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Chapter 1

Introduction

In everyday life different flows of customers to avail some service facility or
other at some service station are experienced. In some of these situations,
congestion of items arriving for service, because an item can not be serviced
immediately on arrival, is unavoidable. A queueing system can be described
as customers arriving for service, waiting for service if it is not immediate,
and if having waited for service, leaving the system after being served. Exam-
ples include shoppers waiting in front of check out stands in a supermarket,
programs waiting to be processed by a digital computer, ships in the harbour
waiting to be unloaded, persons waiting at railway booking office etc.

A queueing system is specified completely by the following characteris-
tics: input or arrival pattern, service pattern, number of service channels,
system capacity, queue discipline and number of service stages. The ulti-
mate objective of solving queueing models is to determine the characteristics

that measure the performance of the system.
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1.1 Inventory system

Inventories deal with maintaining sufficient stocks of goods that will ensure
a smooth and efficient running of a system or a business activity. Inventory
may include raw materials, finished goods awaiting shipment from the fac-
tory, a group of personnel undergoing training for a firm, space available for
books in a library, water kept in a dam etc. Inventory models have a wide
range of application in industries, hospitals, banks, agriculture, educational
institutions etc.

The ultimate objective of any inventory model is to answer two basic
questions: how much to order and when to order. The answer to the first
question is expressed in terms of what we call the order quantity and that
of the second, the reorder level. Order quantity is the optimum amount that
should be ordered every time an order is placed so as to minimize the total
system running cost. Reorder level depends on the type of inventory model.

The objective of inventory control is often to balance conflicting goal of
making available the required item at a time of need and minimizing the
related costs. In inventory models, the availability of items has also to be
taken into consideration along with features of queueing theory. In inventory
models with negligible service times, queue of customers is formed only when
the system is out of stock and unsatisfied customers are permitted to wait.
On the contrary for the case of inventory with positive service time, queue is
formed even when inventoried items are available because new customers can
join while a service is going on. If either service time or lead time or both are
taken to be positive, then also a queue is formed, depending on assumptions
on backlogging of demands/on other factors.

The real need for inventory analysis was first recognized in industries that
had a combination of production scheduling problems and inventory prob-
lems. The analysis of inventory problem was started by Harris in 1915. He

proposed the EOQ (Economic Order Quantity) formula and was popularized
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by Wilson and is usually referred to as Harris- Wilson economic lot size or
simply the EOQ. It is the ordering quantity which minimizes the total inven-
tory cost. Some of the inventory related costs are holding cost, reorder cost,
procurement cost, shortage cost etc. The cost analysis of different inventory
policies is given by Naddor [42]. The book by Hadley and Whitin [19] pro-
vides inventory theory and applications.

While dealing with inventory systems, there are several factors which
have to be taken into consideration. These include demand process, lead

time, review policy, backlog, perishability of stored items etc.
Demand process

The number of units required per period is called demand rate. The

demand pattern of a commodity may be either deterministic or probabilistic.
Lead Time

Sometimes, when an order is placed, it may take some time before delivery
is effected. The time between the placement of an order and its receipt is
known as lead time (delivery lag). It may be deterministic or probabilistic.
If the replenishment is instantaneous, then the lead time is zero, otherwise,

the system is said to have positive lead time.
Review Policy (Periodic review and continuous review)

In periodic review, the level of inventory is monitored at prefixed equal
time points (every week or month etc). At any point in time the amount
of inventory stored is not known exactly. In continuous review, the level of
inventory is monitored continuously. In this case the inventory level at any

point in time is known exactly.
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Backlog

The demands that arrive when the inventory is out of stock, may be
backlogged partially or fully or in some cases not entertained. These demands
would be satisfied as and when the replenishment is received or through
subsequent replenishments. Backlog generally refers to an accumulation of
work over time, waiting to be done or orders to be fulfilled. Cases of full

backlog, partial backlog and no backlog are considered in the literature.
Perishability of stored items

Perishable inventory systems are studied as queues with impatient cus-
tomers. The perishing of many products like fish, vegetables etc are contin-
uous and depends upon many factors including heat, humidity etc. Several
attempts have been made to study some aspects of perishable inventories.
A review of the work on perishable inventory is provided by Nahmias and
Stevens [45], Baker [13] ; besides many researchers have contributed to the

development of such a study.
Ordering Policy

Inventory system based on (s,S) policy have been studied quite exten-
sively by many researchers during the last three decades. In an (s, .S) policy,
if  is the amount of inventory on hand before an order is placed, then the
order quantity is such that
if x < s, then order S — z and if x > s, do not order any quantity.

Here s is such that order for replenishment placed each time the inventory
level drops to s or below for the first time after the previous replenishment
and S is the maximum inventory. FEfficient management of inventory sys-
tems is to determine the optimal values of s and S, that minimizes the long
run expected cost rate. In randomized order size, the decision of the order

size is according to a discrete probability function u on the set {1,2,...,S}.
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s
The size of a replenishment order is k& with probability u,, with Z u, = 1.

k=1
In fixed quantity ordering policy, whenever the inventory level falls to s, an

order for a fixed quantity (), where Q) = S — s, is placed.

1.1.1  Discrete Time Inventory Systems

Discrete time queueing system has been found to be more appropriate in
modelling computer systems and communication network. It can be used to
approximate the corresponding continuous system in practice. The earliest
work on discrete time queue is due to Meisling [41]. Since then, discrete time
queues have been studied extensively by many researchers. A few books on
discrete time queues are by Bruneel and Kim [13], Takagi [55], Woodward
[58]. In discrete time inventory system, the time axis is divided into equal
intervals called slots. All inventory activities are assumed to occur at the
epochs numbered 0,1,... only. We describe the discrete time system as
defined by Dafermos and Neuts [15]. They consider the arrivals and the
service commencements and completion which occur between time epochs
n and n + 1, to occur at time n + 1. Service times are at least one unit
of time long. In discrete time systems, more than one different events can
occur simultaneously in a slot with positive probability. So in order to resolve
conflicts, a rule has to be formulated in advance about the order in which
the arrivals and the departures take place in case of simultaneity. Such rules
come to play mainly at the boundaries. In dealing with such conflicts, there
are essentially two rules :(i) Late Arrival System (LAS) in which an arrival
takes precedence over a departure and (ii) Early Arrival System (EAS) in
which a departure takes precedence over an arrival. They are also known
as Arrival First (AF) and Departure First (DF) policies respectively. If the

server is idle and a customer arrives, then either his service starts immediately
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(Immediate Access (IA)) or in the following slot (Delayed Access (DA)).
LAS-TA corresponds to EAS. For more details, see Gravey and Hebuterne
[17]. Hunter [21] considers n~ and n™ and then defines discrete system based
on these.

Perishable inventory problems with constant lifetime have been studied
quite extensively using the periodic review policy. Periodic review models
fit the constant lifetime well, but they usually lead to numerically difficult
dynamic optimization problems. Fries [16] and Nahmias [43] use dynamic
programming in a perishable inventory model with a lifetime m, zero lead

time and zero ordering cost.
Bernoulli Process

Let £ :={0,1,2,...} and choose any parameter p € (0,1). The defini-
tions Xy := 0 together with the transition probabilities

P j=1+1
pij=4 l—-p J=i
0 otherwise

for i € E determine a homogeneous Markov Chain X = {X,, : n € E}.

It is called Bernoulli process with parameter p.

Geometric Distribution

Let the random variable X denote the number of trials of a random exper-
iment required to obtain the first success. It can assume the values 1,2, .. ..
Now X = r if and only if the first » — 1 trials result in failure and the r*
trial results in success. Hence P(X =7r) = (1 —p)" " 'p; r = 1,2,... where
p is the probability of success and 1 — p that of failure. Thus X has the
geometric distribution. It is the discrete time analogue of exponential distri-

bution. Memoryless property characterizes geometric distribution among all
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distributions of discrete non negative integer-valued random variables.
Birth and Death Process

A Discrete Time Birth and Death Process is a Markov Chain {X, : t € N}
on the nonnegative integers characterized by the property that whenever
a transition occurs from one state to another, then this transition can be
to a neighboring state only. Let S = {0,1,...,4,...} be the state space;

transitions occur from i to ¢ + 1 or to ¢ — 1 only.

1.2 Quasi-Birth-Death Processes

Consider a two dimensional Markov Chain {X; : t € N} with state space{(n, j) :

n > 0;1 < j < m}, which we partition as U [(n), where l(n)={(n,1), (n,2),...
n>=0
(n,m)} for n > 0. The first coordinate n is called the level and the second

coordinate j is called the phase of the state (n, j).

The Markov chain is called a QBD if one-step transitions from a state are re-
stricted to states in the same level or in the two adjacent levels: it is possible
to move in one step from (n, j) to (n/, j') only if n’ = n, n+1 or n—1 (provided
in the last case that n > 1). If n = 0, then n’ = 0 or 1. If the transition rates
are level independent, then the QBD process is called Level Independent
Quasi-Birth-Death process (LIQBD). If the transition rates depend on the
level, then the QBD process is called Level Dependent Quasi-Birth-Death
process (LDQBD). The transition matrix is block tridiagonal and has the

following form
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C, O
P: 02 Al AO
Ay A A

where entries are all matrices. A represents the arrival of a customer to the
system; that is transition from [(n) to I(n + 1). A, represents departure of
a customer after completing service: [(n) to I(n — 1), where [(n) is the set
of phases in level n. A; describes all transitions in which the level does not
change (transitions within levels).

QBDs are matrix generalizations of Birth and Death processes.

1.3 Matrix Analytic Methods

During the late 1970’s Neuts introduced matrix analytic methods, subse-
quently it was developed by his students and collaborators. It is a tool to
construct and analyze a vide class of stochastic models, particularly queue-
ing systems or inventory systems, using a matrix formalism to develop al-
gorithmically tractable solution. For a detailed description of this method
see Neuts [46] or Latouche and Ramaswamy [34]. Assume that the QBD
is aperiodic and positive recurrent. Denote by x its stationary probability
vector. It is the unique solution of the system P = & and xe = 1, where
e is a column vector of ones of appropriate order. Let x be partitioned
by levels as @ = (xg,®1,T2,...). Then x; has the matrix geometric form
x; = xR > 2 where R is the minimal non negative solution of the

matrix quadratic equation R?As + RA; + Ay = R. The vectors x, and x;
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are obtained by solving the equations
wo(C() — I) + $1A2 =0

and
:1:001 + CCl(Al + RA2 — [) =0

with the normalizing condition

xoe+x (I — R) te=1.

1.4 Review of related work

A systematic approach to (s,.S) inventory policy is provided by Arrow, Kar-
lin and Scarf [3] using renewal theory. One of the recent contributions of
significance to inventory with positive service time is due to Schwarz et alia
(et al.) [51]. They assume Poisson arrival of demands, exponential service
time and balking of customers when the inventory level is zero. They derived
joint stationary distributions of the queue length and inventory level in ex-
plicit product form under continuous review of inventory level and different
inventory management policies (see [27], [49]).

Krishnamoorthy and Viswanath [31] analyzed production inventory system
with service time wherein Schwarz et al. [51] is subsumed. By assuming that
no customer joins the queue when the inventory level is zero, they obtained
the long run system state probability in product form. It is the first reported
work on production inventory with positive service time in the continuous
case providing product form solution. The main difference between (s, S5)
inventory system with positive lead time and (s,S) production inventory
system is that in the former case, once the order is placed, it takes a random

amount of time for the replenishment, whereas in the later case once the
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production process is switched on consequent to inventory level decreasing
to s, it is switched off only when the inventory level reaches S. Sreenivasan
[54] examined (s,.S) inventory systems with adjustable reorder sizes. Jose
28] compared three (s, S) inventory models with positive service time and
lead time and with retrial of customers. One of the works of the queueing
theory has been carried out by Yang and Li [60] who extended the queues
with repeated attempts to the discrete time systems. The survey paper by
Krishnamoorthy et al. [29] discussed in details various inventory models
with positive service time. Lalitha [32] studied five distinct (s,.S) inventory
models with positive service time and lead time where arrival of demands is
according to a Poisson process, service time and lead time following distinct
exponential distributions and obtained performance measures, constructed
cost functions for each model and numerically analyzed them. Sajeev [50]
analyzed a single server inventory system where service process is subject to
interruptions.

Certain type of inventories undergo change while in storage so that with
passage of time they may become partially or entirely unfit for consump-
tion. e.g. drugs, food products, etc. become unusable after a certain time
has elapsed. Perishable inventory problems with constant lifetime have been
studied quite extensively using the periodic review policy. Periodic review
models fit the constant lifetime well, but they usually lead to numerically
difficult dynamic optimization problems. Fries [16] and Nahmias [43] use dy-
namic programming in a perishable inventory model with a lifetime m, zero
lead time and zero ordering cost. Lian and Liu [35] developed a discrete time

inventory model with geometric inter demand times and constant life time.
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1.5 Summary of the thesis

The thesis is divided into seven chapters including the introductory chapter.
In chapter 1 we have the pre-requisites that are needed for the development
of the remaining chapters. It includes descriptions of Discrete Time inven-
tory systems, Quasi-Birth-Death Process, Matrix Analytic Methods etc.

In chapter 2 we analyze and compare three (s,.S) inventory models with
different replenishment policies. In all these models the arrival of demands
follow a Bernoulli process, service time and lead time follow independent and
distinct geometric distributions. In the (s, S) policy, when the inventory level
depletes to s, an order is placed. In model 1, we place order up to S where
the replenishment quantity is S — ¢ when the inventory level is 7,0 < 7 < s,
just prior to replenishment. In model 2, replenishment order is for a fixed
quantity ) where Q = S — s. In model 3, the order size is governed by a
discrete probability mass function u on the set {1,2,...,S}. Here the reorder

level is fixed as 0. The size of a replenishment order is k£ with probability
s

Uy, with Z ur = 1. In all these models, we assume that no customer joins

k=1
when the inventory level is zero. Stability condition for each model is de-

rived. Some measures of performance in the steady-state are calculated and
appropriate cost functions are constructed and analyzed.

In chapter 3, we consider three perishable inventory models with posi-
tive service time and positive lifetime. In model I, when the inventory level
reaches < s for the first time after each replenishment, an order is placed
to bring back the level up to S. When the replenishment occurs, we discard
all the old items so that the remaining (fresh) items have common life time.
Model 2 is a modified form of Lian et al. [36] extended to positive service
time case. In this model, we place replenishment order when the inventory
level reaches zero at a service completion epoch if the number of customers

waiting at this epoch is at least s. Else place the order when the number
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of waiting customers reaches s. In model 3, we assume that the items fail
one by one. In all the models, demand arrival is according to a Bernoulli
process, service time and life time are distributed geometrically. In models
1 and 3, we assume that the lead time is positive and customers do not join
when the inventory level is zero. In model 2, lead time is assumed to be zero
and customers join even when the inventory level is zero. System stability
is discussed and some performance measures are evaluated. Numerical illus-
trations of the system behavior are also given. Relative performance of the
models are then compared.

In chapter 4, we discuss two inventory models with positive service time
and lead time where the arrival of customers depend on the level of inventory.
Depending on the number of items and number of customers in the queue
at an epoch, the arriving customer decides to join or not to join the system:
if the number of customers in the queue is less than the number of stocked
items at that epoch, then necessarily he joins. If the inventory level is > s+1
at an arrival epoch, then also the arriving customer joins. However if it is
< s (but larger than zero) then he joins only if the number of customers
present is less than the on hand inventory. Stability condition is derived.
Steady state analysis is made. Some measures of performance are obtained.
Numerical illustrations of the system behavior are also provided.

In the fifth chapter, we discuss a discrete time production inventory sys-
tem where the processing of inventory requires a positive random amount of
time (discrete). This leads to the formation of a queue of demands. In this
system, when the inventory level falls to s, the production process is imme-
diately ‘switched on’. It is ‘switched off” when the inventory level reaches
S. Exactly one unit is added at a production epoch. When the inventory
is in between s + 1 and S — 1, the production process can be either in ‘on’
mode or in ‘off” mode. We consider the production inventory system with a
single server. Demands occur according to a Bernoulli process with param-

eter p. Processing of inventory requires a positive random amount of time,
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which is distributed geometrically with parameter q. When the inventory
level reaches s, the production process is ‘switched on’ and stays in that
mode until the inventory level reaches S. Inter-production times (time be-
tween addition of items to the inventory) are geometrically distributed with
parameter r. No customer is allowed to join the system when the inventory
level is zero. Steady-state analysis is made and performance measures are
obtained. Numerical illustrations of the system behavior are also given.

In chapter 6, we consider discrete time inventory models with arbitrarily
distributed service time. Here we discuss two models. Both the models follow
(s,S) policy. Arrival of demands follow a Bernoulli process with parameter
p. The service times are independent identically gstributed with general dis-
tribution {w;}$2,, generating function W (zx) = Zwixi and the n'* factorial

i=1
moments of the total time spent in the service station be 3,,n =1,2,.... In

model 1, we assume that a positive random amount of time elapses between
placing an order and its receipt, which is distributed geometrically with pa-
rameter r. Also assume that no customer joins when the inventory level is
zero. In model 2, we assume that replenishment is instantaneous. Further
no shortage is permitted. We investigate optimal values of s, S and order
quantity Q.

In chapter 7, we introduce Discrete Time Markov Decision Process ap-
proach to an (s,.S) inventory problem. At the time of replenishment, the
following decisions or actions are made: Replenishment take places when in-
ventory levelisi = s,s—1,5—2,...,1,0. We consider a replenishment policy
in which quantity replenished varies according to the on hand inventory. In
this situation we have to take decisions on how much to buy at the time of

replenishment. We use Markov Decision theory for the solution.



Chapter 2

Discrete time inventory models
with positive service time and

lead time

2.1 Introduction

There is a growing research interest in discrete time queues mainly moti-
vated by their applications in computer and communication systems because
the basic time unit in these systems is a binary code (See [1], [4]). Also
the discrete time system can be used to approximate the continuous sys-
tem. Recently, due to the fast progress of computer and telecommunication
network technologies, the discrete time models have received more attention
from researchers. BISDN (Broadband Integrated Service Digital Network)
has been of significant interest because it can provide a common interface for
future communication needs including video, voice and data communication

signals through high speed Local Area Network (LAN), on-demand video dis-

17



Chapter 2. Discrete time inventory models with positive service time and
18 lead time

tribution and video telephony communications (see [59]). The Asynchronous
Transfer Mode (ATM) is a key technology for accommodating such a wide
area of services. In these systems, all the information is segmented into small
packets, represented as cells. The time is slotted and in each slot the data
units (packets) are transmitted. Applications in detail are discussed in the
paper [12] and in the books [13], [58], [59]. By a discrete time analysis, we
mean analysis in which the system is observed for analysis, only at specific
points in time which are equally spaced points on the time axis. e.g., a sys-
tem in which observation is made only at points of event occurrences such
as arrivals or departures at specified points which are equally spaced and

numbered sequentially as 0,1,2, .. ..

In this chapter, we analyze three discrete time (s,.S) inventory models
with positive service time and lead time. These models differ by their respec-
tive replenishment policies. Model 1 is based on replenishment of order upto
S policy. That is whenever the inventory level reaches s, an order is placed
to bring the level to S, where s is the reorder level and S is the maximum
inventory level permitted. Model 2 is based on order placement by a fixed
quantity @), where () = S — s, whenever the inventory level falls to s and in
the third model it is assumed that when the inventory level reaches 0 for the
first time, order for replenishment is placed and at the time of realization the
quantities of units purchased is a random variable with support {1,2,...,5}.
The decision of the order size is according to a discrete probability function.
In all the three models we assume that demands are according to a Bernoulli
process. Service times and lead times are geometrically distributed. We can
construct a multidimensional Markov chain to model the joint queue length

and inventory process to obtain a product form solution for these models.
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2.2 Mathematical Modelling and Analysis of

model 1

We consider a Geo/Geo/1 (s,S) inventory system with positive lead time
in which demands arrive according to a Bernoulli process with parameter p.
The demand quantity at an epoch is for one unit of the item with probability
p and is 0 with probability 1 — p. Thus a demand takes place at a slot
boundary with probability p and no demand with probability 1 — p. The
service time and lead time for replenishment of inventory follow independent

geometric distributions with parameters ¢ and r, respectively.

It is assumed that all inventory activities (demand arrival, replenishment,
departure) take place around the slot boundaries. We assume that a de-
parture or replenishment occurs in the interval (m~,m) and an arrival in
(m, m"). Whenever the inventory level falls to s, an order is placed to bring
the level to S. It is assumed that S is greater than 2s. This assumption is
made to avoid perpetual reordering. It requires a random amount of time
for the fulfillment of orders placed and the inventory level can be reduced
to zero during this period due to demand. The lead time takes at least one
time slot to complete, hence an order can not be received at the epoch it is

placed.

There exists a rich variety of different inventory models depending on
the combination of different assumptions. Some common assumptions are
as follows. Continuous versus periodic review of the inventory, individual
versus batch arrivals, different replenishment policies (fixed, random size,
order upto level S), constant or random lead time etc. The inventory model
in discussion is based on replenishment of order up to S policy. We assume
that customers are not allowed to join in the system when the inventory level

1S zero.
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Let N,, denote the number of customers in the system and 1,,,, the inven-
tory level at m*. We denote the joint queue length and inventory process by
(Np, Im) :m € N. Then x = {(Nyn, ) : m € N} is a Markov Chain whose
state space is £ = {0,1,2,...} x{0,1,2,...s,s+1,...S}.

The state space of the Markov chain is partitioned into levels defined as
i = {(,0), (i,1),...(3,5), (i,5 + 1),... (i, S)}. The one step transition prob-
ability matrix P of the Markov chain y is given by

Co C4
Ay Ay A ) )
P= , where each entry is a square matrix of order
Ay Ay Ao

S + 1. In the above matrix Cy denotes the probability of transitions among

states within level 0; (' is those from level 0 to level 1.

The transitions from level i to level ¢ 4+ 1 are represented by elements
of the matrix Ay, those from level ¢ to ¢ — 1 by those of Ay and transitions

within the level i are represented by that in A;. They are given by

(

T, j=t, 1=0
T, j =1, i=1,2...,s
Colij =4 D, J=1, t=s+1,s+2,...,9
pr, j=25, 1=0,1,...,s
[ 0, otherwise
(pF, j=i,  i=12,...,s
p, J=1, 1=s+1,s+2,...,5
=Y o Gos izoa.. s
0, otherwise
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\

qFJ ] =1— 17
quF7 j =1— 17
]_)CL ] =1— 17
ﬁqr7 ] = S - ]-7
0, otherwise
pqr, j=1

Ds J =1,

pr, J=295
pqr, j =25,

0, otherwise
T, J =1,
pqr, j=ti,
Pq, J=1,
pqr, j=1—1,
pqr, J - S - ]-7
]_9,r7 ) = S?
]_767', ] - S?

0 otherwise

1=1

1=2,3,...,8
1=s+1,s+2,...,5
1=1,2,...,s
1=1,2,...,s

it=s+1,s+2,...,8
1=0

1=1,2,...,s

1=0

1=1,2,...,8
1=s+1,s+2,...,5
1=2,3,...,8
1=1,2,...,s

1=0

1=1,2,...,s

wherep=1—p,g=1—q,7=1—r.

2.2.1 Stability Condition

For determining the stability condition for the system, consider the transition
matrix A = Ay + Ay + A, given by
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(7, j=i, i=0
qT, j=i—1, i=12...5
P4, j=1—1, i=s+1,54+2...,5
qr, J =1, 1=1,2,...,s

[Al; =4 p+Dgq j=1i, i=s+1,s+2,...,5

T, j=S, 1=0
qr, 1=5—-1, 1=1,2,...,s
qr, Jj=5, 1=1,2,...,s

L 0, otherwise

The Markov chain y is stable if and only if wAge < wAse where 7 is the
stationary probability vector of A satisfying wA = «w and we = 1, where e is
a column vector of 1’s of appropriate order. Write @ = (mq, 1, ... 7, ..., Ts).

Then wA = 7 gives

1-7)(1—g7)i—1 .
R, =gt

(1-m)(—gr)—! S
Q=g o 5 =1,2,...,5
™= { (a7 "0 )

T4l = Mg =+ * = TG5-1,

(1—?)[61((1?)5-5-6(1—6?)5]WO‘

s = pa(qm)s

Further we = 1 gives

pqlgr)®

0 = =g pat(S—s—Lr+ra+ralar)®

and a bit of algebra gives

mAoe = {pg[UTRS ] | mEo ATy gy g L g
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wAse = {ﬁq [(kaﬂ%(ms] . r(sfs(—ql%g—ms B g+ r@((;)aps } To.

Hence we have

Theorem 2.2.1. The system Y is stable if and only if

q(q7)* [pr + (Pq)* — ppT)

A= 27" par + G0 + a8 —s— D) + pqa(r —p) ¥ pr(8 — )] -

2.2.2 Steady-state analysis

Assume that the stability condition is satisfied. Let @ = (xg, 1, T2,...) be
the steady-state probability vector of the Markov chain y satisfying P = x
and ze = 1. Then x; has the matrix geometric form x; = £, R1,i > 2 where
R is the minimal solution of the matrix quadratic equation R?As+RA;+ Ay =
R.

P = x leads us to

xoCo + 1Ay = xg (2.1)
xoCl + 1 A1 + XAy = x4 (2.2)
i1 Ao+ AL+ i Ay =3, 1> 2 (2.3)
Also xe =1 gives
xoe+xi (I — R) te=1. (2.4)

The rate matrix R can be obtained using the successive iterative method
R(n+1) := (Ag+ R(n)*A3)(I — Ay)™", with R(0) = 0 and R(n) is the value
of R at the n'™ iteration. The iteration is usually stopped when |R(n) —
R(n+1)|;; < €,Vi,j. Another way to solve for R is to use the Logarithmic
reduction method due to Latouche and Ramaswami [33]. The steps of this

algorithm are as given below.



Chapter 2. Discrete time inventory models with positive service time and
24 lead time

H:=(-A) 1Ay L:=(I—A))'Ay; G:=L; and T := H;
and repeat

U:=HL+LH;M:=H*H:=(-U)"'M; M :=L?%
L:=(I-U)'M;G:=G+TL; T:=TH

until || 1 — Gee [|o< €.

Then R = Ao(I — Ay — AyG) ™"

For finding the steady-state vector of the process x = {(Np, Im) : m €
N}, consider the system where service time is negligible and where no cus-
tomer joins when inventory is out of stock. This means that if the item is
available at the epoch of demand, then it would be immediately delivered.
As a consequence the customer need not have to wait. Hence the system has

only inventory and is of finite state space.

The corresponding Markov chain is designated as x = {I,, : m € N}
where [,,, denote the inventory level. The state space of the process is given
by E = {0,1,2,...,S5}. The transition probability matrix corresponding to
X is given by

( — . . .
r, J=1, 1=20
pr, j=1—1, 1=1,2,...,s
p, jJ=1—1 i=s+1,s4+2,...,8

[p]Z]: pF7 .]227 i:1727"'78
B, j=i,  di=s+1,5+2...,8
r, j=25, 1=0,1,...,s
[ 0, otherwise
Let #& = (7o, 71, - . ., Tg) be the steady-state vector of the process x. Then

#P = # and e = 1. It can be scen that

{ (1_F)(1_5F)j71ﬁ_05 j = 17 27 - S

T (p7)?
T = — — -
T S e, j=s L
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Tgtl — T2 = =+ = T3
Also re =1 gives

A p(pr)°
0= T 7 [p+(S—s)r"

Now using 7r, we shall find the steady-state probability vector of x. Let
x = (a9, o1, .. .) be the steady-state probability vector of the Markov Chain

X. Then P = x and xze = 1. The above system reduces to
CC()C() + CL'1AQ = Xy

33001 + mlAl + 2B2A2 = &
Ti 1 Ao + AL+ i1 Ay =, 022

Now let &y = p& and x; = p(ﬁﬂq)iﬁ', for i > 1, where p is a constant to be
determined. This will satisfy the above equations. For,

xi 1 Ag +xi A+ i Ay = xi 1 Ag + x[Co — %Ao] + xit142
p(L) i m Ao+ p(L)'w[Co — BLAG + p( L) Ay

b’ pg
= p(5)'w[Co+ £ A,
~ )R
= x;
Also ze =1 gives,ozl—ﬁ%

This leads to the following

Theorem 2.2.2. Under the necessary and sufficient condition that
p < pq, the steady-state vector of the process y with transition probability
matrix P is given by = (xo, x1,...,) where &y = pt and z; = p(ﬁﬂq)iﬁ,
fori >1p=1- z% and the finite probability vector # is given by & =

(7o, 1, . . ., Tg) where
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. %WO, jg=12...,s q

Ty a-nasp e et+1s+9 g W
Wﬂ'o, j—S+ ,S+ gy

To = pq(qr)®

(1-g7)*[Pg+(S—s—1)r+rgl+rq(q7)s "

2.2.3 System Performance Measures

Let = (a9, @1, ...) be the steady-state probability vector and ;, i > 0 is
partitioned as x; = (%, 21, ..,%is). We have the following measures for

evaluating performance of the system.

1. Expected number of customers EC, in the system is given by
EC = Zz x;e.
i=0
2. Expected inventory level El, is given by
© S
B3
i=0 j=1

3. Expected reorder rate ER, is given by
ER =q Z Tis+1-
i=0

4. Expected replenishment rate ERR, is given by

ERR = rizxij.

i=0 j=0
(o)

5. Probability that the inventory level is zero is Z Tio-
=0

6. Expected loss rate EL, of customers is given by

1=0
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7. Expected number of customers EW, waiting in the system when the

inventory level is zero is given by

1=0

8. Expected rate ED, of departure after completing service is given by

co S

i=1 j=1

2.3 Mathematical Formulation of model 2

and its analysis

We consider a discrete time (s,.S) inventory system with positive lead time in
which demands arrive according to a Bernoulli process with parameter p. The
service times and lead times follow geometric distributions with parameters
q and r respectively. Whenever the inventory level falls to s, place an order
for replenishment by a fixed quantity @), where () = S —s. S is the maximum
inventory level and s is the reorder level. There is a positive lead time for
replenishment. We assume that no customer joins when the inventory level
is zero. Those who are already present in the system do not renege. Exactly

one item is demanded by each customer.

We denote the joint queue length and inventory process by {X,,} =
{(Nm, In) : m € N} where N,, denotes the number of customers in the
system and I, denotes the inventory level at time m*. Then {X,,} =
{(Nm, I,) : m € N} provides a Markov description of the inventory sys-
tem whose state space is E ={0,1,2,...} x {0,1,..s,...,Q,Q +1,..., S}

The one step transition probability matrix of the process is given by
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Cy
p_ Ay Ay Ap
AQ Al A()

where each entry is a square matrix of order S + 1 are given by

o 1 --- s s+1 -+ Q@ @Q@+1 --- S
0 T pr
pT pr
S pT pr
+1 D
Co= " b
Q p
Q+1 p
S P
o 1 -+ s s+1 --- @ Q+1 --- S
0 pr
pr pr
S pr pr
+1
=" P
Q p
Q+1 p
S p
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For ¢ > 2, the transitions from level i to level i+1, transitions within the
level i and transitions from level i to level i-1 are represented by the matrices

Ay ,A; and A, respectively, and are given by

o 1 - s s+1 -+ Q@ Q+1 --- S
0 pr
pqr pqr
s pqT pqr
1
A= 7 P
Q P
Q+1 p
S p
0 1 s—1 s Q Q+1 S
0 T pr
pqr pqr  pqr
2 pqr  DqT pqr  pqr
Alz _ o o
s pqr - pqr pqr  par
s+ 1 pq
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AQZ S
s+1
S—1
S

where, p=1—-—p,g=1—¢q¢,7=1—-7r

2.3.1 Stability Condition

S—-1 S

pqr

For determining the stability condition for the system, consider the transition

matrix A = Ag+ A + As by

0

1
= s

s+1

S—1

S

S O
-
=l
3|

=<
)

S
qr qr
Pqa p+pPq

The chain { X, } is stable if and only if the left drift rate is higher than the
rate of drift to the right. That is, mApe < wAse where 7 is the stationary
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probability vector of A satisfying wA = 7w and we = 1, where e is a column

vector of 1’s of appropriate order. Let m = (7, ... s, Top1,...,7Q, ..., Ts).
Then
()
™ = — 0
qT
1—-7(1—-7gr
r o= & )(_2 i) .
(q7)
1-7)(1—gr)*!
po— A=ni-gnT
(q7)°
1—7)(1—-g7)°
o= ( _T)<_ ar) Ty, t=s5+1,8s+2,...,0Q
pq(qr)®
(1-7)@—7g7r)° qr )
i = — —— 7
ot ( palqr) pa(gr)) "
r(-m—-gr) [_ 1—-gr (1—qr)2}
TS—2 = — — q+ — — o
palqr)*= qr (q7)?
r(l—7)(1—gr)"? 1—gr
SR TE L N
palgr qr
r(1—=7)(1—gr)* !
A Ul g) -
palqr)
palgr)’

d =1 ¢oi = .
e e L8NS T T T 07 [Qr — pal + a(g7)"

wApe = [—pg 5L — pg+ primo + p.

wAse = [pr — pqlmo + Dg.

Hence we have the theorem
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Theorem 2.3.1. The system {X,,} is stable if and only if

pallq —p)(qT)* — pq(1 —q7)°]
(1 —q7)*[Qr — pq] + q(q7)*

<pq-—p

2.3.2 Steady-state analysis

Let € = (g, x,...,) be the steady-state probability vector of the Markov
process {X,,} satisfying P = x and xe = 1. Then «; has the matrix geo-
metric form x; = & B!, 7 > 2 where R is the minimal solution of the matrix
quadratic equation R?As + RA; + Ay = R. The vectors xp and x; can be

obtained by solving the equations

20Co + Ay = @ (2.5)
513001 -+ .’131141 -+ IIJlRAQ = I (26)

and the normalizing condition
xoe+x (I — R) te=1.

From the above equations, to determine x, we have to compute the rate
matrix R. This is solved numerically. In some special cases the matrix R
could be explicitly obtained.

Now we analyze the system with negligible service time where no customer
joins when inventory is out of stock. The corresponding Markov chain is
{X,,} = {I,, : m € N} where I,,, denotes the inventory level. The state space
of the process is given by F = {0,1,2,...,S}. The transition probability

matrix corresponding to {X,,} is given by
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0 1 s—1 s - Q - =15
0 T r
pr pr T
A S T pT T
P prop
s+1 p D
S—1
S p D
Let ®# = (7, 71,...,7s) be the steady-state vector of the process X,

T
Then #P = # and e = 1. It can be seen that

S~ (1_?)((;;)2?)];17%07 .7 = 1727"'75
T 00BN o] g40 )
p(pr)® 0, J=S ) S Yt
. r(1—7 1-p7  (1-p7\" 157\ .
7TQ+1=(—_) 1+ _p +( _p ) +"'+< _p ) o
p(p7) pT pT pr
r(1—7)(1—pr) 2 1—p7
fo = ( )(_ P ) ll D }ﬁo
p(pr)* pT
. r(1—-7)(1—-p7)° !
s = s 0
p(pT)

Also re =1 gives

0 — p(pr)° _
r(L=p7)°[p+ (S —s)] + (pr)™"'
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2.3.3 System Performance Measures

Let = (w, @i, ..., ) be the steady-state probability vector and x;, i > 0, be
partitioned as x; = (x;0, 1, - - -, Tis). We have then the following measures

for evaluating performance of the system.

1. Expected number of customers in the system is given by
EC = Zz x;e.
i=0

2. Expected inventory level is given by

o S

i=0 j=1

3. Expected reorder rate is given by

o0
ER =¢ Z Tis+1-
i=1

4. Expected replenishment rate is given by

ERR = rizxij.

i=0 j=0
o

5. Probability that the inventory level is zero is Z Tio-
i=0

6. Expected loss rate of fresh arrivals is given by

1=0

7. Expected number of customers waiting in the system when the inven-

tory level is zero is given by

i=1
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© S
8. Expected rate of departure after completing service is ED =¢ Z Z Tij.
i=1 j=1

2.4 Mathematical Formulation of model 3 and

its analysis

We discuss the Geo/Geo/1 system in which the probability of an arrival
during at an epoch is p with p = 1 — p the probability of a service completion
at an epoch be ¢ withg=1—g¢.

The maximum capacity of the store is fixed as S units. Due to demands
that take place over time , the level of the inventory falls and when the level
reaches 0, for the first time, an order is placed for replenishment. Here we fix
the reorder point as 0 and allow general randomized order size. The decision

of the order size is according to a discrete probability mass function on the

integers {1,2,...,5} where S is the maximum capacity of the inventory. So
S

the size of a replenishment order is £ with probability u; where Z up = 1.
k=1

The probability for replenishment at a slot end point be r with 7 = 1 — r.
We assume that no customer joins when the inventory level is zero. The inter
demand times and inter replenishment times are assumed to be independent

of each other.

Let N,, denote the number of customers in the system and I,,, the in-
ventory level at time m™. We denote the joint queue length and inventory
process by X,, = (N, I,) : m € N. Then
{Xn} =A{(Nm, I,) : m € N} is a Discrete Time Markov Chain whose state
space is E = {(n,k) : n € Ny, k € {0,1,...,S}}.

The transition probability matrix of the process is given by
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Co 4
I I here Cy, C1, Ao, Ay, A iven b
- AQ Al A() where Cop, U1, Ag, A1, Az are given by
7 prV. 0 rV,
CVO - " pia 5 ) CVl =D T )
0 pls 0 Is
0 rvV
AO =Pp _ 5 9
0 qls
T prV 0 O
Ay = P75 +pa - | + g = |
bger @ Q IS Q DS
0 0
As=pq| ~
2 = Pq Is 0
with Ig = diag(1,1,...,1) of order S.
/
e = ( 0, ..., 0, 1, 0, ... 0 ) of order S with 1 at the j** position,

j=1,2,..,8; Vg = (uy,us,...,ug) is the probability vector corresponding to
quantity for which order is placed at the time of replenishment. O is a null

- 0 O
matrix of order S x S; Dg = [ =

Is—1 0

2.4.1 Stability condition

For determining the stability condition for the system, consider the transition
matrix A = Ag + A; + A, given by

_{0 0 0 0
+q +q - 1.
ger O 0 Dg 0 Ds

The Markov chain {X,,} is stable if and only if wAye < wAse where 7 is the

A T TVS

stationary probability vector of A satisfying wA = 7 and we = 1, where e is
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a column vector of 1 ’s of appropriate order. Let ® = (m, m1,... 75, ..., 7s).
Then wA = 7 gives
— 271-0’ J =
T eeetein, =23,
g —1
we =1 gives my = 1+ka‘uk
1=
Tq 5
wApe = {pr + bra Z kuk] } T
1 %=
and
s
wAe=Dpr (Z kuk) -
k=1
With these the relation wApe < wAse gives
Theorem 2.4.1. The system {X,,} is stable if and only if
pq
3 <1 (2.7)
(q—p)r (Z kuk>
k=1

2.4.2 Steady-state analysis
Assume that the stability condition (2.7) is satisfied. Let = (@, @, ...) be

the steady-state probability vector of the Markov chain {X,,}. Then

P = x and ze = 1.

The x;’s have the matrix geometric form x; = z; R"~!,i > 2 where R is the

minimal nonnegative solution of the matrix quadratic equation R?Ay+RA; +



Chapter 2. Discrete time inventory models with positive service time and
38 lead time

Ag = R. The vectors &y and x; can be obtained by solving the equations
yCo + 2,0y = x (2.8)

:13001 -+ .’131141 -+ .’I}zRAQ = I (29)

and the normalizing condition

xoe+ x (I — R) te=1. (2.10)

Next we analyze the system where service time is negligible. In this case
no queue is formed. Queue of customers is formed only when the system
is out of stock and unsatisfied customers are permitted to wait. Hence the
system has only inventory and is of finite state space. i.e., we do not en-
counter simultaneously a queue of inventoried items and one of customers.
The corresponding Markov chain is denoted as {X,,} = {I,,, : m € N} where
1,,, is the inventory level at epoch m.

The state space of the process is given by £ = {0, 1, ..., 5} and its transition
probability matrix is given by

A r rVs 10 0 0 0
per O 0 Dg 0 Ds
Let &« = (7o, 71, ...,7g) be the steady-state vector of the process {Xm}

Then #P = # and 7e = 1. It can be seen that

T A —
~ p7T07 J =
Ty = r(l—ui—ug—...—uj_1)
= UG 1) A .
To, J=2,3,...,5.

Also the normalizing condition 7e = 1 gives

~ S -1
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2.4.3 System Performance Measures

Let & = (xp, 1, ...) be the steady-state probability vector and x;, i > 0 is

partitioned as x; = (z0, Zi1, - - -, Tis)

1. Expected number of customers in the system EC, is given by
EC = Zz ;e
i=0

2. Expected inventory level EI, is given by

o S

i=0 j=1

3. Expected reorder rate ER, is given by
ER =q Z l’@l
i=0

4. Expected replenishment rate is given by

e’} 1
ERR =1 Y

i=0 j=0

o
5. Probability that the inventory level is zero is Z Tio
i=0

6. Probability that the inventory level is greater than m(< s) is Z Z Tij
i=1 j=m+1

7. Expected loss rate of customers EL is given by
i=0

8. Expected number of customers waiting in the system when the inven-
o0

tory level is zero is given by EW :Zi Ti0
=0
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2.5 Cost Analysis

We analyze numerically the steady-state expected cost rate under the follow-
ing assumptions

Let ¢y denote the fixed ordering cost

¢1 -procurement cost/ unit

o -holding cost of inventory /unit/unit time

c3 -holding cost of customers/unit/unit time

¢4 -cost due to the loss of customers /unit/unit time

For Model 1, the Expected Total Cost

ETC = |cy+ ZT(S — i)y

1=0

ER+ ol 4 csEW + ¢4 EL.

For Model 2

ETO = [CO + QCl] ER —|— CQEI + CgEW —I— C4EL.
For Model 3

s
co + Zkukcl

k=1

ETC = ER+ coFEI 4 csEW + ¢, EL.

2.6 Numerical illustration

Tables 2.1, 2.2, 2.3 show that in all the three models, as the arrival rate p
increases expected number of customers increases. Consequently inventory
level decreases and the expected reorder rate increases. Also expected num-
ber of departure after service completion increases. As the service rate g
increases, expected number of customers decreases and consequently inven-
tory level increases and expected reorder rate also increases. Expected loss

rate of customers decreases and further expected number of departure after
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Table 2.1: Effect of p on Model-1. ¢ =0.7,s = 5,5 = 20
p | p | EC | EI | ER | EL | ED
r=20.7
0.30 | 0.5923 | 1.51322 | 12.61249 | 0.04624 | 0.00000 | 0.42343
0.32 | 0.6509 | 1.93918 | 12.57741 | 0.04627 | 0.00000 | 0.46400
0.34 | 0.7132 | 2.58100 | 12.53914 | 0.04632 | 0.00000 | 0.50679
0.36 | 0.7795 | 3.65980 | 12.49714 | 0.04642 | 0.00000 | 0.55198
0.38 | 0.8501 | 5.85612 | 12.45079 | 0.04657 | 0.00001 | 0.59978
0.40 | 0.9256 | 12.79414 | 12.39939 | 0.04678 | 0.00001 | 0.65042
r=0.8
0.30 | 0.5946 | 1.52041 | 12.63677 | 0.04645 | 0.00000 | 0.42404
0.32 | 0.6535 | 1.95134 | 12.60361 | 0.04649 | 0.00000 | 0.46477
0.34 | 0.7159 | 2.60308 | 12.56745 | 0.04656 | 0.00000 | 0.50777
0.36 | 0.7824 | 3.70501 | 12.52778 | 0.04667 | 0.00000 | 0.55321
0.38 | 0.8532 | 5.97344 | 12.48401 | 0.04682 | 0.00000 | 0.60131
0.40 | 0.9288 | 13.36549 | 12.43544 | 0.04703 | 0.00000 | 0.65230
r=20.9
0.30 | 0.5965 | 1.52620 | 12.65553 | 0.04662 | 0.00000 | 0.42352
0.32 | 0.6555 | 1.96115 | 12.62386 | 0.04668 | 0.00000 | 0.46538
0.34 | 0.7181 | 2.62093 | 12.58934 | 0.04678 | 0.00000 | 0.50854
0.36 | 0.7846 | 3.74174 | 12.55148 | 0.04687 | 0.00000 | 0.55418
0.38 | 0.8556 | 6.06988 | 12.50970 | 0.04702 | 0.00001 | 0.60252
0.40 | 0.9313 | 13.85470 | 12.46333 | 0.04722 | 0.00001 | 0.65379

service completion increases. As the rate of leadtime for replenishment in-
creases the inventory level increases, as expected. Also there is an increment
in the reorder rate. As seen from table 2.4, in all the models, as the arrival
rate increases, probability that the server is idle for want of customers de-
creases and hence probability that inventory level is zero increases. From
tables 2.5, 2.6 and 2.7 we can see that in all models as service rate increases,
expected number of cutomers decreases. Also reorder rate increases and ex-
pected loss rate of customers decreases. Tables 2.8, 2.9 and 2.10 show that
as replenishment rate r increases, the inventory level in all models increases.

Here expected number of customers also increases. Also the expected loss
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Table 2.2: Effect of p on Model-2. ¢ =0.7,s = 5,5 = 20
p | p | EC | EI | ER | EL | ED
r=20.7
0.30 | 0.5919 | 1.51244 | 11.53074 | 0.04680 | 0.00000 | 0.42337
0.32 | 0.6505 | 1.93772 | 11.48785 | 0.04688 | 0.00000 | 0.46391
0.34 | 0.7128 | 2.57813 | 11.44129 | 0.04700 | 0.00000 | 0.50667
0.36 | 0.7790 | 3.65347 | 11.39047 | 0.04717 | 0.00000 | 0.55182
0.38 | 0.8496 | 5.83861 | 11.33467 | 0.04738 | 0.00001 | 0.59956
0.40 | 0.9250 | 12.70578 | 11.27310 | 0.04767 | 0.00001 | 0.65012
r=0.8
0.30 | 0.5944 | 1.52000 | 11.58886 | 0.04678 | 0.00000 | 0.42400
0.32 | 0.6532 | 1.95058 | 11.55109 | 0.04686 | 0.00000 | 0.46473
0.34 | 0.7157 | 2.60156 | 11.51002 | 0.04696 | 0.00000 | 0.50770
0.36 | 0.7821 | 3.70164 | 11.46510 | 0.04711 | 0.00000 | 0.55312
0.38 | 0.8529 | 5.96400 | 11.41567 | 0.04730 | 0.00000 | 0.60119
0.40 | 0.9285 | 13.31558 | 11.36099 | 0.04755 | 0.00000 | 0.65215
r=20.9
0.30 | 0.5964 | 1.52603 | 11.63418 | 0.04677 | 0.00000 | 0.42450
0.32 | 0.6554 | 1.96084 | 11.60044 | 0.04684 | 0.00000 | 0.46537
0.34 | 0.7180 | 2.62032 | 11.56372 | 0.04693 | 0.00000 | 0.50852
0.36 | 0.7845 | 3.74037 | 11.52348 | 0.04706 | 0.00000 | 0.55415
0.38 | 0.8555 | 6.06598 | 11.47913 | 0.04723 | 0.00000 | 0.60247
0.40 | 0.9312 | 13.83330 | 11.42996 | 0.04746 | 0.00000 | 0.65373

rate of customers decreases.

We compute the expected total cost per unit time for the models by

varying different parameters one at a time while keeping others fixed and

find the most profitable one by comparing the costs.

Figure 2.1 shows that the cost functions for all the models are convex

and the expected total cost is minimum for model-3. Again as the maximum

inventory level S is increased, the cost function behaves as above and then
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Figure 2.1: g versus ETC when S =20,s =5,p=0.2,r = 0.3, ¢ = 50,¢; =
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Figure 2.2: S versus ETC when s = 4, p = 04, ¢ = 0.7, r = 0.3, ¢g =
50,01 = 15, Cy = 0.2,03 = 03, Cqy = 0.5
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Table 2.3: Effect of p on Model-3. ¢ = 0.7, S = 20
p | p | EC | EI | ER | EL | ED
r=0.2
0.1 0.0582 | 0.15165 | 6.01452 | 0.06390 | 0.00459 | 0.09143
0.2 | 0.1310 | 0.32838 | 5.72050 | 0.06131 | 0.01770 | 0.18921
0.3 | 0.2245 | 0.55080 | 5.45076 | 0.05889 | 0.03846 | 0.28095
0.4 |0.3492 | 0.87135 | 5.20712 | 0.05657 | 0.06612 | 0.35836
0.42 | 0.3793 | 0.95807 | 5.16193 | 0.05611 | 0.07241 | 0.37539
0.4205 | 0.3801 | 0.96039 | 5.16082 | 0.05609 | 0.07257 | 0.39702
r=20.3
0.1 0.0582 | 0.15166 | 6.10791 | 0.06489 | 0.00311 | 0.09783
0.2 | 0.1310 | 0.32849 | 5.89437 | 0.06318 | 0.01216 | 0.19149
0.3 |0.2245 | 0.55127 | 5.69410 | 0.06152 | 0.02679 | 0.28125
0.4 |0.3492 | 0.87282 | 5.51075 | 0.05986 | 0.04665 | 0.36735
0.42 | 0.3793 | 0.95989 | 5.47668 | 0.05953 | 0.05122 | 0.38415
0.4205 | 0.3801 | 0.96221 | 5.47584 | 0.05952 | 0.05134 | 0.39946
r=04
0.1 0.0582 | 0.15167 | 6.15570 | 0.06540 | 0.00235 | 0.09859
0.2 | 0.1310 | 0.32855 | 5.98534 | 0.06415 | 0.00926 | 0.19444
0.3 ]0.2245 | 0.55153 | 5.82410 | 0.06292 | 0.02055 | 0.28767
0.4 |0.3492 | 0.87363 | 5.67623 | 0.06166 | 0.03604 | 0.37838
0.42 | 0.3793 | 0.96088 | 5.64891 | 0.06140 | 0.03962 | 0.39623
0.4205 | 0.3801 | 0.96221 | 5.47584 | 0.05952 | 0.05134 | 0.41275

also the expected total cost is minimum for model-3. (See figure 2.2). Hence
model-3 is more profitable. That is when the inventory level reaches 0, for

the first time, allow general randomized order size.
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Table 2.4: Variations in arrival rate p. r =0.4, s =5, S = 20

q=0.7
model 1 model 2 model 3
p Piqie Pryr—o Pigie Pryr—o Pigie Prnr—o
0.1 0.8416 | 0.00000 | 0.8416 | 0.00000 | 0.8558 | 0.02347
0.2 0.6457 | 0.00005 | 0.6457 | 0.00005 | 0.7089 | 0.04630
0.3 0.3998 | 0.00044 | 0.4003 | 0.00045 | 0.5592 | 0.06849
0.4 0.0848 | 0.00179 | 0.0870 | 0.00189 | 0.4068 | 0.09009
0.42 | 0.0109 | 0.00225 | 0.0138 | 0.00238 | 0.3759 | 0.09434

Table 2.5: Effect of g on Model-1. p =0.2,s = 5,5 = 20

q |

P |

EC |

El |

ER

|

EL

|

ED

r=20.3

0.4
0.5
0.6
0.7
0.8
0.9

0.6085
0.4802
0.3938
0.3315
0.2844
0.2475

1.60571
0.97057
0.69561
0.54211
0.44413
0.37616

12.55240
12.56163
12.56613
12.56800
12.56846
12.56850

0.02575
0.03215
0.03858
0.04501
0.05146
0.05791

0.00006
0.00006
0.00006
0.00005
0.00005
0.00005

0.24732
0.24735
0.24738
0.24741
0.24744
0.24747

Table 2.6: Effect of q on Model-2. p =

2,8 =105,

q |

P

EC |

El |

ER

0
|

r=20.3

0.4
0.5
0.6
0.7
0.8
0.9

0.6075
0.4786
0.3917
0.3289
0.2812
0.2438

1.60345
0.96948
0.69492
0.54162
0.44375
0.37586

11.29826
11.30968
11.31660
11.32091
11.32370
11.32560

0.02673
0.03336
0.04001
0.04666
0.05332
0.05999

0.00006
0.00006
0.00006
0.00005
0.00005
0.00005

0.24722
0.24725
0.24729
0.24732
0.24735
0.24738
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Table 2.7: Effect of q on Model-3. p =0.2, § = 20

q |

p | EC | EI

[ ER | EL

r=20.3

0.4 | 0.3988
0.5 | 0.2738
0.6 | 0.1905
0.7 | 0.1310
0.8 | 0.0863
0.9 | 0.0516

0.83068
0.55026
0.41139
0.32849
0.27340
0.23413

2.90223
2.89773
5.89558
5.89437
5.89362
0.89311

0.03608
0.04511
0.05415
0.06318
0.07221
0.08123

0.01216
0.01216
0.01216
0.01216
0.01216
0.01216

Table 2.8: Effect of » on Model-1. p =0.2, s =5, 5 =20

r_]

p

| EC

| Bl

ER

| EL

| ED

q=0.7

0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.3315
0.3338
0.3359
0.3377
0.3393
0.3407
0.3419

0.54211
0.54371
0.54496
0.54596
0.54678
0.54747
0.54806

12.56800
12.61708
12.65311
12.68061
12.70223
12.71966
12.73401

0.04501
0.04533
0.04557
0.04576
0.04592
0.04605
0.04616

0.00005
0.00002
0.00001
0.00000
0.00000
0.00000
0.00000

0.24741
0.24776
0.24803
0.24823
0.24839
0.24853
0.24864

Table 2.9: Effect of »r on Model-2. p=0.2, s =5, 5 = 20

r_|]

p

| EC

| Bl

ER

| EL

| ED

q=0.7

0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.3289
0.3319
0.3344
0.3366
0.3385
0.3400
0.3414

0.54162
0.54336
0.54470
0.54577
0.54664
0.54736
0.54798

11.32091
11.41722
11.48969
11.54617
11.59140
11.62845
11.65933

0.04666
0.04667
0.04667
0.04667
0.04667
0.04667
0.04667

0.00005
0.00002
0.00001
0.00001
0.00000
0.00000
0.00000

0.24732
0.24770
0.24798
0.24819
0.24837
0.24851
0.24863
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Table 2.10: Effect of r on Model-3. p = 0.2, S = 20

r_|]

p

|

EC

|

EI

|

ER

|

EL

q=0.7

0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.1310
0.1310
0.1310
0.1310
0.1310
0.1310
0.1310

0.32849
0.32852
0.32855
0.32857
0.32858
0.32860
0.32861

5.89437
5.94601
5.98534
6.01629
6.04127
6.06188
6.07915

0.06318
0.06373
0.06415
0.06448
0.06478
0.06497
0.06516

0.01216
0.01051
0.00926
0.00827
0.00748
0.00682
0.00627




Chapter 3

Discrete Time inventory
models with common life time

and positive service time

3.1 Introduction

In the previous chapter we considered inventory with unlimited life time. In
this chapter we restrict the life time to be a random variable with finite mean
value. Further it is assumed that all items perish simultaneously (common
life time). In most of the inventory models, it is assumed that items can
be stored indefinitely to meet future demands. However, certain types of
inventories undergo change during storage with the result that with passage
of time they may become partially or entirely unfit for consumption. For
example milk products, meat and other food stuffs, medicines, blood stored
in blood banks etc become unusable after a certain time has elapsed. Also

sometimes the item may become obsolete.

49



Chapter 3. Discrete Time inventory models with common life time and
50 positive service time

Inventory models for perishable or deteriorating items are of considerable
importance. Perishable items have a deterministic usable life after which they
become unusable. e.g., Chemicals produced by a processing plant. There is
a large amount of research papers dealing with such models. Nahmias and
Shah [44] studied the models where demand was assumed random in each
period and products were assumed to have a certain life time which may be
random. Various optimal characteristics were obtained under different condi-
tions on the demand and the life time processes. Lian and Liu [35] studied a
discrete time (s, S) perishable inventory model with geometric inter-demand
times and batch demands. With zero lead time and allowing backlogs, they
constructed a multidimensional Markov chain to model the inventory level
process and obtained a closed form expression for average cost function. They
also concluded that discrete time models may be used to approximate their
continuous time counterparts effectively. Lian et al. [36] discussed a discrete
time model for common life time inventory systems where demands are in
batches following a discrete PH renewal process. With zero lead time and
also allowing backlogs, they constructed a multidimensional Markov chain
to model the inventory level process. They obtained a closed form expected
cost function. Compared with the results for the constant life time model,
they proved that the variance of the lifetime significantly affects the system
behavior. Kaspi and Perry [26], Bar-Lev and Perry [6] have obtained the char-
acteristics that measure the performance of perishable inventory systems by
applying the results from queueing models with impatient customers. Per-
ishable inventory problems with constant life time have been studied quite
extensively using the periodic review policy. Fries [16] and Nahmias [43] use
dynamic programming in a perishable inventory model with life time m and

zero lead time.

In this chapter we model and analyze three discrete time perishable in-

ventory systems with positive service time. First we discuss an inventory
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model in which the stored items have a common life time. Assume that lead
time is positive. Second model is a modified form of Lian et al. [36] extended
to positive service time case. In this model order for replenishment is placed
when the inventory level reaches zero at a service completion epoch provided
the number of customers waiting at that epoch is at least s. Else the order is
placed as and when the number of waiting customers reaches s. We assume
that the lead time is zero. In the third model, we assume that the items
perish one by one and that life time follows geometric distribution. In the
first and third models we assume that customers do not join the system when
the inventory level is zero whereas in the second model, customers join even

when the inventory level is zero.

3.2 Description of Model-1

We consider a discrete time (s, S) inventory model in which the stored items
have a common life time. Demands arrive according to a Bernoulli process
with parameter p. Service time and lead time follow independent geometric
distributions with parameters q and r, respectively. When the inventory level
reaches s for the first time after each replenishment, an order is placed to
bring back the level up to S. Since lead time is positive, it will take a random
amount of time to bring the items back to level S. When the replenishment
occurs, we discard all the old items so that the remaining (fresh) items have
common life time. Assume that life time follows geometric distribution with

parameter ¢t and that no customer joins when the inventory level is zero.
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3.2.1 Analysis of the model

Let N,, denote the number of customers in the system and I,,, the inventory
level at epoch m. We denote the joint queue length and inventory level by
X = {(Nm, L) : m € N}. Then x is a Discrete Time Markov Chain with
state space

E={(Gj):i>20,0<j5<S}

The one step transition probability matrix of the Markov chain y is given by

Co Cy
p_ Ay A A
Ay Ay Ay

where each entry is a square matrix of order S + 1.
They are obtained as (only transitions with positive probabilities are indi-

cated below):

"

T, Jj =1, 1=0
prt, j=0, i=1,2,...,s
prt, j=1, i=1,2,...,s
[Colij = P, j=i, i=s+1,5s+2,...,8
pr, =25, 1=0,1,...,s
t, j =0, t=s+1,s+2,...,8
L 0, otherwise
( pFt, §=0, i=1,2,...,s
prt, j=1, i=1,2,...,s
[Cili; =% pt,  j=1i, i=s+1,5+2...,8
pr, j=2., 1=0,1,...,s
L 0, otherwise
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qr, j:Z_17 7::1,2,...78
pg, j=1i1—1 i=s+1,s+2,...,8

A ij —
[2]] Z_9q7’, ]:S_l’ i:l,Q,...,S
\0, otherwise
((pq7, j=i i=12...,s
b, j:% i:3+178+27"'7s

[AO]ij: pr, ]:S 1=20
pqr, j =25, 1=1,2,...,58

L 0, otherwise

(7, j=1, i=0
Py, j=0, i=1,2,...,8
pqTt, j =1, i=1,2,...,s

[Ai]i; = DY, j =1, i=s+1,54+2,...,8

pr, Jj=5, 1=20
par+mpqr, j=25, i=1,2,...,s
0 otherwise

,

where x =1—z, z =p,q,r,t.

3.2.2 Stability Condition

For determining the stability condition for the system, consider the transi-

tion matrix A = Ay + A; + A, given by
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(7, j=1i, i=0
qrT +PpqTt, 3 =0, 1=1
paTt, j=0,  i=23,...,s
qr, j=1—1, 1=23,...,s
[A];; = pqrt+pqr, j =i 1=1,2,...,s
pa, j=i—1, i=s+1,s+2,...,8
p+Dpq, J =1, 1=s+1,s+2,...,5
pqr, =5S—-1, 1=1,2,...,s
T j=25, i=0
| pqr+pr, j=2>5, 1=1,2,...,s

The system Yy is stable if and only if mApje < wAse where 7 is the sta-
tionary probability vector of A satisfying wA = w and we = 1, where e is
a column vector of 1’s of appropriate order. Let w = (mg, m,...7g,...,Ts).

Then wA = 7 gives

{5m”sﬁm,j:LZ“ws
o

T B, j=s+1,54+2,....8—1

Ty = 1%1 (08 — ]_JQT(?;:Z;)> To, where 0 = 1 — pgF —pqrt, n = T,

5 = r(n—0)
(n—=0)+pqrt(n°—0°)"

Normalizing condition me = 1 gives

=" Wherev—lJr(w (S L4601 - 5)7’:7%33.

Also, mApe = [(p@é — prd) ";:zs (S — )p‘w + pr| m and

w@e:hmggiuS—gwﬂm
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Thus we have

Theorem 3.2.1. The Markov chain y is stable if and only if

s—1

Sl < (5 — )(Pq — p)O6” — papr (3.1)
pars pqd(pg — pr — qr)

3.2.3 Steady-state analysis

Now we proceed to the computation of the steady-state probabilities of
the system state. Assume that stability condition (3.1) holds. Let x =
(xo, x1,...,) be the steady-state probability vector of the Markov chain y.
Thus P = x and ze = 1. Then x; = £, R*"',7 > 2 where R is the minimal
solution of the matrix quadratic equation R2A, + RA; + Ay = R.

P = x leads us to

20 Co + T Ay =
(i + A + 2 RAy = ;1.

In general
ar;i_le + a:iAl + $i+1A2 = I, 1= 2.

Normalizing condition ze = 1 gives zye + x; (I — R)te = 1.

3.2.4 System Performance Measures

Let = (xp, @1, . . ., ) be the steady-state probability vector. Partition a;, for

7 2 0 as &L, = (xi07xi17---7xi5)
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oo
1. Expected number of customers in the system EC = Zz T e
i=0

o S
2. Expected inventory level EI :Z Z J Tij
i=0 j=1

3. Expected reorder rate ER =q Z Ti 541
i=1

e} S

4. Expected replenishment rate ERR = r Z Z Tij
i=0 j=0

5. Probability that the inventory level is zero :Z Tio
i=0

6. Expected loss rate of customers EL = p Z Zi0
i=0

7. Expected number of customers waiting in the system when the inven-
(0.9]
tory level is zero EW :Zi Tio
i=0
s

8. Expected rate of departure after completing service ED =¢q Z Z Tij
i=1 j=1

o S
9. Expected perishability rate EP= ¢ Z Z J Tij

i=0 j=1

3.3 Description of Model-2

We consider a discrete time (s, S) inventory model in which stored items have
a common life time. We modify Lian et al. [36] as follows: Place replenish-

ment order when the inventory level reaches zero at a service completion
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epoch if the number of customers waiting at this epoch is at least s. Else
place the order when the number of waiting customers reaches s. The lead
time is assumed to be zero. The inventory control is governed by the (s, .5)
policy with s < 0 (finite). Assume that the lifetime of inventoried items
follows geometric distribution with parameter ¢ and life completion precedes

arrival.

3.3.1 Analysis of the model

Let N,, denote the number of customers in the system and [,,, the in-
ventory level at time m*. We construct a 2-dimensional Markov chain
v = {(Npm, I,) : m € N} with state space F = {(4,7) : 1 > 0;0 < j < S} to
model the joint queue length and inventory level. The transition probability

matrix of ¢ is given by

Co 4
p_ Ay A Ao
Ay Ay Ag

where Cy, C4, Ay, Ay, Ay are given by

50 0
Co = P - , C1 = P _
ﬁte ﬁt]s pte ptlg
o ,
Ay = pfs
| 0 pgls

=l

[ 0
A = =
pqte pqtls

)]
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0 0

AQ = with Cg = (Cij)SXS where

ge; Cs

_{ g ifj=i—1,i>2
v 0, otherwise

and ;7 = (0,0,...,0,1,0,...,0) where 1 is at the i"* place,

Is = diag(1,1,...,1) of order S and e denotes the column vector of 1's of

appropriate order.

3.3.2 Stability condition

For obtaining the stability of the system, consider the transition probability
matrix A defined by A = Ag + A; + As whose entries are

’

D, j =1, 1=20
q+pqt, j=i—1, 1=1
pqt, 7 =0, 1=2,3,...,8
Al = g+t j=i, i=1,2....8
q, j=i—1, 1=1,2,...,8
\ 0, otherwise
Let w = (mp, 71, ... 7, ..., Tg) be the stationary probability vector associated

with the matrix A. Then wA = & and we = 1.

wA = T gives

(p+pPat)mo—Dqt s
9 j - ]-
7'(‘.

o q .
= (1_pq_pqt>y—1 [(p@at)qﬂrmt] . 7=23,...,8

q

we =1 gives

pqt(g+pqt)°
p+pqt)(¢+pat)® —pg® -

7'('0:(
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wAge = pqmo + pq.

7TA2€ = q(]_ — ’7T()>.

Hence we have the theorem

Theorem 3.3.1. The system ) is stable if and only if

p<q(l—m)(1+p) (3.2)

where

3.3.3 Steady-state analysis

Assume that stability condition (3.2) is satisfied. Let @ = (xp, @1,...) be
the steady-state probability vector of the Markov process ; then x satisfies

P = xz and ze = 1. Then x; has the matrix geometric form
=z R™ i>2 (3.3)
where R is the minimal nonnegative solution of the matrix quadratic equation
R*As + RA1 + Ay =R
. The vectors &y and @; can be obtained by solving the equations.
2Co + 1 Ay = X (3.4)

513001 -+ .’BlAl -+ IBQRAQ = I (35)
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and the normalizing condition
re+x (I — R) te=1 (3.6)
Then a;, i > 2 can be obtained from (3.3)

We analyze the system in which the time required to serve the inventory
is negligible. Thus the system has only inventory and is of finite state space.
i.e., we do not encounter simultaneously a queue of inventoried items and one
of customers. Also assume that ¢ < . The corresponding Markov chain is
labeled as 1) = {I,, : m € N} where I,,, denotes the inventory level at epoch

m.

The state space of the processis F = {—(s—1),—(s—2),...,0,1,...,S}

and its transition probability has entries given by

( 7. j=1, i=—(s—1),—(s—2),...,0
P, j=S5, i=—(s—1)
P, j=i—1, i=—(s—2),—(s—3),...,0
t, j=-1, i=12...,5
[Pl; =4 Pt j=i, i=1,2...,8
tp+pt, j=0, i=1
tp, j =0, 1=2,3,...,8
pt, j=i—-1, 1=2,3,...,5
L 0 otherwise
Let #t = (T_(s—1), T—(s—2); - - - » T0, 71, - . . , Tg) be the steady-state vector of
the process zﬂ Then #P = # and e = 1. On solving these
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A»:% 7%_(8—1)7].:1727"”5’;

<
—
[
|
3
-

o (I (s=DY) 4 __t.
To= "9 T—(s-1) T 1=
T =T_9=...= 7T_(3_2) = 7T_(5_1).

Also normalizing condition re = 1 gives

» - t(1—p?)°
DT 05D et (150 - ()]

3.3.4 System Performance Measures

Let € = (xy, x1, .. .) be the steady-state probability vector and x;, i > 0, be
partitioned as @; = (%0, Ti1, - - -, Tig)-

Then we have expression for following performance meassures :

1. Expected number of customers in the system EC = Zz x;e
i=0

o S
2. Expected inventory level EI :Z Z J Tij

i=0 j=1

3. Expected reorder rate ER = ¢ Z Tio
i=0

4. Expected number of customers waiting in the system when the inven-

o0
tory level is zero EW :Zi Z40
i=0

oo S
5. Expected perishability rate EP= ¢ Z Z J Tij
i=0 j=1
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3.4 Description of Model-3

We consider a discrete time (s, S) perishable inventory system in which items
fail one by one and that life time follows geometric distribution with param-

eter t. No customer joins when the inventory level is zero.

3.4.1 Analysis of the model

Let N,, denote the number of customers in the system and 7,,,, the inventory
level at time m™. Then consider the Markov chain ¢ = {(N,,, I,,) : m € N}
with state space F = {(i,5) :4 > 0;0< 5 < S}.

The one step transition probability matrix P of this Markov chain is given
by

Co C; 0 O
P Ay A Ay O

0 Ay A A

where each entry is a square matrix of order S 4 1. The entries of these

matrices are described below:

T, j =1, 1=0
prt, j=1i—1, i=1,2,...,8
pt, jJ=1—1, 1=s+1,s+2,...,8
[Colij = DT, =1, 1=1,2,...,s
pt, j=1i, i=s+1,s+2,...,8
pr, J=15, 1=0,1,...,s
L 0, in all other cases
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[C1li; =

[As]i; =

[Aolij =

where

\

r=1—x 2x=p,q,r,t.

prt, j=1i—1, i=1,2,...,s

pt, j=1—1, i=s+1,s+2,...,5
prt, j=1, i=1,2,...,s

pt, =1, i=s+1,8+2,...,5
pr, 7=25, i1=0,1,...,s

{ 0, in all other cases

(g7, j=i—1, i=1,2,... .5

pq, jJ=1—1, 1=s+1,s+2,...,5
pqr, j=95—1, 1=1,2,...,s

\ 0, in all other cases

( pg7, j=1i i=1,2,...,s

P, j =1, t=s+1,s+2,...,8
pr, j=25 1=0

pqr, j =25, 1=1,2,...,58

L 0, in all other cases

(7 j=i, i=0

pqrt, j=1-—1, 1=1,2,...,s
pqt, j=1—1, 1=s+1,54+2,...
pqTt, j =1, i=1,2,...,s
pqt j =1, i=s+1,5+2,...
pr, 7=25, 1=
pqr+pqr, j=25, i=1,2,...,8
0, in all other cases
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3.4.2 Stability Condition

For determining the stability condition of the system, consider the transition

matrix A = Ag + A; + As. Its entries are given below:

\

T, ] =1, 1=0

qr+pqrt j=1-1, 1=1,2,...,s
pqrt+pqr, j=1, 1=1,2,...,s
pg+pat,  j=i—1, i—s+1,542,....8
p+Dat, j=1, i=s+1,s+2....8
pqr, 1=95-1, 1=1,2,...,8

r, j=2>5, =0

qr +pqr, Jj=35, i=1,2,...,s

0, in all other cases.

The process ¢ is stable if and only if wAje < wAse where 7 is the

stationary probability vector of A satisfying wA = 7 and e = 1, with e,

a column vector of 1’s of appropriate order. Let @ = (m, m,...7s,...,Tg).

Then wA = 7 gives

=

Tstj = B

ms = (1-7) (P

a-P[1-arEpn]

-7

(qT+pqrt)

>7r0, 7=12 ... 5

<1—q?(p+ﬁf)
(¢qT+pqTt)

5 0 i1 )
> u(qj%j T, j=12,...,8—-s—-1

q?ﬂ?EFt)st(EﬂJQ)[1—6F(p+135)}5) -
p(1-qt)(q7+paTt)° 0

Normalizing condition re = 1 gives

To = (@m(s—s)m

mAje = {—pq [M} — p§+pr} o + p.

(qr+pqTt)®

pe(qT+pqrt)°
(1=g7(p+p1)|*+par(¢T+pqTt)” )
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wAse = {(qF +Dgr — D) [%} —qr - ﬁqr} o + Dg.
Theorem 3.4.1. The Markov Chain ¢ is stable if and only if
BET s BT + (S — §)r — pg7 — RE=9)"
+pqrt Pq+Dpgr+ (S —s)r —pqr — =
= <
T(pt+p) 2pr +q7 — pq

3.4.3 Steady-state analysis

Now, we proceed to the computation of the steady-state probabilities of the
system state. Let & = (@, @, ...) be the steady-state probability vector of
the Markov process . We assume that &, = zyR',7 > 1 where R is the
minimal solution of the matrix quadratic equation R?Ay + RA; + Ay = R.
P = x leads us to

2oCo + 1Ay = x
(1 + 1A + A = .
T 1A+ A+ a1 Ay =3, 1> 2.

Also xe = 1 gives e+ o (I — R) e = 1.

3.4.4 System Performance Measures

To get a complete picture of the system it is essential to compute the long run
characteristics of the system state. Let @ = (&g, @1, ...) be the steady-state

probability vector and x;, ¢ > 0 be partitioned as x; = (x;0, i1, - - - , Tig).

oo
1. Expected number of customers in the system EC = Z@ T;e.
i=0
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oo S
2. Expected inventory level EI :Z Z J Tij.
i=0 j=1

3. Expected reorder rate ER = ¢ Z Tisr1 T (s +1) Zmiysﬂ.

i=1 i=0

4. Expected replenishment rate ERR = r Z Z Tij.

i=0 j=0
o0
5. Expected loss rate of customers EL = p Z Zi0-
i=0
6. Expected number of customers waiting in the system when the inven-

tory level is zero EW :Zi 0.

i=0
© S
7. Expected rate of departure after completing service ED = ¢ Z Z Tij.
i=1 j=1
o S
8. Expected perishability rate EP= ¢ Z Zj T
i=0 j=1

3.5 Cost Analysis

We analyze numerically the steady-state expected cost rate under the follow-
ing parameters.

Let ¢y denote the fixed ordering cost

¢1 - procurement cost/ unit

¢2 - holding cost of inventory /unit/unit time

c3 - holding cost of customers/unit/unit time

¢4 - cost due to the loss of customers /unit/unit time

¢s - the replacement (disposal) cost/unit decayed(perished)
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Then
For Model 1, the Expected Total Cost

ETC = [CO -+ (S — S)Cl] ER+ CQE[ + CgEW + C4EL + C5EP.
For model 2

ETC = [Co + SCl] EFR+ CQEI + CgEW + C5EP.
For Model 3

ETC = ER+ coET + c3EW + c,EL + s EP.

co + Z r(S —1i)c
i=0

3.6 Numerical illustration and comparison of

the performance of the different models

Table 3.1: Effect of p on Model-1 ¢ =0.8, r =0.7,s = 5,5 = 20
p | EC | EI | ER | EL | EP
t=0.1
0.1 | 0.1436 | 16.7681 | 0.0000 | 0.0110 | 0.2321
0.2 | 0.4134 | 15.6945 | 0.0014 | 0.0179 | 0.4838
0.3 | 1.0601 | 14.5163 | 0.0101 | 0.0187 | 0.7531
0.4 | 4.0861 | 13.2924 | 0.0323 | 0.0193 | 1.0571
0.42 | 6.7442 | 13.0006 | 0.0388 | 0.0203 | 1.1226
t=0.2
0.1 | 0.1294 | 15.577 | 0.0000 | 0.0197 | 0.4313
0.2 | 0.3798 | 15.4276 | 0.0003 | 0.0328 | 0.9513
0.3 | 1.0050 | 14.8326 | 0.0052 | 0.0352 | 1.5336
0.4 | 4.0273 | 13.5903 | 0.0272 | 0.0382 | 2.1474
0.42 | 6.6973 | 13.2176 | 0.0350 | 0.0391 | 2.2704

Tables 3.1, 3.2 and 3.3 indicate that in all the models, expected number

of customers and expected perishability rate increase and inventory level
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Table 3.2: Effect of p on Model-2
P \ EC \ EI \ ER \ EP
¢=081=01s=55=20
0.1 | 0.1551 | 11.4101 | 0.0582 | 0.1579
0.2 | 0.4044 | 10.3014 | 0.0570 | 0.3161
0.3 | 0.9218 | 9.5506 | 0.0537 | 0.4889
0.4 | 2.8875 | 9.1915 | 0.0503 | 0.7047
0.42 | 4.1783 | 9.1756 | 0.0497 | 0.7544
q=0.8,t=0.2,s=5,5=20
0.1 | 0.1592 | 12.2137 | 0.0562 | 0.3383
0.2 | 0.4331 | 11.5592 | 0.0560 | 0.7125
0.3 | 1.0220 | 11.0350 | 0.0559 | 1.1413
0.4 | 3.3286 | 10.6827 | 0.0547 | 1.6660
0.42 | 4.9502 | 10.6407 | 0.0546 | 1.7892

decreases as arrival rate p increases. Expected reorder rate also increases for
models 1 and 3 but decreases in model 2. This is because the lead time is zero
for model 2. In all models as maximum level of inventory is increased, the
expected inventory level and expected number of customers increase. There
is a decrease in the expected reorder rate. ( See tables 3.4, 3.5 and 3.6). From
tables 3.7, 3.8 and 3.9 as service rate q increases expected inventory level and
expected customers also decrease in all models. From tables 3.10, 3.11 and
3.12 we can see that as s increases, expected inventory level increases and
expected number of customers decreases. Table 3.15 shows that as arrival
rate p increases, expected cost also increases in model-1 and model-3 whereas

it is a strictly convex function for model-2.

Figures 3.1 and 3.2 show that expected cost increase as S increases. As
q increases, cost function is convex for all models. (See figures 3.3, 3.4). The

expected total cost is minimum for model-2.
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Model - 1
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Figure 3.1: S verses ETC' for Model-1 and Model-2 when s = 5, p = 0.4,
q=081r=0.71t=0.2,¢cg=100,c;1 =10,c0 =2,c3 =3,¢c4 = d,c5 =4
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Figure 3.2: Model-3 : S versus ET'C when s =5, p=0.4, ¢ =0.8, r = 0.7,
t= 02, Co = 100,01 = 10,02 = 2,63 = 3,64 = 5,65 =4
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Figure 3.3: ¢ versus E'T'C Model-1 and model-2 when s = 5, .S = 20, p = 0.2,
r=07,1t=02 ¢ =100,¢c1 =10,c0 =2,c3=3,¢c4, = 5,c5 =4
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Table 3.3: Effect of p on Model-3

p‘EC‘

EI

[ ER | EP

t=0.1

0.1
0.2
0.3
0.4
0.42

0.1606
0.4473
1.1011
4.0879
6.6965

12.8165
12.7243
12.6396
12.5338
12.4965

0.0527
0.0534
0.0541
0.0621
0.0692

0.1776
0.3944
0.6644
1.0092
1.0889

t=0.2

0.1
0.2
0.3
0.4
0.42

0.1603
0.4459
1.0965
4.0617
6.6384

12.7498
12.6665
12.5926
12.5065
12.4759

0.0523
0.0531
0.0546
0.0601
0.0622

0.3533
0.7847
1.3226
2.0121
2.1723

Table 3.4: Effect of S on Model-1 p=10.4, ¢ =0.8r=0.7,t = 0.2

S| EC |

EI

[ ER | EL | EP

s=5

20
25
30
35
40

4.0273
4.2123
4.3317
4.4148
4.4757

13.5903
16.8719
20.2636
23.7516
27.3252

0.0272
0.0188
0.0139
0.0108
0.0086

0.0200 | 2.1474
0.0195 | 2.6738
0.0191 | 3.2172
0.0189 | 3.7763
0.0188 | 4.3500

Table 3.5: Effect of .S on Model-2

5|

EC

EI

ER

EP

p= 047@ = 08,t = 0.2,8 =5

20
25
30
35
40

3.328
3.6540
3.8737
4.0320
4.1516

10.6827
13.2296
15.7639
18.2906
20.8126

0.0547
0.0405
0.0322
0.0268
0.0229

1.6660
2.0923
2.5150
2.9357
3.3554
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Table 3.6: Effect of .S on Model-3

S| EC

EI

ER | EP

p=04,9g=08r=07t=02,5=5

20 | 4.0617
25 | 4.2585
30 | 4.3873
35 | 4.4781
40 | 4.5455

12.5065
15.0120
17.5167
20.0208
22.5245

0.0521
0.0392
0.0315
0.0263
0.0226

2.0121
2.4338
2.8533
3.2718
3.6897

Table 3.7: Effect of ¢ on Model-1 p=0.2, r =0.2, s =5, .5 =20

¢ | BEC |

EI

| ER |

EL

[ EP

t=0.2

0.5
0.6
0.7
0.8
0.9

0.8722 | 15.4927
0.6114 | 15.4821
0.4691 | 15.4654
0.3798 | 15.4276
0.3188 | 15.3850

0.0018
0.0009
0.0005
0.0003
0.0002

0.0250
0.0286
0.0310
0.0328
0.0342

1.4897
1.2576
1.0844
0.9513
0.8463

Table 3.8: Effect of ¢ on Model-2

q‘EC‘

EI

ER | EP

p=0.2, ,t=0.2,s=5,5=20

0.3 | 4.4758
0.4 ] 1.5624
0.5 | 0.9457
0.6 | 0.6780
0.7 ] 0.5285
0.8 ] 0.4331
0.9 | 0.3669

11.8175
11.6950
11.6349
11.5993
11.5758
11.5592
11.5471

0.0205
0.0277
0.0349
0.0422
0.0495
0.0568
0.0641

1.9380
1.4368
1.1435
0.9508
0.8143
0.7125
0.6335
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Table 3.9: Effect of ¢ on Model-3

g | EC | EI | ER | EP

p=0.2, ,r=0.2,s=5,5=20

0.3 | 4.
04 1.
0.5 0.
0.6 | 0.
0.7 ] 0.
0.8 0.
0.9 0.

4720 | 12.4965 | 0.0192
o774 | 12.4915 | 0.0256
9580 | 12.4888 | 0.0319
6881 | 12.4869 | 0.0382
5369 | 12.4852 | 0.0446
4402 | 12.4834 | 0.0509
3731 | 12.4818 | 0.0573

3.0699
2.3029
1.8432
1.5372
1.3187
1.1548
1.0273

Table 3.10: Effect of s on Model-1 p =0.4,¢q = 0.8, =0.7,t = 0.2

s| EC | EI | ER | EL

[ EP

S =50

5
10
15
20
25

4.5581
4.5217
4.4754
4.4145
4.3314

34.6949 | 0.0058
35.7418 | 0.0070
36.8552 | 0.0086
38.0412 | 0.0108
39.3062 | 0.0139

0.0186
0.0187
0.0188
0.0189
0.0191

5.5359
5.7265
5.9268
6.1365
6.3544

Table 3.11: Effect of s on Model-2

s| EC | EI | ER

EP

p=0.4,q=0.8,t=0.2,5=50

5 | 4.3201 | 25.8475 | 0.0178
10 | 4.1212 | 27.5870 | 0.0208
15 | 3.9763 | 29.6050 | 0.0250
20 | 3.8098 | 31.9197 | 0.0314
25 | 3.6407 | 35.0729 | 0.0308

4.1928
4.4511
4.7650
0.1163
2.5661
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Table 3.12: Effect of s on Model-3
s| EC | EI | ER | EP
p=04,q=08r=0.7t=0.2.5=050
5 | 4.6390 | 27.5308 | 0.0176 | 4.5245
10 | 4.5973 | 30.0275 | 0.0198 | 4.9296
15 | 4.5452 | 32.5240 | 0.0226 | 5.3316
20 | 4.4777 | 35.0203 | 0.0263 | 5.7287
25 | 4.3868 | 37.5161 | 0.0315 | 6.1183

Table 3.13: Effect of » on Model-1 p=0.4, ¢ =0.8, s =5, .5 =20
r| EI | ER [ EL | EW | EP
t=0.2

0.2 ] 11.6383 | 0.0202 | 0.0733 | 0.0435 | 1.7738
0.4 ] 12.9973 | 0.0243 | 0.0364 | 0.0095 | 2.0177
0.6 | 13.4627 | 0.0265 | 0.0236 | 0.0026 | 2.1171
0.8 | 13.6833 | 0.0278 | 0.0173 | 0.0007 | 2.1707
0.9 | 13.7535 | 0.0283 | 0.0152 | 0.0003 | 2.1891

Table 3.14: Effect of » on Model-3 p =0.4, ¢ =0.8, s =5, 5 =20
r \ EI \ ER \ EL \ EW \ EP
t=0.2

0.2 ] 11.6734 | 0.0464 | 0.0084 | 0.0349 | 1.7694
0.4 | 12.2710 | 0.0501 | 0.0070 | 0.0043 | 1.9196
0.6 | 12.4561 | 0.0516 | 0.0000 | 0.0004 | 1.9892
0.8 | 12.5435 | 0.0524 | 0.0000 | 0.0000 | 2.0303
0.9 | 12.5717 | 0.0527 | 0.0000 | 0.0000 | 2.0451

Table 3.15: Variations in arrival rate p with ETC. ¢ = 0.8, r = 0.7, t = 0.1,
S = 5, S = 20760 = 100, C1 = 10,62 = 2,03 = 3,04 = 5,05 =4
cg = 2

model 1 | model 2 | model 3
D ETC ETC ETC
0.1 | 34.9534 | 38.6341 | 231.2867
0.2 | 34.9990 | 37.6558 | 240.1999
0.3 | 37.8456 | 37.7351 | 256.9755
0.4 | 51.1865 | 43.1437 | 317.7525
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Figure 3.4: Model-3 : ¢ versus ETC when s =5, S =20, p = 0.2, r = 0.5,
t= 03, Co = 100,61 = 10,62 = 2763 = 3,C4 = 5,65 =1



Chapter 4

(s,.5) policy with inventory

dependent customer arrival

4.1 Introduction

In chapters 2 and 3 we assumed that customers do not join the queue if
there is no item in the inventory. In other an arriving customer joins the
system if there is atleast one item in the inventory. However during lead
time customers may be discouraged to join the system in case inventory on
hand is less than or at most equal to the number of customers present in
the system. In this situation such an arrival will get service only after the
commodity is replenished. In the extreme case a new arrival does not join if
the inventory level is less than or equal to the number of customers in the
system. This leads to a finite system where as the system described at the

beginning of this paragraph turns out to be a countably infinite system.
In this chapter we discuss two inventory models with positive service time

5
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and lead time. In model 1 we assume that an arriving customer joins the
system only if the number in the queue is less than the number of items in
the inventory at that epoch. In model 2 it is assumed that if the inventory
level is greater than or equal to s+1 at the time of arrival of a customer, then
he necessarily joins. However if it is less than or equal to s (but larger than
zero) then he joins only if the number of customers present is less than the on
hand inventory since this guaranties that he gets service without waiting for
replenishment. In real life situation, if the quantity of life saving medicine
in a medical shop is less than the number of customers waiting for that
medicine, the newly arriving customer decides not to join the system and

goes elsewhere.

4.2 Mathematical Formulation of Model 1

Consider a single product (s,S) inventory system in which customers ask-
ing for the product arrive according to a Bernoulli process with parameter
p. Each demand is for exactly one unit. Here we assume that an arriving
customer joins the system only if the number in the queue is less than the
number of items in the inventory at that epoch. The service time follows
geometric distribution with parameter q. Whenever the inventory level de-
pletes to s due to demand, an order is placed for replenishment up to S.
Lead time for replenishment of the inventory has a geometric distribution
with parameter r. Each time a replenishment is done, the on hand inventory

is raised up to the maximum level S.
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4.3 Analysis of the model

At time m™ the system can be described by {X,, : m € N} = {(Ny, In) :
m € N} where Ny, is the number of customers in the system and I, is the
inventory level.
It can be shown that {(N,,, I,,) : m € N} is a Markov chain with finite state
space

E={(j):0<i<j; 0<j<Sh

The corresponding one-step transition probability matrix P is given by

Boo Boa
Bio Ain Aip
Agr Agp Ag 3
P =
As 953 As as o As s
As 152 As-1s51 As s
i Ass—1 Ass |
where
[Bo,o] is of dimension (S + 1) x (S + 1) and is given by
(7, =i, i=0
BF, j=i,  i=12....5
[Boolij =4 7, J=1, i=s+1,s+2,...,8
pr, j=15, 1=0,1,...,s
[ 0, otherwise

[Bo.1] is of dimension (S + 1) x S and is given by
(7, =i, i=1,2,....5

pr, j=25, 1=0,1,...,s

p, ] =1, t=s+1,s+2,...,5

0, otherwise

[Boalij =
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[Bi ] is of dimension S x (S + 1) and is given by
qr, j:Z_]-, i:1,27...78
pg, j=i—1, i=s+1,5+2,...,8
[Biolii =4 _ ~ .
pqr, j=S—-1, i=1,2,...,s
0, otherwise

[A; 1] is of dimension S x S and is given by
(

qr,  J =1, i=1

pqr, j==¢, 1=2,3,...,8

pq, J=1, i=s+1,8+2,...,8
[A11lij = . ,

paqr, j=5S—-1, i=1,2,...s

pqr, j=25, 1=1,2,...,58

0 otherwise

\
[A; 5] is of dimension S x (S — 1) and is given by
(g7, =i, i=2,3,...,5

P, j =1, 1=s+1,s+2,...,5
[Avolj=q " .
pqr, j =25, 1=1,2,...,s

L 0, otherwise

Ay 1| is of dimension (S — 1) x .S and is given by

: g

(qF7 J=1—1, 1=23,...,s

pg, j=1—1 i=s+1,s+2,...,9
[Aoa]iy =9 _ ° .
pgr, j=S—-1, i=1,2 ... s

L 0, otherwise

[Ag 5] is of dimension (S —1) x (S — 1) and is given by
(

qr, j =1, 1=s5—1
pqr, j =1, 1=35
gl — | z??, j::i, z:=s+1,s+2,...,5
pqr, 7 =25, 1=2,...,8
pqr, j=8S-—-1, i=2,3,...,s
0 otherwise

,



4.4. Long run System behaviour 79

[Ag 3] is of dimension (S — 1) x (S — 2) and is given by

pqr, J =1, i =5

D, J =1, 1=s+1,s+2,...,5

[Asslij=q " .
pqr, j =25, 1=1,2,...,s

0, otherwise

0
AS—l,S = [ ];
p

As,sqz[q 0};

Ags =17.

4.4 Long run System behaviour

Assuming p,q,r € (0,1) the Markov chain {X,,} is seen to be irreducible
and positive recurrent. An irreducible Markov Chain on finite state space is
stable.

Let * = (xg,x1,...,T5-1,%5) be the steady-state vector of {X,,}. Then
xP = x and xe = 1 gives

xo = x1Dy where Dy = By o(I — Bog)™;

@1 = xAs1(I — A1 1) Dy where Dy = [I — DoBo (I — Ay 1)

Ty =x3A32(1—A22) ' Dy where Dy=[I—Ag 1 (I—A;1) ' D1A12(I—A22) 7Y
X3 = X4 Ay 3(1—A33) 1Dy where D3 =[I—A3 5(I—Az5) ' DaAs3(I-A33) 7Y

x5 1=r5As51(I—As151) " Dsy
where Dg 1 = [[—Ag152(/—As252) ' DsoAsosi(I—Asi51) "
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xg can be found using the normalizing condition

roe+ e+ ...+ x5 16+ 15 = 1.

4.5 System Performance Measures

Let the steady-state probability vector  be partitioned as xo= (20,0, o1, - - -, Z0,5):
= (961,1, T12y-+, $1,S); Ty = (I2,2, T23y.. ., Iz,s); sy g1 = ($S—1,S—1, $5—1,s);
rTg=Tg,8-

We have then the following measures for evaluating performance of the

system.

1. Expected number of customers in the system is given by
S
EC = Zz’mie.
i=0

2. Expected inventory level is given by

S J

j=1 i=0
3. Expected reorder rate is given by
ER = ¢ Z Lis+1-
i=1

4. Expected replenishment rate is given by

ERR = r ii L j-

j=1 i=0

S
5. Probability that the inventory level is zero is Z Zi0-
i=0
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6. Expected loss rate of fresh arrivals is given by

S
i=1

s
7. Expected rate of departure after completing service is ED = ¢ Z Z Tij-

4.6 Model 2

In this model we assume that at the time of arrival of a customer, if the
inventory level is > s+ 1, then he joins. However if it is < s (but larger than
zero) then he joins only if the number of customers present is less than the

on hand inventory.

4.7 Analysis

The state of the system can be described by {X,,} = {(Nm, ) : m € N}
where N, is the number of customers in the system and I, is the inventory
level at epoch after the occurence of probable events. Then {X,,} is a Markov
Chain with countably infinite state space

{(4,7) : i > 0;0 < j < S}. It is partitioned into levels as {(0,0),...,(0,5),
(1,0),...,(1,9),...,(s,0),...,(s,5),(s+1,0),...,(s+1,S5),...}. When the
inventory level j satisfies s + 1 < j < S, transition from (7, ) to (i + 1,7) is
possible with probability p which is not possible when j < s and 7 > j.
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The corresponding one step transition probability matrix P is

0 1 2 - s—1 s s4+1 s+2
0 Ey, Cy
B, E,
2 By E, (
P=: U
s B, E, C,
s+ 1 Ay Ay Ao

where each sub-matrix is of order (S + 1) x (S + 1). They are given by

;

T, j=i, 1=0
pT, J =1, i=1,2,...,8
[Eolij =4 P, Jj=1, i=s+1,5s+2,...,8
pr, j=15, 1=0,1,...,s
( 0, otherwise
(7, J =1, 1 =0, k=1,2,...,s
qr, j =1, 1=1,...,k k=1,...,s
pqr, j=t, t=k+1,...,s, E=1,...,s—1
pqr, j=1—1, i=k+1,... s, k=1,...,5s—1
q, j=1—1, i=s+1,5+2,....,8 k=1,2,....s
[Ek}ig: _ . .
pr, 7=25, 1 =0, k=1,2,...,s
pq, J =1, i=s+1,s+2,....8 k=1,2,...,s
pqr, j=5—-1, i=1,2,...,s k=1,2,...,s
pqr, j=25, 1=1,2,...,s k=1,2,...,s
kO, otherwise
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(pF, j=i,  i=12...,s
pr, j=25, 1=0,1,...,s
Cols=9N 0 i i—silst2..S
kO, otherwise
(pr, j=S, i=0 k=12 .. s
pgr, =5, i=12...s k=12 ... s
[Crlij = § pgr, j=1, i=k+1,...,s, =1,...,s—1
pqg  Jj=1, t=s+1,s+2,....,8 k=1,2,...,s
L 0, otherwise
(g7, j=i—1, i=1,...k k=1,....s
pqr, j=1i—1, i=k+1,...,s k=1,...,5s—1
[Brlii =< pq, j=i—1, i=s+1,5+2....8 k=1,2,....5s
pqr, 7=S—-1, 1=1,2,....s E=1,2,...,s
[ 0,  otherwise
(7, =i, i=0
pr,  j=5, i=0
qr, =i, i=1,2...,s
pq, j =1, 1=s+1,s+2,...,8
Ay = pqr, j=S-1, i=1,2,...,s
pgr, j=25, 1=1,2,...,s
pq, jJ=1i1—1, 1=s+2,s+3,...,5
kO, otherwise
(g7, j=i—1 i=12..s
pqg, j=i—1, 1=s+1,s+2,...,5
A B S
0, otherwise
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(pr, j=S8  i=0
pqr, 7 =25, 1=1,2,...,s

[Aoij =4 p, =1, i=s+1,5+2,....8
pq) j:Z7 i:S‘i‘l,S“r‘Z,...,S
0, otherwise

4.8 Stability condition

For determining the stability condition for the system under study, consider

the transition probability matrix A = Ay + A; + Ay , which is obtained as

(

T, 7 =1, 1=20

T, 7 =25, 1=20

qr, j=1—1, 1=1,2,...,s

qr, 7 =1, 1=1,2,...,8

qr, 1=85-1, i=1,2,...,s
[A];; =< qr, 7 =29, 1=1,2,...,s

Pq, j=1—1, i=s54+1

p+pq, J=1, 1=s5+1

q, j=1—1, 1=s+2,s+3,...,5

q, 7 =1, i1=s5s+2,s+3,...,5

L 0, otherwise

Let w = (mo, m1,. .. Ts, Tss1, - - -, Tg) be the stationary probability vector

associated with A. Then wA = 7 and we = 1, where e is a column vector of

1’s of appropriate order. wA = 7 gives

(1-r)(1-gr) "
(gm7)
(1-r)(A-gr) "
pa(gr)i—t
(1-7)(1—g7)I >
a(qm)i—>

T, J=1,2,...,5;
7o, j:8+1;
To, J=8+2,s+3,...,95—1.
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(1-7)[g(g7)*+q(1—g7)°]
q(q7)®

s = 0.

Further we = 1 gives

_ q(q7)*
0™ (I-gr)*pat(S—s—Dr+rg+rq(qr)®

T

wAge = (lfW)S[pr+(S:sfl)z:ﬁampﬁqr(q?)SWO
pa(qT)

tAe — =g lartr+(S—s—1)pr]—(¢m)°*!
2 (¢7)°

70-

Theorem 4.8.1. The Markov chain under study is stable if and only if

—\S/— 2_ p—
S (Q_T) (Pg°T + ppgr) . (4.1)
(1 =g7)* [pg*r + par — pr + (S — s — )pr(p — q)]

4.9 Steady-state analysis
Let € = (®g, ®1,..., %5, Tsi1, Tsia,...) be the steady-state vector of X,,,
where ; =(x;0,2;1,...,2;5) for i > 0.
Then

xP=x, xe=1. (4.2)

Under the stability condition (4.1), the steady-state probability vector x is
obtained as x; = x, R, ¢ > s+ 2, where R is the minimal non

negative solution to the matrix equation R?A4, + RA; + Ay = R. The vectors

Ty, x1,...,Ls, T are obtained from the equations
l‘oEo + a:lBl = Xy (43)
i 1Ci+xiB+ i By =, 1<i1<s—1 (4.4)

wsflcsfl + wsEs + ws+1A2 =Ty (45)
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wsCs + 1B5+1A1 + $s+2A2 = Ls41 (46)

From (4.6), we get ,Cs + xs11(A; — I — RAy) = 0.

Thus @, = £,Cs(I — Ay — RAy) ™t = x,R,, where R, = C,(I — Ay — RAy) L.
From (4.5), we have

2o 1Os 1 +ay(Ey — I — RyAy) = 0.

Thus , = x, 1Cs (I — E, — RyAy)™' = x, 1Ry, where

R, 1 =0C, (I — E,— R,A) L.

From (4.4) we have

x;=x; 1R 1;1<i<s—1where B 1 =C; (I — E;— R, 1Bi;1)7 ",
Finally xy can be found from the normalizing condition

To et T e+ ... +txs etz (I — R)le=1.

s—1 i
That is, @ (1 +) H;:ORJ- + Hj:ORj(J - R)—l) e=1.
=0

4.10 System Performance Measures

1. Expected number of customers in the system is given by
S

EC = Zz xe = Zz zie + T, R(I-R)’e + (s+ 1)z 1 (I-R) e
i=1 i=1

o S
2. Expected inventory level is EI :Z Z J Tij

i=0 j=1

3. Expected reorder rate is ER = ¢ Z Tist1-
i=1

o) S

4. Expected replenishment rate is given by ERR = r Z Z T ).
i=0 j=0

5. Expected loss rate of fresh arrivals is given by EL = p Z Ti0-
i=0
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oo S

6. Expected rate of departure ED after completing service = ¢ Z Z T
i=0 j=1

4.11 Cost Analysis

We analyze numerically the steady-state expected total cost with the follow-
ing.

Let ¢y denote the fixed ordering cost

¢1 - procurement cost/unit

o - holding cost of inventory /unit/unit time

c3 - holding cost of customers/unit/unit time

¢4 - cost due to the loss of customers /unit/unit time

Then

For Model 1 and Model 2, the Expected Total Cost

ETC = [Co + (S — S)Cl] ER + CQE[ —+ CgEC -+ C4EL.

Table 4.1: Effect of S on Model-1. p=0.3, ¢ =0.7, s =5

S| Pa. | EC | EI | ER | EL | ED
r=20.4

20 | 0.41041 | 1.35927 | 12.51734 | 0.02506 | 0.00251 | 0.41272
25 1 0.40548 | 1.40085 | 15.04177 | 0.01894 | 0.00208 | 0.41616
30 | 0.40230 | 1.42963 | 17.56195 | 0.01523 | 0.00175 | 0.41839
35| 0.40007 | 1.45077 | 20.07878 | 0.01273 | 0.00151 | 0.41995
40 | 0.39843 | 1.46692 | 22.59291 | 0.01095 | 0.00132 | 0.42110
45 1 0.39716 | 1.47962 | 25.10484 | 0.00960 | 0.00118 | 0.42199

Table 4.3 shows that as the arrival rate p increases, expected number of
customers as well as expected inventory level increases. Expected reorder

rate decreases which is completely against our expectation. This may be due
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Table 4.2: Effect of S on Model-2. p =0.3, ¢ =0.7, s =5
S| Pae | EC | EI | ER | EL | ED
r =04
20 [ 0.5716 | 0.52443 | 12.45552 | 0.01941 | 0.00004 | 0.01361
25 | 0.5715 | 0.52477 | 14.95997 | 0.01467 | 0.00003 | 0.01028
30 | 0.5715 | 0.52485 | 17.46261 | 0.01179 | 0.00003 | 0.00826
35 | 0.5715 | 0.52491 | 19.96405 | 0.00985 | 0.00002 | 0.00690
40 | 0.5715 | 0.52495 | 22.46473 | 0.00847 | 0.00002 | 0.00593
45 | 0.5714 | 0.52498 | 24.96490 | 0.00742 | 0.00002 | 0.00519

to the increase in the number of customers above the reorder level. Expected
rate of departure after completion of service increases. From table 4.4 we
notice that the expected number of customers increases and the expected
inventory level decreases as p increases which is as expected. Here expected

reorder rate and ED also increase with increasing value of p.
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Table 4.3: Effect of p on Model-1. ¢ = 0.7,5s = 5,5 = 20

b

| Piae |

EC

|

EI

|

ER

|

EL

|

ED

r=20.3

0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600

0.18429
0.13985
0.10388
0.07627
0.05602
0.04170
0.03181
0.02507
0.02047

3.10560
3.69822
4.30922
4.91289
5.48963
6.02814
6.52450
6.97973
7.39737

12.30936
12.33383
12.38669
12.46673
12.56962
12.68933
12.81963
12.95500
13.09107

0.02388
0.02117
0.01779
0.01416
0.01068
0.00764
0.00517
0.00330
0.00199

0.02734
0.04100
0.05797
0.07776
0.09967
0.12302
0.14723
0.17191
0.19681

0.57100
0.60210
0.62728
0.64661
0.66078
0.67081
0.67773
0.68245
0.68567

r=204

0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600

0.17118
0.12573
0.08945
0.06219
0.04272
0.02939
0.02052
0.01471
0.01093

3.24947
3.88555
4.53842
5.17810
D.78265
6.34053
6.84898
7.31071
7.73089

12.44302
12.47622
12.53896
12.62933
12.74208
12.87043
13.00772
13.14836
13.28813

0.02443
0.02156
0.01800
0.01422
0.01063
0.00752
0.00504
0.00319
0.00191

0.02636
0.04004
0.05715
0.07718
0.09938
0.12302
0.14751
0.17245
0.19760

0.58017
0.61199
0.63738
0.65647
0.67009
0.67943
0.68564
0.68970
0.69235

r=20.5

0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600

0.16281
0.11690
0.08072
0.05401
0.03536
0.02293
0.01490
0.00983
0.00666

3.35611
4.02446
4.70769
2.37252
5.99544
6.56511
7.07996
7.54417
7.96420

12.52091
12.56128
12.63205
12.73057
12.85078
12.98532
13.12730
13.27118
13.41294

0.02476
0.02176
0.01807
0.01417
0.01050
0.00737
0.0049
0.00308
0.00182

0.02569
0.03937
0.05657
0.07673
0.09909
0.12288
0.14750
0.17256
0.19782

0.58604
0.61817
0.64349
0.66220
0.67525
0.68395
0.68957
0.69312
0.69534
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Table 4.4: Some measures of Model-2 ¢ = 0.7,

p

| Piae |

EC

|

EI

|

ER

e}

r=20.3

0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600

0.4312
0.3958
0.3610
0.3266
0.2925
0.2588
0.2255
0.1925
0.1592

0.78998
0.87849
0.97460
1.08523
1.21591
1.37615
1.58437
1.88187
2.38153

12.09634
12.03603
11.98145
11.92748
11.87408
11.82097
11.76729
11.71082
11.64574

0.02503
0.02655
0.02803
0.02953
0.03109
0.03278
0.03473
0.03724
0.04096

0.00087
0.00115
0.00147
0.00185
0.0023
0.00281
0.00337
0.00400
0.00469

0.01534
0.0156
0.01583
0.01600
0.01612
0.01620
0.01622
0.01624
0.01635

r=204

0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600

0.4275
0.3938
0.3586
0.3234
0.2885
0.2537
0.2191
0.1845
0.1489

0.81025
0.88429
0.98327
1.09829
1.23601
1.40836
1.63981
1.99035
2.64823

12.25618
12.22904
12.18449
12.14019
12.09601
12.05153
12.00552
11.95475
11.89015

0.02583
0.02720
0.02876
0.03036
0.03203
0.03385
0.03601
0.03889
0.04345

0.00020
0.00026
0.00034
0.00044
0.00057
0.00071
0.00088
0.00107
0.00129

0.01535
0.01572
0.01592
0.01605
0.01611
0.01612
0.01626
0.01645
0.01656

r=20.5

0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600

0.4268
0.3933
0.3578
0.3223
0.2870
0.2517
0.2164
0.1807
0.1433

0.81367
0.88673
0.98719
1.10471
1.24682
1.42754
1.67716
2.07595
2.91097

12.36443
12.34523
12.30706
12.26897
12.23077
12.19189
12.15079
12.10320
12.03631

0.02621
0.02759
0.02920
0.03086
0.03260
0.03452
0.03683
0.04002
0.04538

0.00004
0.00006
0.00008
0.00010
0.00013
0.00017
0.00021
0.00027
0.00033

0.01545
0.01587
0.01607
0.01618
0.01623
0.01631
0.01642
0.01656
0.01669




Chapter 5

Discrete time (s,.5) production
inventory system with positive

service time

5.1 Introduction

In earlier chapters we studied (s,.S) inventory system with positive service
time. Order for replenishment was placed when inventory level depletes to s.
Study of inventory system where the processing of inventory requires some
positive amount of time was started by Sigman and Levy [52] in continuous
time set up. Later Bruneel and Kim [13] introduced positive service time in
inventory where service time is assumed to be constant and obtained opti-
mal order quantity that minimizes the total cost using Dynamic Programme
technique. They assumed that new customers can join the system while a
service is going on. Hence a queue of demands can be formed even when

the inventory is available. Berman and Kim [8] assumed probabilistic service
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time and obtained steady state behavior of the system. Krishnamoorthy and
Viswanath [30] were the first to study production inventory with positive
service time in the continuous case. In (s,.S) production inventory system,
when the inventory level reaches s, production process is switched on and
when the inventory level reaches S, production process is switched off. Each
production is of one unit. When the inventory level is between s 4+ 1 and
S — 1, the production status is in either ‘on’ or ‘off” mode. Hence to de-
scribe the system both the inventory level and the production status should
be taken into consideration thereby obtaining a discrete time Markov chain
by providing required additional information such as residual/elapsed service

time.

5.2 The Mathematical model and its analysis

We discuss an (s,S) production inventory system where the processing of
inventory requires a positive random amount of time (discrete). This leads
to the formation of a queue of demands. Demands arrive according to a

Bernoulli process. Service time and lead time are distributed geometrically.

In an (s,S) production inventory system, when the inventory level falls
to s, the production process is immediately ‘switched on’. It is ‘switched off’
when the inventory level reaches S. Each production is of one unit. When
the inventory level is in between s+ 1 and S — 1, the production process can
be either in ‘on’ mode or in ‘off” mode.

We consider the production inventory system with a single server. De-
mands occur according to Bernoulli process with parameter p. Processing
of inventory requires a positive random amount of time, which is distributed
geometrically with parameter g. When the inventory level reaches s, the pro-

duction is ‘switched on’ and stays in that mode until the inventory reaches S.
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Production time for each unit follows geometric distribution with parameter

r. No customer is allowed to join the system when the inventory level is zero.

Let N,, denote the number of customers in the system, I,,,, the inventory
level and C),, the status of the production process at epoch m. Then the
corresponding DTMC is x = {(Nm, Iin, Cin) : m € N}. When the inventory
level is such that 0 < [,,, < s, the production process is in ‘on” mode and it
is in ‘off’ mode if I,, = S.

Ifs+1<1, <S—1, define
0, if the production is ‘off” at epoch m

" 1, if the production is ‘on’ at epoch m

The state space of the Markov Chain y is given by

E = U{{(z,]) 0<y <stU{(4,7,k) : s+1<5 < S—1;k=0,1} U{(¢,9)}}

i>0

The transition probability matrix of the process y is given by

Co G4
p_ Ay Ay A
Ay Ar Ay

where each entry is a square matrix of order 2S5 — s which are given by
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_F - _
By pr
By pr
By D
0y = 1 1
By Dy
By D,
By, Ds
Bs
with
__ p 0 _
By =pT; By = __ |5 B3=D;
0 p

pr pr

C) =

propr
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0
qr pqr
pqr  pqr
pqr  pqr
Ay = By F
E, F
E,
D g 0
with B, = | P =" 7 | B =
pqr 0 pqgr
0 0 0 0
F1: 7F2: .
pgr 0O pgr O
(7 B
a B
v oa f
v oa f
Ay = v a Gy
Gy Gy
G1
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6 0
];GF[o 0
e 6 0

where o = Pqr + pqr; 8 = Dqr; v = pqr; 6 = Pq.

with GO:[/j 0];G1: Gy  Gy=6

g

T pgr
A = pgr pq ’

pqr  pqr

wherep=1—p,g=1—¢q¢,7=1—r.

5.3 Steady-state analysis

For finding the steady-state vector of the process x = {(Nm, Iim, Cn) : m €
N}, consider the production inventory system where the time in serving the
inventory is negligible and no backlogs are allowed once the inventory level
reaches zero.

The corresponding Markov chain may be defined as x = {(I,,, C},,) : m € N},

where I, and C,, are as defined earlier. The state space of the process y

s S—1
is given by F = U{z} U {(i,k) : k=0, 1}U{S} and the corresponding
=0 i=stl

transition probability matrix is given by
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=3I
<

3
3|
s
~
<

o>
I

&=

&

where D; =

I . 0 0 A
Or};Dgzl ];Dgz
L 0 r

D,
B, D,
Ey, B, D,
EQ BQ Dg
Es Bs

i

B = % E; By = % Esy; By = % Es: and By, By, Bs are as defined earlier.

For determining the steady-state vector of the process x, rearrange the tran-

sition probability matrix P as

Py O R
P= Pyi Py 0 |, where
0 Ry D
(7, j=i, i =
pT, j =1, i=1,2,...
[Pl =< pF j=i—1, i=1,2,...
r  gJg=1i+1, i=0,1,...
0, otherwise

.S
S —1
S —1
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(00 ... p 0O ... 0

Po=|4 4 00 0]
00 . 00 . 0
[ P

P P

POO_

: PP 1o«

-0 ]
— 1x(Q—1)
Let 7t = (mon, Tofr, Ts) be the steady-state vector of the process x, where

TTon = (771,0, T11y --+5 Tlsy, Tls41y - -, 7T1,S—1),

Toff = (7To,s+1, T0,5425 =« 7T0,S—1)

# satisfies #P = & and 7e = 1

AP =7 gives

Ton P11+ Tog Fo1 = Ton

ot Poo + ms Ry = ogt

Ton &_‘_ Ts D =Tg

By solving the above system of equations, we get

Ton = Ry (I — Poo) ™" Poy (I — Pi1)"" g and mog = Ry (I — Poo) ™" 7s.

From the normalizing condition e = 1, we can find mg which is obtained as

1

g = — — .
s 1+& (I—Poo) 1(6+P01 (I—Pll) 16)

Now, using the vector 7r, we shall find the steady-state probability vector
of the original system. Let x be the steady-state distribution of the original
system. Now let @y = p& and x; = p(%)ifr, for i > 1, where p is a constant
to be determined. This will satisfies P = x and xe = 1. Normalizing

condition gives p =1 — z%' Now we have the following theorem

Theorem 5.3.1. Under the necessary and sufficient condition that

p < Dq , the steady-state vector of the Markov chain {X,, : m > 0} with
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transition probability matrix P, is given by = (xo, 1, . . ., ) where zg = pft
and x; = p(_g)lﬁ' fori>1, p=1- L and the finite probability vector # is
given by #t = (mwon, Tofr, Ts) Where

Ton = Ry (I — Poo) " Por (I — Pyy) ! 7s,

Tort = Ry (I — Poo) ' 7s
1
14+Re (I—Poo) *(e+Por (I—Pi1) te)’

and g =

Above theorem indicates that there exists a decomposition of the state
space of the system state. Let M(z) denote the probability generating func-
tion of the number of customers in the system and N(z), that of the number
of items in the inventory when the production is in ‘on”’ mode. Then the joint
partial generating function can be written as the product of the individual
generating functions. This result holds when the production is in ‘off” mode

as well. Thus we have the following decomposition result.

Theorem 5.3.2. Under the condition of stability, the generating func-
tion for the system state is the product of generating functions of the number
of customers in a Geo/Geo/1 queue and that of the number of items in the

inventory.

5.4 System Performance Measures

1. Mean number EC of customers in the system is given by
EC = =&

pg—p’

2. Expected inventory level EI in the system is given by
s S—1

EI = Z Z.7T1,i + Z Z.(ﬂ-O,i + 7Tl,i) + Sﬂ's.

=0 1=s+1
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3. Expected production rate EPR is given by

s S—1
EPR =r (Z T4 + Z 7T1,i> .
=0

1=s+1

Expected loss rate of customers ELR when the inventory level is zero
is given by
ELR = p m.

Expected rate at which production process is switched ‘on’; is given by

Eon =dq [Z P(_— )7T0,s+1
i1 P4

5.5 Production cycle

A production cycle is defined as the time between a switch ‘on” and the
next switch ‘off” of the production process. When the inventory level is
at s+1 and the production process in ‘off’ mode at a service completion
epoch Tj, the production process is switched ‘on’. Then the production
process is turned ‘off’ only at an epoch 77 where the inventory level
reaches the maximum S. The length T7 —Tj is the time until absorption
in the Markov Chain {Y,, : m > 0} = {(Nn, I,n,) : m € N} where N,
and [,, are the number of customers in the system and the inventory
level respectively, during the production cycle. The state space of the
process Yy, is given by E = {(i,7) : 4> 0,0 < j < S — 1} |J{*}, where
* denotes the single absorbing state, representing the switch ‘off” mode
in the production cycle.

The transition probability matrix of the process Y,, is given by

H e— He

0 1

P, =

where
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Dy
D

with

[Dalij =

[Ds]ij =

[Dslij =

[Balij =

Now define y = (o, 41, - -

Ds

Bs By

D¢ Bs B,
Ds Bs

T,

pr,

pr

0, otherwise

pr,

pr,

0, otherwise
qr,

par,

pqr

0, otherwise

30

=

0, otherwise

br,

pqr,

pqr,

0, otherwise.

By
j:@', 1 =
j=i i=1,2,...

j=i+1, i=01,...

j=i+1, i=01,...

j=i i=1,2,...
j=i—1, i=
j=i—1, i=2.3,...
j=i i=1,2,...
j=i, i=0
j=i+1, i=
j=1, i=1,2,...

j=i+1, i=12,...
j=i—1, i=2.3,...

j=i+1, i=0

j =i i=12,...
j=i+1, i=0,1,.

.) where y; = (vi1, Yiz, - - -

, S

co,s—1

) yiS) with Yij stand-

ing for the expected time until absorption in the process, given the
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process has reached the state (i, j). Also define the probability vector
T = (70,71,...), where each 7; is of dimension 1 x S such that 7; is
the probability of ¢ customers and j inventory in the system, the pro-
duction process being in the switched ‘on’ mode. Then the expected

length of a production cycle is given by ELP = Z TisYis-
=0

5.6 Cost Analysis

Let ¢; be the fixed cost for starting a production run;

¢y, -holding cost of inventory /unit/unit time;

¢, -the cost of production per inventory;

¢; -the cost incurred due to loss of customers.

Consider the cost function ETC = ¢, E,, + ¢ELR + ¢, EI 4 ¢,EPR.
The following tables are constructed by fixing values of input parame-

ters and then varying over one or more of them.

5.7 Numerical illustration

Table 5.1: Effect of S on various measures. p = 0.3, ¢ = 0.7, r = 0.3, s = 5,
¢, = 1000, ¢ = 25, ¢, = 2, ¢, = 100.

S EI EPR | ELR E,, ETC
15 | 7.4694 | 0.4642 | 0.0039 | 0.0166 | 78.0475
20 | 10.0530 | 0.3887 | 0.0026 | 0.0110 | 70.0410
25 | 12.5916 | 0.3491 | 0.0020 | 0.0082 | 68.3430
30 | 15.1141 | 0.3252 | 0.0016 | 0.0065 | 69.2880
35 | 17.6289 | 0.3093 | 0.0013 | 0.0054 | 71.6210
40 | 20.1395 | 0.2980 | 0.0011 | 0.0047 | 74.8060

From table 5.1 we see that, as the maximum inventory level increases, the
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Table 5.2: Effect of s on various measures. p = 0.3, ¢ = 0.7, r = 0.3, S = 25,
¢ = 500, ¢ = 25, ¢, = 2, ¢, = 100.

s EI EPR | ELR E,, ETC
2 | 12.2614 | 0.2562 | 0.0051 | 0.0037 | 52.1210
4 1124647 | 0.3126 | 0.0027 | 0.0079 | 60.2070
6

8

12.7204 | 0.3912 | 0.0014 | 0.0086 | 68.8960
12.9495 | 0.4938 | 0.0008 | 0.0096 | 80.1000
10 | 13.0878 | 0.6265 | 0.0004 | 0.0108 | 94.2400

expected inventory level also increases, expected production rate and loss rate
of customers decreases. Expected total cost (ETC) is convex in nature as S
increases. Table 5.2 shows that as the reorder level increases, the expected
inventory level and the expected production rate increases, expected loss rate

of customers decreases. Expected total cost increases with increase in s.



Chapter 6

Discrete time inventory system
with arbitrarily distributed

service time

6.1 Introduction

In previous chapters we considered (s,S) inventory system where service
time follows geometric distribution. In this chapter we consider inventory
system with arbitrarily distributed service time. Here we analyze two inven-
tory models with geometric inter arrival time with parameter p and general
service time with distribution function B(.). In both models we use (s,.S5)
inventory control policy. When the inventory level depletes to s due to de-
mands, an order is placed to bring the inventory level back to S. Also one
unit from the inventory is used to serve one customer. In the first model, we
assume that materialization of order for replenishment takes positive amount

of time and that no customer joins when the inventory level is zero. In the
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second model we assume that materialization of replenishment order is in-
stantaneous.

At time m = 0,1,..., one or more of the following events may occur: a
demand arrival, materialization of a replenishment order and a service com-
pletion. We assume that departure occurs in (m~,m) and customer arrival
in (m,m"). The service times are i.i.d random variables with distribution

{w;}22,, where w; = probability of the service time duration equal to i,
(o]

i=1,2,..., having generating function W(x) = Zwixi, with mean service
i=1
time (3, (assumed to be finite). After service completion the served customer

leaves the system for ever with one item from the inventory and will have
no further effect on the system. The load of the system is p = p;. The
inter-demand times and service times are mutually independent.

Below we analyze the two models separately.

6.2 Model 1

We consider an (s, S) inventory system in which demands arrive according to
a Bernoulli process with parameter p. i.e., inter-demand times follow geomet-
ric distribution with parameter p. The service time duration are independent
and identically distributed with distribution function B(.). When the inven-
tory level depletes to s due to demands, we place an order to bring back the
inventory level to S. Assume that materialization of order for replenishment
takes a positive (discrete) amount of time. Let the lead time for replenish-

ment be distributed geometrically with parameter 7.
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6.2.1 Analysis of the model

:m € N} with Y, =

(Jom, Imy, Niw), where J,,, denotes the remaining service time of the customer

At time m™, the system can be described by {Y;,

currently being served, I,,, denotes the number of items in the inventory and
N,,, denotes the number of customers in the system. Note that for convenience
for analysing the system, here we use the notation (J,,, I,,, N,,) in this order
unlike previous chapters.

It can be shown that {Y,, :
E={(,j,k):1>0;7=0,1,...,5;k > 0}.

Now we find stationary distribution

m € N} is a Markov Chain with state space

=j,Np=k}, i20,j=0,1,...,5k>0.

Tijk = T,H%op{']m =i,1,

The one step transition probabilities are given by

P(0,0,0)(0,0,0) pr,

P1,1,1)(0,0,0) pr,

and for i =0,k >0

Plit1jk) k) p, J<S
Pliv1jk-0(k = P J< S
Pivipmeirny = Pry 1 S$8j=5
Pitiji k-1 = pry  J1<8j=5
Pajtikngky = Pwi,  J<S
Pajrimaien = pwi, S<JFSS
Pajivikt)Gge = Prwi, j1<8,j=>5
Puj+imie = Prwi, j1<s,j=295

where p =1 — p.
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The Kolmogorov equations for the stationary distribution are

PT mai1 = (1 —PT) mo00 (6.1)
and
Tijk = Plit1jk + PTiv1jk—1(1 — dok) + Drmica jk
+praigajr—1(1 — dok) + DWiT1 js1 k1 (6.2)

FPW; T j1k + PrWiTy 1k + PrWiT j4+1,k+1

for 1 >0;, j=0,...,5; k>0.

The normalizing condition is
oo S oo
22D mign=1
=0 j=0 k=0
To solve equations(6.1) and (6.2) we define generating function
co S o
P(z,y,2) = Z Z Zﬂ'z‘,j,k aty’ 2

=0 j=0 k=0
The following theorem gives the solution of the Kolmogorov equations in

terms of ¢(-, -, ).

Theorem 6.2.1. The stationary distribution of the Markov chain {Y,,, :

m € N} has the generating function

zyzr(p + p2){W(x) = W[(1+7)(p + pz)]}
[z = (1 +7)@+pz) AWI(L+7)(P + p2)] — 2y}

o(x,y,2) =
Proof. Multiplying both sides of (6.2) by z* and summing over k, we get

[ee] o0
Y mign 2 = (L4170 +p2)) ] T 2
k=0

50 (6.3)
+wwiz Tk 25— (L4 r)pwi T
k=0

Next we multiply both sides of (6.3) by 3’ and sum over j, to get
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L
Tit1jk 2 Y’

WE

S oo S
SN mgs v = (L+n)@+p2))
=0

=0 k=0

el

=0

Lo
T3k % Y’

NE

S
(1+4r) (p+p2)
+ 2y w’Z
i=0

J
—(1+7r)(P+pz)w; 11

ol
o

Finally multiplying both sides of (6.4) by z' and summing over i, we get

=0 7=0 k=0
o S oo S oo A
SR D mak ayH ) D man 't
i=0 j=0 k=0 §=0 k=0
S oo
+ PR (o Zzﬁlak y' 25 = (L+7)(P + p2)W (x) T,
j= =0
(6.5)
Let ¢(z,y, 2) ZZZWkayz
i=0 j=0 k=0
Then from the above equation, we have
mf(1+r)(70+pz)} oz - [(1+r)(ﬁ+p2)] 0% . k
z Y, 2) = > T)—2zY Tk 2
[ (z,,2) W)=l Yomu s
_ (1”)@?;)(1,5?) W(JE)WO,O,O
put z = (1 +7r)(p+ pz) in (6.6) we get
N e 2(L=PDWIA +7)(P + p2)]
Tk 27 = —— — 0,0, 6.7
% b pHWII+r)@+p2)] -2y} " &9)

Substituting(6.7) in (6.6) we get
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zyz(1+r)(p+pz)(1 —pr) W(z) - W((A +7)(P + p2))]

S 878 (e[ R
(6.8)
with L
. prr
70,0,0 = T+ —p7) (6.9)
Substituting (6.9) in (6.8) we get
et p) W) = W+ 1)@+ p2)])
M) = A G I+ )G+ ] — 2y OO
O

Next we look for the system stability.

6.2.2 Stability condition

Theorem 6.2.2. The system is stable if and only if p < 1 where p = pf;.

We have the generating function of the number of customers in the system

and its mean value as given below:
e The probability generating function of the number of customers in the
system is given by ¥(z) =

r(1+7)A -p7)(@+p2){1 — W[ +7)(P + p2)]}
(1 +r=pr)[1 = (A +7)(p+pz) AW[1 +7)(P + p2)] — 2}

o(1,1,2) =

e Mean number of customers in the system is given by

d (1+r)(1—=p7)[pW(l+7r)+prW (1+7r)—7]

EC = [9(2)]:=1 = (1+r—pr)[l—W(1+7)
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6.3 Model 2

This is a particular case of model 1 wherein we assume the lead time to be
negligible. As a result we expect sharper results. We consider a discrete
time Geo/G/1 queue with inventory under (s,S) policy in which demands
arrive according to a Bernoulli process with parameter p. i.e., inter-demand
times follow geometric distribution with parameter p. The service times
are independent and identically distributed with distribution function B(.)

having probability w; for service time to have duration of ¢ slots, ¢ = 1. When
S
2
level is brought up to S at the time of replenishment. The assumption 2s < S

the inventory level reaches s (< 2), an order is placed so that the inventory

is made to avoid perpetual order placement. Assume that the lead time is

zero. Further no shortage is permitted.

6.3.1 Analysis of the Markov chain

At time m™, the system can be described by {X,,} : m € N} with the
triplet X,, = (Jm, Im, Nyn), where J,,, denotes the remaining service time of
the customer currently being served, I,,, denotes the number of items in the
inventory and N, denotes the number of customers in the system.

It can be shown that {X,,} : m € N} is a Markov Chain whose state space
is £={0,1,2,...} x{s+1,s+2,...5} x{0,1,2,...}.

To find the stationary distribution

Tjo = lim P{J,,=0,1,=4j,N,, =0}, j>s+1

mijk = lim P{J, =11, =7, Ny, =k} fori>0; j=0,...,5 k=>0.

The one step transition probabilities are given by
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P,0)(.0) = p j=0
P(l’j+1’1)(j70) = 2_97 ] > S + 1

If:>1,k>1, then

Plisv1,j.k)(i,5,k) = p, s+1<j5j<8
Pitijre-16ik = p, k=2
Pajiikinigry = DPwi, s+1<j<8
Pajtikgk = pwi, s+1<ji< S
P50y G.g0) = pw, k=1,j=25

The Kolmogorov equations for the stationary distribution are

D Too0 =P T1,1,1 (6.11)

P Tj50 :ﬁﬂ-lvj"rlal fOI‘ng <S—1 (612)

and

Tijk =D Tit1jk TP Tir1jk—1 T DWi T j41 k1 + PWi T1ji1k + PWi Tio 01
(6.13)
Since the lead time is assumed to be zero, the replenishment is instantaneous.
Thus the number of customers in the system (level of the Markov chain) and

the number of items in the inventory (phase of the chain) are independent.

Therefore
Tijk = %Pi,k, where probability of number of items in the inventory is %,
Q =S — s.(See [53])
Hence equations (6.12) and (6.13) become
P P(],O = }_7 Pl,l (614)

and
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Pir=p Pk +p Py g—1 +Dw;i Py +pw; Py +pw; Pog (6.15)

The normalizing condition is

PO,O"’ZZPi,k:l

i=1 k=1

To solve equations(6.14) and (6.15) we define generating function

S, 2) =Y Y Py a's
i=1 k=1
The following theorem gives the solution of the Kolmogorov equations in

terms of the preceding generating function

Theorem 6.3.1. If p < 1, the stationary distribution of the Markov
chain {X,, : m € N} has the generating function

_ prz(l = 2)[(W(z) = W(p + p2)]
[z = (P +p2)][W([p+p2) - 7]

¢(, 2)

0,0

where Poo =1 —p.

Proof. Multiplying both sides of (6.15) by 2* and summing over k, we

get

D P =

k=1

DY Priw 254p> Proapor 254Pwi Y - P 254pwi Y - Py 2P4pwi)  Poo2®
k=1 k=1 k=1 k=1 k=1

Substituting (6.14), we get

p+pz

;Pi,k 2F = (54‘173); Piag 2"+ ( E )wz; Py 2" — pwi(1 —2) Pog

(6.16)
Multiplying both sides of (6.16) by z' and summing over i, we get
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o(z,2) = Z-Pi,k r'

=1 k=1

=(p+pz ZZP”U“ xizk—l—(p J;pz Z w; T ZP”“ z —pz w; 2'(1— 2) Py

=1 k=1

~(E)o(r ) + (B () Y P 2~ p(1 — W) Poo

. (w) (z,2) = (7’ “’2) [W(m)—z]g Poix 2 —p(1—2)W () Py,

xr z
(6.17)
Put x =P+ pz in (6.17) we get
S w . p2(L—2)W(p+p2)
LI = G W g0 - o1
Substituting(6.18) in (6.17) we get
_ prz(l = 2)[(W(x) - W(P + pz)]
) G W p) 2
]
Normalizing condition is
Poo+o(1,1) =1 (6.19)
o 1= W(+p2)
21 -W({+p=
o(1,2) = W@ +p7) —2 Foo (6.20)
: _ o)
lim (1, z) = TW’(DPO’O
e, o(1,1) = - _p (6.21)

1—pb
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Substituting (6.21) in (6.19) we get
Fo = 1-phi
= 1-p
Since Py > 0, we get p < 1, which is a necessary condition for the ergodicity
of the Markov chain.

Therefore (6.20) becomes

(1-p). (6.22)

6.3.2 Stability condition

Theorem 6.3.2. The system is stable if and only if pg3; < 1.

e The probability generating function of the number of customers in the

system is given by

_ 2 -=W(p+p2)
S e

e The server is idle with probability Foo =1 — pB;
e The server is busy with probability, PSB given by ¢(1,1) = p

5
1 1
o Average inventory level FL = Z 0 j=s+ @+1)

2
j=s+1

e Mean number of customers in the system

EC =]

d (pzW”(l) — 2p* W'(1)]* + 2pW'(1)

40,2 = st LU e ) (1-pm)
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e Mean time a customer spends in the system

(including the service time),

= EC (pW”(l) — 2p[W'(1)]? + 2W'(1)

) W) — 1P > (1=pB1)

6.4 Cost Analysis

Introduce the following costs:

c1 - the fixed ordering cost

¢y - procurement cost/unit

¢3 - holding cost of inventory /unit/unit time
¢4 - holding cost of customers /unit/unit time.
Then

p2w"<1>—2p2[W’(1>12+2pw'<1)) Py

holding cost of customers per unit time= % ( W (D) —1]2

2

holding cost of inventory=c; [S + —(Q; 1)}

Total expected cost per unit time, ET'C'=Holding cost+Reorder cost
ie., ETC = c3[s + @] + (1 + Q@)%, where D is the expected number of

demands per unit time.

Then ETC is a separable convex function of both s and () and the optimal
value of () is obtained as () = %.

Since no shortage is permitted, optimal value of s is zero. Hence the optimal

value of S is same as that of Q).

Thus the expected minimum cost of the system is % +e D+ +c3 6215
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6.5 Numerical illustration

Table 6.1: Effect of p on Model-1.w; = 0.4, wy = 0.3,w3 = 0.2,w, = 0.1
D \ EC \ ET \ PSB
r=20.3
0.05 | 0.7499 | 14.9889 | 0.6858
0.10 | 0.6154 | 6.1540 | 0.7179
0.15 | 0.4637 | 3.0913 | 0.7468
0.20 | 0.2973 | 1.4864 | 0.7857
0.25 | 0.1182 | 0.4727 | 0.7968

Table 6.2: Effect of p on Model-2.w; = 0.4, wy = 0.3,w3 = 0.2,w4 = 0.1
P EC ET PSB
0.05 | 0.1042 | 2.0833 | 0.1000
0.10 | 0.2188 | 2.1875 | 0.2000
0.15 | 0.3482 | 2.3214 | 0.3000
0.20 | 0.5000 | 2.5000 | 0.4000
0.25 | 0.6875 | 2.7500 | 0.5000

Table 6.1 shows that as the arrival rate p increases, the expected number
of customers and the mean time the customer spends in the system decrease.
The probability that the server is busy increases with increase in the arrival
rate p. Table 6.2 shows that as the arrival rate p increases, the expected
number of customers and the mean time the customer spends in the system
increases. Also probability that the server is busy increases with increase in

p when the lead time is assumed to be zero.



Chapter 7

Solution of (s,S) inventory
problems: A Markov Decision

Theory Approach

7.1 Introduction

This chapter deviates from the theme of previous chapters in that Markov
decision approach to certain classes of inventory problems is discussed here.
A large class of problems of sequential decision making under uncertainty
can be modeled as stochastic dynamic programs, which, in general, is re-
ferred to as Markov Decision Problems. The Markov Decision model is a
powerful tool for analyzing probabilistic sequential decision processes. It is a
five tuple (T', I, A, p, ¢c) where T' is a point of time known as decision epoch; [
the state space; A the action space; p the state transition probability distri-
bution function and ¢ the instantaneous cost. Decisions or actions are made

at certain event occurrence epochs. When we choose an action in a state,

119
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then an immediate cost is incurred and the system moves to another state
according to certain transition probability. A solution to a Markov Decision
Process is a policy, which is a function from states to actions that minimizes
the long-run average costs.

We proceed to model a few inventory models as Markov decision problems.
First we formulate those problems. Then the Markov decision approach is

employed to compute the optimal solution.

7.2 Model Description

Consider an (s, S) inventory system, where demands follow a Bernoulli pro-
cess with parameter p. Order for replenishment is placed when inventory level
drops to s. The time between placing an order and its receipt is distributed
geometrically with parameter r. Assume that service time is negligible. At
the time of replenishment, the following decisions or actions are made: Re-
plenishment can take place when inventory level is in any one of the states
1 =5,5—1,5s—2,...,1,0. We consider the model in which replenishment
quantity varies according to the on hand inventory. In this situation we have
to take decisions on how much to buy at the time of replenishment. We use
Markov Decision Process for the solution.

Let Q,Q+1,Q+2,...,Q+ (s — i) be the possible replenishment quan-
tities when the inventory level is ¢ at the replenishment epoch 0 < i < s.
Here () = S — s. When the inventory level is s, the replenishment quan-

tity is Q with probability p%

pg),pgll, e ,pg)ﬁ_i for the replenishment quantity to be Q,Q +1,...,Q +

which is equal to one. Assign probabilities

s —1,t = 0,1,...,s where replenishment occurs at inventory level i. Note
Q+s—i

that Y pi’ =1,i€{0,1,...5}.

J=Q
The set of possible states of the inventory level process is denoted by I =
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{0,1,2,...,s,s+1,...,S}.

When the inventory level is > s+1, no action is taken. For each state in I,
a set of decisions can be made. Let A(s), A(s—1),..., A(1), A(0) be the set of
possible actions associated with the states s, s—1,...,1, 0 respectively. Then
A(s) = as1, where the replenishment quantity (r.q) is @ having probability

p(s)(zl ; since there is only one choice for purchase quantity).

If replenishment takes place when inventory level is s —1, then the actions

are:
A( 1) as—1,1, where the r.q is () with probability p(QS—l)
s—1)=
as—12, where the r.q is @+1 with probability pglll)‘

For state s—2 the actions are:

G521, where the r.q is Q with probability p&~

A(5—2) = { as_g2, where the r.q is Q + 1 with probability pgﬁ)

as—23, where the r.q is () 4+ 2 with probability pgﬁ).

Finally for state 0 the possible actions and the corresponding probabili-

ties are:
ap,1, where the r.q is () with probability pg))
A(0) ap 2, where the r.q is () + 1 with probability pg)ll

ap s+1, where the r.q is () + s with probability pg)ls.

One step transition probabilities are given by

pgf)(aw) ngc)ﬂ_p where k =0,1,...,s—1,sand [ =1,2,...,s+1—Fk
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s+1—k
such that Z pggil_l =1

=1
Let the stationary policies corresponding to states s,s — 1,...,1,0 be
Ry, Rs_1,..., R, Ry respectively. Then R; = {a;,:k=1,2,...,5s+1—j};
j=s,s—1,...,0.

7.3 Description of the problem

Let X, be the state of the system at time n; and let D, be the decision
or action chosen. Then under a given policy R, Y, = (X,,D,) is a two-

dimensional Markov chain with the transition probabilities
P{X,1=7,Dn1 =d|X, =1,D, =d} = p(jli,d)p(d|j) (7.1)

where p(jli, d) is the conditional probability of the chain moving to the state
J at time n + 1, given the current state is X,, = ¢ and a decision D,, = d is
taken and p(d’|7) is the probability of a decision D,,y; = d' being chosen at
state X,,.1 = j. Suppose demand arrival is according to a geometric process
with parameter p and lead time is geometric with parameter r. Also assume
that the service time is negligible. Then the one step transition probability

matrix of the inventory level process is given by
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0 1 s s+1 .- Q Q+1 - Qs Q+s
= (0) (0) (0) (0)
0 T Do TPQy1 -+ TPQis—1 TPO+ts
1 pr prT rp(l) T (1) r (1)
Q v TPQys—2 TPQiys—1
_ (s—1) (s—1)
P s—1 pr prT TPg TPO41
S pr pr rp(s)
s+1 P D
Q+s p p

7.4 The long run average cost per unit time

Since the state space and action sets are finite stationary policies exist. (See
Tijms [57]). Among different stationary policies, we look for the optimal
one, which minimizes the long run average cost per unit time. Suppose a cost
Cx,,.p, 1s incurred when the process is in state X,, and a decision D,, is made.
Being a function of both X, € {0,1,...,s} and D, € {as1,...,a0541}
Cx,.p, is also a random variable. Its long-run average cost per unit time

averaging over N periods is

N-1

lim % E [CXnDn] = Z Z TijCij

N—o00 -
n=0 i=0je{Q,Q+1,...,.Q+s}

where 7;; is the stationary probability distribution associated with the tran-

sition probabilities in (7.1). For an irreducible Markov chain, m;; > 0,Vi, j

and Z Z mi; = 1. (see [56]).

i=05e{Q,Q+1,...,Q+s}
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7.5 The Optimal Policy and the Policy im-

provement Algorithm

Our objective is to find a policy that minimizes the long run average cost.
For that purpose, we need to introduce the set of feasible policies and the
associated Markov chains, the action sets associated with each state and the
immediate cost associated with each state.

Assume that the Markov chain Y, = (X, D,) is irreducible. Then there
exists a unique equilibrium distribution {7;(R),j € I}. (see [57])

For any j € I,

I
lim E;pzj (R) = m;(R).

which is independent of initial state i. The 7;(R) are the unique solution to

the system of equilibrium equations

Wj(R) - Z pU(Rz)Trz(R)a ] € {Q>Q+ 17' . '7@ +S}

i€{0,1,...,s}

with > mB) =1
JE{Q.Q+1,....Q+s}

Let g(R) represent the long run expected average cost per unit time under
any given policy R.
Then,

g(R) = > G(R)m(R).
FE{Q,Q+1,....Q+s}

Let V"(i, R) denote the total expected cost with i as the initial state, R as

the stationary policy and evolving over a period of length n. Then we have
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the recursive formula

V'(i,R) =ci(R)+ Y. pg(R)V"'(G,R) (7.2)
Je{Q,Q+1,....Q+s}

It follows that the total expected cost V" (i, R) consists of the cost incurred
when action a = R; is taken in state ¢ at the first decision epoch and the

remaining n — 1 decision epochs, when the next state is j.

Since the Markov chain under consideration is irreducible, the average
cost function g;(R) defined by ¢;(R) = TLILIEO%V”(Z, R) is equal to g(R), inde-
pendently of the initial state i € {0,1,...,s} . This relation motivates the
heuristic assumption that bias value v;(R),7 € I, exists such that, for each
1€ 1,

V™(i, R) ~ ng(R) + v;(R) for large values of n (7.3)

Substituting (7.3) in (7.2) , we get
ng(R) + vi(R)

= (i) + > pij(R:)[(n — 1)g(R) + v;(R)]
JE{Q,Q+1,....Q+s}
= ¢(R)+ (n—1)g(R) > pij(Ri) + > pij(Ri)v; (R)
JE{Q,Q+1,..,.Q+s} JE{Q,Q+1,....Q+s}
= ¢(R:)+ (n—1)g(R) + Z pij(Ri)v;(R).
FE{Q,Q+1,....Q+s}
ie.,
9(R) = ai(R;) — vi(R) + > pij(Ri)v;i(R),
Fe{Q,Q+1,....Q+s}

fori=0,1,...,s, with V(i, R) = 0.
Solving this system of equations, we get the long run average cost per unit

time g(R) if policy R is used. An optimal policy is that of the lowest cost
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g(R*). To obtain the optimal policy, we use an iterative procedure, called
policy-improvement algorithm (see [57]). This procedure begins by choos-
ing an arbitrary stationary policy R. Then compute the unique solution

{g(R),v;(R)} to the following system of linear equations:

V; = Cz(RZ) — g+ Z pij(Ri)vj, 1el
Je{Q,Q+1,....Q+s}

with normalizing equation, vy = 0, where k is an arbitrarily chosen state. In
the second step, we can find an improved policy R. For that, determine an

action a; , for each state ¢ € I ,which yields the minimum in

min){ci(a) — g(R) + > pilay(R)}.

a€A(i
7€{Q,Q+1,....Q+s}

Then R is obtained by choosing R; = a;, Vi € I with the convention that R;
is chosen equal to the old action R; when this action minimizes the policy-
improvement quantity.

In the third step, if R = R, then the algorithm is stopped with policy R.
Otherwise, go to the beginning step with R replaced by R.

Since the state space is finite, there are only a finite number of possible
stationary policies. Hence after a finite number of iterations, we will be able

to reach the optimal policy.

7.5.1 Performance measures

We have then the following measures for evaluating performance of the sys-

tem.

1. Expected replenishment quantity when the inventory level is ¢
— Q4+ Q4D+ +(Q+s—i)
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:Q+S;i

Where

+1 is the uniform probability that the replenishment quantity
is Q,Q+1,Q+2,...,Q+(s—z‘),z’e {0,1,...,s}.

2. Expected replenishment quantity is given by

ERQ = (Q + %)(1 pr> Z(Q+ _Z)(l (p];;): i+1°

3. Mean time required for an arrival = Z k(1 —p)1

4. Mean number of demands lost EL, when the inventory level is zero is

given by

oo 0o X

EL ZZZM@ )Rk

k=1 n=k l=n

:(1{—2)3, 0<p,q<1

7.5.2 Cost analysis

We define the following costs:

o - fixed cost for order placement

c1- cost per unit item of inventory

co - revenue loss due to unit customer lost when inventory is empty.

a,0 < a < 1 - is the discount factor.

For calculating the Expected Total Cost (ETC) at different states and the
respective actions, we need expected cycle length from replenishment to re-
plenishment.

Let E;; be the expected duration of the cycle with replenishment at state
i and replenishment quantity j, where i = {0,1,...,s — 1,s} and j =
{Q,Q0+1,...,Q +s}.

Then Expected Total Cost (ETC) can be calculated as:
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State Action

ETC

S Qg1 % + ClQpS)v 1= Su.j = Q
s—1 as_11 E%ijle(pé?sl;l)? i=s—1,7=0Q
as—1,2 52j +Clp(5+1 [Q+OZ], Z:S_laj:Q+17
0 aw £ +aQpy +eFL i=0,j=0Q
c 0 . .
ao.2 i clpggll[Q +a]l+eEL i=0,7=Q+1
Gy F= 4 apgl,[Q+20] +EL, i=0,j=Q+2

Gost1 s T C1PSLS[Q + sa] + L,

1=0,=0Q+s

7.6 Numerical Illustration

Let us consider s = 3 and S = 7 so that () = 4. The states are 0, 1, 2 and 3.
The set of all possible actions or decisions on the states are defined as :

{A(i) :1=0,1,2,3}, where A(i) = {a;; : l =1,...,4 —i}. Here replenish-

ment quantity is 3 4+ [ having probability pé 1

i)
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Table 7.1: ¢y = 100, ¢; = 10, co = 1, p = %, q = %, a = %, pf’) =1,
2 2 1 1 1 0 0 0 0
p =p8 =1 p) = pl) = pi) =L ) = pl? = pi) =l =1
States Actions with costs Minimum cost  Action
0 o1 Gp,2 ap,3 Q0,4
37.50 29.83 29.00 28.64 28.64 ap 4
1 aia 1.2 1.3
25.80 24.20 23.80 23.80 a3
9 as 29
32.50 31.67 31.67 aso
3 as
52.50 52.5 as
Table 7.2: ¢y = 100, ¢; = 10, co = 1, p = %, q = %, a = %, pf) =1,
p =2p0 =1 pi =1l = pi =1 p =2 pl0 = =1 0 =1
States Actions with costs Minimum cost Action
0 ap,1 Qo,2 o3 Qg4
36.50 29.82 29.00 22.39 22.39 ap 4
1 ai 1,2 1,3
32.50 20.83 20.00 20.00 a3
9 as1 a2 2
39.17 24.40 24.40 as2
as,1
3 b
52.5 asq

52.50
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Table 7.3: ¢ = 100, ¢4 = 10, co = 1, p = %, q = %, a = %, pf) = 1,
2 2 1 1 1 0 0 0 0
p =1 pP =2 pV = plV =L pl) =1 p =L 0 = 0 = L pl =8
States Actions with costs Minimum cost Action
0 ao,1 0,2 ao,3 Q.4
26.50 29.82 29.00 34.89 26.50 ap 1
1 aii 1,2 a1.3
22.50 20.83 31.67 20.83 a2
9 a2 1 a2 2
25.83 38.89 25.83 as
3 a3,1
52.50 52.5 a3 1




Bibliography

[1] Alfa, A.S. (2002) : Discrete Time Queues and Matrix Analytic Methods.
Top vol.10, No:2, pp. 147-210.

2] Arrow, K.J., Harris, T. and Marschak, T. (1951) : Optimal inventory
policy, Econometrica, 19(3), 250-272.

3] Arrow, K.J., Karlin, S. and Scarf, H. (1958) : Studies in the Mathe-
matical theory of Inventory and Production, Stanford University Press,
Stanford.

[4] Atencia, I. and Moreno, P. (2006) : A Discrete time Geo/G/1 retrial
queue with the server subject to starting failures. Ann Oper Res 141:85-
107.

[5] Baker. (1983) : Optimal ordering and inventory control of perishable
goods. Naval Research Logistics Quarterly, vol 30 (Dec)pp 609-625.

(6] Bar-Lev, S.K. and Perry, D. (1989) : A discrete time Markovian inven-
tory model for perishable commodities, Stochastic Analysis and Applica-
tions 7, 243-259.

[7] Bellman, R.(1970) : Introduction to Matrix Analysis, McGraw Hill, New
York.

131



132 Bibliography

[8] Berman, O. and Kim, E. (1999) : Stochastic inventory policies for in-

ventory management of service facilities, Stochastic Models, 15, 695-718.

9] Berman, O. and Sapna, K. P. (2000) : Inventory management at service
facilities for systems with arbitrarily distributed service times, Stochastic
Models, 16, 343-360.

[10] Bhat, U.N. and Miller, G.K. (1972) : Elements of Applied Stochastic

Processes, Wiley-Inter science.

[11] Breuer, L. and Baum, D. (2005) : An Introduction to Queueing Theory
and Matrix Analytic Methods, Springer, The Netherlands.

[12] Bruneel, H. (1993) : Performance of discrete time queueing systems,
Computers and Operations Research 20, 303-320.

[13] Bruneel, H. and Kim, B.G. (1993) : Discrete Time Model for Commu-
nication Systems Including ATM. Kluwer Academic Publishers,Boston.

[14] Cinlar, E. (1975) : Introduction to Stochastic Process, Prentice-Hall,

New Jersey.

[15] Dafermos, S. and Neuts, M.F. (1971) : A single server queue in discrete
time. Cahiers du Centre Recherche operationelle 13, 23-40.

[16] Fries, B. (1975) : Optimal ordering policy for a perishable commodity
with fixed lifetime. Operations Research 23,46-61.

[17] Gravey, A. and Hebuterne (1992) : Simultaneity in Discrete Time single

server Queues with Bernoulli Inputs. Performance Evaluation 14, 123-131.

[18] Gross. D and Harris, C.M. (1988) : Fundamentals of Queueing Theory,
John Wiley and Sons, New York.

[19] Hadley, G. and Whitin, T.M. (1963) : Analysis of Inventory Systems,
Prentice-Hall, Englewood Cliffs, New Jersey.



Bibliography 133

[20] Harris, F.W. (1915) : Operations and Costs, Factory Management Se-
ries, A.W.Shah Co; Chicago.

[21] Hunter, J. (1983): Discrete Time Models: Techniques and Applications.
Mathematical Techniques of Applied Probability 2, Academic press.

22] Kalpakam, S. and Arivarignan, G. (1985) : Analysis of an exhibiting
inventory system, Stochastic Anal. Appl., 3, 447-466.

23] Kalpakam, S. and Arivarignan, G. (1988): A continuous review perish-
able inventory model, Statistics, 19(3), 389-398.

[24] Kalpakam, S. and Sapna, K.P. (1994) : Continuous review (s, .S) inven-
tory system with random life times and positive lead times, OR letters 16
pp 115-119.

25] Karen Yin, K. Hu Liu. and Neil E Johnson. (2002) : Markovian Inven-
tory Policy with application to the paper industry. Computer and Chemical
Engineering, 26, 1399-1413.

[26] Kaspi, H. and Perry, D. (1983) : Inventory systems of perishable com-
modities, Advances in Applied Probability vol.15, No:3 674-685.

[27] Krenzler, R. and Daduna, H. (2012) : Loss systems in a random
environment-steady-state analysis. UNIVERSITAT HAMBURG, Preprint
No. 2012. 04.

28] Krishnamoorthy, A. and Jose, K.P. (2007) : Comparison of inventory
systems with service, positive lead time, loss and retrial of customers.
Journal of Applied Mathematics and Stochastic Analysis, ID 37848, 23

pages.
[29] Krishnamoorthy, A. Lakshmi,B. and Manikandan, R. (2011): A survey

on inventory models with positive service time, OPSEARCH, DOI 10.1007
s12597-010-0032-z.



134 Bibliography

[30] Krishnamoorthy, A. and Viswanath, C.N. (2013) : Stochastic Decom-
position in Production Inventory with service time. European Journal of
Operational Research, 228, No. 2, 358-366.

[31] Krishnamoorthy, A. and Viswanath, C.N. (2011) : Production Inven-
tory with service time and vacation to the server : IMA Journal of Man-

agement Mathematics; doi:10.1093—imaman—dpp025.

[32] Lalitha, K. (2010) : Studies on classical and Retrial inventory with pos-
itive service time. Ph.D Thesis, Cochin University of Science And Tech-

nology.

[33] Latouche, G. and Ramaswami, V. (1993): A logarithmic reduction algo-
rithm for quasi-birth-and-death processes. Journal of Applied Probability,
30, 650-674.

[34] Latouche, G. and Ramaswami, V. (1999) : Introduction to Matrix An-
alytic Methods in Stochastic Modelling. ASA-STAM: Philadelphia.

[35] Lian, Z. and Liu, L. (1999) : A Discrete time model for perishable
inventory systems, Annals of Operations Research 87, 103-116.

[36] Lian, Z., Liu, L. and Neuts, M. F. (2005) : A Discrete time model for
common life time inventory systems, Mathematics of Operations Research
30, 1-14.

[37) Liu, L. and Yang, T. (1999) : An (s,S) random lifetime inventory
model with positive lead time,European Journal of Operational Research
113, 52-63.

[38] Manoharan, M. and Krishnamoorthy, A. (1991) : An inventory system
with unit demand and varying order levels. Optimization, 22(2): 283-289.

[39] Martin L Puterman. (1994) : Markov Decision Processes; Discrete

Stochastic Dynamic Programming. Wiley Interscience Publication.



Bibliography 135

[40] Medhi,J. (1984) : Stochastic Processes, New Age International.

[41] Meisling, T. (1958) : Discrete time queueing theory, Operations Re-
search 6, 96-105.

[42] Naddor, E. (1966) : Inventory Systems : John Wiley and Sons, New
York.

[43] Nahmias, S. (1975) :Optimal ordering policies for perishable inventory
- IT ,Operations Research 23, 735-749.

[44] Nahmias, S. and Shah, S.W. (1979) : A Heuristic lot size reorder point
model for decaying inventories, Mgmt. Sci 25 ,90-97.

[45] Nahmias, S. and Stevens (1982) : Perishable inventory theory: A review.
Operations Research 30, 4(July-August) pp 680-708.

[46] Neuts, M.F . (1994): Matrix Geometric Solutions in Stochastic Models-
An Algorithmic Approach, Dover Publications, New York.

[47] Raaft, F. (1991) : Survey of literature on continuously deteriorating
inventory models, J. Oper. Res. Soc. 42, No.1 27-37.

[48] Ross, S.M. (2004) : Introduction to probability models.Academic Press,
USA, 8th edition.

[49] Saffari, M. Asmussen, S. and Haji, R. (2013) : M/M/1 queue with
inventory, lost sale and general lead times. Queueing Syst, DOI 10.1007/S
11134-012-9337-3.

[50] Sajeev S Nair. (2012) : On (s,S) inventory policy with/without retrial
and interruption of service/production. Ph.D Thesis, Cochin University of

Science And Technology.



136 Bibliography

[51] Schwarz, M. Sauer, C. Daduna, H. Kulik, R. and Szekli, R. (2006) :
M/M/1 queueing system with inventory. Queueing Systems, 54(1) : 55-
78.

[52] Sigman, K. and Simchi-Levi, D. (1992) : Light traffic heuristic for an
M/G/1 queue with limited inventory. Annals of OR, 40, 371-380.

[53] Sivazlian, B.D. and Stanfel, L.E. (1974) : Analysis of Systems in Oper-

ations Research, Prentice-Hall.

[54] Sreenivasan, S.K. (1988) : Analysis of (s,S) inventory systems with
general lead time demand distributions and adjustable reorder size, Opti-
mization, 19, 557-576.

[55] Takagi, H. (1993) : Queueing Analysis: A Foundation of Performance

Evaluation, Discrete Time Systems, vol. 3, North Holland, Amsterdam.

[56] Taylor, H.M. and Karlin, S. (1998) : An Introduction to Stochastic
Modelling. Boston : Academic Press.

[57] Tigms, H.C. (2003) : A First Course in stochastic models: An Algorith-
mic Approach, Wiley, Chichester.

(58] Woodward, M.E. (1994) : Communication and Computer Networks :
Modelling with Discrete time queues. IEEE Computer Society Press, Los

Alamos, California.

[59] Yang, T. and Chaudhry, M.L. (1996) : On Steady-State Queue size
distributions of the Discrete time GI/G/1 queue Adv. Appl. Prob. 28,
1177-1200.

[60] Yang, T. and Li, H. (1998) : Geo/G/1 retrial queue with Bernoulli
Schedule, Eur. J. Op. Re 111, 629-649.



	DISCRETE TIME INVENTORY MODELS WITH/WITHOUT POSITIVE SERVICE TIME
	CERTIFICATE

	Declaration
	Acknowledgement
	Contents
	List of Figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography

