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PREFACE

The investigations reported in this thesis have been
carried out by the author first as a full time CSIR JRF and
later as a part-time student. The thesis Comprises six
chapters. In chapter 1 a survey of the theory of effective
potentials is presented together with concepts and techniques
necessary for following the author's work.

In classical field theory, the ordinary potential V
is an energy density for that state in which the field assumes
the value ¢. In quantum field theory, the effective potential
is the expectation value of the energy density for which the

expectation value of the field is ¢o. As a result, if V has
several local minima, it is only the absolute minimum that
corresponds to the true ground state of the theory.

Perturbation theory remains to this day the main
analytical tool in the study of Quantum Field Theory. However,
since perturbation theory is unable to uncover the whole rich
structure of Quantum Field Theory, it is desirable to have some
method which, on one hand, must go beyond both perturbation

theory and classical approximation in the points where these
fail, and at that time, be sufficiently simple that analytical
calculations could be performed in its framework.



During the last decade a nonperturbative variational
method called Gaussian effective potential, has been discussed
widely together with several applications. This concept was
described as a means of formalizing our intuitive understand­
ing of zero-point fluctuation effects in quantum mechanics in
a way that carries over directly to field theory.

The Gaussian effective potential (GEP) is defined as

VG(¢o) = mxixn VG(¢o.n)

mg <¢IH1w>

with |$> = (§fi)l/4exp[-1/2‘%(¢-¢°)2],11>0
and ria mass parameter.

The width of the Gaussian, governed by the parameter
11, is left to adjust itself so as to minimize (H) at each
¢o. Thus VG can be described as a variational approximation
to the conventional effective potential Veff where

Veff  =  (WWW)
with fl subject to <$|¢|¢> = ¢o

In GEP, the global minimum of VG does not give the

ground state energy as it was the case with Veff. According

to the Rayleigh-Ritz theorem, VG(¢o)3veff(¢o) at any 910.

Normally, one can expect a good approximation to E0
for the variational reason that any half-way realistic



wave function generally gives a reasonable estimate of the
ground state energy. The one loop effective potential is ab
semiclassical construct, based on adding to the classical
potential the order — h quantum corrections, and neglecting
terms of order n2 and higher. This method generally breaks
down whenever the quantum effects become large.

In chapter II we have computed the Gaussian effective
potential for Liouville theory at zero temperature and at
finite temperature. The Liouville model field theory is of
great current interest. In string dynamics, for example,
in order to get a proper quantization for D<26,one must
examine the quantum Liouville theory. This theory is two
dimensional, renormalizable and completely integrable.
Polyakov has demonstrated how to express different physical
quantities like the spectrum, scattering amplitudes etc.
through the correlation functions of quantum Liouville theory.
For physical D, one may solve the Liouville theory in order
to find the scattering amplitudes. It is shown that even in
non-perturbative approach based on GEP, translational invari­
ance remains broken in Liouville theory at zero temperature
and is notrestored at a finite temperature, supporting the
idea that the breaking of translational symmetry is funda­
mental to the model both at classical and quantum levels.



We have extended the study to the supersymmetric case.
If supersymmetry which predicts boson-fermion multiplets is
recognized by nature, the study of finite temperature super­
symmetric Grand Unification must provide some insight into
the Early Universe scenario. The non-perturbative Gaussian
effective potential for the supersymmetric Liouville model
both at zero and nonzero temperatures,is obtained in
chapter III. It is of some importance to remark that the
GEP has not been evaluated for a supersymmetric theory before.
It is found that the supersymmetric Liouville theory does not
possess a translationally invariant ground state. Here
results similar to those obtained in the non-supersymmetric
case)have been established indicating that the appearance of
the fermionic degrees of freedom has no significant effect
on the nature of the core bosonic part.

In chapter IV, following the method of Stancu and
Stexenson, we have computed second order corrections to the
Gaussian effective potential for the ¢6 model in 2+1 dimen­
sions at zero temperature. The ¢6 — field theory in 2+1
dimensions is of interest in particle physics as well as
solid state physics.

Chapter V introduces a definition as well as evaluation
of GEP for coherent states and squeezed states, in analogy
with that for excited states. The corresponding effective



(renormalized) mass and coupling constant for an anharmonic
oscillator are computed. The effective (renormalized)
coupling constant exhibits a singularity at h = 0, which
vanishes when the bare mass tends to zero, for both coherent
states and squeezed states.

Quantum groups and quantum algebras have been receiving

considerable attention in recent years. Some of these inves­
tigations focus on quantum group modified quantum mechanics.

There is a logical need to apply the nonperturbative approach
to such systems that are generically known as quantum osci­
llators. In chapter VI we have formulated a nonperturbative
q-or (q,p)—ana1ogue of GEP with the help of appropriate quantum
oscillator commutation relations that depend on a single
parameter q or two parameters q,p. when a quantum oscillator
algebra is employed, the quantum parametenssuch as q,p, can
serve as additional parameters in the potential, suggesting
a more elaborate scheme of minimization. The renormalized

mass mg and coupling constant AR are calculated directly from
the effective potential. We study three kinds of quantum
oscillator systems: quartic coupled quantum oscillators in
a single well and in a double well, and sextic coupled quantum
oscillators. It is found that for the ground state of a
quartic or sextic anharmonic q—oscillator the effective
potential is a minimum corresponding to q=l and a maximum



corresponding to q = -1. The renormalized mass mR turns
out to be a maximum at q=l. Since the mR has the physical
significance of being the first excitation energy, these
observations seem to cast ordinary (q=l) quantum mechanics
in a new perspective. For the X4-anharmonic (q,p) oscillator,
the effective potential yields the minimum only if.Kor h
vanishes. In the case of quartic q or (q,p) - oscillator
in a double well potential, critical values exist for q or
q as well as p, for which the double well degenerates into
a single well.

Part of the investigations included in this thesis has
been included in the following papers:

1. "Gaussian effective potential for the Liouville model"
Rose P. Ignatius, V.C. Kuriakose and K. Babu Joseph,
Phys. Lett. B ggg, 181 (1989).

2. "Non-perturbative calculation of effective potential
in supersymmetric Liouville model", Rose P. Ignatius,
K.P. Satheesh, V.C. Kuriakose and K. Babu Joseph.

Mod., Phys. Lett. A g, 2115 (1990).
3. "Non-perturbative effective potentials of quantum

oscillators", Rose P. Ignatius and K. Babu Joseph,
Pramana J. Phys. gg, 285 (1994).



1. INTRODUCTION

1.1 Qualitative concept of effective potential

Quantum fluctuations are quantum effects which may

modify the classical potential. To quote typical examples
of this phenomenon, let us consider the case where the
wavefunction is concentrated in a small spatial region AX,
where the momentum uncertainty is correspondingly large.
Here there will be a large contribution to the kinetic
energy and to the total energy of the system. This shows
that the ground state energy is influenced by the depth
as well as the width of the potential well. On account of
zero point fluctuations, a quantum mechanical particle
behaves as if it does not like to be confined in a narrow
potential well or in a small space. The zero point energy

2
X2,éhm of the harmonic oscillator potential, V(X) = %u

is an important consequence of the uncertainty principle.

The coulomb potential in an atom)—e2/r,is unbounded
below, and hence classically, an electron may be expected
to fall into the nucleus. But, as in the former case, the
electron resists being localised in the small region, and
the quantum fluctuations enable it to overcome the attrac­
tion of the classical potential. As a result, it occupies



a finite energy ground state centred at the origin with a
definite spatial extent. A system, which is errant classi­
cally, is thus corrected by quantum mechanical fluctuation
effects. Such cases can be described in terms of an effective
potential which indicates how the quantum fluctuations modify
the classical potential.

In the case of a symmetric double well potential,the
effective potential is different from the original potential.
For small and large quantum effects, the double well potential
exhibits the behaviour sketched in Figs. 1.1a and l.lb
respectively.

For small quantum effects the lowest energy state is

raised due to the éhw zero point energy)and the highest energy
state is lowered due to the spreading effect. when the quantum
effects are large, the particle does not see the two separate
wells but is free to move inside the large well with no barrier
in between.

For an asymmetric double well potential consisting of a
broad well and a slightly deeper but much narrower well, if the
quantum effects are small, the effective potential is similar
to the classical potential. If the deeper well is made narrower
the zero point energy will become very large (according to the



Fig. 1.1 a. Symmetric double well potential modified bysmall fluctuations
b. by comparatively large fluctuations

Dotted lines represent the effective potential
and solid lines the classical potential
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uncertainty principle) and hence the particle will prefer to
be inside the broader well. The behaviour in this case is
as shown in Fig.1.2.

These examples from quantum mechanics illustrate the fact
that in order to understand the effect of quantum fluctuations,
one has to look for the behaviour of effective potential[l-9].
The effective potential for the ground state of a quantum
mechanical system is defined by the relation [10].

veff(x°) = min <qJ[H|tp> (1.1)
NJ]

where w is subject to the conditions

<q1|qJ> = 1, <1p|x|qJ> -_- xo (1.2)
Here one has to consider the expectation value of the energy
obtained with all possible normalized wavefunctions centered

at X0. The effective potential at X0 is then the minimum of
the energy expectation value. Its computation involves a
functional minimization which is done through the Lagrange

multiplier technique of introducing a linear coupling to a

local external source [1-3,10]. The global minimum of Veff(X°)
gives the exact ground state energy of the system.

The effective potential Veff(Xo) is convex [ll,l2,lO]:

2v-d——-if-f—(--x—°2 go (1.3)
dx 20
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Fig. 1.2 Asymmetric double well potential subjected
to large quantum effects.The dotted curve denotes the effective
potential and the solid curve the classical
potential.
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1.2 Functional method and effective potential

In classical field theory, the ordinary potential
U(¢), is an energy density for that state in which the
field assumes the value ¢. In quantum field theory the

effective potential, V(¢c), is also an energy density
in a certain state for which the expectation value of

the field is ¢c [11]. If V has several local minima,
the effective potential corresponds to the true ground
state of the theory.

Consider a single scalar field ¢ whose dynamics is

described by a Lagrangian density 1L(¢,bu¢). A linear
coupling of ¢ to an external source j(x) which is a c­
number function of space and time, is added:

i<¢.ap¢) —> 7". + and saw (1.4)
The connected generating functional W(j) is defined

in terms of the transition amplitude from the vacuum state
in the far past to the vacuum state in the far future, in
the presence of the source j(x):

ei”"(5) = <o"|o">j (1.5)
W can be expanded in a functional Taylor series:1 4 4 (n)W = E   xloood  G (X1,,,xn) (1.6)
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The successive coefficients in the series are the connected
Green's functions; G(") is the sum of all connected Feynman
diagrams with n external lines.

The classical field, ¢c in the presence of an external
source j(x) is defined by

SW <o+|¢(x)|0->
¢°(x) = 5j(x) = [ <o*|o'> ]J (1.7)

The effective action, (¢ ), is defined by a functionalc

Legendre transformation

F<¢,) = w(j) — fa“). 3<x> ¢c(x> (1.8)
From this definition,H1 = -:m. (1.9)
3¢c(x)

the effective action, F‘, can also be expanded in a functional
Taylor series:4 4 n

F‘: E filfa xl ... d xni“ (xl-..xn) ¢c(xl)..-¢c(xn) (1.10)

The successive coefficients in this series are one particle
irreducible (IPI) Green's functions which are also called the
proper vertices. {“(n) is the sum of all IPI Feynman diagrams
with n external lines. (By convention a IPI diagram is a
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connected diagram that cannot be disconnected by cutting a
single internal line and it is evaluated with no propagators
on the external lines).

Instead of expanding the effective action in powers of

¢c, one can also expand it in powers of momentum about the
point where all external momenta vanish. In position space
such an expansion takes the form

F‘= fd4x[-V(¢c) + §<op¢c>2z<¢c)+...1 (1.11)
where V(¢C) is identified as the effective potential.

To express V(¢) in terms of IPI Green's functions, we
first write [q(") in momentum space:(n) 4 4 4f d k d k 4
r (X1...Xn) = -(:;4 040 Kg?  6 (kl+o..kn). (1.12)

e1(](1X1+...knXn) r.(n)(k1...kn)

Putting this into (1.10) and expanding in powers of R1, we
get

1 4 4 d4k1 _._ d4k
rfi(¢°) = E figfd xl...d X“ I (2n)4 (2n:4

_ 4 i(k1+k2+...kn).x i(k1x1+...knxn)Jd X E e (1 13)
[r‘“’<o, 0)¢c(x1)...¢c(Xn)+...]

= f d4x 2 l fin(")n n! (o,...o) [¢c(X)]n+ }



Comparing (1.11) and (1.13) we find that the nth

derivative of V(¢¢) is the sum of all IPI graphs with n
vanishing external momenta. In the tree approximation V is
just the ordinary potential.

To calculate V(¢c) we need an approximation scheme
which preserves the main advantage of this effective potential
formalism, ie, the capability to survey all vacuua at once
before deciding which is the tree ground state. Ordinary
perturbation theory with its expansion in coupling constants
is not appropriate as it is necessary, at each order, to iden­
tify the true vacuum state and shift the field. Loop expans­
ion [5,13,l4] is an expansion according to the increasing
number of independent loops of connected Feynman diagrams.

Hence the lowest order graphs will be the Born diagrams or
tree graphs. The next order consists of the one loop diagrams
which have one integration over the internal momenta, etc.
For the effective potential, each loop level still involves an
infinite summation corresponding to all possible external lines.

The loop expansion can be identified as an expansion in
powers of Planck's constant h. This can be seen as follows:
Let I be the number of internal lines and V the number of

vertices in a given Feynman diagram. The number of independent

loops L will be the number of independent internal momenta
after the momentum conservation at each vertex is taken into
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account. Since one combination of these momentum conserva­

tions corresponds to the overall conservation of external
momenta, the number of independent loops in a given Feynman
diagram is given byL = 1 - (V-1) (1.14)
To relate L to the powers of‘h, one has to keep track of the
factor h in the standard quantization procedure. First there
is one power of h in the canonical commutation relation

[¢<x.t>, no/.t>1 = ma3<x-y) (1.15)
This will give rise to a factor of h in the free propa­

gator in momentum space

d4k ikx __}p
<o|T¢(x)¢(o)|o> = f z;;3;— e k2-m2+iE

(1.16)

The other place where h appears is in the evolution
operator exp [—iHt/h] which gives rise to the operator

exp[-Ti; fi.int
that there will be a factor of 1/h for each vertex. Thus for

(¢) d4x] in the interaction picture. This means

a given Feynman diagram we have P powers of h with
P-.:I-V=L-1

Thus the number of loops and the power of h are directly
correlated. The statement that loop expansion corresponds to
an expansion in Planck's constant is a statement that it is
an expansion in some parameter a that multiplies the total
Lagrange density
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’[(¢.bu¢.a) =51i;(¢.ou¢) (1.17)
The above counting of the h powers reflects the fact

that while every vertex carries a factor a'1, the propagator
carries a factor a because it is the inverse of the diffe­
rential operator occurring in the quadratic terms in {_
Because h, or a is a parameter that multiplies the total
Lagrangian,it is unaffected by shifts of fields and by the
redefinition or division of 1. into free and interacting
parts associated with such shifts [15]. In other words,

it allows one to compute V(¢c) before the shift.

The loop expansion is certainly not a worse approxima­
tion scheme than the ordinary coupling constant expansion
perturbation theory, since the loop expansion includes the
latter as a subset at a given loop level.

Nonperturbative approach and Gaussian effective potentials

Actually the one loop effective potential (lLEP) is a
semiclassical construct, based on adding to the classical
potential the order-h quantum corrections, and neglecting

the terms of order n2 or higher. Formally it is Veff(Xo)'v

v(xo) + :31 h"v,,(x°) and v = v(x°) + T1V1(X°).n:
The one loop approximation generally breaks down whenever

one loop

the quantum effects become large.
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This failure can be seen in the study of one loop
effective potential for the potential [l6]:

4v(x) = c + % m2X'‘’ + %x (1.13)
This is the anharmonic oscillator for m2>o and the

standard double well potential for m2<o. For the anharmonic

oscillator, the one loop approximation for effective
potential is accurate for weak coupling but turns out to be
unrealistic for ?\3l. In the double well case, for small X0
the ILEP contains an imaginary part,and hence,is not defined
in that region. These cases illustrate the need for other
methods of evaluation of the effective potential.

The effective potential conventionally defined by [10]
suffers from several defects. For example it can never have
a double well shape. For a double well potential the minimum

value of Veff(X°) lies right in the middle of a real potential
barrier (Fig. 1.3a).

The condition <¢|X|¢> = X only requires the wave­0

function to be centered on X0 in a minimal sense. It could
consist of two large peaks on either side of X0, with [$12
being small in the neighborhood of X0. The effective potential
at a point X0 may not, therefore, reflect the actual conditions
there. It may only give an average condition on either side

of X0. Hence the conventional effective potential will behave
as if there is no potential barrier at all.
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Fig. 1.3 shows the strange behaviour of the conventional
effective potential (dotted lines)

a. for the double well potential
b. for a finite depth potential well



Another example is the case of a finite depth potential
well which tends to a finite value at infinity. The effective

potential in this case equals E0 for all X0 [10] which gives
the impression that the particle is free to wander anywhere,
as shown in Fig. l.3b. Actually it will remain localized in
the potential well.

\

The above examples show that the conventional effective
potential is unable to give a good picture of the physics. A
more realistic effective potential’called the Gaussian tffective
potential (GEP)_has been discussed several times in the litera­
ture [l6-26]. Here the trial wavefunction is required to be

concentrated in the vicinity of X0. This is done by assuming
the admissible wavefunctions to be or Gaussian form centered

on X0. It is, incidentally, the ground state wavefunction of
the parabolic potential well. The Gaussian effective potential
is then defined as [I6]:

VG(x°) _=_ W vG(x°,n) _=_ m}{1 <:p|H|qI> (1.19)
with

up; = (fif3£)1/“exp [- % ;.l(x.x°)2], n>o (1.20)
The width of the Gaussian, governed by the parameter fl,

is left to adjust itself so as to minimize (H) at each X0.
Hence the GE? can be considered to be a variational approxima­
tion of the ordinary nonperturbative effective potential. The
global minimum of the GE? may not give the ground state energy
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Veff(Xo), According to Ray1eigh—Ritz theorem,
VG(X0)2Veff(Xo) (=Eo) at any X0. But in most cases we can

expect a good approximation to E0, due to the fact that any
half way realistic wavefunction generally gives a reasonable
estimate of the ground state energy.

One can use the Schrodinger representation, P = -ih 9­dX
and evaluate

<$|H|¢> as the integral+0 I'  2(H = dX ‘_ d V X X 1.21> fa, W (X)[ 2 3;? + ( )]W( ) ( )
where $(X) is the Gaussian function. We may also make the
substitutions:

x = X0-+11 (2hD.)'1/2(an_+a;) (1.22)
P =*%1 (2h.('l)1/2(an_ ..a,,_“) (1.23)
where[an,a‘g 1: 1 (1.24)
and

a_,\_|o{>1 =0 (1.25)
a,L and a:L depend on the frequency of the harmonic

oscillator whose ground state |0zq_ is the Gaussian trial
wavefunction.

GEP:;n figid theory
The field-theoretic generalization of the effective

potential is [27]



VG(¢o) = mIi{1 vG(¢o,n) = my ¢ AO|H|0>n ¢ (1.26)o’ ’ o
where |O>I1 ¢ is a renormalized Gaussian wave functional,’ o
centered on ¢ = ¢ subject to the conditions:0

9,0’ n<o|o>n,¢° = 1 (1.27)
n<o|¢|o>n ¢ = 55°0, 9 O
The calculation can be performed in a Schrodinger wave­

functional formalism as indicated in the quantum mechanical
examples.

The field ¢ can be written as ¢°+a where ¢o is a constant
classical field and Q is a quantum free field of mass.f1.

The state [051 ¢ is the vaccum state of this free field [28]:’ 0

¢ = 95° + f(dk)n [an(k)e'ik°x + at.‘ (k)eik"] (1.29)
Differentiating,

dp¢ = f(dkb1_(-ikp) [ar1(k)e-ik'x- a:1(k)eik'x] (1_3o)
where the energy component of the four vector k“ is

k° = wE(fl) 5 (k2+.C12)1/2 (1.31)
The integration measure in r spatial dimensions is

dr(dk) = ___":___ (1.32)
(2n)r2wk(f1)

As usual, the creation and annihilation operators obey
the commutation relation

[ anm. a;;(1'>1 = 5%.: 2w5(n)<2n>’6’(x - k’) (1.33)
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where 5r(k—k') is the r-dimensional Dirac delta function,

and IOZ1 has the property,an(k)|0}1 = o (1.34)
The VG(¢°,r1) can then be directly evaluated from the
Hamiltonian.

For example, in the case of a ¢4 model defined by the
Lagrangian density_ l u _ 1 2 2 4 ,i_2%m¢ §mB¢-xg mam
the quantity VG(¢°,f1) is obtained [27] as1 2- 2 1 2 2 4 I 2
vG(¢°,n) = 11+ -§(mB n )I°+ §mB¢° + A8930 +6 AB 09302

where

1N(rm) = ;(dk;1 [wk2<rx)1” (1.37)
Here N is a positive or negative integer or half-integer.

The Ggp vG(¢°) is then obtained by minimizing VG(¢o) with
respect to the variational parameterxi, in the range O<£1<~.
Cgrrections to the GEP

Recently it has been shown that the GEP can be made the
starting point for a systematic expansion procedure [l6,29,30].
The effective potential has been calculated for 7\¢4 theory
next to leading order result [31]. The method may be outlined
as follows.

The Euclidean action in d dimensions is [l,2,13,32,28].

s[¢] = J‘ ddx ’L(¢.op¢) (1.38)
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The generating functional for Green's functions is given
by the functional integral

zm = ./13¢ expt-st¢J+Id"x :<x>¢<x>1 <1-39>
Letw[j1= 1n 2(3) (1-40)
Here w[j] is the generating functional for the connected
Green's functions. The effective action rt¢c] is obtained
by the Legendre transformation

Fm] = wm - fddx :<x>¢.;<x> <1-41>
where

¢c‘“) = §§f;,= Z-1[J]fD¢ ¢ eXP[-5[¢]tfddXJ(X)¢(X)] (1.42)

¢c(X) is the vacuum expectation value of the field ¢(x) in the
presence of the source j(x). The effective potential Veff(¢c)
is obtained from {n[¢c] by setting ¢c(x) to a constant ¢c
[so that 3 will be 3-independent].

VT¢]|¢c(,,=¢c =‘W’Veff(¢c) (1.43)
where 7’ : f ddx, the space—time volume andfan) = ¢<.x> - ¢., (1.44)

Now to calculate Veff(¢c) in the nonstandard kind of
perturbation theory, let the Lagrangian be defined as

7L = (ib* int)3 = l (1'45)
whereilo is the free field Lagrangian with mass J1_for the
a field. Kn expansion parameter 5 is introduced in iiint to
keep track of the order of approximation. The approximation
consists of a truncated Taylor series in 5 about 5:0 and an
extrapolation to 3:1.
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For calculational convenience)¢o can be fixed self-con­
6w

63
The result is actually independent of the ¢° used [31].
sistently to coincide with the classical field ¢c =

The mass parameter rimust be chosen in each order in
accordance with the principle of minimal sensitivity [33—35].
The approximation cannot be trusted in a region where it gives
a result strongly dependent on 11.. when the approximate
result is insensitive to variations in [1, it is a very good
approximation to the exact E0, which is independent of £1 .
Hence the result must be optimized so that it must be as in­
sensitive to 11 as possible. This requires only finding the
stationary point. The optimum 17. changes from one order to
the next, and this is crucial for the expansion to yield con­
vergent results [36,37,35].

with the usual procedure)the generating functional can be
rewritten as

21:.¢°1=expu,a,¢°Jexp[-I, ’Li,,tt5—j-11X (1.46)
. M expt-f,£.,,, + 1,331,]

/\
where flint is the functional differential operator obtained

from iint by replacing /93 by
The a integration can be done so that-1/2 A 1z[_1,¢°] = exp(j¢o) (Det G"l) exp(iint) exp (§jGj) (1.47)
Here we havesuppressed the space—time arguments and integrations
over them.
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The functional determinant is

(Det G‘1)‘1/2 = exp (.1211) (1.48)
where

11m: = % fp 1n <p"‘+n?) (1.49)
4: 1;}ln Z = W[j,¢°] = j¢° —‘DI1 + lnfll- int+ 5 int +

...)exp(% jGj)] (1.50)
/a\n2d A A
ziint = fx1flint,x fyI:int,y (1'51)

let ¢o=¢c;then’—}¢c] is given
The

Since ¢c(x) is a constant,
by the above expression for W but without the j¢° term.
source j is to be found as a function of ¢c by solving (1.42).
To zeroth order in 3 we have

W[.1.¢o]|(°) = f,Jz¢° - 7111 + ;% fzfiaz 6,213,, (1.52)
so that

(¢c)x = ggl = ¢o + (Gj)x (1.53)X

where (Gj)x 5 IZGXZJZ. Taking (¢c)x to be x independent, and
setting ¢° = ¢c,j vanishes to this order.
Then

We] = -W11
The terms which are first order in 6 and second order in

(1.54)

5 can then be separately found.

Quantum field theory at finite temperature
It was suggested by Kirzhnits and Linda [38] that the

spontaneous symmetry violation in relativistic field theory
will disappear above a critical temperature. This motivated
other physicists also to study the behaviour of quantum field
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systems at finite temperature.
The diagramatic functional methods for evaluating effective
potentials in field theory can be employed to study finite
temperature effects also [39,40].
The finite temperature Green's functions are defined by [41].

GB(x1...xJ) = Tr<e'fl" T(¢<x1>...¢(:3)) (1.55)
anTr e'

where H is the Hamiltonian governing the dynamics of the
field ¢(x)’and B'1 is proportional to temperature.

The differential equations satisfied by finite-temperature
Green's functions are identical with those of the zero tempera­
ture theory [39,40]. But when the boundary conditions are
imposed, the familiar causal boundary conditions at t = in
are appropriate at zero temperature and the periodic boundary
conditions are considered for imaginary time at finite tempe­
rature.

For the finite temperature 2-point functions [42]
D (x-y), we haveB _aHT )DB(x_Y) = Tr 9 I ¢(X) ¢(X_ (1.56)Tr e'BH

Two diagonal representations for DB(X-X’) can be given ­
one in terms of imaginary time and the other for real time.
Here we shall elaborate on the imaginary time technique [39]
because this is the approach tdopted in the present work.

The operator e'BH in the definition of finite-temperature
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Green's functions indicates a time translation t —>t + ifi.
This will give rise to periodicity (antiperiodicity) proper­
ties for Bose (Fermi) Green's functions in imaginary, ie
Euclidean, time.

For a non-interacting field

(:1, + m2) Dab:-V) = - 13“(x-y) (1.57)
To solve this equation we must know the boundary conditions;

they are given for imaginary time.

The time argument of DB can be continued to the Euclidean
interval

0 5 1x0. ivo 55
and the time ordering for imaginary time can be defined as

T[¢(x) ¢(y)] = ¢(x) ¢(v) 1X°>iY°
my) man 1y,>:xo “'5”

The two point function DB(x-x’) can be transformed using
cyclic properties of the trace and transformation properties
of the fields under the Poincaré group:

(Tr 63”) n (M); _ = mfl“ r¢<o.:’>¢<y°.;n1 (1.59)p xo_o
= rr[e'B“ ¢<y°.?>¢<o.sm
= Tr[e‘BH e5” ¢(o.?) e"BH¢(v°.?)]

= Tr[e-aH ¢(-iB»§) ¢(Y°»?)]
-gH= Tr e nB(x-v)lxo=_1B, (1.60)

from where we obtain the periodicity condition
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Dfl(X’Y)|xo=° = DB(X*Y)lxo=_iB (1.61)
In the imaginary time domain, D3 may be represented by

Fourier series and integrals,

DB(X-Y) = :§E n=_af TEE73 (_iB) (1.62)
1 o 3 _. 9

mi: '3 “my fc(1T:)3 ° 1a.y°a("’n"—’T""m'3)

where wn = %§%. The inverse transformation is

n3(wn,3,mm,a) = f;iBdx°eiw“x°fd3x e’i5°§ (1 63)
fgifldyo e-iwmY°fd3Y eia°?DB(X-Y) .

and since DB(x-y) depends only on a coordinate difference

DB(wn.B,wm,fi) = -16 5nm(2n)3 63(B-3) nB(wn.B) (1.64)
so that Dfi(X-Y) = fp e'1°(*‘V’ nB(p3.

fp 2 (:iB)uEf; f :::)3 (1.65)
DB(p) = fx eipx p$(x), J}: fo’iBdx°fd3x (1.66)
where p = (wn,B) is never time-like

p2 = un2-32 = - [4;:"2 + 32] 5 0 (1.67)
From (1.57) we have

(—p2+m2}D5(P) = -1

D$(p) = -;%:;§— (1.63)
The finite temperature 2-point function for spin %

fields is defined by
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530‘-Y) = Tr J5“ mam ammr 53” (1.69)
and for non-inter sting fields

(iyP §_: - m)SB(X-Y) = 154(x-y) (1.70)bx

The time argument of S3 is continued to the Euclidean
region,and we define time ordering by the relation

T [¢(x) @(v)] = ¢(x) 5(Y) ix°>iY° (1.71)
-Wy) ¢(x) iv°>1x°

As in the bosonic case, with the similar steps as in (1.59)
through (1.60), one obtains the antiperiodic boundary condition:

SB(X-Y)lxO=° = "sa(x"Y)lx°=_iB
The imaginary time formalism leads to

s (x-y) = f e"p(”'7) s (p) (1.73)fl p B
where

SB(p) = _.E_____ (1.74)P ­
Y p“ m

and p“(un;B) with= (2n+]-)7!n "'T"’
-1fl

We can summarise the finite temperature Feynman rules as:. 1 -1Spin-zero propagator: = -—§-§--§-- (1-75)
P2-m2 3352. +-g rm?

B

iFermion propagator : 3 P” = [£22:£l3.3] (1.77)1p-m '15
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3
Loop integral : —l—— +m fd 9

-ifi n=-m (2n)3
The real time approach [39] is full of ambiguities, because

(1.78)

one obtains products of 5 functions. In addition, the nice

algebraic properties of the covariant IN integrals occuring
in the renormalized field theory are not preserved within the
real time formalism.

Coherent states and squeezed states

The coherent state [a> is defined [43—46] as an eigen­
function of the annihilation operator a with some complex
eigenvalue a:a|a> a|a> (l.79)
Like any other state, a coherent state is represented as a
linear superposition of number states. we, therefore, write

|a> = g Cn(t)|n> (1.80)n=o

Thus

a|a> = % C Vn|n—l> = a % Cnln> (1.81)n=l n “=0
By matching the coefficients of each number state we have

C1 = “C0

C2 1|V
C" = ctCn_1lV-fl

The general coefficient C" can be expressed asC“ = c°(a"|Vhs) (1-33)
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By imposing the normalization condition we have2 2 2 2 21= “nan! = I<=.I $3’ nan >"/as = |‘3o| e‘°" (1....)n=o n=0
-|a|2/2which yields [Col = e In the case of coherent states

probability P” is- 2 n -<n>
p = |cn|2 = e'°" [(|a|2) /n-.] = e [<n>“/n~.] (1.85)n

where we have made the replacement
2la] = <n> (1.86)

P“ represents a Poisson distribution. In other words, P“ is
the probability of detecting n independent events in a fixed
time interval, if <n> = |a|2 is the average number of events
per time interval.

Hence a coherent state la) is a linear combination of
2

number states whose gquared coefficients |Cnl represent the
probabilities of detecting n quanta in a Poisson distribution

2
with average number of quanta Ial .

All coherent states are minimum product states with
variances equal to those of the vacuum state.

Squeezed states
A state is said to be squeezed if its oscillating

variances become smaller than the variances of the vacuum

state. The product of the variances attains a minimum value
only at the instant that one variance is a minimum and the
other is a maximum. If the minimum value of the product is
equal to 1/4, then the state is called a ‘minimum uncertainty
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squeezed state’. It is shown that the shape that leads to a
minimum uncertainty squeezed state is a Gaussian pulse [47].

Eigenstates of the operatorb = pa + v'a+ (1.87)
defined by the relationbla> = aIs> (1.39)
are called squeezed states. They are also known as photon
coherent states [48-50].

If a squeezed state |B> is to be an eigenfunction of b)then
‘M(pa+ va*) 2 Cn|n> = 5 § Cn|n> (1.89)n=O n=0

Here the C“ represent the number state coefficients for the
squeezed state at t = o. Operating term by term with

pa + va+ we haveQ 03 0
p. n:1V'n Cn|n-1) +2330 VT; Cn[n+1> = 5 “go C,,|n> (1.90)
Now we have the recursion relations

C1 Bco/PC2 =
and in general

fiCn_1 - vvn-l Cn_2

" Min
For a given set of numerical values of p,'vand 3, we can

(1.91)

begin with an arbitrary value of Co and find the numerical
values of the rest of the coefficients recursively. The value
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of Co is then adjusted for normalization:
2§°|cn| = 1 (1.92)I’!

From these recursion relations, it is clear that
there are only two independent parameters. Therefore,

if |p|>|U| so that the sequence of C" converges, we can
choose

2 2I'll —|'V| =1 (1.93)
This choice of p and 2/ results in
+ +bb - b b = 1 (1.94)

q-oscillators
The last chapter of this thesis is devoted to a

formulation of a non perturbative q-or (q,p)-analogue of
GEP for quantum oscillators.

For the last four years much attention has been
directed to the study of quantum groups [51-55] and their
possible applications [56—78]. Very recently)consequences
of introduction of a non commutative algebra due to quantum

group in various systems are being subjected to intense
studies [59]. Quantum oscillators have already found
applications in diverse fields such as molecular spectro­
scopy [60-62], condensed matter physics [63], quantum
optics [64—74] and many body theory [75].
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For q oscillators, one can start with an operator a and
its adjoint a+, acting on a Hilbert space with basis
In), n=o,l,2... The ground state |o> is assumed to be
annihilated by a:

a|o>=o, |n> = %%E%?337§|0> (1.95)
where the q factorial [n]! is[n]! = [n] [n-1] [1]. (1.96)
with [A] = 9A-9-A/9-q'1

a*|n> = [n+l]1/2ln+l> (1.97)
a|n> = [n]1/2 |n-l> (1.98)
aa+|n> = [n+l]|n> (1.99)
and the q-commutation relation is

aa+—qa*a = q'N (1.100)
Here N is the number operator which is not assumed to be the
same as a+a. In terms of X and P the q—commutation relation
can be read as

[x,p] = i1‘1[q"N+(q-1) a+a] (1.101)
Although, in principle, q could be real or complex,

consistency of the above equation with the assumption that X
and P are simultaneously hermitian, constrains q to be 3 real
parameter.

The number operator N is required to satisfy the commu­
tation relations

[a,N] = a [a+,N] = -a+ (1.102)
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N|n> = nIn> (1.103)
Many other versions of q-oscillator have appeared

[76-78]. But we stick to the above formulation in our work.

From the point of view of applicability in concrete
physical models, quantum algebras with multiparameter
deformations are also of interest [79,80].



II. LIOUVILLE FIELD THEORY

2.1 Introduction

The Liouville field theory is one of the well studied
models [81-83]. For particle physicists,the theory has
been important in the study of instantons and solitons [84­
a6]. It finds application in reformulations of the dual
string model [87,88] and in the Polyakov [89] approach to
string theory. According to him, in order to get a proper
quantisation for D<26 one must examine the quantum Liouville

theory. It also finds application in study of black holes
using string theory [90].

The theory describes an exponentially self-interacting
scalar field in two dimensions which is renormalizable and

completely integrable. In other words, it is exactly
solvable just as Sine-Gordon theory is, and hence the ex­
plicit evaluation of the partition function of closed
surfaces must be possible. Polyakov has demonstrated how
to express different physical quantities like the spectrum,
scattering amplitude etc. through correlation functions of
quantum Liouville theory. For physical D we have to solve
the Liouville theory to find the scattering amplitudes.

The Liouville model has been well studied at the

classical and quantum levels. Goldstone [91] has computed
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the exact effective potential of this model using a method
that relies on the fact that a shift in the ¢ field is
equivalent to a redefinition of the mass parameter m2 which
can in turn be compensated for by normal ordering. Later
D‘ Hoker and Jackiw [92], using loop expansion method,
evaluated the effective potential. These calculations have
revealed that the translational symmetry broken at the
classical level cannot be restored at the quantum level, and
the effective potential does not possess a translationally
invariant ground state.

In this chapter we calculate the GEP of the Liouville
model. It was shown earlier that the GEP formalism works

well for ¢4,¢6 and Sine-Gordon models [27,93,94]. Interest­
ingly enough, the effective poten*ial obtained for the
Liouville model here is exactly identical to the Goldstone
form. e also calculate the finite temperature GEP and
find that the finite temperature corrections do not restore
the translational invariance broken at zero temperature.

GEP at zero temperature
The Liouville theory is described by the Lagrangian

Z = %ou¢b"¢ - :5 95¢ (2.1)
where B is a real positive constant.

The Hamiltonian density corresponding to the Lagrangian

is

H
2 B95’

%’2°= % ¢2 + %(v¢)2 + (2.2)
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To calculate the GEP, we use the procedure given in
chapter 1.

The ground state expectation value of each term in the
Hamiltonian density is obtained as follows:. 2 2 2
°,_r{0|%(¢2»(V¢) )|0>¢°,f1 = f(dk;1 [wk (:1) - %_rx] (2.3)

The potential energy density term is expanded:A A 2
e5¢ = efl(¢°+¢) = eB¢° (1+§&+ (2?) + ...) (2.4)
where a = f(dka1 [ar1(k)e'ik'x 4 a:1(k)eikJ]
Define the integral IN(£1) according to (1.37). Then the
ground state expectation value of QZN (N a positive integer)
is given by [93]

¢o’!1(0‘a2N|O> _ (2N)!
N

¢o.r1"3fi-ET-[I°(rD] (2.5)
Applying this result we have computed the following expectation
values:

fi¢(ole °|0> = eB¢° (2.6)
B¢ 2“? B¢

<o|e ° 3§%.|o> = e ° $2é£2252 (2.7)
4A4

<0|eB¢-O 34' I0, = ,f¢°<£o_;_‘E.’)2 .5‘: (2.3)

<o|eB¢°  - we (_I_<_»;_1_>,s % 56 (2.9,
Combining relations of the above type,
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B(¢°+¢)|0> = eB¢° [1+I°(:1)a + (I°£I1))2 E:2 ' (2.10)

+ (Io;f1))3 %:+'..] = eB¢o e5 Io(17)/2

<O|e

The odd powers of % will not contribute to the expectation

value [93]. The ground state expectation value of filis found
using the results (2.3) and (2.6) to (2.10).

B21218% "24vG(¢°,n) = 11 - —%n.2I° + 212 e e (2.11)
3

Using the formal result SEE — (2N—1) I (2 12)dn ‘ ‘1 N-1 '
and minimizing VG(¢o,f1) with respect to 11, we have

2
sv_e_£1.-m -1 112 2I_o<n>+.«=£.f"’° e '3 1°"*§3d_22an‘ dn. ° 2 an 52 2 an

2

= %n2nI_l(n.) + 1123 ewe e5 Io/2 (_n1_1(n)) (2.13)

The optimal mass parameter E1 is determined in the form;

p¢ a2Io<r:)I712: 1112 e 0 e (2.14)
The derivative with respect to ¢° is2 —
939 =  = FE eB¢° e I  :d¢o 36; !1Ji s

Let 330 be the solution to the 31 equation at 00:0.
Then

32 (‘ )2E392 = m2 e I0 rfib I (2.16)
-B2Io(IfiQ)2-52:.» 2 (217)El - Q 0
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exp [ %a2(1o(?1) - I°(fio)] (2.18)
In 1+1 dimensions we have by [27]

Io(r1) - I°(0o) = - in In ‘% (2.19)
11

o

Thus

52 = 61,2 exp(—% ¢o) (2-20)
1+B /8n

T; c be bta‘ d f N6‘G an O ine rom 36"‘O
- _ F102 BVG " I La EXP  ¢o)d¢°

_fio2 -°- :3- E; (1‘9'  exp  (2.22)
The constant of integration is not included here as it is

the usual divergent vacuum energy constant which can be sub­
tracted out to obtain a finite result.

The presence of interaction shifts the mass from the bare

value m to the renormalized value mR. Renormalization takes
place simply because of the presence of interaction and has
nothing to do, a priori, with infinite quantities [95].

Here in the Liouville model infinite quantities do however

arise in renormaiizing the theory. The renormalized mass ma is
taken to be the true physical mass.

This renormalized mass is defined as



42

mg — S \ ¢ = (2.23)d¢° °
d2‘7e\ =.Ii¢__ (2.24)2 ¢ =0 2d¢° o 1+3 /8n
Now VG can be rewritten in terms of mg as_ 2
V (¢ ) = E5 (1 82/8 )2 exp ——Eg2——— (2.25)G O p2 + n 1+3 /8n
Let E = _.E.___. (2.26)

l+B2/8n
— 2 Ts¢vG(¢°) = (gg) e ° (2.27)

B

This expression for the GEP of the Liouville model bears
close resemblance to one loop effective potential obtained by
Goldstone [91].

The quantum equation of motion for the Liouville field
is
Ej¢ + m2 B¢e = o (2.28)

‘ml

If the theory possesses a translationally invariant norma­
lizable ground state lo> then

<o| Cl¢|o> = o so that

£3 < o|eB¢|o> = o (2.29)
which violates the formal positivity of the exponential. This
suggests that no translationally invariant ground state exists.
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This can also be confirmed by using the effective
potential herein evaluated using the GEP method. The

expression for VG(¢o) shows that the effective potential
has no minimum except at ¢ = -m. Hence we conclude that
the energy spectrum is bounded from below by an unattained
vanishing greatest lower bound. Or in other words, the
ground state is not attained by the system.

Liouville theory at finite temperature

To calculate the GEP at finite temperature we follow
the imaginary time approach [39]. Here we shall write

the IN(I1) integrals in a covariant form and then using
the periodic time prescription the required finite tem­
perature integrals are evaluated [96].

These integrals can be reexpressed as covariant
integrals over the (r+l) dimensional energy momentum
space [27]:

2 2fdr+1k ln(k -.fl)+ constant (2.30)1 (5)) = :1 __l__.1 2 (2fi)r+l1 1
10(0) = ——l—r—+1fdr+ k —-2-—— (2.31)(Zn) k '-FE
Atfinite temperature

FT _i In (k2_11?)dr+lk_ -1 Em IQEE 'I (m = _.r 1 - —.— _ ,1 2 (2n)r+ 2(-l5)""° (2n)
2 2

1n(4"$3 + T? 2+ n2) (2.32)
In order to carry out the summation define [39]
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‘Fm

v(E) = 2‘ 1n (
n=-an B

4n2n2 + E2

with

E2 = E 2+.rE

Differentiating with respect to E,

22:?” 3573"4n n + E
$2

Using the identity [97]

2

g V = :l + %n coth nyn=l y +n 2V
n e-2nY_ ‘ E. + 3 + —-——-­

2 1_e—2ny2v

as
with y = 5; we obtain

Q! _  +.L?_]

Doing the integration, we have

V = 25[§ + % ln (1-8-55)] + E independent terms
Now

I'+1 drk E

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

-% f 1ngk2-r31 d k = I [_ + % 1n(1-e‘5E)] (2.39)(2n)r+1 (2“)r 2
22

To evaluate the second integral, with (B?) =x , we have

f drk % 1n(l-e-BE)r(2%) 1 W r-1= ._. I x dx 1n(1-e
_(x2+B2_r3)

1/2
) (2.40)

(2.41)
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Now the first integral in (2.39) is just the one loop
effective potential at zero temperature [13,98,.5,14]. It
can be proved as follows:

Using the identity
+03

-2 .d_ f 25%.. (402 + :22
2 1-1 =­2dE-0>2n +3 E) 2

we have

rk E = '1 f §::i3__ 1n(-k°2+?2+.r8-i€ ) (2.42)
(2n)r 2 2 (2n)r+1

dr+1
)r+11n (k2+.n?-ii ) (2.43)(2n

A
2

11m)

Hence we get

IIFT = 11(0) + I1T(_n_) (2_44)
FT

Similarly, to evaluate Io (:1):i — '1 (2 45)5 - 2 ‘ 2 2 '
“ J‘ 5l‘—2L‘—+E’2+n2

B

I‘1FT=.1.gf‘“‘ 21 (2.46)O 5 (2n)r 4n2n +2 2
B2 + k + :1

Using the identities (2.35) and (2.36) we find
I1 = f d * [ 1 1 = I I T (2.47)

O (23): 25 + E(eBE—1) 1 O + O
The second term in the integral can be represented in

reparameterized form:
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I r-1J-X dx 1 \
° 2nr‘1fir*1 (x2+fi211?)l/2 exp[(x2+s2.r3)1/2-1] (2.48)

The results (2.44) and (2.47) are the same as those obtained
from the standard thermodynamics [99].

Now, for the finite temperature case, (2.11) will take
the form

v; = I1(:1) + 1lT(;q) _ %.r?(IO(I1) + I°T(J1)) (2 ).49

+ H3 e5¢o e rg <1°<n)+x°T<n>>
a

T

Minimizing VG with respect to the variational parameter
II, the finite temperature GEP is evaluated.
Using the relation

TdI T__E_ = (2N-1) IN 1 (2.50)dfl '
We have

dVG _ 1 3 T
Fl — -‘O: .(W.(I_1(_(7-) + I_1(.(1))2 T (2.51)2 e¢o §?(:o+1°) T- E—'1e e (I 1(FU + I_1((U)2 ­
Hence-2 W 2 Trx = m2 e 0 exp [S-(Io+I° )] (2.52)

The prcsp VGT(¢°) is obtained by proceeding as in the
zero temperature case._ T _2
flG_ _ ave Ff em W15 a2(1°+z:>}= 9. (2.53)a¢° a¢° 9 B
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_2 _ _ T _
no = n2|¢o=°= m2 exp ii-B2(I,,( no) + Io (no))} (2.54)

01‘

m2 = 502 exp -  :32(Io( 50) + I°T(Z1°))} (2.55)
Furthermore, by (2.52)

a2 = afi exp we exp zg.a2[:°<n) — 1°< honT _ T _ (2.56)
+ [I°(f1)— 10 (no)]}

By (2.19) we have

2 T
Q2 ,?\°2 exp (.‘fl3___ ) exp ( % £_A_:n._) (2.57)1+5 /8n (l+B /8n)

where AIOT = 1°T(fx) — I°T(f1o) (2.53)
Now the FT GEP works out as

VT(¢ ) — '<j‘GTd¢oG _O ‘2'¢° (2.59)__§§_ 2 B2 T 5
- $2 (1+fl /8n) exp (E?::%2/8n;3Io ) exp (§:E§7§; ¢o)

The constant of integration is temperature independent
and can be subtracted out.

The renormalized mass at finite temperature is defined by
the relation

(2.60)
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This is obtained as 2 T— 2
(mRT)2 ='23_._. exp ._._£__: Al (2.61)

1+B2/Bn 2(l+B2/8n)
O

The FTGEP of the Liouville model is finally expressed
in the form

:0--I

to
ufl ‘Q o92%,) = H“ > 1 e (2.62)

E
M

This effective potential has the minimum at ¢°=-m;
which shows that even in the non-perturbative approach based
on GEP, translational invariance remains broken at zero tem­
perature and is not restored at finite temperature. This
supports the idea that the breaking of translational symmetry
is fundamental to the model both at classical and quantum
levels and at all temperatures.



III. SUPERSYMMETRIC LIOUVILLE MODEL

3.1 Introduction

Supersymmetry is a rich theoretical concept which
allows one to mix bosons and fermions in the same multi­

plet which have relevance for particle unification
schemes. If supersymmetry is recognized by nature, then
the study of finite temperature supersymmetry grand
unification theories must provide some insight into the
early universe scenario.

For ordinary symmetries at low or zero temperatures,
if the symmetry is spontaneously broken, the effective
potential has a structure of the kind as shown in Fig.III.1.

In general, an infinite number of degenerate minima
occur at ¢#o. As the temperature is raised, the energy
increases'the vacuum become symmetric and the Goldstone
bosons associated with breaking of continuous symmetries
would become massive.

But for the supersymmetry we expect the minimum of

the system at ¢=o. If the supersymmetry is spontaneously
broken the expectation value <o|H|o> + o so that there
is a non-zero minimum.

If supersymmetry plays a role in nature it certainly
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Fig. 111.1 (a) shows shape of effective potential at low
temperatures

(b) shows shape of effective potential at high
temperature



3.2

51

is spontaneously broken, because we do not observe degene­
rate Bose-Fermi multiplets.

A relativistic model of particle physics based on super­
symmetry might be a model in which supersymmetry is sponta­
neously broken at the tree level. The conditions under which
supersymmetry is spontaneously broken at the tree level are
well understood. On the otherhand a realistic description of
particle physics might require a model in which supersymmetry
is unbroken at the tree level but broken dynamically bv the
quantum corrections. Supersymmetry is unbroken if and only
if the energy of the vacuum is exactly zero. Even if the
vacuum energy appears to be zero in some approximation, tiny
corrections that have been neglected may cause the energy to
be small but non-zero.

In this chapter we report the computation of the GEP of
the supersymmetric Liouville model. This is a theory which
sums up fermionic surfaces in string dynamics and is described
by the supersymmetric Liouville equation. Polyakov [100] has
shown that the proper quantization of the dynamics of the
surface spanned by the superstring leads to a supersymmetric
Liouville theory for space-time dimension D<lO.

GEP at zero temperature
The Lagrangian density describing the supersymmetric

Liouville model is
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- 7 2 fi¢ —
1.: % ou¢ a“¢ + 5 mam - E3 e _ §;2 95¢/2 ww (3.1)

where ¢ and W respectively represent a scalar field and a
Dirac field in 1+1 dimensions. This model is invariant under
supersymmetric transformations [lOl]. The corresponding
Hamiltonian density is

f-/=%g'z$2+.%(V¢)2+i§WJi§lIJ+.E;e$¢+§-V3eB¢/23;|¢ (3.2)
The expectation value of pure bosonic terms is given by (2.11)
of the preceding chapter.

To calculate the GEP for the remaining part of the
Lagrangian, we write the fermion field as a free field of
variable mass M [102] -‘k -.
up = f(dk)M §[u;(k) bM(k.7\) e 1 X + vgm d;(k,A)e“"‘](3 3)
where in r+l dimensions

(dk)M = __EfE______. (3.4)
(2n)r2wk(M)

1/2wk(M) = (k2+M2) (3.5)
The spinors are normalized to 2M and the b,b* and d,d+
operators obey the usual finticommutation relations; his the
helicity label; the trial vacuum state |o> is the state anni­
hilated by the DM and dM operators as well as by the boson
annihilation operator art The wave functional Io) is
assumed to depend on %,.r1and the boson field shift ¢°.
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The suggestion to include a shift in the fermion

field w = wo¥® [19] will leave the spinor m with a nonzero
expectation and violate Lorentz invariance.

Straightforward calculation of the matrix elements gives

<o|%@¢wl%> = -2(Ii-M2I;) (3.6)
<o|@W|o> = -21; M (3.7)

a¢ /2_ e¢ /2 I (11)fi2/3 ,
<01 §$E e O $¢k»= %g— e ° e ° Io M (3.8)

The In(I1) is given by (1.37) and

The ground state expectation value of the total
Hamiltonian is then

2 s¢o a2I°(r1>/2
e

VG(¢o""“) = 11 ‘ %'r?I° + E2 e 2 (3.10)
, 2 , a¢°/2 I°(J1)B /8 ,M_ 2(Il-M Io) - $5 9 9 1°

Differentiation of (3.10) yields the optimum values of
M andi1_. F is obtained from the equation339 = o (3.11)CM 2

p¢o/2 I°(:1)B /8=--—- 9 9
2V2

The optimal boson field mass parameter.r1satisfying the
relation(EXE) __= o (3.13)bf} 11:11

is given by
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2 B2IQ(f1) 2 —
5- m2 eflao e 2 - $5.3 eB¢°/2e(I°(n)B2/8) I’Q\M (3.14)
Re.-expressing .52 in terms of the optimal fermion mass
parameter E,

B21 (F1) -2 2 .
_,-12 = 8&2 e _ M29 IOUTA) (3.15)
At ¢° = 0,5?’ is the solution to 51 equation

B21 (50) 2 2Io(r"1,,)
E3 = m2 e 2 - BE 1;(E1°)Mo (3.16)0 4V2
where 110 = (P7U¢°=° given by2 __
_ ,,, %Io<no>Mo = EV? '3 (3.17)
For I; we use cut-off like renormalization [103]I 4/\2I =$. 1 —— .O 4% n M2 (3 18)
Now2 321 (F1) 2
:1 aT12e_3'L_--fi2£’I¢:.(m (31)= 1 I 92 — 21 — 2 2 . _
50 82.102 eL3..o(“o) - Mo g_ 1o(Mo)

Expressing ii in terms of Flo

2 I°(?1)-IQ(f_fQ) . In 31)5 = 8M0 e e e52 B21 (ft)° — 2 —_;-Q (3.20)BM e 'o52 I ­[ 16 J2 I — ‘ 2
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or
-2 5;; ?:o<r‘m>-xo<fio)> ' —__ _e °eg  (3.21)13? Io(Mo)

o

In thg preceding step we have assumed that the term
21’<m _%I°(fi)

£3 0 e is sufficiently large compared to unity.
with the help of (3.18) we rewrite the ratio as_ 2 ' ‘
if e5¢° efi-z(I°(n)-I°(1"b)) 1n(4A2/E2) (3.22)

M[1 1n(4 A?/H02)O

which is obtained as2 _
E2 We flZ(I°(r‘2)-I,,(n°)) no— 2 :e e 1O n E 2

o
(3.23)

Using (2.19) we have_ 2 4/\2 92 -2
-2 asz -2 E—61: “" ff?“ ' W0 “ '1'? 1“ ‘-12 1_f)_ 0 _r1_ 0 .0.2 = e  2 Oo I16 1“[éfB§’]

Mo

In the weak coupling limit $<<1 and we a proximate2 ’ P
_E3 B¢ .5? -gz“ 5¢_ 0 ___ _ 0 '1- — e ( F12 ) [1 TIT? ] (3.25;(10 ° ln—_—§

Mo

Rearranging, we have
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2 Eg2_______ ¢ .__EE____5 _ 1+B2/161: B 0 1+3 /161:.:.—2 — e  ­I10 figfi‘
To find VG(¢o) 2 _B Io(n) 2_ B91 -—. I :3 /8 _ B¢ /2
229 = 229 = E2e oe 2 - 59 e O I; M e 0 (3-27)d¢° 695° :3 2V2
This can also be written in terms of‘R and also in terms offi.

3219(5)dV 81712 e -2 IG = - M p 10 (3.28)d¢° B
or

d\7G 52 T42 I__.=____,3;° (3.29)d¢o B 2 -2 -2 —— 2 2
Expressing and M in terms of 11° and Mo and also

replacing I; by the expression (3.18),we have

1

SEE = ( 5¢ 5¢o ) 1+fi /16"exp ——<2———2 ) (1 — ——1d¢o 1+5 /161: In 4/\ (3 30)2 - 2 2 E52 .
[£52. - Mo 5 In 4/\ ]5 8n H02

Integrating with respect to ¢O,we have the expression for VG.
For the weak coupling, p<<1,

VG(¢o) = f exp £93.... (1 B¢°- ________________2
1+B2/161 (1+B2/16x) In 25%_2 H28 2 Mo (3.31)

(no - ° 1n“_"2)d¢o5 8“ Mo
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552 E 2 A2 - —
= ( B2 ' 8: 1n.% 2 ) 35 exp B ¢oo

[1 - 73% + 1 ] (3.32)
In fllgg 1n 4/\21570 T102

where'5': -_;L__ (3.33)
1+3 /16n

The constant of integration is not included here as it
is the usual divergent vacuum energy constant which may be
subtracted out to obtain a finite result.

In the approximated form V6 is

_ _ -- - 2 ‘ -1
v6 = exp 3% a e 1i[%(1+ 39g———>1-°_ _M2 (3.34)_ _ 2 2

“O4 - E2 “O E3¢+ 321:/x2 8n + an °}

The renormalized boson mass is found according to the
expression (2.23)

-429 - 2 _ M _
mR2 = d  -_-fl‘;  —fi-];2— ]+ E 2  (3.35)

d¢° ¢o= B  ‘-1) 3 75/\
Finally in terms of the renormalized mass, the effective

potential reads
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- m 2 __
v5 = —g- exp we + {as 1 exp '6¢o(T3¢°-2)

F 2 _ 2- M (3.36)( OF 2 +fl2(M° -1) H
4/\2

The above expression for effective potential shows that the
supersymmetric Liouville model does not possess a translation­
ally invariant ground state, a situation familiar from the
ordinary Liouville theory. The one loop calculations [101]
give a similar result as

p2 5¢
veff(1 loop) = .5 9 [1+

ha?
B 16“ (1-a¢+1n 2)] (3.37)

Finite temperature GEP

Here we extend GEP method for supersymmetric Liouville
theory to finite temperatures.

FT FT
The integrals I; and I; for the fermionic terms can

be obtained using steps similar to those of preceding chapter.

The divergent integrals IQFT and IHFT are expressed in the
following forms:

I'FT _ Q5 1 + A f dk 1
o 2n 2(k2+M2)l72 2 2n(k2+M2)1/2 exp (k2+M2)l/2 +1

TI T= I°(M) + I; (M) (3.33)
and
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2 1/2 _ 2 2 1/2
2 ) + T 1n(1+exp (k +M)

. 21 (-3.39)= 1' + I’1 1
where the index T denotes the temperature dependence. For the
finite temperature case, the expectation value of the Hamilto­
nian takes the form;

T — I1(D) + I:(n) .. % :~?(Io(I1) + 1:01))VG ‘

+ _m_2 ea¢° e(a2/2>uo(n> + 10%)) (M0,
B2

we/2 (B2/8) (Io(n)+I§(n>) , ,T- 7?; e e M(Io+Io)
- 2 {(I1'+I'1T) - M2(I(; +I;T)}

Minimizing the above equation with respect to the
fermionic mass parameter M we get_ T _
E = L em/2 e(a2/8) (Iota) + Id“)? (3.41,

2V2

or
2 —- _

fl = R0 exp(Eg2) exp(E-2 AIOT) exp E‘-(Io(n)-I°(1"1 )) (33-42)T T ­
AIOT stands for Io — IO (90)

The parameter 1-1. in this case is

2 2_ , »
ff = 3:42 exp[(1o(a)+1°T(fi))§. 3 _ E M2(I° +I°T) (3.43)
which can also be expressed as
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T

-2 -2 e(32/4)(Io+Io) E232I1 = 8M _ .3. (1;(fl)+1;T(R)) (3.44)
Following the same procedure as in the case of zero temperature,
we find

2 a¢ <52/4><1<r‘u> I <‘ > 2 4 AIT » ,1E1 e o e O - O (5) e(B / ) o 1 +1___ = _Q__Q_________Ex°2 :g<&°>+xgT<mo)
(3.45)

The computation of IQT is given in ref. [39]
Here we quote the result

‘T—'l-1nM_-l-Y (3.46)I° 8n Tn 8n
where Y is the Euler-Mascheroni constant.
Inserting this into (3.45),we have with (2.19)-EE- 2 2_2 5¢ 2 16a 52 AI 7 (5a¢o 55 T 552 53:1 0 fi " o ‘‘'‘''+-- 41 ‘-— 1“ -=~2)a~2=e (2) e4 n- 4 16 °64«= no]° ° 1”4’\2+l1"$fl-$'rF? 2 Mo 2

(3.47)

In the weak coupling limit, B<<1, this is approximated as

2

'§:§ = exp —__§E._. exp ..__E_..___ Z510 (3.48)110 1+5 /16w 4(1+fi2/16n)
12 T '-':"-—­

(§.j£o+.f_6a A10) 1+9‘/161:h.- ]
1“ 4”? + lln :3 - 1YM: 2 Mo 2O
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— T
To find VG (¢o):

2

ax‘/GT avg 2 we eg_<:°<a>+:f<a>;
d¢° °¢o

=.m—es (3.49)2 _ T —
mg (B/8)(I°(n)+Io(n)) . , - B¢o/2___ e (I°+ O )M e
2V2

To express the above equation in finite form, we follow the

similar technique as in the case of zero temperature((3.28)
-(3.30)).

1- '1' 1+B2/161:
9!: - ewe eB AIO (5B¢° + E-E2AIoT) '3we 11 - [ T2 46 1

M 2 2 no 20 (3.50)
_ 2 - 2 2

[Eh-M°B<1ni'32+*1n1“ -3”]3 an M0 2 Mo 2
Integrating this expression with respect to ¢o,we get the
GEP at finite temperature:

V T ‘ [502 R°2$(1n 4A2 + A In :3 - 17)] 5-1cs ‘ 5 31; 1:42 2 Mo 2o (3.51)
5- 5* T_ 5

ex §¢ exp B AI T 1 (zfigo + 2B A10 Z) 1P

0 0 ln gflg + % ln%3 — lyM o 2
o

where
2B 2 =3 (3.52)

4(1+§__)
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On simplification this becomes- _ T
51o2[l+ a¢° + § AID -12 — 2B Mo -1 2

-————7T—————27E + SY(4/@)4 5m)

VG: ]
_ 4 — 2

+ 5M0 2 4 2 5 + M° 7 (3.53)321r(4!\) /5(nT) / 16“
— 25M A T _,. °(BAIo +B¢o-2)

32n

The renormalized boson mass at finite temperature is defined
by the relation (2.60):

2 _ - 2 2T _ 572 Mo 4/\ E 1 l1_t __];ma =  -  ? + 2 n no
3.54A 5 $231 T 5/4 ( )gale-fl  O + ) 1e ‘A22 1 T

—'2Mo 2 Mo 2
with the approximated form as in the case of (3.53),2 _ A TT — T 2 1+ AIm =aeexpEAI {3‘i<1+ -52 ° >1R ° 52 M 2

““T—"‘2‘ ' 1* '5"4 5 5(4/\) / (nT) /

SE04 +.fi°2 + 5fi°2 3 AI T } (3 55)+ 4/5 ’275 16: Y 32x 0 '32n(4h?) (uT)
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, -1 T2
Re-expressing VG in terms of ma we have

2T — 2 " 2_ T m _ _ 5Mv =—5-expB¢+i(a¢-2)(n~° + °)}G -2 0 ° 32 E 2 2 321!5 ( 0 -l+§y)
<4n?>“’5<nr)2/5

_-1 _53 exp a¢o (3.56)
This is of the form;(m T)2 1

vgf = -—§§-— exp E¢o + exp E¢°[k(T> (B¢°-2)]sB (3.57)
B 5b2 Sfliwhere k(T) stands for ( + )B2  321i

_2_§:_._2_ - 1+3v)<4A >4/5<nr> /5

Here also the minimum of the potential occurs only at ¢o=-w,
and hence it is clear that the translational symmetry which
is broken at zero temperature is not restored at high
temperature. This behaviour is the same as that of one loop
approximation for effective potential [I04]. There the
effective potential at finite temperature is

T m2 Ea 2 2v (11oop)=_Be +.1.MT...1_M‘l‘+llnM (3.58)eff B2 4 3 2 4fiT2
where mg is the renormalized mass at zero temperature.
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This analysis based on nonperturbative approach leads
to Conclusions similar to those obtained in the nonsuper­
symmetric case, indicating that the appearance of the
fermionic degrees of freedom have no significant effect on
the core bosonic part.



IV. SECOND ORDER CORRECTIONS TO THE GEP FOR ¢6 MODEL

AT ZERO TEMPERATURE

Lowest order GEP

The first order GEP for ¢6 model has been given earlier [92
Now in this chapter we give the second order GEP for ¢6
theory in 2+1 dimensions. The general formalism of higher
order correctionsis given in chapter 1 ((1.38) through (1.54)).

Here we define the Lagrangian as

Z = (10 +i'j_nt)5=1 (4.1)
where ‘to is the free field Lagrangian with mass

nfor the '93 field,
A

1b = %a(x) (-o2+4w?)¢(x) (4.2)
A

where ¢(x) is defined by (1.44)/and 5 is an expansion
parameter. The interaction Lagrangian is assumed to be of
the form

i1nt[a] = 5(v°+v1& + v2&2 + v§%3 + v4@4+véb5 +v6@6) (4.3)

where 5 is an artificial expansion parameter which is intro­
duced solely for facilitating corrections of various orders.

The coupling constants vi are defined by the relations

‘'0 T '% “'32 9,02 T %¢o4 + -§B¢06

V1 = (mB2 + 4 AB¢o2 + 5.§B¢o4)¢o

V2 = §<mB2 ‘J%) + eA3¢o2 + 15§B¢°4 (4.4)
3V3 =  +
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2
V4 AB + 15§B¢o

V5 = 6§B¢op V6 = SB

It may be noted that these terms arise when ¢ €> ¢o+a in the
2

expression %mBA¢2 + %g¢4+5%¢6 which constitutes the ''potential
part" in the standard ¢6 - Lagrangian density [31].

The free action can be written as

= -J; A -1 /\fx io,x fxfy 2 W7‘) Gxy ¢y (4-5)
in which

5; = <-o2+.€) an-y) (4.6)
The inverse satisfying the condition

-1[Y Gxy Gyz = 6(x-z) (4.7)
is

. 1 -iP(X-Y}G = -———jjW JP 2 2 e <P +r1

which is the x space propagator. Now (1.46) — (1.54) follow
and we get the zeroth order contribution to W.

The generating functional for connected Green's functions
given in (1.50) is reproduced here.

W[j,qJ = j¢°-DI1+1n[(1Jiint + %%§:t + ...) exp %(jGj)] (4.9)

where j is the source function, 1Jthe space—time volume and
_ ; 2 2

I1 _ 2 £1n(p +I1)dp
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J2 vo exp(%JGJ)j=° = vo V (4.10)
fz via exp(%jGJ) 5 v1 g3 exp %jGj = v1fz(Gj)z (4.11)

fz v2 (—§3)2exp (£361) = V2 10 1/ (4.12)
where 1
I0 = Gxx = fip ;§::?- (4.13)
fz v3(—§—j—) eXp(%jGj) = 3v3I° fz(e;)z (4.14)

12 v4( gj )4 exp% 16: = 31021» (4.15)5 2
fz v5( gj ) exp % jGj = 15v5I° fz(Gj)Z (4.16)

fz v6( gj ) expé (jGj) = 15 103116 u (4.17)
where

dd-lk 2 H 2 2 2
In(rfl - f (2u)d_12wk(w5 ) . wk = k +_r; (4_13)
Inserting these expressions into (4.9)’to first order in 5
we have

W[j,¢o](1) = w|(o) - 5[(vo + V2I° + 3v4I°2)2/+15V6Io3
(42

+ (v1+3v3I° + 15v5 I°)f(Gj)z

where w|(°) is the zeroth order contribution.
The effective action is given by

=—7/I n .1. Gl( ) + 2 .1 J 2 3
- 5[v° + V210 + 3v4Io + 15v6 10 ]p4 o(j) (4

.19)

.20)
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Since j vanishes in zeroth order, and so is 0(6) bv setting

¢c = ¢° (according to (1.53)), it can contribute only to the
o(52) terms. Thus for first order calculations of V‘ we can
set j = 0.

Hence we have

l“(Q;(1) = -12[11¢nJ + 6(% mg C2 + AB¢c4 +

<,21.<mB2-1%‘) + 67‘B £253 + 1s~;B;zs;‘)1o (4.21)

+ 3(7xB + l5§B¢c2)I°2 + 15 33103 )]

For 3:1, the above result is the ordinary GEP for ¢6
model [93].

.2 second order correction
Here we have from (4.19)

(¢C)y= <91’J)Y = ¢° + (G3)? 2 (4.22)
- 5(vl+3v3Io + 15v5Io )fzGyz, -1

Multiplying throughout by Gxy, with ¢Y = ¢c = ¢o, jx is seen
to be independent of x:

23 = 5(v1 + 3v3I° + 15 1° ) + o(a2) (4.23)
Next we have to compute

1 .22 1 1 A 3— . —-‘G = . 1 ' 4.24
Evaluating term by term we have

V02 exp %(JGj)I5=° = V02 (4.25)
[v12(—%3)x (—g—j)Y expg 1GJ]J=°= v12 Gxy (4.26)
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— V210 +2V2 Gxy2 3 2 3 2
[V3 (g—j)x (3%): exp% jGj]J_=° = [9I°GxY+6GxY]v3 (4.23)4 4 2
[vi (g—j)x (g3)Y exp-E jG_]]j=° = vi{9I:+24[3I°(Gxy)2+(Gxy)4]}(4.29)2 5 5
[v5(—%),( (3%), exp-% jGj]j=°

= 15 v‘: (15 I:Gxy+40 Ii efy + 8 G3,) (4.30)6 _ _ 2 6 4
[v§(3_§_f’x(§.§_)Y exp %_‘]G3]j=o = v6[225 Io + 90 [45102 4 6

Gxy + 601: Gxy + 8 Gxy ]} (4.31)
Now computing the other terms we have2 2 . .

[v°v2(6—§—)x + v2vo(-§—j)Y] exp % JGJ|j=o = 2v._,v2I° (4.32)4 5 4 2
2vov4[(3§—)x + (33->y] exp g JGJlj=° = 6VoV4Io (4.33)6 6 _ , 3
2"o"6[(g—j)x * ($353 ‘"92 JGJ|J=o = 3°“o"6Io (4-34’

6 2 6 4 6 2 8 4
v2v4[(5—j)x (-5-3)), + (-5-3)), (-6—J)x]exp %jGjIj=°=  + 24V2V4I°

2 6 652
v2v6[(g5)x ( J>Y + (g3), (33>Y1 exp % jGj\j=o2 2 4
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v1v3[(§3)x (%3)y + (£3): (§3)y] exp
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1 .
2 JGJ j=o6 vlvalo G (4.37)xv

§_ 6 5 §. 5 6
V1V5[(5j)x (33)y + (aj X (33)y] exp % jGjlj=°

v3v5[<§3>f <§—>5 +

25 O Gxy (4.38)
§_ 5 6 3 .

aj Y (5j)Y (33)x] exp %JGJlj=o

v3v5(12O 1° Gfy + 90 Igex )Y (4.39)
5 6 5 4 .

v4v6[(%3):(g3)S + (33)! (33)Y] exp %JGJ|j=02 3 4 5
90 V4V6(l2 G I +8 IOGXY +10 )xy 0 (4'4O)

On summation we get

1
2

A /~
J}j}.i1nt,xi‘int,y exp (% jGj)j=o

+

2 2 2
%52 fxfy[A +v1 Gxy +6v1v3IoGxy+3Ov1v5I°Gxy2 2 2 2 2
2v2Gxy+ 24v2v4IoGxY + 180 v2v6I°G*y

3 )Y+3 IOGXY2 3 4
xyIo+8 Io Gxy)

2 3 3
G +6Gxy)+ v3v5 30(4 IOGX

2

V3(9 Io xy2 2 2 4
24v4(3 IOG +Gxy) + 90 v4v6(12 Gxv2 4 2 3 5
15v5(l5 1°exy+4o Io Gxy+ 8 Gky)

60 12 4Y * o Gxv2 3 (4.41
2 4 2 690v6(45 Io G + 8 cxyy]X

where A = v°+v2Io+3v4I°+15v6IO
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Rearranging the terms wecabtain the second order terms :

% 52lJ2A2 + % 62 1J[(v1+3v3Io+15v5I§)2 1(1)22 (2)
+ (v2+6v4 10 + 45v6 I0) I

+ (v3+l0v5I°)2 I(3)

+ (V4+l5v6Io)2 1(4)

+ V?) I(5) + vg I(6)}- (4_42)
where the I(r integrals are

(1)%T I (r0 = fy Gxy = —%:E (4.43)
%T I(2)(rfl = fy Giy = fp ?;%::::32 (4.44)1_ (3) _ 3 = 1 (4.45)
3! I  — '/‘Y GXY fpj-q(p2+!12)(q2+f12) [(p+q)2+fl2]

(4)
:17 I (Q) = fpfqfk 2 2 2 2 2 2 2 (4.46)' (P +n) (q +n )(k +r*?)[(p+q+k) +n]

.3 :<5’<n> = fpfqfkfl 2 2 2 21 2 2 2 2 2' W'H1Nq+fl)W'H1N£+n)fipHuh4)+3]
(4.47)

(6) _
:_! 1 (0) _

l

fpfqfkf‘ fm (P2+n2)(q2+r?)(k2"'f'12)({2+n2)(m2+f%) [(p+q+k+I I-m)2+n2)]
(4.45Combining with the result for the 0(6) case, we have

42“ 1
2

= il-5[UA+(vl+3v3Io+15v5I°)fz(Gj)2]1 2 2 2 1 2 2 2 (1)
+ 55 D A + 55 UEvl+3v3Io+15v5IO) I
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2 2 (2)
+ (v2+6v4Io + 45v6Io) I(3) (4))2: < )2:+ (v3+1Ov5I° + v4+l5v6 10

+ v: I(5)+v§ I(6)]} exp % jGj (4.49)
Taking the logarithm and reexpanding in 5 we have the

52v2A2 terms cancel out,which represent the cancellation
of disconnected diagrams. Substituting for j from (4.23)2 2 1
we find that the (v1+3v3Io+l5v5I°) I( ) terms cancel out.
The effective action to second order in 5 is

Fig) =lE:) + %52U[(v2+6v4Io+45v6I:)2 I(2)2 2 4)
+ (v3+1O V510) 1(3) +(v4+15v6Io) I(

2+ V5 I(5) + v: 1(6)] (4.50)
The effective potential to second order is(2) 2 2 4 6

v (¢c,n) = mm + 5 gums ¢c + 7\B¢c + ‘§B¢c2 “ 2 4
+ % Io(fU [mB-re +12”h¢c + 30§B¢c]

A 153 ¢2)I2 1'5: 13+ 3( B+ B c o + B 0(2) 2 2 4
_52{% [ma-:3 + 12AB¢c + 30§B¢c2 2 2
+ 12(7\B+l55B¢c) 10 + 905310)

+ %[(4»B¢c + 2o§B¢3; + 6o§B¢cI°]2 1”’
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2 (4)
+ %[7\B+15SB¢E + 155310] I

)

+§<e2B¢c>2 1”’ +%§§ I“ } <4.~:~:>

4.3 Renormaiization ( )2
To renormalize V(¢c,-0) we express the bare parameters

mB,7\B and§B as follows:

mg = 11126 + 5 Am: + O(82) (4.52)
)3 = WBG + SAWE + O(52) (4.53)3B: 3%,, 5A§’B (4.54)
where mic and ABG correspond to the bare parameters obtained
in the Gaussian approximation [93].

Now substituting in (4.51) we have

V(2)('“§'7‘B) = V(2)[m2BG' 7‘BG. 385]

+ 52 {% Am§[¢2+1°(rU]

+ 4AB[¢‘§ + e¢§Io(n) + 31f,<n)]

+ A§B[¢E + 15¢:1o + 45¢§I§ + 1512]}+ o(33) (4.55)
We impose the optimization condition for f). as(2) d1 2av _ -;F2 — _:; .§( A +153 525 + 15? I )
“L2 - 8 (n.¢¢) dog + 2 as BG c as 0(3) (3)is? d1 3005 ¢ 1-1 I

_1_H2 dI(4) + 15 H §BG1_1 1(4)2cm? 7
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dI(5) _ dI(6)1 €2‘ BG
2

- %(6§BG¢c) dnz 2 M122 2
- % I_1(5-) AmB - 3A}\B I-_1(¢e "' I0)4 2 2
- 15 1_l A§B[¢c+6¢cI° + 310] = o (4.56)where 2 22 4

p = ".26 -3 + 12ABG<¢c + Io<n)) + 3O'§BG(¢c+6¢cIe"'3Io) (4.57)
3G =  +  +  (4.58)

H = 7\BG + 1s§BG¢':‘ + 1553510 (4.59)
Here we have made use of the result [31l I(2)= I_l I
and

dln.__ = - A (4.60)
dc? (n 2) I"'1

The first order expressions for the bare parameters
[93] are2 2 2mBG = ma - 12ABGIo(mR) - 9O§éG[Io(mR)] (4.61)

AB = %T [1-12ArI_1(mR)] (4.62)
1+6/p\r I_1(mR)

where

Ar = ABS + 15fi%GI°(mR) (4.63)
Since the 6th derivative of GEP at the origin is found to be
finitely related to €569 Ar and mfi, the parameter 535 needs
no renormalisation [93].

Introducing cutoff like renormalization [103,lO5] in 2+1
dimensions we find from (4.13)
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Io(mR) = %fl[£‘fi .. $3] (4.64)
Now

m2 = m2 + 1275 [A ‘  + 90§ i(-A-)2+ (EB)2‘ -A-ma}R B6 G 21:5 4:: 136 2n2 4,, 4n3 (4.65)
For 2+1 dimensions I_1 is convergent:1 (m )= 1 <4-66>
'1 R 4n ma

Now from (4.62) we have

%r[l _7~R = 3“ Inn (4.67)
1 + 6AT

411’. [HRwhere m_ A 5 1; _ _B (4.68)
’\r - BG " 15 BG (2112 4,,)

Solving for’ABG We have

W um?\ =-15€ ./L-."lB)-i-_B (4.69)BG BG(2n2 4n ( 4 6 )
2

1 [M2 + (""‘B)2- 5““‘RAR]1/16 6 12
A36 is obtained in a finite form and hence we assume that the
corrections to the bare parameters are also finite in 2+1
dimensions [31].

(n)For the I integrals in 2+1 dimensions, we have a small
x-cut off [31] like renormalization. In general, in coordi­
nate space d/2 ­"'- f“(d/2) °
In 2+1 dimensions.
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e-nx
nx

an -3m(
New .1._I(3)(n) = —1—.£ dx 9­3! l6n2 X

= 1 E1(3na)16n2

= '1 2[1n@1a) + 1n 3 + 7 + 0(a)] (4.72)16n

where y is Euler's constant, and a denotes the x—cutoff.
Similarly

1 <4) _ _r_1_ e-‘”“_ E 4naET I Q1) ' 16fi3 4113 1( )]

= £2l3[4i1é+ lnfida) + ln4 — 1+1] (4.73)n

2l_ (5) _ 1 -(5r9 _
5! 1 (n) _ (4n)4[ 2! (y+1n 5 3/2)

- (5fD21n11a + 1 - Efj (4-74)2'. 25,2
_1_l I(6)¢n) = 1__ 5[36n3(‘r+1n 6 - 11/6)

+ 36n31n na + l— - 351+ 185%] (4.75)333 a 3
Rewriting the quantity F defined by (4.57) in terms of
renormalized parameters

F = mg - 127\BG A10 .. 1eo§BG A10-Io(mR)

+ 90§BG(AIo)2 -112 .. ]_8O¢§§BG A10
4- 12953 A BG+ 30§BG¢c (4.76)

wheretélo in 2+1 dimensions [27] is given by
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O = %t(Q-NR) = Io(mR) ­
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(4.77)

and WBG and Io(mR) are given by (4.69) and (4.64)

Now

dV(2)

cg?

+

+

5v(2)
a¢21 2 . 2 2
E [mBG + 127gG 40+ 9o€BG Io + 4ABG¢c

|1\=?1

2 4
50§BG¢cIo + 6§§G¢c ]

2
I_lF[3ABG + 15€BG¢c + 45§BGIo]2 2 4 2 2
8[)\BG +75§BG¢c + 225535102 2 2
20”BG'§BG¢c + 300§BGIo¢C

30 gee A5610] 1(3)(4) 2 (5)
- 1835515H§BGI I

2
%[;;m§ + 12AABI° + 9o1°A§g]2 4
2(a%B¢§ + 15A§BIo¢¢) + 3céB¢c (4.78)

The renormalized mass parameter in the second order is
obtained as

2
m 2 922‘ _Od¢c ¢c"

mg - 12)BG(AIo)o
2

2I_1(3ABG + 45555 Io(F5)) (ITIR2 -12 7\BG( AIc)o
2 ._2

1go§%G(AI°)° I°(mR) + 9O5BG(43I°)° -110)
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-16[;\§G + 225§§G I§(fio) + 302536 7~BGI.,(f».,)]

(I(3))o _ 3O§B((.1(4))o()\BG+15§BGIo(f1°))

- 35s§G(1(5))o + [Am§+12a?~BI°(?},)

— 90 I§(r‘1°)A5B] (4.79)
Here (AIo)o = %—fl(fi° - mR)

I(3)and ( )0: _£_—‘L=j\.°

(I(4))O= I(.F41:)=f‘—o

(I(5))O= I(.?§\_)=

Hereffin is the solution of (4.56) at 425.; = o.

The renormalized coupling constant ?\s is given by
A = _ d_2_V

S 2 d¢E:?l¢c=°

J36 + 15586 IO(fi°) + —1——3— (In: - 12ABG (AI°)°161:

- 9o3’(A1°)o-°- Iowa)
BG

+ 90‘5BG(Mo)§ ‘fig’ (37bG+45§BG I°(fi°))£:1':rf5' (5 =0C C

- ;mO(m§ - 12>»BG<A1°)° - 9o§BG(AIo)o 2 1°<mR)2 -2 1 of?
+ 90€BG(AIo)o ‘no) (15:86 45386 311710 W‘¢c=o)
_ 1 12 _ 12 ____.l __.d?‘~2

87‘5o( 7E6 NEG 8"‘h° d¢§ |¢c§o
— _1 _ 2:12

'’ 30336 6I0(n°) " 90.535 I0 41:50 d¢¢-,2 |¢c§o)
(37‘BG+453sG Io(fib )9
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4(225§2 I (‘) 1 $1.53
4'  0 -nb 4flfb d¢g‘¢c=02 :
4. 207335 335 + 300333 I°(I\D)

-£> 3' 7\ 9:12 (3) ­
Mao BG BG dwcz |¢c=°) I (0:3)

2 2 2_ A I(_)]dI(3)d2a)
=0(4) 2 _15 dl d

-00 c c
-2

-1_5§ 1(4) 3' 15 1 ‘ml2 BG (15 BG BG 4,t,—,o —2d¢ ¢ =0)

- 9:: M‘? £31dn d¢c ¢c..o-2 1 2_;6a'/\ 1 -"—“- +901 d“ 43']
4[ B 41:59 d¢¢ ¢c—° ° 41:5,, d¢7c 955° B+A)\B +   (4.80)

«:23
where ——i satisfies the equationd¢c ¢c=°

I 90 ( A12
1 3(m§ - 12}\BG( AIo)° ‘ 18O§BG( A10)‘; O(mR) + §BG 0)o
321L710 -2 -d-2 23

"n°) ( dgc l¢c§0+ l2ABG(1 - 1 g— =o)+303BG(6I°
__ 3Io (35.2 __ 3 (m_ ——| )) _541tDo d¢g ¢c=o 1281tn°

2
_ 9o§BG A10. 2I°(mR) + 9O§éG(AI°)

-2 d—2 15? d-'3- ) ‘‘ §(15 — ¥ °“
‘‘° sag l¢c=o* 2 396 81: no a2l¢.;=o>
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— 153 d‘2
(;(B+15§BGIo(n°)) (15586 - “:0 -£5 ¢C=o)C

3 (lnfioa + 1n4 + 7)
4x350

I12

3 (ABG*15§BGIo¢fib))2 (1"fi°a + in 4+Y-1) E65 ¢ :0C C15 23 (4) _
(15586 ‘ "énif '3a2|¢ =o’ 333561 “‘°’C C_ 543 -2 _
(7éc'."15§BGI°(n°)) 12 B6 8:33 :g2}¢ =0 I(4)(“o)O C C

-27\ )l§§_3G1’_*. 3 - 1 4 ))
( BGF 155BGIo Bflfio d¢c2l¢C=°(4n3hélrI‘7Qa+ n +7) 2 -2 27.l(e52d1(5 -.1. 4_5__-.—( 16
2 3)} dF,_2 2386:"??? 43_“5[no W nA 1 1 1 A 93?
2 + niiga + 3g;g‘a2)] + 3§;:;§_ mg d¢é2‘¢c=°

3A>\B dFa.2 I (_ ) 3A7\B L (12-32
snag dgsg \¢c=o ° n° 41:51,” enfio d¢El¢c=o

15 are? A§B(3I.,(n°))2- 15_ (A33;8153 d¢c ¢c=° °
(610 - 310 dim?‘ ) = 0 (4.81)

Integrating the equation (4.78) we have the GEP [31]:

v2(¢g
2 4 6

‘ % “‘§¢c * 7‘Bc.¢c " §BG¢c2 2
- 6)\BG AI°¢c + 453BG( AIo)2¢c2 4-   QI°¢c +  Io
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1 4 5 I ) 2 2 2?\ AI ¢2_ _ (3386 + 5 BG 0 (mR¢c - 1 35 o c
41I‘1j 2 22 -22

- l80§AIo.Io {mR)¢c + 9Og§AIo) ¢c "n'¢c4 4 6
- 90536 Mo¢c - 6% 7‘BG " l0§BG¢C)

‘"2 9”: 4 03’ A1 I (m M441rno 2 2 4 6 6
+ 45§BG( A1°)2¢: - £152: - 60535 AIo¢c - 47‘Bc;¢c

61 5 8 2 2 2 2 2 2
., __5_2_Ifi”g) - a[,\BG¢c + 75356 ‘.32 + 25536 :0 ¢c4 2 4 2 (3)
+ 107\BG §BG ¢c + 15O§BG Io¢c + 30356‘ A35 Io ¢c] I

42 155 2 (4)
- 15(/\BG¢c + ——5—G¢E + l5§BGIo¢c)§BG I2 2 2 2 2
- 18356 ¢¢I(5) + flame + 12¢7‘B1o+90Io 5513 .]95c (4.82)4 4 6
+ 4-‘FAB ‘¢¢ + 15 A33 Io¢c 4’ A§‘_ M

We have shown that (2+l) dimensional ¢6 theory is a
renonmalizable theory and its second order GEP terms are
also finite. Unlike in the case of the ¢4 theory [31],
¢8 - term occur in V2(Q,11). This is an artifact of the
method. 2+1 dimensional ¢6 scalar field theory finds
applications in the study of vortex solutionsof the abelian
Chern-Simons theory [106] and in the study of soliton black
hoks at finite temperature [lO7]. Besides its importance
in particle physics as a model scalar field theory, the of’
self interacting model finds applications in solid state
physics also, where it has been used to explain the first
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order phase transition from the ferroelectric to paraelec­
tric state and the structural phase transitions observed
in crystals [108—110].



V. GEP FOR COHERENT STATES AND SQUEEZED STATES OF

ANHARMONIC OSCILLATOR

Introduction
For the past three decades, developments in the field of

coherent states and their applications have been widely dis­
cussed. The history of study of coherent states goes back to
the early days of quantum mechanics, When around 1926

Schrodinger [43] reported the existence of a certain class of
states that display the classical behaviour of the oscillator.
Later Glauber [44] called these states coherent states and
applied them to the radiation field. In the literature the
coherent states have been called the minimum uncertainty
product states in the sense that the relation var(x) var(p)
= l holds for the [o> or vacuum state.

4

The minimum uncertainty method has been applied to

general Hamiltonian potential systems, to obtain both
generalized coherent states and generalized squeezed states
[lll-114]. Recently, to produce the wave function of a
quantum anharmonic oscillator,a variational procedure has been

proposed [115] and found that the wave function looks like a
coherent state constructed from the solution of the classical
equations of motion with a semiclassical construction. In
this chapter we calculate the GE? of an anharmonic oscillator
in coherent states and squeezed states.
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5.2 Coherent states
We choose the Hamiltonian:

H = %P2 + %m2x2 +AX4 (5-1)
where

h 1/2X -_- X“ + (51,) (ag-_a:L) (5.2)
_ 1/2

p = - .%1(2rm) (.-,_,Q.a;;), xa = <aIX|a> (5.3)
and 11 is the mass parameter. The subscript :1 is a reminder
that an_and agi depend on the frequency of the harmonic
oscillator.

The state lazl is the coherent state which can be taken
as a Gaussian trial wave function which depends on.:1 To
evaluate GEP, we determine the minimum of the expectation
value of the Hamiltonian in the coherent state:

VG(xa) = mg: vG(xa,r>) = min <a|H|a> (5.4)
Term by term, we have- 2 2 2
<a|%P2|a> = _:*_‘=(a - 1 - 2|a|+a* ) (5.5;2 T1 2
<a|%m X2|a> = %m2(Xi + (§k}/ 2Xa(a+a*)E 2 *2 2+-°+°= +1+2lal )) (5 6)A .4 4 3 1/2
<a|?\X|a> =7\xa + 4xa?\('—;n) (cz+a')

*211

+ 6X:}’\(§¢‘1(412 + C: + 1 + 2]aI2)
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+ 4KXa(§¥{)3/2 (a3+a*3+3a+3aIaI2

+ 3a* + 3a*|a|2) +%(%g)2(a4+a*4 + 6(a2+a*2)2 2 2+ |a|2 4(a +a* ) + 6|aI4+12|aI +3) (5.7)
On summation we get the expectation value of the Hamiltonian
as 4 L
nfalfilaza = lgo C1 X“ = vG(xa.rL) (5.8)

where- 2 2
Co = fi!1(a2-1-2|a‘2+a* ) +'EE- (a2+a*2+1+2|a|2)4 411

+-?%E%Q2(a4+a*4+6(a2+a*2)
2

+ 4Ial2(a +a*2)+e|a|4+12|a|2+3)1 2 3/2
C1 = m2(2—n) / (a+a*) + 4T\(-£—n)

C2 = %m2 + §§¥(a2 +a*2+l+2|a|2)
_ 4N“ )1/2

2-0.

*3
+(a3+a 3a+3a*+3la|2(a+a*))

(a+a*)

C4.-.?\

Minimizing the quantityiéalfilagl, we get the optimum
condition for 41.as

f€(a2-1-2|a|2+a*2) + (E)-1/2 ii?/2(a+a*)

(m2Xa+4AX2) + 2?Xa2+a*2+1+2]al2) (%m2+6%X§)

+ (g)1/2-F9/2 l23Xa(a3+¢*3+3(a+a*) + 3IaI2(a+a*)) (5'9)4 *4 2 *2 2 2 2+ 2hh(“ +G +6(a +a ) + 4'41 (a +a* )+ 6la|4+12laI2+3) = o

This equation can have six roots and the" largest
positive root, designated asii, is to be employed by conven­
tion [16],when the effective potential is calculated.
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If a is real, we have the Piequation as_ _ _ 2
53 -207?) 1/2 .. 3/2(m2xa+47\x§) - 2r>(4a2+1) (%m2+e7\xa)

1 2 _
_ 12(2) / al/2 /\xa(ea3+ea)
- 2fi7\(16a4+24cz2+3) = o (5.10)

.o_V_G(X°='n) - Si. (5 11)
dxa n=a dxa
Since QXQ vanishes at.r1= E1,

51'}.

dv 2 15 1/2 , 15 3/2
3;; = m (535) (a+a ) + 4W(§;;) (a3+a*3+3a+3a*+3|a|2(a+a*))

+ 2Xa(%m2 + %§¥(a2+a*2+l+2[a|2))

+ axi (47\(2—E_;_-)1/2(a+a*)) + 4M3 (5.12)

we define the effective mass mE(a) of the anharmonic oscillator
by the relation2‘ _mg (a,a*) = L! =dxjz Xa=o 2 2 dxa Xcr=°

3 2 — -5 2
' 67*?) / ‘db / (¢3+a*3+3(a+a')
3 2 * in

+ Ial (“+¢ )) dXalxa=o

+ W2 + §%§(a2+a*2+1+2|aI2) (5-13)
where Qéllx can be obtained from (5.9) asdxa a=°

_—— -l"2._ 3/2 2 _l 2
gillx :0 = -[ %(g) I J10 m (a+a*} + l2A(§)l/24‘o/ (a3+a*3+3a
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+ 3{a| (a+a*) + 3a*)]/(3Pb(a2-1-2|a|2+a*2)+m2(a2+;.+1+2|aI2))

(5.14)

Hereifib = fiat X =o

For the ground state expectation value of the Hamiltonian [16],
951
dXo

behaviour of Ii from the ordinary ground state and excited
lx:3Cxand hence (5.14) gives marked difference in the0

state results.

Substituting (5.14) into (5.13), we have2 4
"‘§(a) = I112 + 33-? (€l2+¢1* +1+2|¢|2) + [%~(¢1+a*)2

+ 9m2%(§)5%'1(a+a*) + 13n?n2jfi;23 *3 1 2 i 2 -2 2 2 *2(a +a +3(a+a )+3|a| (a+a )) ]/[311O(a -1-2|al +a )+
m2(a2+a*2+l+2|a|2)] (5.15)

we may also introduce an effective coupling constant Aéa,a*)
for the coherent state |a> through the relation

}\c(¢I.<!*) = A-(d4VG)4
4’ dxa xa=o

(5.16)

Then on calculation,we find
1/2 -3/2—— =-1-[- '-"2<‘—‘> ‘ i ( *>4: dxa4lxa=o 4; [2 2 n° ‘W’

3/2- -5/2
+ 53(g) ‘B (a3+a*3+3a+3a'

+ 3Iclfi(a+a*))] -C-3-‘
dxg“.xa=o
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2­
" 18 fi( 2 *2+1+2[aI2) dim__ (1 +11 2M

+ a[gm2<1;)”2ho'5/2<a+a*>
2 -7/2 33

+ 15M-E) /50 (cc +cz*3+3a+3a*
d.?n_

2­

+ 3|Q|2(d+Q*»] $22” _dxa Xazo dxa duo
36)\h 2 _~-I2 2 d‘ 2

+ —‘;'?(a + _<r2ial )  lxa=o
‘n 1/2 __ -3/2 -I _(j_.r‘~;.

367‘(,2) no (a+a ) dXa|xa=0

- [m2(g)1/2 -F53 50-7/2(cz+a*)- 3 3
-1-3:’ 7\(2)3/251-, 9/2(a: +a* +3a+3a‘

+ 31a|2(¢+a*)] (§—‘"‘)3| + 24A] (5.17)

1 2 _ 2 3 3 er 2 * d‘
+ (1%) /.50 1/ 127\(a +cz* +3a+3a +3|a| (a+a )]'—"d;;lxa=o

— [6fiD( a2-1-2 | a I 2+a*2)
dfi. 2

(‘ix > IX :0q C!
+ 24 ?\?1b(a2+a*2+l+2|a|2)]]’ /2 2 2
[_'3?aD2(a2-1-2|a|2+a* )+m2(a2+a_* +l+2|aI H (5.18)

and

" '1/2 __ /2 <1
g-3-§"={-  (E) m2 0.01 (a+a )dXa|Xa=o 2



(3fB2(a2-1-2lGl2+a*2) + m2(a2+a*2+1+2|a| 2))

89

-1/21/2.
18(?Z‘) no 7\(a3+a*3+3(a+a*)

3l¢l2(a+a5)] gééfix :0C! C!

dii ‘ (123
dxa Xa=O

*2)
dXa§ Xa=0

185°(a2-1—2|al2+a

[gmz (2)—l/€501/2 (a+a*)
1 2 _—3 2
/ 9-no /?\(a3+a*3(E) +3(a+a*)

3IaI2<a+a*>)1 (3-5-*)2;x :0C! C!
2

72<a2+a* +1+2|a|2)7\%;1a|Xa=o
2 2 *2 dfi 3

6(a -1-2|a| +a ) (aiz) |Xa=°

(g)-l/%fio3/2(a+a*)24SK}/

(5.19)

To obtain the effective potentia1,we integrate the

equation (5.12) with respect to Xa and get_ 2 2 2 D. 1/2 *
VG = %m Xa + m Xa(2f€/2 (a+a )4 3'fi_ +

+7\Xa + 4?\Xa(2h) (a+a )
2

+iA3xa (E) (a2+a*2+1+2la|2) + 4AX (E=)3/2(a3+a*3+3(a+a*)h. C 2n
+ 3|aI2(a+a*)) (5.20)

Here the effective potential VG is real even though the coherent
state parameter a may be complex. On inspection of the expression
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for the effective Coupling constant )t(a,a*) it is seen
that it contains some non-analytic terms in E, namely those

in negative poweIsof'fi. As a result ?t diverges in the
1imit‘fi % 0. However kt remains finite in this limit if the
‘bare mass parameter‘ m is taken to zero. It is also noted
that there is no similar problem in the ground state |o>.

Squeezed states

The generalizations of coherent states namely, squeezed
states, have become of more and more interest in recent
times [48,l16-122]. A wide range of applications have been
suggested,ranging from gravitational wave detection and
polariton theory [123] to low-noise optical communications,

to the inhibition of atomic phase decay [I24], Recentlx
there have been several attempts at generalizing the notion
of squeezing. Very recently,Nieto [125] generalized the
notion of squeezed states to arbitrary symmetry systems and
discussed its relationship to squeezed states obtained for
general potentials. It is shown that the coherent light
interacting with a nonlinear nonabsorbing medium modelled as
anharmonic oscillator can also give rise to the amplitude­
squared squeezing effect [l26]. This model system has
previously been shown to give rise to usual second order
squeezing in terms of the field amplitude [127]. In this
section we extend the GE? method to define the effective

potential of anharmonic oscillator for squeezed states lfi>
defined by (1.87) and (1.88).
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Expressing X and P in the form
fi 1/2 +X=XB +  (a_n_+aQ)

_- 21/2
P = %(2fifQ (ail-ax),
where X5 = <s|x|a>,
we calculate the expectation value for each term of the
Hamiltonian given by (5.1) for a squeezed state |B> with the
operator
b = pa +wa+

<5|%P2|B> =

<fi|%m2X§|B>

<a|Axg|B> =

where A =

3

2 2
- %h“{u* 3 +q?g*2 _ p?(2|B|2+1)+u2B'2

*2
uv*<2|e|2+1> +»r $2-2(lul2+|W|2)lal2—lW|22 2
2W’u*a +2pvB*2-|Hl ]

/_ 1 2 2 2 §_ 1
—§mXfl+mX“’(2n)s

+ ——(P 3 +m?B*2 - p*v(2IBI2+1)

+ u2B*2+v*2e2-u17(2|Bl2+1)

+ 2(|uI“+|Vl2) lB|2+lul2+|v|2
- 2u*v*B2 - 2uvB*2)

1/2
Kxg +4%xg (23) A + 6AX§ (§§{)B

2

4%xB(§E)3/2 c + (gfign

u*s - vs‘ + us’ - w*s
- p*252+y2B*2_p*V(2lfl|2+1)

2
u2a*2+v* B2 -uv*<2Ifil2+1)

2uu12+IvI2>:e12+ap|2+nv12
2p*%*fl2 — 2pVB*2

2
<u*B- ve*+us*-276)

(5.21)

(5.22)

(5.23)



92

-1­

C = B3(u*3— v 3-3p*2w*+3I»*2p*)

+ fl*3(p3-v3-3n2v+31?n)

(lB|23B+3B) (v*2u-u*2v+

*2 *2 1 * * *
+3.1 p,-‘V 7J+2pvv-2’Vp.p)2 as «It
* “Bl [35 1 + 33 J [V2u*-u2V*+u2u* -v2v*+2pm7

- 2vpp*]

and D = B4(p-I-4+v-1-4-.4p*3v-I» _ 4y«hp*+6p*2y-r2)
4

+ 5* (P4+v4_4D3p - 4p3v+ 6p2V2)

+ 6B2+4B2|Bl2[-u*3>’-V*3u 2 ,
+ uu*3 +14’3 +3u*2v*u+ 31f2P*p - 3u* V*u ‘ 3‘?2u*v]

*2 *2 2 3 * 3 * * 3 a 3 2 *
+ 68 +46 IBI [-v u -u U +V V +u u +3v up

+ 3n2y*v —3v2pu' - 3u2uu*] + 12|a|2+6|e|4+3[p*2v22 2 2 «I -)l­
+ p2)J*2 + ()J*>1) + (|_1*p,)2 - 2p.* pi) -2V p P -2|_|,2).J*p*

_ 21J‘2p,v]

Putting together the expressions given by (5.21),(5.22) and
(5.23) the expectation value of the Hamiltonian in a squeezed
state [B> is

<g|H|g) = :%£lB' + %m2X% + m2xa(g;Ql/2 A + %m2(%7QB

+)\x; + 4Axg(%?3l/2A + ox§A(2E3B + 43\x$(§;Q3/2C

+ 7\(32‘_n) D (5.24)
where 5' = JB2+v2s*2 _ p*v(2|e[2+i)

uv*(2|Bl2+1)+u2a*2 +v*2e2 - 2<iul2+|vl2>I$!2

§p|2 _ |v|2 + 2$*2pv+ 232p*$F
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Minimizing the expectation value of H with respect to :1,
we have

1 2 _­
giflz = E B‘ + m2XB(g) / A % 3/24

1 2 ___
+ 1m2.§_.B + 27\X3 (§—) / fl 3/2A2 252 I3

‘h 3/2. -—5/2
., 6x ,\1L_,2B + 67\X (2) c.2n

h 2 2 ­-+%(§) 1:3 - o (5.25)
The effective mass is calculated for the squeezed state |B>
as in the case of coherent states:

2 d2? 2 Ghbg 4 2 2 -1m=-—— = .m_.A 9 E‘ ACAI m + - + [4 + m (2)-Ob
2 2 n 2- -2 —-2 ' 2

+ 727\c (§).rb ]/[3f1o B +m B]

To find the effective coupling constant we have to
evaluate the fourth derivative of the GEP:4 2 _— ­
As = _fi_:.  -0: %_' E-—_3 B- '

+ 67~(D)3/2fio'5/2c] _._d35|2  X :0B fl

1/2_ 5/2 3/2_ -7
+ [% 2(§) A + 45h&§) .rb /2]

22! at
dxo xB=o dx§‘X5=o
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-18253132;F1 d2 =
XB X5 0

— 36A<g)ll%a°-3!2A 9324
dxa XB=O

+ 367\f1____ B (d—‘1)2|CO3  xB=O

[...2<g>1/2 ;§a.,‘7/2 A
3/2..-9/2 fi_

“O 1 ($76.1_9§;\§ 3+ 2 (2) ) [X :03
+ 247\}

where

d_4-ft = _ [(3)-1/2_ 3/2
dxfi XB=o 2 “<3 A

1/2_ 1/no

2
m

wh­

+ (E3 2 12 7\C]/[3?L°2B’+.;2B]2- - _ 1 2
Sc§§lXe\o = 1-[3m2(g) 1/2% / A1 2 -1 —

+ (Q) /50 /212m] §§~B|xB=o
- * v 9:2

[6‘1° B (d;;) IX =0)

- 24?\IwoB}/[ahg B'+m2B]
and

g§‘5= {-[%m2(g)"1/25:/2A
dxg

+ 18(%)1/Qifio-1/2;\C] Egg]
cx51xB=o

- 18339 8' Eii dgfiL

(5.26)

(5.27)

(5.28)
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-1/2_ -1/2 A _(g)l/2 9 -‘?'1:3!2-[%m2(g) -Vb 0 ARC]
<d—fi)2| _
dXB xB—o

- 727\a xii‘ (5.29)
dXB Xfl-0 1 2_ - 2

- ea-<@31x  <2’ ’ B3’ A 24%}/<3fifB'+m2s>s

The effective potential in the squeezed state is obtained

by integrating the §¥§ with respect to X3.B

’ — 1 2 2 2x (fi——)1/2AvG_§mxB+m 32,1

+7\x'; +4)\x§ (g—a)1/2A
2 H

+ 6Xa}\(§?1)B15 3/2 .+ 4Axa(-23) C (5.30)
where Eiis given by (5.25).

The effective coupling constant As for a squeezed state
has a singularity at B = e, which disappears for zero bare
mass m, an effect already encountered with coherent states.
Since the bare mass m can be arbitrary, it might as well be

set equal to zero. The singular behaviour inihc and As for
m#o is perhaps an artifact of the GEP method.



VI. QUANTUM OSCILLATORS

6.1 Introduction

Some of the investigations on quantum groups and
quantum algebras focus on quantum group modified quantum

mechanics. In [58], for example, the spectrum of a
q-anharmonic oscillator with quartic interaction has been
studied using first order perturbation theory. There is
a logical need to apply the nonperturbative approach to
such systems that are generically known as quantum
oscillators.

In this chapter we formulate a nonperturbative q —
or (q,p) - analogue of GE? with the help of appropriate
quantum oscillator commutation relations that depend on
a single parameter q, or two parameter q,p.

For q-deformed quantum mechanics, we seek generaliza­

tions of position and momentum operators, X and P, in the
form

2

X = X0 + (agf 1/ (afi +a;) (6.1)
p = -§i<2rm>1/2<a_3 - a,;> (6.2)
where X0 is a classical C-number and ag and a* are the’§

annihilation and creation operators respectively with the
set‘§ = fi1,q]. Here .ridenotes a variational parameter
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having the dimension of mass or frequency that appears in
the original q=l formulation of the GEP [16], and q is the
quantum deformation parameter. For q=l the standard defini­
tions of X and P are recovered.

We impose the q-commutation relation analogous to (1.100):

a 8* - q +a = q’N5 (6.3)a 4 % /5
where N515 the number operator which is not assumed to

+
be the same as Q3 aj

Now, GEP is customarily defined as in (1.19) and (1.20).
when q is real and q>l, a q—ana1ogue of the Gaussian function
has been defined [l28]. But its explicit form is not
required here. We merely assume that the lowest variational

trial state  >€depends onnas well as q, and the excited
states can be generated therefrom by applying a; as many times
as necessary. The nonperturbative q analogue of GE? is

called nonperturbative q effective potential (NPqEP) and is

defined with respect to any state Iw % as follows:
vq(xo) = min vq(xo,r1)nip §¢|H|¢% (6.5)
Studies in quantum group phenomenology [59] indicate the

possibility of a given system being associated with a parti­
cular q value. This motivates one to define the system­

specific q—effective potential (SSQEP). Here, the quantum
parameter q can serve as additional parameter in the potential,



suggesting a more elaborate scheme of minimization.

Formally we define SSqEP as follows:

v(x°) mgn v(x°;€)min <¢|HW> (6.6)nvq -3 :5
If the two parameter quantum algebra characterising a

(q,p)-oscillator is used [80],then the relevant commutation
relations are

-N+ + _ 1]anan — q an an _ p (6.7)
a a+ - '1 + = qNn (6 8)U n 9 an an '
where the set n=[r1,q,p]. A (q,p)—deformed number

[A]q’p is defined by the relation
qA _ -A

It is clear that the q—oscil1ator corresponds to the particular

case where q = p. By analogy with the NPqEP, one defines the
NPQPEP by the relation,

Vq.p(X0) = 733 Vq.p(x0’f1)
_ - <¢|Hl¢>= mi? n n (6.10)

The system-specific v(xo). denoted ssqpEP. is defined as
v(xo) min v(xo,n)

nmin <m|H|¢> (6.11)r1.q.p ” "
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The renormalized mass mR and renormalized coupling

Constant.KR (in the quartic case) can be obtained as
explained in the preceding chapters. It is clear that both
m2

R

interpreted as the difference between the first excited state
and KR depend on the quantum parameter(s). mR can be

and ground state energies while RR denotes the amplitude for
a transition from the state |l> to |3> under the action of

%coupling 7\X4 [19]. 40“
(a\

We study three kinds of quantum oscillator systems:
quartic coupled quantum oscillators in a single well and in
a double well, and sextic coupled quantum oscillators.

Quartic quantum oscillators - Single well

The Hamiltonian representing a quartic quantum single well
oscillator is

H = $122 + %m2X2+ 7\x4 (6.12)2

If the system is a q—oscillator, then its NPqEP can be
evaluated. The expectation value of H for the nth eigen­
state is

<n|H|n> = <n|%P2+lm2X2+LKX4|o>2 (6.13)
Using (6.1), (6.2) and (1.95)-(l.lOO)ve can evaluate

each term:
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(n(%P2In> = <n|%['%(2hrQ% (aé_§;)]2ln>

=%mKM[%q;+ §'%]h>

= §‘9i[n+1] + [n13 (6.14)
<n|% m2X2|n> = E $§([n] + [n+1]) + % m2x§ (6.15)

<n|AX4|n> = (§%;)2?{fn|aaa+a++aa+aa++ a+aaa+ (6.16)

+ aa+a+a + a+aa+a + a+a+aa[n>3

+ éxxg 72-‘—n {<n|aa++a"’a|n>} +7\X:

= >\(§%)2iL[n+1] [n+2] + [M112 + 2[n] [n+1]

+ [n]2 + [n] [n-1]} + BAXO2 ;1([n]+[n+l]) +AXg

Hence

<nIHln> =£=§’2,4kLX£ (6.17)
where k°= ;—*2<[n1 + [mm + ‘;—:*f<[n1 + [n+1])

+%(§¥{)2 ([n+1] [n+2] + [n+1]2 + 2[n] [n+1]
+ [n]? + [n] [n-1])

k2: %m2 + §é¥([n] + [n+1])
k4= 7\

The condition for the potential to be a minimum with respect

t°f1fiS the Cubic equation

A53 + B?1+ C = o (6.18)
[n] + [n+1]
-(m2+12%X°2)

where A
B
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C = —2hA([n+l] [n+2] + [n+l]2

+ 2[n+l] [n] + [n]2 + [n] [n-1])

of the three roots of (6.18), the largest positive one,
designated asfi, is to be employed for setting up the
effective potential. This procedure is an extrapolation
from the usual q=l bosonic theory [16].

The NPqEP for the ground state is obtained as
X = <o H o)vq( o)g I | 2

= %hr1+ %m2(Xo+'1—)2n.

+7\{x3 + 6:?‘ + %)2([1]+[2])} <e.19)F1

The optimum fiis the largest root of the equation

-3 2 2 —n - (m +l27\Xo)n- 2m([1] + [2]) = o (6.20)
Assuming ?1# o, (6.19) may be rewritten in the form

2

Vq(xo)g = 1,35,. 215 ,,,2x§ ax‘; - ”(_:fi.)2<[1]+[2]) (6.21)

The renormalized mass mR,which is equal to the first excita­
tion energy E1—E°,is obtained from Vq(Xo)g in the f0110Win9
manner.

We have2 _.
9.19 = m2 + 12Ax2 + 6__“3- .‘fl‘._7‘x° 9-2 (6.22)dX2 0 I1 51 d o

O

2(.<Z_V9) = m2 = m2 + 67”‘ (6.23)



F_. 1") Ni

whereii :310 ‘XO=o
We have‘'5 = 24AX°5' (6.24)
“X0 3?? -m2+12?\Xo2

Henced_?‘~ = 0 6 25dxonxfo < . >
But.125 = 24 7\?. (6 26)_ -2 2 '
dxg Xo-0 3%-m

and
2­

231.1 = 24A- l§_5.7\(9_12;.) (6.27)dxo xo=O .?b2 dxo X°=O

The renormalized coupling cons -nt AR is having the form:

1 d4V 7‘H - (1 12”‘ )/ (1 +657‘ ) (6 2- = - -‘:"":‘ ‘:"—Q:r- - 8)4’ dxzo 3r€-mfifb 3“?-ma“o
We have studied the variation of mg given by (6.23) as

a function of q in Fig. (VI.1) and found that for q>o, m§>o
and that mg has a maximum at q=1, the ordinary bosonic limit.
If m2 is not very much larger than7\, for most of the negative
q values examined,?3D becomes negative. Recalling that in the
ordinary bosonic theory the mass parameter-Fifor the ground
state GEP, is kept positive for convergence reasons [16], we
are prompted to retain this przviso in the c—bosonl(q,p)—

s -1- .
wboson theory, as wan“. -an; is the positivity" - v ‘ 6 u

cf m§. However, 1. :3: i "rye \acompared to m‘), we obtain
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Fig. VI.1 Variation of the renormalized mass mg with the
q parameter for a q-oscillator moving in a
quartic potential well
a) 13-2 A=1; b) m=l ;\=2; c)m=1 7\=1.
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positivefib and positive mi.

The values ofifio, mg and KR for various q values for a
single well quartic well are presented in Table V1.1.

In order to evaluate the ground state SS EP, we extremiseq

the ground state potential (6.19) with respect to q:

ff]; (l-q'2) = o
(25?
Since.A+o,Ei#m, it follows that the extrema correspond to
q=1l. One readily checks that for positive.A, the ground state

potential is a minimum for q=l (giving SSqEP=GEP) and a
maximum for q=—l.

Since we have
2d V‘?(X°)9 = “27‘ 2q'3 (6.29)dq2 (232 ’

this expression is >0 for q=l, and <0 for q: -1. However, the
extremal condition for the potential for the nth excited state,
when written out in full, is a complicated algebraic equation.

For the nth excited state, from (6.17)
dvo h" m2h 3Ah¢2
a‘q‘=A1iz“*4—a+ -°}+ B 7\(§=)2 = 0 (6.30)1 2r1
where_ d g_
A1 — Ea[n] + dq[n+l]
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Table V1.1. —— . 2
Values of optlmum mass parameterno, renormalued mass mR
and renormalized Coupling constant AR for various bare­

values of m and7\

Siiimiiiiis °f q 3. m% ?\a
m=2 0.2 2.881538 6.082222 1.624577
7\=1 0.4 2.637647 6.27455 1.420569

0.6 2.559752 6.343977 1.385415
0.8 2.531691 6.369958 1.374637
1.0 2.525102 6.376142 1.37223
1.2 2.529499 6.372011 1.373831
1.4 2.540098 6.362114 1.377775

-0.2 -2.672633 1.755023 1.41822
-0.4 -2.367502 1.465684 1.626652
-0.6 1.53168 7.917268 1.227186
-0.8 1.651885 7.632214 1.234678
-1.0 1.675131 7.58181 1.236247
-1.2 1.659775 7.614949 1.235206
-1.4 1.619974 7.703764 1.232594
-1.6 1.55805 7.850967 1.228752
-1.8 1.466909 8.090235 1.223485
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Siiiméiéiis °f ‘‘ 3. mi “R
m = 2 -2.0 1.302779 8.605541 1.214684

= 1 -2.2 -2.328351 1.423069 1.662928
-2.4 —2.354402 1.451582 1.638482
-2.6 —2.380612 1.47964 1.615109

For all the lower negative values fR}s negative

m=1 0.2 3.030445 4.959814 —0.7189545
A=2 0.4 2.631953 5.559353 3.457643

0.6 2.496712 5.806321 2 ‘12747
0.8 2.446694 5.904578 2.226091
1.0 2.434839 5.928458 2.189219
1.2 2.442756 5.912484 2.213577
1.4 2.461755 5.874573 2.276614

For all negative values of q,.?%is negative_

m=1 0.2 2.458426 3.440586 0.1617446
.K=1 0.4 2.150903 3.789527 —2.625644

0.6 2.047257 3.93075 -162.5988
0.8 2.009047 3.986491 12.24415
1.0 1.999999 4.000002 9.999777
1.2 2.006041 3.990966 11.38229
1.4 2.020547 3.969493 17.51249

‘QT all “gqative values of q,LF%is negative­
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Eiiimiiiiis °f <1 3. mi ‘R
m = 2 -2.0 1.302779 8.605541 1.214684
7\ = 1 -2.2 ..2.328351 1.423069 1.662928

-2.4 -2.354402 1.451582 1.638482
-2.6 —2.380612 1.47964 1.615109

For all the lower negative va1ues.?%is negative

=1 0.2 3.030445 4.959814 —O.7189545
A=2 0.4 2.631953 5.559353 3.457643

0.6 2.496712 5.806321 2 512747
0.8 2.446694 5.904578 2.226091
1.0 2.434839 5.928458 2.189219
1.2 2.442756 5.912484 2.213577
1.4 2.461755 5.874573 2.276614

For all negative values of q,.?%is negative_
m=1 0.2 2.458426 3.440586 0.1617446
,K=1 0.4 2.150903 3.789527 —2.625644

0.6 2.047257 3.93075 -162.5988
0.8 2.009047 3.986491 12.24415
1.0 1.999999 4.000002 9.999777
1.2 2.006041 3.990966 11.38229
1.4 2.020547 3.969493 17.51249

For all negative values of q,.F%is negative­
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Bare values ofparameters q 30 mi /\R
m=4 -0.01 —6.7373211 15.10944 0.9712756
7\=1 -0.04 —5.051526 14.81224 0.9752612

-0.07 —4.661561 14.71288 0.9746904
-0.08 2.756399 18.17675 1.021381
- 0.1 3.215603 17.8659 1.019552
- 0.4 3.875497 17.54819 1.017773
- 0.7 3.927506 17.52769 1.017667
- 0.9 3.935242 17.52469 1.017652
- 1.0 3.935374 17.52463 1.01765
— 1.2 3.933782 17.52525 1.017654
— 1.4 3.928449 17.52732 1.017665
- 5 3.705849 17.61906 1.01815
-10 3.215603 17.8659 1.019552
-13 2.567778 18.33665 1.022316
-14 —4.649964 14.70967 0.974666
-15 _4.690233 14.72075 0.974749

For lower negative q valuesfifio is negative. For positive
q values corresponding to m=4,7\=1, the behaviour is similar
to that of the values of m and ?~considered above.
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_ 2 -2 n - 1 ­= E (-n+1)q nq k + 2 q n+ (2k-2)q2k 3

n+1 _ _ _ 1 _ _+ Z (—n) q n 1 q2k 2 + n; q n(2k-2) q2k 3 (6-31)kzl k=l
§E([n+1][n+2]+[n+l]2+2[n][n+1]+[n]2+[n][n-1])

n+2 —n-2 2k—2 nE2 3- -1 2k­
=[kZ1(-n-l)q q + k_1 q n (2k—2)q ]

1 - 2 -2[n5 q nq Ir=l
n+2 -n-1 2k-2 n+1 -n-1 2 -2+[ E q q ] [ E (-n)q q Ik=1 r=l
n+1 _ 2 _ n+1 _+ 2 q n(2r-2)q ’ 3] + 2[ 2 q “r=l k=l
n+1 - -1 2 -2[ 3 (-n) q n q rr=l

2k-2q ]
2r-3

]
n 1 -n+ E Q (2r-2) qr=l

n+1 -n 2k-2 ] [ E (-n+1) q-nq2r'2r=ln - l 2+ E Q n+ (2:-2) Q I-3r=l ] n+1

+ [k§1(-n)_ _ _ 2k-3q n lq2k 2 ]+1 ­
+n£ q n(2k-2) q

k=l
n -n+1 2r—2[ 2 Q qr=l

n -n+1 2k_2
]} + 2[k£l Q Q

n _ _ — 1
[r§l(-n+1)q " q2r 2 + E q n+r=l <2r-2)q2"31

n - l 2 -2 -1 _
+ 2 q n+ q k [nzl(_n+2) q n+1= 1':

—n+2 2 -3Q (2r-2) q r 1
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[2 q q ] (5.32)
The above equation is of 2(2n+1) degree in q. some of its
roots may represent minima while others, maxima, correspo:c—

ing to q%i1.

By invoking the (q,p) commutation relations (6.7) an: (6.8),

one obtains the NPqpEP for any state |n>q P. The potential isI

formally the same as NPQEP with all the q-deformed [ ] replaced
by corresponding (q,p) - deformed ones [ The Ii ec;a—]q.p'
tions are same as ($.18) and (6.20) with the above mentioned

replacements of brackets.

For a(q,p) oscillator the grounc ‘ate effective potentia­
is a minimum only if= 0
5q J34 9—[m + [23 J (6.33)_ 2 5 qrp qvp(2n) q
Also

.°122=o=f&. 9—[[11 +[2] 1 (e.34)op (2fD2 ap qop qgp
We have2 2Z§:f2= O and Afi_ 2 = o (6.35)(2n) (209)

These relations imply that either}\= o or h = o. Since



110

the latter condition can be easily ruled out, one is con­
fronted with the possibility of a trivial non—interacting
(q,p) oscillator theory. The message is clear: The ground

state SSqBP for a quartic (q,p) oscillator cannot be found
by the variational method herein presented. These remarks
however, need not apply to the excited states.

Double well potentials

The Hamiltonian for a double well quartic potential is
chosen in the form
1-1 = $122 + -1-m2X2+ 7\X4 + E14.2 2 16%
where m2<o, A>o.

(6.36)

As this differs from the single well
Hamiltonian only by the presence of the constant term, the
evaluation of the nonperturbative effective potential is not
a novel exercise.

The equations (6.17), (6.19) and (6.21) will be repeated
4

herewith an additional term mg): (6.18) and1

(6.20) will be the same in this Case also.
The equations

The renormalized

parameters will be represented by the equations (6.23) and
(6.28).

The only interesting point that crops up is the existence
of critical parameter values that separate the double well
region from the single well region. This becomes evident
from a numerical study.
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P0

Fixing;\= 1 and = -2 it is seen that for a qE‘.
7\

oscillator, there is a critical value for q, denoted by
qcrit 1, above which the double well shape degenerates
into a single well shape and another critical value

qcrit 2 at which the double well shape is regained.
In the present case, q §$O.l6 and qc “$6.27.rit 2

the second critical
crit 1

Again with %,= 2, q A=O.26 andcrit 1
value q 253.66 at which the double well shape iscrit 2
recovered. The variation of V vs X for various valuesC! o
of the q parameter is represented in Table VI.2 and Fig.VI.2.

Critical behaviour is exhibited also by (q.p)
oscillators moving in a double well potential. In this case
one varies both q and p. For instance, taking )\= 2,

2
E. = -2, q = 0.2, we have obtained double well behaviour inX _
the domain -0.83 6 p £0.26. However, for -C.83$ p $O,I1°

is negative and for O<p$O.25?3b is positive. In the single
well region corresponding to p$—O.83,E3O is positive.
Similar critical behaviour may be monitored, alternatively,
by keeping p fixed and tuning q.

Sextic quantum oscillators

A general sextic anharmonic oscillator is modelled
by the Hamiltonian

6 X32°:j 1 (6.37)=lp2H 2 +
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Table V1.2

Variation of Vq a double well potential vs X0 for different
q values

Bare values of q=0.2 q=
parameters X0 Vq X0 Vq
A

A = 2 0.05 0.6043606 0.05 0.5658453
0.1 0.6026885 0.1 0.565358
0.15 0.6000521 0.15 0.564612
0.2 0.5966906 0.2 0.5637358
0.25 0.5929851 0.25 0.5629642
0.3 0.5894944 0.3 0.5626902
0.35 0.5869968 0.35 0.5635233
0.4 0.586243 0.4 0.5661694
0.45 0.5894805 0.45 0.5724065
0.5 0.5975545 0.5 0.583334
0.55 0.6128652 0.55 0.6011693
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Table V1.2

Variation of Vq a double well potential vs X0 for different
q values

Bare values of q=O.2 q=4
parameters xo vq X0 vq
33 = _2 o o_6o49316 0 0.566014
7;‘ = 2 0.05 0.6043606 0.05 0.5658453

0.1 0.6026885 0.1 0.565358
0.15 0.6000521 0.15 0.564612
0.2 0.5966906 0.2 0.5637358
0.25 0.5929851 0.25 0.5629642
0.3 0.5894944 0.3 0.5626902
0.35 0.5869968 0.35 0.5635233
0.4 0.586243 0.4 0.5661694
0.45 0.5894805 0.45 0.5724065
0.5 0.5975545 0.5 0.583334
0.5 0.6128652 0.55 0.6011693



113

q=0 .26 .7 q=0 . 3 q=3
of para- 0 vq X0 Vq vq Vq

=_2 0 0.5594239 0 .5529971 0 0.5361255 0.5198197
0.05 0.5593281 0.05 v.5529738 0.05 0.5362983 0.520189
0.1 0.5590536 0.1 '.5529l06 0.1 0.5368088 0.5212796
0.15 0.5586484 0.15 ‘.5528418 0.15 0.537653 0.5230435
0.2 0.5582175 0.2 1.5528523 0.2 0.5388541 0.5254427
0.25 0.5579678 0.25 .55312 0.25 0.5405144 0.5284971
0.3 0.5582635 0.3 '.5539759 0.3 0.5428785 0.5323617
0.35 0.5596815 0.35 ~.5559711 0.35 0.5464026 0.5374151
0.4 0.56299 0.4 .5599312 0.4 0.5516995 0.544399
0.45 0.5696836 0.45 '.567058€ 0.5603685 0.5541792
0.5 0.581081 0.50 -.578929 0.5 0.5734778 0.5684806
0.55 0.5993396 0.55 .5975971 0.55 0.5932103 0.5892264
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Bare
values of q=Oc1

parameters Xo

M -2 0E.
AA 1 0.05

0.1

0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.4746122

0.4741456

0.4728031

0.4707307

0.4681809

0.46552

0.463213

0.4618702

0.4619786

0.4649722

0.4713113

0.4822873

0.05
0.1

0.15

0.2

0.25

0.3
0.35

0.4

0.45

0.5
0.55

0.3802683

0.3804073

0.3808506

0.3816738

0.3830187

0.3850886

0.3881817

0.3927014

0.3992691

0.4081855

0.4206476

0.437527

0.05
0.1

0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.424101

0.4239276

0.4234543

0.422797

0.4221562

0.4218242

0.4221882

0.4237655

0.4275082

0.4331793

0.4426523

0.4567147



115

59

57

1;<| ——~——w—
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5] 1 1 1 1 1-0-6 -O-A -O-2 0 0-2 0-4 0-6
x——.—a­

F1g_ V1.2 variation of Vq of a q-oscillator moving in a
double well potential, with position X.
a) q=O.2; b) q=4; c) q=O.26; d) q=3.7;
e) q=O.3; f) q=3
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Assuming q—commutation relations, the expectation value of
the Hamiltonian for the nth state is obtained:

<n|H|n> = ClgL (6.38)E
{=0

where Co is a constant that depends only on 11 and q
parameters:

Co = %9([n] + [n+1])

The remaining coefficients Ci(Q+o) have the same significance

as in (6.37). The functions gz are given by the following
set of relations:
90 = 1

gl = X0
2

g2 = X0 + gFé[n] + [n+l])
3 QB.

g3 = X0 + 2QXo([n] + [rH’]-])4 35 2 §_ 2
g4 = X0 + -5 xo([n]+[n+-1]) + (

([n+2] [n+1] + [n+1]2 + 2[n+l] [n] + [n]2 + [n][n-1])3 2
g5 — X: + l9§?§([n]+[n+l]) + ::?32 ([n+2] [n+1]

+ [n+l]2 + 2[n+1] [n] + [n]2+ [n] [n-1])

g6 = X2 + l§§%?([n] + [n+l]) + 15Xg(-E792 ([n+2] [n+1] +
+ [n+1]2 + 2[n+1] [n] + [n]2

+ [n] [n-1]) + (§¥{)3([n+3] [n+2]
[n+1] ; [n+2]2 {n+1] + 2[n+2] [n+l]2
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+ 2[n+2] [n+1] [n] + [n+1]3 + 2[n+1] [n—1] [n]

+ 3[n+1]2 [n] + 3[n+l] [n]2 + [n]3

+ 2[n]2[n-1] + [n] [n-1]2 + [n] [n-1] [n-2])

The condition for the optimum mass parameter fiis expressed
as

F\.4+D5-2+hEfi+T12F=O (6.39)
where the coefficients are given by2 3 4
D = —(2C2+6C3Xo + 12C4x° + 2oc5Xo + aocéxo)

E = -(C4+5C5X°+l5C6X§) ([n+2][n+l] + [n+1]2+2[n+l][n]

+ [n12 + [n] [n-1])/([n] + [n+1])

‘g C6([n+3][n+2][n+1] + [n+212{n+1] + 2[n+2][n+1]2'11 II

+ 2[n+2][n+l][n] + [n+1]3 + 2[n+l][n-l][n]

+ 3[n+l]2[n] + 3[n+1][n]2 + [n]3 + 2[n]2[n-1]
+ [n][n-1]2 + [n] [n-1] [n-2])

The ground state expectation value of the Hamiltonian is

<o|H|o> = :0 + kgl ck fk (6.40)
where £0 = g— + <5$;)3c6<[11 + 2[21 + [212 + [21 (31)

f1=Xo

f2_x§+T2‘_a

f3=x§+§3%xo

£4 - xi + E? XE + <§§;)2 ([11 + £21)
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5 101-1 3 *5 2
£5 = xo+ 2-3 x0 + 5xo(§X) ([2] + [1])_ 6 15?» 4 n 2 2
£6 _ Xo+ 3: x0 + 15(2—r-1) ([1] + [2])xo

The optimization condition reads

f14+Gr“12+H5+ 1:0 (6.41)
with the symbols standing for the following:2 .'.‘.

G = _(2c2 + 6C3Xo + 12c4xo + 2oc5x§ + 3OC6Xo)

H = .h(2c4+1oc5xo+3oc6x§)([1]+[2])

I = -g C67‘2([1] + 2(2) + [212 + [21 [3])

Denoting the largest positive root of (6.41) at X°=O byifio,
one writes an expression for the renormalized mass:

mg = 2c2+12c4(g;g> + 30Cg,([1] + (21) <§g;>22 _
—[3C3 53- + 505 §%§<r21+[11> §;—:|xo=o (6.42)

where _2 _
ca = ec3°o + 5C5““o([2] + [1]) (6.43)
5;oflXo=° 45g0 _ 4c2Fg - C4fi([2]+[l])

Numerical computations show (Table V1.3 and Figs.VI.3)

that when q is negative, for positive coefficients Cl...C6
and C6 not very much smaller than C2, all the roots of the
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mi versLs q for 3 different sets of coefficients

Bare values cf _ 2parameters q ‘in mR
Cl 6 0.2 4.2323 14.2740
C2 5 0.4 2.9695 5.5108
C3 4 0.6 2.5682 - 48.0659
C4 3 0.8 2.4211 583.5098
C5 2 1.0 2.3863 210.988
C6 1 1.2 2.4095 359.639

1.4 2.4654 —327.4481
1.6 2.5404 — 67.9981
1.8 2.6269 — 25.4698

C1 1 0.2 6.1826 14.3384
C2 2 0.4 4.1309 17.1876
C3 3 0.6 3.5175 17.7071
C4 4 0.8 3.3021 17.6001
C5 1.0 3.2520 17.532706 1.2 3.2854 17.5798

1.4 3.3663 17.6599
1.6 3.4763 17.7054
1.8 3.6051 17.6881
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Bare values of __ 2parameters q '06 mR
C1=C2= 0.2 3.9903 6.1044
C3=C4= 0.4 2.6982 7.1824
C5=C6=1 0.6 2.3156 7.3933

0.8 2.1818 7.3757
1.0 2.1508 7.3586
1.2 2.1715 7.3707
1.4 2.2217 7.3895
1.6 2.2900 7.3957
1.8 2.3700 7.381
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18

17L

15“

14 1 I 1O 0.5 1 1.5 2
q—>

Fig. V1.3 a) Variation of the renormalized mass m2 with
the q parameter for a q-oscillator moving
in a sextic potential well with C1=1
C2=2, C3=3, C4=4, C5=5, C6=6.
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Fig. VI.3.b) Variation of renormalized mass mg for a
q—osci11ator moving in a sextic potential
well with C1=C2=C3=C4=C5"C6=1­
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quartic equation (6.41) are imaginary. Under the same
conditions, and for positive q values, two real roots
exist, of which one is positive and the other negative.

Setting the odd order coefficients equal to zero, we
obtain a sextic oscillator with only even powers of X in
the potential. In this case the renormalised mass is

mg = 2c2 + .*'>?11.:s. + web (5%? ([11 + [2]) (6.44)
A plot of mg vs positive q values, is quite similar to
that for the X4 theory (Table V1.4 and Fig.VI.4). Taking

only even order coefficients as positive, and C6 not very
much smaller than C2, for negative q values the theory is
not defined, because all the roots of the Fiequation (6.41)
become imaginary. In a general setting with all the

coefficients Cl...C6 not equal to zero, the behaviour is
different from that for the X4- model, at least in the
typical cases herein studied. This shows that the quantum
sextic model possesses physical significance only in
selected parameter domains.

One can define renormalized quartic (C4R) and renor­

malized sextic (C6,) coupling constants in respect of the
even power sextic q-oscillator model. Thus

=1_d4vgcan 4: x31 X0 = o (6.45)O.
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Table VI.4

Values of optimum mass parameterfi

of bare parameters

of
. 2

renormallzed mass mR and

renormalized coupling constants C4R and C6R for various values

Bare values of _ m2 C Cparameters 410 R 4R 6R
4.1233 11.6452 1.7608 48.3782
2.8728 13.7212 — 3.4733 129.5493
2.4938 14.7511 -12.9765 337.6716
2.3588 15.1984 -22.8249 649.5359
2.3272 15.3107 -26.6451 797.1662
2.3483 15.2354 -23.9995 693.3396
2.3992 15.0593 -19.0162 517.201
2.4681 14.8325 -14.3267 374.586
2.5484 14.5839 -10.6122 277.479
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Bare valuesof parameters q ‘E30 mR C4R C6R
cl=c3 0.2 3.9903 6.4240 1.3020 31.0291
=°5=° 0.4 2.6982 8.2411 -1.4532 57.5225
02:04 0.6 2.3150 9.1601 -4.6462 88.3192
=c6=1 0.8 2.1818 9.5550 —6.6484 109.8417

1.0 2.1508 9.6533 -7.2249 116.392
1.2 2.1715 9.5847 -6.8350 111.9436
1.4 2.2217 9.4326 -5.9772 102.4172
1.6 2.2900 9.2323 -4.9781 91.7590
1.8 2.3700 9.0116 -4.0061 81.8259

01:03 0.2 5.1895 9 21 2.7650 115.1282
=c5=0 0.4 3.4572 12.8123 - 3.6784 205.8184
02:1 0.6 2.9388 14.5929 -11.3716 306.1851
c4=2 0.8 2.7569 15.3817 -16.2420 374.702
06: 1.0 2.7145 15.5805 -17.6473 395.3591

1.2 2.7428 15.4472 -16.6966 381.339
1.4 2.8111 15.1357 -14.6072 351.1839
1.6 2.9040 14.7360 -12.1776 317.2088
1.8 3.0128 14.3001 - 9.8201 285.2893
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a_ b

_ c
L, I 1O Cl5 1 ‘L5 2

Q

Fig. V1.4 Variation of the renormalized mass mg with
the q-parameter for a q—oscil1ator moving
in a sextic potential well

a) Cl=C3=C5=O, C2=l, C4-_-2,
b) c1=c3=c5=o, c:2=3, c4=2, c6=1
C) Cl=C3=C5=o, C2=C4=C6=l
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d2” E
— C4 _ __£ fi —i%l + l5C6 5:­24 FL dxo xo=o rb2 2­- i; c 2- ( 1 [2])d_J1| (6.46)8 6 “b3 [ J + dxg xo=o

and 2 _
dfga _ 24:-»oc4 + 60C6Tmo([l] + [2])
;;§lXo=° 45% - 4c2Zfib - 2C4fi([l]+[2])

Expressing the fourth derivative of.?iat Xo=0» in the
form4- _2 _ 2­
d_—:~ = §_..720C “o - 2[l44C4% + 180C ([1]+[2])] 9-44 6 6 2 _dxo X0‘-‘O dXO x0_o

(6.47)

-2 ga , -3 _
+ (3600 - 12c:2) (§;§)xo=°1/g4no —4_nbC2
- 2C4T1([l] + [2]))

6

C63 = -(17 .d__‘é’g' dxo X°=O
4­

= C6 -  - “—_§[ fie... + 23-:t11+[21) 1E2’f‘°1<fi>X _o2%  -  0­
+1‘: _C_g+fi_;_l_5Eé ([1]+[2];] (1% (6.48)253 2 203 4 dxo xo=o

To get the system specific q effective potential (SSqEP),
one has to determine the optimization condition for q also.
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Differentiating <o|H1o> given by (6.40) with respect
to q, we have- 2 2 ‘E. -2 -1
(1-q2) (-gr) i94 * 5C5Xo + C6(15Xo + 255“ ' q *1)2:1

(1+q2+q'2-+2)} = o (6.49)
This equation has the roots q = :1
But

d2Va -3 H 2= 1 2 -—=— C + 595 X
dq2 (+q><2n){: 3 oz 12 ‘n - - - —

+ C6(15xo + §?i(q - q + 2q - q

+ q2—q+2))} (6.50)
For positive coefficients, this equation becomes positive at
q=1, showing that it is a minimum of the potential. If q=—!

it becomes negative)and hence corresponds to the maximum of
the effective potential. q can have another set of six
values corresponding to the roots of the factored out expre­

ssion, which depend on the coefficients Ck. The possibility
of some of them representing true minima cannot be ruled out.

As for the (q,p) analogue of the sextic oscillator,

we have equations (6.38)-(6.48) with [A] replaced by [A]q p.7

EP for the groundstate, the condi­In order to get the ssqp
tions are

°Vq.p _ (_§_)2 -2 2
hp 2:: (-p ) [C4 + 5c5xo+ 15C6Xo
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C h6 -2 2 1+ __. 3 ­2Ei( p + 2q + 4qp
+ 2q + 2p'1 + 2)] = o

avq
aq

_ __T3 2 1x2c_ (231) [c4+5c5xO+ 5 O 62 -l ­+ 4GP + 2q + 2p 1 + 2)]+
2fL= O (6.52)

besides equation (6.41).

As p—+w the conditions (6.51) and (6.52) imply q = o.
Nontrivial solutions of (6.51) and (6.52) correspond to

P'2# o. The SSqpEP corresponds to q = p'1 subject to the
condition that the second derivae of Vq,p are greater
than or equal to zero.

5,5Conc1uding remarks

In this chapter we have addressed the question of formula­
ting q and (q,p) analogues of the GEP. A direct generaliza­
tion of GEP gives the non-perturbative effective potentials,

namely NPqEP and NPQPEP, applicable to q—osci1lators and
(q,p)-oscillators, respectively. The SSQEP is seen to corres­
pond to q=l, at least in the ground state of q oscillators,
showing that the ordinary bosonic theory appears to have a
natural significance in the variational approach. Such
uniqueness is not necessarily shared by the excited states
of the system.
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The potential shape transitions exhibited by double
well oscillators at critical values of the parameter(s),
is a novel phenomenon which may have implications in the

study of spontaneous symmetry breaking in q and (qoP)­
quantum field theories.
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