongs to some class
[n,E], say. Now for a in (0,1]

[345 (nnin) 9 [n.E]Z] '(a)= lim >~a((nn.En) e (nm.Em))
m—>m

As n—+m we get lim []¢ (nn,En) 9 [n,E]{]' 0
n—9m <a)‘

ie, ¢ (nn,fn) converges to [n,f]

For the general case, let {[nn,En]} e M'(I) be an arbitrary

Cauchy sequence. Since figTT) = M'(I), there exist points in

M0(I). ¢ (ni:Ei).¢ (né,Eé). ....¢ (n$.E$). such that
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C([nn.€n] 9 ¢ (n;1.tr;>)J '—> 0 as n a on

ie, {[nn.En]} +» {¢ (nn.En)}.

Consider

E(¢ (n,;.z;1> e 4» <n,;,z,;1>I] '5 Cw <n;1.z;1) e [nn.En]I]'

0 [:([nm.Em] 9 ¢> (n,;‘.?f,'n))I|'

0 |:([nn.£n] e [nm,tmJ):J'

This gives that {¢ (ng,EA)} is Cauchy hence as in the above
case it converges to some [n,E] e M'(I). From the
inequality

[:([nn,En] e [n.E]5J '5 E( tnnxnl e «:5 (nr'1.E!'1))]'

0C§¢ (nI'1.EI'1) 9 [n.E])J'

it follows that {[nn,En]} converges to [n,f] ie, M'(I) is
complete.

To show that if there exist two completions of <M(I),[]{]>,

then they are congruent. Let <M"(I),EZZ]"> be another

completion. we show that <M'(I),[]{]'> is congruent to
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<M"(I),[]{]">. Let ¢" be the linear isometric imbedding of

M(I) into M"(I). Let ¢"(M(I)) = M3(I). Since ¢ (M(I)) is

dense in H'(I), if [n,f] e M'(I) then there exists {(nn,En)}

in M(I) such that {¢ (nn,En)}, (we denote it by {[n$,f&]})
converges to [n,E]. Each of this points has an isometric

image in M"(I). Thus the Cauchy sequence, {[n£,f$]} in
M'(I) gives rise to another Cauchy sequence in M"(I),

{[n;,E;]}. Since M"(I) is complete, this sequence must have
a limit [n",z"] in u"(1).

Define W:M'(I) —+ M"(I) by

W ([D,E]) = [n".f"]­

It can be easily proved that w is 1-1, onto and linear. To

show that W is an isometry,

let ¢ (nn.En) = [nA.fA] -4 [U,E] G M'(I) and

96 (otnfin) = [a;‘,rs;lJ —> [onfi] e M'(I)

as I] —-D (D

we have [nA,E&] & [a$,fig] E M0(I) also



35

I:([n.EJ 9 [a.(3]I] '5 E([n.EJ e [nr'1.£I'1])Z| '0

|:([nI'l.EI'1] e [a!;.fll;]D '9 I:([a;‘.ra;l1 e [o«.mn'

= l:([n.E] e [nI'1.fr'l])I] '0 E((nn,fn) e (an.r3n)I]

e EK[ot,'1.{?;‘] e [ot.r3]§] ',v n e u

(since ¢> is an isometry)

where [n;.€$] {(nn.En).(nn.En),...} and

[a$.fi$] {(an.fin).(an,fln)....}

Thus l3[n.f] e [o«,m£1's um C(nn.En) e (an.I?n)I] (1)
11-500

Also [Z(nn.fn) 9 (dn.fin)I] = EK¢ (nn,En) 9 ¢ (an.fin)I]'

[3[n;1,:;11 e tar;.r3r;Jn'

IA [3[ng.E;] 9 [n.E]I]'

0 EX[n.E] 9 [a.fi]Z]'

e [Exams] 9 [a;|,n,;1D '
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ie. lim [:((nn.En) 9 (an,I?n))] 5 CZ[n.E] 9 [a,fi]I]' (2)
n—>m

by (1) 5- (2)

[][n.t] e [o«.mz1  um I:((nn.En) e (an.r?n>)]
I1--ND

Let [n',E'], [a',fl'] e M"(I). There exist Cauchy sequences

{[n;,z;]}, {[o;,n;]} in u3(x) such that {[n;.£;]} converges

to [n',z'] and {[o;,p;1} converges to [u',p'].

¢" being a linear isometry {¢"’1[n;,z;]} and {¢"'1[u;,p;]}

are Cauchy sequences in u(1). So {¢ (¢"'1[n;,z;])} and

{o (¢"‘1[o;,p;])} are Cauchy sequences in uo(1). But

¢ <¢"'1tn;;,z;;1> = w‘1tn;;.z;;1 = tn;1.z;11 and

4» <¢"“1[a;;,ra;;J> = w‘1[a;;.rs;;1 = ra;,rs;11.

Being Cauchy sequences these will converge respectively to

['n,E] and [ot,(?] e H'(I). Thus

|:([n'.E'] e [a'.{3']I]  um |:([n;;.t;;1e ta;;.ra;;Jz1"
1'!-90)

um [3¢"<nn,:n> e ¢"<o«n.rsn>z] "
n—>m

lim l:((nn.En) 9 (an.f3n){]
n—>cn
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= lim [X¢ (nn.fn) 9 ¢ (Gn,fln)X]'
n—+m

= E1tn.t1 e [a,n1:J'

so that E1[n.z1 e [a.n1i]'= EK[n'.E'] e [a'.n'1X]"

= EXW([n.E]) e w<[a,n1>I]"

Hence W is a linear isometry of M'(I) on to M"(I)

ie, H'(I) is the fuzzy completion of M(I).

Proposition 2.2.3

M'(I) is a partially ordered set with the partial order

defined by [n,E] S [a,fi], iff (nn,En) S (an,fin) for large n,

for every {(nn.En)} 6 [n.f] and {(an.fln)} 6 [a,B]­

Proof:

S is a partial order for,

(1) [n.f] s [n.E] since {(nn.£n)} and {<n;.z;>} e [n.f]

then lim [j(nn,En) e (nr",:I'1)§] = 6
n—>o)
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ie, 11m ((nn.En) e <n;.:g>) = 6
n—>oo

ie, (nn,zn) s (né,:$) for large n.

(ii) Let

[n.E] 5 [0,3] 8 [0,3] 5 [n,f] then (nn.En) S (anrfln)

& (an,fln) s (nn,zn) for large n.

where {(nn.En)} e [n.E] and {<an,nn>} e ta.n1

ie, (nn,zn) e (an,fin) —+ 6, as n —+ m

ie, [](nn,zn) e (an,fln)I] -4 5, as n —+ m

ie,{(nn.¥n)} ++ {(dn:fin)}

[a.fl].ie. [n.E]

(iii)Let [n.E] S [a.B] 5 [0,3] 5 [?.6]

ie, (nn,En) S (an,fin) 5 (an,fin) S (yn,6n) for large n

-+ (nn,En) S (yn,6n) for large n

ie, [n.E] S [7,6].
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Note 2.2.4

With proper understanding of notations we denote EK{]'

by [XI]

2.3 FUZZY COMPLETION OF C(I)

Proposition 2.3.1

There is a complete fuzzy normed space <C'(I),[ ]'> such

that C(I) is congruent to a dense subset of C'(I), say C0(I)
and the fuzzy norm on C'(I) extends the fuzzy norm on C(I).

Proof:

Similar to the proof of 2.2.2.

Proposition 2.3.2

C'(I) = M'(I) x M'(I).

Proof:

We have C'(I) = {[(n.E).(n'.E')]|(n.f) 8 (n'.f') e M(I)}
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let {((n1n,E1n).(nin,fin))} E [(n1.£1).(ni.Ei)]

ie, {((n1n,E ,Ein ))} is a Cauchy sequence in C(I)1n)'(nin

then 11m [((n1n.E1n).(nin.Ein)) e ((n1m.t1m).(nim.£im))] = 6
n—>cn

m—)a)

then

1im E]((n1n.E1n)e (n1m.E1m))29 ((nin,Ein)9 (nim.Eim))2i]1/2= 6.
n—>a)

m—b(n

this is possible only if
I

O 0''lim E3(n1n.E1n) e (n1m.£ >£1
n—>w
rn—)m

1m

I
OI11m E1(nin,Ein) e (nim.Eim)Z]

l'l—§C0

m—5oo

-» {(n1n,f1n)} e [n1,E1] &

{(nin,Ein)} e [ni,Ei]

ie, {((n1n.E1n).(nin.Ein))} e [n1.E1]x[ni.Ei]

ie, [(Dl.E1).(Ui.Ei)] C [n1.El]x[ni,Ei]. (3)
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Conversely let {(n1n.E1n)} 6 [nl,E1] G {(nin.Ein)} e [ni,Ei]

then {(n1n.Eln)} x {(nin.Ein)}

= {((n1n.f1n),(nin.fin))} e [(n1.E1),(ni.£i)]

ie, [n1.E1] x [ni.Ei] c t<n1,:1>.<n;.zi>1 <4)
by (3) s (4)

[(n1.E1).(ni.fi)] = [n1.f1] x [ni.Ei]

ie, C'(I) = M'(I) x M'(I)

Definition 2.3.3

On C'(I) the product [(n1.E1).(n2:f2)] x [(n3.f3).(n4.f4)]
is defined as the class containing

{((n1n.E1n).(n2n.f2n))x((n3n.f3n).(n4n.E4n))} where

{((n1n.E1n).(n2n.E2n))} e [(n1.€1).(n2.E2)] and
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{((n3n.t3n),(n4n,(4n))} e [(n3.E3),(n4.f4)].

Note 2.3.4

The above definition is well done for,

let {((nin,Eh'1).(n2I'}.E2r"))} E [(T71:E1).(T)2.f2)] and

{<<n5n.z5n>.<n;n.z;n>)} e [(n3.f3).(n4.E4)] then

andII 011m [((n1n.81n),(n2n.E2n)) e ((nin,£1A).(n2A,€2A))]n-no

ll OIIim [((n3n.E3n),(n4n.£4n)) e <<n5n.:3n),<n;n.z;n))]
11-50::

To Prove

Iim [((n1n.f1n).(n2n.£2n))((n3n,E3n).(n4n.E4n)) ­
n—>oo

<<nin,z13>,<n25.z23>>(<n5n.:;n>,<n;n.t;n>>] = 6 <5)

Consider
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[((n1n.£1n).(n2n.£2n))((n3n.£3n).(n4n.E4n)) —

<<nin.z1g>.<n2;.£23>)<<n3n.z;n>.<n;n.z;n>>](a)

= [((n1n.E1n),(n2n,E2n))[((n3n,f3n).(n4n.£4n))

— <<n;n.:5n>.<n;n.z;n>>] + <<n5n,z;n).<n;n,:;n>>

[<<n1n.z1n>,<n2n.z2n)) - ((nin.£1£).(n2$.E2;))]](u)

S  IE  It  X  lg  lg  ­ln ln 2n 2n (a) 3n 3n 4n 4n

<<n5n.z5n>.<n;n.z;n>)](a)+ [((n5n.E3n).(n;n.E;n))](a)x

[((n1n,Z1n).(n2n.£2n)) — ((nin,E1$),(n2$.E2$))](a)

—+ 0 as n —+ m. This proves (5).

Proposition 2.3.5

on c<r> define * by ((nl.E1),(n2.E2))*((n3.f3).(n4.E4))

= ((n1.El).(n2.E2)) x ((n3.E3).(f4.n4)) and on C'(I)
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define *' by [(n1.E1).(n2.E2)]*'[(n3.E3).(n4.£4)]

= [(nl.E1).(n2,E2)]x[(n3.E3),(E4,n4)], then

[(n1.E1).(n2.E2)]*'[(n3,E3),(n4.E4)]

= 11m [((n1n.£1n).(n2n,£ ))*((n3n,E3n),(n4n.£4n))]n—>oo
2n

where

{((n1n.f1n).(n2n.E2n))} e [(n1.E1).(n2.E2)] 5

{((n3n.E3n).(n4n.f4n))} e [(n3.E3).(n4.£4)]

Proof:

[(nl,E1),(n2.E2)]*'[(n3,E3),(n4.E4)] =

[(n1.E1).(n2.E2)]x[(n3,E3).(E4.n4)]

= Iim ((n1n.£1n).(n2n.E2n)) x lim ((n3n.€3n),(€4n,n4n))n—>a3 n—>cn
= Iim [((n1n.£1n),(n2n,E2n)) x ((n3n.£3n).(84n.n4n))]n—ND

= i:Tw[((n1n.£1n).(n2n,E2n)) * <<n3n.:3n>,<n4n.z4n))]
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Proposition 2.3.6

c"(1) = {[(n,z),(6,6)]|n,: e a*(1)} is a partially ordered
set with partial order defined by

[(n1.E1).(5.5)] 2 [(n2.£2).(5.5)] iff [n1.E1] 2 [v2.62].

Proof:

Follows from 2.2.3­

Proposition 2.3.?

C'(I) is not an integral domain­

Example:

II
P--‘ 1"’ IA 0Define n (t)

0, t > 1

then n # 0, n # 1 and n2: n

consider [(n.5).(5.5)] s t(i,n>,(6,6>1

then c(n.6>.(6,6)1 x t(i,n).<6,6)1

= the class containing ((n,6),(5,5))x((i,fi),(5,6))
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K

= the class containing ((0,0),(0,0))

= [(6,6),(6,6)].

Proposition 2.3.8

[3[n.E]X] 1imC((nn,fn))] where
n—>on

{(nn.En)} e [mi]

Proof:

l:(tn.zm (G, = [0.>\a[n.f]]

[0,lim Aa(nn,{n)]
D-)0)

lim U(nn.Zn))]
n—>oo

(ct)

Hence E([n.:m Iim [3<nn.tn>)].
n—>o:>

Note 2.3.9

(i) It can be easily verified that C'(I) is a
real commutative algebra.
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(ii) Here after with proper understanding of notations we

denote [[]]' by [] and [(6,6),(6,6)] by 6.



Chapter 3

A FUZZY EXTENSION OF HAHN-BANACH THEOREM*

3.0 INTRODUCTION

In this chapter using the completion M'(I) of M(I)

we give a fuzzy extension of real Hahn-Banch theorem. Some

consequences of this extension are obtained. The idea of

real fuzzy linear functional on fuzzy normed linear space is

introduced. Some of its properties are studied. In the
complex case we get only a slightly weaker analogue for the

Hahn-Banch theorem, than the one [B;N] in the crisp case.

3.1 FUZZY (REAL) HAHN-BANACH THEOREM

Definition 3.1.1

Let X be a real vector space. A real fuzzy linear
functional on X is a function f: X —+ M'(I) satisfying the

* Some of the results contained in this chapter have been
included in a paper communicated for publication in the
Tamkang Journal of Mathematics.
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following conditions

(i) f(x+y) = f(x) 0 f(y)
(ii) f(tx) = t f(x), V x,y e x 8 t e R.

Theorem 3.1.2

Suppose (i) Y is a subspace of a real vector space X

(ii) p: X -4 M'(I) satisfies p(x+y) S p(x) 9 p(y) and

p(tx) = t p(x),V x,y e X and t e R such that t Z 0

(iii) f: Y —+ M'(I) is a real fuzzy linear functional and

f(x) S p(x) on Y, then there exists a real fuzzy linear

functional A: X —+ M'(I) such that A(x) = f(x), V x e Y

and -p(-x) S A (x) S p(x), V x e X.

Proof:

If Y 1 X, choose xl e X & x1 5 Y, define
Y = {x+tx1 lzx 6 Y & t e R}. Then Y is a subspace of X.1

If x,y 6 Y we have

f(x) 6 f(y) = f(x+y) S p(x+y) = p(x-x1+x1-Y)

ie f(x) 9 f(y) S p(x+y) = p(x-X1) 0 p(x1+y)
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ie f(x) 9 f(y) S p(x-xl) 0 p(x1+y)

hence f(x) 6 p(x-xl) S p(xl+y) 9 f(y) (1)

let a be the limit of the left side of (1) as x ranges over

Y [such an a exists since M'(I) is complete].

Then f(x) 9 p(x-xl) S a

=% f(x) 9 a S p(x-x1),V x e y (2)
also a S p(y+x1) 9 f(y)

ie f(y) 0 a S p(y+x1) (3)
define fl on Y1 by

f1(x+tx1) = f(x)+ta, where x G Y 5 t e R.
Let t e R, t>0, then t-lx e Y

replacing x by t-lx in (2) and multiplying by t we get

f(tt-lx) 9 a t S p(x-txl)

ie f(x) 9 a t S p(x-txl), V x e Y

ie f1(x-txl) S p(x-txl), V x G Y (4)
replacing y by t—1y in (3) and multiplying by t we get

f1(y+tx1) S p(y+tx1), V y e Y (5)
by (4) & (5) we get

f1S p on Y1 and fl = f on Y.
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Let.fl be the collection of all ordered pairs (Y',f') where

Y‘ is a subspace of X that contains Y and f' a fuzzy linear

functional on Y’ that extends f and satisfies f'S p on Y‘

fl’ is partially ordered by the order S defined by
(Y',f') S (Y",f") if Y'c Y" 8 f'= f" on Y‘ by Hausdorff's

maximality theorem there exists a maximal totally ordered

sub collection 0 of.fl. Let K be the collection of all Y‘

such that (Y',f') 6 Q, then R is totally ordered by set
inclusion and Y, the union of all members of K is then a

subspace of X. If x e Y then x G Y‘ for some Y'e K. Define

A (x) = f'(x), where f' is the function which occurs in the

pair (y',f') e 0. Hence A is linear, A S p & Y = X.

Thus there exists a fuzzy linear functional such

that A (x) = f(x) on Y and A:X -4 H'(I) & A S p.

A S p -9 A (x) S p(x) on X

—> -A (x) Z -p(x)

ie -p(-x) s -A (-x) = -i.-i A (x) = A (x)

ie -p(-x) S A (x) S p(x), V x e X.
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Theorem 3.1.3

Suppose Y is a subspace of a real vector space X,

p a fuzzy norm on X and f a real fuzzy linear functional on

Y such that []f(x)Z] S p(x),V x 6 Y. Then f extends to a

real fuzzy linear functional A on X such that

[IA (x)Z] S p(x), V x e X.

Proof:

[]f(x)I] S p(x), V x e Y

—)f(x)Sp(x)& p(x)Z5,VxeY
by 3.1.2, there exists a fuzzy linear functional A such that

A S p and -p(-x) S A (x) S p(x), V x 6 X.

Since p is a fuzzy norm p(-x) = p(x) Z 5, we get

-p(x) S A (x) S p(x), V x E X

ie [IA (x)X] S p(x), V x e X.

Corollary 3.1.4

Let X be a fuzzy normed space and xoe X, then there exists
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a real fuzzy linear functional A such that A (x0) = flxofl and
[IA (x)Z] S Hxfl, V x e X.

Proof:

In 3.1.3 take p(x) = flxfl, Y = linear span of x0 and

f(txo) = tflxofl in Y.

Definition 3.1.5

Let X be a fuzzy normed space. A fuzzy linear functional f
*

on X is said to be bounded if there exists a k e R (I) such

that |:(f(x):] s 1: ||x||,V x e x.

Definition 3.1.6

Let f be a bounded fuzzy linear functional on a fuzzy normed

space X. Then Hffl is defined as

Hf" = inf {R E R*(I)| E]f(x)Z] S k flxfl, V x e x}_
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Proposition 3.1.7

H H defined above is a fuzzy norm on the fuzzy dual space XL
of X.

Proof:

(i) If f = 0, the zero functional then Hf“ = 6.

If f # 0, then f(x) # [5,5] for some x # 0

ie []f(x)Z] # 0, for some x # 0
ie Hf“ # 0

(ii) Let f,g e XL, then

Hf+gfl inf {R e R*(I)| [Kf(x) 9 g(x)X] S k Hxfl}

IA

inf {k1+k2e n*(1)| [:(f(x)fl ea E(g(x):] 5 (kl+k2)||x|l}

IA

inf {kle R*(I)| E]f(x)I] S klflxfl}

0 inf {R26 R*(I)| [Xg(x)E] S kzflxfl}

ie Hf+gH S Hf" 9 Hg"

(iii) Let t e R
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then new = inf {k e n*(1)| [j££(x)[] s 1; llxll}

= inf {k e R*(I)| |z|C(£(x){] 5 k Ilxll}

s inf {M 1:16 n*(1)| |z|[(£(x){] s M klllxll}

= [:1 inf {kle n*(1)1 [jgtcxnj s klllxll}

ie mu s [4 urn (5)
also urn = u %z£u s '§| um:

ie m urn s um: (7)
by (6) and (7)

Hlffl = |l| Hf".

Remark 3.1.8

If f is a bounded fuzzy linear map then [Kf(x)I] S Hf“ flxfl.

Corollary 3.1.9

Let X be a fuzzy normed space. Then corresponding to every

xo e X, there exists a bounded real fuzzy linear map fx on
0
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x such that 5 (x ) = Hx u 2and us n s Hx u.xo 0 o xo 0
Proof:

Take Y = linear span of xo. Then Y will be a subspace of X.

Define f:Y —+ M'(I) by f(tx0) = tflxoflz, then f is a real
fuzzy linear map on Y.

Take p(x) Hxofl Hxfl

then f(x) 5 p(x) on Y.

Also p(x+y) S p(x) 0 p(y) and p(a x) = a p(x).

Hence by 3.1.2 there exists a real fuzzy linear functional

f X —+ M'(I) such that f (x) = f(x) on Y and*0 "0
f (x) S p(x), V x e X.

*0

2

Also fxo(xo) — f(x0) - flxofl and

[:(fx (x)):] S p(x) = Hxoll llxll
0

ie flfxofl S flxofl

Theorem 3.1.10

Suppose f be a bounded real fuzzy linear functional on a
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fuzzy normed subspace Y of a fuzzy normed space X. Then

there exists a bounded real fuzzy linear functional F,

extending f, defined on the whole space having the same

fuzzy norm as F.

Proof:

We have [:(f(x)):] 5 Ilfll llxll

define p(x) Hf" Hxfl V x e X

then p(x+r) S p(x) 0 p(y)

p(tx) = |t| p(x)­
Also []f(x){] 5 p(x), V x e Y.

By 3.1.2 we can extend f to a new fuzzy linear functional F,

defined on all of X such that

E]F(x)X] S p(x) = flffl Hxfl.

In view of this result it is clear that F is a

bounded fuzzy linear functional and also thatHFH S Hf" (8)
Also we have

In-n = inf{ k e R*(I) | [jnxm 5 k llxll }
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when x e Y

[]f(x){] = []F(x)[] S HF" Hxflie Hffl 5 HP“ (9)
by (B) and (9) Hffl = HFH.

Theorem 3.1.11

Let xo be a nonzero vector in the fuzzy normed linear space
X. Then there exists a bounded real fuzzy linear functional

F, defined on the whole space, such that

HFH = 1 and F(x0) = Hxofl.

Proof:

Let Y = span {xo}. Consider f on Y defined by

f(a x0) = a flxofl
clearly f is a real fuzzy linear functional with

f(x0) = Hxofl

further for any x 6 Y

[}f(x)X] = |a| flxofl = Na x0" = Hz" (10)
ie f is a bounded fuzzy linear functional on Y also Hf" S 1.
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If k be a real number such that k<1 and

CKf(x)X] 3 E "x", v x e 2

this would contradict the equality of (10)

hence Hffl = i

ie f is a bounded fuzzy linear map on Y, by 3.1.10 there
exists a bounded fuzzy linear functional F on X extending f,

and having the same norm as F, that is HF" = 1 and

F(x0) = Hxofl.

Remark 3.1.12

(i)

(ii)

If x is not a trivial space, the fuzzy dual space
is not trivial. That is nonzero bounded fuzzy linear

functional must exist on any nontrivial fuzzy normed

space.

If all the bounded fuzzy linear functionals vanish on a

given vector, the vector must be zero. Since one of

the bounded fuzzy linear functionals, when applied to

the vector, must assume the norm of the vector as its

value, the norm must be zero. That is the vector is
Z8150.
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3.2 FUZZY (COMPLEX) HAHN-BBNACH THEOREM

Note 3.2.1

We do not get an exact analogue for the Hahn-Banach theorem

in the complex case. However, we get a slightly weaker form

which is given in the theorem below.

Note 3.2.2

Let f be a function from a real or complex vector space X to

C'(I).

Suppose f(x) = [(n1.E1),(n2.E2)] e C'(I)

write tcx) [<nl.z1).<6.6>1+t<6,6>.<n2.:2>1

[(nl,£1),(5.5)]+i[(n2.f2).(5.5)]
where

ie f(x) = fl(x)+if2(x)
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Theorem 3.2.3

Suppose

(i) Y is a subspace of a complex Vector space X

(ii) p: X —+ M'(I) satisfies p(x+y) S p(x) 6 p(y) and

p(a x) = Ial p(x) for every complex number a and

x,y e x.

(iii) f: Y —+ C'(I) is a fuzzy linear functional and

[f(x)] S p(x) on Y, then there exists a fuzzy linear
functional A: x —+ M'(I) such that A (x) = f(x) on Y

and [A (x)] S 2p(x) for all x e X.

Proof:

We have f(x) = f1(x)+if2(x) we claim that f1(x) & f2(x) are
real fuzzy linear functionals. By a real fuzzy linear
function we mean the following: g is a real fuzzy linear

functional on the complex vector space V. If a is a real

number implies g(a x) = a g(x) and g(x+y) = g(x) 0 g(y) for

every x,y e V.
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To prove fl and f2 have this property, let a be a real
number and consider

a f(x) = a f1(x)+ia f2(x)
since f is a fuzzy linear functional, this must equal to

f(a x) = f1(a x)+if2(a x)

ie fl(a x) = a fl(x) and f2(a x) = a f2(x).

In a similar way we can show that sums are also preserved.

Now consider

i(f1(x)+if2(x)) = if(x) = f(ix) = fl(ix)+if2(ix)

ie f1(ix) = -f2(x)

ie f(x) = f1(x) - if1(ix)

also [f(x)] 5 p(x) V x e Y

ie f1(x) S p(x), V x e Y

by 3.1.2. there exists a real fuzzy linear functional Al
defined on X extending f and satisfying1

A1(x) 5 Phi)
For every x e X we define

A (x) = A1(x) - iA1(ix)
A extends f1 1’ 3°
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A1(x) = f1(x) and Al(ix) = f1(ix) = -f2(x)

thus, A (x) = f1(x)+if2(x) = f(x)

ie A is an extension of f. Since, A is clearly a real
fuzzy linear functional it only remains to show that

A (ix) = iA (x)

Consider A (ix) = A1(ix) - iAl(-x)= Al(ix)+iA1(x)

comparing this to iA (x) = iA1(x)+A1(ix)
we get A (ix) = iA (x)

ie A is a complex fuzzy linear functional on X which extends

f.

Also we have A (x) = A1(x) — iA1(ix)

I[A 00]] [[A1(x)-iA1(ix)]] 5 |[A1(x)]]+[[A1(ix)]]

[A1(x)]+[A1(x)]

[[Al(x)]]+[[A1(x)]] S p(x) <9 p(x) = 2p(x)­IAie [A (x)]



Chapter 4

FUZZY SEMI INNER PRODUCT SPACES*

4.0 INTRODUCTION

Lumer, G [LUM] introduced the idea of semi inner

product space with a more general axiom system than that of

inner product space. The importance of semi inner product

is that whether the norm satisfies the parallelogram law or

not, every normed space can be represented as a semi inner

product space, so that the theory of operators can be
extended further by Hilbert space type arguments. Parallel

to this on a C'(I) module we are able to introduce the

notion of fuzzy semi inner product. We prove that a fuzzy

semi inner product generates a fuzzy norm and further that

every fuzzy normed space can be made into a fuzzy semi inner

product space.

*
Some results contained in this chapter have been included

in a paper accepted for publication in The Journal of Fuzzy
Mathematics.
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Also the notion of fuzzy orthogonal set is
introduced. Existence of a complete fuzzy orthogonal set is

established. The concept of generalized fuzzy semi inner

product is introduced.

4.1 FUZZY SEMI INNER PRODUCT

Definition 4.1.1

A fuzzy semi inner product on a C'(I) module x is a function

* xxx —+ C'(I) which satisfies the following conditions

x*z+y*z(i) (x+y)*z

(Kx)*y A (x*y)

ie, * is linear in the first argument where x,y,z e X

and A e C'(I)

(ii) x*x > 5 for every nonzero x e X

(iii) [x*y]2S [x*x][y*y]

then <X,*> is called a fuzzy semi inner product space.

Note 4.1.2

(i) If * is linear in first and conjugate linear in the
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second arguments also satisfies the above conditions

(i) & (ii) then <x,*> will be called a fuzzy inner
product space. Clearly a fuzzy inner product space is

a fuzzy semi inner product space.

(ii) The conjugate of [(n.E),(n'.E')] is [(n.f).(f'.n')].

Theorem 4.1.3

Let <X,*> be a fuzzy semi inner product space. Considering
*

X as a real vector space the function H H :X —+ R (I) defined

1/2 .by flxfl = [x*x] is a fuzzy norm on X.

Proof:

(i) x*x > 0 for every nonzero x

ie, [x*x] > 0
||x|l2 >6

||x|| >6

(ii) Hx+yfl2= [(x+y)*(x+y)]

= [x*(x+Y)+y*(x+y)]
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S [x*(x+y)] 6 [y*(x+y)]

S [x*x]1/2[(x+y)*(x+y)]1/29

[Y*y]1/2[(x+y)*(x+y]1/2

ie, |lx+y||2S "XII ||x+y|l 0 Ilyll ||x+yH

flx+yH2S (flxfl a Hy") "x+yH

ie, ||x+y|| S "X" 6 "y"

(iii) Let t e R & t # 0

Consider Htxfl2= [tx*tx]

fltxflzfi It] [x*tx]

HtxH2S [:1 "x" Htxfl

ie fltxfl 5 |t| Hxfl (1)
1 13150  —   S W

Aie, |t| Hxfl _ fltxfl (2)
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by (1) a (2) Htxfl = |t|nxH­

When t = o, tx = o, |t| = 0

hence Htxfl = 6 = |6|nxu

ie, H H is a fuzzy norm on X.

Note 4.1.4

Let <X,*> be a fuzzy semi inner product space. If H H is

the fuzzy norm generated from the fuzzy semi inner product

*, then the fuzzy semi inner product space is denoted by

<X,*,H fl>.

Theorem 4.1.5

On C'(I) define * by

[(n1.E1),(ni.fi)] * [(n2.t2>,(n5,:5)1 =

[(n1,E1),(ni,Ei)] x [(n2.E2).(E5,n§)] then

<C'(I),*,[ ]> is a fuzzy semi inner product space.
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Proof:

(i) {[(n1,E1),(ni.Ei)]+[(n2.f2),(n§.E§)]} *

[<n3.:3).(n5.:g>1

= [(n1.E1).(ni.Ei)] * [<n3.:3>.<n5.t5)1+

[<n2,:2>.<n5.:5)1 * [(n3,z3>.<n5.t5>1

also if t e R then

{t[(n1.E1).(ni.Ei)]} * [(n2.E2).(né.E§)] =

t{[(n1.f1),(ni.Ei)] * t<n2.:2>.<n5.t5>1}

(ii) [(n1.E1),(ni.fi)] * [(n1.E1).(ni.Ei)] =

[(n1.E1).(ni,Ei)]x[(nl,E1),(fi.ni)]

lim ((n1n.E1n),(nin,fin))((n1n.E1n).(Ein.nin))
1'1-ND

lim ((n1n.E1n)2e (nin.Ein)2, (6.6))
n—>co
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where {((n1n.Eln).(nin.tin))} e [(n1.€1).(ni.Ei)]

let [(n1,E1).(ni.£i)] x 6

then [(n1.€1).(ni.Ei)] * [(n1.El).(ni.fi)] = 6

. 2 . . 2- '
n‘—’m

‘ff lim (( z )2- 6 5 lim ( ' z‘ )2: 61 n1n' 1n nln’ 1nn—NI) n:Im
it: 11m [<<n1n.:1n>.<n;n.:;n)> - ((n1,E1).(ni.Ei))] : 6

n—>co

it: {((n1n.E1n).(nin.Ein))} e [(n1.E1),(ni.Ei)]

but this is not the case

hence [(n1.E1).(ni.Ei)] * [(n1.f1).(ni.fi)J > 6

when [(n1.f1),(ni.Ei)] e 6

(iii) consider [[(n1.€1).(ni.Ei)] * [<n2,z2>,<n5.z;>1]2I I I I 2
[[<n1.z1),<n1.z1)1xt<n2.t2>,<z2.n2>1]‘ I I I I 2
11m [((n1n.E1n),(n1n.E1n))x((n2n.E2n).(£2n,n2n))]
Il—)G)
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where {((n1n.€1n).(nin.Ein))} e [(n1.t1),(ni.Ei)] and

{((n2n.E2n).(n5n.E;n))} e [(n2.E2).(n5,£§)]- I I I I 2­J-er  *  '
rim [((n1n.£1n)(n2n.E2n) e <nin.zin>(n;n,:5n>,
n-ND

IA

I I I I 2
(n1n,E1n)(n2n,£2n) e (nln.£1n)(n2n.f2n))]

11m []((n1n.E1n)(n2n.t2n) e (nin.Ein) <n;n.:;n>>2e
n—>u)

((nin.Ein)(n2n,£2n) e <nln.z1n><n;n,:;n)>2z]

11m E]((n1n.E1n)29 (nin.€in)2) ((n2n.E2n)2e <n;n.z5n>’>1]
n-—)cn

lim {[:((n1n'£1n)29 (n]'.n'Ein)2):] [:((n2n'E2n)20 (n."2n'Eén)2D}n—»co

lim
n—>cn{[((n1n,£1n),(nin.Ein))x((n1n.£1n).(Ein,nin))]x

[(<n2n,z2n>.<n5n.:5n)>x(<n2n.t2n>,<t5n,n5n>)]}
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ie. [[(n1.E1).(ni.Ei)] * t<n2.z2>,<n5.t5>1]2s

[[(n1.E1).(ni.£i)] * [(n1.E1).(ni.£i)]]x

Theorem 4.1.6

Every fuzzy normed space can be made into a fuzzy

semi inner product space.

Proof:

Let X be a fuzzy normed space. By fuzzy Hahn-Banach theorem

corresponding to every xo 6 X there exists a bounded fuzzy
linear map f On X such that f (x ) = Hx "2 andx0 x0 0 0
I H S H Hlfxo xo
define fY(x) = x*y
then

(i) fY(x1+x2) = (x1+x2)*y = fY(x1)+fY(x2)
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: x1* Y+x2* Y

fY(ot 1:) = (0! x)* Y = at fY(x) = 01 (x * Y)

(ii) fy(y) = HyH2> 5 ie, y * y > 6, when y # 0

(iii) Consider C}fy(x)X] S Hfyfl HXH S Hy" flxfl

ie, Efy(x)):] 2: ||y||2||x||2

= fY(y) fx(x) = Ufy(y)X] |:(fx(x)Z].

4.2 FUZZY ORTHOGONAL SET

Definition 4.2.1

A subset A of a fuzzy semi inner product space <x,*,H H> is

said to be fuzzy orthogonal in X if x * y = 5 for every

x,y e A.

Definition 4.2.2

A fuzzy orthogonal set A in a fuzzy semi inner product space
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is said to be complete if there exist no other fuzzy
orthogonal set properly containing A.

Proposition 4.2.3

A fuzzy orthogonal set A in <X,*> is complete iff for any x

such that x i A, x must be zero.

Proof:

Suppose A is complete and x is a nonzero element of X such

that x L A, clearly this is contradictory because the fuzzy

orthogonal set A U {x} contains A, properly and contradicts

the maximality of A.

Conversely suppose the above condition is
satisfied. That is x L A implies x = 0. If A is not
complete, there exist some fuzzy orthogonal set B such that

B properly contains A. In such case there exists an
x e B—A, where x L A and x # 0, this is a contradiction. ie,

A is complete.



75

Theorem 4.2.4

Let <x,*> be a fuzzy semi inner product space.

(i) There exists a complete fuzzy orthogonal set in X.

(ii) Any fuzzy orthogonal set can be extended to a complete

fuzzy othogonal set.

Proof:

It is clear if (ii) can be proved, this will imply

(i). By virtue of the fact that in any fuzzy semi inner
product space, fuzzy orthogonal sets must exist for, any

nonzero vector x, {x} is a fuzzy orthogonal set. Hence we

shall prove (ii).

Let A be a fuzzy orthogonal set and.fl be the collection of

all fuzzy orthogonal sets containing A. Then.fl is partially

ordered by set inclusion. Let T be a totally ordered
subset of.fl Let

T = {A } a e A, for any a, A c U A also A c U Aa a a a a a
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Let x,y e U A 9 there exist A & Aa a a such that x e A &3 a
y e A

(3

Since T is totally ordered either Aac Afi or Aflc Au suppose

the former inclusion holds, then we can say x,y e An
then x L y, hence U A e.#.a a

Then g Ad is an upper bond for T in.fl.

Hence by Zorn's lemma there must exist a maximal element in

.#. Because of the maximality no other fuzzy orthogonal set

containing this maximal element.

4.3. GENERALIZED FUZZY SEMI INNER PRODUCT

Definition 4.3.1

A C'(I) module E is called a generalized fuzzy semi inner

product space if

(i) There is a submodule M of E which is a fuzzy semi inner

product space, and

(ii) there is a nonempty set a of fuzzy linear operators on

E which has the following properties.
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(a) a E c M

0, V T e a then x = 0(b) if Tx

A generalized fuzzy semi inner product space is

represented by the triple (E,a,M)_

Remark 4.3.2

Every fuzzy semi inner product space is a generalized

fuzzy semi inner product space.

Proposition 4.3.3

Let (E,a,M) be a generalized fuzzy semi inner product space

and x E E

(a) if Tx*y = 6, V y e M, T in a, then x = 0

(b) if Tx*Tx = 6, V T in a, then x = 0'

Proof:

(a) Tx*y = 5, V y e M

in particular Tx*Tx = 5
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Chapter 5

FUZZY SEMI INNER PRODUCT OF FUZZY POINTS*

5.0 INTRODUCTION

In this chapter we extend the idea of fuzzy semi

inner product space of crisp points to that of fuzzy points.

The notion of orthogonality on the fuzzy semi inner product

of fuzzy points is introduced. Some of its properties are

studied. Also the concepts like fuzzy numerical range of

‘fuzzy linear maps’ on the set of fuzzy points is introduced

and some results are obtained.

5.1 FUZZY SEMI INNER PRODUCT OF FUZZY POINTS

Definition 5.1.1 [W03]

Let X be a set, then a fuzzy subset xx, where A e (0,l] is

* Some results contained in this chapter have been included
in a paper communicated for publication in the International
Journal for Fuzzy Sets and Systems.
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called a fuzzy point on X

if

x,\(::') =?x. if }'= x
0, otherwise

Note 5.1.2

Let X be a C'(I) module. If a e C'(I) and xxa y“
be two fuzzy points on X then

(a) 0 xx is defined as the fuzzy point (a x)x'

(b) xxe yp is the fuzzy point which takes the value
A A p at x+y

(c) The set of all fuzzy points on X is denoted by X

Definition 5.1.3

Let X be a C'(I) module. A fuzzy semi inner product of

fuzzy points on X is a function
A A

*:X x X —+ C'(I) satisfying the following conditions

(i) * is a linear in first argument

ie (xka yu) * z = xW k* zw+ yp* zw and
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(u xx) * zw= a (xk* zw)

where x and Zwe X & a E C'(I).war“

(ii) x * x > 5, V xx# 0 where 3 6 (0,1]X A H ’
(iii) [xx* yp]2S [xk* xx] [y“* yp], where xx, y“ and zwe Q,

then <X,*> is called a fuzzy semi inner product space of

fuzzy points.

Note 5.1.4

A

As X is not a fuzzy linear space the term ‘fuzzy semi inner

product’ used above is not in the usual sense.

Theorem 5.1.5

A

Let <x,*> be a fuzzy semi inner product space of fuzzy

points. Then treating X as a real vector space, the

function H H:i —+ R*(I) defined by Hx H = [x * x ]1/2 is aX X A
A

fuzzy norm on X.
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Proof:

Similar to the proof of 4.1.3.

Note 5.1.6

A

Let <x,*> be a fuzzy semi inner product space of fuzzy

points. If H H is the fuzzy norm generated from the fuzzy

semi inner product * of fuzzy points. Then the fuzzy semi

inner product space of fuzzy points is denoted by <x,*,H fl>.

Definition 5.1.7

Let <X,*,fl H> be a fuzzy semi inner product space of fuzzy

points. Let xa,yfie X, then xa is said to be orthogonal to

yfi (denoted by xa i yfl) or yfi 1S transverse} to xa if
y * x = 6.fl a

Proposition 5.1.8

Let xa,yfl and zr be three fuzzy points in <x,*,fl H> such
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that xa; yh and xaL zy then xa¢ (ayflo bzy) for every
a,b e C'(I).

Proof:

' * :-5. * :­G1ven yfi xa 0 z? xa 0
then (ayne bzy) * xa= (ayfi) * xa+ (bzy) * xa

a(yfi* xa)+b(zy* xa)
= a6+b6 =6

ie x L a 6 bz ).a (yr, 2,
Proposition 5.1.9

Let <x,*,H H> be a fuzzy semi inner product space of fuzzy

points. If xaL y then(3

(3flxaG ay H 2 flxafl for every a e C'(I).

Proof:

Given x L ya
Consider
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[[(xa0 ayfi) * xa]I S I[(xa¢ arfl)*(xa9 ayfi)]|1 2:: |[xa* xa]]1 2

|[xa* xaa ayfi* xa] 5 Ilxac ayflll llxall

2ie "x H S "x 9 ay0 a fin Hxafl

ie Hxafl S Hxa9 ayflfl for every a e C'(I).

Definition 5.1.10

Let <£,*l,H H1> and <§,*2,fl fl2> be two fuzzy semi inner

product spaces of fuzzy points. Then the function f: X —+ Y

is called a ‘fuzzy linear map’ if f(xx6 z?) = f(kx) 9 f(zy)

and f(a xx) = a f(xk) for every xx, zye Q and a e C'(I).

Definition 5.1.11

Let <x,*,fl H> be a fuzzy semi inner product space of fuzzy

points. The function f: X —+ C'(I) is called a ‘fuzzy

linear functional if f(xX0 yu) = f(xx) + f(yp) and
f(a xx) = a f(xx) for every xx,yp e X and a E C'(I).
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Definition 5.1.12

A

Let T be a ‘fuzzy linear map‘ on <x,*,H fl>. Then T is said
*

to be bounded if there exists a , k e R (I) such that
A

HTxxH S kflxxfl for every xxe X in this case we define

HT“ = inf {k e R*(I)| HTx H S kHxxHLA

5.2 FUZZY NUMERICAL RANGE, WEAK LIMITS AND

‘FUZZY LINEAR FUNCTIONRLS'

Definition 5.2.1

Let T be a ‘fuzzy linear map’ on <x,*,H H> then by the fuzzy

numerical range of T, denoted by w(T) we mean the set

w(T) = {TxA* xx] "xx" = i} and

[u(T)] = :“P {[Txx* xkfllflxkfl = i}_A e X
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Proposition 5.2.2

Let <x,*,H H> be a fuzzy semi inner product space of fuzzy

points. Let T 8 T‘ be two fuzzy bounded linear maps on X

then

(1) [w(T)] 5 urn

(11) [w(T+T')] 5 [u(T)] e [u(T')]

Proof:

(1) w(T) = {Txx* xx] "xx" = i}

[w(T)] :“PE £{[Txx* xx] |Hxxfl = i}
x

= 5”” _{flTxAfl Hxkfl}
HxkH=1

= °“P _NTxxH 5 urnHx H=lx

ie [w(T)] s nru
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(11) [w(T+T')] 3"” .{[(T+T')xA* xx] I "xx" = i}xx 6 X

_ sup , _ ­
- .{[(TxK+T xx) * xx] | Hxkfl — 1}xx 6 X

[A

sup .{[Txk* xx] | flxkfl = i} 6
xx 6 X

Sup .{[T'xx* xx] I Hxxfl = i}
xx 6 X

ie [w(T+T')] 5 [u(T)] e [u(T')]

Definition 5.2.3

A

A fuzzy semi inner product space of fuzzy points <X,*,H fl>. . . . * =is said to be strictly convex 1f [xx yp] flxkflflyufl then
y = a x , where x # O # y and a e C'(I).# E ] A K fl u
Definition 5.2.4

A sequence yn in <X,*,H fl> is said to converge weakly in
“n
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the second component to yw if xx* yn converges to xx* yw
Hn

A

for all xxe X.

Proposition 5.2.5

Let <x,*,H H> be a strictly convex fuzzy semi inner product

of fuzzy points. Then the weak limit in the case of weak

convergence with respect to the second component of the
A

fuzzy semi inner product in X is unique.

Proof:

Let y“ and y; be two weak limits of the sequence yn in
“n

A

<x,*,H fl>. Then

Let xx= y“ then yp* yp= yp* yw

1e W mm = W vw

2- n u s u n u -1:1° ’u ’u ’w
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ie Hypfl S Hy&H

similarly taking xx= y' we get

H ‘H S H HYw Y“

' H H = H ‘H (1)1° Yu ’w
21 I H = H H H ‘Ha so YH YP YW

ie [yp* yb] = Hypfl Hy&H

—) y = fl:ol]]yW

i = ' by (1).3 Y Yw

Proposition 5.2.6

Let <X,*,H H> be a fuzzy semi inner product space of

fuzzy points. Consider the map fx X —+ C'(I) defined by
X: * ' ‘ ' ' '

fxx(yP) yp xx, then fxk 1s a fuzzy linear functional
4

on X.
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Proof:

fx;\(yH° zw) = (yue zw) * xx = Y * " " 2 * “A= f f
xA(yu) + ‘AU: )

also fxx(a yp) = (a yp) * xx = a (yH* xx)

= 0! fxkhr )

Notation 5.2.7

A

XL denotes the set of all ‘fuzzy linear functionals' on X of
the form f

Proposition 5.2.8

Let <x,*,H H> be a fuzzy semi inner product space of fuzzy

points. Then the map *' defined on X x X by

f *' f = y * x satisfies the following conditionsY H X

(i) f *' fxx> 0, when xx? Ofl
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Proof:

(i) f *' fxx= xx* xx > 5 when xxx Ofi

(ii) Efxktv fy ]2= fly“: xK]2I-1

M.

l[r,,* v,M»«p xx]

£ *'£ £ *'£ _
LIX ,,xM ,# my

Remark 5.2.9

in x then f 1 f in XK 1'If y L xu A A F L



Chapter 6

CATEGORY OF FUZZY SEMI INNER PRODUCT SPACES

6.0 INTRODUCTION

In this chapter the concept of the category of

semi inner product spaces and that of fuzzy semi inner

product spaces are introduced. Relation of the category of

fuzzy semi inner product spaces with the categories of semi

inner product spaces, fuzzy topological spaces & topological

spaces are studied. We conclude with a more general

approach to fuzzy semi inner product spaces by introducing

the category of semi inner products in a given concrete

category.

6.1 THE CATEGORIES SIP, FSIP, FTOP AND TOP

Definition 6.1.1

Let SIP be the category whose objects are semi inner product

spaces and hom IP(A,B) for any two semi inner product spacesS
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A&B is the set of maps f:A -4 B satisfying

f(x+r) = f(x)+f(y). f(a x) = 0 f(x) and

I[x,Y]| 2 |[f(x),f(y)]|, for every x,y e A and a e C, the
set of complex numbers.

Remark 6.1.2

In the above definition if f e homSIP(A,B) then f will be a
continuous map from A to B.

Definition 6.1.3

Let FSIP be the category whose objects are fuzzy semi inner

product spaces and homFSIP(H,N) for any two fuzzy semi inner

product spaces <M,*1,H H1> and <N,*2,H H2> is the set of
maps f: M —+ N, satisfying f(x+y) = f(x)+f(y),

f(a x) = a f(x) and [x *1y]Z [f(x) *2f(y)] for every
x,y e M and a e C'(I).

Proposition 6.1.4

Consider the categories SIP and FSIP. Then there is a
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faithful functor $ from SIP to FSIP.

Proof:

Let <X,[]l,|| > be any object in SIP. We define1

$(<x,[]1, >) = <x,*1,H Hl> where x * x = [x1,x2]1Ill 1 1 2
under the identification (a,b) with ((5,6),(B,6))

then [x1*1x2] I [x1,x2]1|
2 2 1/2

1/25 [[u;,a),(s,a))]; = [a + B](a2+b2)since, |(a,b)|

=[a2+b2]1/2

Also for each f 6 HomSIP(X,Y) define $(f) = f, then

f e homFSIP($(X), $(y)), since

l[x1.x2]1| Z |[f(xl).f(x2)]2|

[x1*1x2] I [x1.x2]1| 3 I [f(xl).f(x2)]2|

[t(x1) *2f(x2)]

ie flx1*lx2] 2 [f(x1) *2f(x2)].
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Proposition 6.1.5

Let FTOP be the category of fuzzy topological spaces. Then

there exists a faithful functor /\from FSIP to FTOP which

maps <X,*,H H> to ( X,f""), where 7"" is the fuzzy topology
on X having basis {B(x,;)/x e X & r e R+}.

Proof:

Let <X,*,H H> be any object in FSIP we define

A (<X,*,H H>) = ( X,f"H)

let f e homFSIP(<X,*l,fl fll>,<Y,*2,H fl2>)

then f(x+y) = f(x)+f(y)

f(a x) = a f(x) and

[[x *1y]] 2 [[f(x) *2f(y)]]

llxlli 2 |lf(x)ll:

ie Hxfll 2 Hf(x)H2

If g e homFToP((X,7""1),(Y,T""2)), then g will be a fuzzy
continuous map from X to Y

ie B(x,E) s g’1<a<g(x>,E>)
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claim f e homFTOP((X,T ),(Y,f ))"H1 "H2

for B(x,r)(x') Lrflx-x'H = 1—Hx-x'H(r)

f'1<a<t(x).E))(x') B(t(x),I-)(t<x'))

LrHf(x)-f(x')H

1-Hf(x-x')H(r) Z 1-Hx-x'fl(r)

ie a(x,E) 5 f-1(B(f(x),r))

ie f 6 hom ((X,? I IfFTOP (Y) ))HH1 HH2

define A (f) = f

then A will be a faithful functor from FSIP to

FTOP.

Proposition 6.1.6

Let TOP be the category of topological spaces. Then there

exists a functor h: SIP —+ TOP which maps the semi inner

product spaces <x,[],||> into the topological spaces
(x,T ).



97

Proof:

Let f G homSIP(<X.[]l.|| >.<Y,[l2.||2>) then1

f(x+y) = f(x)+f(y), f(a x) = a f(x)

I [x,y]1| 2 I [f(x),f(y)]2|, here f is a continuous map
from X to Y.

Hence f e homToP((X,T||i,(Y,Tllg)

Let h be the map from SIP to TOP which maps <X,[],||> to

(X,T|‘ 1

Definition 6.1.7

Let (X,3U be a topological space. Then the related fuzzy

topological space consists of the collection of all lower

semi continuous functions from X to [0,1].

Proposition 6.1.8

There exists a functor §: FTOP —+ TOP which associates the

fuzzy topological spaces (x,TF) to the related topological

) and h(f) = f, then h is a functor from SIP to TOP.
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space (x,T) and f e hom ((xl,TF),(X2,TF)) to the sameFTOP 1 2
f e homTOP((x1,T1),(X2,T2)).

Proposition 6.1.9

There exists a functor 3' from TOP to FTOP which maps the

topological space (X,f) to the related fuzzy topological

space (X,TF) and f e homTOP((X1,T1),(X2,T2)) to the same

f e homFT0P((X1,TF),(X2,?F)).1 2
Remark 6.1.10

§ A 3 = h.

Proposition 6.1.11

Consider §'h & A $ from SIP to FTOP then

A 3 (SIP) g §'h (SIP).

Proof:

A $ maps<X,[],||> to ( X,T I) and



99

f e homSIP(<x,[]1>,<y,[]2>) to the same

f 6 h°mF'r0P((x"T|| |li’(Y’“Tll 11;)

§'h maps <x,[],||> to §'(x,T ) = 7 the related fuzzyI I F
topology of T and

f e homSIP(<X,[]l>,<Y,[]2>) to the same

f e homFT0P((X,TFi,(Y,TF;)

claim 7"" g TF

let U e TH" , then U = g'rB(x,r)

g,r X B(x,r)

= x
g rB(x.r)I

ie U is the characteristic function of an open set in 31'

and hence U is open in the related fuzzy topological space

7‘
F

ie U e TF
also constant fuzzy sets being lower semi continuous on X,

are open in 7%. Constant functions are not necessarily
open in Jm"
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Hence 7"“ 5 TF

A W (SIP) 5 §’h (SIP).

Proposition 6.1.12

There exists a natural transformation nzfi" to 3', where 3" &

3' are functors from TOP to FTOP. 3" maps (x,3fl to (x,fx )F

where TX is the fuzzy topology on X obtained by identifyingF

open sets of ?'with its characteristic function.

Proof:

If f e homToP((x,T1),(Y,72)) then f is a continuous

map from X to Y, also f is a fuzzy continuous map from

(x,Jé ) to (Y,7é ). Hence §"(f) = f. Let (x,J1) andF1 F2
(Y,7é) be two objects in TOP and f e hom ((x,T1),(Y,J5)).TOP

Consider the identity maps

I(X.7&) e hom ((§"(X,71).§'(X.71)) andFTOP
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I(Y,Jé) E hom (§'TY,73),§'(Y,T2)) then the diagramFTOP

I(x,T1)
3"(x.a"1> > <s'(x.:/'1)"sun} 13%)
s"<v.:r2> A. <s'ar,.r2>

I(Y,T2)

commutes. Hence I is the natural transformation from 3" to

gl

6.2 THE CATEGORY 8SIP OF SEMI INNER PRODUCTS IN A

CATEGORY 3

We conclude with a more general approach to fuzzy semi inner

product spaces.

Definition 6.2.1

Let 8 be a concrete category of sets with finite products

containing zero object and the set C'(I). An ordered pair

(X,m) is called a semi inner product in 3 if
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(i) X is an object in 8

(ii) mzxxx -4 C'(I) be such that for each xoe X,

mxéx) = m(x,xo) e hom8(x,C'(I))

(iii) m(x,x0) > 5, if x # 0,where O is the image of zero object
under the unique morphism

(iv) [[m(x.y)]]2S l[m(x,x)]] [[m(Y.y)]]­

Remark 6.2.2

(i) In the above definition we take 8 = J} the category of

linear spaces and the range of m equal to the set of

all complex numbers, we will get (x,m) as the semi

inner product space defined by Lumer.

(ii) When 8 = the category of C'(I) modules, we will get

(X,m) as the fuzzy semi inner product space.

Definition 6.2.3

Let 881? be the class of semi inner products in 8. If (X,m)

and (Y,m')e 881p a function f: X —+ Y is called a morphism
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if

(i) f is a morphism in 8 and

(ii) [[m(x,y)]] 2 I[m'(f(x),f(y))]] V 21.! 6 X

then 83!? becomes a category called the category of semi
inner product spaces. When 8 = the category of linear

spaces and the range of m's = the set of all complex numbers

then 8sIP= SIP, the category of semi inner product spaces.
When 8 = the category of C'(I) modules and range of

m's = C'(I), then 881p FSIP, the category of fuzzy semi
inner product spaces.
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