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Chapter 1

PRELIMINARI ES

1.1 Introduction

The data measuring the time to some event is referred to as lifetime. survival

time or failure time data. The branch of Statistics that deals with modelling and

analysis of lifetime data is called survival analysis. Survival analysis has become an

important topic to statisticians and practitioners in areas such as biomedical.

engineering and social sciences. Applications of lifetime distribution methodology

range from investigations of the durability of manufactured items to studies of

human diseases and their treatment. Some methods of dealing with lifetime data are

quite old. but starting about 1970 the field expanded rapidly with respect to

methodology. theory and fields of application.

The definition of lifetime includes a time scale and time origin. as well as a

specification of the event that determines the lifetime. In some situations the events

are actual deaths of individuals and lifetime is the life length measured from some

particular starting point. However. in certain occasions, the lifetime denotes the event

of interest. which may not be the actual death. The following examples illustrate the

various types oflifetime data that arise in practical situations.

Example 1: In the investigation of carcinogenic substances. laboratory animals are

subjected to doses of the substance and then observed to see if they develop tumours.

The variable of interest is the time to appearance of a tumour. measured from when

the dose is administered.

Example 2: In medical studies dealing with potentially fatal diseases. the lifetime of

patients is measured from the date of diagnosis or some other starting point. In such

cases. we compare treatments for a disease in terms of the lifetime distributions for

patients receiving different treatments.



Example 3: Manufactured items with mechanical or electronic components are often

subjected to life tests in order to obtain information on durability. This involves

putting items in operation, often in a laboratory setting and observing them until they

fail. It is common here to refer to the lifetimes as ‘failure times, since when an item

ceases operating satisfactorily it is said to have ‘failed.‘

1.2 Basic Concepts in Univariate Set up

Let T be a nonnegative random variable representing the lifetime of

individuals in some population having absolute continuous distribution function

F (I) with respect to a Lebesgue measure.

The survivor function of T is given by

S(r)=P(T>t)=1—F(t). (1.1)
S(t) measures the probability of an individual surviving to time I.

In some contexts involving study on lifetime of systems or manufactured

items. S(t) is referred to as the reliability function. S(!) is a non-increasing

continuous function with S(O)= 1 and S(oo) = li_n3S(r)= 0. Occasionally, in

reliability analysis, we may wish to allow S(oc)>0 to consider settings where some

individuals never fail.

An important basic concept associated with life distributions is the hazard

function h(t), defined as

, P(tST<t+At|TZt)h(r)= hm T (1.2)A/—>0 A;

The hazard function specifies the instantaneous rate of death or failure at

time 1. given that the individual survives up to t. Thus h(t)At is the approximate

probability of death of an individual in [t,t+At), given that the individual has

survived up to t. The hazard function is sometimes referred to as hazard rate and



force of mortality. When the probability density function of T. f(I). exists. we can

write (1.2) ash(I)=  (1.3)
5(t)

From (1.1) and (1.3). we have

él

dh(t)= —ElogS(t) (1.4)
which provides

S(t) = exp{—'[h(x)dxJ. (1.5)
From (1.5) it follows that h(t)determines the distribution uniquely.

dS(r)Since f(t) = — , we get.

_/(1): h(()exp£—'jh(x)dxj. (1.6)o

The functions f(t). F(t), S(t)and h(t) give mathematically equivalent

specifications of the distribution of T

It is also useful to define the cumulative hazard function H (I) as

H(r)= lJ‘h(x)dx (1.7)
0

Then H (I) is related to the survivor function by

s(:) = exp{~H(I)} (1.8)
In survival studies, many subjects fail to continue to be in the study till the

event of interest occurs. This leads to incomplete data due to censored observations.

The analysis of lifetime data under censoring is a major issue in survival studies.

1.3 Censoring

Censoring is inevitable in survival and reliability studies because the

experimenter is unable to obtain complete information on lifetime of individuals. For

D.)



example, patients in a clinical trial may withdraw from the study. or the study may

have to be terminated at a pre-fixed time point. In industrial experiments. units may

break accidentally. In many situations. the removal of units prior to failure is pre­

planned in order to provide savings in terms of time and cost associated with testing.

Censoring arises in lifetime data in a variety of ways. Termination of

follow-up before an individual fails causes their lifetime to be right censored. In

some settings it may be possible only to determine whether an individual is unfailed

or failed at a succession of time points a, <a2 <... < a". In this case the lifetime is

known only to lie in some interval [a/_,,a/) and the phenomenon is known as

interval censoring. Left censoring occurs if the individual is observed to fail prior to

some time a I. but the lifetime is otherwise unknown. In this case. we know only that

the lifetime T belongs to the interval [O,aI) whereas for right censoring, we know

only that T belongs to the interval(a/  .

In both engineering and medical applications, right censoring is the most

common form of censoring with lifetime data. Right censoring arises in certain

situations because some individuals are still surviving at the time that the study is

terminated. In some instances, individuals may move away from the study area for

reasons unconnected with lifetime, so that the contact is lost. In some other instances.

individuals may be withdrawn from the study because of a worsening or improving

prognosis. Type 1 censoring, Type 2 censoring. progressive Type 2 censoring and

independent random censoring are different forms of right censoring.

1.3.1 Type 1 Censoring

Type 1 censoring occurs when each individual has a fixed potential

censoring time Z, > 0 such that T, is observed if T, S Z,. otherwise we only know

that 7; > Z’. It often arises when a study is conducted over a specified time period.



1.3.2 Type 2 Censoring

The term Type 2 censoring refers to the situation where n individuals start

on study at the same time and the study terminates once r lifetimes have been

in a random sample ofobserved. Here only the r smallest lifetime I <t < .£t((I) - (2) — " r)

n are observed where r is a specified integer between 1 and n.

1.3.3 Progressive Type 2 Censoring

It is a generalization of Type 2 censoring. In this case, the first r, failures in

a life test of n items are observed and then n, of the remaining n-r, unfailed items are

removed from the experiment. leaving n- r, -n, still present. When further r, items

have failed, n: of the still unfailed items are removed and so on. The experiment

tenninates after some prearranged series of repetitions of this procedure.

Type 1 and Type 2 censorings are more prevalent in the reliability studies of

engineering system. They are built into the design of the experiment to reduce the

time taken for completing the study. In survival studies regarding biomedical

subjects, censoring is more a part of the experimental situation than a matter of

deliberate design. Such undesigned censoring occurs when some information about

individual lifetime is available, but not exact lifetime. For an example of such

undesigned censoring, consider the study on leukaemia patients who are followed

from the start of the remission until they go out of remission. If for a given patient

the study ends while the patient is still in remission, then the patient’s lifetime is

considered as censored. For this person. it is only known that the lifetime is not less

than the period for which the person was observed. It is called the right random

censoring which is the most frequent type of random censoring.

1.3.4 Independent Random Censoring

A very simple random censoring process that is often realistic is one in

which each individual is assumed to have a lifetime T and a censoring time Z where

T and Z are independent continuous random variables with survivor functions 8(1)



and G(l) respectively. This means that at any time I. the survival experience in the

future is not statistically altered by censoring and survival experience in the past. If

G(t) does not depend on any of the parameters of S(t), then we call it non­

informative censoring process. Then. the observed variable will be (Y.6) where

Y=min(T.Z) and 5 =1 if T S Zand 0 if T>Z 5 is called the censoring indicator.

The data on n individuals consists of the pairs (Y,,c3, ); i = 1.2...n. A comprehensive

review on different types of censoring is available in Lawless (2003).

Another form of incomplete data that arises in survival or reliability studies

is truncation, which arises due to the limited time span of the study or dropouts of the

subjects for various reasons.

1.4 Truncation

In many life testing situations, the individuals cannot be randomly selected

and followed prospectively from the time origin I = 0, but some value u > 0. If the

selection of ith individual at time u, requires that T 2 u, and the observed data for

individual 1' consists of (u,,t,,6,) where t, 2 u, is a lifetime or censoring time, we say

that the lifetime T is left truncated at u, In many occasions. at least some of theI

data arises chronologically before the time the individuals are selected for the study.

Then the condition for being included in the data set will therefore be T S v‘ . This is

referred to as right truncation of the lifetime T. Truncated samples of this type arise

in reliability and epidemiology (see Kalbfleisch and Lawless. 1988). For various kind

of truncation, one could refer to Lawless (2003).

1.5 Estimation

One of the basic objectives in survival analysis is to estimate the survivor

function S(t). Two common approaches used in such contexts are parametric and

non-parametric approaches. In parametric method, we assume that random variable T

follows some distribution f(r:6) where the functional form of f(l;<9) is known but

the parameter 6 is unknown. Continuous distributions such as exponential. Weibull,



lognormal, log logistic, Pareto and inverse Gaussian are commonly used for

modelling lifetime data. For estimation of parameters, one can employ different

estimation procedures such as maximum likelihood. method of moments, Bayesian

techniques etc. For more details on parametric lifetime models and their estimation

one may refer to Martz and Waller (1982), Sinha (1986) and Lawless (2003).

In many practical situations, the functional form of f(r) is seldom known.

In such situations the estimation of f(t) or S(t) is done using nonparametric

methods. If there are no censored observations in a sample of size n, S (I) can be

estimated by the empirical survivor function, defined as

A Number of observations 2 t(r) = n

When there are censored observations. some modification is necessary.

Accordingly. Kaplan and Meier (1958) defined a product-limit estimator for the

survivor function S(t).

1.5.1 Kaplan-Meier Estimator (Product-Limit Estimator)

Let(t,',5,); i = 1, 2...n represent a random sample of life times which may

contain censored observations. Suppose that there are k (ksn) distinct times

I, <t, <...<tk at which death occur and let d_l= ZI(t,' =l’,c3, :1), where

denote the usual indicator function. represent the number of deaths at t/ Then the

product limit estimator of S(t) is defined as

where n/=ZI(t,' 21,) is the number of individuals at risk at 1,, which is the
1:]

number of individuals alive and uncensored just prior to I, The product-limit

estimator does not change at censoring time points. The product limit estimator can



be derived as a nonparametric maximum likelihood estimator. When there are no

censored observations, it reduces to the empirical survivor function.

Another approach is to develop non-parametric estimator of S (I) using the

estimator of cumulative hazard function. Accordingly, a nonparametric estimator of

H (t) was proposed by Nelson (1969) and then independently by Aalen in his doctoral

thesis in 1972.

1.5.2 Nelson-Aalen Estimator

The estimator of the cumulative hazard function corresponding to (1.7) is

given by the Reimann-Steiltjes integral as

H(t)= _(dH(u).
0

Thus the estimator of H (I) is given by

A dH(t)=Z—’ (1.9)
_/J15: n)

This is called the empirical cumulative hazard function but is more

commonly known as the Nelson-Aalen estimator.

Thus, using (1.8), S(t)can be estimated by

s(z)= exp{—F1(z)) (1.10)
Both the Kaplan-Meier and Nelson-Aalen estimators possess desirable large

sample properties like consistency and asymptotic normality. It is important to note

that both I? (t) and 3' (t) are non-parametric maximum likelihood estimators. For

more properties of (1 .9) and (1.10). one may refer to Lawless (2003).



1.6 Competing Risk Models

In medical studies or in the analysis of industrial data. the failure of

individuals or items may be attributable to more than one cause or factor. These

causes (factors) in some sense compete for the failure of the experimental unit. The

term competing risk refers to such situations in which a organism (or system) is

exposed to two or more cause of death (or failure) but its eventual death (or failure)

can be attributed to exactly one of the causes of failure and the model for lifetime in

the presence of such competing risks is known as competing risk models. The

competing risk models arises in public health. demography. actuarial science.

industrial reliability applications and experiments in medical therapeutics. The theory

of competing risks dates back to 1760 when Daniel Bernoulli studied the effect of

small pox eradication on the mortality structure of the overall population. The

following examples provide some situations where the competing risk data arises.

Example 1: Consider the example of Hoel (1972), based on a laboratory experiment

in which mice were given a dose of radiation at six weeks of age. The causes of

death were recorded as Thymic Lymphoma, Reticulum Cell Sarcoma, or other.

Another example of competing risk in survival analysis is from a study of breast

cancer patients where the cause of death was recorded as ‘cancer’ or ‘other’ (Boag.

1949).

Example 2: An example of competing risk problem in industry is the data from

Hinds (1996). This data concern failure of engines fitted to heavy vehicles. Five

causes of failure were identified- the cooling system, dirt contamination, mechanical

failure, ignition fault and fuel fault. For each unit. the miles traveled to failure and

the cause of failure are reported. There are numerous examples in industrial

experiments. where items may fail due to one of several causes.

Example 3: In economics. Flinn and Heckman (1983) apply a competing risks model

for modelling the unemployment time, where T is the waiting time till the end of

unemployment and C indexes the reason for leaving unemployment.



In the traditional analysis of these data sets. the researcher is primarily

interested in the distribution of lifetimes under one specific cause of failure and all

other causes are combined and treated as censored data on the basis that the causes

are independent of each other. Associated with the jth cause of failure there is a non­

negative random variable T , which represents the observed lifetime if all causes

except the jth were inoperative, namely the latent or conceptual lifetime (or failure

time) of an organism (or a system) whose death (failure) is attributed to only the jth

cause. If primary interest is focused on one particular cause of failure, failure from

other competing risks can be viewed as a form of random right censoring. In the

simultaneous presence of all k causes only the smallest of such non-negative random

variables T = min(T,) is in fact observable, together with the actual cause of failure.

In other words, each lifetime is potentially right censored by every other lifetimes. If

F (t)= P(T, St) denote the distribution function corresponding to the randomI

variable T, , then the survivor function of T is of the form

Its(z)= [](1—£;o)) (Ill)
/=|

One can also adopt a finite mixture model for the analysis of these

competing risk data (see Crowder (2001)). If, for each observed failure, the cause of

failure can be identified, then the data may be partitioned into separate sets for each

failure mode and a lifetime distribution fitted to each mode separately. Then,

f([) 2 p|fI(t)'l'P2f2([)+---+p/¢fI<(t)

where f(t) and _f/ (I) are the p.d.f"s corresponding to Tand T, respectively with p}

being the probability that the cause of failure is j ( j=l.2...k) For the analysis of

lifetime data using finite mixture model, one could also refer to McLachlan and Peel

(2000)

By assuming that the causes of failure are independent and that the life

distributions belong to some known parametric family, the situation has been dealt

with by Sampford (1952), David (1957), Cox (1959), Berkson and Elveback (1960),

10



Boardman and Kendell (1970), Herman and Patel (1971). Moeschberger and

David (1971). Hoel (1972) and Moeschberger (1974). However. such parametric

assumptions, especially in the context of medical studies, may be unrealistic. Even

when a certain parametric form is assumed, there is no guarantee that the joint

survivor function of (T, ,T3...Tk ) is identifiable. Consequently, although the concept of

latent lifetime variables provides a theoretical basis for discussion, other methods

will be more suitable for the analysis of competing risks data.

In recent years, models have been developed to assess the lifetimes of a

specific risk in the presence of other competing risk factors. The data for these

competing risk models consist of the lifetime T and an indicator variable C denoting

the specific cause of failure of the individual or item. The causes of failure may be

assumed to be dependent or independent. In most situations, in the analysis of

competing risk data, we assume that the causes of failure are independent. Even though

the assumption of dependence may be more realistic, there is some concern about the

identifiability of the underlying model. For analysis of lifetime data with dependent

competing risks, one can refer to Aras and Deshpande (1992). See David and

Moeschberger (1978) and Crowder (2001) for an exhaustive treatment of different

competing risk models.

There are other approaches for the analysis of competing risk data. For an

approach to competing risks theory based on the Markov models and counting

processes, one could refer to Aalen (1976), Fleming and Harrington (1991), and

Anderson et. al (1993).

Two frameworks are often used to deal with standard competing risk

settings in which a lifetime variable T>0 and a cause of failure C e {1,2...k} can be

observed for an individual:

(1') Cause-specific hazard (/1,  formulations, where

, PT<l+At.C=j|TZt __/1,(t)=Lll1fl { At }; }—l.2...k (1.12)
and

11



(ii) Cause-specific sub-distribution function (F,  formulations. where

F(1) = P(Tst.C‘=j); _/'=1,2...k. (1.13)
1.6.1 The Cause-Specific Hazard Function

We suppose that an individual is subject to k causes of death and that for

each individual we observe the time to death and the cause of death C. This process

is described in terms of the cause-specific hazard functions

A mzlim P(tST<I+At,C=j|T2t).’ A/—->0 A,
The function /1, (I) was termed ‘decremental forces’ by the English actuary

Makeham (1874) and ‘cause-specific hazard function’ by Prentice et.al. (1978). The

function A, (I) is identical to the ‘force of transition’ function in Aalen’s Markov

formulation. It is the ‘forces of mortality’ that an actuary would estimate from a

multiple decrement table. In words, /1,  is the instantaneous rate for failure of type

j at time t given the individual has survived time t and in the presence of all other

failure types.

We assume that the k failure types are mutually exclusive and exhaustive so

that an individual can have at most one realized lifetime. Assuming the existence of

the quantities /1,  , the overall failure rate or hazard function 11(1) is given by

h(t) = Zk;/1, (1.14)
/=l

Prentice et.al. (1978) emphasize that only probabilities expressible as

functions of {/1 I  may be estimated from the observable data (T, C).

Equations (1.5) and (1.14) show that the survivor function S(t) can be

written in terms of cause specific hazard functions.

Let S, (I) denote cause-specific survivor function. Then,

12



Substituting (1.14) in (1.5), we get

S(t) = expL—6[ZA; /1.,

k= ]'[S,(z) (1.15)
1.6.2 Cause-Specific Sub-distribution Function (Cumulative Incidence
Function)

The distribution function of the observable random pair (T,C) is specified by

the cause-specific sub-distribution function

F(l)=P(TSf,C=j); t>0, j=1,2...kI

Each F is a sub-distribution function in the sense that F, (+oo)s1 The;

importance of cause-specific sub-distribution functions is well recognized in

demography. epidemiology and survival analysis. Frequently. they are the primary

efficacy measures. Comparison of cause-specific sub-distribution function for

different types of failure is useful in selecting appropriate treatment for a patient

(Gray. 1988). The cause-specific sub-distribution functions are estimable from

the data on (T,C) without making any untestable assumptions and avoid the

identifiability problem inherent in competing risks (Prentice et. al.. 1978). Cause­

specific hazard functions are. of course, estimable from the (T,C) data but. as

pointed out by Pepe and Mori (1993), they do not directly indicate the magnitude of

the proportion of patients suffering each of the cause-specific endpoints. We refer to

Lin (1997), Cheng et. al. (1998). Gooley et. al. (1999). Cronin and Feuer (2000) and

Farley et. al. (2001) for examples involving use of cause-specific sub-distribution

functions in survival analysis.

Either set of functions fully specifies the joint distribution of T and C, but

they lead to different types of regression models when covariates are present.

Hougaard (2000), Crowder (2001). Kalbfleisch and Prentice (2002) and Lawless

(2003) provide reviews of this area.

13



The problem of identifiability in modelling the competing risk data in terms

of the latent lifetimes is well known. Tsiatis (1975) showed that given any joint

survivor function with arbitrary dependence between component variates. there

exists a different joint survivor function in which the variates are independent and

which reproduces the sub- distribution function F,  Thus, one cannot know. from

observations on (T, C) alone, which of the two models is correct since they will both

fit the data equally well. The problem of identifiability does not arise if the modelling

of competing risk data is done in terms of the sub-distribution functions of (T.C) or

cause-specific hazard rates or related quantities.

Censoring can occur both in engineering life testing and in medical follow

up studies under competing risk set up as well. Many researchers have studied the

problem of nonparametric estimation of survivor function of competing risk models

over the past few decades. Although existing methods can adequately accommodate

the presence of censored life times, the issues of multiple types of failure are not so

easily handled. The latent lifetime approach or finite mixture models can also be

used to deal with competing causes of failure under censoring. In the competing risks

framework the identifiability problems arose because we could only observe the

random vector (T.C), the occurrence ofjth failure type effectively censoring the

remaining latent failure times due to other causes. To overcome the identifiability

problem, we suppose that each study subject has an underlying lifetime T that

may be subject to censoring and along with the lifetime or censoring time T, the

cause of failure (death) of each experimental unit is also observed. Then n

study subjects give rise to data (t,,C,.6, =1) or (5.5, = O); 1'=l,2...n. where t, is the

observed failure time, (2 is the censoring indicator and C, is the cause of failure for

the ith individual. In such situations the nonparametric estimation technique of

Kaplan and Meier (1958) for survivor function is readily generalized to include

competing risks. But it is more common to use the Nelson-Aalen estimator of the

cumulative hazard function (see Lawless, 2003). Let 5,, = 1(C, = j) and n, denote

the number of individuals alive and uncensored just prior to time t,: i = l.2...n.

14



j = 1,2. . .k. Then the estimator of the cumulative hazard function corresponding to the

cause of failurej can be obtained asA 5
H,(1)= Z  j=1.2...k,1,3:

which gives the estimator of the survivor function using (1.10) and (1.14).

1.7 Some Specific Situations in Competing Risk Set up

In this section, we discuss certain phenomena like masking, missing

censoring time and random left truncation that are common to lifetime data in

competing risk set up.

1.7.1 Masking

Consider a computing module consisting of k components (chips) mounted

on a ceramic substrate. A failure in any component causes the module to fail. If a

module fails, failure analysis procedures restrict the cause of module failure to some

subset of the components. If this subset consists of more than one component. it is

called a masked group. Such masking can occur as a consequence of the lack of

proper diagnostic equipment and cost and time constraints. The destructive nature of

certain component failures makes exact diagnosis difficult resulting in masked

causes of failure. In clinical trials and epidemiological studies it is not uncommon to

have missing information on cause of death. Lapidus et.al. (1994) in a study of

motorcycle fatalities found that 40% of death certificates are missing information.

Anderson and Ryan (1998) discuss a study on colon cancer in which the cause of

death is masked for 25 % of the deaths. This type of problem can also occur in

animal bioanalysis (see Kodell and Chen, 1987). Examples of masked data in

reliability and biomedical contexts can be found in Dinse (1986). Reiser et.al. (1995)

and Flehinger et.al. (1996).

The estimation of survivor function under masking was first considered by

Dinse (1982) and subsequently by Miyakawa (1984), Racine-Poon and Hoel (1984).

Lo (1991). Mukherjee and Wang (1993) and Goetghebuer and Ryan (l990.1995).

Ideally. in the absence of any such missingness of failure cause (cause of failure is
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exactly known). we have the classical competing risk problem with observation on

possibly censored lifetime T and the failure type C which would be exactly one of.

say k, possible types on each individual.

1.7.2 Missing Censoring Time

There are several situations in the analysis of lifetime data in which

censoring times for unfailed units are missing. For example. suppose that T is the

lifetime for product in a population of manufactured units. In some situations, T is

measured in calendar time and for many types of products, the producers do not

know the exact date of sale for most units. Therefore the censoring time for most

unfailed items is unknown. For such data, Suzuki (1985), Kalbfleisch and Lawless

(1988) and Hu and Lawless (1996) estimated the distribution function of the lifetime

using supplementary follow up samples of unfailed units. But there are situations in

which the censoring time distribution is either known or can be estimated. Non­

parametric method can be employed to estimate the distribution function in such

situations (see Hu et al, 1998).

1.7.3 Random Left Truncation

Random truncation arises in lifetime data due to the limited time span of the

study or dropouts of the subjects for various reasons. Random truncation models are

conveniently used to model several aspects of AIDS data, such as the incubation time

which is defined as the time from infection to the onset of the disease or the time

from the onset of AIDS until death. or on insurance applications, the reporting lags

which is the time between an accident happens and it is reported to the insurance

company. In random left truncation. one observes the independent and identically

distributed replicates (T 2 L, ); i = 1,2...n of(T.L) where T is the lifetime variable

and L is another random variable called the truncating variable which is independent

of T. One of the earliest examples of the random left truncation model was given by

Lynden-Bell (1971) with an application in astronomy, where T refers to the

brightness of celestial objects and it is only partially observable due to a preventing

variable L. In survival analysis. we usually come across data subject to random left

truncation along with right censoring. One may refer to Andersen et.el. (1993) for
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examples of random left truncated data with right censoring in the context of survival

analysis.

These features create complexity in the study of lifetime data and much of

the recent development of the subject has been devoted to develop new techniques

for the analysis of such data.

1.8 Multivariate Set up

Rarely are medical investigators interested in a single outcome. A glance

through medical literature reveals that it is the rule rather than the exception to have

multiple response variables. Consequently, there has been an explosion in the

statistical methodology to handle so-called multivariate lifetime data. Multivariate

lifetime data arise when each study subject may experience several events or when

there exists some grouping of subjects, which induces dependence among lifetimes

of the same group. The sequence of tumour recurrence, the occurrence of blindness

in the left and right eyes and the onset of a genetic disease among family members

are some examples of such situations in biomedical research. Another example of

this situation is provided by a genetic study examining the age at death of parent and

children. Wei, et.al. (1989) considered estimation of lifetime distribution of tumour

recurrence among patients with bladder cancer. Later, Ichida et.al. (1993) and Klein

and Moeschberger (1997) considered estimation of the joint distribution of time to

wound excision and time to wound infection in a population of burn victims.

In many scientific investigations, each study subject can potentially

experience more than one event. Medical examples of such serial events include the

recurrence of a given illness, such as episodes and the progression of disease through

successive stages such as HIV infection —>AIDS —> death. In most cases, we are

interested in the duration between two successive states or events, called gap times,

which are measured from the same time origin. Lin et.al. (1999) provide simple

nonparametric approach for estimating thejoint and marginal distributions of the gap

times. For a survey on nonparametric estimation of survivor function of gap times on

censored observations, one can refer to Anderson et.al. (1993). A semi-parametric
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study unifying the recurrent event data with competing risks is given in DeMasi

(2000). Bandeen-Roche and Liang (2002) and Kalbfleisch and Prentice (2002).

Most of the early works in competing risk literature assumed independence

among causes of failure. However. one often has dependent causes of failure in many

physical situations where the lifetime of an individual failing from one cause may be

correlated with the lifetime of the same individual failing from a different cause.

Thus. in order to allow for such dependencies, the joint distribution of the life times

associated with an individual must be multivariate in nature. Towards this end, a

general framework based on absolutely continuous multivariate distributions useful

in lifetime studies has been provided by Moeschberger and David ( 1971).

It is natural to seek a nonparametric estimator of the multivariate survivor

function for the analysis of lifetime data since parametric assumptions for lifetime

data, especially in medical studies, is not realistic. Similar to the role played by the

Kaplan-Meier estimator for univariate lifetime data. such an estimator could form the

basis for the display of lifetime data for comparison among samples. Unfortunately.

the multivariate survivor function estimation problem is yet to be completely solved.

There are methods for estimation of multivariate survivor functions under the

assumption of independent censoring. The nonparametric maximum likelihood and

self-consistency principle do not lead to a consistent estimator of the survivor

function for continuous right censored multivariate lifetime data (see Efron (1967)

and Turnbull (1976)). There are many possible strongly consistent nonparametric

estimators for the multivariate survivor function. but an estimator that is

computationally convenient with attractive moderate and large sample efficiency

properties have yet to be developed. Different methods of estimation of multivariate

survivor function available in literature are discussed in Section 1.9.2.

For simplicity, we confine our discussion to the analysis of bivariate data,

but they can directly be extended to the multivariate set up.
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1.9 Bivariate Set up

In many practical situations one may have paired lifetime data. For example.

times to death or times to initial contraction of disease may be of interest for

littermate pairs of rats or for twin studies in humans. The time to deterioration level

or the time to reaction of a treatment may be of interest in pairs of lungs, kidneys,

eyes or ears of humans. In reliability. one may be interested in the distribution of the

life lengths of a particular pair of components in a system. Mathematically. let T =

be a non-negative random vector admitting an absolute continuous

distribution function F (t,,t2) with respect to a Lebesgue measure.

Then the survivor function of T, denoted by S (1, ,t2 ) , is given by

S(t,,t,) =P(T, >r,,T, >t2)

which is related to F(r,,r,) as S(t,,t3) = 1—F(1,,oc)—F(oo,t3)+F(t,,r3) If the

density function of T. f(t,.r2  exists, we have

= a2S(z,,t,)
/r<r..r.> ,8,

1.9.1 Bivariate Hazard Function

In the univariate case, it is well known that the hazard function determines

the survivor function uniquely. In the bivariate set up however, one can define the

hazard function in more than one way. The first definition of bivariate hazard

function was given by Basu (1971).

Basu (1971) defined the bivariate hazard function as a scalar quantity given by

f(’I~’:)
S(t.~I2)

r(t,,t2) =

It is important to note that r(t,,r2), in general, does not determine the bivariate

distribution uniquely.
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A second approach to defining bivariate hazard function is provided by

Johnson and Kotz (1975). Johnson and Kotz defined bivariate hazard function as a

vector given by

h(t,,t3) = (l11(t,,!2),h._,(tl,t2)) (1.16)

where h I (I, J2 ) = —¥ log :1“ J2)
I

, i= 1,2.

h, (t,,t2) is the instantaneous rate of a failure of T, at time 1‘, given that T,

was alive at the time T,=t, and that  survived beyond time T2 =t3 The meaning

of f5 (t,,t2) is similar.

When the components h,(t,,t2) exist and are continuous in an open set

containing R§= {(t,,t2)]t,. >O,i=1,2} by choosing a path orthogonal to the axis

connecting (0.0) and (IP13) in R I, we have the representation from Galambos and

Kotz (1978) as an extension of the one-dimensional relationship (1.5). Accordingly.

S(I,,t3) can be determined from (1.16) as

1, 12
s(z,,:2) = exp —jh,(u,o)du— jh2(z,,u)du (1.17)O ()

or alternatively

1, 13
S(t,,t2) = exp —Ih1(u.t2)d1z—Ih2(u,0)du (1.18)O 0

Thus. the vector h(t,,t2) uniquely determines the distribution of T through

(1.17) and(l.]8).

Dabrowska (1988) provides a representation of bivariate survivor function

in terms of cumulative hazard function which is a vector of three components that

correspond to double and single failures. The cumulative hazard vector is defined as

/\(’1”2) = (A1o(’1>’2)vAo1(’1s’2)vA11(’1:’2))
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—S(dr,,r2)

S(t, .13)

—S(t, , dtl)

S(r,,tg)

_S(dl,.a't3)

Where Am(d’I~’2): -Ao:(’i»d’2)= ‘A|l(dtl‘d’2)_ S( _1, .13

and Aw (0,z3)= A0, (r,,0) = A” (0,0)=0.

The bivariate survivor function is uniquely represented using A(t, .13 ) as

S(rl.r2) = 1‘[(1 —Al0(du.0))n(l—A0, (O,dv))1_[(1—L(du.dv))usll vs]: us],
vsrz

Am (du.v’)A0, (u‘,dv)— AH (du.dv)

_A '~ v(1—A,0(du.v’))(l 0, u d
where L(du,dv) =

Dabrowska(l988) also provided an extension of the above representation to

the censored set up.

Cox (1972). Marshall (1975), Shanbag and Kotz (1987) and Basu and

Sun(l997) have also discussed different versions of hazard function in the bivariate

(multivariate) set up.

1.9.2 Estimation of Bivariate Survivor Function

As mentioned earlier. in survival analysis. estimation of the survivor

function is one of the main problems of interest. Parametric estimation procedures

such as maximum likelihood and Bayesian technique can be applied for the

estimation of S(t,,t3) by assuming that T =  follows some bivariate

distribution with unknown parameters. However, nonparametric methods for the

estimation of S (t,,r2) have become very popular within survival analysis for several

reasons. One reason is that lifetime data often have some features that are not easily

explained by parametric models. For example, human lifetime data show a

decreasing hazard in the first five years of life, then it has a constant hazard and

finally it has an increasing hazard. This cannot be fully explained by parametric

models. Accordingly. nonparametric approach is common in survival analysis. If

there are no censored observations. we can estimate the bivariate survivor function

21



by the empirical survivor function using the data (Y],,T3,  i =1,2. . .n. which is given

by

SW, (twig): Z":I(T1,>t,,T3,>t2)'I=l *7

But in both reliability studies and medical follow-up studies. the

phenomenon of censoring is very common. Censoring occurs when the experimental

unit is removed from the study before both components have been observed to fail.

The censoring may arise for a number of reasons. The items may be withdrawn due

to a change in health status or contamination. They may be censored by death from a

cause unrelated to the study. The censoring may also be due to sequential entry into

an experiment subsequently ended at a fixed time. The problem of estimation in such

situations has received considerable attention in statistical literature. Suppose that the

pair of lifetime variables T =  is subject to random right censoring. Let Z =

(Z,.Z3) be the censoring vector associated with T = (T,.T3). Under the bivariate

right censoring, we observe Y = (YHY2) where Y,= min (T,.Z,) and Y2: min

(TPZ2). The censoring indicator is 6 = (6,452) where 6, = I(T, =Y,) and 62 =

1 (T2 =  This censoring is often encountered in several situations such as twin

studies, studies on diseases of the right and left eyes and studies where two
recurrence times of a certain disease are recorded.

The problem of estimating the bivariate survivor function under random

right censoring is firstly addressed successfully in Campbell (1981). Tsai et.al.

(1986) suggested an estimation procedure for bivariate survivor function using the

estimation of conditional survivor functions. Campbell (1981) and Hanley and

Parnes (1983) have studied non—parametric maximum likelihood estimation for the

survivor function, but it does not have closed form expression and it is not unique.

Later Dabrowska (1988) extended the Kaplan and Meier (1958) estimator to the

bivariate set up using the product integral representation of survivor function. A

semiparametric estimation for dependent multivariate lifetime data when the

marginal distributions of the failure times follow proportional hazards model is done
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by Cai and Prentice (1995). Non-parametric estimators of survivor function have also

been proposed by Campbell and Foldes (1982), Burke (1988), Pruitt (1991). Prentice

and Cai (1992), van der Laan (1996) and Wang and Wells (1997) among others.

whereas for example, Oakes (1989) and Wang and Wells (1999) proposed semi

parametric estimators. Dabrowska (1988) and Prentice and Cai (1992) have

developed computationally convenient estimators with good moderate sample

performance. but these estimators are in general not nonparametrically efficient and.

in particular, since they use Kaplan-Meier marginals. they do not address the

auxiliary data problem. Unlike the univariate Kaplan-Meier (1958) estimator, which

has the usual optimal properties such as consistency and asymptotic normality.

estimators of the bivariate survivor function proposed in literature have some

unsatisfactory features and are in general quite complex (see Gill, 1992). Many of the

estimators are not proper bivariate distributions, have non-explicit formulae, do not

behave well in practice or depend heavily on the choice of smoothing parameters.

van der Laan et.al. (2002) proposed a locally efficient estimator for multivariate

survivor function when all the component lifetimes are censored by a common

variable independent of the lifetimes. Akritas and van Keilegom (2003) obtained

path-independent bivariate survivor function through the estimation of marginal and

conditional distributions. For different estimation procedures for bivariate survivor

function under censoring, one may refer to van der Laan (1997), Oakes (2001).

Kalbfleisch and Prentice (2002) and Lawless (2003).

Thus there has been much research on analyzing bivariate lifetimes, but very

little has accommodated failures that occur in the presence of competing failure

process. But. in several studies, the situation where each component of the bivariate

lifetime vector T = (T,,T2)has more than one cause of failure is common. Further.

the lifetime vector T may be subject to random censoring. The problem of

nonparametric estimation of cause-specific sub-distribution function and survivor

function in bivariate set up in the presence of more than one cause of failure is not

yet addressed. Apart from censoring, there are other features such as masking.

missing censoring time and random left truncation that can occur in competing risk

set up. which makes the estimation of survivor function and cause-specific



distribution function problematic. The analysis of bivariate (multivariate) lifetime

data in such situations is not addressed so far. Motivated by this. in the present study.

we undertake the problem of nonparametric estimation of bivariate survivor function

and cause-specific sub-distribution functions in competing risk set up.

1.10 Present Study

So far, in the bivariate set up, the analysis of lifetime (failure time) data with

multiple causes of failure is done by treating each cause of failure separately. with

failures from other causes considered as independent censoring. This approach is

unrealistic in many situations. For example, in the analysis of mortality data on

married couples one would be interested to compare the hazards for the same cause

of death as well as to check whether death due to one cause is more important for the

partners’ risk of death from other causes. In reliability analysis. one often has

systems with more than one component and many systems. subsystems and

components have more than one cause of failure. Design of high-reliability systems

generally requires that the individual system components have extremely high

reliability even after long periods of time. Knowledge of the failure behaviour of a

component can lead to savings in its cost of production and maintenance and. in

some cases, to the preservation of human life. For the purpose of improving

reliability. it is necessary to identify the cause of failure down to the component

level. By treating each cause of failure separately with failures from other causes

considered as independent censoring, the analysis of lifetime data would be

incomplete. Motivated by this. we introduce a new approach for the analysis of

bivariate competing risk data using the bivariate vector hazard rate of Johnson and

Kotz (1975).

The thesis is organized into seven chapters. After this introductory chapter,

in Chapter 2. we consider a system having two study objects with more than one

cause of failure for each study object. Based on the vector hazard rate of Johnson and

Kotz (1975). we develop a nonparametric estimator for survivor function under

independent censoring. We also propose an estimator for the cause-specific sub­

distribution functions. Asymptotic properties of the estimators are discussed. Finally.
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we illustrate the procedure with a real data and the performance of the estimators is

studied using a simulated data.

The problem of missing failure type may arise with bivariate lifetime data as

well. Consider a situation in which a system consists of k components and each

component is subject to more than one cause of failure. Due to inadequacy in the

diagnostic mechanism or reluctance to report any specific cause of failure (disease).

the exact cause of failure cannot be identified easily. In such situations where the

cause of failure is masked, when failure of a component occurs. test procedures

restrict the cause to a set of possible types containing the true type. In Chapter 3. we

develop a nonparametric estimator for the bivariate survivor function of competing

risk models under masked causes of failure based on the vector hazard rate of

Johnson and Kotz (1975). Asymptotic properties of the estimator are established. A

simulation study is carried out to assess the performance of the estimator. We also

illustrate the method with a real data set. The proposed estimator is an extension of

the estimator for the survivor function of masked data in the univariate set up. given

by Dewanji and Sengupta (2003).

There are situations in the analysis of lifetime or failure time data under the

competing risk set up where the censoring times of unfailed units are missing.

Chapter 4 deals with the problem of missing censoring times in both univariate and

bivariate competing risk set up. The maximum likelihood and simple moment

estimators of cause-specific density function and distribution function in both

univariate and bivariate competing risk set up are discussed. A simulation study is

also conducted to observe the asymptotic behaviour of the estimators.

Left truncation in survival analysis means that an individual is included for

study only if its lifetime is larger than some value. In practice. we come across

lifetime data with left truncation and right censoring. The estimation of the bivariate

survivor function and cause-specific sub-distribution function for such data under

competing risk set up is not yet considered. In Chapter 5. we consider the bivariate

truncation model where both components of the lifetime vector are subject to random

left truncation and right censoring and each component is exposed to more than one

cause of failure. For the bivariate random left truncated and right censored competing
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risk lifetime data. we develop a nonparametric estimator for the bivariate survivor

function based on the vector hazard rate of Johnson and Kotz (1975). We also

develop nonparametric estimators for the cause-specific sub-distribution function.

The asymptotic properties of the estimators are discussed. A simulation study.

assessing the empirical behaviour of the estimators is also presented.

Dependence relations between random variables are one of the most widely

studied subjects in Probability and Statistics. There are several global summary

measures such as Karl Pearson’s coefficient of correlation, Kendall’s r and

Spearman’s rank correlation coefficient, that are commonly used to study the

dependence among random variables. Although it is customary to compute a

correlation coefficient, the dependence between a pair of continuous random

variables is often more complex than a single scalar dependence measure can reflect.

Therefore, a global summary statistic such as the correlation coefficient will not

convey the dependence stmcture. Accordingly, various local dependence measures

are developed in literature. Clayton (1978) introduced a measure of local dependence

based on the hazard rate for continuous distributions. Later, Oakes (1989) defined a

measure of dependence, which is the conditional version of Kendall’s concordance

measure. Fan et.al. (1998) proposed local dependence measure. which is the

weighted average of the above two concordance measures. Later. Fan et.al. (2000)

proposed a class of local dependence measures to study the association between the

variables. In Chapter 6, we present a simple local dependence measure for bivariate

lifetime data, based on the covariance function of residual lifetime variables. It is

shown that zero correlation between residual lifetime variables implies independence

among the variables. We propose a nonparametric estimator for the local dependence

measure and study its asymptotic properties. Further, a test for independence

between the variables is developed. The method is illustrated with a real data set.

Finally, Chapter 7 summarizes major conclusions of the present study. A

brief discussion of future works that can be carried out in bivariate (multivariate)

competing risk set up is also presented.
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Chapter 2

BIVARIATE COMPETING RISK MODELS

2.1 Introduction

We consider the situation in which each experimental unit has two

component lifetimes (T,.T2 ) and each of the pair (T,.T3) is subject to multiple causes

of failure. We denote the associate causes of failure by (C1.C3) where C, is the

cause of failure for  ,j = 1.2. For example. times (T,.T3) could represent the ages

at death of twins (Hougaard et.al., 1992) or lifetimes of components of a two­

component system. With humans the primary cause of death may be classified as

cancer, heart disease or other causes. With mechanical parts, failures may be

classified according to their root cause. As mentioned in Chapter 1, there is

substantial literature on each of competing risks and bivariate (multivariate) lifetime

distributions, but there seems to be little discussion of the bivariate (multivariate)

competing risk setting. For various estimation procedures of bivariate survivor

function under censoring in non-competing risk set up. one could refer to van der

Laan (1997). Kalbfleisch and Prentice (2002) and Lawless (2003). However. the

estimation of cause-specific sub-distribution in bivariate (multivariate) competing

risk set up is not considered so far in literature. Motivated by this. in Section 2.2. we

consider lifetime involving pairs of study individuals with more than one possible

cause of failure for each individual. Under the assumption that lifetime and censoring

time are independent. nonparametric estimation of survivor function using the vector

hazard function of Johnson and Kotz (1975) is carried out in Section 2.3. Further. we

develop nonparametric estimators for cause-specific sub-distribution functions. In

Section 2.4, we discuss various asymptotic properties of the estimators. An

illustration of the procedure is presented in Section 2.5. To study the empirical

behaviour ofthe estimators, a simulation study is carried out in Section 2.6. Finally.

Section 2.7 gives a conclusion for the chapter.

27



2.2 Survivor Function and Cause-Specific Sub—distribution Function

Let T = (T,,T1) be a pair of non negative random variables defined on a

probability space (Q.lF.P). Assume that T has absolutely continuous distribution

function F(t,,t2). The variables T, and T3 are thought of as lifetimes of married

couples, failure times of a two-component system etc. Let Z = (Z,.Z3) be a pair of

random censoring times. Under the bivariate right censoring, the observable

variables are given by Y= (Y,,Y2) and 6 = (61,63)whereY,= min (T,,Z,) and 6, =

I(T =Y,);i=l,2.

Let S(t,,t2)=P(T, >t,,T, >5), G(t,,!3)=P(Z] >t,.Z2 >t2) and H(r,.t,)

= P(Y, > t,,Y, > t3)be the survivor functions of T. Z and Y respectively. We assume

that the failure mechanism and censoring mechanism are independent. Then T and Z

are independent. Thus we obtain

H(t,.l3)=G(t,,t3)S(t,,t2). (2.1)
Let C =(C,,C2) be a set of causes corresponding to T = (T,.T3) Suppose

that there are y, causes of failure forT, and y2 causes of failure for T2

Through out this thesis, we use the notations given in Dabrowska (1988).

For example, we mean F(dt) = dF(t).

2.2.1 Survivor Function and Hazard Function

Now we consider bivariate cumulative hazard function

/\((,,l2)=(A[ (4.12),/\2 (r,,r3))

where

A (d! I): P(T,ea’t,,T, >t,) : —S(a’r,,t,)
I ‘,2 P(TI2’|=T2>’2) S(ll_”2)

and

A2(’l,dt2)= P(T, >ll,T2 edtz) : —S(t,,dt,)
P(T1>t],T22t2) S(t,,t,)
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with A, (0,t,) = A2(t,,0)=O.

When T= (T,,T2) has ajoint density function f(l,,t2), we have A, (dt,,t3)

=h,(t,,t2)dt, and A,(t,,dt,) =h2(t,.t2)dt2 with

. 1
h,(t,,t3) =11m0—P(T, SI, +Az, |T, 2r,,T2 >t2) (2.2)"I" AI,

and

. 1
/12(t,,t3) =Al(1ri10EP(TlSI2+At,|T,>t,.fl2t3). (2.3)

Thus h, (t,,t3 ) is the instantaneous rate of a failure of T, at time t, given that

T, was alive at the time T,=t,‘ and that T, survived beyond time T2=t2. The

meaning of  (I, ,I2) is similar.

From (1.17) and (1.18),

5(z,,z,)= exp{—A, (t,,0)—A,(t,,t2)} (2.4)
and

S(l,,t2) =exp{—A,(1,,t,)—A,(0.z2)} (2.5)

Thus (2.4) and (2.5) provides a representation of the bivariate survivor

function S(t,.t2) in terms of A, ((,,t,) and A3(t,,t3).

The cause-specific hazard functions corresponding to (2.2) and (2.3) are

given by . 1 , . .
h,,(t,,t2) = l'1m0EP(T, SI, +At,,C, =1|T, Zt,,T2 >t2);1=l,2...}/, (2.6)' I

and . 1 . .
h2,(’.»’2) =,_\1l1Il10IP(T,st2+At3,C,=_/lfi >t,,T22t,_); J: 1,2... }/2. (2.7)

The cause-specific cumulative hazard functions for T, and T2 are

respectively given by
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/\""(t,,t2) = J'h1,(u,t3)du; i =1.2... }/I (2.8)
and

Af(q¢g==]¢,o“u)mu j=12”.yT (29)
0

Assuming that failure type C,‘ must be a unique element of {1,2...;/k}.

using (2.8) and (2.9), the cumulative hazard function Ak (I, ,1:  k =1.2 is given by

A,(t,,t2) = ii/\f"(tI,t2)=Z’:1h,,(u,t3)du (2.10)1:1 0

and

.y7 I

j|‘h,_,/(t1.u)du. (2.11)
/=| 0

71

A2 (r,,t2) = 2N,” (t1,t2)=
/=1

Thus, by (2.10) and (2.1 1), (2.4) and (2.5) can be written as

'2

S(tl,t2) = exp{—fi:[:[h,,(u,0)du—§: [I12/(t,,u)du} (2.12)1:] () /=1
and

S@JJ=mp¥h1h@mflW—fiH@KQflm#, aim
which provides a representation of S (t,,t2)in terms of cause-specific hazard

functions.

We denote

F,,"‘(tl,t2) = P(T, 21,12 >l2,C, =i), (2.14)
fiWQMQ=Pfl>m@25Q=fi, aw)
moMg=Mx2mn>5a=Lq=n aim

and

p3,(!,,t3)=P(Yl>t,,Y22t3,53=1,C.'3=j); i=1,2...y, _j=1,2... ;/.1. (2.17)
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From (2.1), (2.16) and (2.17), we obtain

p,,(dz,,r,) = G(t,‘,t,) F,,"’(dt,,t,); i= 1, 2... y,

and

p,,(t,,dt,)=G(t, ,r, )1~“,,‘2’(t,,dt,); 1': 1,2... 7,.

Thus, from (2.6) and (2.14), we get

P(T, edt,,T, >t2,C, =i)
h"(["t2) = P(T >1 T >t)1- 1’ 2 2

I:|I(I)(dti5t2)

S(t,‘,t,)

Using (2.1) and (2.18), we can write (2.20) as

F,,"’ (dt,,t, )G(t,‘,t,)

h|:(’1~’2) Z H(’I_J2)

Similarly, using (2.1),(2.7),(2.15) and (2.19)

= l72,(’1»d’2)_ .=12
h2_,(’1=’2) HUIJ2 ) a J a  72­

Therefore, from (2.10), (2.11), (2.21) and (2.22), we obtain

'1

/\,(t,,:,) =  jh,,(u.z,)du= —i'i du,:| 0 ,=10 H(u’,t3)
and

= I I = _y 12-”: itwdu)W» ;.Iw>du as)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)



2.2.2 Cause-Specific Sub-distribution Function

As mentioned in Section 1.7.2, in many practical situations. the cause­

specific sub-distribution function is preferred over cause-specific hazard function. In

the bivariate competing risk set up, we define the cause specific hazard function as

P(7] edt,,T3 e dt3,C1=i,C2 =j)
A"(dt"dt2): P(T >2 T >1)1- I’ 2-2

;i=1,2...7,;j=l.2... yz. (2.25)

We can write (2.25) as

F,’ (a’t,,dr_,)

S(t,',t2 )

where F” (I, ,t2 ) denote the cause-specific sub-distribution function given by

A” (dt,,dt2 )= (2.26)

F,/(t,,t2) = P(T, St,,T2 St,,C, =i,C3 =j); i=1,2...;/1;j= 1,2... }/3. (2.27)

This quantity measures the probability for the failure of both the study

subjects (TPT2) prior to (t,,(2) due to the causes (i,j). In mortality studies this is

helpful to compare whether death of one cause is important for the partners risk of

death of other causes.

From (2.26) and (2.27), it follows that

E, (:,,:2)= j]s(u‘,v‘)/\,, (du,dv); z*=1.2...~/, ;j :12... 72 (2.23)
0 0

Let D = {(tl,t3):H(t,,t3)>0}

Define

F'(:,,z3) = P(T, st,,T2 92,5, =1,62 =1,C, =i,C3 =1). (229)ll

Then, from the independent censoring assumption, we get

. S 3 7- Fl. 5 7
r,,(,..,.>= F" ""’2’ = (" "l ""’-)

G(t,',!3 ) H(t, ,t2 )
(2.30)
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From (2.26) we have

F".(d"‘d’3) = F"'.(d["d'3) for all (1 2 )ED (2 31)I‘ 2 ­
A;/(dfi.dt;):G(~tl J2 )S([l-,t2_) H([l_"2 )

Hence, from (2.28) and (2.31), for all(t,,t3 ) E D , we obtain

E,(I,.t3)=;[(J (2.32)
and

"'1 S u’.v')E'(du,a'v)_
uF,,(’1=’2)= H l ’T, i=1,2...y ;j= 1,2... 73. (2.33)00 H( .v) I

2.3 Nonparametric Estimation

In this section we give non-parametric estimators of S(t,.t3)and F,’ (tl,[2)

Now suppose that Y“ = (l’,,,,}’3"),6"= (6,,,,62“) u = 1,2...n be an independent and

identically distributed (i.i.d) sample, each (Y",0““) having the same distribution as

(Y,6) and the corresponding failure cause pair is C“ =(C1", C3“ ).

2.3.1 Estimation of Bivariate Survivor Function

To estimate the bivariate survivor function S (I, ,1: ). define

/\

H(t,,t2) =%::’l;1(l’1u>t,,Y2u >5),A 1 " . .
p,,(t,,t2) =;Z1(Y,u 21,12“ >55,“ =1.c, :1)u =|

and

/'\ 1 " . . .
p2,(t,,t2)=; 1(Ylu>t,,lgu2t3,c32u=l,C2=]) z=1,2...;/I ;}=1,2... 72,u=l

with I(.) as the usual indicator function.

Then from (2.23) and (2.24), the estimators of A, (IP13) and A3 ((,,t3)are

obtained as



du (2.34)U ‘ .

(2.35)

for all tl,t2 such that I?(t,',t3 ) > 0 and 0 otherwise.

Thus from (2.4), (2.5), (2.34) and (2.35), the estimator of S(tl,t2) is obtained as

A

5.(z,,:2) = exp{—K.(:,,o)—K2(z,,z2)} (2.36)
and

(4.13): exp{_K. (),,:.)_K. (0,t2)} (2.37)

The estimator of S(tl,r2) obtained by (2.36) and (2.37) may be different.

To get a unique estimator, we follow the approach given in Akritas and van

Keilegom (2003). Since the estimator of the bivariate distribution should not depend

on which variable we consider as the conditioning variable, the proposed estimator

for S(t,,t2) is a convex combination of two expressions (2.36) and (2.37). Thus the

estimator for S (1, ,t2) is given byA A
§a(tl,l‘2) = a(I,,l2)Si(t,,t2)+(l—a(t,,t2))S2(11,12). (2.38)

Now the question is how to choose a(t,.t3  Choose the weight a(!,.r3 ) in

such a way that the mean squared error (MSE) of 3.0 (t1,r2) is minimum. As given in

Section 3 of Akritas and van Keilegom (2003), one can obtain a(t,,t2) which

minimized the MSE as

a(t I): ‘722—0'i2+l122‘i“1#2I* 2 ' 2 2
O-ll+O-22-20-l2+/'1] +/12 ‘Z/1)/12



where 0",] is the asymptotic covariance between S, and S), and ,u, is the asymptotic

bias of S’; i,_}' = 1.2.To ensure that 52. (r,,t3) belongs to the interval [0,1], we replace

a(t,,t2) by min[1,max{a(t,,I2),0}].

Remark 2.1 When the system has only one study object, both (2.34) and (2.35)

reduces to the estimator of the cumulative hazard function in the univariate case.

given in Kalbfleisch and Prentice (2002. page 255).

Remark 2.2 The extension to multivariate set up is direct as the survivor function

S'(t, ,t2...tk) of   can be uniquely represented by

S(t,,I2...tk)= exp{—Al (t,,O...0)—A2 (t,,(3,0...0)—...—/\k (t,.(2...Ik

where

'1

Ap,(z,,...zv,,0...0) = [hf(:,,...z,_,,u,o...o)du

with

h,(t1,r2...tk) = ; g/=1,2...k.

2.3.2 Estimation of Cause-Specific Sub-distribution Function

Our next objective is to estimate cause-specific sub-distribution functions

(2.27) nonparametrically. This could be approached by maximum likelihood

considering four different counting processes

(1') 1(T, edt1,T2 edt2,C, =i,C2 =j)and n,,(t,,t3)= Z1(Tlu
M

(ii) 1(T, ea/t,,T2 >t2.C, =1") and n, (t,,t2)=Z1(T,,, edt,.T3,, >z3.C.,, =1‘),
ll

(iii) 1(T, >:,,n edt3,C2 =_/) and n ,(z,,z2)= ZI(T >t,,T2,, ea’t3.C2.. =1),11:

11

(iv) 1(T, >r,.T2 >t2)and n (t,,t_,)= Z1(T,“ >t,,T3” >t3)
N

E dtl’T3u E dtzeciu = i~Czu = ./i)‘



However, nonparametric maximum likelihood estimation of bivariate

survivor function S(t,,t2)even in the non-competing risk case is problematic, for

example the maximum likelihood estimator is not unique (see Lawless, 2003, page

500). In this section, we consider simple non-parametric estimators of the functions

(2.27) using (2.32) and (2.33).

An unbiased estimate of Fui (I, .13) is given byA 1 " - . . .
F” (tIvt:):;Z1(YIu Stwyzu gt2’5|u =1’o2u =1’Clu =l’C2u =1)11:]

Based on (2.32) and (2.33), we therefore suggest two simple estimators for

F,,(t,,t3)as

A (1) "'11?,, (du,,du2) 5F,, (z1,:2)=H— (2.39)
0 0

for (r,,t3) such that (A}(t1 J] )> O and 0 otherwise

and

".142 )fW,.(du,,du2)/'\ i=1,2...y ;j=1,2... 7, (2.40)I-[(11, .u2 ) I ­
/K 2 " '3 3'‘.
Fur >(r|J2):  (U:

0 0

for (t,,t2) such that I/-T(t, J3 )>0 andO otherwise.

The estimator €}(tl,t3) is the Burke (1988) estimator for the survivor

function of the censoring variables. The Burke (1988) estimator of E}(t,,t2) is

defined when [,5 max{T,}and (2 S max{T1 :7", >t,} The estimators (2.39) and

(2.40) are defined for continuous time settings as well as discrete with the terms in

(2.39) and (2.40) being non-zero only for observed failure times(t, .13 ) .
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2.4 Properties of Estimators

In this section we prove the consistency and weak convergence of the

estimators of S(t,,t3) and F” (I, .12)

Theorem 2.1

Sup 3-H” —> 0 almost surely. In other words. the estimator I-I(t,,r2) isI)

strongly consistent.

The proof follows from Lemma A.2 of Kulkarni and Rattihalli (2002,p.913)

Theorem 2.2

Suppose that T and Z are independent. Then Sup k—AA,” —>0 almostI)

surely; k =1,2.

Proof

For k =1, from (2.10),

An) 7'
in -2/xi"I=l I=lSup f\,—/\,” = SupI) I)

AH)A, —/\‘“H (2.41)M:_<_ Sup
,=| /)

I

For fixed i, A5" is nothing but Am of Dabrowska(l988). Therefore, the rest

of the proof follows from the equation (2.41) and Lemma 4.1 of Dabrowska (1988).

The proof for /A\2 is similar.

Theorem 2.3
A

S.. ~ S“ —> 0 almost surely.Under the assumptions of Theorem 2.2, Sup
I)

Proof

From (2.38). we can have

32 -5”. (2.42)Sup .§'..~SH S Sup 3': —SH + SupI) I) I)



From (2.4) and (2.36) we have

Sgpuloggh (t,.t2)—logS(t,,t2 = Sijpl /A\, (t,,O)—A, (t,,0)+/A\3 (tl.t2)—A2 (t,,t2

s Stfp I\,(t,,0)—A,(t,,O)H+St:p /‘\_.(z,,:.)—A.(r,,r.)|l (2.43)

From Theorem 2.2, (2.43) implies that SupHlog§i —logS|| —>0 almost
I)

surely which shows that Sup
I) 31-5” —>0 almost surely. The proof for  is

analogous. Thus (2.42) implies that Sup 3.. — SH —->0 almost surely.I)

Theorem 2.4

Under the assumptions of Theorem 4.2 Sup IA7,,m — E,
I) V —>0 almost surely

forevery i=l,2... 7, andj=l,2... 72.

Proof

From (2.32) and (2.39),

F1) —F
(IA (I) }Sup = Sup n(CAi_ld2F.,.—G"'d2E,')I) I) 0 0

1.11 (Gd2I‘:;,.—ad2F;,.)“sup :—A———— (2.44)I) GG00
I/\

where d2F,,' (t,,t2)= F,,' (dt,,dt2).

6 — G” —> 0 (see Horvath, 1983) and 0 < G(:, .1.) < 1, (2.44) reduces to

:1 12 1S , Sup
5U[G‘ I)

A (1)
Fr] ‘F

:1

Since Sup
I)A (I) 1Fl] “F 3

G.U
+

(G—E;)d3F,,'UG(d2fi,, —d2F') J. (2.45)
Sup SupI) I)

‘ —»0 and Sup 6-0“ —>o, (2.45) becomes,I)
Since Sup

I)
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A (l)R, — E, 413%,,‘ —a’2F,/' G -6
which converges to zero with probability one. This completes the proof.

Sup
/)

Theorem 2.5

Under the assumptions of Theorem 4.2 Sup ;“,,m -17,,” —>0 almost surelyI)

foreveryi=1,2... y, andj=1,2... }/,.

Proof

The proof follows as in Theorem 2.4 since H(l,,l3)=G(t,,r3)S(!,.t3),

Sup .§..—SH—>0 and Sup I/;—HH—>0.I) /)
Theorem 2.6

Under the assumptions of Theorem 2.2, for all (tl,t3)eD,

x/Ti (SI. (t,.t2)—S(t,,t2)) converges weakly to a Gaussian process with mean zero

and the asymptotic variance given by (2.47).

Proof

Let S,(t,|t/) be the conditional survivor function of T, given T/>1’.

i, j=1.2,i¢_/' Let S,(r,) be the marginal survivor function of Z i,=1,2. Since

s(z,,z2)=s,(z,|z,)s,(z,); i, j=1.2,i¢j, s,(z,)= exp{—A,(r,,0)} and 52(5) =

exp{—A2(0,t3)} , we have

§1(!,,t3) =.§'2(t2 |t,)§. (r,) and .§z (1142) = §l([| |t2).§2(t3)

where §,(t, II’) = exp{—/A\,(!l,z2)}; ,'_j=1,2,i¢ j, 3'l(t,) = exp{—/A\,(t,,0)}

and 32(5) = expl-/A\2(0,t3)}
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I\

\/Z (3‘1(t,,r,)—S(t,,t,))= J; (§g(t, |t,)—S, (1, lt,))S1 (t,)+

«/Z S,(t, |t,)(.§.(t,)—S,(r,)) (2.46)
Now,

/,{2(t,,t2)—A2(!,,t2)=./Z
/=1

.?dM,,(;,,u)'}1(x>z..n>u>0 H(t1,u)

where for fixed 1,, M2, (t,,u) =I:I§",'(t,,u)— ill-AI(t,,u)dA/'*3)(r,,u) is the martingale
0

representation of A,m(t,,u) with Ii;’jT(t,,u) is the estimator of H§'j'(t,,u) =

P(Y,>t,,Y22u,62=1,C2=j). Then for fixed l],\/E(/’{2(l'l,l2)-/\2(f|,l2))

converges to a Gaussian process with mean zero. Further, for fixed 1,. S,(I3 |t,)

= 1—[(1—a'A2(t,,s)) is the Hadamard differentiability of the product integral. Thus
SS1:

the asymptotic normality of /K, (t,,r2) carries over to the asymptotic normality of the

corresponding estimator of S2(t2 |t,). This shows that \/Tl (I2 |t,)—S,(t2 |t,))

converges to a Gaussian process with mean zero. Since 31 (fl) is strongly consistent

and \/; 2 (I2 |t,)—S2 (I2 |t,))converges weakly to a mean zero Gaussian process.

the first factor of (2.46) weakly converges to a Gaussian process. Since S3 ([3 lll) is

bounded and \/Z (3'.(t,)—S,(t,)) converges weakly, the second factor of (2.46)

converges weakly to a Gaussian process. Thus, x/Z (.§1(t,,t2)—S(t,,t,)) weakly

converges to a Gaussian process. On similar lines we can show that

J; 2 (t,,t2)—S (t,,t2)) converges weakly to a Gaussian process with mean zero.

Thus, \/Z (SE, (t,,t2)—S (t,,l2)) converges weakly to a Gaussian process with mean

zero and the asymptotic variance of J; SI, (1, ,t2) is
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7

a30_g)= a20p5)afl(qJJ+(1—a@“g»'afi(qJJ

+a(r,,t2)(1—a(t,,t2))o',2(t,,r2) (2.47)
where of (t,,t2) is the asymptotic variance of x/; 3) (IP13); k = 1.2 and an (IP12) is

the asymptotic covariance between x5 I (IP12) and J; 2 (tl.I3).From Appendix

B of Lawless(2003, page 539), the asymptotic variance of \/Z 3‘. (tl,['2) is

0'2, (t,_,t2)= Sf (t,,t2) As vaI(log§'. (t,,t2)) Now,

\/; (log§.(t,,t2)—logS(t,,t2))= ¢Z (A,(t,,0)—A,(r,,O)+/\2(t,,t2)—/\3(1.42)).

Thus the asymptotic variance of \/Z (logs? (I, .12 ) — log S(t, ,t2  is

1' 1 _ _.+ >u n(d"I=0) +
I{H(u_ 0)I(Y]“Edul,(3|u—1,C.u~l) [(Y|u- I)‘:I3( _u, ,0)1 , _ . _.

Lj{H( _)1(In>t,,}2”edu2,52“—1,C3“—z)+tn”:

7 ,d 7 2
1(Ylu >tl’Y:Zu 2u2)

H‘(t1,u2)

Thus, , " " 1 .
0-1 (tl=t2)= SI2 (rhtz) E[;[0{H(ul_,0)1( lu E du|’6lu =1aCn. :’)

PI:(d“I’0) H I J1 I Y a’ 6 -1 C‘ =‘
+I(Y|u I) H7(ul ,0) 4% 5i. H(tl!u2_) (Yin >117 2:: E u2* 2n ’ ‘Zn I)

+I(YIn >’vY2u Zuz)

Similarly the asymptotic variance of J; log 32 (t,,t2)— logS(I,,t2)) is
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Y.1 ‘I

I
0r=lo'Z2(t,,I2)= S22(t1,t2)E[

l I Y d ,Y," ,,5“=l.Ch='
{H(ulJ2) ( me "1 _ >1- I 1 1)

+1( M 2u,.,Y2"  1 _)1(Y2" edu2,62u =l,C2u =j)1’ 2 /= 0H(0,u2

+ M .,<o,du.) 2
I(Y2u— 2)l;_Ig(0!u2)H]

The asymptotic covariance between 3 I (t,,t3) and S‘: (t,,t2) is

o',2(t,,t2)= S,(tl,t2) S2(tl,t2) Ascov(log§.(t,,t2),1og§2(t,,t2)),

which is given by

o‘,2(t,,t2)=n s,(z,,;2) S2(t,,t2){ER/,{1(t,,t2)—A,(t,,t2))(//it(t,,O)—/\,(Il,0))+

(K. (t,,t2)—A, (z,,:.))(K2(z,,:.)—A2 (z,,z2))+(K. (0,t2)—A2 (o.z3))(K. (t,,0)—A, (;,,o))
/\

+(A2 (t,,t3)—A2 (t,,t2))(/A\2 (0,t3)—A2 (0,t2))]}

Theorem 2.7

Under the assumptions of Theorem 2.2. for all (t,,t3)eD

J; ([:"U"’ (I,.t2)— F” (t,,t2  converges weakly to a Gaussian process with mean zero

and the asymptotic variance given by (2.52).

Proof

fl (film (t1,t2)‘ F!/((1:13)) \ ~/3  EL (d""d"2) — F”t (du"du3)]G(u,’,u;) G(u[.u2)00

A

= \/;'fi[17“,, (dupduz) F,, (a'u,,du2)
/\

G(u,’,u2") G(u,'.u2')00

+ F1, (dupduz) E,‘ (du,,du2)— . (2.48)
G(u,_,u2’) G(ul‘,u;)
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For large 11, using (2.1), (2.48) can be approximated by

6 d“I~T2/ E dug-5n = 1-521 = LCII = i-Cy = ./.)—F//.(du|vd”:)j00 I " I=l

d .d , ~
-\/;H‘ (lZI(Z,,Zul,Z2,2u3)—G(u, ,u3 )j (2.49)00 (u,',u2') n,=1

By multivariate central limit theorem, the terms in the simple brackets of the

first and second integrals converges to a mean zero normal variate. Then the

asymptotic normality of (2.49) follows from the Delta method using the maps

(x,,x2) —> (x, + x2 ) (van der Vaart and Wellner(1996)).

To find the asymptotic variance. let

A =(;|'0'[(;(TL[2)1(T,, e du,,T2, edu2,6,, =1,52, =1,c,, =1,C2, =1) (2.50)

and

' I(Z,,2u,,Z2,2u2). (2.51)
Thus, the asymptotic variance of the process is

a'2(t,,t2) = E(A—B)2 (2.52)
Therefore, a consistent estimator of variance is given by

:<2 — 2)

where ;1 and B are obtained using (2.50) and (2.51) replacing the unknown

/\.2 1

0' (fl,[2)= ;

quantities by their estimators.

Theorem 2.8

Under the assumptions of Theorem 2.2, for all (t,,t: ) e D

J; (I37/(2) (t,,t2)— F” (t,,t2  converges weakly to a Gaussian process with mean zero

and variance given by

o"2(t,.t2) = E(P—Q)2 where



III_ S _, )­

P=(;i6i [(Z/ E dul’T2I E du2’6II =52/ =1~Cu :i~C2/ =  (2-53)

and

"'3S u_,u, F,‘(du,du,)Q=  (' ') ’ ' '1(Y,,>u,,Y,,>u,). (2.54)
()0

(H(ul‘,u3'))_

A consistent estimator of variance is

A /'\ 2
Z(P - Q)

where I’ and Q are obtained using (2.53) and (2.54) replacing the unknown

A‘; 1
0 (542): ;

quantities by their estimators.

The proof is similar to that of Theorem 2.7.

2.5 Data Analysis

We illustrate the estimation procedure given in Section 2.3 using a real data.

Table 2.1 shows data concerning the times to tumour appearance or death for 50

pairs of mice from the same litter in a tumor genesis experiment (Mantel and

Ciminera, 1979), as reported in Ying and Wei (1994). In this data, T, and T3

represent failure times (in weeks) for a pair of mice, and C I ( j = 1,2) indicates

whether the failure was the appearance of a tumour (C I = 1) or the occurrence of

death prior to tumour appearance (C! = 2). The censored observations are denoted

by C] = 0. The experiment was terminated at 104 weeks, so there is a common

censoring time across all animals of 104.

The estimators §1(t,,t,)and§2(t,,t3) can be obtained directly from the data

using the approach in Section 2.3.1. To obtain a(l,,t2  we use the extension of Efron

(l98l)’s bootstrap procedure for one-dimensional censored data. Given the data

(Tm,E",A,",A3,,,C‘,“,C2“), u =1,2...n, where A," and A3" are the censoring indicator,
0

we generate the bootstrap data (T,”',T A,“',A2“ ,C,"',C2"'). u =1,2...n from the2:1 ’
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distribution function l:1(rIn. S tl’T2u S I2'Al!I. = 5|
'1 u-l

We take 1000 such re-sarnples and find Si (t,.t2) and 2 (t, J2) as explained in Section

2.3.1, which we denote by S,,'(t,,t3) andS2,'(t,,l3),j = l,2...1000. Since the biases

are negligible as shown in Section 2.6, we find the weight a(t, ,t, ) as

_ _))—cov(S1'(t,,t2),S;(I,,t3)
var(S,' (t,,t3) + var(S; (t,,t,))—2cov(S,' (tl.l

) .
,).S,'(z,.t,))

Then the estimator of the survivor function (I (t,,t3) at different time points

(5590), (81.66), (94.91) and (73.74) is obtained using (2.38). The estimator of

bivariate survivor function due to Dabrowska (1988), S‘ (l,,t2). is also found at the

same time points for comparison. The values of a(t,,t,), SI. (t,,t2). S‘(t,.t,) and

their variances, given in brackets, are presented in Table 2.2. It can be observed that

the variance of 3,1) (t,,I3) is lesser than that of S(t,,t,) except at (55,90).

Table 2.3 gives the estimator FT,-(t,,t,) at all the observed points (t,,t3) and

the plots of 1:1, (t,,t3) for 1',/‘ = 1,2, is shown in Figures 2.1, 2.2, 2.3 and 2.4. It is to

be noted that since all the units have a common censoring time. the two estimators in

(2.39) and (2.40) are identical and simply equal to the observed fraction of pairs with

(YIN St,,Y3“ St2,C," =i,C2" =j). From Table 2.3, it follows that the probability of

failure due to different causes at different time points is uniform.

We estimate 71,, = P(C, =i,C2 =j)as zit; = F7; (oo,oo). Since the last pair
A. . . A 72': .

is a censored one, we normalize the estimate as rri, = if We also estimated7rlrI

k /

the marginal probabilities 7r,'” = P(C, =i) i, j = 1.2 using the estimate of then n : . - . A  A n u
marginal sub distribution function. The estimates in and 7r,, are given in Table

2.4 from which it follows that the two causes are not independent.

45



Table 2.l:Data concerning the times to tumour appearance or death for 50 pairs of mice

z (3 7; 6; i 3 (3 7; ] C;49 1 104* 0 104* 0 104* ' 0
102 2 104* 0 104* 0 104* 0104* 0 104* 0 81 1 64 197 2 79 2 55 1 94 2
104* 0 104* 0 104* 0 54 196 1 104* 0 87 2 74 294 2 77 1 73 1 84 1
104* 0 104* 0 104* 0 83 277 2 104* 0 104* 0 73 2104* 0 77 2 79 2 104* 0
91 2 90 2 104* 0 104* 070 2 92 2 104* 0 104* 045 2 50 1 101 1 94 269 2 91 2 84 1 78 1104* 0 103 2 81 1 76 272 2 104* 0 95 2 104* 0
63 2 104* 0 104* 0 66 1
104* 0 74 2 104* 0 102 1104* 0 69 2 98 2 73 2
104* 0 68 1 104* 0 104* 0
104* 0 104* 0 83 2 77 2
104* 0 104* 0 104* 0 104* 083 2 40 1 79 2 99 2
104* 0 104* 0 91 2 104* 0
104* 0 104* 0 104* 0 79 1

( * indicates censored time)
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Table 2.2:Estimates of the survivor function S (I, J3)

(t.,t2) (55,90) (81,66) (94,91) (73,74)
a(t,,t2) .827674 .626292 .734062 1
S. (I I ) .415157 .568151 268659 568186U " 2 (.00128) (.01051) (000367) (.005874)
:S‘,(t I ) .422768 519525 .2616l0 .567488" 2 (.00lO8) (01311) (000704) (00594)

Table 2.3:Estimates of the distribution function F” (t, , tz)

T. C. T. C. E. (1, ,1. )45 2 50 1 .0255 1 94 2 .0469 2 91 2 .0470 2 92 2 .0673 1 84 1 .0479 2 99 2 .1281 1 64 1 .0481 1 76 2 .0683 2 40 1 .0283 2 77 2 .1084 1 78 1 .1287 2 74 2 .0891 2 90 2 .1894 2 77 1 .1497 2 79 2 .1898 2 73 2 .08101 1 99 2 .32
Table 2.4:Estimates of Ir,‘’’ and 72'”.

A (no A (“O A (2): A (2)0 A 0 A o A u A 07n 712 7Z1 712 7TH H12 7121 7723i 2 1 K _ 1 1 ._13 13 28 28 17 17 17 17
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Fig 2.1: Estimator of cause-specific distribution function for the data on times to tumour

appearance or death of 50 pair of mice corresponding to the pair of cause (l,l).

F12(t1,t2) :

Fig 2.2: Estimator of cause-specific distribution function for the data on times to tumour

appearance or death of 50 pair of mice corresponding to the pair of cause (1,2).
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F21 (t1 ,t2) °_

Fig 2.3: Estimator of cause-specific distribution function for the data on times to tumour

appearance or death of 50 pair of mice corresponding to the pair of cause (2,1).

F22(t1 .12) °

Fig 2.4: Estimator of cause-specific distribution function for the data on times to tumour

appearance or death of50 pair of mice corresponding to the pair of cause (2,2).
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2.6 A Simulation Study

To assess the empirical performance of the estimator of S (I,.t3  we carried

out a series of 1000 simulations of size n from a bivariate Dirichlet Distribution with

survivor function

S(r,.r,)= (1-1, —r,)‘“' 0<r,,z, <t, +12 <1.

with a= 2,3 and 4 for various sample sizes n= 20,50 and 100. We also generated

censoring times (Z,,Z2) from the bivariate Dirichlet distribution with survivor

function

G(t,,t3)=(1—t, —t,)”+' O<tl,t2 <r, +1, <1

with /3= 4,5 and 10 so that the censoring times are random. We used the algorithm

given in Gentle (1998, pages 94 and 111) for generating the observations. We

considered two types of causes C,, i = 1,2.The causes 1 and 2 are distributed

randomly among the observed failure times with equal probability. We found the

estimator of S(r,,12) using the equation (2.38) at five time points. The estimator of

bivariate survivor function, 3‘ (tl,I2), given in Dabrowska (1988) is also calculated

for the same time points. A careful examination of the tables reveals that biases and

variances decrease with increasing sample size, as is expected. Further. the biases

due to the estimator of Dabrowska (1988) have negative values in most of the cases

and those due to the proposed one have positive values.

For empirical studies on the performance of the estimators of F” (t,,l3) ,

which is more important in the competing risk set up. we carried out a series of 1000

simulations of size n from

(a) a bivariate Dirichlet distribution with survivor function

1

S(t,,t2) = (1—r, -1,)“ O<t|,t2 <1, +12 <1

with a = 2.3 and 4 and for

(b) a bivariate Gumbel"s (1960) exponential distribution with survivor function

S(t,,t3)=exp{—t, —t, —,1t,t,}, 0<t,,t, <oo, 032.31
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with /1 = 0.5 and 1 for various sample sizes n = 20. 50 and 100.

We generated censoring times (Z,.Z2) for case (a) from the bivariate

Dirichlet distribution

G(t,.tl)=(1—t, —t2)fl+l 0<t,,t3 <r, +r2 <1

with ,8 = 4 .5 and 10 so that the censoring times are random. We used the algorithm

given in Gentle (1998, pages 94 and 11 1) for generating the Dirichlet observations.

For case (b). censoring observations are generated from the Gumbel’s

(1960) exponential distribution with survivor function

G(l,.I2)=exp{—t, —I2 -6413} O <t,.t2 < so, 05 6 $1

with i9= 0.6 and 0.9 so that the censoring times are random. We used the algorithm

given in Devroye (1986) for generating the observations from Gumbel’s distribution.

We considered two types of causes for C, , i = 1,2. The causes 1 and 2 are distributed

randomly among the observed failure times with equal probability. The estimator of

bivariate survivor function, .8‘(t,.r3), is calculated as explained in Section 2.3.1 and

the estimator given in Burke (1988) is used to find 6?(t,.I3). The estimators of

F,,(t1,r_,) are computed based on the equations (2.39) and (2.40). The empirical

biases and empirical variances ofthe estimators are given in Tables 2.5. 2.6. 2.7, 2.8

and 2.9. A careful examination of the tables reveals the following patterns.

A 2)
a. The estimate F ,,( has small biases and small variances compared to the

. " 1') . .
estimate F,, for all 1,} = 1,2.

. A H) . . .
b. The estimate F ,, has positive biases for all values of (IP12) and ri. However.

, A (2) _
the biases of F,, are negative for most ofthe values of (11.13 ) .

c. For both the estimators. the bias and variance decreases with increasing sample

size.
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Table 2.5:Biases (x103) and Variances (x103). given in brackets, of :91. (t,,r3) and
A

S (t,,t2) at five (t,.t2) pairs for bivariate Dirichlet distribution for various 0: and ,6

Bias and variance Bias and variancen a t .1, ~ ~'6 ("  of Sa(t],(2) of S(t,,I2)
(.102,.0890) 29(22) -11(3)
(.077,.0990) 29(21) —l2(3)20 2 5 (.054,.0897) 40(27) —11(3)(.079,.1228) 31(21) -9(3)
(.O77,.1050) 50(27) —12(3)(.102,.0890) 13(9) -6(7)(.077,.O990) 11(9) -5(7)50 2 5 (.054,.0897) 14(12) .9(6)(.079,.1228) 14(9) -9(7)
(.O77,.1050) 14(13) —5(5)(.102,.0890) 5(5) —5(17)(.077,.0990) 2(4) -4(16)100 2 5 (.054,.0897) 3(5) -10(16)(.079,.1228) 7(6) -8(16)(.O77,.1050) 6(5) -9(15)
(.102..0890) 14(16) -20(5)
(.O77,.O990) 24(25) -22(5)20 3 10 (.054,.0897) 13(19) - 19(4)
(.079,.1228) 17(20) -21(5)
(.O77,.1050) 21(20) -23(5)(.102,.0890) 2(6) —15(9)(.O77,.O990) 9(11) -15(9)50 3 10 (.054,.0897) 5(7) -11(8)(.079,.1228) 5(9) -18(10)(.O77,.1050) 5(9) 17(10)(.102,.0890) 1(3) -.6(23)(.O77,.0990) 4(5) —3(22)100 3 10 (.054,.0897) 4(4) -2(23)(.079,.1228) 1(4) 1(25)(.O77,.1050) 5(4) —1(23)
(.102,.0890) 18(15) -44(3)(.077,.0990) 27( 19) 40(3)20 4 4 (.054,.0897) 24(18) -33(3)
(.079,.1228) 38(19) —45(3)
(.O77,.1050) 16(15) -43(32)(.102,.0390) 12(7) -37(6)(.O77,.O990) 14(8) -35(6)50 4 4 (.054,.0897) 13(7) —28(6)(.079,.1228) 21(8) -34(6)
(.O77,.1050) 13(6) -35(6)(.102,.0890) 3(3) -20(13)(.077,.0990) 5(4) -22(13)100 4 4 (.054,.0897) 6(4) -21(14)(.079,.1228) 5(3) -20(13)(.O77,.1050) 1(3) -21(13)

52



Table 2.6:Biases (X104 ) and Variances (X104 ), given in brackets, of 1?)” (t1,t2) at

three (I, J2) pairs for bivariate Dirichlet distribution

((1:5) " a ,5 F711 7312 1:721 1?:
20 2 5 85 (38) 84(46) 93(33) 92(33)

(.07, .03) 50 2 5 66(9) 77(11) 60(8) 76(l0)
100 2 5 55(3) 63(4) 53(4) 75(4)
20 2 44(23) 51(25) 62(19) 54(l6)

(.20, .20) 50 2 41(5) 39(4) 36(4) 50(5)
100 2 37(2) 38(2) 29(1) 42(2)
20 2 5 146(76) 119(65) 211(117) l73(89)

(.14, .12) 50 2 5 123(25) 115(32) 123(25) 124(24)
100 2 5 113(9) 104(7) 105(4) 120(9)
20 3 10 32(12) 50(l8) 47(l0) 44(l3)

(.07, .08) 50 3 10 29(4) 41(5) 41(5) 36(4)
100 3 10 23(2) 27(2) 31(2) 26(2)
20 3 10 121(87) l28(92) 98(44) l23(30)

(.20, .20) 50 3 10 86(16) 107(21) 92(19) 101(24)
100 3 10 33(6) 30(7) 78(7) 32(7)
20 3 10 43(19) 75(42) 5s(20) 62(26)

(.14, .12) 50 3 10 47(7) 64(9) 54(7) 55(8)
100 3 10 43(4) 42(3) 45(4) 50(4)
20 4 4 l57(l07) 152(l28) 142(Hl) l59(H0)

(.07, .08) 50 4 4 l50(69) 149(65) l4l(75) l57(72)
100 4 4 141(25) 139(33) 133(23) 133(27)

20 4 4 135(94) I42(l 10) 1l5(l05) l33(38)
(.20, .20) 50 4 4 130(55) 130(56) 122(60) 125(59)

100 4 4 126(21) 1l8(23) 111(1s) 114(20)

20 4 4 86(68) 37(76) 85(77) 78(66)
(.14, .12) 50 4 4 s4(31) 31(35) 30(34) 74(37)

100 4 4 83(l1) 79(l3) 73(10) 73(l0)
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Table 2.7:Biases (x 104 ) and Variances (x 104 ), given in brackets, of 13,2) (t,.t2) at

three (1, J2) pairs for bivariate Dirichlet distribution

(’l’t2) n a fl fill 2:12 fill F722
20 2 -15 (6) —30(5) —5(5) —25(5)

(.07, .03) 50 2 -8(2) —12(2) —7(3) -2(3)100 2 -2(1) —3(1) 1(1) 1(1)
20 2 5 —17(3) —27(9) -11(3) -33(6)

(.20, .20) 50 2 5 —14(3) —13(3) —9(4) -6(4)
100 2 5 -2(2) —2(2) -1(2) —1(2)
20 2 5 -28(l9) —29(20) —37(13) —52(13)

(.14, .12) 50 2 5 -18(6) —13(7) —6(7) —2(9)
100 2 5 -5(4) -5(4) —2(3) -5(4)
20 3 10 1(4) 43(3) —5(4) —3(4)

(.07, .08) 50 3 10 —1(1) —2(2) 1(2) 7(2)
100 3 10 -1(1) 2(1) —1(1) -3(1)
20 3 10 7(4) —5(3) —3(3) 4(4)

(.20, .20) 50 3 10 —4(1) —4(1) —1(1) 4(2)
100 3 10 —1(1) —1(1) —1(1) —1(1)

20 3 10 1(4) -6(4) -11(3) —1(4)
(.14, .12) 50 3 10 1(2) —1(2) —3(2) -1(2)

100 3 10 1(1) —1(1) —7(1) —1(1)
20 4 4 -5(6) -17(30) -14(6) -22(6)

(.07, .03) 50 4 4 —4(4) -3(13) —5(4) —3(4)
100 4 4 —1(3) 2(3) —2(3) —2(3)
20 4 4 -12(14) —21(14) —30(12) —25(15)

(.20, .20) 50 4 4 43(7) -7(9) —10(9) -18(6)
100 —7(7) —1(7) —1(1) —1(1)
20 4 —1(1) —3(1) -1(1) —1(1)

(.14,.12) 50 4 -1(1) —1(1) -1(1) —1(1)100 4 1(1) —1(1) -1(1) 1(1)

54



A41)

Table 2.8:Biases (x104 ) and Variances (X104 ), given in brackets. of F,, (t,,I3) at

three (t,,t2) pairs for Gumbel’s (1960) bivariate exponential distribution

(tvtz) ” 3 9 fin fin F72. 7722
20 .5 .6 -170(60) l10(71) 190(58) 2l0(59)

(.5, .5) 50 .5 6 l0l(31) 98(39) ll5(28) 155(29)
100 .5 6 77(16) -30(2l) 65(l9) 66(l7)

20 .5 .6 l60(54) l20(53) 145(6l) l66(57)
(1,2) 50 .5 .6 l12(33) 90(34) lO4(30) 12l(33)

I00 .5 .6 68(l5) 54(l7) 6l(l8) 75(l6)

20 .5 .6 -l40(49) 1l5(5l) 15l(48) l39(50)
(2, 1) 50 .5 .6 104(33) 99(37) 103(30) 98(27)

100 .5 .6 68(l6) 70(20) 8l(l7) 63(l4)
20 I .9 144(48) l23(50) I39(4I) 155(39)

(.5, .5) 50 1 .9 119(29) 106(27) 105(31) ll6(25)
100 1 .9 77(14) 68(l3) 79(l9) 63(l4)

20 I .9 l51(47) l28(44) ]45(45) 158(48)
(1,2) 50 I .9 l]0(28) 99(31) 98(29) 1ll(26)

100 1 .9 66(]4) 58(l3) 60(15) 73(l 1)

20 1 .9 -120(5I) l26(50) 138(49) 14l(60)
(2, 1) 50 1 .9 100(39) 98(40) l01(41) 93(45)

100 1 .9 60(26) -40(22) 45(25) -35(26)
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Table 2.9:Biases (x104 ) and Variances (x104 ), given in brackets. of iii,” (1, .12) at

three (I, .13) pairs for Gumbel’s (1960) bivariate exponential distribution

(t1’t2) 7‘ /1 9 1,511 i712 fin 2322
20 .5 .6 -30(34) -50(60) -25(40) -36(52)

(.5. .5) 50 .5 .6 -20(25) -10(40) 20(31) -l5(38)
100 .5 6 -8(11) -5(13) 3(10) 5(15)

20 .5 .6 -45(37) -60(38) -47(4l) -41(44)
(1, 2) 50 .5 .6 -30(26) -50(29) -28(38) -23(40)

100 .5 .6 5(15) 10(19) -1(11) -5(13)

20 5 .6 -51(52) -58(49) -49(53) -44(51)
(2, 1) 50 5 .6 -25(41) —32(44) -l0(39) -1l(37)

100 .5 .6 8(11) —9(15) 5(14) 10(l1)
20 1 .9 -25(52) -35(45) 16(39) 20(55)

(.5, .5) 50 1 .9 -17(34) -31(39) l4(39) 18(41)
100 1 .9 10(11) 12(19) 9(13) 8(l9)

20 1 .9 -31(49) -37(60) -18(65) -25(55)
(1, 2) 50 1 .9 -l9(31) -28(58) 18(47) -17(52)

100 1 .9 10(18) -11(l9) 14(l4) 15(17)

20 1 9 -52(61) -39(70) -45(77) —20(7l)
(2, 1) 50 1 .9 -23(49) -21(51) -21(58) 16(53)

100 1 .9 17(19) 14(22) 10(16) 6(18)
2.7 Conclusion

survivor function under censoring (see van der Laan (1997)). In the present work, we

developed a non-parametric estimator of the bivariate survivor function for

competing risk models using cause specific hazard function. We proved the

consistency and weak convergence of the estimator. The proposed estimator is

compared with the well-known estimator of bivariate survivor function due to

Dabrowska (1988) using a simulation study and a real data. It is found that the new

estimator is at par. Then we developed two simple non-parametric estimators of
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cause-specific sub-distribution function for bivariate competing risk models. Both

estimators are consistent. The weak convergence of the estimators is established. We

illustrated the estimation procedure with a real data. Simulation study shows that the

bias and variance of the estimators are less. The extension of the method to the

multivariate set up is straightforward. The results presented in this chapter are

summarized in Ansa (2004) and Sankaran et.al. (2005b).
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Chapter 3

BIVARIATE SURVIVOR FUNCTION UNDER MASKING

3.1 Introduction

There are situations in the analysis of competing risk lifetime data where for

some of the systems or study subjects being studied, the exact failure cause cannot be

identified easily. Then we say the cause of failure is masked. This may be due to

inadequacy in the diagnostic mechanism or some individuals may be reluctant to

report any specific failure cause (disease). Miyakawa (1984), Racine-Poon and Hoel

(1984), Lo (1991) and Mukerjee and Wang (1993) considered the problem of

masking with two failure types. Goetghebuer and Ryan (1990. 1995) considered the

regression problem under masking using partial likelihood for two types of failure

with the assumption that the cause-specific hazards for the two failure types are

proportional.

In all the works mentioned above, it was assumed that no information on

failure cause is available at all. But test procedures can restrict the cause to some

subset of the possible failure causes. If a failure type is not observed. we observe a

set of possible types of causes containing a true type, along with failure time. which

may be subject to censoring. When the set of possible failure types consists of more

than one element, the cause of failure is masked. When it is a singleton set, then the

failure type is exactly observed and when it contains all the possible failure types, the

missingness is total. Flehinger et.al. (1998) estimated the probability of survival due

to different types in two stages with the assumption that the hazards of various risks

are proportional to each other. They assumed that definitive diagnosis for a small

sample of the masked causes could be obtained in the second stage. Recently,

Dewanji and Sengupta (2003) obtained nonparametric estimator of the different

cause-specific hazards with out the assumption of proportional hazards using

counting processes and the multiplicative intensity process of Aalen (1978).
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The problem of masking may arise in multivariate lifetime data with

competing causes as well. The estimation of survivor function in such situations is

not carried out so far. Motivated by this, in the present chapter, our attempt is to
obtain an estimator for the bivariate survivor function when the causes of failure

corresponding to the component lifetimes are masked. The proposed method is an

extension of Dewanji and Sengupta (2003) to the bivariate set up. The extension to

multivariate set up is direct.

In Section 3.2, we consider a system with two study objects (components)

whose causes of failure are masked. We, in Section 3.3, develop a nonparametric

estimator for the bivariate survivor function of competing risk models under masked

causes of failure based on the vector hazard rate. Asymptotic properties of the
estimator are established in Section 3.4. We illustrate the method with a data set in

Section 3.5.A simulation study is presented in Section 3.6 to assess the performance

of the estimator. We conclude the chapter in Section 3.7

3.2 Survivor Function and Hazard Function

Let T = (T,,T._,) be a pair of non-negative random variables defined on a

probability space (Q,lF,P). Let 5 =  denote the censoring indicator and

C = (C,,C2) be a set of causes corresponding to T = (T,,T2). Let

S'(t,,t2)=P(T, >t,,T, >t,) be the survivor function of T Suppose that there are

7, causes of failure forT, and }/zcauses of failure for  . The cause of failures either

C1 or C, or both C, and C, may be missing. Let G = (G,,G2), where G, is the set

of possible causes for the ith component; i =1,2. If there are 7, causes of failure for

T, then G, g {1,2... 7, }. Assume that failure type j must be a unique element ofI

{1.2... y,}.

Nowdefine

f;ll(t,,t,) = P(G, =g, |T, edt,,T,, >t,,C, =j,5, =1) (3.1)

with I’W(t,,z,) =0 ifjeg,; j= 1,2,... y,; i,k= 1,2, rack
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Therefore, for fixedj. ZP,,,,(tl,t3) = 1 j= 1.2,... 7,: ("=12 (3.2)
1.’.

Assume that the missing mechanism is independent of the censoring

mechanism. Then (3.1) becomes

Qgmg)=P«1=g|zew,u>gx;=fl;j=Lz”.%uk=Lzi¢k (13

Thus ,(rl,t2) gives the conditional probability of observing g, 3 j as the

set of possible causes, given failure of the ith component at time 1, due to the causej

and survival ofthe kth component at time 1,, ; i,k = 1.2, fat k

The hazard function for failure of the ith component due to causej at time t,

and with g, 3 j observed as the set of possible causes is given by

P(7:S[I+AtI’CI =j’GI =gIlTl2tI’7l(  .-/'=At ’
I

/\,,,,,,,_(dt,)=Al,ir%r10 1,2,... 7,;
i,/(= 1,2; i¢k

Denote the events{T, St, +At,,C, =j}, {G, =g,}and {Z 2t,,T,, >t,,}as A, B

and C respectively. Since P(A fl B|C) = P(A|C)P(B|A (NC) , we obtain /\,,,,,,, (dt,) as

/‘\,,,,,,,(dt,) = P,,,,(t,.t2) h,,(t,,t2); j= 1,2,... 7,; i,k= 1,2, iik

where h,, (I, ,t2)is the cause-specific hazard function given in (2.6) and (2.7).

Thus the hazard function for failure of ith component at time t, with g,

observed as the set of possible causes is given by

A, (cit): Hm P(T,st,+At,,G,=g,|T,2r,,T,,>t,,)’~'* ’ :\:,—»0 A;
I

ZP,:,,(t|s’2)h.;(’|a[2)§ iak:1!2; iik (3-4)
I515.

Using (3.2), summing (3.4) over all non-empty subsets g, of G, , we get

mmg=ZmWmg=Z%@¢y m=mn¢k mmX, /=1
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Denote AfA”(r,) as the (2" —1)xl vector of A (t,)’s and  (1,) as the.'~’-l’i­

7, x1 vector of the cumulative cause specific hazards corresponding to h”(tl,l3) We

assume that PL,V,(t,.I2) ’s are independent of t, and I, , though it may depend on g,

andj. So. let us denote /,(I,,tZ) by PM and let R denote the (i2" —1)x;/I matrix of

the  ’s.
Using (3.4),

AfA”(t,) = R A; (1,); i,k=1,2; 1;: k (3.6)
Let IW be a 1x7, vector of unity. Then, using (3.5), we obtain the cumulative

hazard functions as

A, (z,,t,) = 1,”, A; (1,); i.k= 1,2; 1;: k (3.7)

3.3 Nonparametric Estimation

Let Z = (Z,,Z2) be a pair of random censoring times. Under the bivariate

right random censoring, the observable variables are given by Y =(Y,,Y3) and

6 = (5,,62) whereY,= min(7j,Z,) and 6, =I(Z =K); i= 1, 2. Let H(t,,t3)denote

the survivor function of Y =(Y,,Y2). Let the observed data be

(Y114’ 1’2",0",,,,c5'2",G,u,G2,,); u =1,2...n where Y," and Y," are observed or censored

lifetimes corresponding to the ith unit. Consider the (2" -1) dimensional counting

process {1VM_(t,)} n where 93?, consists of all non-empty subsets of {1,2... 7,};.:,E9. ,

and 1’\r'm (II) represents the number of failures of ith component up to time I, for

which Tk>tk with g, as the observed set of possible causes; i,k = 1,2; 1' at k .The

corresponding intensity process for fixed 1,, using the multiplicative intensity

process of Aalen (1978), is given by

am (1,) = Y,‘_'(t,) A (am); i,k= 1,2; iikKill"

where Y,r(t,) is the number of units with Y, 2 t, and Y,‘ >tk .
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For each non-empty subset g, of {1.2... y, } and fixed tk,

dN (2,) = am (t,)dt, + dMM (1,); z',k= 1,2; 1;: kK.l’i

where Mm (t,) ’s are local square integrable martingales. Therefore the estimator of

A M (t,) is given by

/\ '1 I(Y,_'(s) > 0)A... ,. (1,) = ,A (s). (3.8)
Using Theorem 3.1 given in Section 3. 4 and equation (3.6), we obtain

7\L"(z,)= P, A; (1,) + 3,‘ (4); i,k= 1,2; 1;: k (3.9)/\(I) I A '
where A1, (I) IS the vector of Am (1,) ’s and for fixed tk , 3,‘) (t,) is a vector process

converging to a vector of Gaussian martingales whose variance function is

consistently estimated by the matrix diag(rg, 1,. (t,)) with 2:1, 1‘. (r,) is the variance

function of /Ami,‘ (t,) given by equation (3.15). Equation (3.9) can be considered as a

linear model with the design matrix R to be estimated. Let [3, denote a consistent

estimator of R Then, using the principle of weighted least squares, a consistent

estimator of A; (1,) is

l'\. A" /'\ _l A" /'\ 1
A..<r.>= <r,>P.) P.'W...<r,>Af..’(r.>; z"./«= 1,2; in (3.10)

where W,‘ (1,) is the inverse of the estimated (27' —1)x(2" -1) diagonal covariance

. *1’) .
matrix of A,_ (t,) as given by

W,‘(t,)=diag[.1TL’. '1

For g, aj,

P
1~5,/ P(G, =8’, IC, =1)

= P(C,=j|G,=g,)P(G,=gI) _ j=1,2,myI;l_:1’2.
ZP<C. = JIG. =g.'>P<G. = g,'>’
14.5!
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The estimator of PM is given by

2 fm.
11,!

,Z'flL’, qlk.
k’.9/

where  denotes the number of failures with G, observed as g, and

13

qm=P(C,=j|G,=g,); j=1,2,... yl; z'=1,2.
From (3.7), we get the estimate of A,(r,,t2)

R/"(z,,r,) = 1,” R; (1,); i,k= 1,2; 1;: k (3.11)
From (2.4) and (2.5), we obtain,

$1” (1,,1,) = exp{—/1'" (z,,o)—7\g" (z,,r,)} (3.12)

andA M A 11/ A .M 5
S2 (z,,z,)= exp{—/\1 (t,.t3)—A2 (0,z,)} (3.13)

Thus we have two consistent estimators for S(t,,t,_ ) , obtained in (3.12) and

(3.13), which may be different. As in Chapter 2, to get a unique estimator, we follow

the approach given in Akritas and van Keilegom (2003). The proposed estimator for

S(t,,r3)is a convex combination of two expressions (3.12) and (3.13). Thus the

estimator for S (I, ,t3) is given by

M

§1,M(t,.t,)= b(t,,t2)3‘.M(t,,z,)+(1—b(t,,t,))§; (t,,t,) (3.14)

As explained in Section 2.3.2. we choose the weight b(t,,t2) in such a way

that the mean squared error (MSE) of .3‘ 1M (t1,t2 ) is minimum.

Remark 3.1 The extension to the multivariate set up is direct, as the survivor function

S (t, , 13...!) ) of (T1 , T3  can be uniquely represented as shown in Remark 2.1.

Remark 3.2 If both G, and G2 are singleton sets, then the estimation reduces to the

bivariate competing risk case, given in Ansa (2004).
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Remark 3.3 When tk —> 0 , (3.10) reduces to the univariate case given in Dewanji

and Sengupta (2003).

Remark 3.4 The estimation of F” (t,.t2) under masking is a challenging problem in

the bivariate competing risk set up.

3.4 Properties of the Estimators

In this section, we discuss various properties of the estimator. Let D =

[O,bl]x[0,b2] with H(b,,b2)>0.

Theorem 3.1

For each fixed tk , Kg,“ (t,) converges in distribution to a Gaussian process

with mean A (1,) and a variance function, which can be consistently estimated byL’, l‘:­

~ 1(Y. '(S) > 0) . .
Tg‘1l‘(tI) =  (5); 1,k = 1,2; 1;: k (3.15)0 I_.

Proof

For each fixed 1,‘,/A\g,,‘,(t,) is the estimator of the cumulative hazard

function of ith component at time I, with g, observed as the set of possible causes

conditioned on Tk > tk The weak convergence of the estimator of the hazard rate in

the univariate set up with g, observed as the set of possible causes is proved in

Andersen and Borgan (1985). Thus, for fixed rk, the proof follows directly from

Andersen and Borgan (1985).

Theorem 3.2

Assume that the missing mechanism is independent of the failure

mechanism and censoring mechanism. Then Sup
I) 3)“ —S” —> 0 almost surely.
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Proof

For fixed tk, /’i,(.(t,) is uniformly strong consistent; i,k = 1.2; iatk

Therefore the proof follows from the proof of the Theorem 2.3 using (3.11), (3.12),

(3.13) and (3.14).

Theorem 3.3

Under the assumptions of Theorem 3.2. for all (t,,t2)e D and for large n.

x/;(S‘hM(t,,t,_)—S(t,,t2)) converges weakly to a mean zero Gaussian process with

variance given by (3.18).

Proof

Using (3.14) we can write

x/;(§hM(t,,t2)—S(t,,t2))= x/3b(t,,t2)(§1M(r,,t2)—S(t,,t2))+

\/Z (1—b(:,,z2)) (3? (t,,t2)—S(t].t2)). (3.16)

Let :9,“ (r, |zk)=exp{—/1'” (t,,r2)}; i.k =1,2; lack,

AM

5.‘ (1,) =exp{—KJ"(z,.o)}and (:2): exp{—/’{2M(0,t2)l

Consider

\/Z  (t,,r2)—S(t,,t2)) = J;  (:,)_s, (z,))s3(;2 (,,)+

V/E 3*.“ (I‘,)(§2M (:2 |t,)—S(t2 |z,)) (3.17)

where S,(t,) is the marginal distribution of 7: and S,(t, ft’) is the conditionalA M A it _
distribution of I given T, >1’ and S. (t,) and S, (I, |t/) are their nonparametric

estimators; i,j=1,2; iat j
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The asymptotic normality of /AL“ (l,.t3). for i = 1.2, follows from Theorem

3.1 and equation (3.7). For fixedt,. S3(t2 |t,)= l_[(1—d/\3(t,.s))is the Hadamard
\SI:

differentiability of the product integral. Thus the asymptotic normality of /Ab“ (I, J3)

carries over to the asymptotic normality of §zM (I2 lr,  This shows that
A .U

\/; (S2 ([2 |t,)—S(t2 |t,)) converges to a Gaussian process with mean zero. Since

A M

S. (t,) is strongly consistent and J; (Gail, (I2 |t,)—S(t3 |t,  converges weakly to a

Gaussian process with mean zero. the second factor of (3.17) weakly converges to a

Gaussian process. Since S2(t2 |t,) is bounded and J; (SUM (t,)—S, (t,)) converges

weakly to a Gaussian process with mean zero, the first factor of (3.17) converges- I A “I
weakly to a Gaussian process with mean zero. Thus, \/Z (Si (t,,t2)—S(t,,t3))

weakly converges to a Gaussian process with mean zero. On similar lines, we canA  n u
prove that \/Z (S2 (t,,t2)—S (t,,t2)) converges weakly to a Gaussian process with

A ,r\'/

mean zero. Thus, \/Z (S ;, (t,,t3)—S(tl.t2  converges weakly to a Gaussian process- n A  n
with mean zero and the asymptotic variance of $1 S b (I, ,1.) is

7

a3(t,,t2) = b3(r,,t2)o,, (t,,t2)+(1—b(r,,t3))' 022 (t,,t3)

+b(t,,t2)(1—b(t,.t2))o',3(IIJ2) (3.18)

where 0'” (t,,t2) is the asymptotic covariance between \/; 3 ,1” (t,,t2) and

J; .§,M(t,,t2); i,j=1,2.

From Appendix B of Lawless (2003, page 539), we have

0",, (t,,I2)= (S, (t,.t2))2 As var(l0g 3'.“ (t,,t2)) for i = 1,2.
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From Theorem 3.1 we obtain

As var(log SUM (I,.t,  = diag(r,,.,._, (t,)) for i = 1.2.

The asymptotic covariance between 3'1“ (t,,t,) and 32“ (t,,t2) is

o',,((,,I,) = S, (t,,I,)S2(t,,t,) As cov [log.§'1M(t,,t2),log§2M(r,,t,)].

Thus, from (3.17),

a,,(t,,r,) = nSl(tl,t2)S2(t,,t2) EM/2\,\*4(;l,0)—A,(t,,0) 2» (K.'” (4,5) — A,(r,,z,)) +

A M
2

(AiM(r,,t,)—A,(t,,r,))(/T2"/(r,,t,)—/\,(1,,r,)) +

( (0,z,)—A,(0.r,)) (/T2“(t,,t,)-A,(t,.t,))+

( 1'” (4,0) —A,(t,,0)) (7\;” (04,) — /\,(o,:,))}.

3.5 Data Analysis

We could not find an appropriate real life masked data in the bivariate set

up. However, to illustrate the estimation procedure given in Section 3.3, we use the

data concerning the times to tumour appearance or death for 50 pairs of mice from

the same litter in a tumor genesis experiment (Mantel and Ciminera, 1979), as

reported in Ying and Wei (1994). We consider T, and T, as failure times (in weeks)

for a pair of mice, and C} ( j = 1.2) indicates whether the failure was the appearance

of a tumour (C I = 1) or the occurrence of death prior to tumour appearance (C , = 2).

The censored observations are denoted by C I = 0. The experiment was tenninated at

104 weeks, so there is a common censoring time across all animals of 104. To

introduce masking, we randomly allocated the masked set {12} among the observed

lifetimes. The modified data is given in Table 3.1.
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Table 3.1:Data concerning the times to tumour appearance or death for 50 pairs of mice

L G, 7; cg 2 ca 7; (L
49 1 104* 0 104* 0 104* 0
102 2 104* 0 104* 0 104* 0
104* 0 104* 0 31 1 64 {L2}
97 2 79 2 55 {L2} 94 2
104* 0 104* 0 104* 0 54 1
96 {1,2} 104* 0 37 2 74 2
94 2 77 {L2} 73 1 34 1
104* 0 104* 0 104* 0 33 {L2}
77 {1,2} 104* 0 104* 0 73 2
104* 0 77 2 79 {1 2} 104* 091 2 90 2 104* 0 104* 0
70 2 92 {1,2} 104* 0 104* 0
45 2 50 1 101 1 94 {L2}
69 {L2} 91 2 34 1 73 1
104* 0 103 2 31 {L2} 76 272 2 104* 0 95 2 104* 0
63 2 104* 0 104* 0 66 1
104* 0 74 2 104* 0 102 {L2}
104* 0 69 2 93 {1,2} 73 2
104* 0 68 1 104* 0 104* 0
104* 0 104* 0 33 2 77 2
104* 0 104* 0 104* 0 104* 0
33 {L2} 40 {L2} 79 2 99 {L2}
104* 0 104* 0 91 {1,2} 104* 0
104* 0 104* 0 104* 0 79 1

( * indicates censored time)
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The estimators S1“ (t,,t2) and S 2“ (t,,!2) can be obtained directly from the

data using the approach in Section 3.3 for three cases of qjgi , given by (1') qlm = 0.98

and q2gl=0.02 (ii) q,g|= 0.5 and q3g|=0.5 (iii) q,g|= 0.02 and q2g'=0.98. Since

S11” (t,,t2) and S2“ (t,,t2) are not very different, we take b(t,.t2) = 0.5. Then the

estimator of the survivor function ShM(t,,t2) at different time points (5590),

(9779), (87,74) and (73,74) is obtained using (3.14). The value of 1§hM(Il,[2) for

three cases of qm’ is given in Table 3.2 and the graphs are also plotted, which are

shown in Figures 3.1, 3.2and 3.3. The value of S1“ (t,,I2) for the cases (i), (ii) and

(iii) are respectively denoted in graphs by S (p, ) , S ( p2 ) and S (p3) .

Table 3.2:Estimates ofthe survivor function S (I, ,I2)

(1. J2) Cases 3'1“ (1, ,5) Si” (1, ,t2) S1.M(t,,t2)
(1) .735941 .718968 .727904

(73,74) (ii) .729264 .709l57 .7192]
(111) 727244 .703576 .7179
(1) .399942 .377815 .388878

(97,79) (ii) .342390 .3402l0 .341 300
(iii) .369583 .3480l3 .358798
(i) .506083 .53930l .522692

(87,74) (11) .466971 .510490 .483731
(iii) .493082 .507350 .497408
(i) .570l29 .5l6792 .54346

(5590) (ii) .6lll6l .590559 .60086
(111) .648197 .628784 .63849
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Fig 3.1: Estimated survivor function for the data on times to tumour appearance or
death of 50 pair of mice for case (i)

S(P2)

Fig 3.2: Estimated survivor function for the data on times to tumour appearance or
death of 50 pair of mice for case (ii)
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Fig 3.3: Estimated survivor function for the data on times to tumour appearance
or death of 50 pair of mice for case (iii)

3.6 A Simulation Study

For empirical studies on the performance of the estimators, we carried

out a series of 1000 simulations of size n from a Gumbel’s (1960) bivariate

exponential distribution with survivor function S (t,,t3)=exp{—t, -12 —/1t,t2} .

0<t, ,1} <00, 0 S /1 S1 with /1: 0.7 and 0.8 for various sample sizes n = 50 and 100.

We generated censoring times (Z,,Z2) from the Gumbel’s (1960) exponential

distribution with survivor function G(t,,t3) =exp{—t, —t2 —¢9t,t2} , 0<t, ,t3 <00.

0 S 0 S1 with c9= 0.7 and 0.9 so that the censoring times are random. We used the

algorithm given in Devroye (1986) for generating the observations. The observed

times are given by Y=(Y,,Y2) whereY,= min(7j.Z,); i = 1. 2. Then we obtained

5=(§,,62) where 6,= [(T, = Y); 1' = 1, 2. We considered two types of causes forI

C ; 1' = 1, 2. The masked set G ={l,2} was randomly allocated to the observedI

lifetimes so that the chance for an observed lifetime to be masked is 0.5. The causes

1 and 2 are distributed randomly among the observed failure times with unmasked
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causes of failure. Then we computed K,“ (t,,t2) and .8,“ (t,,t3); i =1,2 using (3.11).

(3.12) and (3.13). Since SUM t ,t, and 5'2“ t,t, are not ve different, we take1 _ 1 _ Ty
b(t, ,t2) = 0.5 and found the estimator of 81,“ (t, .12) using the equation (3.14) at four

time points, namely (1) (01.0.2). (2) (01.0.3), (3) (0.2,0.2) and (4) (0.2.0.1), and for

three cases of qjgl , by giving the values (i) qlg = 0.98 and q2g= 0.02 (ii) qlg = 0.5

and qzg = 0.5 (iii) q,g = 0.02 and qzg = 0.93. The value of 5;" (r,,:,) for the cases

(i), (ii) and (iii) are respectively denoted by S(p,), S(p2)and S(p,) The

empirical biases and empirical variances of the estimators are given in Table 3.3.

From Table 3.3, we observe that variance is small when qlg = 0.5 and qzg =0.5.

Table 3.3:Biases (x103) and variances (X103) of .51. (twig) at five (t1,t2) pairs of

Gumbel’s (1960) exponential distribution for various values of /1 and 0t n = 50 n = 100
S(p1) S(P2) S(P3) S(P1) S(p2) S(p3)

Bias Var Bias Var Bias Var Bias Var Bias Var Bias Var
1 8.53 42.7 13.1 3.79 31.6 31.4 3.33 29.3 4.14 2.78 5.65 28.0

/1 = 0.8 2 27.73 40.1 28.3 6.45 -37.0 40.4 25.5 27.2 4.54 3.09 6.42 21.4
,9: ()_9 3 1.136 48.6 44.1 6.25 3.32 34.6 .458 21.0 5.56 2.95 4.05 .334

4 -19.1 20.5 28.3 4.84 -11.7 29.7 13.4 8.01 4.92 1.90 9.49 24.5
1 1.005 36.9 31.5 4.03 40.7 49.7 1.27 30.1 24.8 2.95 -4.22 30.2

/1 = 0-7 2 -3.68 52.3 31.9 6.40 -17.2 33.3 2.84 50.6 25.0 2.95 -13.9 29.5
9: 03 3 38.57 25.6 48.3 7.15 -39.3 61.8 31.4 24.1 40.4 4.70 4.41 40.2

4 18.28 29.9 42.7 3.64 32.1 40.7 -17.4 23.2 40.4 3.24 -21.0 34.1
1 -2.87 49.8 30.2 2.93 -14.2 19.7 5E-4 44.1 30.5 2.74 -7.84 13.9

/7. = 0.8 2 33.5 39.1 17.4 6.79 -33.9 35.8 30.5 34.8 16.4 2.58 -15.5 28.0
9: 0_7 3 23.8 30.7 49.3 6.14 -31.7 51.7 15.7 9.99 46.8 3.84 4.48 30.6

4 -39.2 49.9 23.8 4.34 -43.5 45.1 -16.2 30.4 13.5 3.55 -2.71 29.8
1 -.496 44.4 31.9 6.09 -38.2 50.1 -.123 41.1 30.3 3.15 -37.0 44.2

/1 = 0.7 2 13.02 43.5 34.2 5.77 -15.3 26.5 11.2 42.3 20.4 4.62 -13.9 22.4
9: 0.7 3 15.31 45.0 42.7 7.40 -23.3 49.7 14.3 40.0 36.3 3.59 23.3 22.4

4 -30.3 40.8 35.4 5.00 -40.5 53.4 -11.5 37.8 25.0 4.08 -11.5 35.8
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3.7 Conclusion

In this chapter, we developed a nonparametric estimator for the bivariate

survivor function of competing risk models under masked causes of failure based on

the vector hazard rate. Asymptotic properties of the estimator are established. A

simulation study is carried out to assess the performance of the estimator. We also

illustrated the method with a data set. The procedure can be directly extended to the

multivariate set up. The results in this chapter are presented in Ansa and Sankaran

(2005).
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Chapter 4

COMPETING RISK MODELS WHEN

CENSORING TIMES ARE MISSING

4.1 Introduction

As mentioned in the Chapter 1, there are situations in the analysis of failure

time or lifetime data where the censoring times of unfailed units are missing. For

example, suppose that 7; is the time to failure for product unit i in a population of M

manufactured units. In some applications I is measured in calendar time from the

date of sale of the unit. For many types of products the manufacturers do not know

the date of sale for most units and therefore the censoring time. which is the elapsed

time between the sales of the item and when the data are assembled, for most

unfailed items is unknown. The non-parametric estimator of the lifetime distribution

for such data is available in literature (see Hu et.al. (1998)).

The problem of missing censoring time can arise in the competing risk set

up as well. The analysis of such lifetime in competing risk set up is not discussed in

literature. In the present study. we discuss nonparametric estimation of the

distribution of lifetime in the presence of competing risks when censoring times are

missing. Maximum likelihood estimator and simple moment estimator of cause­

specific sub-density for such univariate competing risk data are obtained in Section

4.2. We, then in Section 4.3. consider a bivariate situation where (Tl,T3) represent

lifetimes of components associated with the systems in a population of manufactured

systems where each component is exposed to competing causes of failure. The

censoring times for unfailed components are missing, but we assume that the

censoring time distribution is known. We present the maximum likelihood and

simple moment estimators of bivariate distribution of (T,.T.)in this set up. The

proposed method is an extension of Hu et.al. (1998) to competing risk set up. We
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also conducted a simulation study to observe the asymptotic behaviour of the

estimators, which is presented in Section 4.4. Finally. a brief conclusion is given in

Section 4.5 at the end of the chapter.

4.2 Univariate Competing Risk Set up

Let T be a non-negative random variable representing the lifetime of a

product. Let F(t) be the distribution function and S(t)=l — F(t) be the survivor

function of T Suppose that the population of M units has independent lifetimes I, ,

I2 (M generated from the distribution F(t). Let there be k competing causes of

failure and let F/(I) = P(T S LC =  where C denote the cause of failure, be the

cause-specific sub-distribution function; j = 1,2...k. Let S/(I) = P(T>t.C=j).

There are also censoring times Z,, Z] Z” associated with the units and we

assume that Z, ’s are independent of each other with common distribution function

G(z') = P(Z, S I). The observed data is as follows.

If I S Z,. we observe t, and (,7, where C, is the cause of failure of ith unit andI

if t, > Z’, we know only that fact and not the value of Z, or 1,; i=1,2...M.

We assume that G(r) is known and that the lifetime T and censoring time

Z are independent. Assume that lifetime T and censoring time Z take discrete

values 1.2.... Let f(r)=P(T, =t).g(r) =P(Z, = 2') and 5(r)=P(Z, 2 1). Let

n,(t) denote the number of observed failures at time t due to cause)’. m, denote the

number of failures with cause j. m denote the total number of observed lifetime and

rm = Suplr :E(r) > 0} Then

1''

and
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Now, we find the maximum likelihood and simple moment estimators of the

cause-specific distribution _f‘,(I) = P(T, =t,C, = j); j = 1,2...k.

4.2.1 Maximum Likelihood Estimator

Based on the observed data, the likelihood may be written as

war firnnuflfllmz) an
where 6,, = 1 if the ith unit fails due to cause j.

= 0 otherwise; j=l,2...k; i=1,2...M.

Assume that the cause of failure C_, is a unique element of the set {1.2...k}.

The over-all survivor function 5 (Z,) will be equal to

uz>=Iiaw»

=fi;fi—;nm}v>

= 1i[{1 f/(()5(r)j. (4.2)

Hfi)=ifimlfiMlmWflfl Mm

Lhna)=fIMUmW”h-Eflufivfli we
Taking logarithm and differentiating (4.4) with respect to _/',(t). and then

equating to zero, we get
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n,<r)[1—Zf,<s>5<s>] = (M —m)5<r>/,<r) (4.5)
Summing both sides of(4.5) over I = 1.2... 2' we getIl'l:lN

Zf,(s)E(s) =  _/= 1,2...k. (4.6)
M — m + m,

Substituting (4.6) in (4.5), the estimator of the cause-specific sub-density fl  is

given by

* _ ".,(’)f(t)——————_—; j=l.2...k;r=1.2...r
" (M—m+m/)G(t)

(4.7)max '

Hence, the estimators of the cause-specific sub-distribution functions F /(I) and

overall survivor function S(I) are respectively obtained as

F,(t) = Zf,(s) and 3(1) 2 nS,(t); j=1,2...k;t=1,2...r"m.\'=l /=|
where 3, (1) = 1—F,(z).

4.2.2 Simple Moment Estimator

We can write rz,(I) = :10, =l,Z, 2t,C, =j); j=1.,2...k

where I(.) denotes the indicator function.

I(t, =t.Z' 2l.C, =j)_‘ t=l,2....;i=l.2...M;j=l,2...k.
0(1)

Let uU(t) =

Assume that the cause of failure and censoring mechanism is independent. Then

E(n}(t)) = M50) f_,(r). (4.8)
Then, a simple moment estimator of  (I) is given by

/\ s.\/ 1
f, (I) = fiZu,,(r)

=  _/'=l.2...k;I=1.y2...2'M50) ’ (49)max
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Hence. the simple moment estimators of the cause-specific sub-distribution function

F I (t) and overall survivor function f(t) are respectively obtained as

fi,‘W(:) = (5) _j=1,2...k.
\':l

and

ASA: " A .w
S (1): ]’[s, (r); t=l,2...rm,

/=l

Under the assumption that the lifetime T and censoring time Z are

independent, n,(t) is binomial(M,f/ (t)E(t)) and hence

_ f,(r)(1-f,(t)5(r))_ l=l._2...z'"m,j=l,2...k.1WG([) "
A .\'.\-I

Var  , 0))
The estimator of the variance is

Z(u,,<r>—Z,<r>)2/\ A SH _ IVwlfi <0) —, u.~(I)
= j~"'(') M§"’(’)l within) :  J :.M"G"(t) M

j = l,2...k.

A consistent estimate for the variance of  W (t) is

A A .\‘.\I Z{Z(u'/(S)_;’(S))}Var(F, (1)) =
Z L I rz,(s)(M—n’(s))

M3 ml 63(5)

_ I  1:12 k
\|__\z=. A/I35(s, )E(s2) Q
.\‘I 3.\’:
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Remark 4.1 When k =1. the maximum likelihood and simple moment estimators

reduces to the corresponding estimators given in Hu et.al. (1998).

4.3 Bivariate Competing Risk Set up

Consider a two-component system with lifetime vector T = (T,,T2). Let

there be k, causes of failure for T, and /(3 causes of failure for T3 Let C = (CPC3)

denote the cause of failure of the two components. Let Z = (Z,.Z2) denote the

bivariate censoring time and 6 = (6,152) be the censoring indicator. Then, the

observed data from a population ofM units is as follows.

If T“ s 2,, and T2,: Z2,.we observe (r,,,:.,.5,, =53, =1.C,,.C2,).

if T], S Z,’ and T2i> Z,_,. we observe (t,,.6,, =1,62, =0,C,,),

if T“> Z“ and T2, S Z2’, we observe (t3,.0",, = 0,63, = l.C3,).

if T1,.> Z“ and T2,> Z3. we observe (6,, =00], =0); i=1.2...M.

Note that neither Z“ nor Z3, is observable in any case. We use the

following notations in this section.

f(r,_,I2) joint p.d.fof (T,.7'3).

F(t,,t3) joint distribution function of (T,.T3

(j,,j2) observed causes of failure.

fhh (tl,t2) bivariate cause-specificjoint p.d.foflifetime.

F“ It (1, ,t2) bivariate cause-specific sub-distribution function.

I I‘!

f(t1»t2) : Zzf/.;,(’1~’:)'
,|:1,Z=|
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5(z',,2'2) = P(Z, >r,,Z, >73).

g(z', J2) bivariate p.d.fof censoring time.

G2, (1,) marginal distribution function of Z,

gz, (r,) marginal p.d.fof Z,

G2, (T2) marginal distribution function of Z3.

gzz (T3) marginal p.d.f of Z3.

52, (1) 1—GZ_ (1).

— sup{r:E;'z, (r) > 0} I :12
k: 7:m;.».

f,:' (1,) = P(T, =t,,C, = j,)= Z 2 f,,,, (t,,t3) cause-specific marginal of T,.
13=| I3=|

kl rlmm

(t,)=  = t3,C2 = jg): Z 2 _f,,,, (t,,t,) cause-specific marginal of
/,=| I,-I

"2

f,,(t,,t2)= P(T, =:,,T, =t2,C, =./,)= Zfm, (:,,z,); j,=1,2...k,
/3:]

f,_, (t,,t,) = P(T, =4]: =t3.C_, =j,)= Z_/‘N, (t,.!3); _/,=1,2...k,.

We assume that the censoring time distribution function G(r,,r2) and the

marginal distribution functions G,_, (r,) and G2, (23) are known or at least estimated

from other sources. Further. we assume (T,.T,.C,.C,) and (Z,.Z3) are independent.

As carried out by Hu et.al. (1998) in the univariate case, we assume that each of

T,,T2, Z, and Z2 take discrete values 12....

4.3.1 Maximum Likelihood Estimator

Define 07/, :  :tlI'C‘lI :./ll) and 61/, Z  =t2I’Cl2I =j2)‘

i=1,2...M;j,=1.2...k,; j3=1,2...k2.

where I(.) denotes the usual indicator function.

80



Then, the likelihood can be written as/‘I I": . . "1 I.‘
L(fl|/2)  H 111'I.r:.’;t“*= (rm) H (Pu; =z.,.n > 2:;.C.. = 1.))“

112:7-Z11,‘ .:'|=l /1:‘  I'|:lkl ‘
]'[ ]'[(P(T, >Z,,,T3 =z3,,c'2, =1-2))""2  P(T, >Z,,,T3 >z2,). (4.10)
l';,ZZz';, "==' l',",’>/=/fig,

We consider

P(TI =’n=T2 >Z2nCn =j1)  =’InT2 >T2vCn =j|)gz, (T2)r3=I _
P(7i =’:.~C:. =Jl)P(T2 >72 lTl =’u~CI« =J'1)gz3 (T2)

P(TI =5.-C1. = ./'|)|:l” Z '/;::,,.<',=,,(’2)]gz1 (72)

: P(T: =’1,~C:, =Ji):§\[gz: (T2)‘ 2 fr; /.=:...<.=:. (5)321 (72%r,-I Izsrz

2 P(TI =tu~CI.: =  gz_, (r2)'  /;=:,,,<',=_,,(’2)-I: gzz (T2):Ir3:l 1:: r2=I1

I VI Isl

’‘ 7:. ‘mm "2 _
= Z I (II [7)_ Zf/./_ (II ’[7 )G7 (,7)/—| I :1 I,:| /32]

= Ll,'l)(t,,) .say. (4.11)
Similarly we obtain

kl 7|-um ‘I-um kl _
P(TI > ZIMTZ =t2MC2: =1-2) : Z 2 fax; (’|’t2)— Z Z-fm: ("'r3')GZ' (tl);,=1 :,=I «,=I ;,=|

= L‘:l(r2,) .say. (4.12)
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Now we consider

P(T. >Z.,sT2 >Zz,)= 1’(T. >T.»T2 >Ta_)g(T.=T2)
r.=| r_.=l

rl nun 7'.‘ nu

: Z Z(]_P(T2ST1)_P(7]ST1~73>T2))g(T19T2)
r,=l :3=|

II T
r M,’y.‘

5
<7; sr2>g<r..r:>~  ijmr. Snf: >r2>g<r..r2>

"1 In-.|\ 7*

:  P(T2 S r2)gz: (r2)— 2  P(T, 5 11,7‘: > z'2)g(2',,1'3)r:=| r,=| 73:!
Z 1   ((2 )57-2 ((2)

I:=|

mP(T, s r,,T2 >12 )g(r,,r2). (4.13)
r,=| r3=l

We can write

'fP<zsr..z>a>g<r,.4> = iZP(’I;=r..T2>r2)g(r..r2)r,=l r,=l I,sr,
=t1=T2 >T2)g(TI=T2)

lnun

I, =| 7, =1,

: ":‘p(r, =t,,@ >z'3)P(Z, 24,22 :13).
1,2]

"“ ""“p(r, 9,12 >r2)g(r,,r3) = :"fp(r, =;,,r2 >r2)P(Z, 24,22 =12)r,=l r1=l r,=l 1,:l
:  :’I)P(T2 >7:|T: =[|)P(Z| 2[I~Z2 =72)

r1:| I,=|

:  :’l)rl:\[1_ Z ./:l'3'/i=:,(t2)]P(Z| Zrlvzz :72)I|=l r3=l I.Sr3

: Z P”; =tl)|:P(Z| I;=:,(’2)E(t19’2)]

_(z,)— nffr1:‘_/(r,,z2)G(z,,:2). (4.14)
I

M, ’? C_/
Q _\I
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Substituting (4.14) in (4.13). we obtain

Nfl>4J¥fi%)=1-§JMufihUJ-ffiX05aM)I_,=| t,:l

= L” . say. (4.15)
Denote

”v,,;3(t1.~’2): Z101: SZ1:-’2«SZ2:-1'1: =’1~’2: =l2vCn =1-|~C2: =j:)s

m/I  : Z10]: SZli”2I >ZZI‘[|I =tl’ClI =.]-I)’

ml: ((2) = 2101, > Z,,,t2, 322,42, =t2,C3, :15),

and

m3 = Z1(r,, >Z,,,t2, >z3,).

Then, the likelihood (4.10) can be written as

Lma=fifififimmmW“fifimw»4,=l I1=| /,=I /3:1 “=1 “:1

W]E[(L‘,?’(:Z))""’3("’ (LW/) ‘ (4.16)

Therefore the only unknown quantity in the likelihood function expression (4.16) is

f (t,,t2). Taking logarithm and differentiating (4.16) with respect to fmz (t,,t2)/I/2

and equating to zero, we get



(4.17)

j,= l,2...k,; j3= 1,2.../(3.

Finally, fh/2 (t,,t2) can be obtained from (4.17) by numerical iteration.

Remark 4.2 When k, = k: = 1 . this reduces to the bivariate non-competing risk case.

In this situation (4.17) becomes

"/}(r“[2) : n([lJ2) "1.(tl)GZ3([2)+m;((2)GZ,(II)

(4.13)

n(t|9t2) : Z101: SZ1:-vtzz SZ2,-ltu =’|v’2: =’2)-.

_§ /7 __’~\ QZ

II
2101: 5211-12. > Zzntn :5)-V

m2(t2) = ZI(tl,>Z,,,l3,SZ2,,Il,=I3),
I

I I
z!(t,, > Z,,.I3, > Z_,,)

2 nm

L.<r..r2> :  42 f(tl’t2)57‘1(t2)"5;:
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Then. ?(t, .13) can be obtained from (4.18) by numerical iteration procedure.

Remark 4.3 The cause-specific sub-distribution function given by

FM (t,,r2) = P(T, St,.T3 sr..C, =j,.(J3 =15)

can be written as

F/1/:(t,.t3) = Z 2 f (.s'l..s':),
.\'] SII K351!

and its estimator is given by

17“,,,,(:l,:2) = Z2?/I/](.s',,.s'3); j,=1,2...kl; J-241.2.../:2. (4.19)

Remark 4.4 The joint distribution function of  ) is given by

1:, k.,

F(t|’[2) : Z2-JF/.1; (IP12)
/[=1/;=|

and its estimator is given by

/K ‘I "2 /\
F(t,.t3) = ZZFM. (r,.12).

[|=| /2:]

Thus the estimator of bivariate survivor function is obtained as

/\
§(r,,z2) = 1-F(r,,oo)—1:"(oo.I2)+1?(t,,t3).

4.3.2 Simple Moment Estimator

Denote by m“ /2 , the number of failures with cause (j1,j2) and let m denote

the total number of units for which lifetime is observed for both the components. We

can write

"M2 (IP12) : Z] ('1, 5Zi.~’:i SZL-'1: =’1v[2: =’:~C1y =1’:-C2: =j:)~

j,=1,2...k,; _j2=l,2...k3.

where I(.) denotes the indicator function.
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Let u',l/2 (t,,l2) =

Then a simple moment estimator of _/‘M7 (I, J2) is obtained as

A SM 1 ,
f,/|I2 (tl’t2): E2111]/:([l’[2)

: n/./3(tl*[2)_l :121-? I . ..M5(t,.t3) ' (420)I3 =1,2...r,‘ TI max _ max

which is obtained from the fact that

E(n,m (t,,t2)) = M5(t,,t2)_f,l,2 (4,5).

Under the assumption that (T,,T2,C,,C2) and (Z,.Z3) are independent,

nil./2(t,,t3) is binomial(M.fm:(r,.t2)5(t,,t2)) and hence the variance of the

estimator is obtained as

f/,/1(’I~’1)i1_./i,;,(’1~[2)E(t1v[2))

A4E}u,J3)

Ann

Var(f:m (t,.!3)) =

I, =1,2...r,max;t2 =1,2...r3_m.

The estimator of the variance is

W/(9%: (M3)) % Zi(liIiM([|"ii)4:uhi/3 (M2)).

2 z1'MZ(t,,I2)

Mwhere u ,, ,2 (I, ,t2) =

and thus

"-"~‘"’ ) __ n/./,. ([I~’2)(A/1-"/.13 ([I~’2))I7£;F(fI/3 (IP12) .-‘" A4’Cf(q.g)
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Remark 4.5 When there is only one possible cause of failure for both the

components (k, = k2 =1), (4.10) becomes

/\ S,V 1 )7 1,1,
f (r,,z3)= HZu,(I,.t3)=  1, =1.2...r,,m; :3 =1,2...r2m

1[.SZ.I.,SZ1.l,=l.I =[~
where u,(I,,I3)= (J l’ 'i—, J L I 2'

(J(’p’g)

_ _ _ A .\'.‘U _
A consistent estimator for the variance of f ((1.13) IS

fi:(u,(tl,t2)—;(t,.r_,))2 fiu,(I,,t3)
— _ JM

/\ SM

I7c7r(f (I,,t3)) where Z<r..z2>—'9

[W '

n(r,.r3)[M—n(z,,t3)].
M7‘5(r,,t2)

Finally, the estimator of distribution function is

A .\';l I

1?“, (’I”2) = Z Z-/I (W32)
N151] .\-25:,

with an estimator of variance as

2

/(\~\‘/i, iii“Var F (t1,t2)) = ‘:1 1

M‘

11} '2'  n(s,,s3)(M — n(s, ,s3))

'1_~l_ '3 n(s,.s2)n(r,,r2)
"W3 \..r.=| ~3.r1=l G(S|a-5'3 )G(r|ar2)

4.4 A Simulation Study

For empirical studies on the performance of the estimators, we carried out a

series of 1000 simulations of size M from a bivariate Dirichlet Distribution with

survivor function S(t,,t3) = (l—r, -5)“! 0< t,.t3 < t,+t2<1 with a: 2,3 and 5

for M = 1000 and 4000. We used the algorithm from Gentle (1998, pages 94
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and 111) for generating the observations. We assumed that both the components T,

and T2 are censored by a common censoring variable Z, which is a uniform random

variable in the interval (0.1). Accordingly. we generated M values of Z. Z,, i =

1,2...M. Then we discretized both the lifetimes and censoring times. We considered

two types of causes C 1' = 1.2. The causes 1 and 2 are distributed randomly among

the observed lifetimes with equal probability. We found both the simple moment

estimator and maximum likelihood estimator of F'm.2 (tptz  J-1 ’ j]; 12, as

explained in Section 4.3. at five time points. The empirical biases and empirical

variances of the estimators are given in the Tables 4.1, 4.2 and 4.3. We observe that

the biases and variances of the estimators are small and that as sample size increases

the variance and bias of the estimators’ decreases.
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Table 4.1: Biases (x103) and Variances (x105) of the simple moment and

maximum likelihood estimators of F (I, J3) at various time points when 0: =2.
1 M= 1000 M= 4000

(I I ) (C C) Simple Maximum Simple Maximum" 3 "' 3 Moment Likelihood Moment Likelihood
Bias Var Bias Var Bias Var Bias Var

(0.1,0.1) (1,1) -1.57 1.29 -9.86 .178 1.10 .736 -4.34 .148
(1,2) -0.81 1.27 -9.52 .189 0.15 .699 -4.38 .129
(2,1) -1.27 9.58 -9.78 .148 1.06 .626 -4.45 .108
(2,2) -1.68 1.03 -9.79 .162 1.42 .637 -4.20 .133

(0.1,0.2) (1,1) -5.00 2.46 -4.91 .392 3.18 1.38 -3.06 .308
(1,2) -4.24 2.32 -4.89 .359 3.60 1.47 -3.04 .301
(2.1) -4.82 1.85 -4.92 .321 3.24 1.12 -3.06 .254
(2,2) -5.32 1.95 -4.92 .309 3.20 1.01 -1.00 .237

(0.2,0.1) (1,1) -5.15 2.41 -1.93 .331 1.55 1.26 -1.04 .297
(1,2) -3.87 2.68 -1.87 .401 1.31 1.34 -1.05 .397
(2,1) -4.65 1.78 -1.92 .320 1.48 1.31 -1.04 .315
(2,2) -4.73 1.90 -1.90 .274 1.67 1.56 -1.03 .205

(0.3,0.3) (1.1) -2.59 12.3 -2.20 2.36 1.55 5.47 -2.13 1.63
(1,2 -2.39 9.64 -2.13 1.81 1.62 6.61 -2.09 1.05
(2,1) -2.62 10.07 -2.22 1.84 1.57 6.73 -2.13 0.99
(2,2) -2.52 9.77 -2.19 1.65 1.72 6.37 -2.11 1.00

(0.5,0.4) (1,1) -4.75 24.9 -1.26 5.21 1.75 11.1 -1.11 4.16
(1,2) -4.66 18.5 -1.26 4.00 1.88 12.6 -1.12 3.80
(2,1) -4.90 217 -1.27 3.52 1.75 13.6 -1.01 2.84
(2,2) -4.67 22.7 -1.26 4.70 2.04 12.1 -1.00 4.20

(0.4,0.5) (1,1) -4.81 25.2 -1.26 5.16 1.79 10.9 -1.18 4.42
(1,2) -4.61 18.7 -1.26 3.39 1.82 13.7 -1.18 3.33
(2,1) -4.90 21.2 -1.27 4.41 1.75 15.4 -1.11 4.39

3.0 -1.26 4.29 2.02 11.6 -.143 4.17(2,2) -4.72
E l\.)
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Table 4.2: Biases (X103) and Variances (x105 ) of the simple moment and

maximum likelihood estimators of F M (I, J3) at various time points when (1 =3.

M: 1000 M= 4000
(I I ) (C. C) Simple Maximum Simple Maximum" 3 " 3 Moment Likelihood Moment Likelihood

Bias Var Bias Var Bias Var Bias Var
(0.1,0.1) (1,1) 6.50 3.64 -1.21 .954 4.79 2.03 1.09 .454

(1,2) 6.00 3.93 -123 .326 4.34 2.56 1.14 .636
(2,1) 4.42 3.55 -130 .903 3.37 2.39 1.04 .623
(2,2) 5.09 2.93 -123 .323 4.30 2.04 1.22 .533

(0.102) (1,1) 6.16 5.54 -237 1.73 4.05 4.41 2.25 1.63
(1,2) 4.74 3.31 -245 1.86 4.10 4.26 2.36 1.50
(2.1) 2.66 6.33 -253 1.61 2.16 4.12 2.19 1.24
(22) 3.15 5.31 -2.56 1.26 3.07 4.20 2.30 1.17

(0.2,0.1) (1,1) 6.17 6.29 -239 1.71 5.00 4.03 2.12 1.34
(1,2) 4.42 6.55 -2.46 1.33 4.12 5.17 2.35 1.27
(2,1) 3.03 6.91 -252 1.31 2.16 4.53 2.19 1.74
(2,2) 4.63 5.54 -247 1.72 4.03 3.95 2.46 1.47

(0.3,0.3) (1.1) -4.65 27.5 -4.30 8.78 4.45 16.5 -2.50 6.77
(1,2) -7.83 28.8 -6.42 7.51 4.54 13.1 -4.27 5.34
(2,1) -12.4 22.4 -8.61 6.10 4.74 12.4 -4.56 4.91
(2,2) -9.06 23.0 -8.55 5.87 4.48 14.5 -4.21 5.79

(0.504) (1.1) -1.61 1 46.7 -1.27 14.3 0.93 23.9 -1.17 13.6
(1.2) -1.97 41.6 -1.28 11.4 1.00 21.3 -1.08 10.8
(2,1) -2.62 39.7 -1.31 10.8 1.02 20.6 -1.22 10.8
(2,2) -2.02 30.9 -1.29 8.58 1.88 21.1 -1.15 7.72

(0.4,0.5) (1,1) -1.66 43.2 -1.27 12.8 0.96 23.3 -1.12 11.5
(1,2) -1.96 42.8 -1.28 11.7 1.00 18.6 -1.16 10.4
(2,1) -2.63 37.9 -1.31 11.3 1.02 22.1 -1.19 10.7
(2,2) -2.10 31.1 -1.29 8.67 1.93 22.4 -1.13 7.5
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Table 4.3: Biases (x103) and Variances (x105) of the simple moment and

maximum likelihood estimators of F ,1 I, (I, J2) at various time points when a=5.

M= 1000 M= 4000
(I I ) (C C) Simple Maximum Simple  Maximum" 3 " 2 Moment Likelihood Moment Likelihood

Bias Var Bias Var Bias Var Bias Var
(0.1,0.1) (1,1) 11.2 16.0 0.39 9.24 10.4 8.04 0.33 8.25

(1,2) 10.7 17.6 0.20 9.33 10.5 3.25 0.135 7.14
(2,1) 19.4 13.5 -0.61 9.97 10.6 10.6 0.567 7.57
(2,2) 10.6 22.5 -0.17 11.1 10.5 9.51 0.153 10.7

(0.1,0.2) (1,1) 13.2 26.0 -9.17 15.1 14.3 15.0 3.03 12.3
(1,2) 13.2 24.9 -3.52 14.8 14.6 13.3 7.11 13.0
(2,1) 16.7 23.3 -10.0 12.9 14.6 14.3 6.11 11.1
(2,2) 17.9 32.6 -9.23 16.3 14.6 13.1 3.11 13.6

(0.2,0.1) (1,1) 10.1 22.4 -7.51 14.9 9.55 14.6 6.09 10.0
(1,2) 19.1 23.6 -3.43 16.1 14.5 13.2 6.11 11.4
(2,1) 13.9 26.5 -3.06 15.2 14.7 17.0 7.11 13.4
(2,2) 10.1 32.4 -7.73 17.2 9.67 14.7 7.11 14.3

(0.3,0.3) (1,1) 27.2 44.5 -14.3 29.6 24.3 36.1 11.5 25.0
(1,2) 28.8 59.5 -14.4 33.1 25.0 33.3 12.9 24.6
(2,1) 26.3 46.4 -15.9 23.5 25.1 34.7 13.7 26.7
(2,2) 29.4 63.7 -13.9 36.6 25.0 33.3 13.3 30.7

(0.5,0.4) (1,1) 24.2 49.3 -16.2 33.2 13.7 41.3 12.9 26.6
(1,2) 25.3 69.3 -16.9 41.1 14.3 36.4 12.5 32.9
(2,1) 23.1 53.0 -13.2 32.5 16.3 41.8 12.4 28.5
(2,2) 26.3 77.0 -15.6 44.3 16.1 35.9 13.3 33.6

(04.05) (1,1) 24.0 52.9 -16.1 34.1 13.7 41.0 12.3 23.7
(1,2) 25.0 72.7 -17.0 41.0 14.6 37.3 12.3 36.0
(2,1) 23.2 55.5 -18.2 34.0 16.4 42.2 11.3 23.3
(2,2) 25.3 77.3 -16.0 46.0 16.0 35.6 13.1 33.3
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4.5 Conclusion

We developed non-parametric estimatior of lifetime distribution for

univariate and bivariate competing risk models when the censoring times are missing

but the censoring time distribution is known. The maximum likelihood and simple

moment estimators of cause-specific sub-distribution function in univariate and

bivariate set up are obtained. The estimators are generalization of the estimators

given in Hu et.al. (1998). We also conducted a simulation study to assess the

perfonnance of the estimators. We observe that the biases and variances of the

estimators are small and that as sample size increases the variance and bias of the

estimators’ decreases. The work done in this chapter is presented in Sankaran and

Ansa (2005a).
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Chapter 5

BIVARIATE COMPETING RISK MODELS UNDER

RANDOM LEFT TRUNCATION AND RIGHT CENSORING

5.1 Introduction

In survival or reliability studies, it is common to have truncated data due to

the limited time span of the study or dropouts of the subjects for various reasons. The

estimator of survivor function under left truncation was first discussed by Kaplan and

Meier by extending the well known product-limit estimator of the survivor function.

Later, Lynden-Bell (1971) discussed the nonparametric estimation of survivor

function under right truncation. Nonparametric estimation of survivor function for

truncated data was also considered by Peto ( 1973) and Turnbull (1976). Efron and

Petrosian (1999) discussed the analysis of lifetime data that are simultaneously left

and right truncated. Examples of lifetime data that are left truncated and right

censored is provided in Andersen et.al. (1993). The existing literature on the study of

bivariate lifetime models under truncation is very limited. Most studies in bivariate

set up refer to the case when only one component of the bivariate vector is subject to

truncation (see Gurler. 1996. 1997). But in practical situations. we come across

bivariate lifetime data where both the component lifetimes are under the possibility

of truncation. For example, in the case of Swedish twin lifetime data. both twins had

to be alive in a certain year in order to be included in the sample (Cederlof and

Lorich, 1978). Accordingly, van der Laan (1996) developed a nonparametric

maximum likelihood estimator for the bivariate distribution function where both

components are randomly truncated. Recently. Gurler (2004) considered the diverse

hazard vector, which is an extension of Dabrowska’s (1988) hazard vector for

censored observations, for the estimation of truncated data where both components

are randomly truncated.



The estimation of the bivariate distribution function for truncated data under

competing risk set up is not considered so far. Motivated by this, in this chapter, we

address the problem of random left truncation in the presence of multiple causes of

failure and right censoring. which is the generalization of Gurler (2004). The focus of

this chapter is on the nonparametric estimation of the survivor function and the

cause-specific sub-distribution functions in bivariate competing risk set up, when the

observations are subject to random left truncation and right censoring. In Section 5.2.

we consider the bivariate truncation model where both the components of the

lifetime vector are subject to random left truncation and they are exposed to multiple

causes of failure. Section 5.3 gives nonparametric estimators for the bivariate

survivor function and the cause-specific sub-distribution functions. In Section 5.4,

we discuss various asymptotic properties of the estimators. Section 5.5 presents a

simulation study discussing the empirical behaviour of the estimator. The chapter

ends with a brief summary in Section 5.6.

5.2 Bivariate Competing Risk Model for Random Left Truncated and Right

Censored Data

Let T = (T,,T3) be a pair of non-negative random variables defined on a

probability space (Q.lF.P). Let S(!,.I2)=P(T, > t,.T2 >13) be the survivor function of

T. We assume that each component of (T,,T2) is exposed to more than one cause of

failure. Let C = (C,,C3) represents the cause of failure corresponding to T= (T,,T2  If

there are 7, causes of failure corresponding to T. then C, is a unique element of

{1,2...;/,} ; i = 1,2. Let L = (L,,L_,) be a non-negative random vector representing the

truncating variables corresponding to T =  Let Z = (Z,,Z3) be a pair of

random censoring time corresponding to (T,.T2  Assume that the truncating vector

L and censoring vector Z has a joint density such that (L, < Z,,L2 < Z2)with

probability one and denote G(t,.I2)=P(L, <t, < Z,,L2 <12 < Z3). We also assume

that the truncating vector L and censoring vector Z are independent of T = (TPT2)

and that there is a positive probability that (T, > L,,T2 > L2). Now, one observes
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(Y,,Y2,6,,0“2.C,,C2,L,.,L3)only if (Y, >L,,Y2 >L3) where Y,=min(T,,Z,) is the

observed lifetime or censoring time and 0", =1 (I = Y,) is the censoring indicator for

1' =12. Since L and Z are independent of T. we obtain

P(L,<1,<}j,L3<13<)g)=G(t,,t2)S(t,,t2). (5.l)
Define S,"’(t,.t2)= P(Tl 2t,.T3 >t3,CI =1‘), (5.2)

S_§“(z,,:2)= P(T, >t,,T3 2t2,C2 =1), (5.3)
and

S,j'2)(t,,t2)= P(T, 2:112 2t2,C, =i,C2 =1); i=1.2...7,;_j=1.2...)/3. (5.4)

Combining equations (5.2). (5.3) and (5.4) with (2.6), (2.7), (2.8), (2.9) and (2.25),

we get

_ (I)Af"(dt,,t2)=  (5.5)
S(r, ,5)

—S”’(t dt )N” ,d = :4 " 2 , 5.6.1 ([1 I2) S(t],t2 ) ( )
and

S,‘,m(d(,,dt2) _ _A,,(dt,,dt2)=——_j; z=1,2...}/I ;j=l,2...}’2. (5.7)
S(t, .12 )

Let a= P(Yl>L,.Y3>L3). Let (Q'.lF'.P') be the probability space

conditional on (Y, > LPY3 > L3)

Define the functions

S'(t,,t2) = P.(lq <t, <Y,,L3 <t2 <Y2)

P(L,<1,<}j,L2<t3<}3|lj>L,.}§>L2), (5.8)

S,W(t,,t2) = P'(L, <1, sY,,L2 <13 <Y2,6, =1,C, =i)

= P(L, <t, $Yl,I.2 <t2 <Y2,6, =1,C, =i|Y, >L,,Y2 >L3), (5.9)
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Sj2"(:,,t,)= P‘(L, <1, <Y,,L,<:,sY,,5,=1.C,=)')

= P(L]<t,<1j,L2<t2<1§,52=1,C2=j]1j>L,,13>14), (5.10)
and

S,‘,”"(t,,r3) = P'(L,<r,s11.L,<t,s}g,(S,=cS,=1,C,=i.C3=_j)

=P(L,<t,S}j,L2<t3S1§,6,=62=1,C1=i,C2=j|K>L,.1Q>L2) (5.11)

i=1,2...7, ;j=1,2...}/2.

Since L and Z are independent of T and C, from (5.1), (5.8), (5.9), (5.10) and (5.11),

we obtain,

S'(r,,t2) = a"G(t,,t2)S(tl,t2), (5.12)
S,‘”'(dt,,t2) = a"G(t,‘,t,)S,‘”(dt,,t,), (5.13)
Sj”‘(r,,a'z,) = a"G(z,,r;)S§“(r,,dz,), (5.14)

and

Sf,”"(dt,,dt,) = a"G(r,-,:;)s,g'2"(dz,,d:,); i=1,2...y, ;j=1,2...}/2 (5.15)

where

G(t,‘,t,) = P(lq <1, sZ,.L2 <1, <Z2),

G(t,,t2') = P(L, <t, <Z,,L, <t2 S22),

and

G(z;,r;)= P(L, <1, sz,,L, <1, :22).

From (5.5), (5.12) and (5.13), we get

_SI<n' (diva).N” d ,, = '=1,2... 5.16I ( [1 t-) S|(tl_‘r2) I J/I ( )
From (5.6), (5.12) and (5.14), we get

—s<2)'(1 dt)11”’ z,d:, =?—e’_ " 2 - '=1,2... . (5.17).1 (1 _) S (twig) J 72
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From (5.7), (5.12) and (5.15), we get

S},”" (dz, ,dt.) .

S’ (t,',I.:)

Let 21: [0,b,]x[0,b2] with s'(b,-,b;)> 0

AU (dt,,dt2 )=

From (2.8), (2.10) and (5.16). for all (t,,t2)e 21, we get

" 7' ‘ISM (du.l7)
0A,(t,,t2)= if/\§"(du,:.)= -2(=1 :=|

Similarly, from(2.9), (2.11) and (5.17). for all (I, ,t_, ) e 91, we get72 72
A2(t,,t2) = Z A_‘f’(t,,dv)= -2 ’,=1 ,=| S. ([l,V_) .

and from (5.18), for all (t,.t2 ) e 91, we obtain

'2 I]‘S(2)‘([l,dv)
0

" '1 S"2" (du,dv)A 5 = 4/2.
UUI ,2)  S-(u_’v_)

From (2.28) and (5.21), we get

I I13

E/(t,.t2)='HS(u .v')/\,,(du.dv): i=1.2...;/, _/'=1.2...}/3.
00

5.3 Nonparametric Estimation

, i=1,2...}/I ;j=1,2...;/2.

, i=l,2...}/I ;j=1,2...}/2.

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Now suppose that (Y,,,1Q,,6,,,§3,,C,,,C2,,L,,,L3,), l = 1,2...n be an i.i.d

sample from the conditional probability space (Q',lF',P'  To estimate the bivariate

survivor function S (t,,t2) and the cause-specific distribution functions F,’ (t,,t2);

i=1,2...)/,;j=1,2...)/2,define

A‘ l ,
S (’I.~’2) : ;ZI:1(Lu<’u<11/sL2/<’:<}§/)~

AU)‘ 1 .
S. (:,,z2) = ;Z1(L.,<t,s}j,,L2,<t2<}§,,6,,=1,C”=z),I
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A'3‘- ]
S)’ (1.42) = ;ZI(L,, <z, <i;,.L., <23 sYL,,63, =1.C3, =j).I

and

A 3- 1
Slll 1 (tnstz) = ;Z1(LlI <’1 5 Y1/-(Ly <’2 SY2/~5u :62/ =1~C|I =’.~C2/=1‘)?l

i= 1,2...)/, ;j= 1,2...;/2,

with 1(.) as the usual indicator function.

Then from (5.19) and (5.20), the estimators of A, (t,,t2) and A3 (t,,(2) are

obtained as

/\.'(:,,:2) = —:  (5.23)

(t,,t2) =   (5.24)
for all (1, ,t2) such that  (I, ,t2') > 0 and 0 otherwise.

Thus from (2.4), (5.23) and (5.24), the estimator of S(t, ,t2) is obtained as

S1" (r,,t2) = exp{—;\," (r,,0)—/12" (z,,t2)} (5.25)
and

3'2,‘ (t,,t2) =exp{—/I\," (t,,l2)—/)3" (0,5)) (5.26)

The estimator of S(tl,t_,) obtained by (5.25) and (5.26) may be different.

As mentioned in Section 2.3.1, the proposed estimator for S (t,,t2)is a convex

combination of two expressions (5.25) and (5.26). Thus the estimator for S (t,,t2)is

given byA PK
5.,’ (t,,t2) = c(t,.t3)3‘./' (t,.t3)+(1—c(t,,t2))S2I' (t,,(2). (5.27)
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As given in Section 2.3.1. c(t,,t3)is chosen such that the mean squared

error (MSE) of 5.,’ (t,,t3) is minimum.

From (5.21) and (5.22). the estimator of F,’ (t,,t3) is

'1

fi,,"(:,,z.)=j
0

5.,‘ (u',v')?\;,/A (du,dv) ,
Damn:

where

A(l2)‘

" ’= 5, (du dv)
AU" t,t, = ————’ ’ ;

1. -> 0101
, '=1.2...5 (ufixf) I 7|

for all (t,,t2) such that  (t,‘,t2' ) > 0 and 0 otherwise.

Remark 5.1

(5.28)

j=1.2...;/3. (5.29)

The proposed method is a generalization of the method given in

Gurler (2004) to the competing risk set up where both the components are subject to

random left truncation and right censoring.

5.4 Properties of Estimators

In this section we prove the consistency and weak convergence of the

estimators of S(t, ,t2) and F“ (I, .13)

Theorem 5.1

Suppose that both L and Z are independent of T and C. Then

Sup ix/'—/1)“ —) 0 almost surely; k =1,2.
91

Proof

When k =1, from (2.10) and (5.23),

£(/‘L/.<n_A’u))"Sup"/A\u"—A,“ = Sup9| ‘)1 I=1

S i:Sup /A\,"""—/\/"H;=l 9‘
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I] Am‘

where /A\,"‘”(t,.t2) =  i=1,2...;/,
0 S (u‘,I,_)

For fixed i, consistency of /A\.""’ follows from the Glivenko-Cantelli

theorem. Then, from (5.30), Sup
‘)1

/A\:"—A,H —> 0. Thus the strong consistency of /AM"

is proved. The proof for /Ab." is similar.

Theorem 5.2

Under the assumptions of Theorem 5.1. Sup .1,‘ — S —> 0 almost surely.‘II

The proof is similar to that of Theorem 2.3.

Theorem 5.3

AI.
Fl] —F:1Under the assumptions of Theorem 5.1, Sup ‘ —>0 almost surely‘)1

foreveryi=1,2... y, andj=1,2... }/2.

Proof

Using (5.28),

'1 13 A l A 1
F." (t,,z2)—F,, (1,5) = j [ls] (u;,u;)[A,,’ (du,.du.)_/1,, (du,,du2)]

O 0

+l§(/. M-,u;)—s(u;,ug )]A(, (du,.du. )} (5.31)

For fixed 1' and j, the strong consistency of /A\,,l‘ follows from the Glivenko­

—>0
A I,

F” —Cantelli theorem. From (5.31) and Theorem 5.2, it follows that Sup
‘)1

almost surely; i=l,2... }/I and/=1,2... 72.

Theorem 5.4

Under the assumptions of Theorem 5.1. for all (t,.r2)eQl,

\/I; .-I'(t,,t3)— S (I, ,t2 )) converges weakly to a Gaussian process with mean zero and

the asymptotic variance given by (5.33).
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Proof

From (5.25) and (5.26), we can have

/.

:9./'(t,,r,) =3‘:/‘(I2 |t,)§1/'(t,) and §z['(t,,t3) = 3. (t, |z,)S‘gI'(t,)

where

A

SkL(t,, |t,,,)=exp{—/Tr (t,,t2)}; k,m =1,2; katm

A/.

S. (1,) =exp{—/A\:I'(t,,0)l and 5‘gI'(t,)=exp{—/fig/'(0,r2

Since S(t,,t3)=S,,(t,, lt,,,)S,(t,,); k,m=1,2; katm. S, (t,)= exp{—A,(t,,0)} and

S, (12) = exp{—/\,(0,t3)} , we have

x/Z (3./‘(r,,t,)-S(t,,t2)) = »/Z (3; (1, |r,)—S, (t, |t,)).5‘1L (t,)+

J} S, (:2 |z,) (S/‘ (z,)—s, (4)). (5.32)

Now, f\,"(t,,t,)—A,(t,,t,) =  flu‘ Sfijl/"L3 Susi/3)d.M3,"(t,,u)
I=10 S (t,,u')

'2

where for fixedt,, M2,"(t,,u)=l:I;j"'(t,,u)—.[.5’.(t,,u‘)dA,‘3’(t,,u) is the
0

martingale representation of A,‘2’(t,,u) with (t,,u) is the estimator of

H_§","'(t,,u) =P(L, <t, <Y,,L2 <u SY,.63 =1.C2 =j, Y, > L,,Y3 > L2). Then for fixed

t,, J; (/A\2"(t,,t2)-A2(t,,r2)) converges to a Gaussian process with mean zero.

Further, for fixed t,,S, (I2 |t,)= n(1—dA2(t,,s)) is the Hadamard differentiability
.\'SI_,

of the product integral. Thus the asymptotic normality of A2,‘ (t,,t,) carries over to

the asymptotic normality of the corresponding estimators of S, (I, |t,). This showsA I‘ o u
that «5 (S2 (I, |t,)—S2 (I, |t,) converges to a Gaussian process with mean zero.

Since 5‘/'(t,) is strongly consistent and \[;(§2lA(l2ll',)-S'_,(I3|I,) converges
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weakly, the first factor of (5.32) weakly converges to a Gaussian process. Since

S2 (I2 It.) is bounded and J; <31," (t,)—S, (I,  converges weakly. the second factor_ A /.
converges weakly to a Gaussian process. Thus. J; (S (t,,t3)—S(t,.r2)) weakly

converges to a Gaussian process. On similar lines we can show that
A I.

\/Z (S2 (I,,t2)—S (t,,t2  converges weakly to a Gaussian process with mean zero.

A I.

Thus, x/;(S.» (t,,t2)—S(tl,t2)) converges weakly to a Gaussian process with mean
A I.

zero and the asymptotic variance of J; S . (t,,t2) is

“(M2 (IHIZ) : CZ (’1»’2)°'1(/I2 (’I~’2)+(1 —C(’1»’2))2 Gzlm ([142)

+c(q,5)(1—c(n.Q))aD‘(QJZ), (533)

where o'k‘“2(t,,t2) is the asymptotic variance of \/; §k/’(t,,t2) k = 1,2 and

o',2"(t,,t2) is the asymptotic covariance between J; 31],‘ (r,,t3) and J; 3'2,‘ ([l,[2).

From Appendix B of Lawless(2003), the asymptotic variance of I; II‘ (I, .12) is

0'1"‘)! (t,,t2)= (S,"(t,,t2))2 Asvar(log.§’.L(t,,t2)).

Now,

x/E(logsh/i(t,,t2)—logS(I,,t2))=\/E(1k,"(rl,0)—A,(t,,0)+/kg"(t,,I3)—A2(t,,l2)).

Thus the asymptotic variance of \E (l0g§|l- (t,.t3)— logS(t,,t3  is given by

I 9E  < Y1/ell/E dun.-an =1~Cu =i)+

S,‘”'(du,,0)
'7

(S‘(ur~0>)'
Ifl“<msKQ
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S'(t,,v2")

71 '1 1
I(Lll<tl<KI*1’lI<};I>}3IEdv2=52I=1’C2I=j)

Sim. itwdvz)

(S'(r.»v;))2
+I(Li/ <11 <Y1/-[Ly <v2 SY2/)

Thus,, 2 ’- " 1 .
0',”')'(t.Jg):(S|I'((1,5)) E  . _ 0)](L1/ < Y:/vyu E du1v§u =1’C|l =’)+0 5

S,"" (du,,0)

(s' (u,‘,o))'

72 '2 1
[(11/<’|<Yi/=L1/<)3Ia}/E/edV2v62I=1=C2I=j)

Sum. (ti , dvz)

(s' (M; ))2
+1(L1/ <’I < Y1/J42: <"2 SY2/)

Similarly the asymptotic variance of \/; (log 32/‘ (1, ,t2 ) — log S((,,t2  is given by

°'2U')2 (W12):

(S21-(tl,(2))2 E  < Y,,,Y,, e du,,L2, <t2 < Y2,,6,, =l,C,, =1’)0 3
U)’

+ ma, <u. SY1/=L2/ <12 <
(S‘(u.1r2))2
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E:l{S-(é‘v:_)1(L2/ < Y2/-Yy EdV2~62I =l=C2/ =J')+

S,(2)\(O~dv2) ] 2

7

(S'(0~vs))’
I(L2I SV2 SY2/)

The asymptotic covariance between 3'1,’ (t,,t2) and 2/1 ((1,5) is

o',2"(t,.t2)= S,"(t,,t2) S3"(t,,l2) Ascov(log§.I’ (z,,t3),log§gl‘ (4.13)).

which is given by

(4,5): nS," (4,5) 5; (M2)  (t,,t3)—A, (,,,t2))(K." (t,,O)—A, (:,_,0))+
I.

(K/' (t,,t3)—Al (t,,t2))(/A\; (l,,t2)—/\2(t,,t2))+

I.

/i2"(o,:2)_A2(o,z2))(R, (t,,0)—A,(r,,O))+

(R2"(z,,:2)—/ll(z_;2))(/12"(o,;2)—A2(o,z2))]}

Theorem 5.5

Under the assumptions of Theorem 5.1. for all (t,,t2)eQl,

\[I’_Z (15/‘(t,,t2)—1~",/(tl,t3)) converges weakly to a Gaussian process with mean zero

and variance givenby(5.38); i=1,2... 7, ;j=1,2... }/2.

Proof

A1. _ A112)‘

\/;(I:fiU,'([l,t2)—F;I(t|’t2)) = J; :[z Sc (H1 ,u:.)SI/ (d1/Isdl//2)
00 S (u,_,u3_)
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S (u,',u2')
AC

00Z J; "J.’=I[5‘:'(u, ,u2‘)§l,W(du,,du2)_

A/- AHZ)’ A’ Alli)’
5. (u, .u3 )s,, (du,,du2)+SL'(u, .242 )S,, (dupduz)

S'(u,’,u,_’) S‘(u[,u2')

S(u, ,u2 )S,‘,m°(du,,du2)

S'(u]',u2')

AlS; (ul',u2 )§f,”" (du,,du2)
= J; 5[(:I[\(k§'(m»u§)\S-(uf.u2)) §.(ul_’u2_)S_(u|_’u;)

1 Al A112)‘
+ SE’ (ulfiuz )5” (du|’du2)_Sl/. (“I ‘u2- )S(l2~)- (du|,du2))]. (5.34)

I:

.51,’ — S“ -9 0 and Sup —-) 0, for large n, (5.34) becomes‘)1

A /.-3)Since Sup
‘II

'I’2 S u $142 1 n A Q I ‘
‘/E  <Y|/syn €dul’L2I <Y2/=Y2/ eduzaou =02: =1aCu =’=C2/ =1)7. 1 " . _ _

,S€(I1,)(du1,du2)]‘(;Z1(L|,<ul<K,,L2,<u2 <Y2,)—S (u, .112I=|

S(u, .u3 )S,‘/'2’'(du,.du3) .7

(S'(u,’,u2‘))_

By multivariate central limit theorem, the terms in the simple brackets of the

(5.35)

first and second integrals converges to a mean zero normal variate. Then the

asymptotic normality of (5.35) follows from the delta method using the maps

(x, , x2) —> (x, + x2 ) (van der Vaart and Wellner (1996)).

To find the asymptotic variance, let
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’*'=S u’,u2 .
AI'=_l'l.@I(L1/ < Y1I=Yu E d“|vL2/ < Y;/~Yy 5 ‘M22611 =62: =1=Cu =iaC2/ =1)

0 o S (“I vuzl

(5.36)

and

S(uI «"2 )S'l'l2).(dul‘du2).B" = HI(L,, <u, S Y,,.L2, <24: 3 Y2,) 2 (5.37)00 (S‘(u,_,u2_))
Thus, the asymptotic variance of the process is

a‘2 (z,.z2) = E(A" — B" )3 (5.33)
and a consistent estimator of variance is

A I. A /. 2
2 A = B

where :1,‘ and 3/1 are obtained using (5.36) and (5.37) replacing the unknown

quantities by their estimators.

5.5 A Simulation Study

To assess the empirical performance of the estimators of S(t,,l3), we

carried out a series of 1000 simulations of size n from a Gumbel’s (1960) bivariate

exponential distribution with survivor function

S(t,,t2)=exp{—t, —r2 —/1tlt2},O <t,,r2 < 00,0 3 /1 31 (5.39)

with /1 = 3 and 5 with various sample sizes n = 20, 50 and 100.

We generated censoring times (Z1,Z2) from the Gumbel’s (1960) bivariate

exponential distribution with survivor function

G(t,,t2)= exp{—t1—t2 -9412} .0<t,.t3 <00, 0:6 51 (5.40)
with 6=0.1.

We consider two bivariate distributions for (L, , L3) . namely
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(a) a Gumbel(1960)’s bivariate exponential distribution with survivor function

S(t,,t3)=exp{—t, -13 —r}t1I3} , 0<Il,(2 <oo . 0 S 7] S1 (5.41)

with 77= 0.1 and 0.5 and

(b) an independent uniform distributions in the intervals (0.1)x(0,0.7). (5.42)

We used the algorithm given in Devroye (1986) for generating the

observations from Gumbel’s (1960) bivariate exponential distribution. We

considered two types of causes C,. i = 1,2. The causes 1 and 2 are distributed

randomly among the observed failure times with equal probability. We found the

estimator of S (twig) using the equation (5.27) at five time points. The empirical

biases and empirical variances of the estimators are given in Tables 5.1and 5.2. A
Al.

careful examination of the tables reveals that the biases and variances of S (t,,t2)

decreases with increasing sample size and that the biases and variances are small.

To study the performance of the estimators of F,,(r,,t2), we generated

lifetimes  from the Gumbel’s (1960) bivariate exponential distribution given

in (5.39) for /1 = land 3 with sample sizes n = 20. 50 and 100. The censoring times

(Z,,Z2)and truncating times (L,.I.2) were generated from the same distributions

given in (5.40), (5.41) and (5.42) for the same values of the parameters. The

estimators of F” (t,,t2) 1' =l.2;j =1,2; are computed based on the equations (5.28)

and (5.29). The empirical biases and empirical variances of the estimators are given

in Table 5.3 and Table 5.4. We observe that the biases and variances of the

estimators are small. As sample size increases. the biases and variances of the

estimators decreases.
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Table 5.1: Biases (X103) and Variances (><10° ), given in brackets. of  (t,,t3) at

Gumbe1’s (1960) bivariate exponential distribution

five (1,./I2) pairs for ¢9=0.1 and various values of /1 and rywhen (LHLZ) has

n (t,,t2) 77 Bias Var 4- '7 Bias Var /1 77 Bias Var’ 4 77 Bias Var
20 (1,2) 0.1 41.1 375 3 0.5 34.5 91.6 5 0.1 34.9 118 5 0.5 32.4 44.4

(1,3) 41.4 259 39.8 261 32.8 99.1 32.7 77.4
(1.5,2) 38.4 204 37.1 149 32.9 57.9 32.0 45.1
(2,1) 38.] 250 38.2 176 31.7 40.7 31.3 22.2
(2,2) 37.4 171 41.0 222 33.7 59.9 32.9 58.9

50 (1,2) 18.2 68.9 17.9 74.6 14.1 11.9 13.4 13.1
(1,3) 19.0 121 16.1 22.2 13.9 11.7 13.9 11.9
(1.5,2) 16.7 34.8 16.8 55.5 13.8 8.22 13.7 13.8
(2,1) 18.6 91.3 17.6 10.3 13.8 18.6 13.2 4.63
(2,2) 15.7 24.5 15.6 18.6 13.2 5.91 13.7 10.2

100 (1,2) 10.7 38.4 9.9 19.1 7.3 4.57 7.68 8.01
(1,3) 9.1 11.7 8.6 10.6 7.8 6.92 6.99 2.78
(1.5,2) 9.0 8.98 9.4 12.5 6.98 2.65 7.08 3.27
(2,1) 11.5 47.2 8.9 16.1 7.02 2.18 6.99 3.20
(2,2) 8.2 9.28 8.3 7.7 7.09 4.62 7.03 2.12
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Table 5.2: Biases (x 103) and Variances (x106 ), given in brackets, of 8’ (1, ,t2) at

five (t,,t2) pairs for €=0.1 and various values of /I when (L,,L3) has independent

uniform distributions

n (1, ,t2) /1. Bias Var /1. Bias Var
20 (1,2) 3 37.5 16.8 5 36.7 121

(1,3) 32.9 81.9 36.6 99.9
(1.5,2) 36.2 98.9 38.1 210
(2,1) 33.9 55.9 32.4 48.2
(2,2) 33.3 88.4 35.4 82.2

50 (1,2) 14.1 12.0 15.8 22.3
(1,3) 13.9 10.4 16.3 36.4
(1.5,2) 13.3 5.15 15.7 34.5
(2,1) 13.6 9.05 16.1 52.4
(2,2) 13.4 6.26 15.6 23.0

100 (1,2) 6.97 2.91 8.68 19.5
(1,3) 7.3 3.57 8.51 11.4
(1.5,2) 6.9 2.51 8.28 8.67
(2,1) 6.89 1.78 7.73 6.79
(2,2) 6.96 2.79 7.87 6.75
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Table 5.3: Biases (x 103) and Variances (><10° ), given in brackets, of  (!l,t2) at

three (t,,t2) pairs for 19=0.1 and x1=1 when(L,,L2) has Gumbel’s (1960) bivariate

exponential distribution

n ([1 J2) ,7 1711] (1, ,t2) }':1I2(t,,t2) 17"i'1(t,,t2) 13:2 (1, J2)Bias Var Bias Var Bias Var Bias Var
20 (0.l.O.6) 0.1 -3.5 3 -3.5 10 -3.5 14 -3.0 24.9

(02-1) -13.9 53.9 -13 93.3 -13.4 33.1 -13 91.5
('-7-0-5) -49.4 920 -51 635 -53.1 553 -49 353

50 (0.l.0.6) -3.29 4.35 -3.3 4.17 -3.29 4.35 -2.5 0.1
10.2.!) -13.3 33.4 -15 25.9 -13.3 35.7 -11 13.6
('-7-°-5’ -44.5 130 -49 411 -49.7 302 -42 224

100 (0.l.0.6) -3.12 0.1 -3.1 0.1 -3.13 0.1 -2.0 0.1
(02-1) -13.2 4.72 -14 10.2 -13.0 4.15 -10 4.79
“-7-0-5) -33.9 101 -43 401 -44.7 291 -41 200

20 10.1.0.6) 0.5 -3.00 25.0 -3.5 11 -3.5 15 -2.9 27.7
(02-1) -12.3 131 -13 34.2 -13.5 63.4 -14 22.5
('-73°-5’ -43.7 365 -46 1124 -44.1 973 -44 774

so (O.l.O.6) -2.5 10 -3.3 4.17 -2.3 12.6 -2.6 17.7
(02.0 -11.9 51.7 -12 47 -12.5 56.7 -12 17.2
“-7-0-5) -42.3 432 -40 353 -33.7 649 -42 525

100 (0.l.0.6) -1.41 4.00 -3.2 2.65 -2.1 0.1 -2.4 0.1
(02-1) -10.3 4.10 -11 10.2 -12.3 41.2 -9.7 0.1
('7-°-5’ -41.0 213 -33 142 -36.1 471 -40 213
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Table 5.4: Biases (x103) and Variances (x 10“ ), given in brackets, of  (I, J2) at

three (t,,t2) pairs for t9=0.1 and /1 =3 when(L,, L2) has Gumbe1’s (1960) bivariate

exponential distribution

H (M2) ,7 El} (t, ,t2) IA712 (t, ,1.) 17"11(t,,t2) 1752 (t,,t2)Bias Var Bias Var Bias Var Bias Var
20 (0.1,0.6) 0.1 19.1 241 15.4 366 15.8 279 16.1 327

(0.2,1) 38.9 1424 27.8 996 28.6 1221 27.1 975
(1.7,0.5) 48.9 4135 41.3 4755 46.5 3327 45.8 4433

50 (0.l,0.6) 18.1 160 13.1 60.7 12.6 50.6 13.1 79.9
(0.2,1) 32.9 546 22.7 459 26.5 246 22.7 429
(1.7,0.5) 46.5 2306 39.2 1942 38.6 2187 39.6 3888

100 (0.1,0.6) 16.2 99.7 11.2 41.3 10.3 40.1 10.2 66.7
(O.2,1) 27.5 355 21.3 263 25.2 204 16.2 378
(1.7,0.5) 45.3 984 36.7 677 34.9 426 33.5 2263

20 (0.1,0.6) 0.5 17.6 489 16.2 287 15.5 277 15.1 157
(O.2,1) 64.7 600 6.47 821 69.4 626 69.4 725
(1.7,0.5) 43.5 6855 63.9 5464 48.4 6145 55.4 5516

50 (0.1,0.6) 14.2 91.7 15.2 113 15.3 150 14.1 113
(02.1) 35.0 549 3.75 704 32.7 509 36.7 698
(1.7,0.5) 39.6 2012 55.1 1570 47.6 1837 51.6 2270

100 (01.0.6) 13.3 10.7 14.3 98.6 15.1 113 13.1 89.9
(O.2,1) 29.7 368 3.61 312 36.7 418 30.0 579
(1.7,0.5) 38.9 812 49.7 897 41.2 913 48.7 1261
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5.6 Conclusion

In this chapter, we developed a nonparametric estimator of the bivariate

survivor function for competing risk models using cause-specific hazard function

under random left truncation and right censoring. This method is a generalization of

the procedure for the bivariate lifetime data in non-competing risk set up given in

Gurler (2004). We proved the consistency and weak convergence of the estimators.

Then we developed nonparametric estimators of cause-specific sub-distribution

functions for bivariate competing risk models. The weak convergence and strong

consistency of the estimators are established. Simulation study shows that the bias

and variance of the estimators are less. The extension of the method to the

multivariate set up is straightforward. The estimation procedure and results presented

in this chapter are summarized in Sankaran and Ansa (2005b).
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Chapter 6
A LOCAL DEPENDENCE MEASURE

FOR BIVARIATE LIFETIME DATA

6.1 Introduction

Let (T,.T3) be a nonnegative random vector representing lifetime of a two­

component system. For example. (T1.T3) could be cohort study ages at diagnosis of

breast cancer of mother and daughter or lifetimes of components of two components

in an industrial system. In the analysis of lifetime data. it is often of interest to

estimate the degree of dependence between lifetimes. Accordingly. Clayton (1978)

S(t,.r2)D,D3(S(t,,I2))

D, (s(z, ,1: ))D3 (s(z,.:3 ))

S(t,,l3) = P(T, >l,.T2 > (3) is the survivor function of  and D, denotes the

whereintroduced a measure of dependence as €(ll.t3) =

6 . . . . . .
operator —— j = 1.2. This function may be interpreted as. ratio of the hazard

6!
I

function of conditional distribution of TI given T3 = t. to that of T, given T3 >t3

The value of 6’(t,,t3) is greater than 1. 1 or less than 1 according to whether there is

a positive association, no association or negative association between the two failure

times at (t,.t3). Later Oakes (1989) defined a measure of dependence as g(t,.t2)=

which is the conditional version of Kendall's concordance measure

(Kendall. 1938). Later. Fan et.al. (1998) have proposed two nonparametric summary

measures of dependence that are weighted averages of the above two local

dependence measures. Recently, Fan et.al. (2000) have proposed a class of weighted

dependence measures. which includes the measure in Fan et.al. (1998). as special

CHSCS.



Basically. the local dependence measures discussed above are the

generalizations of the Kendall”s concordance measure. The measures given by Fan

et.al. (1998) and Fan et.al. (2000) largely depend on the choice of weight function.

Further. the computations involved in these measures are little complex. Motivated

by this. in the present chapter. we present a simple measure of local dependence

using covariance residual lives. introduced by Nair et.al. (2005). The proposed

measure is the generalization of the well-known covariance function. Generally, zero

covariance (correlation) does not imply independence. However. in Section 6.2. we

prove that zero covariance residual life implies independence between the variables.

In Section 6.3. we propose a nonparametric estimator for the dependence measure

and its asymptotic properties are studied. The simulation study showing the empirical

behaviour of the estimator is presented in Section 6.4.

Testing independence for bivariate lifetime data is important in many

biomedical studies. For example. leukemia patients after bone marrow

transplantation are at risk of acute graft versus host disease and cytomegalovirus. The

times to these two diseases may be correlated. For patients with retinopathy in both

eyes, the times to blindness of the two eyes may be associated due to natural pairing.

Several researchers have developed tests of independence. Oakes (1982) developed a

concordance test for independence in the presence of censoring. Cuzick (1982).

Clayton and Cuzick (1985). Prentice and Self (1985) and Dabrovvska (1986) have

focused on semi parametric approaches. Shih and Louis (1996) present two

alternative test statistics that are based on the covariance process of the martingale

residuals for the marginal distributions. In Section 6.5, we develop a simple statistic

for testing independence among the variables using the covariance residual life

function. Finally. in Section 6.6. we illustrate the test procedure for a real data set.

Section 6.7 gives a conclusion for the chapter.

6.2 Covariance Residual Life Function

Let (T,,T3) be a random vector defined on the positive octant R3’ =

{(t,,t2)|I, >O.t3>O} of the two dimensional space with absolutely continuous

distribution function F(t,,I3). l.et S(I,.t3) = P(T, >t,.T3 >13) be the survivor
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function of  Assume that S(I,.t2) is differentiable and the joint probability

density function f(t,.t3) exists. Further we assume that E(T,T3 ) . E(Tl ) and

are finite. Then the product moment residual life function of (T,.T3) is defined as

iw(qJg = E[aj—4x7;—L)n;>4Jg>5].
Then the covariance residual life function (CVRL) is given by

C(t,,t3) = A/I(t,,t2)-r, (tl.t3) r2(r,,r2)

where

q(q,5) = E[I;—z,|z >4,7;>:2]
and

r2(t,.t2) E[T3—t3|T,>I,.T2>tz]

are the mean residual life functions in the bivariate case defined by Arnold and

Zahedi(1988)

Note that C(0,0) =  ) -   ) is the covariance between T, and  It is

easy to see that M (I, .13) can be written as

1 72:!)
‘HS (u, . 142 )du2dul.

Theorem 6.1

The variables T, and  are independent if and only if (‘(Il.I3)=0 for all

(z,,z2) e R;

Proof

When T, and  are independent. we have

r,(t,,t3)= r,(t,,0) (6.1)
and

r3 (t],I2)= rl (0.13) (6.2)



Further, S(t,,t3) S(t,.O)S(0.I3).
which leads to

A/I(t,,t2) = r,(t],0)r3(0,t2). (6.3)
From (6.1), (6.2) and (6.3), we get

C(r,,t3) = 0.

Conversely,

C(t,,I3) = 0

implies

M(t,,t2) = r,(t,,l2)r3(t,,t3)

01'

fiS(u,,u2 )du3du,=S(!,,t3)r, (t,.I2)r2(t1,t2) (6.4)
'1':

Differentiating (6.4) with rsespect to 1,, we obtain

-IS<z.,u»>du» : r.(mu<z..r.>%l+s<z.,:.>ri<w°""“’2’,2 ' ‘ ' at, ' ax,
6) -. 1

+ ‘9([I-’2)’l(’I-’2)0|

or

65 t,t, 6r t,t,
_r2(llat2)= fi(’uafzl*2(’.~’zlm (alll h)+"2(’I~’2) lgtll )

6r,(I,.t,)+r z,r2) - - (6.5)'(' at‘
From the relationship

68 (I, ,t,) 67; (I, ,t,),. ——-= — 1 - S ., .’i((I.t-) an [ + all (II I-)
(6.5) becomes

ar 1.1, ar r.r,
/r2(t1,t3) = —r2(r,,t3)[1+ '2! )]+r2(z,.t,) '2' )

+ r 5"2(’Iv’2)|<tl‘t2)
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01'

’i (’1~’:)ar2 gill) = 0'
I

Thus r3 (t,.t3) is a function of I, alone and hence r3 (t,,t3)= r: (0,5).

Similarly, (6.4) leads to r, (t,.t,_)= r, (r,,0). From Nair and Nair(l989) it follows that

T, and T2 are independent.

Now. we propose (f‘(t,.I3) as a measure of dependence (association)

between two variables. The value of C(r,.I3) is greater that zero. zero or less than

zero according to whether there is a positive association. no association or negative

association between the two failure times at (t,,I_,). For example, consider bivariate

Lomax distribution with survivor function

S(t,,t2) = (1 +a,t, +a2t:) "[7 I,,t, >0; b>2.

Then

(1+ a,t, + (125 )2

CW3) : a,a2(b—1)3(b—2)

which is positive. Thus T, and  are positively associated.

For bivariate Dirichlet distribution with survivor function. l 1- I
S(t,,r3) = (1—p,t, —p.,I3)' 0<t, <—; 0<I2 <i.pl 102

C (t, ,t2) is obtained as

(1 ‘ Piti T /7212 )2

COW) : p.p3(q+1)3(q+2)‘

In this case C (t,,t2) is negative and thus 7, and T, are negatively associated. For

more properties and characterizations. one could refer to Nair eta]. (2005).
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6.3 Estimation of Covariance Residual Life Function

In this section. we propose a nonparametric estimator of C(t,,r3) and study

its properties.

In practical situations. lifetimes may not be fully observed because of

loss to follow-up or the finite duration of the study. Under the bivariate right

censoring, the observable variables are given by Y = (Y,.Y3) and 5 = (§,,52)

where K: min(Z.Z,  1' = 1,2 with Z = (Z,,Z2) is a pair of random censoring times

and 6, = 1(T,=Y,) and 0",: I(T3=Y2). Let H(t,,l3) and G(t,,t2) denote the

bivariate survivor function of Y and Z respectively. We further assume that (T,,T3)

and (Z,,Z,) are independent, which gives

H(t,,I2) = S(r,,r2) G(1,.r,).

Suppose now that (Y,,,l’2,) and (6,,,52,); i = l,2...n are i.i.d samples, each

having the same distribution as (K5) .

Then, the estimator of C(I, .13) is then obtained as

/1| /1,

€'(t,,r2) = A J‘J‘.§‘(u,,u2)du3du,

where §(t,,I,_) is any non-parametric estimator of S(t,.I3) and (b,.b3) is such that

b = sup{t, |S(t,,t2) >0}; i = 1,2. In the complete sample setup. E‘(t,,t3) could beI

obtained by replacing 3‘ (1, J2) with the usual empirical survivor function

Sn<tl’t2) : %i|I(7ll>tl’T2I>t2)'
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When the observations are censored. in the present study, we consider
)\

S(t,,t2) as the estimator given in Dabrowska (1988), which is the extension of the

well-known Kaplan-Meier (195 8) estimator to the bivariate set up.

Now we derive the asymptotic properties of CA'(tl ,1: ).

LetD= [0,b1]x[0,b3] with H(b,,b3)>0.

Theorem 6.2

Sup I€‘—CH—>0 almost surely. In other words, the estimator E'(t,.t3) isI)

uniformly strong consistent.

Proof

Denote A//\I(t,,t2) =  )L I|_..I2 ,

Then

SupHE'—C” S Sup ;,r:—r,r2H (6.6)I) I) if — M + SupI)

where I‘:(I,,t3) and ;2(r,,t3) are the estimators of r,(r,.!2) and r3(r,,t2) obtained
A

by replacing S(t,,t2) by S(t,.I3)

Thus, (6.6) can also be written as

Sup E‘—CH 5 Sup M—A/1”+Sup ;:,;2—r,rl"I) I) I)
which gives

Sup S Sup  —MH+Sup  -1‘:  +Sup r3  -13) (6.7)I) I) I) I)
Now we prove that Sup  — A/I” —> 0 almost surely.I)

Stfip II//\1—M” = Sup (3’(t,.t3))m| bill/i:I‘.§’(u,.L42)cIu2du, —(S(t,.t3))‘l hjh:I.§(u,,u2)du2du,
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S i:'§(bl*b2 )S(bI ~b2 )]_l i>ilS(’1-V12)h:lh:li§(“I~“:)
L

—S(u, .112 ))a'u,du3 +
[‘§(’I-13)_S(’1v’2)]h:ih:l-S(“I~“2)d“2d“I

From Dabrowska (1988), it follows that Sup
1} 3-8“ —>0 almost surely

which implies Sup M — M” —> 0 almost surely. (van der Vaart and Wellner (1996)).I)

rj—r, ‘ —> 0 almost surely for i = 1.2. Therefore,Similarly, one can prove that Sup
4')

since r, (t,,t2) and r3 (r,,l3) are bounded. the second and third factors in the right

side of (6.7) approaches to zero. This completes the proof.

Theorem 6.3

For (tl,r2)e D. x/;((A"(t,,t2)—C(t,,t3)) converges weakly to a Gaussian

process with mean zero and asymptotic variance given in (6.10).

Proof

\/;(6(l,,I2)—C(t,.I3)) = W (§(/,,r3)) ‘hm-§(u,.u3)du3dul

,(S(I,.I3)) 1,]/].9(u1.u2 )a’zz3du,

,(§(l,.t3)2)_lhj.§(ul.t3)du,h:[.§(t,.u3)du3

+(S (!,,t3  Jr9(u,.t2)du,h_l.9(t,.u2 )du3

/II I):

= J? (§‘(t,.t.)S(t,.r2)) [S(t,.I3)_H§(u,.u2)du3du,
1, :3

1-, h_.

—S (I, .12 ) I IS (ul .113 )du3du, J
’ I
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—1

—(:S\‘:(l,.I:)S3(t,.t3).‘) [S3(t,,t2)hI§(u,.t3)du,b:|‘3'(t,,u3)du3

/‘K

,3? ((1.13) :iS(u,.r,_ )du, :[S(l,,u3 )a'u3]—i (6.8)

To prove the theorem we follow the approach for the proof of asymptotic

normality given in Fan et.al. (2000, p.189). Since H(t,.t_,) = S(t,,t3) G(t,.t2),

Sup [7—Hu—)0, Sup CA}—GH—>0and Sup .§'—SH—>0. (6.8) is asymptoticallyI) /) I)
equal to

‘/;(E(’I~’2)_C(’I~’2)):

bl H
\/E[ 1  2L(‘.Y2k Zu3)—H(u,,u3)]du,a'u,H([l’t2) "H

bl/,2

.HH(u,.u3 )du1a’ul 1 H

_Z1(Y|k am 2:2)-H(r.§z2)]H2(,l*[2) ”k=|. III
— J—Z1(}’,A, 2t,,Y2,( 2142 )du2 — IH(t,,u2)du3J
hf

IH(t,.z13 )du3 I,1 Al] N ’ , hl
_ [l¥;§1()’,k 2u,,1'3k Zt3)du, —I:iH(u,,I3)a'u,J

2

‘ii :[H(u,,t2)du, l‘H(t,,u3)c1z:3[%i;I(}’1k 21,.)/M. 2z2)_ H(t,.I3 )]]. (6.9),: /(=1H3 ([l’t2 I

By multivariate central limit theorem, each term in the simple
braces of (6.9) converges to a mean zero normal variate. Thus the asymptotic

normality of (IP13) follows from the delta method using the maps

(a,,a2,a3,a4,a5)—>(a, +a3+a.‘+u»x +a5)(see van der Vaart and Wellner (1996)).

Then the asymptotic variance will be obtained as
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/)| in:
1

c»2(;,,t3) = E H(tl‘t3),”1(}’,,( 2u,,Y2k 2u2)du_,du,

/1| h:

_HH(ul.z43)du3du,

‘ 1(Kk 2!”)/Ila‘ Zia)

_[H(u,,t3)du, h:
_ y — '4 7 — w d a

H3(t.,I;) .3I[(YH >[' YJ M’) u;
bl

IH(tl‘u2)du2 ;,|

_WIJ1(xk 2u,,Y3k 2t3)duI2 /1] I‘: 2
+_,?1(Y,k 2r,.r;A, 2I2)JH(u,,t3)du1JH(t,.u2)du3 (6.10)H (tl,t2) ,1 ,2

This completes the proof.

Remark 6.1 A consistent estimator of 0'3 (IP13) is given by

A2 " I h:
0' (z,,z2)=  all t )’i Z 10,,‘ Zu, Y” 2%)= | 7 '1=’1":=’2

I», h, A
Z H("I uv)

1(Y,k 2t1,Y,,‘ 2r,)
H (M)

bl A
H(u,.t,) h

—"-'[’;12([ I) 2103* 2:, L,‘ >u,)1~ " _'
bl A
Z H(r,,u )du, I

—‘="=A, Z1(};k2u, ),k2z,)
H (IP17) "z='|

2 hi A > ”: A ­
+fi+(j1(Y,k24,52:2)ZH(u,,z3)ZH(:,.u2) (6.11)fl,’-, "1='I "2=’J



where I7(tl.r3) is the usual empirical estimator of H(t, J2)

6.4 A Simulation Study

To study the performance of the estimator. we carried out a series of 1000

simulations each of size n from a bivariate Dirichlet distribution with survivor

function

S(l,,t3) = (1-1, -5)". 0<r,.r3 <1. 0<r, +1. <1

for q = 3,5 and 10 for different sample sizes n = 20. 50 and 100. We generated the

observations using the algorithm given in Gentle (1998). Simulation results are given

in Table 6.1. In the table we give the empirical bias and the empirical variance ofthe

estimate of ("(11,12). Here bias. B(t[,t2) = (‘,(tl.I3)-(.'(t,.I3) where (Y, is the

average of estimators of C(t,.t3 ) obtained from 1000 simulations.

From Table 6. 1 it follows that

(i) the empirical variance decreases with increasing sample size. as is expected.

(ii) the empirical bias is increasing in [1 ((3) for every fixed I2 (1,).

(iii) for q = 3 and 5 the empirical variance decreases in t, and (3

6.5 Test for Independence

In this section. we give a simple method for test of independence between

two variables using covariance residual life.

It is well known that the zero covariance (correlation) between two variables

does not imply independence. From Theorem 6.1, it follows that zero covariance

residual life implies the independence among variables. which can be used for

developing test ofindependence. The null hypothesis is (‘(11.13) 0 for all t,,t3 20.

~51 (€'(z,.:.)Therefore one could use D“ = Sup fie as a test of independence where
g<;.<«.. o—(z,.r,»<.<I“ ‘

8'(t,,t2) is the estimator of the standard deviation obtained from (6.11) and to is



total time of the study period. From Theorem 6.3. it follows that we reject the null

hypothesis when D" exceeds §iI(1—a/2) at a significance level. where Q is the

standard normal distribution function.

Table 6.1: Empirical Bias (x 103 ) and empirical variance (x 10" ). given in brackets,

for the estimator of (‘(1, ,1] ) for q = 3.5 and 10

q (twtz) 20 Sampge Size 100
(0.240, 0.225) -0.164402(1.26) -0.005657(.046) —0.005279(.042)
(0.283, 0.275) —o.095203(.537) -0.003535(.021) —0.003191(.01s)

3 (0.325,0.326) -0.044492(.226) —0.00l814(.009) -0.00l096(.007)
(0.368, 0.377) -0.0l2462(.051) —0.000745(.003) —0.000690(.002)

(0.41 1. 0.427) -0001 184(.0O4) -0.000009(.0004) -0.000006(.0004)

(0.453, 0.478) 0.000067(.00007) 0.000055(.000004) 0.000043(.000003)

(0.150, 0.172) -0.097042(.819) —0.003906(.030) **il6T002317(.026)

(0.185, 0.206) —0.062710(.566) —0.002849(.207) -0.002192(.016)

5 (0.220,0.240) -0.042367(.430) -0.002644(.O15) —0.002341(.011)
(0.255, 0.275) -0.020960(.196) —0.001293(.012) -0.001l63(.008)
(0.290, 0.310) -0.008305(.063) -0.000590(.O61) —0.000142(.005)

(0.326, 0.344) -0.002044(.O16) —0.000043(.002) -0.000038(.002)

(0.075, 0.068) —0.0i72”5’(.11$*‘I0T000§’3(.002)"” —0.00050i1"(TtW

(0.081, 0.082) —0.014537(.092) -0.000419(.002) —0.000404(.001)

10 (0.037,0.095) -0.01l989(.008) -0.000288(.002) —0.000117(.001)
(0.094. 0.109) -0.011073(.031) -0.000269(.OO2) -0.000160(.001)
(0.100, 0.123) -0.008246(.063) —0.00021s(.002) -0.000102(.001)
(0.106, 0.136) 0.006504(.044) —0.000096(.002) —0.000033(.001)
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6.6 Data Analysis

In this section. we obtain the estimator of C(t,.t3) for the censored data

given in Table 4 of Shih and Louis (1996. page 1446). Let (T].T3) represents the

days of survival of closely matched and poorly matched skin grafts on the same

person. Table 6.2 provides the estimator of C(t,,t3) for the data set and it is easy to

observe that 6‘(t, ,t2) is non-positive.

Now we apply the test of independence using the statistic D” to the data of

Shih and Louis (1996). Although the sample size is small to draw conclusions based

on asymptotic approaches, the data do illustrate the advantage of the new test. The

value of D" is 2.20282 indicating strong evidence against the hypothesis of

independence. Thus the result suggests that early failures are strongly associated with

pairing, which supports the arguments of Shih and Louis (1996).

Table 6.2. Estimate of ('(l,.I3)for the data set on days of survival of closely and

poorly matched skins grafts on the same person (* denotes censored observations).

r. :3 (“(1, .12)16 1 1 -8.07003
18 21 -8.12632
19 13 -5.05563
20 26 -14.9402
22 17 -7.05954
29 15 -8.41495 —
37 29 -5.72155
*57 15 T -5.5678
*60  26"“ ii ” 0

—: 63 W“ W.‘  T 0 ”m“_­93 26 L 0 T
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6.7 Conclusion

In this chapter, we proposed a local dependence measure between a pair of

failure time variables based on covariance residual function. It is shown that zero

covariance (correlation) residual life implies independence between the variables. We,

then give a nonparametric estimator for the local dependence measure. Asymptotic

properties of the estimator are discussed and a simulation study assessing the

performance of the estimator is also carried out. We further developed a procedure for

testing independence between two variables using covariance residual life function.

Finally, the procedure is illustrated with a real data related to skin grafts. The results in

this chapter are presented in Sankaran et.al. (2005a).
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Chapter 7

CONCLUSION

7.1 Introduction

The pervasive importance of competing causes of failure in life testing

experiments is established in literature. We come across lifetime data with more than

one cause of failure in practical situations such as engineering applications. medical

follow up studies. economics. demography, public health. actuarial science and

demography. A glance through medical literature also reveals that medical

investigators are often interested in multiple response variables. For example, times

to death or times to initial contraction of disease may be of interest for littermate

pairs of rats or for twin studies in humans. The time to deterioration level or the time

to reaction ofa treatment may be of interest in pairs of lungs. kidneys. eyes or ears of

humans. In reliability analysis. one often has systems with more than one component

and many systems, subsystems and components have more than one cause of failure.

For the purpose of improving reliability of the system. it is necessary to identify the

cause of failure down to the component level. Also. in the analysis of mortality data

on married couples, one would be interested to compare the hazards for the same

cause of death as well as to check whether death due to one cause is more important

for the partners’ risk of death from other causes. Accordingly, it is worthwhile to

develop estimators of the multivariate survivor function and cause-specific sub­

distribution function for competing risk lifetime data. Since parametric assumptions

for lifetime data. especially in medical studies. is not realistic. semi parametric and

nonparametric methods are popular in survival analysis. However. the non­

parametric and semi parametric modelling of multivariate competing risk lifetime

data under censoring has received less attention in literature. Under the assumption

that the censoring time and lifetime are independent. we developed nonparametric

estimators of cause-specific sub-distribution functions. We also derived a
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nonparametric estimator for survivor function in bivariate (multivariate) competing

risk set up using bivariate vector hazard rate. It is proved that the estimators satisfy

large sample properties such as strong consistency and asymptotic normality. The

procedure was illustrated with a real data set.

Apart from censoring. there are other features of competing risk lifetime

data that makes the estimation of survivor function and cause-specific distribution

function problematic. They are masking, missing censoring time and random left

truncation. The nonparametric estimation of bivariate (multivariate) survivor

function for masked competing risk lifetime data was presented in Chapter3. Chapter

4 addressed the nonparametric estimation of cause-specific sub-distribution functions

of multivariate competing risk model under missing censoring time. In Chapter 5, we

obtained nonparametric estimators for bivariate (multivariate) survivor function and

cause-specific sub-distribution functions for bivariate (multivariate) competing risk

data subjected to random left truncation and right random censoring. All these

estimators possess desirable properties such as strong consistency and asymptotic

normality. Simulation studies were carried out to study the performance of the

estimators. Finally, in Chapter 6, we developed a simple local dependence measure

for the bivariate lifetime data. The proposed measure could be used for testing

independence between the variables.

7.2 Future Works

In all the above-mentioned works. it was assumed that the failure

mechanism and censoring mechanism are independent to ensure identifiability of the

marginal survivor functions. There are many life-testing situations in which the

censoring mechanism depends on the failure mechanism. More generally. in most

duration models with right-censored data, the usual assumption of independence

between failure and censoring process is often doubtful. For example, it is known

that the development of AIDS evolves from HIV incubation period to the period of

clinical AIDS. The joint behaviour. especially their association. of the two duration

variables is of interest. The longer the first duration. the greater is the chance that the

second duration time will be censored. Wang and Wells (1998) considered

nonparametric estimation for duration times of two successive events in non­
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competing risk set up. The estimation of survivor function and cause-specific sub­

distribution function for bivariate (multivariate) competing risk models under

dependent censoring is a problem that is yet to be extensively studied.

The use of explanatory variables or covariates in a regression model is an

important way to represent heterogeneity in a population. For example. in a survival

study for lung cancer patients’ factors such as the type of tumour. the age and general

condition of the patient might be of importance. In industrial experiments on the time

to failure of electrical insulation an important factor is the voltage the insulation is

subjected to while in use. In clinical trials in medicine, the treatment assigned to a

patient may be considered as a covariate. These may be factors that are of intrinsic

importance for the application, like treatment in a drug trial. or factors that are

known or suspected to influence the hazard of event. In fact, when there are

covariates, we are more interested in the effect of those than in how the hazard

changes over time. Indeed the main objective in many studies is to understand and

exploit the relationship between lifetime and covariates. Accordingly, regression

models are used to study the dependence between lifetimes and covariates. The most

widely used semi parametric regression for univariate lifetime data is the Cox

proportional hazards model (see Lawless, 2003). Some general classes of regression

models for univariate competing risks, which are adaptations of ones widely used in

univariate survival analysis, are presented in Crowder (2001. Chapter 1). The

analysis of multivariate competing risk data in the presence of covariates is an area

of research that remains to be explored.
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