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CHAPTER I

INTRODUCTION

1.1 Families of Distributions

During the late nineteenth century there had been a tendency to regard all

distributions as normal ; the data histograms that displayed multimodality were often

fitted with mixtures of normal density curves, and histograms that exhibited skewness

were analyzed by transforming the data so that the resulting histograms could be

fitted or graduated with normal curve. The incompatibility of normal distribution' to

explain theoretically and empirically many data situations forced the development of

generalized frequency curves. Families of distributions provide functionally simple

approximations to observe distributions in situations were it is difficult to derive a

model. Since a trial and error approach to find out the appropriate model for the data

is clearly undesirable as well as time consuming, flexible systems of distributions

must be evolved, which should incorporate, if not all, atleast the most common shapes

that arise in practice. With this aim in mind many families of distributions have been

constructed in literature, such as Pearson system, Burr system, Johnson system etc.

Some of them arise as approximation to a wide variety of observed distributions.

Although theoretical arguments which lead to the model is the best way to

understand the relevance of a particular system, ultimately their value to be judged

primarily on practical requirements. These are

a) ease of computation.

b) amenability to algebraic manipulation.

c) richness in members.



d) flexibility exhibited through the number of parameters in the system.

e) easy methods of inferring the parameters.

f) easy interpretation of the system through a defining equation.

1.2 Burr system

The Burr system of distributions was introduced by Irwing W.Burr (1942),

in an attempt to generate frequency functions that could be used in the "traditional

attack upon the problem of determining theoretical probabilities and expected

frequencies" He developed the system with the aid of a differential equation

involving distribution functionF(x), as 10 his opinion distribution functions are

theoretically much better than density function (as employed in the Pearson system)

as often difficult integration has to be involved in deriving expected frequencies in

various class frequencies when the later is employed. The differential equation

proposed by him is

dF(x)
--

dx
= F(x)[l- F(x)]g(x, F(x)) (1.2.1)

where g(x, F(x)) is nonnegative function over 0 s F(x) s I and x in the range over

which the solution is to be used.

Ifwe choose g(x,F(x))

dF(x)

dx

which on integration yields

1- F(x)

g(x)
F(x) ,

[1-F(x)]g(x)

x

-fg(t)dJ

= e "

(1.2.2)

(1.2.3)



3

It is easy to recognize that g(x) is the failure rate function used in reliability

theory. This choice can result in the class of all continuous distributions, which has a

failure rate g(x). A restricted class can be obtained if we choose

so that

g(x,F(x))

dF(x)
--

dx

g(x)

F(x) [1- F(x)] g(x) (1.2.4)

where g(x) is suitable function nonnegative over the domain ofx.

Solution of equation (1.2.4) is

where

F(x)

G(x)
.r

Jg(t) dt

(1.2.5)

(1.2.6)

Although Burr (1942) apparently does not provide conditions on G(x) that

provide conditions for a distribution function as solution of the differential equation,

we note that on G(x) must satisfy the condition (i)G(-oo) = -00, (ii) the integral on

the right side of equation (1.2.5) diverges to 00 as x~ 00 (iii) G(x) is nondecreasing

m x.

Burr gave the following twelve solutions in table 1.2.1 for F(x) which is

known in literature as the Burr system of distributions.
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Table 1.2.1

Type F(x) Range

I x O<x <1

II (l+e-Xrk -oo<x<oo

III (1 + x-crk x>O

IV (1+(C-X) lfCrk x<c

x

V (1+ ce-tanxrk Jr Jr
--<x<-

2 2

VI (1 + e-ksinhxr k -oo<x<oo

VII T k (1+ tanh x/ -00 < x < 00

VIII (~tan-l(eX)/ -00 < x < 00

Jr

IX
1-

2 -00 < x < 00

2 +c( (1 + eX)k -I)

X (1- e-X2)k O<x<oo

XI
(x -_I-sin 2JrX)k O<x<l

2:r

XII 1- (1 + xcrk x>O

where c and k are positive real numbers.

Burr apparently had in mind, the Pearson family of distributions that was

the only popular system in existence at that time, when he proposed the twelve types

listed above that are substantially different from the Pearson types. However, we note
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that members of the Pearson family can also be embedded in the Burr system through

the equation

G(x) -10 (l-F(x»
g F(x)

(1.2.7)

Although in most of the basic types of the former, a simple closed to form

expression for F(x), other than special functions, is difficult to obtain to make G(x)

attractive The fact that most of the absolutely continuous distributions can be

reduced to the form (1.2.5) adds to the importance and relevance of the Burr family in

statistical theory.

A close examination of the various types reveals that it is often possible to

translate one type to another by means of transformations. For example type II can be

converted to type III by the transformation

x -logy-C

As such the transition from one type to another becomes quite handy which is not

the case with other families of distributions, where such transformations are quite

tedious so that independent inference procedures are required for each. This fact does

not take away the richness and flexibility of the Burr system in modeling as several

unidentified types belonging to it such as the Weibull distribution with density

where

f(x) = x> 0, A,a > 0 (1.2.8)

G(x)
X +~)'l

= (_)'.t + log[l-e a ]
(J'

(1.2.9)
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1.2.1 Review of results

Now we present a review of the important results concernmg vanous

members of the Burr system, that are useful in this sequel. It is interesting to know

that a substantial part of the literature is devoted to the type XII distribution. One

reason for this is the useful range of values of the skewness and kurtosis provided by

the distribution. Discussion in Hatke (1949), Burr (1968) and Burr and Cislak (1968)

considered the range of values of the shape parameters in the (ai ,J)diagram where

2a -3a2 -6 .
8 = 4 3 and a3,a4 denote the standardized central moments and found that

a 4 +3

the type XII covers the curve shape characteristics of Pearson type I , type IV, type VI

distributions and their transitional types.

The flexibility of the distribution makes it a useful model in reliability studies.

Its role as failure model is discussed in Dubey (1972, 1973) and Evans and Simons

(1975). Woo and Ali (1998) calculated the moments and established some simple

properties of hazard rate while Gupta eta!' (1996) obtained location of critical points

for failure rate and mean residual life function.

A study of the type XII distribution based on arguments concerning failure

rate and decay rate is provided by Singh and Madalla (1976). The results were

extended in Schmittlein (1983), by deriving the large sample properties.

Other than the application to analysis of life time data, the distribution find

usefulness in a wide range of areas such as models of income, business failure,

duration models, heterogeneity in survival analysis, quality control, life table analysis.

For a detailed discussion we refer Burr (1967 a , 1967 b), Zimmer and Burr(1963),
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Austin (1973), Tsai (1990), Wingo(1983) Morrison and Schmittlein(1980) and

Lancaster(1979 ,1985) , Shankar and Sahani(1994) , Houguard(1984).

Following the properties of Burr type XII distribution as model for failure

time data, several papers have been published on inference procedures relating to

reliability, failure time etc using complete and censored sample with the classical,

Bayesian and empirical Bayesian approach have been used in the process. This

include the work of Papadopoules(1978), Lingappaiah(1979), Evans and

Ragab(1983), Nigm(1988), AI-Hussaini and Jaheen(1992), AI-Hussaini and Jaheen

and Mousa(1992), AI-Hussaini and Jaheen (1994), AI-Hussaini and Jaheen(1995),

Ashour and EI-Wakeel (1994), Mousa (1995), Jaheen (1995), Ahmad(1985), Nigm

and Abdulwahab (1996), AI-Hussaini and Jaheen (1996), Elshanut M.A.T(1995), Ali

Mousa and Jaheen (1997), Woo and Ali (2000), Mohiel El. Din(1991 b), Rasul(1994).

AI-Mazoung and Ahmad (1998), Hussain and Nath (1997), Shah and Gokhale (1993),

Wingo (1983, 1993), Abdelfattah (1996,1997).

An important point to be noted in this connection is that the type XII

distribution can be derived independently as a mixture of the Webull distribution and

gamma distributions. If X follows Weibull with density

ft» IB) caB xc- 1 e-aBx' X > 0, B,c .a > 0 (1.2.10)

where the scale parameter B follows gamma distribution with density

f(B)
Bk- 1

-B-e
fk

B>O,k>O (1.2.11)

the mixing argument gives the unconditional density
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kac xc-I

(1 +ax'y+l
x> O,k,c,a > 0 (1.2.12)

This approach is useful in extending the distribution to higher dimensions.

Another useful approach to obtaining the distribution is by applying the monotonic

transformation

in the Lomax distribution with density function

I(x) k a" (x +a)-k-I x > 0 a k > 0, , (1.2.13)

It is noted that this distribution is not a member of the Pearson family, exponential

family and family of stable distributions.

Few papers have been written about other types of Burr distributions.

Surles and Padjett (1999, 2000) considered the inference on reliability in stress

strength model of Burr type X. Jaheen( 1996), Sarwati and Abusalih( 1991) considered

the Bayesian estimation of Burr X model. The use of Burr type II distribution in

binary choice model has been cited in Piorer(1980), Fry and orme(1998),

Smith(1989). The properties and inference on Burr type III distribution is discussed

by AlDayin(1999). Sherrik(1999) used Burr type III distribution in the study of

recovering probabilistic information from option market. Shao(2000) investigated the

use of Burr type III distribution in estimation of hazardous concentration based on no

observed effect concentration toxicity data Lindsay etal.(1996) in their paper,

explored the modeling of diameter distribution of forest stands and previous timber

volume in a forest using Burr III distribution.
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1.2.2 Multivariate Burr system

Compared to the volume of literature in the univariate case, only a few

papers have been written about the multivariate version of any Burr distribution. One

reason for this is the nonavailability of data relating to real situations when the Burr

alternative could thought of and the wide range of applicability of tools based on the

multinormal distribution.

The earliest attempt III this direction appears to be a multivariate

extensions of Burr type XII distribution demonstrated by Takahasi(1965). He uses the

.
mixing argument similar to be employed in defining the univariate type XII in a

multivariate set up. It is assumed that (XpX2 , ...,Xn ) is a random vector inRn having

multivariate Weibull distribution with probability density function,

If the parameter f) with distribution

f(f)) (1.2.15)

then the resultant unconditional density of(Xl'X2"",Xn ) becomes

c-l

r(k + n) n cjnajx/---'--"--'---- xi > O,a
j

> O'C
j

> 0, k > 0, j =1,2,...,n (1.2.16)
r k j=J [1 "'" c, ]k+n+ LJajxj

i=l

Takahasi called this distribution" multivariate Burr distribution" (henceforth, TB12)

and derives the following properties possessed by the distribution.

i) Any marginal distribution of TBJ2 is TB12 •
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ii) Any conditional distribution of TEI2 is also (multivariate) TE)2'

Conditional moments are given in Johnson and Kotz(1972) as

The joint moments may be derived as

(1.2.18)

r n r
with the following existence condition 1+_J > O,k > I-J j=I,2, ... ,n

cj J=1 cJ

Since the marginal distributions are univariate Burr type XII, the covariance betw~en

any two variables condition X, and X I is found to be

Cov(X, ,Xj)

The correlation coeffient between Xi and X
J

is a function of c., c
J

and k given

by

Cor(Xi,X
J

)

{ [[

1 1 1 1
r(l + -) I'(I + -)r(k -- --)

ci Cj ci Cj 2 1 1 1 1
----------''---------'-- - k B(I + - , k - - )B(l + - ,k - - )

rk c· c, c , c ,
I I } }

(1.2.20)
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In the bivariate case the joint distribution function of Xl and X 2 is

Normally a bivariate joint distribution must have the property that when the

variables are independent the joint distribution must reduce to the product of marginal

distribution function. This feature is not satisfied by (1.2.21). However a particular

case if this distribution, when cl =c2 =1 with introduction of scale parameter in the

form

X, >0,0", >O,k>O (1.2.22)

is found quite useful in reliability modeling.

Although functionally attractive Takahasi's bivariate Burr type XII

form is not generally suitable for fitting bivariate frequency data because the

correlation between Xl and.Y, is completely determined by marginal distribution

Durling (1974) ameliorated this deficiency with a slight generalization of

Takahasi's bivariate Burr distribution.

The marginal distribution ofXl and X 2 are Burr type XII. But for fixed c1' c2 and

k , the conditional parameter () allows some variations in correlation of Xl

and X 2 • F(x1, x2 ) reduces to Takahasi's bivariate Burr distribution for the limiting
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case of e= O. For e= 1, F (XI' x2 ) becomes the product of two independent Burr

distribution. Hutchinson (1981) provided a derivation of a version of Durling -B;rrr

distribution which shows that it may derived within a mixing frame work.

Begum and Khan (1998) derived the pdf of r 'hand s'h,l:::; r < s:::; n

concomitants of order statistics for the bivariate Burr type XII distribution. Also their

mean and product moments are calculated. Crowder and Kimber (1997) derived

statistic to test the independent Weibull model against a p-variate Burr distribution.

Null and nonnull properties of the score statistic are investigated with and without

nuisance parameters and including the possibility of censoring. Nair(1989) gave a

characterization theorem for multivariate Burr type XII distribution using conditional

survival function.

The Takahasi's and Durling's distributions have found applications in

literature. Johnson and Kotz(l98 I) constructed a model for time to failure under

dependence. They were interested in determining the distribution of time to failure

T of a replacement component taken from a stock which has been stored for some

time. For example, when the second component is taken from the same product

batch as first and there is batch to batch variation such that it is unable to

independence between the time to failure of first and second components. Wfien

the TEu distribution with C1 =c2 =c, is used in the model they find that the

survival function of the time to failure (T) of the second component is a function

which depends upon k, but not upon c. Crowder's (1985) approach to the

multivariate Burr distribution was based on standard model 'for repeated failure

time measurements. Suppose that a response time is measured on an individual

several occasions; giving a data vector t = (tl't2, ... ,tn ) ' The joint distribution of t
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is defined from the assumption that , conditional upon 0 following gamma(l, k)

the tj's are independent Weibull. The resultant joint distribution is a TEl 2

distribution with scale parameter alJ' Crowder(1985) discussed the properties of

TEn distribution in the context of failure time modeling and used the joint and

marginal moments of In(t) = (log(tI),log(t2)"'" 10g(tn ) ) ' to suggest a method of

moment estimation for n noncentral independent and identically distributed TEn

distributed vectors (tp l 2 ••• ,tJ. He applied this repeated failure time model to data

on the response time of rats and adequate fit to the model. The TEl 2distribution has

also been applied to psychological data by Kimber and Crowder(l989) , and to the

breaking strength of fibre by Crowder etal.(l991, P.143-147). When n= 2

TEn distribution is a special case of the family of bivariate distributions used by

Clayton (1978) to model association in bivariate life table and its application in

epidemiological studies of familiar tendency in chronic disease incidence.

Durling(l969) suggested the use of TEl 2 and Durling Burr distribution in a model

of quantal choice.

A multivariate extension of Burr type II distribution is obtained by

extending the extreme value mixture derivation of univariate Burr type II

distribution. Assume that (XpX2°o.,Xn)have conditional upon a common scale

parameter0 , independent extreme value distribution with density

() -Ox

= Oe-x1e-e l- oo < x
j

< oo,0 > O, j = I,2,..,n (1.2.24)

and 0 has gamma distribution with density

f(O)
e':' -8--e
fk

o< 0 < co, k > 0 (1.2.25)
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Then the usual mixing argument will yield,

- 00 < x < 00, k > 0, j =1,2, ... .n (1.2.26)

This distribution IS known as multivariate Burr type II

distribution (henceforth, TB2 ) with the following properties

i) Any marginal distribution of TB2 is TB2

ii)Any conditional distribution of TB2 is TB2

Joint moment generating function is

(1.2.27)

n

with existence condition k+ It; >O,l-t; >0, j=I,2, ....n
;=\

The correlation coeffient between XI and X j is

= j =1,2, ....n (1.2.28)

where r,v(.) is poligamma function. TB2 has equicorrelated structure.

Fry( 1993) gave a vector notation for the density function

I(X)
f(k+n) i x

rk [1+iev(-X)t+n

( X)' [-XI -Xl -X ] dev - = e ,e , ...,e n an

(1.2.29)

i is n x 1 vector of ones. For this distribution

E(X) = (r,v(k) -r,v(l))i (1.2.30)
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(1.2.31 )

Hutchinson and Satterthwaite(1977) used the Takahasi bivariate Burr

type II distribution in fitting of a multifactorial model of disease transmission to data

on the clustering of families of hysteria and sociopathy. Fry and Orrne(1995) used

TB2 in maximum likelihood estimation in binary data model.

By applying mixing argument Rodriguez (1980) derived bivariate Burr

type III as a mixture of extreme value type II (B,c) and ganuna(k). The distribution

function obtained is

where c\' c2 and k are positive marginal shape parameters and 0:5 B :5 k + 1

The variates XI and X 2 are independent if B =1. The regression function of XI

onX2 is nonlinear.

+B(k+ l)B(k +!, 2_!)[(1+B~~Cl )]I:~I
c1 cl (l + X2 2)

The correlation of XI and X 2 exists of 0:5 B :5 k +1 , cl > 1,c2 > 1

For fixed cI'c2 and k the correlation is a monotonic decreasing function ofB
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1 1 1 1 1 1
B(k +-,1- - )B(k + -,1--)F[(--,--;k, I-B) -1]

Cor(X"X2 ) = C, C'2 ;2 C2 i c'2 (1.2.34)
B(k+-,I--) B(k+-,I--) ,

[[ c1 c'][ c2 c2 ]]2
2 1 1 2 1 1

k-B (k+-,I--) k-B (k+-,I--)
c1 C, c2 c2

In addition to the shape flexibility, a major advantage of fitting Burr III

surfaces is the functional simplicity of fitted expression. Both the marginal and joint

cumulative distribution function have closed forms. Moreover X/'I and Y, have same

marginal Burr type III distributions.

where

f3
(l + BX;CI )

(l + x;(1 )

(1.2.35)

On the otherhand the practical disadvantage of the Burr type III surfaces

are that their moments and correlation are complicated functions of their parameters,

and that their marginal distributions must share the same shape parameter k. Rodrigez

and Taniguchi( 1980) used bivariate Burr type III surfaces to fit bivariate distribution

data by method of moments and maximum likelihood. The data consists of gasoline

octane requirements for vehicles as determined by customers and expert raters. The

fitted surface yield joint distributions of customer and rater requirements. They have

shown that bivariate Burr type III model is much more flexible than the bivariate

normal model for fitting customer / rater octane requirement data.
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1.3 Present Study

The present work is organized into six chapters. Bivariate extension of

Burr system is the subject matter of Chapter II. We propose to introduce a general

structure for the family in two dimensions and present some properties of such a

system. Also in Chapter II we introduce some new distributions, which are bivariate

extension of univariate distributions in Burr (1942). In Chapter III, we concentrate on

characterization problems of different forms of bivariate Burr system.

A detailed study of the distributional properties of each member of the

Burr system has not been undertaken in literature. With this aim in mind in Chapter

IV we discussed with two forms of bivariate Burr III distribution. In Chapter V we

consider the type XII, type II and type IX distributions.

Present work concludes with Chapter VI by pointing out the multivariate

extension for Burr system. Also in this chapter we introduce the concept of

multivariate reversed hazard rates as scalar and vector quantity.



18

CHAPTER II

BIVARIATE BURR SYSTEM OF DISTRIBUTIONS

2.1 Introduction

In continuation of the discussion on the Burr family of distributions in the

previous chapter, we propose to introduce a general structure for the family in two

dimensions and to present some properties of such a system. The review of work

available in literature as described earlier on multivariate Burr distributions reveals

that there is much scope for undertaking a study of developing a general bivariate

framework. Although multivariate extensions exists for some univariate Burr types,

there is no general pattern so far evolved for the development of bivariate family that

could be thought of as a natural generalization of univariate set up.

In the present chapter we point out a general method of generating bivariate

Burr distributions following the approaches prevalent in literature to extend a

univariate distribution to higher dimensions. The common approaches used in this

connections are

i) to generalize the equation defining the univariate family to the multivariate case by

involving many variables while keeping the form of equations in tact. The extension

of Pearson system by Van uven(1947)provides an example of this approach.

ii) to explicitly specify some relation between the joint distribution and its marginals

or conditionals and substitute the desired form of marginals or conditionals to find the

required bivariate form. The Morgenstern(l956) , Frechet(l95 I) and Placket(l965)

make use of this approach in defining certain classes of bivariate distributions.
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iii) to extend functional fonn in the univariate set up in some pattern by including

more variables and a density can be formed. In such a case it is not necessary that the

marginal distributions continue to be one of the form from which generalizations was

based. The linear exponential families of distributions by Wani(l96l) confirms to this

path of generalization.

iv) using the modeling approach to generalize multivariate distributions. In this case

the inter relations between the variables are established based on physical properties

of the system similar to be one established in the one variable situation and the model

is then obtained as the solution of system thus obtained. The derivation of the

Freund's (1961) bivariate exponential distribution is based on this methodology.

v) to adopt a characteristic property of univariate distribution to higher dimensions in

some meaningful fashion that conveys an equivalent characterization and then derive

the distribution possessing such an extended property. The bivariate exponential

distributions of Marshall and 01kin(l967) derived from the extended version of

famous lack of memory property that characterized the univariate exponential law.

In the present chapter we choose to generate bivariate Burr distributions by

extending the defining equation

dF(x)

dx
F(x) [1- F(x)] g(x) (2.1.1)

by introducing two random variables (XI' X 2) into the format and then solve the

resulting differential equation to find a general form. However it is to be noted a

generalization of this nature to the bivariate case need not be unique can be

accomplished in more than one way depending on the interpretation gives to I(x)

or 1- F(x) . The different cases that will emerge as a result are
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(2.1.2)

where I (xl' x2 ) is the density function of random vector (XI' X 2) , replacing the

density I(x) in the univariate case.

Ifwe look at I(x) as a derivative of F(x), another alternative to (a) is the

system of partial differential equations

(2.1.3)

(2.1.4)

Often 1- F(x) in the univariate case is the compliment probability associated

with F(x). When this interpretation is attached to 1- F(x) in the defining equation a

natural extension the bivariate case calls for the use of R(XI,X2 ) = P(X1 > xl'X2 > x2 )

This gives the equation

(2.1.5)

Finally we argue as in (b) , a fourth possibility is to look at the ststem

(d) aF(xl'x2 )

ax\
(2.1.6)

(2.1. 7)

for generating a bivariate Burr family.

Though all the above four definitions could provide bivariate systems in view

of the analytical tractability and the nature of solutions, in the present study, we are
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concentrate on the set of partial differential equations in (b) in the sequel to generate a

bivariate Burr system.

2.2 Bivariate Burr system (Bismi , Nair and Nair, 2005a)

In this section we derive the general forms ofthe distribution function,

density function etc as the solution of the partial differential equations contained in

Let (XI' X 2) be a random vector in the support of (G1, b, ) X (G 2, b2 ) ,

-00 ~ G, < hi ~ 00, i =1,2 admitting absolutely continuous distribution function

F(xpx2 ) and satisfying the differential equations in (2.1.3) and (2.1.4).

To solve the first equation we rewrite it as

(2.2.1)

(2.2.2)

Integrating from G1 to XI '

F(xpx2 ) [1 + e- G, ( X" X2 ) r l (2.2.3)

where

XI

GI ( X), X2 ) = Jgl (tp x2 ) dt, (2.2.4)
0,

Similarly from equation (2.1.4) ,

F(xpx2 ) = [1 + e-G 2( X" X2 ) r l (2.2.5)

where



Now from the differential equations,
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.<,

fg2(Xl't2)dt2 (2.2.6)

82F(xI'X
2 )

8x\8x2

(2.2.7)

82F(xI'X
2 )

8x)8x2

(2.2.8)

= (2.2.9)

Comparing equations (2.2.3) and (2.2.5) ,

and hence

(2.2.10)

(2.2.11)

The boundary conditions to be satisfied by G(XI' x2 ) are lim G(XI' x2 ) =00 and
x,-+b,
x, -+b,

lim G(x) ,x2 ) = -00 for i = 1,2 . Since F (Xl' x2 ) has to be monotonic increasing in
X,-+Gj
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2.3 General properties of the bivariate Burr system (Bismi, Nair and Nair, 2005a

In this section we describe some of the general properties possessed by the

bivariate Burr system represented by equation (2.2.11). The marginal distributions are

(2.3.1)

and

(2.3.2)

(2.3.3)

where

=

(2.3.4)

where

= (2.3.5)

(2.3.6)
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Equations (2.3.3) and (2.3.5) are univariate Burr type differential equation. Therefore

the marginals are of Burr form.

The joint density of (Xl' X 2) takes the form

Conditional densities are

[1 +e-G
( XI ,X2 lr3 e-G

( X1, X2 ) [(1 + e-G
( X"

X2 l ) agl~' x2) - gl (x,; x2)g2 (XI' x2)(1- e-G
( X" X2 'n

2

When the variables XI and X 2 are independent,

(2.3.8)

(2.3.9)

which gives

(2.3.10)

which implies

Since the univariate Burr distributions have been found to be models of

failure times it is of some interest to calculate the concepts useful in failure time

analysis in bivariate case also. The survival function corresponding to (2.2.11) is
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Following the univariate case the vector valued reversed failure rate (Roy (2002)) in

= i = 1,2 (2.3.13)

From the defining equation of bivariate Burr system

(2.3. 14)

and

providing an interesting relation

~ (xl'x2 )

A.z (xl' x2 )

=
g, (xl'x2 )

g2(XI'X2)

(2.3. 15)

(2.3. 16)

i =1,2 (2.3.17)

Thus each of the ratios in equation (2.3.16) becomes

~(X"X2)

g. (x" x2 )

A.z (xl' x2 )

g2(X"X2)
= (2.3.18)

We can define the reversed hazard rate as a scalar



=
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!(xl'x2 )

F(xl'x2 )
(2.3.19)

= [1 + e-G(X"X2)r 2 e-G(X"X2) [(l + e-G(X"X2») 8g1~,X2) - gl (XI'X
2

)g2 (xl' X
2
)(1- e-G(X,.x2») ] (2.3.20)

2

The marginal reverse hazard rates are

(2.3.21)

and

(2.3.22)

The scalar failure rate (Basu(l971)) is

!(xl'x2 )

R(xl'x2 )
(2.3.23)

[1 +e-G(x\,x21r3 e-G(x"x2) [(1 +e-G(X"X2») 8gl~,X2) - gl(XI'X2)g2(XI'X2)(1-e-G(X,.x2)~ (2.3.24)

= 2

The marginal hazard rates are

=

(2.3.25)

and
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(2.3.26)

The vector failure rate (Johnson and Kotz(1975)) in the form (~(xl' x2 ) ,11:2 (xI' x2 ) )

where

i = 1,2 (2.3.27)

2.4 Members of bivariate Burr system ( Bismi , Nair and Nair, 2005a )

In this section we first present the twelve types of bivariate extensions of the

univariate types discussed in Burr (1942) in Table 2.4.1 with corresponding G(x(, x2 )

functions in Table 2.4.2.

It is to be noted that most of the absolutely continuous distributions belongs

to the present family as it is always possible to identify

= i =1,2 (2.4.1)



T
ab

le
2.

4.
1

B
iv

ar
ia

te
B

ur
r

di
st

ri
bu

ti
on

s

T
yp

e
D

is
tr

ib
ut

io
n

fu
nc

ti
on

R
an

ge
E

ar
lie

r
re

fe
re

nc
e

M
ar

gi
na

l
B

ur
r

i=
1,

2

I
[

-u
«

+
-I

lk
-u

'
0<

x;
<

1
,k

c-
O

C
oo

k
an

d
1

X
I

x 2
Jo

hn
so

n(
19

86
)

II
[I

+
e-

··'
+

e-
··!

+
O

e-
·'

e-
··'
r

k
-c

o
<

X
i

<
co

II

l
k
>
O
,
O
~

B
~
k
+

1
~

[I
+

x;
<,

+
x~

c,
+

es
;:

x;
<'
r'

o
<

X
i

<
co

,c
;

>
0

II
I

k
>
O
,
O
~
O
~
k
+

1
R

od
ri

gu
ez

(1
98

0)

IV
[1

+
(c

1 -
x,

)1
/<

,
+

(
2-

x2
)1

/ <,
+

0
(1

-
X

l
)I

/C
,(

C2
-

X
2

)1
1<"

,
]

-k
o<

X
j
<

C
i

'
C j

>
0

IV

I
X

I
.v

,
X

I
X

,

I
I

-
-

k
>
O
,
O
~
B
~
k
+

1

I
i

; I

V
I

[1
+

c
le

·t
,n

.,
+

c 2t'
-

u
n

.•,
+

t1
c 1c

2
e

-
u

n
."

e-
(,

n
.,
lk

J[
Jr

V
, ,

-
-

<
x.

<
-

c.
>

0

i
2

I
2

"

i I
.
k
>
O
,
O
~
O
~
k
+

1
I

I
, I I

T
'l

co



T
ab

le
2.

4.
1

co
nt

in
ue

..
.

V
I

[1
+

c
-

A
si

nh
',

+
e-

b
in

h
"1

+
B

e-
k
s
in

h
"
e-

k
s

in
h
'I
rk

-
-
\I

)
<

X
i

<
en

,
k

>
0,

O
::

;O
::

;k
+

l

-
V

II
[

2
+

2
-I

rA
-e

n
<

A
i
<

\
I
)
,

k
>

0

1+
ta

nh
X

I
1+

ta
nh

x 2

V
III

[3
- ta

n
-l (

e
"

)t
+

[3-
ta

n-
l (

e
"

)]A
_[3

-t
an

-I
(c

',
+

e'
)]

l
-
\
I
)

<
X

i
<

en
,

k
>

0

tr
tr

tr

IX
[1

-
2

2
-e

n
<

x
j
<

\I
)

,

2
+

c i(
(1

+
e'

)l
-

I)
2

+
c 2

(
(
1

+
c
,,

)
A

-1
)

C
,

>
0

.k
s

O

+
2

]
2

+
c 1

«
(
l+

e
",

)k
-1

)+
c 2

«
1

+
c
,,

)l
-1

)

,-
-

X
a

(1
-e

-'
;)A

t-
(l

_
e-

'l
)l

_
(1

_
e

-r ;
c-

r ;
)l

o<
x,

<
a

)
,
k

>
0

I
-
-
-
-

---
-
-

-
.

..
_.

_-

\'1
i

I I i

---
--~
-

j
vl

f-
,

i I I
v'l

iT
-"l I I .,

IX
i !

X
---

\

I\
.

-c



T
ab

le
2.

4.
1

co
n

ti
n

u
e.

..

w o

I
~

b
O

o
I

ro
(x

,'
+x

l+
8x

!.
t~

)
,k

)

O
::

;B
::

;k

-
j

X
I

(
X

1
X

2
-_

I-
si

n
21

rx
1

x
,
/

O
<

x
j

<
1,

k
o

O

I
x~

21
r

T
ak

ah
as

i
(19

6~'
-

X
II

a
c j

>
0

,
k

>
O

,

I
I

1
(1

r,
rA

(1
r,
rk

(1
r,

r,
rk

a.
.>

0
X

II
-

+
a.

x,
-

+
a

2
x

2
•

+
+

a1
x.

+
a

2
x

2

0<
X

i
<

0C
l

0
<

X
i

<
co

,
D

ur
li

ng
(l

97
4)

X
II

b
1

-
(1

+
a.
x~
'
rk

-
(1

+
a

2
x
;'
rk

c j
>

0
,

k
>

O
.

X
II

(1
r,

rl
+

()
r,

r,
rA

0:
:;

()
::

;k
+

1.
+

+
a

1
x 1

+
a

2
x

2
a.

a
2

X
I

x 2

a j
>

0

IX
b

I



3,

CIl
C

.S!­CJ
c
..:

r [

I I
I I I-

I I II
I

I i
I

!

I I~ I ~

I

I
~

~

~ - ~

~ w"
~-c ':oJ ;'

+ ':oJ- +.... W':oJ>-:
i

r, - ':oJ:.: - -....
~ r:: '7

\,; - ...-. C':I r::........ I - IN! C':I
.: I I l:::: -..........
-;...... ~ I ......... Nj l::::

~
~ + .........

~~I
... .. I~

:.-:- r ~

':oJ .,. - ~...-.
~ -V I ""':oJ........ s ':oJ ~

C'::l s: - ........ <:,j
~ '7...-. .... + ~ I -- I "

,.. -
I '"

, "< :: ,..
~. ~ ~

~ -: .... - ;;
"<

..........
~ '" I C'l l:::: -...-. "::' - ~r, ......... "I : l::::

~
,

" :.: + "...-. I :.: + i :.: I .........- <:,j I r. +I c: :.:
IN

,..
~

,
:.:- B - ,.. ~

"<
I IS' § - ~

<:,j
.......

...-. C'::l ........ '"
, -

I
- ~ ~ ~

I + + + C' ':oJ I + - ~

! - - -.:: c +":!' ;' + I +
,.. -

- . .... -;-... I §,
~\""'.I

I :.: s: .: I

==
<:,j

~I
~ :..:

+ + .~ NI~ .;;

+ :-:- , ... I

~
.: ~ ~ r:: ......... N ~ l::::
I I N I

"< I :.:- v c: '" ~
.........

~

+ ........ + + -- I + + + '--'
r- :.:- -:.: - - ......... - - OJ)

'--' ......... - ......... .sr '--' '--'
......... ......... I

'--' Ci)
.........

~~
'--' ......... I OJ) ! I

01) 01) OJ) 01) OJ)- 0 .s .£ .£ .£ .s .£ i
0 '"j' I I I I I I i
1-- ,

I
I

U I
i

~
I- - > -~ - -- - - > > > I I- - >

t: I
::3

!
CQ I

I



T
ab

le
2.

4.
2

co
nt

in
ue

._
.

i..
.. I'.

1 I
_

__J I I I I
---

I I I
-
-
-
I

I i

..
."

I
"
'
~
'
"

""
'1

1
"1

1
"1

2

2
2

2
-
-
-
-
.
.
,
-
-
-
+

-
-
-
-
-
--
-
-
-
-
-

«1
+

eX
,)A

-1
)

2
+

c 2
«1

+
eX2

)A
-1

)
2

+
c.

((
l

+
e'

')
A

-1
)

-/(
:1

((
1

+
e"

/
-I

)
IX

-i
og

2
2

2
1

-
+

-
2

+
c l

«
I+

eX
,)

A
-1

)-
2

+
c 2

«
I+

e
X1

)l
-1

)
2

+
c 1«1

+
e"

)l
--

1)
.l

:~
~(

l=
;:

e-
~)

i-
~~

-i
)

--
--

-_
..~

"-
--

X
a

l-
(I

-e
-x

:)
A

_(
I_

e-
X

;)
A

+
(l

-e
-z

:
e-

xj
)A

-l
og

[
1

.
.1

.
2

'
]

(I
-e

-z
,)

l
+

(1
-e

-·
'I

)l
_

(I
-c

·X
'e

-X
,)

l

,
,

"
0

'
.1

)
l

X
b

-I
og

[(
l

_e
-z ,

-
e-

X2
+

c-
l."

+
z,

+
X,

.1,
r

-1
]

-
--

-

X
I

-l
og

[(
x.

x 2
-_

I-
si

n
27

rx
.x

2f
k
-1

]
2;

r

-
1

(I
'"'
rA

(1
'"

I
rA

(1
.r

,
'"

'r
A

X
U

a
lo

g[
-

+
al

:,'
-k

-
+
a~
~2

-A
+

+
a~:

'1
+1

1~
:'

2
-A

]
(1

+
G1

x.
)

+
(l

+
a

2-
'2

)
-(

I+
a

.x
.

+
a

z-'
!

)

1
(l

'"'
rA

(1
-'",

rA
(1

'",
(,

-
0

'"'
,'"'
rA

X
II

b
10

[
-

+
al

x l
-

+
a

2x
2

.
+

+
a.

x l
+

11 2
X

2
+

a 1
a2

X
I

·'
2

g
'
1

.
_

._
r,

,-
.t

.
/1

.
_

__
r"

,-
Ii

/
1

.
__

__
l'

•
•

~
.3

',
•

_
_

_
/1

_
-
'1

_
J
"

\-
t

I
l

_

i
-
l



33

CHAPTER III

CHARACTERIZATIONS OF BIVARIATE BURR SYSTEM

3.1 Introduction

In modeling problems a common approach adopted is that the investigator

initially chooses a family of distributions that have a wide variety of members with

different shapes and characteristics and then a member of the family that is consistent

with the physical properties of the system is chosen as the final model. When using

the families of the distributions as the starting point, often the general properties of the

family will be of considerable use in identifying the appropriate member. Accordingly

there are several investigations concerning the common characteristics pertaining to

various systems of distributions and any attempt at unearthing new properties, is

worthwhile exercise. It also helps to unify the results in the case of individual

distributions that are obtained in separate studies. In view of these tacts the present

chapter contains the characterizations of bivariate Burr system. In terms of versatility

and richness in members, Burr system appears to stand out as the best alternative

among various systems of distributions.

3.2 Characterization of bivariate Burr system using reliability concepts

(Bismi and Nair 2005b)

In this section we consider characterizations of bivariate Burr system

specified by equations (2.1.3) and (2.1.4) as

and
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Theorem 3.2.1

Let (XI' X 2 ) be continuous random vector with absolutely continuous distribution

Then (Xl' X 2 ) follows bivariate Burr system specified by equations (2.2.11) if and

only if

Proof

~(Xl'X2)

gl (xl'x2)
= ~(Xl'X2)

s.(xl' x2)
(3.2.1)

If part is clearly proved in equation (2.3.18).

To prove the only if part we note the form (2.2.11).

Then from equations (2.1.3) and (2.1.4) we have

or

i =1,2

whose solution is the Burr distribution given in the theorem.

With the extension of Burr distributions to bivariate case a problem of

natural interest is to investigate how far the important properties of univariate Burr

distribution can be generalized to appropriate forms in two dimensions. Nair and
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Asha (2004) characterize the univariate Burr form using the relationship between

hazard rate and reversed hazard rate. Following theorem gives the corresponding

results in the bivariate case. In the bivariate case this can lead to four possibilities, the

scalar hazard rate h(xl' x2 ), the scalar reversed hazard rate A(xl' x2 ), vector hazard

rate hi (XI' x2 ) and vector reversed hazard rate Ai (XI' x2 ) •

Theorem 3.2.2

Let (XI ,X2 ) be continuous random vector with absolutely continuous distribution

(Xl' X 2 ) belongs to the bivariate Burr system specified by equation (2.2.11) if and

only if

Proof

From marginal hazard rate and marginal reversed hazard rate we can write

= (3.2.3)

Solving F(xl' x2 ) from the scalar hazard rate h(xl' x2 ) and scalar reversed hazard

rate 2(xi'x2 ) and using equation (3.2.3) we have

=
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Let (XI' X 2 ) follows bivariate Burr system specified by equation (2.2.11).

Substituting equation (3.2.4) in equation (2.2.11), we get

Conversly suppose that equation (3.2.2) holds.

Substituting A(XpX2 ) and h(xpx2 ) from equation (2.3. 19)and (2.3.23) and equation

(3.2.3) in equation (3.2.2) we get

which is the general solution of bivariate Burr system given in the theorem.

Theorem 3.2.3

A continuous random vector with absolutely continuous distribution

to the bivariate Burr system specified by equation (2.2.11) if and only if

Proof

Solving F(xpx2)using equations (2.3.13), (2.3.27) and (3.2.3) we find
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~(X2) ]

~(X2)+ ~(X2) ;=1,2 (3.2.6)

Assume that (Xl' X 2 ) follows bivariate Burr system specified by equation (2.2.11) .

Substituting equation (3.2.6) in the general solution of bivariate Burr system

specified by equation (2.2.11) we get the equation

Conversly starting from equations(3.2.5) and substituting equations (2.3.13), (2.3.27)

and (3.2.3) that

Theorem 3.2.4

A continuous random vector (Xl' X 2 ) with absolutely continuous distribution

to the bivariate Burr system specified by equation (2.2.11) if and only if

and
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A, (XI ,X2)[~ (x, ,X2)~(X( ,x2)+~. (XI ,x2)

+A(Xl'x
2)[h;(x"x2)[

~(x,) + ~(X2) ]_ A;(xJh,(xJ ]
~(XI) + ~(XI) ~(xJ +~(X2) A, (x.) + h;(x;)

where

Proof

Solving F(x"x2 ) from equations (2.3.13),(2.3.19) ,(2.3.27) and (3.2.3) we find

A(XI'X
2)[

A,(x,)h,(x,) -h,(xl'x
2)[

~(XI) ~(X2)]]
A,(x,)+h,(x,) ~(XI)+~(XI) ~(X2)+~(X2)

A, (XI' X2)[~ (XI' X2)~ (Xl' X2)+ A.; (XI' X2)]+ A(X(,x2)h, (X"x2)

Substituting equation (3.2.9) in equation (2.2.11) we get

A, (Xl ,X2)[~ (XI ,X2)~(XI ,X2)+ ~(XI ,X2)]

+A(Xl'x
2)[h,(xl'x2)[

~(XI) + ~(X2) ]_ A,(x;)h;(x;) ]
~ (XI) + ~(XI) ~(X2) +~ (x2 ) A; (x;) + h;(x;)

Similarly equation (3.2.10) in equation (2.2.11)
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A; (x),X2)[~ (XI ,X2)~ (x] ,x2)+~' (XI ,x2)]

+A(X
px2)[h;(x"x2)[

~(XI) + ~(X2) ]_ A,(x,)h,(x;)]
~(XI)+~(XI) ~(X2)+~(X2) A,(x;)+h;(x,)

= e-Ci( XI ,X2 ) A(X X )[ A,(x,)h,(xi ) -h (x X )[ ~(Xl) ~(X2)]] j= 1,2
p 2 A;(x,)+h;(x,) i P 2 ~(XI)+~(XI) ~(X2)+~(X2)

Conversly starting from equation (3.2.7) and using equations (2.3.13), (2.3.19),

(2.3.27) and (3.2.3) gives

Also starting from equation (3.2.8) and proceeding on same way we get

Hence the result.

Theorem 3.2.5

A continuous random vector (Xl' X 2 ) with absolutely continuous distribution

to the bivariate Burr system specified by equation (2.2.11) if and only if

and
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Proof

Solving F(xpx2 ) using scalar hazard rate in equation (2.3.19) vector valued

reversed hazard rate in equation (2.3.23) and equation (3.2.3) we get

(3.2.13)

(3.2.14)

Let (XI' X 2 ) follows bivariate Burr system specified by equations (2.2.11) .

Substituting equation (3.2.13) in the general solution of bivariate Burr system

specified by equation (2.2.11) we get the equation

Substituting equation (3.2.14) in equation (2.2.11) we get

Conversly suppose that equation (3.2.11) and (3.2.12) holds.

Then starting from equation (3.2.11) and using equations(2.3.13) ,(2.3.23) and (3.2.3)

gives
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Starting from equation (3.2.12) and using equations(2.3.13) (2.3.23) and (3.2.3)

gives

Theorem 3.2.6

Let (X" X 2 ) be continuous random vector with absolutely continuous distribution

(XI' X 2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4) if and only if

Proof

Let (X"X2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4)

Using the identity (3.2.4) and (2.3.13) in equations (2.1.3) and (2.1.4) gives

1- A-;(Xl'X2 )

g;(x"x2 )

which on simplification gives

=

Conversely suppose that equation (3.2.15) holds

Then using equations (2.3.13),(2.3.19) ,(2.3.23) and (3.2.3) we get
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aF(xpx2 )

ax, i =1,2
rt»; x2)[1- F(x1, x2 ) ]

which proves the result.

Theorem 3.2.7

Let (X" X 2 ) be continuous random vector with absolutely continuous distribution

(X" X 2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4) if and only if

Proof

Suppose that (XI' X 2 ) belongs to the bivariate Burr system specified by equations

(2.1.3) and (2.1.4).

Using the identity (3.2.6) and (2.3.15) we find

which gives

=
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Conversly starting from equation (3.2.17) and using equations (2.3.13), (2.3.27) and

(3.2.3) we have

i =1,2

which proves the result.

Theorem 3.2.8

Let (Xl' X 2 ) be continuous random vector with absolutely continuous distribution

(XI' X 2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4) if and only if

== J.., (Xl' Xl)[A,(XI,Xl )[~ (XI,Xl )~(XI,Xl) + A2(XI~(~]; A(XI,Xl)h,y(~X»] A (x)h (x) i =1,2 (3.2.19)
),,(XI,Xl)[~(XI,Xl)~(XI,Xl)+ )-i(X1,Xl )]+ A(Xl'xl)[h,(xl'xl)[ I + "'l 1 ]_----'--'-'....:..:.'--,-',---,,-,-]

~(XI)+ ~(XI) hl(Xl)+~(Xl) h,(x,) + ,l,(x,)

and

Proof

Let (X!, X 2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4)

Using equations (3.2.9) and (2.3.13) in equations (2.1.3) and (2.1.4) gives



44

1- A.,(x"x2 )

g, (x" x2 )

=

which on simplification gives equation (3.2.19).

Similarly using equation (3.2.10) and (2.3.13) in equation (2.1.3) and (2.1.4) gives

equation (3.2.20).

Conversly suppose that equations (3.2.19) and ( 3.2.20) hold.

Then using equations (2.3.13), (2.3.19) , (2.3.27) and (3.2.3) we get

8F(x"x2 )

ax; i =1,2
F(x) ,x2)[I - F(x] ,x2 ) ]

which proves the result.

Theorem 3.2.9

Let (Xl' X 2 ) be continuous random vector with absolutely continuous distribution

(X]' X 2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4) if and only if

and

(3.2.22)
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Proof

(3.2.23)

Let (XI'X2 ) belongs to the bivariate Burr system specified by equations (2.1.3) and

(2.1.4) .

Using equations (3.2.13) and (2.3.13) in equations (2.1.3) and (2.1.4) gives

1- A; (xl' x2 )

g,(xl'x2 )

which on simplification results equation(3.2.22).

Similarly using equation (3.2.14) and (2.3.13) in equation (2.1.3) and (2.1.4) gives

the result in equation (3.2.23).

Conversly suppose that equations (3.2.22) and ( 3.2.23) hold.

Then using equations (2.3.13) , (2.3.19) and (3.2.3) we get

= i =1,2

which proves the result.

Next theorem shows that bivariate Burr system satisfies compatibility of conditional

densities.
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3.3 Characterization using conditional densities

Theorem 3.3.1

Let (XI' Xl) be continuous random vector with absolutely continuous distribution

(XI' X 2 ) belongs to the bivariate Burr system specified by equations (2.2.11) if and

only if the conditional densities are of the form equation (2.3.8) and (2.3.9)

Proof

Let the random vector(XI'X2 ) belongs to the bivariate Burr family specified by

equations (2.2.11). Then conditional densities are of the form (2.3.8) and (2.3.9).

Conversly suppose that conditional densities are of the fonn (2.3.8) and (2.3.9).

Then

f(xJ x2 )

f(x2 / XI)

where

and

e-(j(XI ,hl lgl (XI' b
2

) [1 +e-G(bl ,Xl l f
[1 +e-G(X,.bllf e-G(I1,xl) gl (b

l
,x

2
)

e-(j(xl.bl l gl (XI' b
2

)

[1 + e-G(xl .hl l ] 2

e-(i(~ ,Xl19 (b X )
2 I' 2

(3.3.1)

(3.3.2)

(3.3.3)
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(3.3.4)

Hence Abraham and Thomas (1984) conditions are satisfied and therefore the

bivariate distribution has bivariate Burr form.
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CHAPTER IV

BIVARIATE BURR TYPE III DISTRIBUTIONS

4.1 Introduction

In the previous chapter we have considered the bivariate Burr system. A

detailed study of the distributional properties of each member of the system has not

been undertaken in literature. In model building the first choice is on the family and

the second choice specific member there. In order to choose the most appropriate

member from the family one should have sufficient understanding of the important

characteristic of the members. Present chapter is an attempt in this direction. In the.
present chapter we have discussed the bivariate Burr III distribution. Rodriguez(l980)

derived the bivariate Burr III distribution using mixing argument. The form proposed

by him is

But it can be shown that this distribution can be obtained as solution of set of partial

differential equations involving distribution function which we have discussed in

second chapter. In that unified approach the bivariate Burr III distribution arises'by

the choice G(x1, x2 ) as

in equation (2.2.11)

In view of analytical tractability in the present study we consider the form
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Corresponding density function and survival function are

and

=
k(k + I)CIC2XI-cl-IX~CI-1

[1 + x
l
- cl + X;<l ]k+2

°< x, < 00, k.c, > O,i =1,2 (4.1.4)

4.2 General Properties of Type III Model (Bismi and Nair, 2005 d)

In this section we consider some general properties of bivariate Burr III

distribution specified in equation (4.1.3)

It is noted that the marginal distributions are

F, (x)

With a choice of

= [1 + Xi-<i r k °< Xi < 00, k,c, > O,i =1,2 (4.2.1)

g/(X,) =
[1 + x

i
-

c
,r':'[[1+ x,-

C
; t -1]

o<Xi <00, k,c >0,i=I,2 (4.2.2)

equation (4.2.1) satisfies

F, (x, )[1- F, (x,)] g, (xJ
kc -c.-t.x.:

[1 + X
i
-

C
, t+1

dF, (X,)

dx,
i =1,2 (4.2.3)

which is univariate Burr type differential equation.

Thus for the bivariate Burr form (4.1.3) marginals are exactly univariate Burr type III.

With the above marginal distributions, conditional densities of Xi given X j = x
J
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arise as

(k + l)c,x,-C,-1 (l + X-C1 )k+1

f (x IX -X) = J O<X, <oo,k,c"c
J
. >0,i,j=I,2(4.2.4)

, J.I [1 -c -c ]k+2+ x, ' +x
J

1

Using the transformation

, it can be seen that t: follows univariate Burr type III with

parameters c; and (k+ 1). Hence any property for univariate Burr distribution of Xi

can be extended to the conditional distribution of Xi given X
J

=xj •

Another type of conditional distribution that of interest especially In reliability

modeling is the distribution of X, given X
J

> x
J

•

Survival function of XI given X 2 > x2 is

=

P(X, > x],X2 > x2 )

P(X2 > x2 )

The corresponding density function is calculated as

Similiarly

= aR(xl IX 2 > x2 )

ax,

kc,X
1-

c1- 1 kc
1
X

1-
C1- 1

[1 + x
1
- c1 + X;Cl ]k+1 [1 + x;c1 ]k+l

1-[1 + X;Cl r k
(4.2.6)



51

P(X) >XI'X2 >X2 )

P(XI > Xl)

and

= 8R(x2 1 Xl> Xl)

&2

kc -c2-1 k -c2 - 1
2X2 _ C2X2

[1 + X\-CI + X~C2 ]k+l [1 + X~C2 ]k+l

1-[1 + x l-
c
,r' (4.2.8)

Now we are interested to find the moments and other characteristics.

The (lj, r2 yh moment of the distribution,

In particular the product moment become

E(X1X2 )

1
- fk f(1-1I c,)f(l-1I c2 ) f (k + 11c\ +11 c2 ) 11c, < l,k + 11cl + 11c2 > O,i =1,2

There is a recurrence relation connecting the moments of the distribution given by

(4.2.10)
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= (l-lj / cl )(1- r2 / c2 )

(k + lj / c1 + r2 / c2 -1)(k + lj / cl + r2 / c2 - 2) f.J'1"2
(4.3.11)

when c1 and c2 are positive integers, this relation connects the adjacent moments and

is useful to calculate all moments of the distribution devoid of gamma functions.

Covariance becomes

Then the coefficient of correlation has the expression,

p

=

f(l-Ilc )f(l-Ilc )[r(k+llc1 +llc2 ) _ r(k+llc1)r(k+l/c2 ) ]

1 2 r(k) (rk)2

Regression equations are obtained as

(4.2.13)

=
00

fX1I(xl IX 2 =x2 ) dx,
o
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which is decreasing function of x2 • '

Similarly

which is decreasing function of XI .

O'(x,IX j =x) = [(k+I) (1 + X;'i r 2l C
, B(1-2Ic"k+I+2Ic,)

-[(k + 1)(1 + X;c) rl/C, B(1-1/ c"k + 1+1/ C,)]2]112 (4.2.16)

The coefficient of variation of Xi given Xi = Xi is

O'(Xi IX j =XJ)

E(Xi IX j =X)
(4.2.17)

0::: [(k +1) (1 +x;c; r 2lc, B(l- 21ci ,k + 1+ 21c,) -[ (k + 1) (1 +x7i r 21C, B(1-1/ ci ,k + 1+1/ C,)f]1/2

(k+I) (1 +x;c;r21C, B(1-1/ci,k+I+1/c;)

r(1 + 21cJr(k + I-2IcJ r(1 + I/cJr(k + I-II c,)

r(k + 1) r(k + 1)
r(1 + 1/ c,)r(k +1-1/ci )

r(k +1)

This is independent of Xi so is the coefficient of skewness of the conditional

distributions.

Now we are interested to find some concepts useful in failure time analysis.

The scalar reversed hazard rate is

= !(x"x2 )

F(x"x2 )

=
k(k + I)c

l
c2X;c,-IX;C1-l

[1 + Xl-c) + x;c1 ]2
(4.2.19)
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Vector valued reversed hazard rate (Roy(2002» is

where

(4.2.20)

and

=

The marginal reverse hazard rate is

(4.2.21)

A,(x,)

Basu's (1971) failure rate is

= J; (Xi)

F, (x,)

kc X~ci-l
, r i =1,2

[1 + X
i
-

C
, ]

!(XpX2)
R(xpx2 )

(4.2.22)

(4.2.23~

Gradient hazard rate (Johnson and Kotz(1975» defined in equation (2.3.27) is given

by
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and

The marginal failure rate

h,(x,)

kc x- Cl - ' kc X- Cl- 1

2 2 2 2

= [1 + X l-
c
\ + X~Cl t+' [1 + X~Cl ]k+1

1- [1 + x,-c\ r' - [1 + X~Cl r' + [1 + x l-
c\ + X~Cl r' (4.2.25)

(4.2.26)

4.3 Characterizations of Bivariate Burr Type III Distribution (Bismi and Nair,

2005 d)

In this section we consider some characterization theorems of bivariate Burr

type III distribution.

In problem of modeling bivariate data the primary concern is to find an

appropriate distribution that explains the data adequately. Partial prior information

about the mechanism is some times available in the fonn of marginal or conditional

distributions. The problem is to determine the joint distribution. It is known that the

marginal distribution alone is generally insufficient to characterize the joint

distribution when the variables are independent. Therefore the specification of the

joint distribution through its component densities namely marginals and conditionals

have been dealt with many researchers in the past. This include the work of Seshadri
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and Patil (1964), Nair and Nair (1990) and Hitha and Nair (1991). Now we consider a

characterization theorem using conditional densities and marginals.

Theorem 4.3.1

Let (Xl' X 2 ) be a random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure, with conditional

distribution of Xl given X 2 =x2 is of the form equation (4.2.4). Then XI is Burr

type III if and only ifX 2 is Burr type III .

Proof

The conditional density of XI given X 2 =x2 is of the form equation (4.2.4).

Assume that XI follows univariate Burr type III distribution. Then

= kc1x;c1-1

[1 + x;cl ]k+1

Also

Hence

(4.3.1)

kc X-c1-1
I I

k _
-[I+x CI]

k +1 I

Substituting U= X~C2 in equation (4.3.3) gives
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_k_[1 + x- C
' ]

k + 1 I

<t)

= fH(U)U;/C1-1du
o

Taking inverse Mellin transform ( Rhyzik Pa.1194 )

(4.3.4)

H(u)

Hence

Thus X 2 is of Burr type III form.

To prove the converse, assume X 2 follows univariate Burr type III.

Then

<t)

ff(x1IX2)J;(X2) dx,
o

Hence Proof.

Apart from the marginal distribution of X, and the conditional distribution of X
J

given Xi = Xi , i = 1, 2 i"* j from which the joint distribution can always found, the

other quantity that are relevance to the problem is marginal and conditional
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distribution of the same component. In the corollary 4.3.1 we consider a

characterization on the marginal and conditional distribution of the same component

which incidentally also provides a characterization of univariate Burr type III

distribution using bivariate Burr type III.

Corollary 4.3.1

Let (XI' X 2 ) be a random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure , with conditional

distribution of XI given X 2 = x2 is of the form equation (4.2.4). Then (Xl'X2 ) is

Burr type III if and only ifX 2 is Burr type III .

It is well known that a bivariate distribution is not always determined by

marginal densities. Many researchers considered the problem of determination ofjoint

density when the conditional distributions are known. Abraham and Thomas (1984),

Gouriorex and monfort (1979) have developed the condition under which the densities

f(x) I x2 ) andf(x2 1 Xl) determine the joint density uniquely. According to Abraham

and Thomas (1984) if the ratio of the conditional density can be written as

f(x l / x2 )

f(x2 / XI)

where

=

then it will uniquely detennine the joint density.

Next theorem shows that bivariate Burr III distribution satisfies compatibility of

conditional densities.
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Theorem 4.3.2

Let (XI' X 2 ) be continuous random vector in the support of R; having

absolutely continuous distribution function with respect to lebesgue measure.

Then (XI' X 2 ) follows bivariate Burr type III distribution if and only if conditional

densities are of the form equation (4.2.4).

Proof

Let (XI' X 2 ) follows bivariate Burr type III distribution.

Then [(x, Ix) i =1,2 i:t j is of the form (4.2.4)

Conversly

[(x) Ix2 )

[(x2 1 XI)

where

= (4.3.5)

A, (x,) = i =1,2 (4.3.6)

= Ilk (4.3.7)

Hence Abraham and Thomas (1984) condition for unique determination of the joint

density using conditional density is satisfied.

Hence proof.
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Next we consider some characterization theorems usmg the relationship

between scalar hazard rate, scalar reversed hazard rate, gradient hazard rate and

gradient reversed hazard rate.

Theorem 4.3.3

Let (XI' X 2 ) be continuous random vector in the support of R; having

absolutely continuous distribution function with respect to lebesgue measure. Then

(XI' X 2 ) belongs to the bivariate Burr type III distribution if and only

Proof

Let (Xl' X 2 ) follows to the bivariate Burr type III distribution.

Then using equation (3.2.4) in equation (4.1.3) we have equation (4.3.8).

Conversely starting from (4.3.8) and using (2.3.19), (2.3.23) and (3.2.3) we get

= [1 + X~CI + X~Cl r' 0 < x, < 00, k, c, > 0 i =1,2

Theorem 4.3.4

Let (Xl' X 2 ) be continuous random vector in the support of R; having

absolutely continuous distribution function with respect to lebesgue measure. Then

(XI'X2 ) belongs to the bivariate Burr type III distribution if and only
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Proof

Let (XI' X 2 ) follows to the bivariate Burr type III distribution.

Then using equation (3.2.6) in equation (4.1.3) we have equation (4.3.9).

Conversely starting from (4.3.9) and using (2.3.13) , (2.3.27) and (3.2.3) we get

= [1 + x -C
1 + X -C

zr' 0 < X < 00 k c > 0 i =1 2I 2 I' , I ,

Theorem 4.3.5

A continuous random vector (XI' X 2 ) in the support of R; with distribution

function F(xl , x2 ) belongs to the bivariate Burr type III distribution if

(4.3.10)

Proof

Let (X" X 2 ) follows to the bivariate Burr type III distribution.

Then by equation (4.2.19), (4.2.20) and (4.2.21) we have equation (4.3.10).

4.4 Relation between Burr Type III and Other Distributions

Let (XI'X2 ) follows to the bivariate Burr type XII distribution .Table 4.5.1 gives

relation between this distribution and other distributions.

Table 4.4.1

Transformation Distribution function

y, = [1 + X/c, rk [Yl- I / k + y~llk _1]-k 0 < Y
i

< 1 ,k > 0 i = 1,2

(Cook and Johnson (1986))

Vi = -logX,C, [1 + e-u1 + e-uzrk
- 00 < ui < 00 , k > 0 (Burr II)

V =_1 [1 + v;c1 + v~cz r' o< v, < 00, k,c, > 0 i = 1,2 (Burr XII)
I X

I

W = X:; [I+ WI + w2rk 0< w, < 00, k > 0, i = 1,2 (Mardia(1960))
I /
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4.4 Bivariate Burr Type III Distribution form II (Bismi and Nair, 2005 e)

We can develop another bivariate form for the type III distribution using

mixing argument.

Suppose the variables X, 's i = 1,2 have conditional upon a common scale

parameter B, independent transformed gamma distribution and B follows Weibull

distribution. Then

f(x, IB)

and

Bck; ck,-I -oCxf
C Xi e

rk;
O<Xj <oo,B,c,k, >0 i=1,2(4.4.1)

feB) (4.4.2)

Then the unconditional density is of the form

eo

= ff(x! Ix2)f(B)dB
o

We define the distribution as bivariate Burr type III distribution.

Corresponding distribution function is

Also this distribution can be derived under the unified approach which we have

considered in chapter II by choosing
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Marginal densities are

I(x;)
Xck,-l

= ck, 'k , 0 < Xi < 00, c, k, > 0 i =1,2
[1 + x~] ,+

(4.4.6)

Hence X" i = 1,2 follows univariate Burr type III with parameters c and k,

Conditional density of X, given X
j

=x
j

i ,j =1,2 is

Conditional moments are given by

<Xl

= Jx; I(x, / X j =xj )dx,
o

. r(k+r/c)f(k
j
.+1-r/c)

= [1 + xC)" c , i,j = 1,2 (4.4.8)
j fkif(k

j
+1)

Regression function of X, given X, = x
j

i J = 1,2 is

= l+xc Ilc r(k; +l/c)f(k) +1-1/c)
[ j] fk;f(k

j
+ 1)

i,j=I,2 (4.4.9)

which is increasing in x
j

Point of intersection of two regression lines is ( c,(XI' x2 ) c2(Xl' X 2) ) where
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r(k2 +1Ic)r(k( +1-1Ic)[1+[r(kl +1Ic)r(k2+l-l/c)r]I/C

( ) _ rk2r(kl + 1) rkr(k2 + 1)
c2 xl'x2 - [1_[r(k2 +1Ic)r(k1 +1-1Ic) r(kl +1Ic)r(k2+1-1Ic)r]I/C

rk2r(k1 + 1) rk1r(k2 + 1)

and the product moment

(4.4.10)

(4.4.11)

r(k1 + 11 c)r(k2 + 11 c)r(l- 2/ c)

rk1rk2

(4.4.12)

correlation coefficient

p
f(k +l/c)f(k +l/c) 2

1 2 [f(1-2/c)-[f(l-lIc)]]
fk1fk2

f(kl +2/c)f(I-2/c) f(k1 +l/c)f(l-lIc) 2 1/2 f(k2 +2/c)f(l-2/c) f(k2 +l/c)f(1-lIc) 21/2
[ -[ ]] [ -[ ] ]

~ ~ ~ ~
Correlation tends to zero as c tends to 00.

Let (Xl' X 2 ) has the form (4.4.3). Then table 4.4.1 gives relation between this

distribution and other distribution.

Table 4.4.1

Transformation Corresponding density

r(kl + k2 + 1) *1-1 *2-1

C = 1
XI X2 o< Xi < 00, k, > 0 i =1,2

rk1rk2 [1 + XI + X
2

]*1+*2+
1

(Inverted Dirichlet(Tio and Guttman(1965))

J;
Xc r(k + k + 1) 2(2k )*1 (2k )*2 )j,*I-lf*2-

1

i =1,2= I 1 2 1 2 1 2 O<J;<ook>O
k, rk rk [2 + 2k I, + 2k I. ]*1+*2+

1
" I

I 2 1 1 2 2

(Bivariate F)

k, =1,k2 =1,Y, =-logXi
C

2e-·l'I e- Y2

i =1,2O<y<ook>O[1 ->1 - Y2 f I , I+e +e

(Bivariate logistic (Gumbel(1961)))

(4.4.13
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Next we consider some characterizations using conditional densities.

Theorem 4.4.1

Let (XI' X 2 ) be a random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure, with conditional

distribution of Xl given X 2 =x2 is of the form equation (4.4.7). Then Xl is Burr

type III if and only ifX 2 is Burr type III.

Proof

The conditional density of Xl given X 2 =x2 is ofthe form equation( 4.4.7).

Assume that XI follows univariate Burr type III distribution. Then

Also

Hence

Substituting U= x; in equation (4.4.14) gives

(4.4.15)
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Taking inverse Mellin transform ( Rhyzik Pa. 1194)

H(u)

Hence

o< x2 < 00 k2 ,c > 0

Thus X 2 is of Burr type III form.

To prove the converse, assume X 2 follows univariate Burr type III.

Then

'"
ff(xl IX2)!;(X2) dx;
o

Corollary 4.4.1

Let (Xl' X 2 ) be a random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure, with conditional

distribution of Xl given X 2 =x2 is of the form equation (4.4.7). Then (Xl'X2 ) is

Burr type III if and only ifXl is Burr type III .

Next we show that the bivariate Burr III with form (4.4.1) satisfies compatibility of

conditional densities.
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Theorem 4.4.2

Let (XI' X 2 ) be continuous random vector in the support of R; having

absolutely continuous distribution function with respect to lebesgue measure.

Then (XI' X 2 ) follows bivariate Burr type III specified by equation (4.4.1) if and only

if the conditional densities are of the form in equation (4.4.7)

Proof

Let (XI ,X2 ) follows bivariate Burr type III distribution.

Then l(x,lx) ;=1,2 ;-:t:-j is of the form (4.4.7)

Conversly

I(x] I x2 )

l(x2 I XI)

where

(4.4.16)

A, (x,)
kxck;-l

I ,

= lie

; = 1,2 (4.4.17)

(4.4.1'8)

Hence Abraham and Thomas (1984) condition for unique determination of the joint

density using conditional density is satisfied.

Hence proof.
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CHAPTER V

DIVARIATE BURR TYPE XII , IX AND II DISTRIBUTIONS

5.1 Introduction

The work on the univariate and bivariate Burr distributions were mainly

centered on the type XII distribution. In two dimensional case, the type XII

introduced by Takahasi (1965) was later studied by Durling(1969, 1974) , Johnson

and Kotz (1981), Crowder (1985), Crowder and Kimber (1997) and Begum and

Khan (1998). In view of the importance of this distribution has enjoyed and the

volume of work it has produced in literature we take up a detailed study of the

type XII distribution under the new frame work, introduced in chapter II. The logic

used in the derivation of bivariate Burr type XII distribution was the mixing

argument. But it was pointed out in the second chapter that under a unified frame

work the entire Burr system of distributions can be conceived as the solution of a set

of partial differential equations, involving distribution function, so that the system

contains, besides the generalization of the twelve types in the univariate case , many

more absolutely continuous distributions.

It may be noted that apart from specifying the distribution functions much

work has not been under taken on the type IX distribution in the univariate set up. As

a new probability model with potential for application we discuss this model and

bring about some of its salient characteristics. Also in this chapter we have discussed

the type II distribution which we have introduced in chapter II.
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5.2 General Properties of Type XII Model

In the unified approach the bivariate Burr XII distribution arises by the

1- [1 + XCI ]-k _ [1 + XClr' + [1 + XCI + XCl ]-k
log 1 .2 1 2

[1 + X~I rk + [1 + X~l rk
- [1 + X~I + x? r' (5.2.1)

in equation (2.2.11). We can the write the distribution function of bivariate Burr XII

distribution in the form

= l-[l+x~lrk -[l+x?rk +[l+xtl +x?rk O<x; <00, k,c, >0,i=1,2 (5.2.2)

Corresponding density function and survival function are

O<x; <00, k,c, >0,i=I,2 (5.2.3)

and

(5.2.4)

A closely related form of the distribution is discussed in Johnson and

Kotz (1972) which is obtained by replacing x;c, in equation (5.2.3) by a;x~' for i =1,2

Our derivation of the distribution based on the choice of the functional fonn

G(x), x2 ) ensures that the marginals are exactly Burr type XII.

Next we consider some general properties of bivariate Burr XII distribution

specified in equation (5.2.3)

It is noted that the marginal distributions are

= 1-[I+x~'rk O<x, <00, k,c, >0,;=1,2

with a choice of

(5.2.5)
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Equation (5.2.5) satisfies

F, (X,) [I - .F, (X,)]
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kCXc,-1
I I (5.2.6)

dF;(X; )

dx,

g;(xJ
i =1,2 (5.2.7)

which is univariate Burr type differential equation in which marginal densities can be

written as

dF;(X,)

dx,

O<X; <oo,k,c>O , i=I,2 (5.2 .8)

Thus for the bivariate Burr form (5.2.3) rnarginals are exactly univariate Burr type XII

With the above marginal distributions, conditional densities of X; given Xl = Xl

anse as

= (k + l)c,x;,;-I (1 + x;J / +1

[I+ x;' + x~-, t+2
O< X, <oo ,k,c; ,c j >0 ,i ,j=I,2 (5.2.9)

Using the transformation

y,

it can be seen that Y, follows univariate Burr type XII with parameters c and (k+ I).

Hence any property for univariate Burr distribution of X, can be extended to the

conditional distribution of X; given Xl =Xl .
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Another type of conditional distribution that of interest especially in reliability

modeling is the distribution of X, given X
J

> x
J

•

Survival function of XI given X 2 > x2 is

where

=

=

P(X1 > xI'X2 > xJ

P(X2 > x2 )

[1 +xtl + X;l rk

[1 + X~l r'

(5.2.1 0)

(5.2.11)

The corresponding density function is calculated as

(5.2.12)

= aR(x1 IX 2 > x2 )

ax[

(5.2.13)

Similiarly

P(X( > xl'X2 > x2 )

P(X[ > Xl)
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where

and

[1 + X~I ]1/c2

= aR(x2 1 Xl> Xl)

ax2

(5.2.14)

(5.2.15)

(5.2.16)

An interesting point to be noted is the relationship between the conditional

distribution of X, givenX} =x} and that of Xi given X} > x j ' The former has Burr

form with parameters (c, k+1) while the latter is Burr with parameters (c, k)

respectively. This enables us to write variety properties involving X, given X j = x}

and X, given X, > x}, like the mean, varience, coeffient of variation, skewness etc,

some which is independent of the condition involved.

A second useful feature of the above conditional distributions is that they

satisfy the differential equations

aR(x) IX 2 > x2 )

ax)

with a choice of

(5.2.17)

(5.2.18)
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[_X'_r'-' [1 + [_xi _ r,r'
~ a;(x) a; (x)

a; (x) l-[l+[~r'rk
a,ex)

i,j=I,2 (5.2.19)

Now we are interested to find the moments and other characteristics.

5.3 Moments and Other Characteristics of Burr Type XII Distribution

Because of the transformation pointed out in the previous section, that induces a

relation between the marginal and conditional distributions, many properties of the

bivariate distribution can be established with out appealing to the bivariate density

function. Apart from the mathematical convenience the approach also brings about

some results that are useful in reliability context. For example when (X" X 2 )

represents the random life times of a two component system

(5.3.1)

represents the mean true to failure (MTTF) of the ;th component when the

i" component has survivor time x;

The expression for ml (x2 ) is

<Xl

ml (x2 ) fl(x l IX 2 > x2 ) dx,
o

'"
= fR(x l IX 2 > x2 ) dx,

o

'"f[ l +[ XI ]" r' dx
[1 "]1/,, I

o +x2
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which is increasing function of Xz .

Means can be directly calculated from mi (x) as

(5.3.2)

E(x,)

=
r (k - 1/ c, )r (l + 1/ c, )

rk
Cj > 1/ k i =1,2 (5.3.3)

Further we have following expression for the variance

r(k - 2/ c;)r(l + 2/ c,) _ [r(k -1/ cj)r(l + 1/ cj)]Z
V(x) = i =1,2

j rk rk

Similarly

(5.3.4)

cL)

ff(xzl XI> XI) dx,
o

eo

fR(xzl Xl > Xl) dx,
o

(5.3.5)

which is increasing function of Xl .

This means that the mean life time of component Xi can be increased by increasing

the value of component j.

The (lj,'z ),h moment of he distribution,
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In particular the product moment become

There is a recurrence relation connecting the moments of the distribution given by

(5.3,8)

When c1 and c2 are positive integers, this relation connects the adjacent moments and

is useful to calculate all moments of the distribution devoid of gamma functions.

Covariance becomes
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Then the coefficient of correlation has the expression,

p

- 1

[
f( I + Zl c1)f( k - Z I C1) [r(l+llcI)f(k-lIcI)]Z]2[r(l+zlcz)f(k-Zlcz) [r(l+lIcz)r(k-Ilcz)]z (5.3.10

n n n n
IIc; >O,k>llcl +lIc2 ,;=I,Z

Regression equations are obtained by using the transformation

y, X,
discussed earlier.

ex>

= fx] ft x. IX 2 = x2 ) dx,
o

'"
fYt f(y\ IX 2 =x2 ) dy,
o

which is increasing function of x2 •

Similarly

which is increasing function of Xl •

Further we note that



k
(5.3.13)

and similarly

(5.3.14)

The coefficient of variation of X j given Xi = x) is

a(x; IXi =x)

E(x; IX) =x)

a(y; IX) = xi)

E(y, IX) =x))

[r(l + 2/ c;)r(k + 1-2/c;) _[r(l + 1/ cJr(k + 1-1 / C')]2t2
r(k+1) r(k+1)

r(l +1/ cj )r(k +1-1 / c;)

r(k +1)

This is independent of X) so is the coefficient of skewness of the conditional

distributions.

It has been pointed out earlier that most of the applications of the Burr type XII

law is in reliability analysis. Hence we consider the role of bivariate model' in

explaining the reliability aspect of a two component system.

The scalar reversed hazard rate is

= !(xl'x2 )

F(x\,x2 )

k(k + 1)c
1
c

2
xtl-IX~!-I

[1 + X~I + x? t+2

(5.3.16)

Vector valued reversed hazard rate (Roy(2002)) defined in equation (2.3.13) is given

by
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(5.3.17)

and

= (5.3.18)

The marginal reverse hazard rate is

f, (Xi)

F; (X,)

Basu's (1971) failure rate is

=
k c-I< X,' 1 2i = ,

[1 + x;' t+1[1- [1 + x;' r k
]

(5.3.19)

= !(xl'x2 )

R(xpx2 )

=

k(k+I)c1C2(Xl +(1)"I-l(X2+(2)"2-1

[1 + (XI + (1)"1+ (X2 + (2)"2]2
(5.3.21)

This expression is negative when C;::;; lHence bivariate Burr XII has decreasing

failure rate when ci ::;; 1.



79

When c, > 1, small values of XI the above expression is positive and large values of Xi

it tends to zero.

Gradient hazard rate (Johnson and Kotz(1975» is

where

(5.3.22)

and

k C xc,-I
2 2 (5.3.23)

When c, s 1,

k c Icl (x) +/1) ,-
s ~ (xl'x2 ) (5.3.24)

[1 + (XI + II)'"' + (x2 + t2 )'"' ]

k c (x +t )'",-1
2 2 2 s ~ (xl'x2 ) (5.3.25)

[l+(xl +tl)'"' +(x2 +t2 )'"' ]

k c
l

(XI + t),·,-I
s ~ (xl'x2 ) (5.3.26)

[1 + (XI + t)'"' + (x2 + t)'"']

(5.3.27)

= k c1 (XI + t)'"'-)

[1 + (XI + I)'"' + (x 2 )'"' ]

[1 + (XI)'"' + (x2 + t)'"' ]

(5.3.28)

(5.3.29)

Hence bivariate Burr XII has decreasing failure rate when ci ::;; 1.
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When C, > 1, small values of X, the above expressions is positive and large values of

X, it tends to zero.

5.4 Characterizations of Bivariate Burr Type XII Distribution

In this section we consider some characterization theorems of bivariate Burr

type XII distribution.

Theorem 5.4'.1

Let (XI' X 2 ) be a random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure, with conditional

distribution of XI given X 2 =x2 is of the form equation (5.2.9). Then XI is Burr

type XII if and only ifX 2 is Burr type XII .

Proof

The conditional density of XI given X 2 = x2 is of the form equation (5.2.9).

Assume that XI follows univariate Burr type XII distribution. Then

Also

Hence

kclx;')-I

[1 + XI
C1r:'

(5.4.1)

(5.4.2)
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k [1 C ]-- +x'
k+1 1

(5.4.3)

Substituting u = X~2 in equation (5.4.3) gives

k C-[l+x I]
k + 1 1

eo

= fH(u)u~/c2-1du

o

Taking inverse Mellin transform ( Rhyzik P.1194 )

(5.4.4)

H(u)

Hence

[1+_U_t+2

1+ XCI
I

Thus X 2 is of Burr type XII form.

= kC2X~'2-1

[1 + x? t+ 1

To prove the converse, assume X 2 follows univariate Burr type XII.

Then

'"
fl(x1 IX2)};(X2 ) dx,
o
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Apart from the marginal distribution of X, and the conditional distribution of Xl

given X, = x, , i = 1,2 i * j from which the joint distribution can always found, the

other quantity that are relevance to the problem is marginal and conditional

distribution of the same component. In the corollary 5.4.1 we consider a

characterization on the marginal and conditional distribution of the same component

which incidentally also provides a characterization of univariate Burr type XII

distribution using bivariate Burr type XII.

Corollary 5.4.1

Let (XI' X 2 ) be a random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure, with conditional

distribution of Xl given X 2 = x2 is of the form equation (5.2.9). Then (XpX2 ) is

Burr type XII if and only if X 2 is Burr type XII .

Theorem 5.4.2

Let (Xl' X 2 ) be continuous random vector in the support of R; having

absolutely continuous distribution function with respect to lebesgue measure.

Then (XI' X 2 ) follows bivariate Burr type XII distribution if and only if conditional

densities are of the form equation (5.2.9).

Proof

Let (Xl ,X2 ) follows bivariate Burr type XII distribution.

Then I(x,lx) i=I,2 i*j is of the form (5.2.9)

Conversly
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f(xi IX 2)
C xc,-l [1 + XCl ]k+l

I I 2

f( X 2 1 XI) c x Cl-1[1 + XC)r
2 2 )

AI(xl )

A2(x2 )

where

cxc,-l
A,(x,) , I

i =1,2
[1 + x,cj t+1

'" eo

fA) (Xl )dxl = fA2 (x2 ) dx,
0 0

= 11k

(5.4.6)

(5.4.7)

Abraham and Thomas condition for unique determination of the joint density using

conditional density is satisfied. Hence proof.

Next we consider some characterization theorems usmg the relationship

between scalar hazard rate , scalar reversed hazard rate , gradient hazard rate and

gradient reversed hazard rate

Theorem 5.4.3

Let (Xl' X 2 ) be continuous random vector in the support of R; having

absolutely continuous distribution function with respect to lebesgue measure.

Then (Xl'X2 ) belongs to the bivariate Burr type XII distribution if and only

Proof

Let (XI' X 2 ) follows to the bivariate Burr type XII distribution.
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Solving R(xl'x2 ) from equations (2.3.19) , (2.3.23) and (3.2.3) we have

Then using equation (5.4.9) in equation (5.2.4) we have equation (5.4.8).

Conversely starting from (5.4.8) and using (2.3.19), (2.3.23) and (3.2.3) we get

Theorem 5.4.4

Let (XI' X 2 ) be continuous random vector in the support of R;

having absolutely continuous distribution function with respect to lebesgue measure.

Then (XI' X 2 ) belongs to the bivariate Burr type XII distribution if and only

Proof

Let (X" X 2 ) follows to the bivariate Burr type XII distribution.

Solving R(xl' x2 ) from equations (2.3.13), (2.3.27) and (3.2.3) we find

i=I,2 (5.4.11)

Then using equation (5.4.11) in equation (5.2.4) we have equation (5.4.10).

Conversely starting from (5.4.10) and using (2.3.13) , (2.3.29) and (3.2.3) we get
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Theorem 5.4.5

Let (XI' X 2) be continuous random vector in the support of R; having absolutely

continuous distribution function with respect to lebesgue measure. Then (Xl' X 2 )

belongs to the bivariate Burr type XII distribution if

(5.4.12)

Proof

Let (X" X 2 ) follows to the bivariate Burr type XII distribution.

Then by equation (5.3.20) ,( 5.3.22) and (5.3.23)we have equation (5.4.12).

5.5 Relation Between Burr Type XII and Other Distributions

Let (XI' X 2 ) follows to the bivariate Burr type XII distribution .Table 5.5.1

gives relation between this distribution and other distributions.

Table 5.5.1

Transformation Distribution function

~ = [1 + X/
c,r' [ -1/ k -1/ k 1]-k 0 I k O' 1 2YI + Y2 - < Y, < , > I = ,

(Cook and Johnson (1986))

U = -logX'·' [1 + e-u) +e-u2rk -oo<u, <00 ,k>O (Burr II), ,

V =_1 [1 + v;c1+ v;c2rk °< Vi < oo,k,c; > °i =1,2 (Burr III)
, X

/

x: [1 + G, W, + G2w2r' (Nayak (1987))
W=-'

G j

C, = 1 [1 +x1 + x2rk °< Xi < oo,cj > O,k > 0,; = 1,2 (Mardia(1960))
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5.6 Bivariate Burr IX Distribution (Bismi and Nair, 2005 f)

In this section we consider general properties, characterizations of bivariate

Burr IX distribution. The distribution arises by the choice of G(x1, x2 ) as

1- 2 _ 2 + 2
2+c)[(l+eX1)k -I] 2+c2[(1+e

X2/ -1] 2+c][(1+eX1)k -1]+c2[(l+e
X2)k -1]

222
---------,----+ ----------:------------:--
2+c)[(1+eX\)k -1] 2+c2[(1+e

X2)k -1] 2+cj[(l+e
XI/ -1]+c2[(1+e

X2)k -1]

in equation (2.2.11)

The distribution function is

(5.6.1)

F(x\,x2 )

_ 1- 2 _ 2 + 2 (5.6.2)
- 2+c1[(l+e

X\)k -1] 2+c2[(1+e
X2)k -1] 2+c][(l+eX1)k -1]+c2[(l+e

X2)k -1]

-00 < x; < 00, k > 0, c, > 0, i =1,2

4ec c eX\ eX2(1 +eXI )k-I (l + eX2 r:' .
f( x x) = I 2 -00 < X < 00 k > 0 c > 0 1=1 2 (5.6.3)

\' 2 [2+c1[(I+eXI/ -I]+c2[(1+e
x2/ _1]]3 " " , ,

and

R(x\,x,) = k 2 k -00<x;<00,k>0,c;>0,i=1,2 (5.6.4)
- 2+cJ(I+eX,

) -1]+c2[(l+e
X2

) -I]

The marginal distributions are specified by

= 1- 2 k -00<x,<00,k>0,ci>0,i=1,2 (5.6.5)
2 + c, [(1 + eX;) - 1]

1'; (x,)[1- 1';(xJ] s. (x,)

Zcke" (1 + e'' )k-I ._
-----=-----'----k.,...:------=-2 -00 < x < 00, k > 0, c; > 0,1-1,2 (5.6.6)
[2+c,[(1+e

X
, ) -1]] I
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i =1,2 (5.6.7)

which is univariate Burr type differential equation where

=
kex; (l + eX, l-I
[(I+e x' l - l ]

i =1,2 (5.6.8)

Thus the marginals are exactly univariate Burr type IX distribution.

Conditional density of X, given X j = x
J

is

i,j=I,2,i*j

In view of the closed form expression for the survival function of the

distribution, it is handy to compute the reliability characteristics such as failure rate,

reversed failure rate etc.

The Basu's (1971) failure rate is given by

= !(X1,X2)
R(xpx2 )

=

The vector valued failure rate (Johnson and Kotz (1975)) is given by

h,(x"x)
-8 log R(x;, x

J
)

ax,

The scalar reversed hazard rate is given by
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= !(X"X2)
F(x"x2 )

The vector valued reversed hazardrate (Johnson and Kotz (1975)) is given by

alogF(xj,x)

ax;

2kc
je

x, (l + eX; l-l 2kcjeX; (l + ex,/-I

[2+c j[(l+e

Xj
)k _1]]2 [2+c;[(l+eX;)k -1]+c)(l+eXj) k _1]]2 (5.6.12)

-
1- 2 _ 2 + 2

2+cJ(l+eX
, )k -1] 2+cj[(1+eXj l - l ] 2+cJ(l+ex;)k -1]+cj[(1+eXj l - l ]

i.] =1,2 i"* j

5.7 Characterizations of Burr Type IX Distribution (Bismi and Nair, 2005 t)

In this section we consider some characterizations of Burr type IX distribution.

The following theorem characterizes the Burr type IX distribution using conditional

densities.

Theorem 5.7.1

Let (XI' X 2 ) be a random vector in the support of R2 having absolutely continuous

distribution function with respect to lebesgue measure, with conditional distribution

of X\ given X 2 =x2 is of the form equation (5.6.9).Then XI is Burr type IX if and

only ifX 2 is Burr type IX.
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Proof

The conditional density of XI given X 2 =x2 is ofthe form equation (5.6.9).

Assume that XI follows univariate Burr type IX distribution. Then

Then using the relation

we have

Substituting u=c2[(l + eX,)k -1] in equation (5.7.1) gives

00

= fH(u)u~'-'du
o

Taking inverse Mellin transform ( Rhyzik P.1194 )

(5.7.3)

H(u)

Hence

Thus X 2 is of Burr type IX form.

=--------

To prove the converse, assume X 2 follows univariate Burr type IX.
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Then

cc

= Jf(x, Ixz).!z(x z) dx;

2k c "'J 2c,e
x,

(I +eXI )k-l[2 + CZ[(1 +eX2 t -I]fdxz
1-<0 [2+c

l[(1+e
x,)k -1]+cz[(1+e

X2)k _1]]3

Corollary 5.7.1

Let (XI' X z ) be a random vector in the support of R, having absolutely

continuous distribution function with respect to lebesgue measure, with conditional

distribution of XI given X z = Xz is of the form equation (5.6.9). Then (XI' X z) IS

Burr type IX if and only ifX z is Burr type IX.

Theorem 5.7.2

Let(XpXz) be random vector in the support of R, having absolutely

continuous distribution function with respect to lebesgue measure. Then (Xl' X z )

follows bivariate Burr type IX distribution if and only if conditional densities are of

the form equation (5.6.9).

Proof

Let (X" X z ) follows bivariate Burr type IX distribution.

Then f(x/lx) i=I,2 i e ] isoftheform(5.6.9)
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Conversly

!(x, Ix2 )

n». Ix,)

where

c,eXI (1 +eXI )k-'[2+ c2[1 +eX2 t -1]
c2e

X2 (1 +eX2 )k-l[2 + c,[1 +eXI t -1]

= 2k

(5.7.4)

(5.7.5)

Abraham and Thomas condition for unique determination of the joint density using

conditional density is satisfied. Hence proof.

Next we consider some characterization theorems using the relationship between

scalar hazard rate , scalar reversed hazard rate , gradient hazard rate and gradient

reversed hazard rate

Theorem 5.7.3

Let (X" X 2 ) be continuous random vector in the support of R2 having absolutely

continuous distribution function with respect to lebesgue measure. Then (X" X 2 )

belongs to the bivariate BUIT type IX distribution if and only
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Proof

Let (X" X 2 ) follows to the bivariate Burr type IX distribution.

Then using equation (5.4.9) in equation (5.6.4) we have equation (5.7.6).

Conversely starting from (5.7.6) and using (2.3.19) , (2.3.23) and (3.2.3) we get

-00 < Xi < oo,k,c; > 0 i =1,2

Theorem 5.7.4

Let (XI' X 2 ) be continuous random vector in the support of R2 having absolutely

continuous distribution function with respect to lebesgue measure. Then (Xl' X 2 )

belongs to the bivariate Burr type XII distribution if and only

= [2+cJO+ex't-I]+c2[(1+eX2)k-l]][ A,(x;)h,(x;) +A,(xl'x2)[ ~(XI) _ hz(x2) ]]i=I,2 (5.7.7)
A.;(xJ+h;(xi ) A, (XI ) +h; (XI) ~(X2) +~(X2)

Proof

Let (XI' X 2 ) follows to the bivariate Burr type IX distribution.

Then using equation (5.4.11) in equation (5.6.4) we have equation (5.7.7).

Conversely starting from (5.7.7) and using (2.3.13), (2.3.27) and (3.2.3) we get

-00 < Xi < oo,k,c; > 0 i =1,2

Theorem 5.7.5

Let (Xl' X 2 ) be continuous random vector in the support of R2 having absolutely

continuous distribution function with respect to lebesgue measure. Then (Xl' X 2 )

belongs to the bivariate Burr type IX distribution if
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(5.7.8)

Proof

Let (XI' X 2 ) follows to the bivariate Burr type IX distribution.

Then by equation (5.6.10)and (5.6.11)we have equation (5.7.8).

5.8 Bivariate Burr II Distribution ( Bismi and Nair, 2005 f)

In this section we consider general properties, characterizations of bivariate

Burr II distribution. The distribution arises by the choice of G(xl' x2 ) as

in equation (2.2.11)

The distribution function of bivariate Burr type II distribution is

Corresponding density function and survival function is

-00 < Xi < 00, k > 0,0 -::;. B -::;. k + 1 i =1,2

and

-00 < XI < 00, k > 0,0 -::;. B -::;. k +I i =1,2

The marginal distributions are specified by

F;(xJ = [1+e-x'r k -00<xj<00,k>O,i=I,2 (5.8.5)
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ke-~ .
------,-k-l -00 < x,. < 00, k > 0,,1=1,2 (5.8.6)
[I + e-Xj]

+

dF(x,) i=I,2
dx,

(5.8.7)

which is univariate Burr type differential equation where

g,(XJ
ke-Xj[I+ e-Xj]*-1
[[I + e-x; l* -I]

i=I,2 (5.8.8)

Hence marginals are exactly univariate Burr type II distribution.

Conditional density of X, given X
J

=xj is

kBe- x;
------(5.8.9)
[I + e-

x
, (1 +~e-x) )]*+1
(1+e J)

-00 < x, < 00, k > 0,0 ::::; B ::::; k + I i, j =1,2, i '* j

Now we are interested to find concepts useful in failure time analysis.

The Basu's(1971) failure rate is given by

= !(xpx2 )

R(xpx2 )

k(k + l)e- Xle-X2(1 + Be-XI)(1 + Be-X2) kBe- X'e- X2

[I + e-Xt +e-X2 + Be-Xle-X2]k+2 [I + e- x1 +e-X2 +Be- Xle-X2]k+l

1-[I+e-x1rk -[I+e-x2rk +[I+e-x1+e-X2+Be-Xle-X2rk
(5.8.10)

The vector valued failure rate (Johnson and Kots (1975)) is given by

-Blog R(x"x)

ax;
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ke-x, ke-Xi e-Xi (l +Be-XJ )

[1+e-Xi
] k+ l [1+e-x

, +e- xJ +Be- x'e- xJ t +2

The scalar reversed hazard rate is given by

i,j =1,2 (5.8.11)

!(xl'x2 )

F(XI,X2 )

= 2k(k + l)e- X1e-x2 (1 + Be-Xl )(1 + ()e-X2
)

[1 + e- x1 + e-X2 + ()e-X'e- X2 f

The vector valued reverse hazardrate (Johnson and Kotz (l975))is given by

Blog F(x"x)

Bx;

5.9 Characterizations of Burr Type II Distribution (Bismi and Nair,2005 f)

Theorem 5.9.1

Let (XI' X 2 ) be continuous random vector in the support of R2 having

absolutely continuous distribution function with respect to lebesgue measure. Then

(XI' X 2 ) belongs to the bivariate Burr type II distribution if and only if
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Proof

Let (XI' X 2 ) follows to the bivariate Burr type II distribution.

Then using equation (3.2.4) in equation (5.8.2) we have equation (5.9.1).

Conversely starting from (5.9.1) and using (2.3.19), (2.3.23), and (3.2.3) we get

Theorem 5.9.2

Let (X" X 2 ) be continuous random vector in the support of R2 having absolutely

continuous distribution function with respect to lebesgue measure. Then (Xl' X 2 )

belongs to the bivariate Burr type II distribution if and only

Proof

Let (XI' X 2 ) follows to the bivariate Burr type II distribution.

Then using equation (3.2.6) in equation (5.8.2) we have equation (5.9.2).

Conversely starting from (5.9.2) and using (2.3.13) , (2.3.27) and (3.2.3) we get
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CHAPTER VI

SOME MULTIVARIATE EXTENSIONS

6.1 Introduction

In connection with study of Burr systems in two dimensions, the main

bivariate forms encountered were,

It is of natural interest to explore the extensions of the bivariate concepts so far

discussed and of the corresponding distributions in the general multivariate cases.

Though most of these multivariate generalizations can be obtained as straight forward

extensions, in some cases the conditions attached to them become more restrictive.

In this chapter we briefly sketch the multivariate fonns of the defining equations and

the definitions, since the ideas were already conveyed in the bivariate case The

explanations in the more general cases are only touched up in the following

discussions.
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6.2 Multivariate Burr System (Bismi and Nair, 2005 c)

Let £ =(XI'X2 , ••• ,XJ be continuous random vector in the support of

R;admitting absolutely continuous distribution function F(xl' x2 ' ••• , Xn ), probability

The different forms for the Multivariate Burr System are ,

(b) aF(xpx2 , .. ·,xn )

ax)

aF(xpx2,···,xJ

fu 2

aF(xpx2 , .. ·,xn )

fun

case we are considering a set of n partial differential equations

(d) aF(xpx2 , .. ·,xn )

ax)

aF(xl,X2 , · .. ,XJ
fu 2

aF(xPx2,···,xn )

fun

(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)



99

In view of the analytical tractability we are concentrate on the set of n partial

differential equations in (b) to generate multivariate Burr system.

-00 ~ G, < b, ~ 00, i =1,2, ..., n admitting absolutely continuous distribution function

F(x, ,x2 , ••• ,xn ) and satisfying the n partial differential equations in (b)

To solve the first equation in (b) rewrite it as

(6.2.9)

Integrating from G1 to XI '

(6.2.10)

where

XI

= Igl(tI'X2 , ... ,xJdtl
°1

(6.2.11)

To solve the i th equation in (b) rewrite it as

(6.2. t2)

Integrating from G, to X,

(6.2.13)

where

X,

Is, (XI' X2 ,oo.,twoo, xn ) dt,
0,

(6.2.14)

Proceed in a similar way for all equations in (b) and comparing expressions for
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=

and hence

Also

(6.2.15)

ogt(XI ,X2 , .•. ,Xn )

Ox20x3 ...Oxn

og2(Xl'X2"",Xn) =

OX10x3 .. ·Oxn

= og,(X1,X2,· ...x,)

Oxl 0x2•· .Ox;_1 Ox, +I ...OXn

ogn(X1,X2,,,,,Xn)
Ox10x20x3...Oxn- 1

The boundary conditions to be satisfied by

(6.2.16)

lim G(xl' x2 ' ... , xn ) =00 and
"'1-->'"
x! -->h!

lim G(xl'x2 , ... ,xn ) =-00 for
xi~ai

i =1,2,oo.,n.

Thus the functions g, (xl' X2 ,. 00' Xn ), i =1,2, ...,n have to be nonnegative.

By this approach every absolutely continuous multivariate distributions belongs' to

this family as it is possible to choose

= (6.2.17)

Table 6.2.1 gives multivariate extension of the univariate types discussed in

Burr (1942).
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Table 6.2.1

Multivariate Burr Distributions

Range

Type

I

II

III

IV

V

VI

VII

VIII

IX

x

XI

XII

n[I Xi-Ilk - (n -1)r k

i=1

n

(1 + Ie-Xi r k

i=1

n

(1 + Ix/-Ci
)-k

i=1

n

(1 + Ic,e- tan xi rk

/=1

n

(1 + Ie-ksinhx, )-k

/=1

n 2[I -(n-I)rk

/=1 1+ tanh Xi

[~[I 2 -I _I

~ 2+c;[(I+eX,)k - l ] ] -(n-I)]

n 1[I x2 -(n-l)]-k
i=1 [l-e-']

n I n(TI Xi --sin 21CITXit
i=1 21C .=1

n n

1- I [1 + X~i r k + [1 +I X/Ci r'
,=1 i=1

i =1,2, ..n

0< s, < I

-00 < Xi < 00

1C 1C
--<x <­
2/2

-00 < Xi < 00

-00 < Xi < 00

-00 < Xi < 00

-00 <x, <00

0< Xi < 00

0< Xi < 1

where all c, and k are positive real numbers.
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A direct extension of the scalar reversed hazard rate and vector reversed

hazard rate in the multivariate case has the following definition.

Definition 6.2.1

Vector valued reverse hazard rate

where

= i =1,2, ...,n

Definition 6.2.2

The scalar reversed hazard rate can be defined as

= !(XI,X2,..·,Xn )

Ft x,,X2 , ... , Xn )
(6.2.20)

Using the above definitions all characterizations in section 3.2 can be extended

directly to the multivariate case.
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