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CHAPTER I

INTRODUCTION

This thesis is a study of discrete analytic

functions defined on the lattices {(qmxO,qnyO); m, n E Z,
O<iq<§l; (xO,yO) fixed in ¢)'in the complex plane. In
discrete function theory, the differential operator of the
classical complex analysis is replaced by a suitable differ­
ence operator. Here a new difference operator to explain
analyticity in the above lattice is introduced and an
attempt is made to establish a discrete analytic function
theory namely q-monodiffricity of functions.

l. Principle of Discretisation

Discretisation of scientific models is initiated
much earlier in applied mathematics than the study of dis­
crete analyticity. Ruark [56] and Heisenberg [43,44] are
pioneers of this principle. Scientists felt dissatisfied
by the over-emphasis of the continuum structure imposed on
scientific models. The important difference between the
continuum and discrete structures is that infinitesimal
is not considered in the latter. In discrete theory, the
limit of a quotient of infinitesimals of the continuum
structure is replaced by a quotient of finite quantities.

l



2

Let us quote Ruark [56], "The differential chara­
cter of the principal equations of physics implies that
physical systems are governed by laws which operate with a
precision beyond the limits of verification by experiment.
This appears undesirable from an axiomatic standpoint".

The important aspects are the fundamental equations
must be capable of describing every feature of the experiment
and must not introduce extraneous or undesirable features.

Discrete hodon and chronon are introduced in

Physics in recent times. This shows an interest from the
side of scientists towards discretisation. Still, there is
a task before the scientist to overcome. The differential
equations are to be recasted in the form of difference
equations.

In Margenau's [52] words, "A word might be said
about the reason why physicists are often reluctant to accept
discreteness. If it were to be established as the ultimate
property of time and space, one or the other of two drastic
changes in the theoretical description of nature would have
to take place. One is the recasting of all equations of
motion in the form of difference equations instead of differ­
ential equations, and this is most unpalatable because of
the mathematical difficulties attending the solution of



3

difference equations. The other possible modification would
involve the elimination of time and space coordinates from
scientific description".

Heisenberg is a powerful advocate of this. To
simplify the problem, finite geometries of Veblen and others
can be utilised or a continuous space time of the Minkowski
form in which the events from a discrete lattice may be
recommended.

The most general form of a lattice is a sequence
of complex numbers, preferrably a dense subset which is also
countable. Accepting the postulate of rational description
in Physics, the lattice of rational points in the complex

plane:-i(p,q); p, q e Q, the set of rational numbers}- will
be the best choice to build a discrete function theory.

In the earliest works of discrete function theory,
the arithmetically spaced sequence, in particular the

Gaussian integers was considered. Later in the beginning of
this decade, a function theory was developed on the set of
geometrically spaced sequence. No work is done so far in
the general set.

Now discrete function theory has grown to an
established branch of Mathematics. The important problem
is as E.T. Bell puts, "A major task of Mathematics today
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is to harmonise the continuous and the discrete to include
them in one comprehensive Mathematics and to eliminate
obscurity from both“. Again a major task of discrete
analysts is the unification of known theories.

2. Historical Survey

The theory of discrete functions had its start
from R.P. Isaacs%5distinguishing paper [45], ‘A finite
difference function theory‘ in 1941. He introduced two
types of difference operators to describe analyticity in
the arithmetically spaced lattice namely monodiffricity of
first and second kinds [45,46]. He utilised basic triad
and tetrad to define these operators. He studied integra­
tion, residues, discrete powers and polynomials. Two of
the major difficulties in discrete function theory are
(l) the usual product of two discrete analytic functions
in a domain is not discrete analytic in that domain and
(2) the usual powers of z are not discrete analytic in any
domain in the discrete space. Isaacs himself realised
these aspects and introduced the analogues.

Later in 1944, Ferrand [35] introduced a discrete
function theory basing on another difference operator known
as diagonal quotient to describe discrete analyticity called
preholomorphicity. She made use of the basic square to
define this discrete analyticity.
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The development in discrete function theory, was
slow for more than a decade from Ferrand's work, though
Terracini and Romanov contributed in this decade to discrete

function theory. The awakening was made by H.J. Duffin [25]
in l956. He [25~5l] modified Ferrand's theory and extended
the results to the realm of Applied Mathematics by discuss­
ing operational calculus and Hilbert transform. Pioneers
of his school of discrete function theory are Duris [29,3o],
Hohrer [52], Peterson [51] and Kurowski [47—5O]. Duffin
[26] introduced rhombic lattice to develop potential theory.
He also studied Yukawa potential theory in the discrete space
of Gaussian integers [27]. Duffin and Duris [30] studied
discrete product and discrete partial differential equations.

The Russian school of discrete function theory of
which the leading names are Abdullaev [4-7], Babadzanov [5-7],
Chumakov [21], Silic [57] and Fuksman [54], has improved the
theory by introducing different lattice, construction of a
discrete analytic function and so on. In particular,
Chumakov [21] developed semi»discrete function theory and
Silic [57] investigated physical models in discrete function
theory.

Hayabara [4l,42], Deeter and Lord [23,54] developed
operational calculus for discrete functions.
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The school led by Deeter, whose distinguishing
figures are Berzsenyi [12-14], Perry and Mastin [24] has
studied discrete functions in Isaacs'sdirection. Perry
studied generalised discrete functions.

Abdullaev,Babadzanov and Hayabara developed dis~

crete theory of higher dimensions. Kurowski [47—5O] intro­
duced a function theory in the semi~discrete lattice.
Transform techniques were analysed by many like Duffin
[25,28] and Bednar [ll]. Mastin [24], Ferrand [33] and
Isaacs [45,46] constructed theories of conformal represent­
ation. Tu [60-62] discussed discrete derivative equations
in three papers. The discrete theory was extended by
Hundhausen to harmonic analysis. Deeter [22] and.Berzsenyi
[14] save comprehensive bibliography of discrete function
theory.

All the works so far explained are mainly in the
set of Gaussian integers. Harman [58-40] developed a dis­
crete function theory in the geometric lattice in 1972, by
utilising the q-difference theory developed by Jackson,
Hahn and Abdi. Differentiation, integration, convolution
product, polynomial theory and conformal mapping were
discussed in his thesis. He modified the continuation
operators of Duffin, Kurowski and Abdullaev using q-differ­
ence theory and incorporated the convolution product with
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it. As against the classical case, the fundamental theorem
of algebra does not hold good in discrete function theory.
Isaacs, Terracini and Harman investigated the roots of
discrete polynomials.

Later Zeilberger [63-69] introduced a few results
such as discrete powers and entire functions in the set of
Gaussian integers. Recently Subhash Kak [59] extended
Duffin's theory of Hilbert transform to the realm of
electronics. Mugler [54] also studied exponential function.

3. Background of q-Monodiffricity

In classical analysis, analyticity of a function
in a domain means its differentiability in that domain. In
discrete function theory the same concept is taken over; but
the continuous derivative is replaced by its counterpart,
the discrete derivative. Usually the discrete analyticity
is expressed in terms of a difference operator. A triad,
a tetrad or a basic square of lattice points is considered
to evolve such an operator. The important concepts of dis­
crete analyticity are Monodiffricity of first and second
kinds, Preholomorphicity, Rhombic analyticity, semi-discrete
analyticity of first and second kinds, and q- and p-analyti­
cities. The first two are defined in the arithmetic lattice:

.{(nm,nh); m, n e Z, hi? O fixed}'and the third in the lattice
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of Gaussian integers. It is clear from the name that
rhombic analyticity is defined in the rhombic lattice and
semi-discrete analyticity in the semi-discrete lattice:f _ _ "
‘l(x,y); X e R, y = nh, n e Z, h;>O fixedj. q— and p­
analyticities are defined in the geometric lattice;

H = ff mXO,qnyO); m, n e Z, O<_q<1 fixed XO>O, yO>O

"MA
~" r\

¢.Q

fixed}. (1.1
The corresponding difference operators are

respectively,

Mlf(z) 22 (l—i)f(z) + if(z+h) -f(z+ih), (1.2)

M2f(z) E5 f(z+ih) -f(z—ih) -i[f(z+h) -f(z-h)], (1.52 5 4)M3f(z) 55 f(z) + if(z+l) + i f(z+l+i) + i f(z+i), (1.

l\Tlf(z) E (Z2-Z4)[f(Z3) —f(zl)] -(Z3—Zl)[f(Z2) —f(z4)]

where Z1, Z2, Z3 and Z4 are the vertices of arhombus in the lattice, (l¢5)
S f(z) EEE f(z) -f(z+ih) + ih.gE1ZQ-where (32421 is the1 ay

usual continuous partial derivative off(z) w.r.t. y, (1.6)
af

U)

H:

2 (Z) E f(Z+ih) -f(Z—ih) -2111 -~-(%-§;?- , (167)
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Rqf(Z) E5 Ef(Z) —Xf(X,qy) + iyf(qX,y) (l»8)
and

Rpf(Z) E5" Ef(Z) —Xf(X,py) + iyf(pX,y) (1.9)

Equality of any of the expressions to zero at
some lattice point gives the concerned analyticity at that
point.

Also these operators are derived by assuming the
discrete analogue of Cauchy—Riemann relations and Cauchy's
integral formula.

Curve and domain in the discrete sense are defined

in terms of directly or diagonally adjacent points to suit

the mode of discretisation. {(Xm;yn); . is the

r-I
H:

B

5
m

N
a__,,._

lattice structure, any point in the set {(xS+l,yt),
(xs,yt+1), (xS_l,yt), (xs,yt_l)}'is a directly adjacent point
of (Xs,yt) and any point in the set {(xS+l,yt+l),(xs_l,yt+l)
(xs_l,yt_l), (XS+l,yt_l)}-is a diagonally adjacent point of
(xs,yt). A sequence of points is a discrete curve if each
set of consecutive points in the sequence are directly
(diagonally) adjacent points. Accordingly the path of
integration is defined. (l°lO)

There are two standard ways of defining discrete

integration. If zj and zj+l are directly adjacent points,
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monodiffric type;
if‘
Mit f . . - . _ . _, = . h . 1’l‘I (zJ)(zJ+l Z3) if zJ+ Z3 + or Z3 + 1Zj+l I

1 r

5 f(z)oz =
Zj “$5 f(z)6z if zj+l = z ~h or zj ~ih (1.11)1 ‘+1I J

\\.

and preholomorphic type:

Zj+lf f(z.) + f(z. )
E/. f(z)dz = ----1--e-~2--------l-l"—-I-k (zj+l--zj). (1.12)

J

The first definition is used in semi-discrete
theory and q-analytic theory and the second in rhombic
analytic theory.

Using the definition of discrete analyticity by
the difference operator, a discrete analytic function in a
certain domain can be continued discrete analytically to the
entire discrete plane.

In preholomorphic theory, the continuation of
such a function can be done from the coordinate axes and in

monodiffric theory of first kind, the continuation is possi­
ble to the upper half plane from the X-axis. The same
method is utilised in q-analytic theory also. But using the



J! f(z): g(z)dz = "Q z

ll

q-difference theory, we get that a q-analytic function can
be continued from any of the axes to the entire discrete
geometric space. Similar continuation is seen in p-analytic
theory.

To overcome the difficulty that the product of two
discrete analytic functions in any domain is not discrete
analytic in general, different discrete products are
attempted. In monodiffric and preholomorphic theories the
discrete product arises from double dot line integrals whichread K

f(z+k)[g(z+h) -g(z)] if k = l or iz+k x
P

z .:}( f(z): g(z)dz if k = -l or -i
[Z+k
L

in monodiffric theory specialising to the Gaussian integersdue to Berzsenyi (l.l3)
and

z+k

1/ f(z)= s(z)dz = [f(z+k) + f(z)][s(Z+k) + g(z)]k.
z

where k = l, -l, i or -i in preholomorphic theory due toDuffin. (1.14)
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If *- is the discrete product,

f* g(z) = f f(z-Z): g( ‘gag where C is an admissible curve
€

in the concerned domain in monodiffric theory and (1.15)
z

f*g(z) = / f(z- “£_,): g( £)d'F§ in preholomorphic theory.u(l.l6)J
o

Kurowski defined discrete product in terms of the
continuation operator:

°° .1< k
r*g<z> = 2 1 :i§1§>A1[r<X,o> g<><-1,o>1

k=O

=   g(z-1+1:-ik)  lff(X,O) (1.17)

W

O

where ZXli(z) = f(z+l) - f(z).

In the same way, discrete product in q-analytic
theory is defined as

r*g<Z> = l?iy[f<X,o> g<X,@>1

oo (1-q)j . mo. _
= 2 -(s~i-~-5~- <iy>5’ 1/,1[f(X9<>> %'(-””»"-99).‘ wherej=O “q j

~ ' Q f ‘ O —f O
(l-q)j = (1-q) ( l—q2) . . . . (l—qJ) and 2.} f( X,O) = "-g"-éé-1-2-*-""‘%'g2CJ'""'2'

(1.18)
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Similar product: is defined. in p~ana1ytic theory.

The second task is eliminated by introducing discrete
powers to replace the usual powers. The following are the
discrete powers;

n

z(n( = ;§g(?)(X)j inmj (y)n_j where (X)j = X(X-l)...(X—j+1),3:.‘

in monodiffric theory due to Isaacs. (1.19)
z1'" O

z(n+l) = (n+l)J/ z(n)dz; é 2: l in preholomorphic theory due
oto Duffin. (1.20)

Similar discrete powers as that of Duffin are
defined in monodiffric theory by Berzsenyi, rhombic analytic
theory by Duffin and semi-discrete theory by Kurowski.n .

*3‘ (l—q)3 ­
z(n) = f=b T1:€7_ (iy)J'Z9if(X,O) in q-analytic theoryJ: J

due to Harman. (1.21)
Similar discrete powers are introduced in p-analytic

theory. We note that Harman derived the discrete powers using
the continuation operator.

We cannot avoid some mention of q-difference theory

because a discrete function theory developed on the geometric
lattice will be firmly dependent on the q-difference theory.
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Fermat, Euler, Gauss, Laplace, Heine and Babbage were the

early pioneers of q-difference theory.

In this century, an extensive study of q-difference
theory was made by Jackson, Hahn [57] and Abdi [l-5].
Al-Salam [8,9] and Andrews [10] improved the q-basic theory
in recent times. Milne-Thomson's [53] ‘Calculus of finite
differences‘ is a prerequisite to study q-basic theory as
well as discrete function theory.

Jackson introduced q-analogues of derivative and
"­

integration as

®f(x) :§.§_%{.:).L___'.'.§:_.(_(::1l(.) , ‘qt 75 1 and (1.22)

@"lf(X)=   f(X) d(q.X)- (1.23)-q

Accordingly,
X

1-­\:"0 0 0
r "'\

1

‘3 f(X)d(q,X) = (l—q)X E q3f(q3X).o 3:0
§f(X)d(q,X) = (1-q)X Z q'3f(q'3X),X j=l

CY}F‘  I I
and :3 f(x)d(q,X) = (1-q)x :2; q3f(qJ:) define integrationO j:-C0

Y‘!

as a sum. (1.24)
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we also note the following notations in q-basic
theory. _ 11-1 . / _(l+X)n - (l+X)(l+qX)....(l+q X); \l+X)O - l

(H1 : (1-q)n U_-- -;_-_-.-:_'__ _’_i_..1ua--__i'_'_._.- i_-_- ___ v

‘r'q <1-q>r<1-q>n_r

1- n 1- “*1 1- 2 1- 1-q[n]! = _iE . _.E ... 112 .__E :1 .§l_ll2. (1.25)
l—q l—q 1-q l~q (1-q)n

The solution of f(x) = f(qX) is called q-periodic
function. This function plays the role of a constant in the
q-difference theory. Pincherle found a solution as

°° cx+n l-oc-n -l
¢(X) = XQ-5 []' Lgjg X)(l;Q-1n_ En“) . (1_25)l-%-- -l

H10 <1-q5*“X><1-q P “X >

The following are also q-periodic functions.

Sin g£—l95—§ due to Harman and tan (n logqx). (1.27)log q

The first has infinite number of zeroes and has no
poles. But the second has infinite number of zeroes as well
as poles as the Pincherle's function.

With such a basic foundation, a new version of
discrete function theory is envisaged in this thesis.
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Finally, quoting from Berzsenyi [l4]"At present
research in the theory of analyticity in the discrete is
steadily gaining recognition. In view of the fact that
computational complexities can be overcome with the aid of
computers, this area of Mathematics provides a workable
model for the numerical analysis of analytic functions. In
fact, one may prophesize the advent of the day when the
direct application of discrete analyticity will replace the
discretising of many of the continuous models in classical
analysis".

4. Summary of Results Established

This research starts from the investigation of
functions which are both q- and p-analytic in certain domain
in the discrete geometric space. The solution is named
bianalytic function. The continuation of such a function
from two adjacent rays is examined. Then the problem is
generalised as investigation of functions having p- and
q-residues equal. It is found that such functions satisfy
the notion of monodiffricity of second kind in the geometric
lattice. Such functions are now named q-monodiffric
functions.

Monodiffricity of second kind was totally neglected
so far. Further, writers like Duffin [25] and Harman [38]
mistook the idea that monodiffricity of second kind and
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preholomorphicity are equivalent. This assertion is dis­
proved along the pages of this thesis.

In the second chapter, q-monodiffric differentiation
is discussed in detail, q-monodiffric constant which is the
general solution of the derivate equation; first derivatc
is equated to zero, is studied.

In discrete function theory, the concept of
construction of an entire discrete analytic function from
its discrete analyticity in a known domain, using the differ­
ence operator defined to describe the discrete analyticity
is important. We have explained the construction of bi­
analytic function and q-monodiffric function. Bifunctions
and q-monodiffric constants are well studied. They stand to
replace the concepts of functions and complex numbers res­
pectively of the classical complex function theory. The
condition that the usual product of two q-monodiffric
functions in a given domain is also q-monodiffric function
there is also analysed.

Among the three approaches to analytic function
theory, the second is dealt in the third chapter whereas
the third in the fourth chapter. Here two types of inte­
grals are defined. Either of them will not stand as a
counterpart to the classical integral. But both of them
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taken together represent the theory of integration in
q-monodiffric theory and plays the same role of classical
integration. Fundamental concepts of integration like
Cauchy's integral formula and theorem are developed in the
q-monodiffric sense. Meromorphic function along with pole
and polar residue is studied. The relation between these
integrals is also obtained.

The second fundamental difficulty arose in the
fQTmu1ati0I1of the discrete function theory is solved by
introducing di$¢rete powers in the q-monodiffric sense.
Again this leads to the third approach of a discrete analytic
funCti@n nam@lY r9PT@S@ntation of it in the form of an in­

finite series in terms of discrete powers. Unlike the
previous theories, results like nth discrete power of z
has exactly n zeroes hold in this theory. Some estimates
of discrete powers are evolved. Using these estimates
convergence of infinite series is discussed. Also a compari­
son test to decide the convergence of infinite series is
found.

The late sections of the fourth chapter deals
with polynomials and zeroes of them. Mainly three types of
polynomials: polynomials defined over complex numbers,
biconstants and q-monodiffric constants are studied.
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Quadratic polynomials of each type are exercised in detail
with roots of unity in the q-monodiffric sense: in other
words, the zeroes of the equation z(n) = 1 are obtainedc

Lastly, special polynomials are discussed. A
theory to classify the discrete polynomials is obtained
and some special polynomials are classified in this line.
Another way of describing a set of discrete polynomials is
from the generating function. Such a study is also completed
in the fifth chapter. Simple and complete sequence of such
a type is described, Properties are also discussed.



CHAPTER II

BASIC PROPERTIES OF q-MONODIFFRIO FUNCTIONS

In this chapter, we study the properties of a
class of functions which are both q- and p~analytic called
bianalytic functions. Continuation of such a function from
two adjacent straight rays to entire H is given. This leads
to the study of more general class of functions having the
q- and p-residues equal namely q-monodiffric functions. The
condition of q-monodiffricity of the usual product of two
q-monodiffric functions in certain domains is found. The
solution of the derivate equation: the first derivate of a
q-monodiffric function in a domain equated to zero, called
q-monodiffric constant is investigated.

1. Bianalytic Functions

A theory of discrete analytic functions was
developed by Harman on the geometric lattice

H = O,qnyO); m, n e Z, O<;q<;l, fixed, (XO,yO) fixed

>4

O .
V

e-Q

B
>4

yO$>O}. In what follows z s H, z = (x,y) =

(qmxO,qnyO), E = (X,-y) and p = q_l° Two operators Rq and
RP are defined with,

Rqf(z) = Ef(X,y) —Xf(X,qy) + iyf(qX,y) (2-1)
and

Rpf(Z) = Ef(X,y) -Xf(X,py) + iyf(pX,y) (2.2)
where f 2 H-—€>¢.

2O
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Rqf(z) and Rpf(z) are respectively called the
q- and p-residues of the function at z. If the q-residue
(p-residue) of f is zero at z, f is said to be q-analytic
(p-analytic) at z.

In establishing his theory Harman used two discrete
derivatives of f at z with respect to q as

goXf(Z) Z £L§¢Xl_2iLQ§;Xl and p;.yf(Z> = §$X,Y>-f<X»qy>,’ (l—q)X ‘ (l—q)iy
(2.5)no ~e

But when ;>Xf(z) = §§§f(z), we write §;Jf(z) for both and
it is easy to see that f becomes q-analytic at z.
Similarly, with respect to p,

Q? f(Z) Z £l5,y>o-f(PX,Y> and gj f<Z> = f(XLY)'f(XiBll.X (1-p)X Y (l—p)iy
(2.4)

J

.-""1
£4 _.

|-b

“fll

Accordingly, when L)Xf(z) = (Z), we write &)f(z) for
both and then f is p-analytic at z.

Definitions. In order to develop the concept of bianalytic
functions, we will need the following definitions.

The set of points >\(z) ={€qSX,qSy), s at Z}is
called the straight ray through z and the set>6 in _S S q
» (Z) =‘fq X,q y), s e Z?the distorted ray. (2;5)\­



22

‘\
\

\

It turns out that ,\ is a set of collinear
)*lattice points in the Euclidean sense and /\ a set of

lattice points lying on a branch of a rectangular hyperbola.

The basic set of z c H is defined asI’ ‘"1 ’ "'1 Q‘ -1
T(Z) - §(qX,y), (X,qy), (q X,y), \X,q Y). (X,y)[~ A sube@~IL .
S of H is called a region if

N

s = {J T(zi), i = l,2,...,N. N can be also infinite. Ifi=l

T(z)C: S, z is an interior point of S. The set of interior
points in S is denoted by D and is called a domain. Thus
(in, the compliment of D in s becomes the boundary of D._ , . \
Accordingly S = DiJ(aD and D? VfiD = ¢. Now if D is treated
as a region, it has an interior D1 and D - D1 = (jDl.
Similarly for n s Z+, Dn is defined as the interior ofr  .
Dn"l, we get fin“ = Dn'l - on and on = s - M D1 where DO

1=Omeans D. (2.6)

,__.t 5

We will call a function f 2 H-*€>¢ bianalytic
in D if it is both q- and p-analytic there. In fact, it

satisfies the equation Rqf(z) = Rpf(z) = O everywhere in D.
(2.7)

It is seen that f(z) = dz + B; a,B e ¢ is a
trivial example of a bianalytic function in entire H. In
the sequel, the set of bianalytic functions in D is denoted
by B(D).
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Now let f be bianalytio at z, then by definition

'l9Xf(z) == 12§f(z).

_.¢S 0  ( Z ) ::  X  7(l—q)X

f(qX V) —f(Y y)-..._.._._..’..2--.... ._r,_...__...f.Z_..

-l(l—q )qX

= ®Xf( qxvy)

= ®f(qX9y)»

Similarly ),Oyf(Z) = ®f(X,qy).

Combining, €jf(x,qy) = Cjf(qX,y).

Thus we have:

L mma Let f e B(D) and (X y) e D. Then,_§___' v
Vr<><,qy> =P~:<qX,y> and ®f<><,qy> = 6f<qX,y>~

Further as a consequence of the lemma,

'1J’f( "1 - V - L° ""1q X,qy)- 19fK»»y) - f(qX,q y)­
By iteration, 7)’f(q"rX,qry> = 7»”r(x.y) = 7J’f<qr><,q'ry>

Similarly: ®f(q_rX1qry) = ®f(X9y) : ®f(qrX9q_ry

Thus

).

if f e B(D), its derivatives along the distorted
ray are invariant. (2.8)
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Conversely suppose f is q-analytic in D, and has
,­

)|] D,
Then by a simple calculation,£§f(q_ +l)X,qSy) = k(z)-\\ * y  I __leverywhere on /\(z )1, D where z = (q X,y).

>_,/
/'“\ /'\ *
U) N

q-derivative k(z) everywhere on

Similarly, if the p»derivative of f is kl(z) invariant‘* '\ _ _
everywhere on f\(z){ ID, ther1'l9fKq_(S l)X,qSy) = kl(z)\* "' \\

for every lattice point on )\(z")§i D where Z" = (qx,y)o

In other words,

If f is q-analytic (p-analytic) in D and<~- " * -~
2Qf(k}f) is invariant on )\(z){ ‘D for z e D, then f is
bianalytic in the interior of D. (2.9)
Summing up we have:

analytic in the interior of a domain D is invariance of its
derivatives on each distorted ray.

2. Construction of a Bianalytic Function

Given a function defined on two adjacent straight

raysJkqSXl,qSyl); s s Z}and£kqS+lXl,qSyl); s e Z}° We wantL a
to construct f which is bianalytic on entire H. Supposes s s+l s m a - b

Theorem. A necessary and sufficient condition for f to be bi­

f(q Xrq Y1) = as, f(q X19q Y1) = bs. men ks =  8,3...Sq (1-q)

is the q-derivative of f at (qSXl,qSyl).
X1
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Let r be a positive integer, we denoteC. s-1, - _ .- llAl9qS+I'y_l)9 If-(qS+I'Xl9qS ryl)’  I'+ Xl,qS+I'y_l)

and f(qs+rXl,qS_r+lyl) by dr, d_r , fir and B_r respectively

Then due to invariance of the derivative on the

distorted ray passing through (qsXl,qSyl)9

ar-1' Br ar — Br* ii _ W __ —t’*’ '1' _IIK'UJ.­= k
1<1-q>qs”'1y1 S <1-q>$"”><1

i.e., ar = Br + kS(l-q)qs_rXl

and
-1,

ar_l = Br + kS(l-q)qs+r lyl.
_ _ _1

Then ax = ar_l+ ks(1-q) [qs rXl— iqs+r yl], - - -1 -1= as + KS(l-q)[qS(q r+ q (r )+ .¢.. + q )Xl. -1 -2 l
-1qS(qr + qr + .0.. + q + qO)yl]n Y;4..3 _1 lfq-1 - l“q

= as + ks(l-q)q [q E:;_l Xl~ 1 E:€ Y1]

= as + kS(l-qr)qS(q—rXl- iyl), (2010)
K“­a-r-pr “—(r—l)"B§_ Q

Now e-~e a~ ;~fl~ = k = t*t*"=g1@_1i(l—q)qS ryl S (1‘q)q X1
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Using the same argument, we have

_ 1 -1 _
f(qs r+ Xl,qs+ryl) and f(qS+r Xl,qS ryl) can be

continued from (qS'lxl,qsyl) at which the values of the
function and the q-derivative are found from the followiry.

-1 -1 -1
f(qS Xl,qS Y1) -f(qS Xl,qsyl)"~"~~S_it;ti*~o” = ks-l(q — q )1y1

and -1 s s s
f(qs X1,q yl) —f(q X1,q Y1)

f(q_s-1X ,qSy ) = -_-W.‘-_-»~._.W.i_,_»iu_--ems--i- 1 1 S-1 S(q ~ q )Xl“-1 -1 .
as f(qb Xl,qSYl) : aS_l“ kS_lqs (l_q)lyl

\ a — k (l—q)iy — a
and )j?f(qS'lXl,qsyl) = _S*l?Sf%_nm_im;L_i_§.s-­q (l_q)Xl

If f(qS_lXl,qsyl) and:U7f(qs'lXl,qsyl) are denoted

respectively by cs and ds, from (2.10) and (2.11) we have-l-~ “ — . 1 .
ms %1,qS"‘~"y1> = CS + <1s<1-q*>qs<q <1” )Xl- 1y1> <2.12>
and

f(qs+r'lXl,qS'ry1) = cs + dS(l-qr)qS'l(-X1 + iq'ryll (2.13)

a_r _ as + ks(l-qr)qs(-X1 + iq ryl) (2 11)
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(2.10), (2.11), (2.12) and (2.13) together nive
the continuation of f to entire H.

From (2.10),s-l 1 - -l .
f(q Xl,qs+ Y1) = kSqS(i—q)(q X]~ lyl) + as

and -2 -1 "1 .
f(qS Xl,qSY1) : ks_lqs (l—q)(q X1“ lyl) + aS_l,

If f(qS_lxl,qSyl) is denoted by f, from difference
quotients,

-1 .
1 .f 1:38 -ksqs < 1;-22.11 51:- 51>. .. 1;s~l s s s+l . S(q — q )Xl (q — q )1yl
and

-1 ~l .
if"-_f'f‘_.s_-1 _ ids-1". ks-1qs__ (1"1)(q X1" lyl) _ k__ 1...---  _.---.._..-___.. _ S_l‘-1 _ _ ~_(qs— qs )1y1 (qs 1- qg 2)Xl

They reduce to two relations,_ s-1f — aS_l + kS_l(q l)q“ iyl

—land f = as + ksqs (l~q)Xl­



28, s-l -l .
be get as + ksq (1-q)xl = aS_l+ kS_lqS (q-l)1yr

Thus Xl(aS-bs) + (aS_l- bS_l)iqyl + (as~bS_l)qXl = O
is the condition of existence of the continuation to

-1(qs Xl,qSyl)» (2~l
The theorem of the above section guarantees

existence and uniqueness of continuation to all (X,y) e H
Thus we have: s s s+l s
Theorem. If f(q Xl,q yl) = as and f(q xl,q yl) = bs, s e Z
are given subject to the condition

Xl(as"bs) + (as-lwbs-l)iqyl + (qsnas-l)qXl : O’

then f is determined uniquely and belongs to B(H).

Immediate consequences of the above theorem are

QQr@lleryil~ If f(qSXl,qsyl) = as and 19f(qsX1,qSyl) =

ks, s e Z are given with the conditions-l _ . s-l .as + xlkS(l-q)q - aS_l + iylkS_lq (l-q), then f is
determined uniquely and belongs to B(H).

Qorpllaryg. If f(qSXl,qsyl) = as and Ejf(qSxl,qSyl) =

ps, s e Z are given with the condition—l -l . .
as + psqs (1-q)xl = as_l + psqs (q-l)1yl, then f 1S
determined uniquely and belongs to B(H).
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Example_l. A simple example of bianalytic function is
obtained from the above corollary l, with

&
S

s . s ,= q xl + iq yl, s s be

We get ks = l, s 2 Z.

From (2.10), (2.11), (2 12) and (2. 15),

f(qs-rXl,qs+ryl) : qs~rXl + iqs+ryl

x " y = “f(qs+r qs r ) qs+rX1 + iqs ryll’ 1
s-l- s+r s-l-r s+r

Y1f(q rxlvq Y1) : Q X1 + iq

f(qs+r-lXl9qs+ryl) : qs+r-1X1 + iqs~ryl

Thus f(qmx1,qny1) = qmxl + iqnyl is the continua­
tion of the function to the entire H.

Example 2, Fixing ks = s, s e Z, we get a nontrivial
example of bianalytic function.

s

8 S o l

+ _If s e Z , as - aO- xl(

PF4

1
quylii

P P
Q Q

I4

(Q

9 __ + Sq ) iyl(

I4

Q

s s+ sq +

—(s—l) _S _ —(s—l)= a + X ( —** — q (s-l))+ iy (

|..OQ

P

Pi4
Q19

_ q—S(S_l> _
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Thus substituting these values in (2,lO), (2,l1),
(2.12) and (2.13), we get a bianalytic function in entire H

LI]

X§mPle_j. Another example is obtained directly from the
above theorem, with fixing

as = bs + l

qnlxl + iyla = a + -w-»~~~Y~; 's s-l X1
If s e Z+, _1 _

q X1 + iyla = a + s -———-m"~w~'s o X1
-1 .

q X1 + iyla = a — s--——~~~"~­-s o X1
..1_ _

q X1 + iylb = a - 1 + S ---~—------»-­O X1
~l .q X + ly

b : a _. 1 _ S1  111*; c_-_-..]_‘. v-S Q X1
Thus substituting these values in (2.10), (2.11),

(2.12) and (2.13), we get a bianalytic function in entire H

3. q-Monodiffric Functions

we introduced earlier a class of functions which

are both q- and p-analytic, Here a more general class of
functions is found by defining discrete analyticity in
another way and introducing a new operator,
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Definitions. The basic tetrad associated with z is defined­

-Q-_..

C

* ‘ -1 -1 -1 'r _ _
as T<z> = 1<qX,y>, <X,qy>, <q lX,y>9 <X,q ly>@ If Z 8 H,
the peihte eh the set §(q X,q Y), (q X,qy), (qX,qy),’] 1
(qX,q_ly)}are diagonally adjacent to z while elements ofF* _ U T
the set %(qX,y), (q lX,y), (X,qy), (X,q ly) Fare eelledL Jdirectly adjacent points of z. (2.15)

A sequence of lattice points in H; flzO,zl,,..,

C5

a._.\,..._‘
H­

z Z ... d’ " ‘f Zr, r+l, ,2 s a isciete curve C 1 r and zr+l are
diagonally adjacent for every r = O,l,.,@,n-lo C is denoted
b z Z ... z z .¢. z . C is closed if z = z .Y <::o’ l’ ’ r’ r+l’ ’ n:> o n
C is simple if Zr # zs for r # s and r = O,l, .°,n-1;
s = l,2,...,nc C is simply closed curve if C is simple andclosed. (2.16)

The smallest simply closed curve around z is-1 -1<i(qX,y), (X,qy), (q X,y), (X,q Y), (qX,y)I> eelled the
basic quadrilateral associated with Z0 (2 17)

If C1 ;<<:zO,zl,...,zn:j>and_ \\,C2 s<<:zn,zn+l,..°,zm,/then

01+ C2 E <:zO,zl,...,zn,zn+l,..°,zfi:>and

C-1 = <1? z Z z :>l ' n’ n-l’°°" l’ o ' (2.18)
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The straight ray,1(q X,q y), s e A and the, J1",“ S

distorted ray, €(q °X,q y), s e Z1 through z defined int 1
(205) are discrete curves.

It may be noted that while a simply closed curve
encloses certain lattice points which constitute a domain
with the given curve as the boundary, the converse is notr ‘>1
truec For example, D : qx,y)§ , which is the

_..-/‘--.N F f'\
— w

50

%¥/
Q

/'\

‘II -. Q

interior of S = T(z)LJ T( ) where 2 = (X,y) and 2' = (qX,y)

is not enclosed by a curve as the boundary.

Discrete monodiffricity can be defined by means of
difference quotients as well as by the so called q— and
p-residues.

Let f 2 H-—€>¢ and z s D. The difference operators
6 and 6 are defined asX y

-1

(SXf(X,y) = ..I€(a_XiiL) -f.(_q_¥_1.'Z)(q_ -q)X

and -1 ,
oVf(X,y) = €€X’g_ Yli;3£§1gZl . (2.19)~ -1 .(q -q)1v

If 6Xf(X,y) = oyf(X,y), then f is q-monodiffric at
z and oXf(z) = oVf(z) is the q-monodiffric derivate of f at z
and is denoted by 6f(z). The above equality reduces to
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Xtf<X9q"1y> -f<X,qy>1 -iy [r<q"lX,y> -r<qX,y>1 = 0.

In other words, f is q-monodiffric at z if and only if
Mf(Z) E X[f<X,q'1y> -f<X,qy>1 -1y[f<q'lX,y> -f<qX,y>1 = 0

(2.20)

It is easy to verify that if f is q-monodiffric
at z, then

Mf(z) ;. Rpf(z) - Rqf(z) = O (2.21)
The set of q-monodiffric functions in D is denoted

bye/%§(D). B(D) is the set of bianalytic function in D. B(D)
.1-7is a proper subset ofc/4g(D). (2.22)

As M is a linear operator, it easily follows that
Eheorem l.</¢%5(IU is a vector space over Q.

Let f(z) = u(X,y) + iv(X,y) eg/%(D).

So

<SX@[.u(X,Y) + iv(X,y)] = <‘3y[u(X,y) + iv(X,y)]

i.e., oXu(X,y) = ioyv(X,y)

and oXv(X,y) = -ioyu(X,y) for every z a D.

This is the q-monodiffric analogue of Cauchy­
Riemann relations.



34

Conversely, if 6Xu(X,y) = ioyv(x,y) and

oXv(X,y) = -ioyu(x,y) for every z e D,
by addition, M(u + iv) = O in D.

ioee9 f a04%g(D).

Hence we have:

Qhepremg. The necessary and sufficient condition for

f = u + iv ednmg (D) is oxu(X,y) = ioyv(X,y) and

6Xv(X,y) = -ioyu(x,y) for \/ z e D.

Eggarg. It can be noted that in classical function theory,
the Cauchy-Riemann relations are not sufficient for analyti­
city while the discrete analogue is also sufficient for
q-monodiffricity.

If f ab/%&7(D), then according to the definition of
q-monodiffricity, D must be interior of some S. Thus of
exists in D, while it is q-monodiffric only in D1; the
interior of D.

In other words,

_I__hec_>_rem §. f s;fl@(D)-7-_'-><Sf s;c..”€“-'(Dl).
II ,/

Let the sequence fifn} be such that fn aJVg(D)‘Q

and lim f (Z) = 16(2), V Z E D. Then I~‘if(z) = lim Mf (Z)n-->~;.?-o I1 n_..>o-c n
and 6f(z) = %in> o fn(z) , for every z e D.
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Theorem 5. If gj at/%g(D) and J25 gj = f then f at/7G7(D)j=1

@

35

Thus we have: ' ‘2 7
Theorem_io Given the sequence {Tn}, fn e¢/$42 (D),J

lim f (Z) = f(z) for \'/ Z E D, then f 8//%(1)) and
n --> ¢-*= n

1’ /7

of(z) = lim of1(z) for\V/z e D, Again of(z) e L/Z%b KTL).
n_.._> 0-} I

(X7

Now let :21 g. = f and g. ELA%g(D)¢ Then31:1 an
according to the above theorem, fn== :5 gfi constitutes al_ j:

644’sequence and f av @(D)and lim f = f.
n___> flb 1'1

This leads to the theorem:

and of(z) = “Z1 ogj(z) for \7 z e D.j 1
Qgamglesz. . . . . . . l
(1) B_@_s__1._¢..__<1—...m9_n.Q.<1.;..f...f.1¢.y.=.~I_u.es.$.1.<i11.e~ X + 1y, (X+1qy) <X+1q y)

and (X+iq2y)(x+iy)(X+iq_2y) are q-monodiffric functions in H
Also their reciprocals: (x+iy)-1, (X+iqy)”l(X+iq_ly)*l and

/
(X+iq2y)~l(x+iy)_l(X+iq”2y)-1 belonr to</;%g(H).

In general, if n is a positive integer,n-l n-l
T1 (x+iqn“2J—ly) and ]*[ (x+iqn“23'ly)-1 (2.25)j=O j=O
are q-monodiffric in H.
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We also note that the discrete powers in
q-monodiffric theory are evolved from this set of functions.

(2) Qiiuggtiong. Let f,,g2a/%@(IU, then f ® g is defined as

(f EB a)(z) = f(-Z) + (~l)m+n.<-;(Z) for Z = (qmXO.qnyO) e D
(2.24)

fé9 g behaves as f + g on H2 and as f - g on H1.
The set of bifunctions in D is denoted by B(D). (2.25)

We can easily see that

M(f(® g)(z) = Mf(z) + (-l)m+n'l Mg(z)~ (2.26)

Due to the q-monodiffricity of f and g in D, f(@ g is
q-monodiffric in D and also
<s(f "63 g)(z) = arm) + (-1)m‘“n"1<sg(Z). (2.27)

Thus we have:
/”

For f,g 2-:<%(D), f Q51 g at//{% (D) and

e(f 63 e) = of @<s(-g). Also es(f 59 g E1 sun). (2.2s)

L_,/

Let f,g s B(D) such that f = fl Q: f2 and g = gl (3 g2.
Then (f 69 s)(Z) = f(z) + (—l)m+ns(z)

= rl<Z> + <-1>m*nr2<Z> + <-1>m*“[g1<z> + <-1>m+“g2<z>1

= fl(Z) + g2(Z) + (—l)m+n(f2(Z) + gl(Z)).

Hence B(D) is closed under Q). (2.29)
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Then let us solve fc" F from.f @)F = g where f and g are
bifunctions.

we Pet f(z) + (-l)m+nF(z) = g(z).

F<z> = g2<Z> -r2<Z> + <-1>m*“<@1<z> -rl<z>> is a

bifunction and is unique. (2.30)
Similarly F Qif = g has also a unique solution in B(D).

(2~3l)
Thus we have:

(B(D), $3) is a quasi group (2.32)

4. q-Monodiffric Constants

Consider a simple equation of the first order
:: C).“ 1 l
1, e,, L<.§1..._2<.;_s£.2_.t..-;.i<r_1.>r<_@.s:)c Z £<3.a;1l_r>_ ;-_€.§_,2§_,t.9_2:> .,, O1 -l(q" - q)X (q — q)iy
or f(q_lX,y) = f(qX,y) and f(x,q_ly) = f(X,qY), which also
leads to f(x,y) = f(q2X,y) = f(X,q2y)~

Similarly by iteration,

f(X,y) = f(q2rx,q2sy); r, s e Z. (2.55)
Thus we observe that a q-monodiffric constant,

which is the solution of the equation of(z) = O in H, is fully
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I’

determined by fixing its value on any rectangle %(XO,yO),

(qXO.yO). (XO.qyO). (qXO.qyO):}by f(XO.yO) = dl.f(qXO.yO) = Q2.

f(XO.qyO) = a3 and f(qXO.qyO) = Q4.

Then the solution of the equation of(z) = O for
entire H can be given as

/'

H al if m is even, n is even

is odd, n is even
f(qmXO,qnyO) = ?

a5 if m is even, n is odd

$32

-{>­

if m is odd, n is odd. (2.34)
‘.1

In other words, the q-monodiffric constant a can be

represented as a 4-tuple a = (al,a2,a3,a4). Thus if a and B
are two q~monodiffric constants their addition and multipli­
cation is defined componentwise in the usual way.
Then it is easy to see

or$h§_a§m-l~

a) The set of q-monodiffric constants,
4f]/7f Ta, a e ¢ ~ 9(H) form an abelian group with respect to

addition.

b) It is a vector space of dimension four over the
complex field.
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c) It is a commutative algebra over ¢ with
divisors of zero.

We say that (X,y) = (qmxO,qnyO) e H is an odd or
even point according as m + n is odd or even. If the set

of odd points is denoted by H1 and the set of even pointsu
by H2, then H = H1 ij H2 and H1!‘ H2 = $0 Hence we get a

I-7Apartition of H. (2.,5)
A special case of q-monodiffric constant namely

biconstant can be given as (al,a2,a2,al). A biconstant
takes one value on H1 and another on H20 (2.56)

Biconstants form a vector space, of dimension

two over ¢. A uniconstant a = (al,al,al,a1) is a trivial
example of a q-monodiffric constant which amounts to

a s ¢, a = al.
.01,,/I

Let f ev'V@l[D) and a be a q-monodiffric constant./if
Then af so/V@3(D) implies

&X[¢f](X,y) = 5y[Qf](X,y),(X,y) 6 D which gives the solution

al = a4 and a2 = a5. This implies,
Theorem Q. If f is q—monodiffric function in D and a, a
q-monodiffric constant then af is q-monodiffric in D if and
only if a is a biconstanto
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The bifunction of two constant functions is a

biconstant, but that of two biconstants is again a biconstant
ln general, the bifunction of two q-monodiffric constants is
a q-monodiffric constant.

j-'9’: (al9a2sO53sa4)  (Bl9B29B3$B4) :

(al + Blvag "' B29a3 “‘ |351a4 +

5. Product of q-Konodiffric Functions

In all the earlier discrete function theories,
the usual product of two discrete analytic functions in a
domain, in general, does not turn out to be discrete
analytic. For example, 2 is discrete analytic according to
all the theories, but Z2 = z-z is not. Here we show that
under certain very general conditions, the ordinary product
of two q-monodiffric functions in D is also q-monodiffric
in the given domain.

I .4

Let f, g, f-g at/Vé3(D). Consider the basic
tetrad to z e D. We denote f(qx,y), f(x,qy), f(q'lx,y)

and f(x,q_ly) by fl, f2, f3 and f4 respectively and of(X,y)
is denoted by f'.

So M[fg](z) = X[f4g4-f2g2] -iy[f3g3-flgl] which after some
calculation is equal to

5%-X(q“l-q)[e'(f4 + f2— f3- fl) + f'(a4+ s2 —s5 —»<-;l)]~
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Hence for Mfg(z) = O, the following cases arise:
_:\.

Qg§§_g: f‘ = O, H' # OIi:> £4 +

f4 =

IIQ> f is

Case 32 f4 + £2 -£5 -fl = O and

--\§_ _
"1/’ g, — gl” g5 g4“ $2

f — f f — f
_l___Z _ _i___§
$1“ 52 g4" g3

f2 = fl + f3 and

£2

a biconstant

e4

-_--Q

-i-1­

} fl f5

Qesgmlz f‘ = g‘ = O~<y/f and g are q-monodiffrio constants.

0

+ s2 -23 —e1 = 0

f

9
o

- f + f - f
-2nm.ZLnnMAn_n2

51— s5 + e4- s2

0

Ii:>:f and g are biconstants.

Qase 4: f’ = O, g‘ = O, f4 + f2- fl- f3 # O and

g4 + g2“ £1“ g5 # O~

f2+ ni:_fl: £3FI::> i— = _g’ 52+ £4" £1“ £5
f - f

-— Q-—i ~*-‘in-—-_ ~a1­

// g4” g3

= Z412
g4” £3

f4- f2 f2+ f4— fl- f5 fl- f3+ f4- f2"-_ in -—--nu‘;-u<—Q & in-1‘. rm

g4” g2 g2+ E4-éizfigg gl“ g3+ £4” g2

_ iii .. f.£._.i5. _ f.;._'?.o..T?_4. _ f;;-i2,
*'e4- 22 ' s1— e2 " sl— e4 " el- £2
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::;> - g2 = g4- g3 and fl- £2 = f3- f4

O11

I-—'

3i:> fl = f5, f2 = f4 and gl = g5, g2 = g4

:;;> f and g are q-monodiffric constants.

This is a contradiction. Case 4 does not exist.
Thus we have: />4 véTheorem. If f, g evé&9(D) and also fg ea”? (D) then either
both f and g are q-monodiffric constants or one of them is a
biconstant.

6. Construction of q-Monodiffric Functions

In-monodiffric and q-analytic theories, the conti­
nuation of a discrete function from the boundary of a finite
domain to the interior of it has been dealt. A similar
result is evolved in q-monodiffric theory. For this we need
two more definitions.

If D is a finite domain in H, C3D LJ(fiD1 is known

as the annular boundary of D1. (2.57)

-.­
\

.......'

is I
Now if D = i(x,y

L

£/
F-"s~.._.._,..i

the annular boundary of D1
1y.qy.(.q qxy (X );butX) X)X )("t(1(9 yw 9):

D3-= ¢. Thus we get the null set has 2n1 annular boundary

Again if D1-= {(x,y)}, the annular boundary of D1 isF

{(qmX,qny); |m! + |n| = l or 2}. (2.58)
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A domain D e H is a packed domain if boundary
of D is a simply closed curve C satisfying Int C = D. (2.39)

Our claim is that if a 0-monodiffric function4 *
f aJQ%g(D) is defined on the annular boundary of D1 of a

IT?
packed domain D, then there exists a function g e@WWQ(D)

SuCh that f = g on the annular boundary of D1.

We can easily verify that the result is true
if D1 contains atmost one point. Now let us assume that
the result is true in the case of D1-having (n-l) points.

Consider a packed domain D for which D1 has n

points. Let C = <:zl,z2,...,zr_l,zr,zr+l,...zl:> be the
boundary of D. Without loss of generality we assume that

there exists zr_l,zr,zr+l in C such that<:?r_l,z j>is
along a straight ray and<:?r,zr+l:>is along a distorted ray
and an Z‘ in D1 satisfying zr_l,zr,zr+l,z' is the basic

-\>
I

_..

quadrilateral of a point z* e ‘JDl.

r-—-* --\
N

*
.._l

Then consider the domain D1 = D - I. Due to
the q-monodiffric condition at z*9f is known at z’. Hence
f is defined on the annular boundary of D1. Also D1 contains
only (n-l) points. Thus the claim is true in the case of

D1 due to the assumption. Since D ={Z?LJDl, we get that f
is defined in D.
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Hence by induction we have:

Wlhegrgp l. If a q~monodiffric function f Ea/Q)(D) is
'1.\defined on the annular boundary of D1 of a packed domain n,

then there exists a g at/%é(D) such that f = g on the
annular boundary of D1.

Duffin, Kurowski, Berzsenyi and Harman introduced
discrete continuation of a function in the concerned
theories. Now we introduce the continuation of a q-mono­
diffric function from the\@ -belt or from the pair of
so-called straight or distorted belts. We take
11eZ+,O§rSn.

a

Qefinitipns. {(qmxO,qnyO); m s Z, n = O, l}is known as the‘(Z -belt. a (2.40)_ _ 1 _
(qmm 2rXO Art), (qmm (ZN )XO,qyO),(qm+n 2rXO,qyO)

and (qm+n'(2r+l)xO,yO), belonging to the?g -belt, are

respectively denoted by'.Rm1n,2r, ‘)m9n,2r+1, um’n’2r andpm,n,2r+l° (2.41)
The discrete curves Cm _n and Cm n are defined as

follows:

Cm,-n E<'>‘m,n,O’ ?‘m,n,l"'°’ 9‘m,n,2r’ >‘m,n,2r+l’°°°’ 9*m.,n,2I_>

(2.42)

Cm,n E <<:pm,n,O’ pm,n,l"°” pm,n,2r’ um,n,2r+l’°’°’ “m,n,2§>
(2.45)
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itq XO,q yo); m e Z, n = m,m+l F18 called the¢ Q. I 1 ' .

straight belt and 1(qmxO,q1yO); m a Z, n = -m, -(m+l)? iscalled the distorted belt. (2044)
The following relations onc%4s and pH; can easily

be seen

a) %m,n,2r+l : um-l,n,2r Z pm,n~l,2r

b) pm,n,2r+l :‘%m-l,n,2r ::%m,n-l,2r

C) 7\m,n,r Z xm-s,n+s,r: ’>‘n1+s,n-s,r

d) um,n,r : pm-s,n+s;r: um+s,n-s,r

€)j.\ :?\ :()\m_9n’]j I11-ZS 91'l,I'--28 mg n....2s’r...2sf) : :pm,n,r pm-2s,n;%2s pm,n-2s,r-2s,

for s z-: Z+, I‘ Zs Z O. (2045)

$€

1/
QQg§§rugtion r: M;;;belt‘ Let f ad¢@?(H) and f known on

B

iflOi_,_ iii
thejg —belt. Now f being q-monodiffrio at (qmXO,yO),

f(qmXO,q_lyO) is determined uniquely. Then using the belt1 _
{(qmXO,qnyO); m e Z, n = O, -1?, f(qmxO,q Zyo) is obtained

uniquely;similarly and so on. Thus f(qmxO,q'nyO) is
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uniquely determined for any finite n. In the same way

f(qmxO,qnyO) is determined uniquely.

Thus we have;
. -1| 1'/it 1;f av’ ‘(H) is uniquely continued from the ~beltto the entire H. (2.46)/ \0

Let f 64//Z/@‘(H) and f be known on the (0 -belt. ‘viem -n .
assert that f( O,q yo) can be expressed as a sum in terms

,_Q

>4

of f(§xm’n’r)° Similarly f(qmXO,qnyO) is considered. This
result is verified when n = 1,20 Let us assume the result
is true for the first (n—l) positive integers for n. Then f. . . - -1
being q-monodiffric at (qmXO,q (n )yO), we get:- - -2
f(qmXO,q nyo) = f(qmXc,q (n )yO)

. m+n-llq Y -1 - -1
+- -i—“~—9 f(qm XO,q (n )yO)

O

. -(m+n-l)lq Y 1 ~ -2
' “"““"§;""""9 f(qm+ XO9q (n )YO)~ (2.47)

Now we can note that f(qmxO,q-(n'2)yO),

f(qm_lXO,q-(n_l)yO) and f(qm+lXO,q_(n_l)yO) are expressible

as a sum in terms of f(fXm n r) due to the assumption and9 9
(2.45),
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Totally what we have proved is the assertion in

dence by induction we have:

’;7 m -nIhgg£§gLg. If f ec1\9(H), f(q XO,q yo) is expressible as a
sum in terms of f(‘)_ ) and f(qmX qny ) in terms of
f(u )m,n,r °

m,n,r o’— o

In the light of the above theorem, we write

f(qmXo’q-nyo) : :2 “m,n,r f(:Xm,n,r) (2’48)
2n

r=O

2n

and f(qmXo’qn yo) Z :5 fim,n,r[f(“m,n,r) (2.49)
r=O

We can also note that a and B arem,n,r m,n,r
independent of f. They will be functions of m,n and r only.

Using the q~monodiffric conditions atm -(n-l) m n-l
(q XO,q yo) and (q XQ7q yO) we set

H

+

2

QM

--___.l_____i_)a_C:._.i l
O

1'1 2(n-2)
- \ = Q?m,n,r f( (>‘m,n,r’ 4* am,n-2,r f( 9‘m,n-2,r)

. -(m+n-l) 2(n'l)iq OY

. -(m+n-l)

‘ME  am-l,n-l,r f(‘>‘m-l,n-l,r)
r=O

f\)/-\

n-l)lq Y _,
_ "“'*"*"'*""'§"""'""—"9‘ 3 (X f< >\ . , > (2.50)

O -e m+l,n-l,r m+l,n-l r
r=O
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and2n 2(n—2)2 B f(u >- 2 6 f(u >m,n,r m,n,r - ' m,n-2,r m,n-2,rr=O r=O
. n-m-l 2(n-l)lq yo

"”flm—§?‘“"' :2: Bm-l,n-l,r f(pm~l,n-l,r)O r=O

iqn-m-ly 2(n-l)llnlllilg *+ X0 :2; Bm+l,n-l,r f(pm+l,n-l,r)° (2‘5l)r=O

Thus using (2.5 ) and comparing the coefficients, we have
the following theorem

fl‘_h.<.2.9..r_§..111i.§.~

iq-(m+n-l)yOa = a + =~~~e=—i-~~~ am,n,r m,n-2,r-2 xo m-l,n-l,r-2
. -(m+n-l)lq yo

:~~__ ,;¢-:,— e s _ , ____—,-,-i- aX0 m+l,n-l,r
and

. n-m-llq YO
Bm,n,r : Bm,n-2,r-2 H"X¢’_' Bm-l,n-l,r-2

iq-n-m-ly
,_:;___,_,__p<> B+ X m+l n-l,r'O 9

Examples. Now we will see the construction of a few
simple q-monodiffric entire functions.
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£5: j a Z, r = O, l are defined as follows;

53-(q Xoaq yo) = "

I-’

T m n _ if m = j and n = rej (q XO.q yo) -3 ._,,§ O otherwise on k>~belt. (2.52)
I
0. . I’ . .

Continuation of sj to entire H can be given as
V

I a . if m+n~' is even andl m,n,m+n-3 3o I11 -n  Og m+n-j §_ 2n
Y O otherwise.

F

N B . if m+n-j is odd and; m,n,m+n-3Y _-<1
€§(qmXO,qnyO) Z J 0:; m+n 3- 2n.. O otherwise. (2.55)

'~.

/'
I \

am’n,m+n_j if m+n~j is odd and1 - 1;  -' g 0
Ej(qmXO,q nyo) = Q O__ m+n 3 2n

M

J O otherwise.
\

I
V

I

i B . if m+n-j is even and1 m,n,m+n-3

EJ¥(qII1XO’qTlyO) __:  O§ m+n-jg 2n.*0 otherwise. (2.54)
11}

/’

‘t_r;a_igh_t__and u_d_i_sit_o_”r_t_ed__;oel:c_s. In a similar way f e  (H)5, >*#¢ is We ,_.__;,% H is .
can be continued uniquely to entire H from the straight and
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distorted belts. If f is known on the points {(qmxO,qnyO)7 ll m n F 1
m e Z, n = m,m+lr L) 1(q xO,q yo); m e A, n = -m,-(m+l)j,¢ I,­
by a similar procedure as (2.54), the continuation to any
point is possible. Likewise the uniqueness also is
guaranteed‘



CHAPTER III

DISCRETE q-INTEGRATION AND CAUCHY'S PROBLEM

In this chapter discrete integration is developed.
Integrals of the first and second types i.e, the line
integral and the inverse of q-monodiffric derivate respect­
ively are defined. The integral of the first type is
expressed as a finite sum of the function values at certain
points which form a curve in H while the integral of the
second type is the solution of a pair of partial q-difference
equations which again is expressed as a sum of function
values at certain points in the given domain. In the second
case, if the integral is known on the annular boundary of a
domain, the function is determined for the entire domain.
Considering H as a domain, it is true that if the integral
of the second type is known on the annular boundary of it
namely the lattice points on the axes, it is fully deter—
mined in H.

For convenience, the integrals of first and second
0

,’a-Q

types are called D — andg-integrals and thus symbolically
f} -= 5'1.

The E;-integral possesses many important results
analogous to classical integral connected to singularity,
pole and contour, but it lacks that the integral of a

51
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q-monodiffric function in a domain is q-monodiffric there
whereas the second holds this though it is handicapped by
many properties of contour integration. Thus both the
integrals taken together represent the theory of integration
in q-monodiffric study of functions and plays the same role
of classical integration.

Both of these analogues of integration reduce
to the Riemannian integration in the limit case as q-—€>l.

l. Integral of the First Type

The following definitions are essential for the
development of the theory of the integral of the first type.

§ingularitylof:§_§unctiog. A function f 2 H-—5>¢
satisfying

F
1 \

§ Mf(zr) = ar; ar fi O, ar e ¢ and finite

{i r = l,2,...,n and Zr 6 D
4

l Mf(z) = O; Z e D, z # Zr, r = l,2,~u.,n
‘ §

is called a q-monodiffric function in D with singularitiesat zl,z2,.°.,zn. (5.1)
.91.:-?"1‘.<i?-f__<>I'¢1<>r;>l_3¥9ljfu%2§>_’§?.<1¥2- Let g @~/W9 <11)» Zl’Z2”‘°’Zn

s D and f 2 H "-€>¢ satisfying

[g(z); z e D, z # zl,z2,..°,zn
f(z) =

¢>if z = zl,z2,...,zn,
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Then f(z) is said to be q-meromorphic in D with zl,z2,.~.and zn as poles. (3.2)
We note f(z) is q~monodiffric at zl,z2,... and

Zn, but not at points on the basic quadrilaterals of
zl,z2,°..and znt Thus if f(z) is q-meromorphic in D with
the poles at zl,z2,.¢. and Zn, then f(z)s:d4K@(]') where

D =D-‘['t(zi); i=l,2,...,n}- (3.3)
l

We note that §I“§“, zo e H, is not q-monodiffrico

anywhere in H. Hence ;"iE— is not a meromorphic function.o

If f is a q-meromorphic function in D having
//'

every z e D as a pole, then f at/{"6(D-,$§) where ,8 is the
region for which E] is the interior.

If f is a q-meromorphic function having every
point of a straight ray (distorted ray) a pole, then
f eu4%g(H-$) where $ is the region consisting of the
straight ray (distorted ray) together with its adjacent rays

The result is true if we consider rays like

{tqmXl,qnyl); m e Z, n fixed}.

Let us consider q-monodiffric constants:

{a ; (dl,d2,G3,d4)}. If al or a4 is infinite we get
a eJh(H2). If a2 or a3 is infinite we get a Eu/%g(Hl).
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Again if al and a2 (or a3 and a4) are infinite, a is
q-monodiffric nowhere in H and hence it is not q-meromorphic

(3.4)

§3<;nteg§ai. The integral of the first tyne is definec
along diagonal-wise path.

If zj and zj+l are two diagonally adjacent points
in H, then the line integral from zj to zj+l is
Z.3+1 f(z ) + f(z )5 , 1 .
5 f(Z)d(Z3q) = ~11-2  (2-j+l- Z3)"
z.

J

If C = <IzO,zl,...,zr,zr+l,,..,zn:>>is a discrete
curve in H,

n

<z><1<m> = §i‘.Zc;1L;'.__i§-?i<;>(Zj _Zj_l)j=l
(5.5)

.-a

<1(f
I-b

Lingarigyo Let f, g: H'“€>¢, Cl E <:zO,z1,...,@n:>

and C2 2 <:zn,zn+l,.°.,zm::>

Then for C = O1 or C2,

a) S_lf(z)d(z:q) = -Sf(z)d(z:q)C C. ‘ -\ -0-‘
1») S <~r+g><z>d<z:q> = bf(Z)d(Z§q) + 5 e(z)d(Z:q)C C C
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C) %)(af)(z)d(Z=q) = a %>f(Z)d(Z@q),a E ¢
a\_

"i ~ - E: f(Z)d(Z2q_) + 5 f(Z)(1(Z;q)2 C1 C2a) E; f(z)d(z@q) _
Cl+C

We can see by direct calculation that. -1 -11f C E <1 (qX,y),(X,qy),(q X,y).(X,q y),(qX,y) I>-1-q
%;f(Z)d(Z q) = g—§—— Mf(x,y)

= O if f is q-monodiffric at (x,y). (3.7)

Now if C is a simply closed curve in H1 which
encloses only two points, then these points will be in H2
Then if Cl and C2 are the basic quadrilaterals of these
points by simplification we get

Q‘ = ES f(Z)d(Z§q) (3-8)f€gf(z)d(z:q) + %;f(z)d(z;q) O

X

//1. \X
O / g-\\Cl XK -1 O/ 0'2C Xi‘ /v

X



56

Then by actual integration we get that if C 2 H1

is a simply closed curve and C encloses zl,z2,... and Zn
belonging to H2 as interior points,
then

P” 5;_| .
C..l.CD(f

1'1
N

C1

L1

-3
xv

)d(z;q) = SS f(z)d(z:q) where C. is the basic
j:
quadrilateral of zj. (3,9)

Thus if O is a simply closed curve belonging to

H1, than C can be replaced by basic quadrilaterals 05s of
every interior point zj of C belonging to H2.

Hence if f is q-monodiffric at every zj, we get
ES f(z)d(z:q) = O.
C

Similarly simply closed curves belonging to H2 is considered
Thus using the properties of a packed domain we have:

Theoggggl. If D is a packed domain, f 2 H -—¢>¢ has no

singularity in Hitl D and o 8 Hj, 1 # 3, then

%f(z)d(z:q_) = O0

Let two curves Cl ;=<:zl,z2,.¢.,zn_l,zn:>> and

C2 ;<<:zi,zé,¢..,z£_l,zn::>belonging to Hj lie wholly in a

packed domain D6 Also let C1_(]C2 = ¥zl,zn}. Then Cl+ C51L
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to Hj. Let usis a simply closed curve in D belonging

assume f has no singularity in Hi {E D, i # j. Then by
the above theorem,

- Of £4/%§(D) :i:> &7_lf(z)d(zzq) ­
Cl+C2

I‘I?
%1f(z)d(z:q) = (z)d(z:q).

Q IM (J
H:

Thus we have;

Theorem Q. If D is a packed domain.and f 2 H -*>>¢ has no

singularity in Hi fl D and zl and zn s Hj F] D where i and j
rent, thenare diffe

ath independent,

(D SN

f(z)d(z:q) is p
Z1

Let us assume f : H ——£>¢ satisfies that

%;f(z)d(z:q) = O for every closed curve C in S of a packed
domain D. This result is true in the cases of every basic
quadrilateral in S. Hencef:*f(z)d(z;q) = O where C is the

C

eral of (x,y) e D, implies Mf(x,y) = O.basic quadrilat

Thus we have:

If the E5-integral of f 2 H-—5>¢ along every
simply closed curve in S of a packed domain D is zero, then

(3.10)f s:/¢€D(D).



58

Let (X,Y) E D be a singularity of f 2 H -C>¢

in the packed domain D. Cl is the basic quadrilateral of\ —lQ _
(X,y). Then ;)f(z)d(z:q) = g—§“g Mf(X,y) by (5.7)‘oJ1

Let (X,y) a Hi and C e Hj, i # j be a simply
closed curve in S. If (X,y) e Int C, is the only singularity

CWJ3
H»

_ l
of f in Int C, we see (z)d(z:q) = g—§»g Mf(x,y) due to

the replacement of C into basic quadrilaterals as we saw

in (3.7) and (3.9), but if (X,y) 8 Hi and 0 8 Hi, we get

§r(Z)d<Z;q> = 04'

Thus we have:

If (X,y) is the singularity of f in a packed
domain D and C is a simply closed curve in S such that
(x,y) e Int C, then

" -1
'  if  FL  8.1'1d C E  i 7é

5f(z)d(Z¢1q)= <;C .
< o if (X,y) a Hi and c E Hi. (5911)

Using the above result, theorem l of this section
and the principle of replacement of a curve by basic quadri­
laterals, we arrive at the result;

Qhgpremmg. Suppose Zll’Zl29ooc and zlm 2 H1 and z2l,z22,...

and zgn a H2 are the singularities of f in a packed domain D
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belonaing to the interior of a simply closed curve C in Sthen, T
q'l q m_ an

k -§"*- J¢€_L€(z]j) if C e H2
§f(z)d(z:q) = <\

q_l—q n
= »w7;- IE1 Nf(z2.) if 0 8 H1.\ jzl 3
L

Let f be a meromorphic function in a packed

domain D with zl = (xl,yl) as the only pole in D. Suppose C
is a simply closed curve in D having Z1 5 Int C.

C can be replaced by basic quadrilaterals. As we
saw earlier,S5-integral of f over C is the sum of E5—integral
of f over these basic quadrilaterals.

If zl s Hi and C e Hj, i # j, the basic quadri­
laterals of the directly adjacent points of zl are not
included in the replacement. Hence due to the q-monodiffri—
city of f at the other points, we get

SS f(z)d(z:q) = O if Z1 e Hi and C e Hj, i # j. (3.12)C

On the other hand, if zl e Hj and C e Hi, we see
that the basic quadrilateral of zl is not and the basic
quadrilaterals of the adjacent points of zl are included
in the replacement of C as the basic quadrilaterals belong

to Hj if C E Hi, i # j.
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Due to the q-monodiffricity of f at the points

other than the points directly adjacent to zl, we get
E;f(z)d(z;q) depends on the residues of the points directly
C

adjacent to Z1. It is also easy to see that &)f(z)d(z:q)
C. . -1

1S the sum of residues at (qXl,yl), (q Xl,yl), (Xl,qy1) and

Z3
\./\1

-H
\.;~1
\___/

(xl,q'ly1), the directly adjacent points of zl.
Hence S f(z)d(z;q)

C-1" -' "-1 \'!K , V 1 J= 3——-g[hf(qX ,y ) + hf(X ,qy ) + hf(q Xl,y )+ hf(X1,q ylu2 1 1 1 1 1
_]_... _."_ _]_ .,_, _ _

= q Z1 f(q JX1,q Y1) + qZ1f(qXl,qyl)

-1 . -1 . -1 -1
+ (q X1—1qyl)f(q Xl,qyl>+PqII+lq y1)f(qX1,q Y1)

+ iyl[f(q~2X1,yl)—f(q2X1,yl)]+X1[f(Xl,q'2y1)-f(X1,q2y1)1

= Pflzp (say).

We name I:)(zl) as the polar residue of f at zj.
(3.14)

Thus we have;

@hegrgm_§. D is a packed domain and C is a simply closed

curve in D. zl1,zl2,. . and zlm E H1 (1 D and z2l,z22,..°
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and zzn e H2 (1 D are the only poles of a q-meromorphic

function in D such that zlj does not belong to the set
of adjacent points of 22%.

‘ n

:2: f(zlj) if C s H2
J=l

Then S f(z)d(z:q) = <1C S m
.22: f(z2j) if C e H].
;'=l
P

2. q-Monodiffricity of the &D~1ntegra1

If Z1 and z s S (‘Hi where S is the renion of
a packed domain D and f e§q%5(D), then

Zn
“w

S5 f(z)d(z:q) = 6’ f(z)d(z:q) where C E<::zl,z2,...,;n:>zl
is a curve in S.

Zn/-\
Uniqu@neS$ Of :3 f(z)d(z;q) is guaranteed by the path

Z1

independence of the line integral in S.

Let a and z = (X,y) c‘D such that d 2 Hi and
z a Hj, i % j and f go4Z§(D) where D is a domain in H
packed by the curve C.



Then

1*]? f‘1'; [
Z

Oi

Z o,_1

:)f(z)d(z;q)]

Z0,1
= X [ ES f(z)d(z:q) ~ E) f(z)d(z2q)]Q a

= X ES f(z)d(z:q) -iy S; f(Z)d(Z¥q) (J 5
21,0

N

—iy[ A

Q(j“ H
0

Z1, 0

f(z)d(z2q) - S5 f(z)d(z;q)], where
a

_ lv 3Zi9j _  ""“9q.

Z0, 1 z
Z0,1

-1,0

I X [ @<X1qy_>,_;;1..q;iz<_,1.2ii<(Q-1_1>X + <q_1>iy>>

-1 D
+ §L.@!1.;_.2.‘.1.§.f.)_.t._

-, -1
2 l££”9“l>= ((l—q"l)X + (q“l—l)iY

_iy[ £LH§Lll§i_££§1QXl((1_q)K + (q_l)iy)

-1f 9 , — ­
+,mi§;HJ)W%;§1flHu§Ull((q l_l)x + (1_q)ly)]
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l_._l
s_ __,.._._

l—q."1 . f _ -1 . -1
=~--2-— (X-1Y){X[f(X,q Y)-f(X,qy)] -1qy[f(q X,y)-f(qX,y)

= O if and only if f(z) is a q-monodiffric constant as

Mf(z) = O and

X[r<X,q"1y> -f<X,qy>1 -1qy[f<q'1X9y> ~f<qX,y1 = 0

are simultaneously oossible if and only if

f(X,y) = f(q2rX,y) = f(x,q2Sy); r, s e Z.
Thus we have:

Cu

//6 ZTnggyeg l. f an/9 (D) and E5 f(z) (zzq) is q-monodiffric
a

in D where D is a packed domain in H<%€>f is a q-monodiffric
constant in Do

,l
:>~inte ral of a -monodiffric constant~ % q-H-Ir éilw -1' <P\arv-nQ- I>~\It ---Q >.1='-'w'\I—'I--I-I'\I'-' iv" ---v -'-- '- --Qv.ur.—.|1--1--rnnr-aw» ~%r-HI-Q-nu-.j|iI-wnw -u-n-wo1Iin-~n\-'-v--u,-_- -—»-.-.-.1:-10

Let w = (al,a2,a3,a4) be a q-monodiffric constant

and z = (qmxO,qnyO); m is odd and n is even.

Z zN9N
Swd(z2q) =- Swd(z:q)ZN,N Z

N-l
~ a2+ Q3 r+l r= - 2 --2»--»<q -q >2

r=O
N-la + a2 _" "\= (q—l)  Z( Z511)r=O

J a + a= <1-q?v~il-4iZ. <§.1@>2
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Similarly other possible oases of m and n are discussed‘

Thus we have;rY a + a
Z (l-qN) —g§~»Zz if m+n is odo

S5"wd(z2q) = <z. 1 T a + a
NFN i(1_qh) _l§__iz if m+n is even. (5,l7)

Expressing the line integral of a 1-monodiffrio
constant as a bifunotion we have:

Z CZ-l-(X +0! +06 C15-1-OC-CI-(X

5 W Z sq) = [ -*-l-=—-2~Zl—~—3--—-=74-lZ@--1-‘—=———44-'=4—--"2-Z ](l-q_N)- <;.18>

ZN,N

Similarly
‘ I’

\y OL +0! 1- ­
z —g§~Z[(q“h-l)x + i(qN~l)y] if m+n is odd

S5'wd(z:q) = {la +a ,
z_N.N “l§—&[(q“N-l)X + i(qL-l)y] if m+n is even" r

a +a +a +a _N q
= *1“ i~*5"@A[(q ‘—l)X + i(qI—l)y]

a +a —a -a N
E9 -~lff 2* -2[(q"'N-1)X + i<q“‘-1>y] (5.19)

and
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K

‘Q +a
Z M25-2[(l—q—N)X + i(l~qN)y] if m+n is odd“
Swd(z;q) = f‘a +a
ZN,-N »l§-i[(1_q"N)X + i(l—qN)y] if m+n is even

7».

a +a +d +a W _
= =e11i»-~3~—~-4~[<1-q'i*>X + i<1-qN>y1

(1 +0: QC! "Q -­
e e1—4Z~-Z-~ 1[<1-q"‘“>X + i(l-—qN).v]- (5.20)

Thus concluding from the above two results we fiet

the S3-integral of a q-monodiffric constant along the curves
straight ray and distorted ray are bifunctions. (3.21)

Thus making use of the above two &5—integrals
z

along the curves; straisht ray and distorted ray, E5 Wd(Z1q)
z

where Z, zl a Hi is found as follows; 1

“\
\ \

’ m_ n=(q X1,q yl)

\
,\­
N

\  \‘\ / \\ / \\\ /3 / \. / ‘\
\

\ .
Ix {I
N \

/ ' ( _’_ 12 ‘\ // Stialght ray// \\ \\ / /\ (/ r-v\ / X\ / \ .*\ / \D1storted ray\ /\ /~ z// ~\\l 1:371)//I \“
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The straight ray through zl and the distorted ray
through Z join at Z2. Similarly the other pair join at z§.
Then

min min
Z2 = (q 2 Xl,q 2 Y1)

9:2 2:2and zé = (q 2 Xl,q 2 yl)~ (3.22)
From the above figure,

dQQ£§N

N
no

N

(zzq) = S§wd(z:q) + S;wd(z:q)Z1 Z2Z’ Z‘-2 ~2 F
= E) Wd(Z§q) + :)Wd(Z:q)'z Zél

z

Also S;d(z2q) is a bifunctionc
zl

Thus combining the earlier results we have;

Theo§eg_g. Ifvv = (al,a2,az,a4) is a q-monodiffric constant

and z, zl e Hi such that zl = (Xl,yl) and z = (qmxl,qny1) then
+d +d~+G I N _’ . N

d(z2q)== -w~»3é~l~iH:i(l-q )zii ((q —l)X-+1lq_ —l)Y)]

N N
._.@§>

<4

Q
P

2

a +a —a -a 2 T
e -i’-~:--3*,--?~—--it :<1-qN> v: <<@'"“~1>X + ml"-1>y>1,

where N = g%Q­
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.e.i‘..- .t.l1e..i€_i.¥.$.i@_t_:.i1@.e. I 11 ewe rel We S wdy
functions defined in H as f 2 H"€>¢. The nature of such
functions in certain cases is important in the limit points
namely the lattice points on the axes.

Accordingly we define E = HlnlHXt}Hy where

\O ~] 1m n .
HX = {(q XO,O); m e Z [and Hy =~{(O,q yo), n e Z{.
Some functions like q-monodiffric constants and bifunctions
do not exist in the limit points. On the contrary, quite a
lot of functions belonging toufl%g(H) are well defined in

the limit sets: HX and Hy also. Thus it is essential to
have a study of such functions in E and in particular the line
integral of such functions in the limiting case also deservessome notice. (3.23)

Let f suflzg(D) and C E»1 -1 k- k ­<:(qnX.y).(qn X.qy)..~».(qn X.q2 ly).(qnX.q2 y):> e D­

2k(qnX.q y)
Then from Q; f(z)d(z:q), using

<q”X.y>

(0.q2ky) l_ (qnX.q2ky)C; f( Us : lII1 2 9'
<oT'y> Z)“, Q) n“~‘°° <q“><S.y> flzmz Q)

we get,
2k

Y)

E5

C’ L

. »  k-l\ . kf(z)d(Z q) = (q-l)1y f(0.y) + (q -q2 /1yf(0.q2 Y)
( 00

+ lZi(qr+l—qr'l)iyf(O.qry) - (3.24)I’
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Also,(0,0) xi , p
g; r<Z>@<z@q> = <q»1>1y[f<o,y>+<q+1> £1» qI"lf<o,q‘y>1(0,y) rzl

with the assumption f(0,0) is finite‘ (5.25)

As in the above example, we get,

(q2kX’O) 2?-l ?k
S f(Z)d(Zf?q) = (q-l)X[f(X,O)+q " f(q' X,O)

(X90)

+ <q+1> 3§iqr"lf<qrX,@>1 (2.26)I‘:
and(0,0) ¢>

5 f(Z)d(Z2q) = (q-1>X[-r(X,o>+<q+1)2f(qI'X,o)]<X,o> r=1
with the assumption f(0,0) is finitev (5.27)

3. Integral of the Second Type

As in the classical theory of both continuous and
discrete functions, integration is also viewed as the inverse
of derivation.

Qgfiigitjig. Let f ac/%é(D) and Z a S. Any solution of the29

pair of q-difference equations

F(q"lX,y) -F(qX,y) = (q'l—q)Xf(X,y) 0» (1)
and

F(X,q'ly) -F(X,qy) = (q'l—q)iyf(X,y) ~» (2)
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is denoted as F(x,y) =~g f(z) and it is called ani3-integral of f(z). (5.28)
It is easy to note that S?f(z) is defined in a-l . . . . ~n . .set D whose interior is S. Accordinply D is defined. . . - n-las the set whose interior is D ( >.

Thus if f eu6%g(H), F ev4%g(fi).

Also in the limiting case, the annular boundary of H reduces
to the points on the axes.

In earlier theories, integration is treated uniquely
to renresent the ‘inverse of differentiation‘ and ‘summation’,
but in this theory two different concepts are developed. Then
the relation between them is evolved in H.

I.

q-Monodiffricity offij-integral

From the definition of,Sjf(z), we get

I-‘“._(.l<¢1"i.?.<_=_I>.’)ZF§<1..?E;_3i). = E§.’.E_z_£1_'.-i3L1.._f:;l.ll(..2‘_§»_§C. 1 = f< X y)

(q'l—q)X (q*l-q)iy
for (X,y) e S.

Thus we get:

If f eJ¢g(D) andf? f(z) exists, then
915(2) e<fl@(S).. (5.29)
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Linearity ofE;~integral. From the definition of F(x,y) itIll'\-%III-"—'-in iv his-\II'ii‘i 1'1-it-'1-. -1-1-g,~~QI -1-_n\ Q wigiu _iQ__-_‘g- .-\

follows that

if f,g aJ¢%(D), (f+g)(z) = Egf(z) +€jg(z) and
€;(af)(z) = agf(z) in S, G 6 ¢. (3.30)

The value of gf(z) at (x1,y1) e H is denoted
by F(Xl,yl)­

Let D be a packed domain such that f 8ufl%kD).
Also we know F(x,y) for (X,y) belonging to the annular
boundary of D namely €)DtJéBS. Then if F(x,y) exists in D,
using (5.2s)(1),

I1

F’(X’y) = F(q2l'l+2X’y) +   (q--l_q)
J=O2n+2 7where (q X,y) belongs to the annular boundary of D.(,.3l)

Then

F<X,q-1y)-F<X,qy> 1'1 . .: F(q2I'l+2X’q—-ly) +
J=0

I12 ' 1 " 1 -1
-[F(q2n+ X,qy) + 2) <12“ f(q2J+ X,q.y)X(q —q)]J:

2n+2 -1 2 +2 n 2' 1 2' 1 -1
= F(q X,q y)—F(q n X,qy)+j§j q 3+ [f(q 3+ X,q Y)

j=O ' -l
-f(q23+1X¢nfi]X(q -q>
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1'1

= F(q2n+2X,q"ly)-F(q2n+2X,qy)+ iig [f(q23x,y)3;.’

-f(q2j+2X,y)]iy(q_l—q)

= 1y<q'1-q>f<q2n*2X.y>+[f<X.y)-r<q2“*2X.y>11y<q'1-q)

= iy<q'1—q>f<X.y>­

Thus we see that 5.51 satisfies (2) in 5.28 also.Also .
m

F(X.y) = F(X.q2m+2y)+ :5: q23+lf(X,q23+ly)iy(q'l—q)
J=9

where (x,q2m+2y) belongs to the annular boundary of D.
(3.52)

Similarly 5.52 also satisfies both (1) and (2)
in 5.28. Thus 5.51 and 5.32 are solutions of 5.28.

If f ed4%tD) and F(x,y) exists in D, then
F(x,y) ==E;f(z) can be continued uniquely to D from the
annular boundary of D. (5.55)

The above result can be extended to the case

D = H. In this case, the annular boundary reduces to the
lattice points on the axes.
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Thus

If f sJ¢@(H) and F(x,y) exists in H and F(x,y)
is known on the axes, then we can continue F(x,y) to entire Hfrom the axes. (3.54)
Thus

QC!-l 2' l 2' l n
F<><.y> = <q -q>X 2 <1“ f<q 3* X.y> + l<o.y>.

J=0w I .
F(X.y) = (q'l-q)iy IE1 q23+lf(X.q23+1y) + F(X,0).

i=0

F(X.y) = (q'l-q)X jif q"(2j+l)f(q'(2j+l)X.y) + F0“,y)
i=0

and

F(X.y) = (q'1-q)iy 5%: q'(2j+l)f(X.q“(2j+l)y) + F(X¢*)
j=O

give F(x,y) determined in H if F(O,y) = ¢l(y).

F(x,O) =\+Jl(x), F(°°,y) = ¢2(y) or F(x,w) =L+J2(x) is known.

If f(q2jx,y) and f(x,q2jy) are of order O(q_j), first two
series are convergent in H. Third and fourth serii are
convergent depending on f(q_(2j+l)x,y) and f(x,q—(2j+l)y)are of order O(q5j). (5.35)
U i ueness off;-integral. It is a trivial example that ifl¥~L l l-_.rim .,, @>.
F(z) is an.§J-integral of f(z), F(z) + w where w is a
q-monodiffric constant, is also ans;-integral of f(z), in
certain domain.
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Conversely, if Fl(z) and F2(z) are\g -inteflrals
of f(z) eJ¢@(D), let F2(z) = Fl(z)

+

EL
N

Then from the governing q-difference equations (5.28), we
get-1 ~la(q X,y) = a(qX,y) and s(X,q Y) = s(X,qy), for every
(X,y) e S.

Thus we haves

Fl(z) and F2(z) ares;-integrals of f(X,y) e/¢Z(D)

<é€>F2(z) = Fl(z) + w in S where w is a q~monodiffricconstant. (3036)
4. Relation between the Integrals

The integral of the first type of f eJ4%g(D)
where D is a packed domain is expressible in terms of
integral of the second type of f. For this purpose we
define two curves Ch(X,y) and CV(X,y). Let D contain them.

0h(X.y) 2 2 2 1z<j(X,y),(qX,qy),(q X,y),»»~,(q nX,y),(q n+ X,qy)»~»»I>
(5.57)

and

CV(X,y)
2n+l

z<((X,y),(qX,qy),(X,q2y),~¢»,(X,q2ny),(qX,q y),-~{>»
(3.38)



Then

Ch(X

J=0
_1i.<_;2_‘-..-l_..:%l.s1:>'.>.+f <

2

,y) 3
74

‘<" ( 23 ) f( 2J+lXLgy) 2j+l 23
S f( Z)d( Z;-q): .42) §_i..‘.1_.......‘.-?§.==...3’,.._”"..é...-l<.El. ...u..[(q __q )X

+ (q-l)iy]

[Cwc_1.

+
l'\)

2j+l 9. ,.‘9 M 2 2 1 .—-- -"5&4$l[(q 3+ Mq 3+ )X+(q—l)1y]

= %f(X,y)[(q—l)X + (q-l)iy]

l+ 2

€_.l­

Z]

OMS
:2

q2J+2X9y)(q2J+3_q2J+l)X

+ -:2 2f(q2j+lX»qY)(q2j+2-Q_2j >><
=0

1 5% 2j+2 -1 2j+2X= %f(X,y)(q—l)Z + 5 __ f(q X,y)(q ~q)q
0'1}

¢__|

CD

2' 1 —l 2'+l+ % :§:f(q 3+ X,qy)(q —q)q 3 X»

€_l.

O

Thus we have;
(3 f(z>d(Z q) + F(0,y) + F(0,qy)

h\.J0 (X,y)

= %(q—l)Zf(X,y) + %F(qX,y) + %F(X,qy)~ (3-59)

By similar calculations we get that

VS
C (X,y)

= %(q-l)Zf(X,y) + %F(qX,y) + %F(X,qy)­

f(z)d(z:q) + F(X,O) + F(qx,O)

(3.40)



5. Standard Integrals

A few standard integrals are worked out in this
section.

flgangle l. If c is a complex constant, th9nE9 C

-1. "Q" ' 1
= (q -q)X ;3b q23+ 0 + F(O,y)J2‘.

23+l@ + F(X,o).

c>\48

._.]_ _
= (Q —q)1y ¢-A q

Thus g c = ox + F(O,y) = ciy + F(x,O).,

HenceE;c = oz + w where w is a q-monodiffric constant.
(5.41)

§§agQl§_g. Let u(z) = (al,a2,a2,a1) be a biconstant.

l+(_l)m+1'1 l_(_l)ID;-1'1'3We can also represent as u(X,y) = “"5-—— dl + ——§——— K.

Then proceeding as in the above example,

Z if z e H2
311(2):

lz if z E H1­

I--_._¢\
Q

Thus we get the solution as
_ m+n ~m+n

:g(al a ,d2 al) =[ii%:il a2 + lzézli-al]z + w where w is a9 2 9
q-monodiffric constant. (3.42)/
Incidentally we found that the¢J—integral of a biconstant
is a bifunotion:

E3(al,a2,a2,al) = (a2+ al)z @)(a2-al)z + w- (3.45)
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§;amEle 5. Let w be a q-monodiffrio constant namely

(al,a2,a5,a4).
Caloulating.g w

.f

*3 (XZX

A CI X) 4
w = 1

WGXt1
15a XL 3

W

+

+

+

+

8

a3iy if

aliy

a4iy

a2iy

can also note that the above solution lS the

even, n is even

even, n is odd

odd, n is even

odd, n is odd.

solution of the equation o2f(z) = O0

Exaqglemg. Let f,g ed%g(D)°

Then (f EB s)(Z) = f(z) + (--l)m+ns(Z) @~//,é‘(D)­

Calculating:7~integral

\4(f PB e")(Z) = gf(Z-) ®g(-£I(Z)) + W wh@r@ W is 8­

q-monodiffric constant. (5.45)



CHAPTER IV

BASIC PROPERTIES OF DISCRETE POSITIVE POWERS

Discrete powers are introduced in discrete
function theory to replace the usual powers of the classi
cal analysis. zn is not analytic in any discrete theory
whereas z(n) is defined to suit discrete analyticity in
every such theory. In this chapter the q-monodiffric
analogue of zn is introduced and properties are discussed
z(n)is q-monodiffric in H.

Infinite series of discrete powers whose
coefficients are from complex numbers is discussed.
Criterion for convergence of such series and a comparison
test comparing the discrete series with a known classical
counterpart are found. This provides a sufficient condfg
tion for an infinite discrete series to represent a
q-monodiffric function.

Polynomial theories of discrete powers defined
over complex numbers, biconstants and q-monodiffric
constants are studied. They are called respectively
discrete polynomials, bipolynomials and qm-polynomials.
An attempt is made to investigate zeroes of these poly­
nomials. Quadratic polynomials are studies in detail.

77



Cn,O

78

l. Discrete Powers

Isaacs, Duffin and Harman defined discrete
powers. Here a more general class of discrete powers is
found by defining in another way thus removing some
difficulties occurring in the earlier literature of
discrete powers and polynomial theory.

qm-binomial coefficients Cn j are defined as9

j—l —(n-r)_ n-r +
Cm = U 5'1---»~e-»~e-9! n,;1 =~: Z 9 :1 n (4.1)

r=0 q'l—q

and

= l

j“l - _ 1 r 1: ._—  ( r+ ) “q. + +
| -...._.,__. -...-1.... ___.......   E Zr=O q" ~q

/\
C._|.
\_/

>9i

and

(O)qg = l is called the qm-factorial‘ (4.2)

q-monodiffric discrete powers for any nonnepative
inteflral index is defined as-.J n-l n-l
Z(n) = I—[(X+iq-(n~l)+2jy) : T*[(q—(n~l)+2jX+iy)i=9 j=9

for Z 8 H, n 8 2+ and 2(0) = 1. (4.5)
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We write equivalently

z(n) = [X+iy]n; [X+iy]O = l. This notation is analogous

to the q—basic (X+iy)n. (4.4)
A discrete product for such pOW€IS is introduced as

Z(mL+z(n) = [X+iy]£'[x+iy]n = [X+iy]m+n = z(m+n? (4.5)

In another way writing,

Z(m+n)

Also

Z(m+n{ [

= [X+iy]m+n

m+n—l

Z T1‘ (X+iq-(m+n-l)+23y)
j=O

m—l m+n»l
: T7- (X+iq~(m+n-l)+2jy) T7” <X+iq-(m+n-l)+2jy)j=O j=m
= [X+iq"ny]m[X+iqmy]n­

= X+iq'my] [X+iqny] ­1'1 III
Thus we have:

(M) Z(n) —n (m) m )(n)1haQ£2§il- Z  * = (X+iq y) (X+iq y

= <X+1q'my><n><X+1q“y>‘m>@
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Now we solve the simplest of polynomial equations
namely z(n) = O. The proof directly follows from

z(n) = [X+iy]n as both the real and imaginary parts of each

jth factor (X+iq“(n“l)+2jy) vanish.

Theorem 2. The polynomial equation z(n)= O has n and only
n zeroes which are at origin.

It is easy to note that Mz(n)= O for every z e H

and oxz(n)= oVz(n) = (n)qz(n_l)\

q—Il_“ D
W1'1eI'9 (Yl)q = "Ti-"Q" for n 6 Z+.Q "Q

Thus we have:
/U”

Theorem Q. z(n)ec¢4§(H) and oz(n)= (n)qz(n'l)for n e Z+
and 62(0): O.

The following simple results are immediate.

.~la) lim z(n) = zn ; lim 6z(n) = nzn (4.6)q "">l q-—>l

b) lim z(n) = O, n>O ; (7\z)(n) = >\nz(n> for >\e ¢.
z—+O

(4-7)

The discrete power of z to the index n can also
be expressed as a sum of (n+1) terms. For this purpose
we need the following result.
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A homoseneous exnression of the form- J .
n

:§:a.Xn“3(iy)J, ao = l and aj E R is q-monodiffric in H_ J
J=0

if and only if a. = C ..J P93
n-l

As the product TT'(X+iq“(n"l)+23y) is homogeneous
J=@. . . n . .in X and y and coefficient of X 1S l, using the above result

we have n-l nL . - -l 2* -' . '
EQsQ£§mi&~ Z(qL= 'FT(X+1q (H )+ “y)==j§§Cr1jXn 3(1y)3j=O 3=o '
for n 6 2+.

(n)Let us investigate a few estimates of z .
2k-lk . - k '1) Z(2 ) : fi(X+lq 2
j=@

k-1

= W (X+iq2k--2j--ly) ( X+iq--'2k+2j+ly)°
j=@

Thus k-1
2k ~21 _" 1 . 2k-2'-l 2k-2'-l .

Z( ) = I*Lq {+?3+ (X+1q 3 y)(q 3 X+1y)J:
k~l

i=9
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Using §zlz2}= §zliiz2| and simplifying we get‘. 0 ‘2 2
qk §Z21<|g|Z(21<)|§ q-11.). ' Z21; Q (4 9)

Similarly a I
q1;(1<+1) |Z21<+1‘§_ !Z(21<;+1)|_g q-1<(1:+1) §Z21<+1|c (LL10)

Combining we have

<1[§][£5_l-1 lzl HS lZ(n)| '5 q"['§][%'];] IZI n

where [s] means the integral part of s. (4.11)
n-l

2) From z(n) = T_[(X+iq'(n'l)+2jy), by combining the
j=0

factors (X+iq-(n-l>+2jy) and (X+iqn'l”2jy) and simplifying

we get |Z(n)I2 |z|n. (4.12)
Likewise |z(n)| = |(X+iqy)(n-l)||x + iq_(n_l)y|

i.e., |z(nHZflX+iqy|n_l IX+iq_(n-l)y| (4.13)

and |z(nnZZ |X+iqn_ly| |x+iq'ly| n-l . (4.14)

The following result is an inequality between

z(n) and z(n+l).



\ 53\ n
~]~T(X+iq-n+23T)

‘n(n+l)_ t. OiL’ ‘ q—_Q.-an ,-'Q\4-.¢ru.1i ‘Z \ \i Lu “L iii.‘ ‘In ‘ Qt‘ ‘ I Q4'l'f§ tflrvlfii 9. 1-D? C'iv~_-_-.._..._ -:1_r.- . . ‘ L‘ ‘‘ tZ(n> ‘n-l 1
T] <X+i@,~<n-1>+-Em:

____———~——4_ — .-—-n _ ' _L --;;;_;-- _,::_ __'__ _-—~.—_; __ __ -V»: ::_:_ ii" __: *~ t," .-- _ t_T- '— ___ -.é —_¢ _—_—;,—_— — — 7 7 _ _ _ __ __ _ V .. . . -2  . -'
I ~@@.?i:%.%.“I>LLi>:2.%f¥ll§it&Q1 L *!i<:#efoi.¥.  '|\-X<.?T..%.\g\'!:_fi1|a-|.r~..|?4-_y.!.-.|_‘-’_  _, i 1*/3+ 19f Yi

|x+iqn*ly||X+iqn“5y|...!X+iq_n+ly|
...._.-_--_ _,— 1--1.-Q: _' : , __ _ f"_' _ ""--7 i__ I" --­

./|X+iqny| l><+iqn'"2y|
Using the fact that "”"“”“”"”"E”"“'““' §> 1

|X+iqn_'y|

and so on we get

(n+1)   e --= e   e__
t%;(;§|Z?¢qX+iqnY| |X+iq nY| ~ (4.15)

(n+1) {r . n || . -n |
Similarly I31-T-Y |S7=_=? +1 X“ " -» (4.16)

Z n -._/'lX+iqn-'ly||X+i<j-(n-l)yi

Thus we have:

|X+iqt“y||X+1q""“y| |Z< “>1 s I2‘ “*1 ’lsl£ii-‘13fLlX.f.%‘%l§¥L~ lz‘ n)‘'
(4.17)

Also writing in another way

(n+l)| < [1-ml->.I::{qnY| |X+:Lq“ngr ‘ Z(n)|n n' n "- s < -1) -(n-1)Z( n   —-"——-"'g—--  " :—_- “"""'""'“"'"""""""""""“”““""""s “""t'°""""“"' . ( 4 .  )

J4X+iq y||X+iq yiJ|X+iq yHX+iq y]
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2. Infinite Series

Using the definition of z(r), we study q-monodiffrio
(_1§

functions of the type :2: arz(*) where ar c ¢ in a certainr=O

domain. Thus we get the study of q-monodiffric functions
in terms of Weiestrassian annroach of an analytic function.

°° < >Let us consider 2 arz L which we write as

H

O

on r2 _£2
Iglbrur where ur = q3_'z(r) and br = arq 4. (4.19)r=O

Then

U u U
E£il = _£i£ ,_£"w = qr(X+iqry)(X+iq ry). (4_2Q)U Ur-l r r-l

u _"__
Also lim -1-11-] =liII1 9._.fL.. .@££+1>r ( )q7F Zr._-)@ u  I‘ 2 r(r+l)2 i

f§ lim Z£il LX + iq ryi A,
IF9mq 4 /‘x+iq_(r“l)yi

Z

>7!

(r+l). . Z
using an estimate of ———?—7rz

2r+1 (r-l)= lim qT"r+ T
I‘-)°°

>5%.

1' u 1 -" ­
1 e ' rifm "$515-lgq '2'/Yr (4.21)



Also,

;~P.;1-';;i-..J.-.; _ '__.‘i‘2__;|= -35-t-4» !z('-’?+1>% __ f-§f'-3'" .Z(r)In In 1 lq 4  I,-I I---_1? r- Zz 5 Z(r-1)
-‘Q 4~ Z(r-lY‘| Z(r) ' ‘gYr-l)"Z(r+l§ I

2r-1
_ _.___2 r+l. |z_(f:l;>|  --q 4 '.Z(..r..?..“.  0'

2I'+]. (1,.__l) 22;; Z(*,")
= qr |x+iqry!!X+iq”ry|’q Z |§T:7__ l—q 4 i__;_z Z ~

r' ( r) 1 <
]X+iq y|

Thus lim. H?§+l! 'uur_"_ O O ( 22r“%m) r r-l

.1.-.

X

I _(v+1)

Combining the above two results, we get

u 1 lim ulira I-1-"-1“--1 = r->¢>l-é1?-l- (4 25)u ur-»a> r r-1
Then.substituting (4.25) in (4.20), we set

hm I-1:1-£1“-1-|— /I557» (4 24)r Q» u —
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Now to test the convergence of
0° (r) "‘°221,2 = brur ,r=O r=O

. b u _* .b
llII1 ‘  I'+l I‘+l| :__ 11¢; I I‘-|~;l__’ ‘/15-Hy".r—9“/ b u ' r-scn brr r

Hence expressing bés in terms of aés, we get:
O0

:E:arz(r) is absolutely convergent in D<:: H if
r=O. -2' l 1
lim ‘?__1;;_+_l_‘ —-§-t- ,/ Xy g .Lr-40° ar q
for (X,y) a D. (4.25)
Thus

Jr) E1/16(9) if lim 'ar+ll "'3----H1 fig? S1rzo r r-ea» ar q 4
for (X,y) s D. (4.26)

< > -[§1[%l"1Using the estimate |z n'F§ q ‘ |znL
root test also gives a similar result namely

if lim |ar‘; Q L4 |z| -l for every z e D thenr-am:

%arz(r)e/%(D). (4.27)

H

O
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In fact, due to the fact that an estimate of
z<n) is used in the latter, the domain of convergence from
the ratio test is more accurate and larger compared to that
from.the root test.

l""

QM?»

1?
pi

Z(3'-3) % .',,2(r)————~T and q“z are discrete entire‘Z .
in the sense that they are q-monodiffric in H, while
‘° 1l£i"l.)
ZEI q’ 4 z(r) is q-monodiffric in a domain in H bounded

H

O

by the limit points and a distorted ray which is given by. l
the relation qm+n+ xOyO<Zl where (X,y) = (qmxO,qnyO). (4.28)

00

If we take X0 = yo =11, :2 qg%£il)z(r) is

H

O

q-monodiffric at (x,y) if m+n+% )>O. Thus we get the domain
00

of convergence of :2: q££%3l)z(r) is bounded by the limitr=O

points and the distorted ray through (Xo,yO) = (1,1).

§ "<21"-1-> <r> § (r)Also, q 2 z and - ngw__

H

O

H\_/

|"$

O

l
q' ¢kr}q!

are q-monodiffric in certain domains bounded by limit pointsand distorted rays. (4.30)
Due to the condition on domain of convergence ofOf)§ (r) _ -2r+l

:§;9rZ namely llm |%£il| q 4 ./xy' <11, we get any suchr=O r-am: ar
domain of convergence is bounded by limit points and a
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distorted ray. Thus the circle of convergence in the
classical analysis is replaced by a distorted ray of
convergence in qmmonodiffric theoryo (4‘3l)

Comparison test. Now we introduce a test to fix the domain
of q-monodiffricity of an infinite series in discrete powers

The domain in the complex plane satisfying

|X+iy|5; a is denoted by [)a while the domain in H satisfy­ing  § a by Dag (4.32)
O9

Let Zijarzr is absolutely convergent in £38.r=O '
Then lim |f"_;_;~_;~_:_g_| - a <10

I‘--3‘/‘~00 Hr

52 (r)Considering arq4 z , we getr=O

(T-I-l)2 (lim ar+l s§.:;:i Emf+_ : 1' ar+l ““
I.__>m I ar ‘ £5 ' ZTIT‘  ~/XY

Q4

< 1' a1
_' riEaJ“§im| a <: 1‘

1.13

Hence we get that jgjarzr is analytic inr=O

£2

::_ 4 z(r) svA%§tDa)_3 =:

U
N
otgs
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Similarly the converse also is true. It is
stated as “Q

can-L."=w @\ t /_ _“> (m H ?
‘Z at-.rz(li ’ st./1/é\Da)iZ“ arq/I Z]r=O r=O
is analytic in. I18.
Thus combining both the results we have;

‘E (r)  ‘I co -%2 r.J?_1_1§..9.r_<:>.;Q~ Zarz 8  (Da><:-">2 arq ZZ I':O

H

O

is analytic in Ljac ¢> .,1 . L y :2’ r . . . I] 1lo illustrate, z 1S analytic in 1 and

to

|'$

O

2a:
:§:q4z(r) gr/?%;(Dl)o We get the distorted ray of conver­

|"5

O

an 32
gence of :2: q4 z(r) is given by the relation m+n = l if

r=O

X0 = yo = l.

We can also note that Iqa represents a circle with
radius a in the complex plane while Ba renresents a set of
lattice points in H enclosed by x = O, y = O and the
hypcrbola Xy = a2 in the first quadrant of the complex plane

Also, Ila is a finite domain whereas Da is infinite for all
finite a. If a is infinite, Ina enlarges to ¢ and Da to H.

(4.53)
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5. Discrete Polynomial Theory

A discrete polynomial is defined as
1'1

p(z) = :§:ajz(3), aj e ¢, an # O. ajs are called the
j=O

coefficients of the polynomial. (4.54)
A discrete polynomial is q-monodiffric in H.

+ and * are defined in the set of polynomials as

<j> <3) <3) <j> <k> Z<j+k>9a.z + b.z = (a. + b.)z and z * z =J J J J
n7.0 ’ ' ‘I .  ' .Jebree of the polynomial :§:aJz , an # O lS n. Degree

j=@

of p(z) is denoted by d(p(z)). (4.35)
The set of polynomials of the form

n ' -)(­
EE:ajz(3), aj 5 ¢, an # O, n a ZO+ is denoted by ¢ [Z]
J=@

where as the integral domain of polynomials;
n j FO+ _:§jajZ . aj E ¢. an # o ,n E A by ¢[z1. <4.>6>

j=@

¢*[z] is a vector space over ¢ for which the

nonnegative discrete powers {s(n%} form a basis. (¢*[z],+,*)
‘X’is an integral domain. Also ¢ [Z] is an algebra. We can

imbed this integral domain in a field called the rational
field of discrete functions. (4.37)
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Due to the isomorphism of ¢*[z] and ¢[z], we get
the following results.

a) Let pl,p2 e ¢*[z] and p2;£ O. Then there exist unique

polynomials p5 and p4 e ¢*[z] where

d(p4)<< d(p2) or p4 E5 O such that pl(Z)EE=p5(Z)*p2(Z)+p4@)

(4.58)

b) ¢*[z] is an Euclidean ring (4.39)
"X"c) ¢ [z] is a unique factorization domain (4.40)
n .

d) ;:Eajz(3) 2 ¢*[z] can be uniquely expressed as
j=O

(Z-al)*(z-a2)~n.c. ‘Q-an) where aje ¢ satisfying
n

:§flajz3 = (z~al)(z-a2),°..(z-an). (4.41)
j=O

Zeroes of thepolynomial. zl is a zero of the polynomial
n

p(z) = :§:ajz(j) if p(zl) = O. (4.42)
j=O n .

Consider 2ajz(3), an f O which we can express as
j=O

n

iig ajz(J)= ¢l(X,y) + i¢2(X,y); (xl,yl) is a zero ofJ:
n

IEI ajz(3)means ¢1(Xl,yl) = O and @2(Xl»Y1) = Q»j=Q n
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Trivially both the equations are of degree n in X and y.
The solution of X in terms of y from one equation is
substituted in the other and solving we get that there
exist at most n2 zeroes for the given nth degree polynomial

n

:E:ajz(3), an # O, if ¢l(Xl,yl) and ¢2(Xl,yl) are prime to
j=0each other. (4.43)

Now we prove ¢l(X,y) and ¢2(X,y) are prime to
each other. If not, without loss of generality, let
y = ax + b be a common factor of them. Then y = ax + bn .
is a factor of .2;-1jz(J), an 75 O also .J:

Then replacing y by ax + b inn J
Ea.  x3"'r(iy)r], we get a polynomial in X only._ J ,_ J»r3-O 1-O
of degree n, whose coefficient must vanish identically.n .
Considering coefficient of Xn, we get 1256? j(ia)3 = O.

j=@

If a # O, we replace a by a/B and thus

(a + iB)(n) = O which implies a = O, B = O due to the fact
z(n) = OZI§>> z = O. If a = O, from the above relation
l = O. Thus both the cases reduce to contradiction.



Thus we have;
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Theopggo A discrete polynomial of degree n cannot have
more than n2

Due

Z€I‘O€S.

to the fact that z(n) = Zn if find only if
z is a purely real or imaginary point, we get the following
result.

a (1‘ (3') 1‘of Izga z1 J ­J=0 J
The

n
result that jg,

H

one real zero

n

Z
I‘:-Q

real zero.

or id) where a is a real number is a zero

if and only if cm (or ion) is a zero of 2\ajz3.
=0

(4.44)

n using the above result and the classical- r .
a z , ar e R, an # O and n odd has atleast

Q I
w

i--n
, we have:

arz(r), ar e R, an # O, n odd, has atleast one

(4045)

(Consider the quadratic polynomial z 2)+ bz + c.
Without loss

investigate z

(X

\ X 1
::;> 1

y.

A

y(q

2 2
Y

of generality we take b, c to be real. To
eroes,

+ iqy) (X + iq_ly) + b(X + iy) + c = O

+ bx + c = O

+ q'l)xy + by = O



P

(-----X

—b TJ

O"

Zeroes of z(2>+ bz + c is the set:

Q1 +q C1-I-1+

Thus we have the following conclusions»

a)

b)

<1)

d)

e)

If b2-4o > o and ¢(q'l+q)2-b2(q"l+ q-l) > O:

z(2)+ bz + o has four zeroes namely
- _;lro-;lro r_rl _.H, j+/ 2 b -|-  --1  -'1 -1) !

. 2~-4<> -—b i\,]¢(q'l+q)2—b2(q'l+q—l%1

(._m_€?_lMl,Q), (r_3l.3 .____"_m_MmMMWll_r_lllm~ j; (4.46)
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-b M b -4o Q - W o q +q i q +q ‘
< — -Y"**=2 ‘";—--1=—-= 7 O ) 9 ( -"-_:1—-'- 9 '- ~-"-'"""'--"‘“' **:1"-"'- “- "'"" ""““'"""--'"""‘""“"""‘ ) tQ + Q _
If b2 = 40 and ¢(q‘l+q)2-b2(q"l+q-1) > or Z

, ._ (
has three zeroes namely {( g , O) ; ( —:%f—q -~“%%f~~*~"Q ‘M <1 q2 -1 2 -1If b —4C >’@ and c(q +q)2 = b (Q +Qr1J then the zeroes are

q +q ~ ~

_‘_ s?r\+
U’

Z-+-C-l
+q“. C! +

bi/b2 '
(;@;wn;iQ9 O) ; ( "b__, 0)},L 2 Q_ +q

If b2-4o >o and ¢(q"l+q)2-b2(q"'l+q-1) < o,

If b2-40 < o and @(q"l+q)2-b2(q"1+q-1) > 0,

Z(2

(-----,
)+ bz + o has twozeroes namely2 l -his
"b 1-"/T‘_(o°i +<1)_ -l?_(<1;_s-i"..°i:..3_E)) Q_ -1(1 1-§-q q. +

l 2
z(2) + bz + c has two zercesnamely {(Ib-gp"&§, 0%}­



f) Then the four oases;Z lidi i I­, 1 1 ,(1) b2 4¢<; o ; o(q +q)2 b2(q +q 1)<< o,2 ~l 2 2 -1(2) b -40 = O ; C(q +q) -b (q +q-1) I O,2 ~l 2 2 ~l , H(3) b -4c = O ; o(q +q) —b (q +q-l)<A o

and

(4) b2-4c<< O ; @(q"l+q)2-b2(q“l+q~l) = @~

do not exist.

Hence
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The number of zeroes of the q-monodiffric poly­
nomial z(2)+ bz + o; b,

0
m

‘:3

H

anges from two to four
(4.46)

It is interesting to note that the zeroes of the
2polynomial (z+l)*(z+l) = z( )+ 2z + l are three in number:' + "-1 2 -1‘

W_J

- /< 4- > -4< + -1><- , >, (---3--~-,—-_ ‘1r_‘1r__tJ1 o-_ji__.,4 16  1 >4 “ + q q“ + q

L_._..­

. (4.47)

So we give a note to the result (4044). a is a
purely real or imaginary zero of the polynomial

I1

:§:ajz(J), aje ¢ repeated r times does not imply that a isi=9 n
a zero of Zijajzj repeated r times; but strictly implies0 nj:
that oz is a zero of 29~jZJ- (4.48)

j=O
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Also the zeroes of z(2>+ a + ifi; a , B e R are
'— 7 *_f_ __ f'A_' _~ —_ _ .__ _:_ ; ___' _i_7ir"__V _ ­

T I T /2  Magoo _- Ii +\/—a +§a + ——:f~—; r__

Q)
f Y _i vs-_

O

I-Is'I>1—.~ Q-..-.-|n.In\II—'i'\l_|..1.|v n@'-7-an-Um-%-—-in-iiiit-—_nn;n>i.-U Z-a—f*T-=—__,_-;-'- - i: ' I 't-"\II"q- »w¢--2?-\Q.i_$_-ifl1vC_rQ&<­9 _____1__~-aft ~ _~ 1 1 as.< ~ “ <q +q) - J25 a
E 2 + 1 /  t /-.. ;; 46  ~K ‘ ( q ) J_ " + H i a2 + ---“­(q q) <1 _l 2. ,  Lth . . .q-n roots of unity. Now we solve the polynomial equation

z(n) = l. The zeroes are oalleo the q-nth roots of unity.
They are denoted by l(l/n),

z(n) = l3i;> Xn— CF 2Xn'2y2 + On 4Xn_4y4— -.. = l (4.50)-1 , _ _
and Cnalxn y ~ Cn,3Xn By? + Cn’5Xn 5y?_ .@. = O. (4.51)

Let y = mx where m is real be a solution of the
above homogeneous equation.

Then (4.51) has atmost n solutions with m = mi.

Then, for the possible values of m,n-l l/n. — -l 2' __
U ( X +1 Cl ( Tl ) + J  = 1 > X : l:_______,,,__,___.,,_._.,_.;l:..  l.....‘.........____________]=0 ‘-' Y‘L'".L .J l+iq (” 1)+23mi)

-_-T-3
'_'l—-'

3-=0

l/n
But [£;l——-1'~~j~—] gives

T1-(l+iq-(n-l)+23mi)
j=O atmost two real values if n is even

one real value if n is odd.



Thus we have:

z(n)-l has atmost 2n zeroes if n is
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even and

n zeroes if n is odd. (4.52)
Examples O

1'

1. There are only two q-square roots of unity: %til,O€P

2. Ther
F' 1
FLO), (—~~   ,' f  2 6 _    it5(2 _2 2 -2 2 -2 2 -2 2

3. Ther
f

is-.1, .. _________“ %[§_C4,2 Q/2"C4,2 J
4. Ther

<1,@ > ,   144 444-   ,   44.44.

e are three q-cube roots of unity;
(4.55)

i/ll + q”2+ q2-_-  " -_-#2:? 1, " i Q1;--'_ ' _ ' _" *'_i__-.*'i

4/ + q +q )(q +q ) Q/(2+q +q )(q +q )

e are eight q-fourth roots of unity,

+1-)9  9  %°'
e are five fifth roots of unity:

(4.54)

(4.55)

e»~;2 — where2o_o l2ro_-l 44 _ *7 44
if l-C5,2m2+C5’4m ?[ l-C5’2m2+C594m

m _ 1, l _5_41_22; 2,524 Y.
” 2

J

(4.56)

Then likewise q-nth roots of -l, i and -i are
immediate, The same theorem holds in these oases also.
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z(n)~ a where a is real or purely imaginary has
atmost 2n zeroes if n is even and n zeroes if n is odd;

(4.57)

4. Bipolynomials

Duffin introduced bipolynomials in his basic
paper. In Duffin's theory if g(z) and h(z) are polynomials
in m and n where (m,n) = z is in Gaussian latti¢6,

[g(z) if m + n is even
f(z) = 1

I z) if m + n is odd

r
D"

is a bipolynomial. In general Duffin's bipolynomial is not
discrete analytic. If g(z) = h(z), the bipolynomial reduces
to a polynomial which is not necessarily discrete analytic.
Using this definition and preholomorphic integration, the
preholomorphic discrete powers which are discrete entire
are defined. Zeilberger used bipolynomials to study some
problems in entire functions‘

The bipolynomial in this theory is defined as
n

:2ujz(3) where ugsare biconstants and un # O and multi­
j=O
plication is pointwise. We note that bipolynomials are
bifunctions. Again the derivative of a bipolynomial is
bipolynomial. A simple example of a bipolynomial is abiconstant. (4,58)
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I3

<>h4”
m

n

:2tHz(3) can be tzpressed as J (3) in H1J:
n

and :Efla4$3) in.H2. Any solution (zero at the concerned_ J
J=0

lattice point) of any of these two q—monodiffric polynomials
is a solution of the bipolynomial. (4.59)

As in the case of discrete polynomial here also,
we set an upper bound for the zeroes of a bipolynomial. Using
the definition of zero of a bipolynomial, we have the result as

n

A bipolynomial :§}ujz(3), un # O has atmost 4n zeroes.j=0
4

E§ae.Pl%,,_1-.- Eujzm; L14 = <1,0,@,1>, 115 = <0,@,<>,0>
J=O

u-2 = (Oil7l9O)9 ul : (O9b9b9O)9 -U-O = (l9C$C9l)

where b,c s R has eight zeroes:

J'+ -b ijbi4c _b iJc(q'l+q)2-b2(g'l+q-l)‘(_1 Q),(o,j1), (---»_-E 0), (—:—-—- "“"""'*"jjf“"=”*~~""r"")l’ 2 ’ ql+q q+q |
but some of them may not exist depending on b and c.

In particular if b = O, c = 1, the zeroes of the
bipolynomial are reduced to four:

<%il,O),(O,il)} ; but (+l,O) and (-1,0) are repeated twice.
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2.-1.‘ .‘R

EXE-1lTl]_3l€9 2. “'"':"‘ujZ(J)1 U-2 : (19191-9]-)9 U-l = (blsb29b29bl)wwii",Ml_. jzo

and no = (cl,c2,c2,cl) has eight zeroes.
/I _-_-_-.;__-._-_-¢—--e .—-—~—-_--Q--_--Q ­+W 2 2
l Tb1"‘*'b1"4C1 "b2 1”» f/b2"“’2
[( -A.-h ‘nu-_‘u-2'“-““_-_‘__ 9 O ) 9 ( -_h-H —m_-H-~é"m_-W““—‘_r“-I. ___ Y O )

<  ;:_.~£=_1_s:1."ia>§;2ios@,?.E@.~_1_2>,q“ 1+ <1 <1 + ‘1
2 ' ‘ -1 2 2 -1“—b i ~/C (q +q) -b (q +q—l)2 -22 '> . 2  _ ) .

( __I__ ,.l~W-l_._lli_mmil_wm~_iml, J' -lq +q q - q
But if bl = b2 = O and cl = l, c2 = -l, the zeroes of the

\__,,_.._J

bipolynomial are only four {(:l,O), (O,il)
Likewise the general quadratic bipolynomial

2 (‘
Zglujz J); u2 = (l,l,l,l), ul = (bl,b2,b2,bl) and
£i=@

uC)= (cl,c2,c2,cl) where bl,b2,cl,c2 a R has the solution

— ,, ,, ,,_,l , ,,l _ l _ _______set: 2 ‘d””Q““d”d” H d_*L“
{-bl+~/b -401 -bl +fc (q l+q)2-—b2(q 1+ q — 1)2(__‘ -if i i   _‘ ’  , , "" ..-__L_~_.......,,.._.T_..............._ ..._1.....__._........___-_____,___,__.._  ’_l lQ +q q + q

+ ]q§‘Z_* “b +j;2(q_l+°)2"b;(q—l+q"l>)}.(4.61)
_ b - _ L

( b2- _7;"____é;_ , O > , (.._._ 12-, --_-.---~»-w2.i2»@4 Q +q q- + q ’
Some of these zeroes may not exist depending on

the coefficients bl, b2,cl and 02.



5. qm-Polynomials

A generalisation of discrete polynomials is
discussed in this section. The coefficients of the poly­
nomial are taken from the not-associative algebra of
q-monodiffric constants.

Let a = (al,a2,a3,a4) be a q-monodiffric constant
and f(z) = u(X+iy) + iv(x,y) 2 H""9 ¢. Then the discrete
product of a and f(z) is defined as

C1 *f(Z) : (a59a4!(xl9a2)u(X9y) + j-((x2aal9a49a'5) V(X9y)

where the product on the right hand side is the point wise
multiplication

>

If a, 8 are q-monodiffric constants and
f,g 2 H-9 ¢, then

(oc+B)*f=oz*f+['J*f
and a.*(f + g) = a*-f + a-*g¢

L613 f EL/ (D)
Then

ojéa-*f(z)) = s
J

\

1

L

a4uX(x,y) +ialvX(X,y) if

a5uX(x,y) +ia2vX(X,y)

a2uX(x,y) +ia3vX(X,y) if

aluX(X,y) +ia4vX(x,y) if

II1

1'1

III

1'1

III

1’l

Ill

1'1

is
is
is
is
is
is
is
is

even,
even

odd,
even

even
odd

odd,
odd.

lOl

(4.65)



and

F aluy(X,y; +ia4vy(X,y) if m‘ Tl
‘J a2uy(X,y) +in3vy(X,y) if m

oy(a*f(z)) = ‘ n

-M

a5uV(X,y) +ia2vy(X,y) if m

a4uy(X,y) +ialvy(X,y) if m

1iI-6

1'1

Using the Cauchy-Riemann relations

ur = iv and u = iv , we getA y y X
oX(a*.f(z)) = oy(a*-f(z)) for Z e D.

Thus we have;

QhgQggg_l, f(z) edq%g(Q)Ii;> a-*f(z) at/%g(D) and

6(a-*f(z)) = (a2,al,a4,a3)* oXf(z) = (a3,a4,al,a2)*oyf

is
is
is
I1S

is
I

151*-\_/

is
is

’)
O

even,
even

odd,

even

even,

odd

odd,

odd.

where a = (a a ,a_,a ) is a q-monodiffric constant.l’ 2 3 4

Since a q-monodiffric constant is q-monodiffric
‘ t * f tw -monodiffricin H, we can define the discrete procuc o o q

constants.
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(Z)

Let <1  (cxl,cx2,cx3,cx4)  (al+i-bl,a2+ib2,a5+ib5,

a4+ib4) and §EEE(fil,B2,@3,B4)BEE(Cl+idl,C2+id2,C5+id3,C4+l 4



Then

@*'5 = (@l,@2,@5,d4)'*(§l,§2»55»B4)

= (a5+ib3,a4+ib4,a1fib1,a2+ib2)(cl,c2,c3,c4)

+ i(a2+ib2,al+ib1,a4+ib4,a3+ib5)(dl,d2,d3,d4)

= (c (a +ib )+id (a +ib ) c (a +ib )+id (a +ib ),1 5 3 l 2 2 ’ 2 4 4 2 l l
c3(al+ibl)+id3(a4+ib4), c4(a2+ib2)+id4(a3+ib5)).

(4.64)

Hence we get the set of q-monodiffric constants
is closed under *. Also * is not commutative, but distri­
butive over + and again we get by direct simplification,
that * is not associative in the case of q-monodiffric
constants. Further there does not exist a q-monodiffric
constant e such that a++6= e* a = a for every ac

To find divisors of zero, let aw B = O0
We get

cla3-dlbz = O ; clb3 + dlaz = O;

c2d4-dzbl = O ; c2b4 + dzal = O;

c3al-d5b4 = O ; cabl + d3a4 = O;

c4a2-d4b5 = O ; c4b2 + d4a5 = O.
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_ cl _ b2 _ a c b a
1 ‘V e U )  _  .-_.. __ ___l

_2 mg _ ii - ll .L 1 ’ ‘ — a _ U I ’'13 35 ‘*2 4 °4
32: Pl: _f7i4.~ FA. =}":=,-f?‘._.
d5 a1

w
FJ

‘A

Q
->

w
lv

0*
I\>\,\1

bl- 81. C1- ll. _ Pg- i2.. °2_ d3_1.e., 3- --E— - -— - - - ~~=-- - - - »2 3 a4 b4 ' dl c4 a5 b3
Hence we have:

2hgQg§gL§, The set of q-monodiffric constants is a not­
associative ring without identity under + and *.

a = (al+ibl,a2+ib2,a5+ib5,a4+ib4) is a divisor of zero if

and only if ala4 + blb4 = O = a2a3 + b2b5.
n (r)

An expression of the form :5‘ aftz Where ar
r=O

are q-monodiffric constants is called a qm-polynomial.

aés are called the coefficients of the polynomialt n is the

degree of the polynomial if an £ (0,0,0,0)@ (4.65)

A lattice point (qmXO,qnyO) s H is a zero of then (r). . . . m
polynomial :§:a£+z if it vanishes at (q XG,qnyO).

r=O

EXamPle 1- Now we investigate zeroes of a* z. For this,
with usual notations,



QikZ = (&3+ib3,&4+ib4,&l+ibl,&2+ib2)X

+ i(a +ib ,a +ib ,a +ib ,a +ib )y2 2 l l 4 4 5 3

1O

— (w w w w ) where atleast one of Wis is zero— 1.9 27 59 4

We get that the zero will satisfy atleast one pair of the
following equations.

(l) a3x -b2y =

(2) &4X -bly =

(5) alx -b4y = O

(4) &2X -b3y = O

(0,0) is a trivial solution. If there exists
any other zero, atleast one of the following is true.

.>s=i“:=_y b2
22:3;-.=y b4
Hence we get that a* z has a zero which is non-zero if and

only if a2a5 + b2b3 = O or ala4 + blb4 = O.

Thus, if a is a divisor of zero, a* z has infinite number
of zeroes.

b
_Z
“*2

bl
511

Z
Y

§
Y

b3X + a2y =

b4x + aly =

blx + a4y =

b2X + a3y =

a b
8.

_ .. __‘1 .__bl 1
32 b2

: T)-.-.. : _. ..........5 a3’



The converse is not true. For example,
a¥>z where a = (l+i, 3-ifl 2+6i, 2+1) which is not a divisor
of zero has infinite number of zeroes

bxample 2. Consider a++z + p where.._J .I . -1. 1-‘$1- II

0 = (al+ibl,a2+ib2,a3+ib5,a4+ib4) and

B = (cl+idl,c2+id2,c3+id3,c4+id4).

As in the previous example, we get four pairs of
linear equations

(l) a5x -b2y =

(2) a4x ~bly =

(5) alx -b4y =

(4) a2X -b5y =

but non-homogeneous as

cl 5 bgx + a2y

c2 ; b4x + aly

c5 ; blx + "4y

c4 ; b2X + a3y

We get three possibilities as

l. If a is not a divisor of zero and ala4 + blb4 % O
and a2a3 + b2b5 # O, there are four zeroes for the
polynomial.

2. If a is not a divisor of zero and one of ala4 + blb4 =
'1and aqa3 + b2b3 = O is satisfied, there are two or

infinite number of zeroes for the polynomial dependin
on the other coefficients.

1O
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5. If a is a divisor of zero, there is no zero or there
are an infinite number of zeroes for the polynomial,

§Xample3. Let us solve a-*z(2)+ p*-z + Y for zeroes.
We restrict the parameters of the q-monodiffric constants
to be real.

Let a = (al,a2,a5,a4), B = (bl,b2,b5,b4)

and Y = (cl,c2,c5,c4).

Then ~ == \ 2 2
a+ez(2)+ 6*-z + Y —— (a3,a4,al,a2;(x ~ y )

Q4: ­

+ i(e2,@l,@4,@5)(q *+q)Xy + (b5,b4,bl,b2)X

where atleast one of wjs is zero.

Thus we have four pairs of equations. A solution
of any such pair is a zero of the polynomial.2 Z 1
(l) &3(X -y ) + b5x + cl = O 2 a2(q +q)xy + b2y = O,

(2) a4(x2-y2) + b4X + c2 = O ; al(q"l+q)Xy + bly = O,2 2 -1
(3) al(X -y ) + blx + c5 = O ; e4(q +q)Xy + b4y = O,2 2 -1
(4) a2(x -y ) + b2x + c4 = O ; u5(q +q)xy + b5y = O0
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Solving the first pair we get,1_-_;
-b5 _’f_\/bé-4a3cl< --   he--»»-—-e—-, o > and

2a?

l\)I\)

( __BZm_“_ , i _mEZE§__ _Cl_.m&§R in )-l - wl
a2(q +q) . @2(q l+q) ag(q '+q)2

are the zeroes of the polynomial.

Similarly twelve zeroes are found from the other three pairs
Hence there are sixteen zeroes for the polynomial
d*§2L+B*z+-W

Likewise we can find the zeroes of any polynomial.
Still, all the zeroes found, may not be lattice pointso



CHAPTER V

SPECIAL POLYNOMIALS

In earlier chapters we mde an attempt to
establish a theory of discrete functions. We now introduce
a few special polynomials and their classifications to
illustrate the theory of q-monodiffric functions. Further,
references to mention are Boas and Buck [16] and Rainville
[55].

1. q-Type Classification for Discrete Polynomials

Since the set of discrete polynomials form a
unique factorisation domain in + and *, we have:

Let {¢n( ;}be a simple sequence of polynomials

@M”*N/
Q3

T-‘5

L.
N

such that ¢n(z) = (1) where an nfi O. Consider

Ho

T (Z)-*[&¢ (z)] = p (Z). Thus T (Z) will be a constanto l o 1 o8.

I-—’ F)l-'

namely 5 Q. Then we take é:€Tk(z)*[6k+lfl2(Z)] = ¢l(Z),

That is, TO(Z)9¢5¢2(Z) + ml(Z>*@2¢2<Z> = ¢l¢Z).

Thus Tl(z) is a unique polynomial

~r~/ 0
:93
I

Ll-1

I-'

2

...a‘_.:l‘._2_.-?_l_.-.2...---..?’.(.)..2...Q?:.2_l....'2. 2(1) + ..- "1 _r_.o?r@_,n?2o,_1

2a1,1a2,2 qal,la2,2
of degree atmost l.

109
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2

Similarly :21 Tk(z)*[ok+1fi3(z)] = Q2(z) also gives a
k=O

unique T2(z) of degree atmost two and so on. For any finite n
I1

:§:Tk(z)*[ok+%n+1(z)] = ¢n(z) determines Tn(z)
k=O

uniquely of degree atmost n as Tk(z) for k <§ n is already
fixed uniquely by the same method.
Thus we have:

If {¢n(z)l is a simple sequence of polynomialsJ n
TO<Z>* [wl<z>1 = ¢O<z> and E) wk<Z> »<» [@k*1¢n+1<z>1 =

¢n(z), n.£§ILdefines Tn(z) uniquely of degree f§ n. (5.1)

In other words, using the fact that @rpn(z) = o for
any r l> n.

For a simple sequence of polynomials {¢n(z)}
there exists a unique derivate operator of the form

a” k+lJ(z,o) = :2: T (z)* 6 in which T (z) is a discretek k
k=O

polynomial of degree §§ k for which J(z,o)¢n(z) =

¢n_1<z>, n Z 1.

F

The polynomial sequence i¢n(z)} is associated with
the operator J(z,o). J(z,o) is unique for any given simple



I
I

lll
3

sequence {¢n(z)%. It is possible to classify the simple
q-monodiffric polynomials sequences accordingly. (5.2)

&""""-'\

l

The simple sequence 1 (z)j is q~j type, if the
degree of Tk(z) will not exceed j for any k and q-infinite

C5

I$Itype if there does not exist any such j. (5.9)
k

Now we take Tk(z) = :§:ck’rz(r). So if ckyr = C. r=O

for all r Z? l, then {¢n(z)} is of q-zero type; if
ck = O for all r Z3 j+l, then 1% (z)l is of q-j type.,r L n J
If there does not exist some j satisfyina ch M = O for all)9 Ll_,_L

r Z2 j+l, {@n(z)} is of q-infinite type. In particular, if<70

{¢n(z)} is of q;aero type, then J(z,o) ==:§Eakok+l where akk Oare constants. (5.4)
The simple sequence of polynomials

n-l
.--1_._._ _ 1;.-_...... -l"llfiIII1.r1IlJ$‘K _.. Z( n) n :

1” ‘FT (n-r)nYih+(n~r;l)w] "L F0 <1 q
of q-one type classification having the operator_ 2J(z,o) — 6 + z * 6 . (5.5)

A q-two type simple sequence of polynomials is
given by

n-2

,(1,Z(l) TT'.__wmnm_N-m~m~QRM~n_~W~~__w-w. z(n),n Q2 29

L rzo (n-r)q[l+(n-r-l)q-(n-r-l)q(n~r-2&9

+

§K?*\/
0»flu

whose operator is 6 + z *@2 (5.6)
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,_

‘I
_|If ,
L¢p< d

polynomials and

t 11 e n

we get

22,“?

W

Q

Thus we have

polyno

t e polynomials.

of discrete p

If {¢n(z)% is a simp e J ’
x ‘ ' then {6r¢nQz)} also

Let {¢n( 1, I
olynomials an

F?’ N
hvfi; 8 ‘\-/- --N .._.__/

Q
I._| I

O’>

O

s a simp

taking derivate on

+ rk lk “¢n+l

both sides succes

le set of q-zei
(“)1 = ¢n(z) for n

sively r

ea .k 1 ,
Le + [@r¢n(z)] = &r¢n_l(z) for n T3 1.

l sequence of q-z
mials and r is a positive integer,

(5.7)is a simple sequence of q-zero yp

»s

N

numbers satisfying
n ' t of n.Q: b ¢ (z) where

)

L_J .+n(Z) : 4 k n-k
k=O

‘ch ¢ (Z) belongs.Let J(z,o) be t

1 > = 2ObkJ<Z,e>> ¢n_kThen J(z,o)l#-n(z k

5 $9
13
Q-»l—'

Q »,
U" F3

I

J (Z)? be two simpl

kj>e sequence of

bk is independen

he operator to whin n
(Z)

__ <?
" ~¢3bk fin-k-l(Z)

k O

= tlJn_1(Z)@

112

"o type
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times,

ero discrete

e sequencc

complex
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{

Thus $JJn(z)} and {¢n( belong to the same operator J(z,o)

NL)
—---Y --’
\

\

“- |\l ., 1 ! .
Conversely, suppose that {¢n(z)f andfl4Jn(z)$ belong to the. " . — L P  "|
same operator J(z,o). Since {@n(z)} and%L+jn(z)jare simple
sets of polynomials, we get

n

QJn(z) = :§=@L$n¢n“k(Z) Wh@r9 Qkyn are constants; Applying

EFT’

O

the operator J(z,o) on both sides
n-ll =4Jn-l(Z) :2 ak,n¢n-k-l(Z)°
k=O

n

Replacing n by n+l, \+-Jn(z) = 2cxk9n+lQ§n_k(z)..
k=O

From the two equivalent expressions of Lpgflz) we get

ak’n = ak,n+l which is possible only if akgn is independent
of n for any k. Thus we see that

n

L¥g‘Z) Z égg bkfin-k(Z)‘

Concluding,

¢ (2)1 andn}J (2)1 are two simple sets of discreten J  n J 1 . _
polynomials belonging to the same operator J(z,o) if and
only if there exists a relation of the form

n

=pn<z> = §Obk¢n_1C(z>

where the sequence {bk} is independent of n. (5.8)



ll4

" " (I1)
For example, take {Dn(z,O) } = {zg3~~—}\ '~ 1'1 Yn qi < >

and {Dn(z,l)}'= l:§L—Q;€ are of q-zero type‘ (5.9)
{I.=O(r)q!

2. A Simple Sequence of Discrete Polynomials

We define a simple sequence of discrete

polynomials: NO(z) = l and

Nn( Z) -_-; .?__*LLZ'T'l)_*.(_(%"'2_)_'¥T_:;;;fl;£l+]:.) for n 2 l 0 ( 5 _ lo)1'1 I
Q

By direct calculation we get that

NO(Z) : 1

Nl(z) = z(l)
(2), ,.(l)

E;  _-: §...._._._‘.Z-...f‘_2 . 2( )q3
and

N (Z) : _@:2>-.5_@o<_%c1+_@@§c1>,

( 3 ) q '
3 0

Also TO(z) = 1, T (Z) = ?%;i , T2(z) =(?§;—'— Y5?-zZ(l)+1 <1" q‘ q‘
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Thus

_ 1 _ _ “li__nco,o _ 1 ' °1,1 " 0* C1 o ' , ’’ (2)q
= » =____3_.__.._._.2..__._ =__..3.-_.....c O , c , 0

2* 2»1 mg. <2>q' 2*‘) (5)'q
Proceeding recursively, the relation

CO

:2fl%J2fl-*6k*l[Nn(z)] = Nn_l(z) yields the result that

W

O

the coefficient of z(n) in Tn(z) namely on n = O. However
the coefficient of z(n) in Tn+l(z) is uniquely determined.
It satisfies the recurrence relationc c c

____J--_

$3
\J~1

l\)
P—'

___;.._..._+.._;-id. +_z_,_1_+
<n+1>q: (n)q! <n~~1>q! <­

9.

1+ = ————»- . 5.11Cn,n-1 + Cn+l,n (n+1) , ( )q.

Suppose, Tr(z) is of degree atmost (r-2) for all
r ;> n, a fixed integer. Then we get

cr+l,r+l = O, cr+l’r = O for any r >>n.

Hence



R
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and in general2 n n-lc c o c
+  + ....._._§..2..2_.._ + ° Q 0 0 + .._...r.._........ = Q
(n+s)é (n+s-lhf (n+s-2)qg (s+l)q!

for any s Z3 O. (5.12)
We write the above set of homogeneous linear equations in

n

the form Zijaijxj = O

where

x. =J J93

j=l

0. ._l, i = l,2,.,.,n and aij = ~ e]*==* ­~ (n+i-j+l)q!

The matrix (aij) where i, j = l,2,..., n is of rank n as
the rows of it are linearly independentg

To prove this, consider the following rows;
l

R1 = (_“"];"_""" '“_'“"]':""""“'9 ° ° 9 -'—_—"_") s(s+1>q@’ <s+2>q! (s+n)q!_ l l l W2 _ ((--- , --»-;..@.,_--- 9,s+2)q! (S+3)q_ (s+n+l)q­ll l l
Rn._ (______ ,._______,...°P__ll___?°(S+fi)q! (s+n+l)q! (s+2n-l)q.
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If alhl + a2R2 + a R5 + 0000 + anRn = O,

\)~1

we geta a QI1l ' 2 _|_ 4-... ....--., -_.c........  -_: O ,
Y

\.-. ruvr an-inst. 1 ' xx-Q.-0-in-iv‘: anti " Q Q ­

(s+l)& (s+2)q! (s+n)ql

CZ (X (X
-.=-J.--..:l.;_-u + -.~.-==_...-g---<--- + 0 0 0+--.~-T .-.-._{l-....---.-- _—_- O ’

(s+2)q! (s+3)q! (s+n+l)q!

ml Q2 an_____ + _»_mn-+.°¢+~a»-W» = 0.
(s+n)q! (s+n+l%} (s+2n-lxf

Adding all the equations and arranging the terms,

al al+a2 + O + al+a2+ .... + an-_- + -~“M~’ ,.. L _ :___m=wlmmia_Q 2 !(s+l)q ($+ )q (s+n)qg
a  + OQUOQ aI1 1'1 _+   +,_,+i _ O,

(s+n+l)q! (s+2n~l)q!

As this result is true for any integer s Q3 O,
the coefficient of each term in the above identity is zero.
Thus

(ll-—('I2—-.,...¢—Gn— O0

Thus the system of equations has only the trivial

solution cj j_l = O for all j = l,2,.u¢.,n° This is
contradictory to the fact. Hence we get that c # On+s,n+s-l
for some s ;>O. Then considering the same aspect taking



ll8

n+s in the place of n, we continue to get another
c. A # O where j.> n+s anfi so on. Thus we get c. .a.|—l 3.3-1Q

cannot be zero for every jj> n, a fixed integer.

Thus we conclude:

I 1
iNn(z)j is a simple sequence of discrete poly­

nomials having q~infinite type classification. (5.13)

3. Polynomials from Generating Functions

Discrete polynomials can be studied through the
generating functions also. To illustrate this aspect we
introduce a new sequence of discrete polynomials.

Let t be the continuous complex variable and

z e H. Then the discrete polynomial Pn(z,7\) of nth degree
is defined from the relation

. 00 ( ) 00
(1-*6} ( 2 E2-Z-—iL)= 2Pn(z,;\)tn,  not a positive

n=O (n)q' n=Ointeger. (5.14)
. O0 tnz(n)Since ii: —-——" is entire in z and t and

U

c>

23

.0

>)

due to the validity of series expansion of (l-t)t in powers
of t, the above relation is valid for !t|<§ l and any z e H.

(5.15)
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Comparing the coefficients, we getn-l M1, (;\»l)¢¢Q<(,&+r+l-n) W (n)
‘_~";-nk  9  ) :   .,.- _.>._g.....,..._..._..=.._<“- .._...,,______.  --'1‘-3 Z( “— ) +  .r:O (n»r)!(r)q! (n)q!

The coefficient of z(n) being ?~%-m , Pm(Z»>~) is Strictlyn ' ‘
o

I
I.~

of degree n. Also any discrete polynomial of degree n overI r
¢ is representable as a linear sum of-iBn(z,>\)}. Thus~r 1- "-+ L
jPn(z,)\)} where n e ZL is a simple and complete set of
discrete polynomials. This sequence of polynomials serves
the purpose of basis for the vector space of discrete
polynomials over ¢. (5.16)

Another simple set of polynomials is defined as

DO(Z) = la

Dn(q"lz) = Dn(qz> + <q"l-q)z*Dn_l<z>, 11 21- <5..17>

From the above relation we get that

Dl(z) = z(l)+ a where d 2 ¢. Two simple forms of Dn(z)
are obtained by fixing a = l or O.

Thus n
( )

Dn(z,l) = :%: g~£— and D (Z O) = —§£fi)- (5.18)

H

c>

H

‘QUIZ

I3

‘£5

+0

Taking the derivate of Pn(z,>\), 6Pn(z,?\) =n, (r)
ln_l(z,>\). Also Pn(Z, -1) = :5: .a“_c'. Thus

~<-. <r> :
lim Pn(z?-1) = :2;-i5——— satisfies the derivate equation1’1——>°° =

H

<3

W

9

H

O

H

1-Q
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of(z) = f(z). Further this function is discrete entire.
Also we make note that P(z,7&) is q~zerc type. (5.19)

Pn(z,-1) = Dn(z,l) as well as
n

Pn(z,-l) = ;ZgDr(z,O). Dn(z) satisfies the derivateri
equation oDn(z) = Dn_l(z)¢ Dn(z) is characterised by

n (r)“* Z . .
.21@n_r?;7gj where ao = l and aje ¢ for 3 Z31. The special

H

C)

CD

""‘_"‘"_fi
U

_J

case n(z,1)$ and {Dn(z,O)} are obtained by fixing aj = 1J

Jr

for all j in the case of former and aj = O for all j Z31 inthe other. (5_2O)
n-l

P (Z7_g) = 2 ._2__...'3:..4}..;..'..:_'J_l".£:.*-.3-.:c:_I1.?.i> .._._...Z(r) + _.__._...Z(n)n r=O (n”r)! (r)q! (n)q!
n-l

= 2 Q;+_l—r2Z(r2, .._Z._(..1:l..?.. .12:0
Thus we have;

n

Pn(Z9_2) : :E:Dr(Z9l)
r=O

1'1

Rn(z,-2) = :E:(n+l-r)Dr(z,O)
r=O

and
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,
Further extending the result, if /X_is a positive integer,

n-l \ ( I, ) ( n )
1>n( Z , _. >\ ) -.= 2 X.11+_.l.:r..)._§..12:.2.;.r)o;_o:-1-; <_.1@.%r..-/.;\;,.:.l:~.1;*./1. .E..§_..; + (-fl-Y---='_r::Q ( r-'   q ' C1 .
and

-".­

Pn(z,-‘>\> - Pn_l(Z,":’\.) = Pn<z,-<>\-1)). (5.22)

Thus if Q\is a positive integer,

Pn(Z»">\) = i§1Pn_l(z,-r) + Pn(Z,~l)~ (5»25)
r=2

n

Using the result, Pn(z,~2) = ;§;Dr(z,l) we
r=O

introduce a matrix form to the system of above equations as
if 1I__.>.j

|"'

¢_1.

I-5
C)

F
Ll

c__:

|"'
c_1

F‘- -.‘-_.___-A._-'—-t-_‘.

C) |'-’
l-Jo

H’)

P.(z,-2) = :E;a4.D.(z,l) where a.. = (5.24)= i<j_
The matrix (aij) is triangular and invertible whose

inverse is given by (bij)
‘F’Ilifi=j

where bij = {-1 if 1 = 3 + 1
y O otherwise .

(bij) is also a triangular matrix. (5.25)
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n

Then Li(z,l) - ‘;jbijPj(z,»2). (5.26)
j=O

Thus there exists unique linear expressions over
the real numbers for D (z,l) in terms of P.(z,-2),j = O,l,2,T Jand vice versa. (5.27)

n

Also Pi(z,—2) = :2 cijDj(z,U) where
j=O

3+1 if 1 2;)
C.. =13 1!:,y o if 3 >10 (5.28)

‘ \¢

(cij) is triangular and invertibleo
n

Thus Di(zA3)== jEdjjPj(z,-2) where (dij) = (cij)-% (5.29)
i=9

4. Conclusion

An attempt is made to establish a theory of
discrete functions in the complex plane. Classical analysis
q-basic theory, monodiffric theory, preholomorphic theory
and q-analytic theory have been utilised to develop concepts
like differentiation, integration and special functions.

To mention a few of further extensions of the
theory we introduce:
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Duffin, Zeilberger and Mugler had attempted to
study entire functions. An attempt is made here to study
meromorphic functions also. Integral transform theory ard
operational calculus in the q-monodiffric sense are essenm
tial parts of a function theory. Boas _ and Buschman

r-"'1
F-1
U1
L.__

[17-20] are some guidelines in this direction.

q-monodiffric constants wlay the role of scalars
in q-monodiffric theory. The classical COmpl€X number is
replaced by a more general concept of number in this theory
The q-monodiffric constants form a not associative ring.
Hilbert space structure for the q~monodiffric functions
over the q~monodiffric constants will make the theory
interesting. Results introduced in Gilbert and Hille
[35,36] and Souchek and Yip Li [58] are important and
extension of the theory in the q—monodiffric sense is
possible.

It is hoped that the q-monodiffric theory is
more suitable than any other concepts in evolving the
basis of discrete function theory in the complex plane.
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