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Chapter 1

Introduction

In everyday life different flows of customers to avail some service facility or

other at some service station are experienced. In some of these situations,

congestion of items arriving for service, because an item can not be serviced

immediately on arrival, is unavoidable. A queueing system can be described

as customers arriving for service, waiting for service if it is not immediate,

and if having waited for service, leaving the system after being served. Exam-

ples include shoppers waiting in front of check out stands in a supermarket,

programs waiting to be processed by a digital computer, ships in the harbour

waiting to be unloaded, persons waiting at railway booking office etc.

A queueing system is specified completely by the following characteris-

tics: input or arrival pattern, service pattern, number of service channels,

system capacity, queue discipline and number of service stages. The ulti-

mate objective of solving queueing models is to determine the characteristics

that measure the performance of the system.

3



4 Chapter 1. Introduction

1.1 Inventory system

Inventories deal with maintaining sufficient stocks of goods that will ensure

a smooth and efficient running of a system or a business activity. Inventory

may include raw materials, finished goods awaiting shipment from the fac-

tory, a group of personnel undergoing training for a firm, space available for

books in a library, water kept in a dam etc. Inventory models have a wide

range of application in industries, hospitals, banks, agriculture, educational

institutions etc.

The ultimate objective of any inventory model is to answer two basic

questions: how much to order and when to order. The answer to the first

question is expressed in terms of what we call the order quantity and that

of the second, the reorder level. Order quantity is the optimum amount that

should be ordered every time an order is placed so as to minimize the total

system running cost. Reorder level depends on the type of inventory model.

The objective of inventory control is often to balance conflicting goal of

making available the required item at a time of need and minimizing the

related costs. In inventory models, the availability of items has also to be

taken into consideration along with features of queueing theory. In inventory

models with negligible service times, queue of customers is formed only when

the system is out of stock and unsatisfied customers are permitted to wait.

On the contrary for the case of inventory with positive service time, queue is

formed even when inventoried items are available because new customers can

join while a service is going on. If either service time or lead time or both are

taken to be positive, then also a queue is formed, depending on assumptions

on backlogging of demands/on other factors.

The real need for inventory analysis was first recognized in industries that

had a combination of production scheduling problems and inventory prob-

lems. The analysis of inventory problem was started by Harris in 1915. He

proposed the EOQ (Economic Order Quantity) formula and was popularized
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by Wilson and is usually referred to as Harris- Wilson economic lot size or

simply the EOQ. It is the ordering quantity which minimizes the total inven-

tory cost. Some of the inventory related costs are holding cost, reorder cost,

procurement cost, shortage cost etc. The cost analysis of different inventory

policies is given by Naddor [42]. The book by Hadley and Whitin [19] pro-

vides inventory theory and applications.

While dealing with inventory systems, there are several factors which

have to be taken into consideration. These include demand process, lead

time, review policy, backlog, perishability of stored items etc.

Demand process

The number of units required per period is called demand rate. The

demand pattern of a commodity may be either deterministic or probabilistic.

Lead Time

Sometimes, when an order is placed, it may take some time before delivery

is effected. The time between the placement of an order and its receipt is

known as lead time (delivery lag). It may be deterministic or probabilistic.

If the replenishment is instantaneous, then the lead time is zero, otherwise,

the system is said to have positive lead time.

Review Policy (Periodic review and continuous review)

In periodic review, the level of inventory is monitored at prefixed equal

time points (every week or month etc). At any point in time the amount

of inventory stored is not known exactly. In continuous review, the level of

inventory is monitored continuously. In this case the inventory level at any

point in time is known exactly.
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Backlog

The demands that arrive when the inventory is out of stock, may be

backlogged partially or fully or in some cases not entertained. These demands

would be satisfied as and when the replenishment is received or through

subsequent replenishments. Backlog generally refers to an accumulation of

work over time, waiting to be done or orders to be fulfilled. Cases of full

backlog, partial backlog and no backlog are considered in the literature.

Perishability of stored items

Perishable inventory systems are studied as queues with impatient cus-

tomers. The perishing of many products like fish, vegetables etc are contin-

uous and depends upon many factors including heat, humidity etc. Several

attempts have been made to study some aspects of perishable inventories.

A review of the work on perishable inventory is provided by Nahmias and

Stevens [45], Baker [13] ; besides many researchers have contributed to the

development of such a study.

Ordering Policy

Inventory system based on (s, S) policy have been studied quite exten-

sively by many researchers during the last three decades. In an (s, S) policy,

if x is the amount of inventory on hand before an order is placed, then the

order quantity is such that

if x 6 s, then order S − x and if x > s, do not order any quantity.

Here s is such that order for replenishment placed each time the inventory

level drops to s or below for the first time after the previous replenishment

and S is the maximum inventory. Efficient management of inventory sys-

tems is to determine the optimal values of s and S, that minimizes the long

run expected cost rate. In randomized order size, the decision of the order

size is according to a discrete probability function u on the set {1, 2, . . . , S}.
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The size of a replenishment order is k with probability uk, with
S∑
k=1

uk = 1.

In fixed quantity ordering policy, whenever the inventory level falls to s, an

order for a fixed quantity Q, where Q = S − s, is placed.

1.1.1 Discrete Time Inventory Systems

Discrete time queueing system has been found to be more appropriate in

modelling computer systems and communication network. It can be used to

approximate the corresponding continuous system in practice. The earliest

work on discrete time queue is due to Meisling [41]. Since then, discrete time

queues have been studied extensively by many researchers. A few books on

discrete time queues are by Bruneel and Kim [13], Takagi [55], Woodward

[58]. In discrete time inventory system, the time axis is divided into equal

intervals called slots. All inventory activities are assumed to occur at the

epochs numbered 0, 1, . . . only. We describe the discrete time system as

defined by Dafermos and Neuts [15]. They consider the arrivals and the

service commencements and completion which occur between time epochs

n and n + 1, to occur at time n + 1. Service times are at least one unit

of time long. In discrete time systems, more than one different events can

occur simultaneously in a slot with positive probability. So in order to resolve

conflicts, a rule has to be formulated in advance about the order in which

the arrivals and the departures take place in case of simultaneity. Such rules

come to play mainly at the boundaries. In dealing with such conflicts, there

are essentially two rules :(i) Late Arrival System (LAS) in which an arrival

takes precedence over a departure and (ii) Early Arrival System (EAS) in

which a departure takes precedence over an arrival.They are also known

as Arrival First (AF) and Departure First (DF) policies respectively. If the

server is idle and a customer arrives, then either his service starts immediately
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(Immediate Access (IA)) or in the following slot (Delayed Access (DA)).

LAS-IA corresponds to EAS. For more details, see Gravey and Hebuterne

[17]. Hunter [21] considers n− and n+ and then defines discrete system based

on these.

Perishable inventory problems with constant lifetime have been studied

quite extensively using the periodic review policy. Periodic review models

fit the constant lifetime well, but they usually lead to numerically difficult

dynamic optimization problems. Fries [16] and Nahmias [43] use dynamic

programming in a perishable inventory model with a lifetime m, zero lead

time and zero ordering cost.

Bernoulli Process

Let E := {0, 1, 2, . . .} and choose any parameter p ∈ (0, 1). The defini-

tions X0 := 0 together with the transition probabilities

pij =


p j = i+ 1

1− p j = i

0 otherwise

for i ∈ E determine a homogeneous Markov Chain X = {Xn : n ∈ E}.
It is called Bernoulli process with parameter p.

Geometric Distribution

Let the random variable X denote the number of trials of a random exper-

iment required to obtain the first success. It can assume the values 1, 2, . . ..

Now X = r if and only if the first r − 1 trials result in failure and the rth

trial results in success. Hence P (X = r) = (1 − p)r−1p; r = 1, 2, . . . where

p is the probability of success and 1 − p that of failure. Thus X has the

geometric distribution. It is the discrete time analogue of exponential distri-

bution. Memoryless property characterizes geometric distribution among all
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distributions of discrete non negative integer-valued random variables.

Birth and Death Process

A Discrete Time Birth and Death Process is a Markov Chain {Xt : t ∈ N}
on the nonnegative integers characterized by the property that whenever

a transition occurs from one state to another, then this transition can be

to a neighboring state only. Let S = {0, 1, . . . , i, . . .} be the state space;

transitions occur from i to i+ 1 or to i− 1 only.

1.2 Quasi-Birth-Death Processes

Consider a two dimensional Markov Chain {Xt : t ∈ N} with state space{(n, j) :

n > 0; 1 6 j 6 m}, which we partition as
⋃
n>0

l(n), where l(n)={(n, 1), (n, 2), . . .

(n,m)} for n > 0. The first coordinate n is called the level and the second

coordinate j is called the phase of the state (n, j).

The Markov chain is called a QBD if one-step transitions from a state are re-

stricted to states in the same level or in the two adjacent levels: it is possible

to move in one step from (n, j) to (n′, j′) only if n′ = n, n+1 or n−1 (provided

in the last case that n > 1). If n = 0, then n′ = 0 or 1. If the transition rates

are level independent, then the QBD process is called Level Independent

Quasi-Birth-Death process (LIQBD). If the transition rates depend on the

level, then the QBD process is called Level Dependent Quasi-Birth-Death

process (LDQBD). The transition matrix is block tridiagonal and has the

following form
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P =


C0 C1

C2 A1 A0

A2 A1 A0

. . . . . . . . .


where entries are all matrices. A0 represents the arrival of a customer to the

system; that is transition from l(n) to l(n + 1). A2 represents departure of

a customer after completing service: l(n) to l(n − 1), where l(n) is the set

of phases in level n. A1 describes all transitions in which the level does not

change (transitions within levels).

QBDs are matrix generalizations of Birth and Death processes.

1.3 Matrix Analytic Methods

During the late 1970’s Neuts introduced matrix analytic methods, subse-

quently it was developed by his students and collaborators. It is a tool to

construct and analyze a vide class of stochastic models, particularly queue-

ing systems or inventory systems, using a matrix formalism to develop al-

gorithmically tractable solution. For a detailed description of this method

see Neuts [46] or Latouche and Ramaswamy [34]. Assume that the QBD

is aperiodic and positive recurrent. Denote by x its stationary probability

vector. It is the unique solution of the system xP = x and xe = 1, where

e is a column vector of ones of appropriate order. Let x be partitioned

by levels as x = (x0,x1,x2, . . .). Then xi has the matrix geometric form

xi = x1R
i−1, i > 2 where R is the minimal non negative solution of the

matrix quadratic equation R2A2 + RA1 + A0 = R. The vectors x0 and x1
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are obtained by solving the equations

x0(C0 − I) + x1A2 = 0

and

x0C1 + x1(A1 +RA2 − I) = 0

with the normalizing condition

x0e + x1(I −R)−1e = 1.

1.4 Review of related work

A systematic approach to (s, S) inventory policy is provided by Arrow, Kar-

lin and Scarf [3] using renewal theory. One of the recent contributions of

significance to inventory with positive service time is due to Schwarz et alia

(et al.) [51]. They assume Poisson arrival of demands, exponential service

time and balking of customers when the inventory level is zero. They derived

joint stationary distributions of the queue length and inventory level in ex-

plicit product form under continuous review of inventory level and different

inventory management policies (see [27], [49]).

Krishnamoorthy and Viswanath [31] analyzed production inventory system

with service time wherein Schwarz et al. [51] is subsumed. By assuming that

no customer joins the queue when the inventory level is zero, they obtained

the long run system state probability in product form. It is the first reported

work on production inventory with positive service time in the continuous

case providing product form solution. The main difference between (s, S)

inventory system with positive lead time and (s, S) production inventory

system is that in the former case, once the order is placed, it takes a random

amount of time for the replenishment, whereas in the later case once the
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production process is switched on consequent to inventory level decreasing

to s, it is switched off only when the inventory level reaches S. Sreenivasan

[54] examined (s, S) inventory systems with adjustable reorder sizes. Jose

[28] compared three (s, S) inventory models with positive service time and

lead time and with retrial of customers. One of the works of the queueing

theory has been carried out by Yang and Li [60] who extended the queues

with repeated attempts to the discrete time systems. The survey paper by

Krishnamoorthy et al. [29] discussed in details various inventory models

with positive service time. Lalitha [32] studied five distinct (s, S) inventory

models with positive service time and lead time where arrival of demands is

according to a Poisson process, service time and lead time following distinct

exponential distributions and obtained performance measures, constructed

cost functions for each model and numerically analyzed them. Sajeev [50]

analyzed a single server inventory system where service process is subject to

interruptions.

Certain type of inventories undergo change while in storage so that with

passage of time they may become partially or entirely unfit for consump-

tion. e.g. drugs, food products, etc. become unusable after a certain time

has elapsed. Perishable inventory problems with constant lifetime have been

studied quite extensively using the periodic review policy. Periodic review

models fit the constant lifetime well, but they usually lead to numerically

difficult dynamic optimization problems. Fries [16] and Nahmias [43] use dy-

namic programming in a perishable inventory model with a lifetime m, zero

lead time and zero ordering cost. Lian and Liu [35] developed a discrete time

inventory model with geometric inter demand times and constant life time.
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1.5 Summary of the thesis

The thesis is divided into seven chapters including the introductory chapter.

In chapter 1 we have the pre-requisites that are needed for the development

of the remaining chapters. It includes descriptions of Discrete Time inven-

tory systems, Quasi-Birth-Death Process, Matrix Analytic Methods etc.

In chapter 2 we analyze and compare three (s, S) inventory models with

different replenishment policies. In all these models the arrival of demands

follow a Bernoulli process, service time and lead time follow independent and

distinct geometric distributions. In the (s, S) policy, when the inventory level

depletes to s, an order is placed. In model 1, we place order up to S where

the replenishment quantity is S − i when the inventory level is i, 0 6 i 6 s,

just prior to replenishment. In model 2, replenishment order is for a fixed

quantity Q where Q = S − s. In model 3, the order size is governed by a

discrete probability mass function u on the set {1, 2, . . . , S}. Here the reorder

level is fixed as 0. The size of a replenishment order is k with probability

uk, with
S∑
k=1

uk = 1. In all these models, we assume that no customer joins

when the inventory level is zero. Stability condition for each model is de-

rived. Some measures of performance in the steady-state are calculated and

appropriate cost functions are constructed and analyzed.

In chapter 3, we consider three perishable inventory models with posi-

tive service time and positive lifetime. In model I, when the inventory level

reaches 6 s for the first time after each replenishment, an order is placed

to bring back the level up to S. When the replenishment occurs, we discard

all the old items so that the remaining (fresh) items have common life time.

Model 2 is a modified form of Lian et al. [36] extended to positive service

time case. In this model, we place replenishment order when the inventory

level reaches zero at a service completion epoch if the number of customers

waiting at this epoch is at least s. Else place the order when the number
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of waiting customers reaches s. In model 3, we assume that the items fail

one by one. In all the models, demand arrival is according to a Bernoulli

process, service time and life time are distributed geometrically. In models

1 and 3, we assume that the lead time is positive and customers do not join

when the inventory level is zero. In model 2, lead time is assumed to be zero

and customers join even when the inventory level is zero. System stability

is discussed and some performance measures are evaluated. Numerical illus-

trations of the system behavior are also given. Relative performance of the

models are then compared.

In chapter 4, we discuss two inventory models with positive service time

and lead time where the arrival of customers depend on the level of inventory.

Depending on the number of items and number of customers in the queue

at an epoch, the arriving customer decides to join or not to join the system:

if the number of customers in the queue is less than the number of stocked

items at that epoch, then necessarily he joins. If the inventory level is > s+1

at an arrival epoch, then also the arriving customer joins. However if it is

6 s (but larger than zero) then he joins only if the number of customers

present is less than the on hand inventory. Stability condition is derived.

Steady state analysis is made. Some measures of performance are obtained.

Numerical illustrations of the system behavior are also provided.

In the fifth chapter, we discuss a discrete time production inventory sys-

tem where the processing of inventory requires a positive random amount of

time (discrete). This leads to the formation of a queue of demands. In this

system, when the inventory level falls to s, the production process is imme-

diately ‘switched on’. It is ‘switched off’ when the inventory level reaches

S. Exactly one unit is added at a production epoch. When the inventory

is in between s + 1 and S − 1, the production process can be either in ‘on’

mode or in ‘off’ mode. We consider the production inventory system with a

single server. Demands occur according to a Bernoulli process with param-

eter p. Processing of inventory requires a positive random amount of time,
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which is distributed geometrically with parameter q. When the inventory

level reaches s, the production process is ‘switched on’ and stays in that

mode until the inventory level reaches S. Inter-production times (time be-

tween addition of items to the inventory) are geometrically distributed with

parameter r. No customer is allowed to join the system when the inventory

level is zero. Steady-state analysis is made and performance measures are

obtained. Numerical illustrations of the system behavior are also given.

In chapter 6, we consider discrete time inventory models with arbitrarily

distributed service time. Here we discuss two models. Both the models follow

(s, S) policy. Arrival of demands follow a Bernoulli process with parameter

p. The service times are independent identically distributed with general dis-

tribution {wi}∞i=1, generating function W (x) =
∞∑
i=1

wix
i and the nth factorial

moments of the total time spent in the service station be βn, n = 1, 2, . . .. In

model 1, we assume that a positive random amount of time elapses between

placing an order and its receipt, which is distributed geometrically with pa-

rameter r. Also assume that no customer joins when the inventory level is

zero. In model 2, we assume that replenishment is instantaneous. Further

no shortage is permitted. We investigate optimal values of s, S and order

quantity Q.

In chapter 7, we introduce Discrete Time Markov Decision Process ap-

proach to an (s, S) inventory problem. At the time of replenishment, the

following decisions or actions are made: Replenishment take places when in-

ventory level is i = s, s−1, s−2, . . . , 1, 0. We consider a replenishment policy

in which quantity replenished varies according to the on hand inventory. In

this situation we have to take decisions on how much to buy at the time of

replenishment. We use Markov Decision theory for the solution.



Chapter 2

Discrete time inventory models

with positive service time and

lead time

2.1 Introduction

There is a growing research interest in discrete time queues mainly moti-

vated by their applications in computer and communication systems because

the basic time unit in these systems is a binary code (See [1], [4]). Also

the discrete time system can be used to approximate the continuous sys-

tem. Recently, due to the fast progress of computer and telecommunication

network technologies, the discrete time models have received more attention

from researchers. BISDN (Broadband Integrated Service Digital Network)

has been of significant interest because it can provide a common interface for

future communication needs including video, voice and data communication

signals through high speed Local Area Network (LAN), on-demand video dis-

17
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tribution and video telephony communications (see [59]). The Asynchronous

Transfer Mode (ATM) is a key technology for accommodating such a wide

area of services. In these systems, all the information is segmented into small

packets, represented as cells. The time is slotted and in each slot the data

units (packets) are transmitted. Applications in detail are discussed in the

paper [12] and in the books [13], [58], [59]. By a discrete time analysis, we

mean analysis in which the system is observed for analysis, only at specific

points in time which are equally spaced points on the time axis. e.g., a sys-

tem in which observation is made only at points of event occurrences such

as arrivals or departures at specified points which are equally spaced and

numbered sequentially as 0, 1, 2, . . ..

In this chapter, we analyze three discrete time (s, S) inventory models

with positive service time and lead time. These models differ by their respec-

tive replenishment policies. Model 1 is based on replenishment of order upto

S policy. That is whenever the inventory level reaches s, an order is placed

to bring the level to S, where s is the reorder level and S is the maximum

inventory level permitted. Model 2 is based on order placement by a fixed

quantity Q, where Q = S − s, whenever the inventory level falls to s and in

the third model it is assumed that when the inventory level reaches 0 for the

first time, order for replenishment is placed and at the time of realization the

quantities of units purchased is a random variable with support {1, 2, . . . , S}.
The decision of the order size is according to a discrete probability function.

In all the three models we assume that demands are according to a Bernoulli

process. Service times and lead times are geometrically distributed. We can

construct a multidimensional Markov chain to model the joint queue length

and inventory process to obtain a product form solution for these models.
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2.2 Mathematical Modelling and Analysis of

model 1

We consider a Geo/Geo/1 (s, S) inventory system with positive lead time

in which demands arrive according to a Bernoulli process with parameter p.

The demand quantity at an epoch is for one unit of the item with probability

p and is 0 with probability 1 − p. Thus a demand takes place at a slot

boundary with probability p and no demand with probability 1 − p. The

service time and lead time for replenishment of inventory follow independent

geometric distributions with parameters q and r, respectively.

It is assumed that all inventory activities (demand arrival, replenishment,

departure) take place around the slot boundaries. We assume that a de-

parture or replenishment occurs in the interval (m−,m) and an arrival in

(m,m+). Whenever the inventory level falls to s, an order is placed to bring

the level to S. It is assumed that S is greater than 2s. This assumption is

made to avoid perpetual reordering. It requires a random amount of time

for the fulfillment of orders placed and the inventory level can be reduced

to zero during this period due to demand. The lead time takes at least one

time slot to complete, hence an order can not be received at the epoch it is

placed.

There exists a rich variety of different inventory models depending on

the combination of different assumptions. Some common assumptions are

as follows. Continuous versus periodic review of the inventory, individual

versus batch arrivals, different replenishment policies (fixed, random size,

order upto level S), constant or random lead time etc. The inventory model

in discussion is based on replenishment of order up to S policy. We assume

that customers are not allowed to join in the system when the inventory level

is zero.
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Let Nm denote the number of customers in the system and Im, the inven-

tory level at m+. We denote the joint queue length and inventory process by

(Nm, Im) : m ∈ N . Then χ = {(Nm, Im) : m ∈ N} is a Markov Chain whose

state space is E = {0, 1, 2, . . .} × {0, 1, 2, . . . s, s+ 1, . . . S}.
The state space of the Markov chain is partitioned into levels defined as

î = {(i, 0), (i, 1), . . . (i, s), (i, s + 1), . . . (i, S)}. The one step transition prob-

ability matrix P of the Markov chain χ is given by

P =


C0 C1

A2 A1 A0

A2 A1 A0

. . . . . . . . .

, where each entry is a square matrix of order

S + 1. In the above matrix C0 denotes the probability of transitions among

states within level 0; C1 is those from level 0 to level 1.

The transitions from level i to level i + 1 are represented by elements

of the matrix A0, those from level i to i − 1 by those of A2 and transitions

within the level i are represented by that in A1. They are given by

[C0]ij =



r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

0, otherwise

[C1]ij =


p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

p r, j = S, i = 0, 1, . . . , s

0, otherwise
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[A2]ij =



q r, j = i− 1, i = 1

pqr, j = i− 1, i = 2, 3, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A0]ij =



pq r, j = i i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

p r, j = S i = 0

pqr, j = S, i = 1, 2, . . . , s

0, otherwise

[A1]ij =



r, j = i, i = 0

p q r, j = i, i = 1, 2, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S

p qr, j = i− 1, i = 2, 3, . . . , s

p q r, j = S − 1, i = 1, 2, . . . , s

pr, j = S, i = 0

p qr, j = S, i = 1, 2, . . . , s

0, otherwise

where p = 1− p, q = 1− q, r = 1− r.

2.2.1 Stability Condition

For determining the stability condition for the system, consider the transition

matrix A = A0 + A1 + A2 given by
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[A]ij =



r, j = i, i = 0

q r, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

q r, j = i, i = 1, 2, . . . , s

p+ p q, j = i, i = s+ 1, s+ 2, . . . , S

r, j = S, i = 0

q r, j = S − 1, i = 1, 2, . . . , s

qr, j = S, i = 1, 2, . . . , s

0, otherwise

The Markov chain χ is stable if and only if πA0e < πA2e where π is the

stationary probability vector of A satisfying πA = π and πe = 1, where e is

a column vector of 1’s of appropriate order. Write π = (π0, π1, . . . πs, . . . , πS).

Then πA = π gives

πj =

{
(1−r)(1−q r)j−1

(q r)j π0, j = 1, 2, . . . , s
(1−r)(1−q r)j−1

p q(q r)j−1 π0, j = s+ 1

πs+1 = πs+2 = · · · = πS−1;

πS = (1−r)[q(q r)s+q(1−q r)s]
p q(q r)s π0.

Further πe = 1 gives

π0 = p q(q r)s

(1−q r)s[p q+(S−s−1)r+r q]+rq(q r)s

and a bit of algebra gives

πA0e =
{
p q
[

(1−q r)s−(q r)s

(q r)s

]
+ pr(S−s−1)(1−q r)s

p q(q r)s + pr + prq
pq

+ pr q(1−q r)s

p q(q r)s

}
π0

and
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πA2e =
{
pq
[

(1−q r)s−(q r)s

(q r)s

]
+ r(S−s−1)(1−q r)s

(q r)s − pr + q + r q(1−q r)s

(q r)s

}
π0.

Hence we have

Theorem 2.2.1. The system χ is stable if and only if

q(q r)s [pr + (pq)2 − pp r]
(1− q r)s [pqr + (pq)2 + pqr(S − s− 1) + pqq(r − p) + pr(S − s)]

< 1.

2.2.2 Steady-state analysis

Assume that the stability condition is satisfied. Let x = (x0,x1,x2, . . .) be

the steady-state probability vector of the Markov chain χ satisfying xP = x

and xe = 1. Then xi has the matrix geometric form xi = x1R
i−1, i > 2 where

R is the minimal solution of the matrix quadratic equation R2A2+RA1+A0 =

R.

xP = x leads us to

x0C0 + x1A2 = x0 (2.1)

x0C1 + x1A1 + x2A2 = x1 (2.2)

xi−1A0 + xiA1 + xi+1A2 = xi, i > 2 (2.3)

Also xe = 1 gives

x0e + x1(I −R)−1e = 1. (2.4)

The rate matrix R can be obtained using the successive iterative method

R(n+ 1) := (A0 +R(n)2A2)(I − A1)−1, with R(0) = 0 and R(n) is the value

of R at the nth iteration. The iteration is usually stopped when |R(n) −
R(n + 1)|ij < ε,∀i, j. Another way to solve for R is to use the Logarithmic

reduction method due to Latouche and Ramaswami [33]. The steps of this

algorithm are as given below.
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H := (I − A1)−1A0; L := (I − A1)−1A2; G := L; and T := H;

and repeat

U := HL+ LH; M := H2; H := (I − U)−1M ; M := L2;

L := (I − U)−1M ; G := G+ TL; T := TH

until ‖ 1−G.e ‖∞< ε .

Then R = A0(I − A1 − A0G)−1.

For finding the steady-state vector of the process χ = {(Nm, Im) : m ∈
N}, consider the system where service time is negligible and where no cus-

tomer joins when inventory is out of stock. This means that if the item is

available at the epoch of demand, then it would be immediately delivered.

As a consequence the customer need not have to wait. Hence the system has

only inventory and is of finite state space.

The corresponding Markov chain is designated as χ̂ = {Im : m ∈ N}
where Im denote the inventory level. The state space of the process is given

by Ê = {0, 1, 2, . . . , S}. The transition probability matrix corresponding to

χ̂ is given by

[P̂ ]ij =



r, j = i, i = 0

p r, j = i− 1, i = 1, 2, . . . , s

p, j = i− 1, i = s+ 1, s+ 2, . . . , S

p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

r, j = S, i = 0, 1, . . . , s

0, otherwise

Let π̂ = (π̂0, π̂1, . . . , π̂S) be the steady-state vector of the process χ̂. Then

π̂P̂ = π̂ and π̂e = 1. It can be seen that

π̂j =

{
(1−r)(1−p r)j−1

(p r)j π̂0, j = 1, 2, . . . , s
(1−r)(1−p r)j−1

p(p r)j−1 π̂0, j = s+ 1
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π̂s+1 = π̂s+2 = · · · = π̂S.

Also π̂e = 1 gives

π̂0 = p(pr)s

(1−p r)s[p+(S−s)r] .

Now using π̂, we shall find the steady-state probability vector of χ. Let

x = (x0,x1, . . .) be the steady-state probability vector of the Markov Chain

χ. Then xP = x and xe = 1. The above system reduces to

x0C0 + x1A2 = x0

x0C1 + x1A1 + x2A2 = x1

xi−1A0 + xiA1 + xi+1A2 = xi, i > 2

Now let x0 = ρπ̂ and xi = ρ( p
pq

)iπ̂, for i > 1, where ρ is a constant to be

determined. This will satisfy the above equations. For,

xi−1A0 + xiA1 + xi+1A2 = xi−1A0 + xi[C0 − pq
p
A0] + xi+1A2

= ρ( p
pq

)i−1πA0 + ρ( p
pq

)iπ[C0 − pq
p
A0] + ρ( p

pq
)i+1πA2

= ρ( p
pq

)iπ[C0 + p
pq
A2]

= ρ( p
pq

)iπ̂

= xi
Also xe = 1 gives ρ = 1− p

pq

This leads to the following

Theorem 2.2.2. Under the necessary and sufficient condition that

p < pq, the steady-state vector of the process χ with transition probability

matrix P is given by x = (x0,x1, . . . , ) where x0 = ρπ̂ and xi = ρ( p
pq

)iπ̂,

for i > 1 ρ = 1 − p
pq

and the finite probability vector π̂ is given by π̂ =

(π̂0, π̂1, . . . , π̂S) where
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π̂j =

{
(1−r)(1−p r)j−1

(pr)j π0, j = 1, 2, . . . , s
(1−r)(1−p r)s

p(pr)s π0, j = s+ 1, s+ 2, . . . , S
and

π0 = p q(q r)s

(1−q r)s[p q+(S−s−1)r+r q]+rq(q r)s .

2.2.3 System Performance Measures

Let x = (x0,x1, . . .) be the steady-state probability vector and xi, i > 0 is

partitioned as xi = (xi0, xi1, . . . , xiS). We have the following measures for

evaluating performance of the system.

1. Expected number of customers EC, in the system is given by

EC =
∞∑
i=0

i xie.

2. Expected inventory level EI, is given by

EI =
∞∑
i=0

S∑
j=1

j xij.

3. Expected reorder rate ER, is given by

ER =q
∞∑
i=0

xi,s+1.

4. Expected replenishment rate ERR, is given by

ERR = r

∞∑
i=0

s∑
j=0

xij.

5. Probability that the inventory level is zero is
∞∑
i=0

xi0.

6. Expected loss rate EL, of customers is given by

EL =p
∞∑
i=0

xi0.
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7. Expected number of customers EW, waiting in the system when the

inventory level is zero is given by

EW =
∞∑
i=0

i xi0.

8. Expected rate ED, of departure after completing service is given by

ED =q
∞∑
i=1

S∑
j=1

xij.

2.3 Mathematical Formulation of model 2

and its analysis

We consider a discrete time (s, S) inventory system with positive lead time in

which demands arrive according to a Bernoulli process with parameter p. The

service times and lead times follow geometric distributions with parameters

q and r respectively. Whenever the inventory level falls to s, place an order

for replenishment by a fixed quantity Q, where Q = S−s. S is the maximum

inventory level and s is the reorder level. There is a positive lead time for

replenishment. We assume that no customer joins when the inventory level

is zero. Those who are already present in the system do not renege. Exactly

one item is demanded by each customer.

We denote the joint queue length and inventory process by {Xm} =

{(Nm, Im) : m ∈ N} where Nm denotes the number of customers in the

system and Im denotes the inventory level at time m+. Then {Xm} =

{(Nm, Im) : m ∈ N} provides a Markov description of the inventory sys-

tem whose state space is E = {0, 1, 2, . . .} × {0, 1, ..s, . . . , Q,Q+ 1, . . . , S}.
The one step transition probability matrix of the process is given by
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P =


C0 C1

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where each entry is a square matrix of order S + 1 are given by

C0 =



0 1 · · · s s+ 1 · · · Q Q+ 1 · · · S

0 r pr

1 p r pr
...

. . . . . .

s p r pr

s+ 1 p
...

. . .

Q p

Q+ 1 p
...

. . .

S p



C1 =



0 1 · · · s s+ 1 · · · Q Q+ 1 · · · S

0 pr

1 pr pr
...

. . . . . .

s pr pr

s+ 1 p
...

. . .

Q p

Q+ 1 p
...

. . .

S p


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For i > 2, the transitions from level i to level i+1, transitions within the

level i and transitions from level i to level i-1 are represented by the matrices

A0 ,A1 and A2 respectively, and are given by

A0 =



0 1 · · · s s+ 1 · · · Q Q+ 1 · · · S

0 pr

1 pq r pqr
...

. . . . . .

s pq r pqr

s+ 1 p
...

. . .

Q p

Q+ 1 p
...

. . .

S p



A1 =



0 1 · · · s− 1 s · · · Q Q+ 1 · · · S

0 r pr

1 p q r pqr p qr

2 pqr p q r pqr p qr
...

. . . . . . . . . . . .

s pqr p q r pqr p qr

s+ 1 pq
...

. . .

S pq


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A2 =



0 1 · · · s− 1 s · · · Q · · · S − 1 S

0

1 qr pqr

2 pqr
...

. . . . . .

s pqr pqr

s+ 1 pq
...

. . .

S − 1

S pq


where, p = 1− p, q = 1− q, r = 1− r

2.3.1 Stability Condition

For determining the stability condition for the system, consider the transition

matrix A = A0 + A1 + A2 by

A =



0 1 · · · s · · · Q Q+ 1 · · · S

0 r r

1 qr q r qr qr
...

. . . . . . . . . . . .

s qr q r qr qr

s+ 1 pq p+ p q
...

. . . . . .

S − 1
. . . . . .

S pq p+ p q


The chain {Xm} is stable if and only if the left drift rate is higher than the

rate of drift to the right. That is, πA0e < πA2e where π is the stationary
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probability vector of A satisfying πA = π and πe = 1, where e is a column

vector of 1’s of appropriate order. Let π = (π0, . . . πs, πs+1, . . . , πQ, . . . , πS).

Then

π1 =

(
1− r
q r

)
π0

π2 =
(1− r)(1− q r)

(q r)2
π0

...

πs =
(1− r)(1− q r)s−1

(q r)s
π0

πi =
(1− r)(1− q r)s

pq(qr)s
π0, i = s+ 1, s+ 2, . . . , Q

πQ+1 =

(
(1− r)(1− q r)s

p q (q r)s
− qr

p q (q r)

)
π0

...

πS−2 =
r(1− r)(1− q r)s−3

p q(q r)s−2

[
q +

1− q r
q r

+
(1− q r)2

(q r)2

]
π0

πS−1 =
r(1− r)(1− q r)s−2

p q(q r)s−1

[
q +

1− q r
q r

]
π0

πS =
r(1− r)(1− q r)s−1

p q(q r)s
qπ0

and πe = 1 gives π0 =
p q(q r)s

(1− q r)s[Qr − pq] + q(q r)s
.

πA0e = [−pq (1−q r)s

(q r)s − p q + pr]π0 + p.

πA2e = [pr − pq]π0 + pq.

Hence we have the theorem
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Theorem 2.3.1. The system {Xm} is stable if and only if

p q[(q − p)(q r)s − pq(1− q r)s]
(1− q r)s[Qr − pq] + q(q r)s

< p q − p

2.3.2 Steady-state analysis

Let x = (x0,x1, . . . , ) be the steady-state probability vector of the Markov

process {Xm} satisfying xP = x and xe = 1. Then xi has the matrix geo-

metric form xi = x1R
i−1, i > 2 where R is the minimal solution of the matrix

quadratic equation R2A2 + RA1 + A0 = R. The vectors x0 and x1 can be

obtained by solving the equations

x0C0 + x1A2 = x0 (2.5)

x0C1 + x1A1 + x1RA2 = x1 (2.6)

and the normalizing condition

x0e + x1(I −R)−1e = 1.

From the above equations, to determine x, we have to compute the rate

matrix R. This is solved numerically. In some special cases the matrix R

could be explicitly obtained.

Now we analyze the system with negligible service time where no customer

joins when inventory is out of stock. The corresponding Markov chain is

{X̂m} = {Im : m ∈ N} where Im denotes the inventory level. The state space

of the process is given by Ê = {0, 1, 2, . . . , S}. The transition probability

matrix corresponding to {X̂m} is given by
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P̂ =



0 1 · · · s− 1 s · · · Q · · · S − 1 S

0 r r

1 pr p r r
...

. . . . . . . . .

s pr p r r

s+ 1 p p
...

. . . . . .

S − 1

S p p


Let π̂ = (π̂0, π̂1, . . . , π̂S) be the steady-state vector of the process X̂m.

Then π̂P̂ = π̂ and π̂e = 1. It can be seen that

π̂j =

{
(1−r)(1−p r)j−1

(pr)j π̂0, j = 1, 2, . . . , s
(1−r)(1−p r)s

p(pr)s π̂0, j = s+ 1, s+ 2, . . . , Q

π̂Q+1 =
r (1− r)
p(p r)

[
1 +

1− p r
p r

+

(
1− p r
p r

)2

+ · · ·+
(

1− p r
p r

)s−1
]
π̂0

...

π̂S−1 =
r(1− r)(1− p r)s−2

p(pr)s−1

[
1 +

1− p r
p r

]
π̂0

π̂S =
r(1− r)(1− p r)s−1

p(pr)s
π̂0

Also π̂e = 1 gives

π̂0 =
p(pr)s

r(1− p r)s[p+ (S − s)] + (pr)s+1 .
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2.3.3 System Performance Measures

Let x = (x0,x1, . . . , ) be the steady-state probability vector and xi, i > 0, be

partitioned as xi = (xi0, xi1, . . . , xiS). We have then the following measures

for evaluating performance of the system.

1. Expected number of customers in the system is given by

EC =
∞∑
i=0

i xie.

2. Expected inventory level is given by

EI =
∞∑
i=0

S∑
j=1

j xij.

3. Expected reorder rate is given by

ER =q
∞∑
i=1

xi,s+1.

4. Expected replenishment rate is given by

ERR = r
∞∑
i=0

s∑
j=0

xij.

5. Probability that the inventory level is zero is
∞∑
i=0

xi0.

6. Expected loss rate of fresh arrivals is given by

EL =p
∞∑
i=0

xi0.

7. Expected number of customers waiting in the system when the inven-

tory level is zero is given by

EW =
∞∑
i=1

ixi0.
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8. Expected rate of departure after completing service is ED =q
∞∑
i=1

S∑
j=1

xij.

2.4 Mathematical Formulation of model 3 and

its analysis

We discuss the Geo/Geo/1 system in which the probability of an arrival

during at an epoch is p with p = 1− p the probability of a service completion

at an epoch be q with q = 1− q.
The maximum capacity of the store is fixed as S units. Due to demands

that take place over time , the level of the inventory falls and when the level

reaches 0, for the first time, an order is placed for replenishment. Here we fix

the reorder point as 0 and allow general randomized order size. The decision

of the order size is according to a discrete probability mass function on the

integers {1, 2, . . . , S} where S is the maximum capacity of the inventory. So

the size of a replenishment order is k with probability uk where
S∑
k=1

uk = 1.

The probability for replenishment at a slot end point be r with r = 1− r.
We assume that no customer joins when the inventory level is zero. The inter

demand times and inter replenishment times are assumed to be independent

of each other.

Let Nm denote the number of customers in the system and Im, the in-

ventory level at time m+. We denote the joint queue length and inventory

process by Xm = (Nm, Im) : m ∈ N . Then

{Xm} = {(Nm, Im) : m ∈ N} is a Discrete Time Markov Chain whose state

space is E = {(n, k) : n ∈ N0, k ∈ {0, 1, . . . , S}}.
The transition probability matrix of the process is given by
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P =


C0 C1

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 where C0, C1, A0, A1, A2 are given by

C0 =

[
r prV S

0 pIS

]
, C1 = p

[
0 rV S

0 IS

]
,

A0 = p

[
0 rV S

0 qIS

]
,

A1 =

[
r prV S

pqe1 O

]
+ p q

[
0 0

0 IS

]
+ pq

[
0 0

0 DS

]
,

A2 = pq

[
0 0

IS 0

]
with IS = diag(1, 1, . . . , 1) of order S.

ej =
(

0, . . . , 0, 1, 0, . . . 0
)′

of order S with 1 at the jth position,

j = 1, 2, ..., S; V S = (u1, u2, . . . , uS) is the probability vector corresponding to

quantity for which order is placed at the time of replenishment. O is a null

matrix of order S × S; DS =

[
0 0

IS−1 0

]
.

2.4.1 Stability condition

For determining the stability condition for the system, consider the transition

matrix A = A0 + A1 + A2 given by

A =

[
r rV S

qe1 O

]
+ q

[
0 0

0 DS

]
+ q

[
0 0

0 DS

]
.

The Markov chain {Xm} is stable if and only if πA0e < πA2e where π is the

stationary probability vector of A satisfying πA = π and πe = 1, where e is
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a column vector of 1 ’s of appropriate order. Let π = (π0, π1, . . . πs, . . . , πS).

Then πA = π gives

πj =

{
r
q
π0, j = 1
r(1−u1−u2−...−uj−1)

q
π0, j = 2, 3, . . . , S

πe = 1 gives π0 =

[
1 +

r

q

S∑
k=1

kuk

]−1

.

πA0e =

{
pr +

[
pr q

q

S∑
k=1

kuk

]}
π0

and

πA2e = p r

(
S∑
k=1

kuk

)
π0.

With these the relation πA0e < πA2e gives

Theorem 2.4.1. The system {Xm} is stable if and only if

pq

(q − p)r

(
S∑
k=1

kuk

) < 1. (2.7)

2.4.2 Steady-state analysis

Assume that the stability condition (2.7) is satisfied. Let x = (x0,x1, . . .) be

the steady-state probability vector of the Markov chain {Xm}. Then

xP = x and xe = 1.

The xi’s have the matrix geometric form xi = x1R
i−1, i > 2 where R is the

minimal nonnegative solution of the matrix quadratic equation R2A2+RA1+
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A0 = R. The vectors x0 and x1 can be obtained by solving the equations

x0C0 + x1C2 = x0 (2.8)

x0C1 + x1A1 + x2RA2 = x1 (2.9)

and the normalizing condition

x0e + x1(I −R)−1e = 1. (2.10)

Next we analyze the system where service time is negligible. In this case

no queue is formed. Queue of customers is formed only when the system

is out of stock and unsatisfied customers are permitted to wait. Hence the

system has only inventory and is of finite state space. i.e., we do not en-

counter simultaneously a queue of inventoried items and one of customers.

The corresponding Markov chain is denoted as {X̂m} = {Im : m ∈ N} where

Im is the inventory level at epoch m.

The state space of the process is given by E = {0, 1, . . . , S} and its transition

probability matrix is given by

P̂ =

[
r rVS

pe1 O

]
+ p

[
0 0

0 DS

]
+ p

[
0 0

0 DS

]

Let π̂ = (π̂0, π̂1, . . . , π̂S) be the steady-state vector of the process {X̂m}.
Then π̂P̂ = π̂ and π̂e = 1. It can be seen that

π̂j =

{
r
p
π̂0, j = 1
r(1−u1−u2−...−uj−1)

p
π̂0, j = 2, 3, . . . , S.

Also the normalizing condition π̂e = 1 gives

π̂0 =
[
1 + r

p

∑S
k=1 kuk

]−1

.
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2.4.3 System Performance Measures

Let x = (x0,x1, . . .) be the steady-state probability vector and xi, i > 0 is

partitioned as xi = (xi0, xi1, . . . , xiS)

1. Expected number of customers in the system EC, is given by

EC =
∞∑
i=0

i xie

2. Expected inventory level EI, is given by

EI =
∞∑
i=0

S∑
j=1

j xij

3. Expected reorder rate ER, is given by

ER =q
∞∑
i=0

xi,1

4. Expected replenishment rate is given by

ERR = r
∞∑
i=0

1∑
j=0

xij

5. Probability that the inventory level is zero is
∞∑
i=0

xi0

6. Probability that the inventory level is greater thanm(6 s) is
∞∑
i=1

s∑
j=m+1

xij

7. Expected loss rate of customers EL is given by

EL =p
∞∑
i=0

xi0

8. Expected number of customers waiting in the system when the inven-

tory level is zero is given by EW =
∞∑
i=0

i xi0
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2.5 Cost Analysis

We analyze numerically the steady-state expected cost rate under the follow-

ing assumptions

Let c0 denote the fixed ordering cost

c1 -procurement cost/ unit

c2 -holding cost of inventory /unit/unit time

c3 -holding cost of customers/unit/unit time

c4 -cost due to the loss of customers /unit/unit time

For Model 1, the Expected Total Cost

ETC =

[
c0 +

s∑
i=0

r(S − i)c1

]
ER + c2EI + c3EW + c4EL.

For Model 2

ETC = [c0 +Qc1]ER + c2EI + c3EW + c4EL.

For Model 3

ETC =

[
c0 +

S∑
k=1

kukc1

]
ER + c2EI + c3EW + c4EL.

2.6 Numerical illustration

Tables 2.1, 2.2, 2.3 show that in all the three models, as the arrival rate p

increases expected number of customers increases. Consequently inventory

level decreases and the expected reorder rate increases. Also expected num-

ber of departure after service completion increases. As the service rate q

increases, expected number of customers decreases and consequently inven-

tory level increases and expected reorder rate also increases. Expected loss

rate of customers decreases and further expected number of departure after
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Table 2.1: Effect of p on Model-1. q = 0.7,s = 5,S = 20
p ρ EC EI ER EL ED

r = 0.7
0.30 0.5923 1.51322 12.61249 0.04624 0.00000 0.42343
0.32 0.6509 1.93918 12.57741 0.04627 0.00000 0.46400
0.34 0.7132 2.58100 12.53914 0.04632 0.00000 0.50679
0.36 0.7795 3.65980 12.49714 0.04642 0.00000 0.55198
0.38 0.8501 5.85612 12.45079 0.04657 0.00001 0.59978
0.40 0.9256 12.79414 12.39939 0.04678 0.00001 0.65042

r = 0.8
0.30 0.5946 1.52041 12.63677 0.04645 0.00000 0.42404
0.32 0.6535 1.95134 12.60361 0.04649 0.00000 0.46477
0.34 0.7159 2.60308 12.56745 0.04656 0.00000 0.50777
0.36 0.7824 3.70501 12.52778 0.04667 0.00000 0.55321
0.38 0.8532 5.97344 12.48401 0.04682 0.00000 0.60131
0.40 0.9288 13.36549 12.43544 0.04703 0.00000 0.65230

r = 0.9
0.30 0.5965 1.52620 12.65553 0.04662 0.00000 0.42352
0.32 0.6555 1.96115 12.62386 0.04668 0.00000 0.46538
0.34 0.7181 2.62093 12.58934 0.04678 0.00000 0.50854
0.36 0.7846 3.74174 12.55148 0.04687 0.00000 0.55418
0.38 0.8556 6.06988 12.50970 0.04702 0.00001 0.60252
0.40 0.9313 13.85470 12.46333 0.04722 0.00001 0.65379

service completion increases. As the rate of leadtime for replenishment in-

creases the inventory level increases, as expected. Also there is an increment

in the reorder rate. As seen from table 2.4, in all the models, as the arrival

rate increases, probability that the server is idle for want of customers de-

creases and hence probability that inventory level is zero increases. From

tables 2.5, 2.6 and 2.7 we can see that in all models as service rate increases,

expected number of cutomers decreases. Also reorder rate increases and ex-

pected loss rate of customers decreases. Tables 2.8, 2.9 and 2.10 show that

as replenishment rate r increases, the inventory level in all models increases.

Here expected number of customers also increases. Also the expected loss
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Table 2.2: Effect of p on Model-2. q = 0.7,s = 5,S = 20
p ρ EC EI ER EL ED

r = 0.7
0.30 0.5919 1.51244 11.53074 0.04680 0.00000 0.42337
0.32 0.6505 1.93772 11.48785 0.04688 0.00000 0.46391
0.34 0.7128 2.57813 11.44129 0.04700 0.00000 0.50667
0.36 0.7790 3.65347 11.39047 0.04717 0.00000 0.55182
0.38 0.8496 5.83861 11.33467 0.04738 0.00001 0.59956
0.40 0.9250 12.70578 11.27310 0.04767 0.00001 0.65012

r = 0.8
0.30 0.5944 1.52000 11.58886 0.04678 0.00000 0.42400
0.32 0.6532 1.95058 11.55109 0.04686 0.00000 0.46473
0.34 0.7157 2.60156 11.51002 0.04696 0.00000 0.50770
0.36 0.7821 3.70164 11.46510 0.04711 0.00000 0.55312
0.38 0.8529 5.96400 11.41567 0.04730 0.00000 0.60119
0.40 0.9285 13.31558 11.36099 0.04755 0.00000 0.65215

r = 0.9
0.30 0.5964 1.52603 11.63418 0.04677 0.00000 0.42450
0.32 0.6554 1.96084 11.60044 0.04684 0.00000 0.46537
0.34 0.7180 2.62032 11.56372 0.04693 0.00000 0.50852
0.36 0.7845 3.74037 11.52348 0.04706 0.00000 0.55415
0.38 0.8555 6.06598 11.47913 0.04723 0.00000 0.60247
0.40 0.9312 13.83330 11.42996 0.04746 0.00000 0.65373

rate of customers decreases.

We compute the expected total cost per unit time for the models by

varying different parameters one at a time while keeping others fixed and

find the most profitable one by comparing the costs.

Figure 2.1 shows that the cost functions for all the models are convex

and the expected total cost is minimum for model-3. Again as the maximum

inventory level S is increased, the cost function behaves as above and then
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Figure 2.1: q versus ETC when S = 20, s = 5, p = 0.2, r = 0.3, c0 = 50, c1 =
10, c2 = 2, c3 = 3, c4 = 5
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Figure 2.2: S versus ETC when s = 4, p = 0.4, q = 0.7, r = 0.3, c0 =
50, c1 = 15, c2 = 0.2, c3 = 0.3, c4 = 0.5
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Table 2.3: Effect of p on Model-3. q = 0.7, S = 20
p ρ EC EI ER EL ED

r = 0.2
0.1 0.0582 0.15165 6.01452 0.06390 0.00459 0.09143
0.2 0.1310 0.32838 5.72050 0.06131 0.01770 0.18921
0.3 0.2245 0.55080 5.45076 0.05889 0.03846 0.28095
0.4 0.3492 0.87135 5.20712 0.05657 0.06612 0.35836
0.42 0.3793 0.95807 5.16193 0.05611 0.07241 0.37539

0.4205 0.3801 0.96039 5.16082 0.05609 0.07257 0.39702
r = 0.3

0.1 0.0582 0.15166 6.10791 0.06489 0.00311 0.09783
0.2 0.1310 0.32849 5.89437 0.06318 0.01216 0.19149
0.3 0.2245 0.55127 5.69410 0.06152 0.02679 0.28125
0.4 0.3492 0.87282 5.51075 0.05986 0.04665 0.36735
0.42 0.3793 0.95989 5.47668 0.05953 0.05122 0.38415

0.4205 0.3801 0.96221 5.47584 0.05952 0.05134 0.39946
r = 0.4

0.1 0.0582 0.15167 6.15570 0.06540 0.00235 0.09859
0.2 0.1310 0.32855 5.98534 0.06415 0.00926 0.19444
0.3 0.2245 0.55153 5.82410 0.06292 0.02055 0.28767
0.4 0.3492 0.87363 5.67623 0.06166 0.03604 0.37838
0.42 0.3793 0.96088 5.64891 0.06140 0.03962 0.39623

0.4205 0.3801 0.96221 5.47584 0.05952 0.05134 0.41275

also the expected total cost is minimum for model-3. (See figure 2.2). Hence

model-3 is more profitable. That is when the inventory level reaches 0, for

the first time, allow general randomized order size.
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Table 2.4: Variations in arrival rate p. r = 0.4, s = 5, S = 20
q = 0.7

model 1 model 2 model 3
p Pidle PINL−0 Pidle PINL−0 Pidle PINL−0

0.1 0.8416 0.00000 0.8416 0.00000 0.8558 0.02347
0.2 0.6457 0.00005 0.6457 0.00005 0.7089 0.04630
0.3 0.3998 0.00044 0.4003 0.00045 0.5592 0.06849
0.4 0.0848 0.00179 0.0870 0.00189 0.4068 0.09009
0.42 0.0109 0.00225 0.0138 0.00238 0.3759 0.09434

Table 2.5: Effect of q on Model-1. p = 0.2,s = 5,S = 20
q ρ EC EI ER EL ED

r = 0.3
0.4 0.6085 1.60571 12.55240 0.02575 0.00006 0.24732
0.5 0.4802 0.97057 12.56163 0.03215 0.00006 0.24735
0.6 0.3938 0.69561 12.56613 0.03858 0.00006 0.24738
0.7 0.3315 0.54211 12.56800 0.04501 0.00005 0.24741
0.8 0.2844 0.44413 12.56846 0.05146 0.00005 0.24744
0.9 0.2475 0.37616 12.56850 0.05791 0.00005 0.24747

Table 2.6: Effect of q on Model-2. p = 0.2,s = 5,S = 20
q ρ EC EI ER EL ED

r = 0.3
0.4 0.6075 1.60345 11.29826 0.02673 0.00006 0.24722
0.5 0.4786 0.96948 11.30968 0.03336 0.00006 0.24725
0.6 0.3917 0.69492 11.31660 0.04001 0.00006 0.24729
0.7 0.3289 0.54162 11.32091 0.04666 0.00005 0.24732
0.8 0.2812 0.44375 11.32370 0.05332 0.00005 0.24735
0.9 0.2438 0.37586 11.32560 0.05999 0.00005 0.24738
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Table 2.7: Effect of q on Model-3. p = 0.2, S = 20
q ρ EC EI ER EL

r = 0.3
0.4 0.3988 0.83068 5.90223 0.03608 0.01216
0.5 0.2738 0.55026 5.89773 0.04511 0.01216
0.6 0.1905 0.41139 5.89558 0.05415 0.01216
0.7 0.1310 0.32849 5.89437 0.06318 0.01216
0.8 0.0863 0.27340 5.89362 0.07221 0.01216
0.9 0.0516 0.23413 5.89311 0.08123 0.01216

Table 2.8: Effect of r on Model-1. p = 0.2, s = 5, S = 20
r ρ EC EI ER EL ED

q = 0.7
0.30 0.3315 0.54211 12.56800 0.04501 0.00005 0.24741
0.35 0.3338 0.54371 12.61708 0.04533 0.00002 0.24776
0.40 0.3359 0.54496 12.65311 0.04557 0.00001 0.24803
0.45 0.3377 0.54596 12.68061 0.04576 0.00000 0.24823
0.50 0.3393 0.54678 12.70223 0.04592 0.00000 0.24839
0.55 0.3407 0.54747 12.71966 0.04605 0.00000 0.24853
0.60 0.3419 0.54806 12.73401 0.04616 0.00000 0.24864

Table 2.9: Effect of r on Model-2. p = 0.2, s = 5, S = 20
r ρ EC EI ER EL ED

q = 0.7
0.30 0.3289 0.54162 11.32091 0.04666 0.00005 0.24732
0.35 0.3319 0.54336 11.41722 0.04667 0.00002 0.24770
0.40 0.3344 0.54470 11.48969 0.04667 0.00001 0.24798
0.45 0.3366 0.54577 11.54617 0.04667 0.00001 0.24819
0.50 0.3385 0.54664 11.59140 0.04667 0.00000 0.24837
0.55 0.3400 0.54736 11.62845 0.04667 0.00000 0.24851
0.60 0.3414 0.54798 11.65933 0.04667 0.00000 0.24863
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Table 2.10: Effect of r on Model-3. p = 0.2, S = 20
r ρ EC EI ER EL

q = 0.7
0.30 0.1310 0.32849 5.89437 0.06318 0.01216
0.35 0.1310 0.32852 5.94601 0.06373 0.01051
0.40 0.1310 0.32855 5.98534 0.06415 0.00926
0.45 0.1310 0.32857 6.01629 0.06448 0.00827
0.50 0.1310 0.32858 6.04127 0.06478 0.00748
0.55 0.1310 0.32860 6.06188 0.06497 0.00682
0.60 0.1310 0.32861 6.07915 0.06516 0.00627



Chapter 3

Discrete Time inventory

models with common life time

and positive service time

3.1 Introduction

In the previous chapter we considered inventory with unlimited life time. In

this chapter we restrict the life time to be a random variable with finite mean

value. Further it is assumed that all items perish simultaneously (common

life time). In most of the inventory models, it is assumed that items can

be stored indefinitely to meet future demands. However, certain types of

inventories undergo change during storage with the result that with passage

of time they may become partially or entirely unfit for consumption. For

example milk products, meat and other food stuffs, medicines, blood stored

in blood banks etc become unusable after a certain time has elapsed. Also

sometimes the item may become obsolete.

49
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Inventory models for perishable or deteriorating items are of considerable

importance. Perishable items have a deterministic usable life after which they

become unusable. e.g., Chemicals produced by a processing plant. There is

a large amount of research papers dealing with such models. Nahmias and

Shah [44] studied the models where demand was assumed random in each

period and products were assumed to have a certain life time which may be

random. Various optimal characteristics were obtained under different condi-

tions on the demand and the life time processes. Lian and Liu [35] studied a

discrete time (s, S) perishable inventory model with geometric inter-demand

times and batch demands. With zero lead time and allowing backlogs, they

constructed a multidimensional Markov chain to model the inventory level

process and obtained a closed form expression for average cost function. They

also concluded that discrete time models may be used to approximate their

continuous time counterparts effectively. Lian et al. [36] discussed a discrete

time model for common life time inventory systems where demands are in

batches following a discrete PH renewal process. With zero lead time and

also allowing backlogs, they constructed a multidimensional Markov chain

to model the inventory level process. They obtained a closed form expected

cost function. Compared with the results for the constant life time model,

they proved that the variance of the lifetime significantly affects the system

behavior. Kaspi and Perry [26], Bar-Lev and Perry [6] have obtained the char-

acteristics that measure the performance of perishable inventory systems by

applying the results from queueing models with impatient customers. Per-

ishable inventory problems with constant life time have been studied quite

extensively using the periodic review policy. Fries [16] and Nahmias [43] use

dynamic programming in a perishable inventory model with life time m and

zero lead time.

In this chapter we model and analyze three discrete time perishable in-

ventory systems with positive service time. First we discuss an inventory
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model in which the stored items have a common life time. Assume that lead

time is positive. Second model is a modified form of Lian et al. [36] extended

to positive service time case. In this model order for replenishment is placed

when the inventory level reaches zero at a service completion epoch provided

the number of customers waiting at that epoch is at least s. Else the order is

placed as and when the number of waiting customers reaches s. We assume

that the lead time is zero. In the third model, we assume that the items

perish one by one and that life time follows geometric distribution. In the

first and third models we assume that customers do not join the system when

the inventory level is zero whereas in the second model, customers join even

when the inventory level is zero.

3.2 Description of Model-1

We consider a discrete time (s, S) inventory model in which the stored items

have a common life time. Demands arrive according to a Bernoulli process

with parameter p. Service time and lead time follow independent geometric

distributions with parameters q and r, respectively. When the inventory level

reaches s for the first time after each replenishment, an order is placed to

bring back the level up to S. Since lead time is positive, it will take a random

amount of time to bring the items back to level S. When the replenishment

occurs, we discard all the old items so that the remaining (fresh) items have

common life time. Assume that life time follows geometric distribution with

parameter t and that no customer joins when the inventory level is zero.
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3.2.1 Analysis of the model

Let Nm denote the number of customers in the system and Im the inventory

level at epoch m. We denote the joint queue length and inventory level by

χ = {(Nm, Im) : m ∈ N}. Then χ is a Discrete Time Markov Chain with

state space

E = {(i, j) : i > 0; 0 6 j 6 S}.

The one step transition probability matrix of the Markov chain χ is given by

P =


C0 C1

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where each entry is a square matrix of order S + 1.

They are obtained as (only transitions with positive probabilities are indi-

cated below):

[C0]ij =



r, j = i, i = 0

p rt, j = 0, i = 1, 2, . . . , s

p r t, j = i, i = 1, 2, . . . , s

p t, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

t, j = 0, i = s+ 1, s+ 2, . . . , S

0, otherwise

[C1]ij =



prt, j = 0, i = 1, 2, . . . , s

pr t, j = i, i = 1, 2, . . . , s

pt, j = i, i = s+ 1, s+ 2, . . . , S

p r, j = S, i = 0, 1, . . . , s

0, otherwise
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[A2]ij =


qr, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A0]ij =



pq r, j = i i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

p r, j = S i = 0

pqr, j = S, i = 1, 2, . . . , s

0, otherwise

[A1]ij =



r, j = i, i = 0

p q rt, j = 0, i = 1, 2, . . . , s

p q r t, j = i, i = 1, 2, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0

p qr + p q r, j = S, i = 1, 2, . . . , s

0, otherwise

where x = 1− x, x = p, q, r, t.

3.2.2 Stability Condition

For determining the stability condition for the system, consider the transi-

tion matrix A = A0 + A1 + A2 given by
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[A]ij =



r, j = i, i = 0

q r + p q rt, j = 0, i = 1

p q rt, j = 0, i = 2, 3, . . . , s

qr, j = i− 1, i = 2, 3, . . . , s

p q r t+ p q r, j = i, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

p+ p q, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

r, j = S, i = 0

p qr + p r, j = S, i = 1, 2, . . . , s

The system χ is stable if and only if πA0e < πA2e where π is the sta-

tionary probability vector of A satisfying πA = π and πe = 1, where e is

a column vector of 1’s of appropriate order. Let π = (π0, π1, . . . πs, . . . , πS).

Then πA = π gives

πj =

{
δθj−1ηs−jπ0, j = 1, 2, . . . , s
δθj−1

p q
π0, j = s+ 1, s+ 2, . . . , S − 1

πS = δ
pq

(
θs − pqr (ηs−θs)

(η−θ)

)
π0, where θ = 1− pq r − p q r t, η = qr,

δ = r(η−θ)
(η−θ)+p q rt(ηs−θs)

.

Normalizing condition πe = 1 gives

π0 = γ−1 where γ = 1 + δθs(S−s)
pq

+ δ(1− rδ)ηs−θs

η−θ .

Also, πA0e =
[
(pqδ − prδ)ηs−θs

η−θ + (S − s)pδθs

pq
+ pr

]
π0 and

πA2e =
[
qrδ η

s−θs

η−θ + (S − s)δθs
]
π0.



3.2. Description of Model-1 55

Thus we have

Theorem 3.2.1. The Markov chain χ is stable if and only if

s−1∑
i=0

ηs−1−iθi <
(S − s)(pq − p)δθs − pqpr

pqδ(pq − pr − qr)
(3.1)

3.2.3 Steady-state analysis

Now we proceed to the computation of the steady-state probabilities of

the system state. Assume that stability condition (3.1) holds. Let x =

(x0,x1, . . . , ) be the steady-state probability vector of the Markov chain χ.

Thus xP = x and xe = 1. Then xi = x1R
i−1, i > 2 where R is the minimal

solution of the matrix quadratic equation R2A2 +RA1 + A0 = R.

xP = x leads us to

x0C0 + x1A2 = x0

x0C1 + x1A1 + x2RA2 = x1.

In general

xi−1A0 + xiA1 + xi+1A2 = xi, i > 2.

Normalizing condition xe = 1 gives x0e + x1(I −R)−1e = 1.

3.2.4 System Performance Measures

Let x = (x0,x1, . . . , ) be the steady-state probability vector. Partition xi, for

i > 0 as xi = (xi0, xi1, . . . , xiS)
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1. Expected number of customers in the system EC =
∞∑
i=0

i xie

2. Expected inventory level EI =
∞∑
i=0

S∑
j=1

j xij

3. Expected reorder rate ER =q
∞∑
i=1

xi,s+1

4. Expected replenishment rate ERR = r
∞∑
i=0

s∑
j=0

xij

5. Probability that the inventory level is zero =
∞∑
i=0

xi0

6. Expected loss rate of customers EL = p
∞∑
i=0

xi0

7. Expected number of customers waiting in the system when the inven-

tory level is zero EW =
∞∑
i=0

i xi0

8. Expected rate of departure after completing service ED =q
∞∑
i=1

S∑
j=1

xij

9. Expected perishability rate EP= t
∞∑
i=0

S∑
j=1

j xij

3.3 Description of Model-2

We consider a discrete time (s, S) inventory model in which stored items have

a common life time. We modify Lian et al. [36] as follows: Place replenish-

ment order when the inventory level reaches zero at a service completion
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epoch if the number of customers waiting at this epoch is at least s. Else

place the order when the number of waiting customers reaches s. The lead

time is assumed to be zero. The inventory control is governed by the (s, S)

policy with s 6 0 (finite). Assume that the lifetime of inventoried items

follows geometric distribution with parameter t and life completion precedes

arrival.

3.3.1 Analysis of the model

Let Nm denote the number of customers in the system and Im, the in-

ventory level at time m+. We construct a 2-dimensional Markov chain

ψ = {(Nm, Im) : m ∈ N} with state space E = {(i, j) : i > 0; 0 6 j 6 S} to

model the joint queue length and inventory level. The transition probability

matrix of ψ is given by

P =


C0 C1

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where C0, C1, A0, A1, A2 are given by

C0 =

[
p 0

pte p tIS

]
, C1 =

[
p 0

pte ptIS

]

A0 =

[
0 peS

T

0 pqIS

]

A1 =

[
p 0

p qte p q tIS

]
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A2 =

[
0 0

qe1 C3

]
with C3 = (cij)S×S where

cij =

{
q, if j = i− 1, i > 2

0, otherwise

and ei
T = (0, 0, . . . , 0, 1, 0, . . . , 0) where 1 is at the ith place,

IS = diag(1, 1, . . . , 1) of order S and e denotes the column vector of 1′s of

appropriate order.

3.3.2 Stability condition

For obtaining the stability of the system, consider the transition probability

matrix A defined by A = A0 + A1 + A2 whose entries are

[A]ij =



p, j = i, i = 0

q + p qt, j = i− 1, i = 1

p qt, j = 0, i = 2, 3, . . . , S

pq + p q t, j = i, i = 1, 2, . . . , S

q, j = i− 1, i = 1, 2, . . . , S

0, otherwise

Let π = (π0, π1, . . . πs, . . . , πS) be the stationary probability vector associated

with the matrix A. Then πA = π and πe = 1.

πA = π gives

πj =


(p+p qt)π0−p qt

q
, j = 1(

1−pq−p q t
q

)j−1 [
(p+p qt)π0−p qt

q

]
, j = 2, 3, . . . , S

πe = 1 gives

π0 = p qt(q+p qt)S

(p+p qt)(q+p qt)S−pqS .
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πA0e = pqπ0 + pq.

πA2e = q(1− π0).

Hence we have the theorem

Theorem 3.3.1. The system ψ is stable if and only if

p < q(1− π0)(1 + p) (3.2)

where

π0 =
p qt(q + p qt)S

(p+ p qt)(q + p qt)S − pqS

3.3.3 Steady-state analysis

Assume that stability condition (3.2) is satisfied. Let x = (x0,x1, . . .) be

the steady-state probability vector of the Markov process ψ; then x satisfies

xP = x and xe = 1. Then xi has the matrix geometric form

xi = x1R
i−1, i > 2 (3.3)

where R is the minimal nonnegative solution of the matrix quadratic equation

R2A2 +RA1 + A0 = R

. The vectors x0 and x1 can be obtained by solving the equations.

x0C0 + x1A2 = x0 (3.4)

x0C1 + x1A1 + x2RA2 = x1 (3.5)
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and the normalizing condition

x0e + x1(I −R)−1e = 1 (3.6)

Then xi, i > 2 can be obtained from (3.3)

We analyze the system in which the time required to serve the inventory

is negligible. Thus the system has only inventory and is of finite state space.

i.e., we do not encounter simultaneously a queue of inventoried items and one

of customers. Also assume that t < t. The corresponding Markov chain is

labeled as ψ̂ = {Im : m ∈ N} where Im denotes the inventory level at epoch

m.

The state space of the process is E = {−(s−1),−(s−2), . . . , 0, 1, . . . , S}
and its transition probability has entries given by

[P̂ ]ij =



p, j = i, i = −(s− 1),−(s− 2), . . . , 0

p, j = S, i = −(s− 1)

p, j = i− 1, i = −(s− 2),−(s− 3), . . . , 0

pt, j = −1, i = 1, 2, . . . , S

p t j = i, i = 1, 2, . . . , S

tp+ pt, j = 0, i = 1

tp, j = 0, i = 2, 3, . . . , S

pt, j = i− 1, i = 2, 3, . . . , S

0 otherwise

Let π̂ = (π̂−(s−1), π̂−(s−2), . . . , π̂0, π̂1, . . . , π̂S) be the steady-state vector of

the process ψ̂. Then π̂P̂ = π̂ and π̂e = 1. On solving these
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π̂j = p(pt)
S−j

(1−p t)S−j+1 π̂−(s−1), j = 1, 2, . . . , S;

π̂0 = (1+(s−1)t)
1−t π̂−(s−1) − t

1−t ;

π̂−1 = π̂−2 = . . . = π̂−(s−2) = π̂−(s−1).

Also normalizing condition π̂e = 1 gives

π̂−(s−1) = t(1−p t)S

st(1−p t)S
+pt[(1−p t)S−(pt)

S]
.

3.3.4 System Performance Measures

Let x = (x0,x1, . . .) be the steady-state probability vector and xi, i > 0, be

partitioned as xi = (xi0, xi1, . . . , xiS).

Then we have expression for following performance meassures :

1. Expected number of customers in the system EC =
∞∑
i=0

i xie

2. Expected inventory level EI =
∞∑
i=0

S∑
j=1

j xij

3. Expected reorder rate ER = q
∞∑
i=0

xi,0

4. Expected number of customers waiting in the system when the inven-

tory level is zero EW =
∞∑
i=0

i xi0

5. Expected perishability rate EP= t
∞∑
i=0

S∑
j=1

j xij



62
Chapter 3. Discrete Time inventory models with common life time and

positive service time

3.4 Description of Model-3

We consider a discrete time (s, S) perishable inventory system in which items

fail one by one and that life time follows geometric distribution with param-

eter t. No customer joins when the inventory level is zero.

3.4.1 Analysis of the model

Let Nm denote the number of customers in the system and Im, the inventory

level at time m+. Then consider the Markov chain ϕ = {(Nm, Im) : m ∈ N}
with state space E = {(i, j) : i > 0; 0 6 j 6 S}.
The one step transition probability matrix P of this Markov chain is given

by

P =


C0 C1 0 0 . . .

A2 A1 A0 0 . . .

0 A2 A1 A0 . . .
...

...
...

...
. . .


where each entry is a square matrix of order S + 1. The entries of these

matrices are described below:

[C0]ij =



r, j = i, i = 0

p rt, j = i− 1, i = 1, 2, . . . , s

pt, j = i− 1, i = s+ 1, s+ 2, . . . , S

p r t, j = i, i = 1, 2, . . . , s

p t, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

0, in all other cases
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[C1]ij =



prt, j = i− 1, i = 1, 2, . . . , s

p t, j = i− 1, i = s+ 1, s+ 2, . . . , S

pr t, j = i, i = 1, 2, . . . , s

p t, j = i, i = s+ 1, s+ 2, . . . , S

p r, j = S, i = 0, 1, . . . , s

0, in all other cases

[A2]ij =


qr, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, in all other cases

[A0]ij =



pq r, j = i i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

p r, j = S i = 0

pqr, j = S, i = 1, 2, . . . , s

0, in all other cases

[A1]ij =



r, j = i, i = 0

p q rt, j = i− 1, i = 1, 2, . . . , s

p qt, j = i− 1, i = s+ 1, s+ 2, . . . , S

p q r t, j = i, i = 1, 2, . . . , s

p q t j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0

p qr + p q r, j = S, i = 1, 2, . . . , s

0, in all other cases

where x = 1− x, x = p, q, r, t.



64
Chapter 3. Discrete Time inventory models with common life time and

positive service time

3.4.2 Stability Condition

For determining the stability condition of the system, consider the transition

matrix A = A0 + A1 + A2. Its entries are given below:

[A]ij =



r, j = i, i = 0

q r + p q rt, j = i− 1, i = 1, 2, . . . , s

p q r t+ p q r, j = i, i = 1, 2, . . . , s

pq + p qt, j = i− 1, i = s+ 1, s+ 2, . . . , S

p+ p q t, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

r, j = S, i = 0

qr + p q r, j = S, i = 1, 2, . . . , s

0, in all other cases.

The process ϕ is stable if and only if πA0e < πA2e where π is the

stationary probability vector of A satisfying πA = π and πe = 1, with e,

a column vector of 1’s of appropriate order. Let π = (π0, π1, . . . πs, . . . , πS).

Then πA = π gives

πj =

(
(1−r)[1−q r(p+p t)]

j−1

(q r+p q rt)j

)
π0, j = 1, 2, . . . , s

πs+j = 1−r
p

(
1−q r(p+p t)
(q r+p q rt)

)s
(1−q t)j−1

(q+qt)j π0, j = 1, 2, . . . , S − s− 1

πS = (1− r)
(
pq(q r+p q rt)s+(q+pq)[1−q r(p+p t)]s

p(1−q t)(q r+p q rt)s

)
π0

Normalizing condition πe = 1 gives

π0 =
(

pq(q r+p q rt)s

(pqr+(S−s)r)[1−q r(p+p t)]s+pqr(q r+p q rt)s

)
.

πA0e =
{
−pq

[
[1−q r(p+p t)]s

(q r+p q rt)s

]
− pq + pr

}
π0 + p.
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πA2e =
{

(qr + pqr − pq)
[

[1−q r(p+p t)]s
(q r+p q rt)s

]
− qr − pqr

}
π0 + pq.

Theorem 3.4.1. The Markov Chain ϕ is stable if and only if

[
qr + p q rt

1− q r(p t+ p)

]s
<

pq + pqr + (S − s)r − pq r − p(S−s)r
pq

2pr + qr − pq
.

3.4.3 Steady-state analysis

Now, we proceed to the computation of the steady-state probabilities of the

system state. Let x = (x0,x1, . . .) be the steady-state probability vector of

the Markov process ϕ. We assume that xi = x0R
i, i > 1 where R is the

minimal solution of the matrix quadratic equation R2A2 +RA1 + A0 = R.

xP = x leads us to

x0C0 + x1A2 = x0

x0C1 + x1A1 + x2A2 = x1.

xi−1A0 + xiA1 + xi+1A2 = xi, i > 2.

Also xe = 1 gives x0e + x1(I −R)−1e = 1.

3.4.4 System Performance Measures

To get a complete picture of the system it is essential to compute the long run

characteristics of the system state. Let x = (x0,x1, . . .) be the steady-state

probability vector and xi, i > 0 be partitioned as xi = (xi0, xi1, . . . , xiS).

1. Expected number of customers in the system EC =
∞∑
i=0

i xie.
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2. Expected inventory level EI =
∞∑
i=0

S∑
j=1

j xij.

3. Expected reorder rate ER = q
∞∑
i=1

xi,s+1 + t(s+ 1)
∞∑
i=0

xi,s+1.

4. Expected replenishment rate ERR = r
∞∑
i=0

s∑
j=0

xij.

5. Expected loss rate of customers EL = p
∞∑
i=0

xi0.

6. Expected number of customers waiting in the system when the inven-

tory level is zero EW =
∞∑
i=0

i xi0.

7. Expected rate of departure after completing service ED = q
∞∑
i=1

S∑
j=1

xij.

8. Expected perishability rate EP= t
∞∑
i=0

S∑
j=1

j xij.

3.5 Cost Analysis

We analyze numerically the steady-state expected cost rate under the follow-

ing parameters.

Let c0 denote the fixed ordering cost

c1 - procurement cost/ unit

c2 - holding cost of inventory /unit/unit time

c3 - holding cost of customers/unit/unit time

c4 - cost due to the loss of customers /unit/unit time

c5 - the replacement (disposal) cost/unit decayed(perished)
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Then

For Model 1, the Expected Total Cost

ETC = [c0 + (S − s)c1]ER + c2EI + c3EW + c4EL+ c5EP.

For model 2

ETC = [c0 + Sc1]ER + c2EI + c3EW + c5EP.

For Model 3

ETC =

[
c0 +

s∑
i=0

r(S − i)c1

]
ER + c2EI + c3EW + c4EL+ c5EP.

3.6 Numerical illustration and comparison of

the performance of the different models

Table 3.1: Effect of p on Model-1 q = 0.8, r = 0.7,s = 5,S = 20
p EC EI ER EL EP

t = 0.1
0.1 0.1436 16.7681 0.0000 0.0110 0.2321
0.2 0.4134 15.6945 0.0014 0.0179 0.4838
0.3 1.0601 14.5163 0.0101 0.0187 0.7531
0.4 4.0861 13.2924 0.0323 0.0193 1.0571
0.42 6.7442 13.0006 0.0388 0.0203 1.1226

t = 0.2
0.1 0.1294 15.577 0.0000 0.0197 0.4313
0.2 0.3798 15.4276 0.0003 0.0328 0.9513
0.3 1.0050 14.8326 0.0052 0.0352 1.5336
0.4 4.0273 13.5903 0.0272 0.0382 2.1474
0.42 6.6973 13.2176 0.0350 0.0391 2.2704

Tables 3.1, 3.2 and 3.3 indicate that in all the models, expected number

of customers and expected perishability rate increase and inventory level
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Table 3.2: Effect of p on Model-2
p EC EI ER EP

q = 0.8,t = 0.1,s = 5,S = 20
0.1 0.1551 11.4101 0.0582 0.1579
0.2 0.4044 10.3014 0.0570 0.3161
0.3 0.9218 9.5506 0.0537 0.4889
0.4 2.8875 9.1915 0.0503 0.7047
0.42 4.1783 9.1756 0.0497 0.7544

q=0.8,t=0.2,s=5,S=20
0.1 0.1592 12.2137 0.0562 0.3383
0.2 0.4331 11.5592 0.0560 0.7125
0.3 1.0220 11.0350 0.0559 1.1413
0.4 3.3286 10.6827 0.0547 1.6660
0.42 4.9502 10.6407 0.0546 1.7892

decreases as arrival rate p increases. Expected reorder rate also increases for

models 1 and 3 but decreases in model 2. This is because the lead time is zero

for model 2. In all models as maximum level of inventory is increased, the

expected inventory level and expected number of customers increase. There

is a decrease in the expected reorder rate. ( See tables 3.4, 3.5 and 3.6). From

tables 3.7, 3.8 and 3.9 as service rate q increases expected inventory level and

expected customers also decrease in all models. From tables 3.10, 3.11 and

3.12 we can see that as s increases, expected inventory level increases and

expected number of customers decreases. Table 3.15 shows that as arrival

rate p increases, expected cost also increases in model-1 and model-3 whereas

it is a strictly convex function for model-2.

Figures 3.1 and 3.2 show that expected cost increase as S increases. As

q increases, cost function is convex for all models. (See figures 3.3, 3.4). The

expected total cost is minimum for model-2.
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Figure 3.1: S verses ETC for Model-1 and Model-2 when s = 5, p = 0.4,
q = 0.8, r = 0.7, t = 0.2, c0 = 100, c1 = 10, c2 = 2, c3 = 3, c4 = 5, c5 = 4
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Figure 3.2: Model-3 : S versus ETC when s = 5, p = 0.4, q = 0.8, r = 0.7,
t = 0.2, c0 = 100, c1 = 10, c2 = 2, c3 = 3, c4 = 5, c5 = 4
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Figure 3.3: q versus ETC Model-1 and model-2 when s = 5, S = 20, p = 0.2,
r = 0.7, t = 0.2, c0 = 100, c1 = 10, c2 = 2, c3 = 3, c4 = 5, c5 = 4
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Table 3.3: Effect of p on Model-3
p EC EI ER EP

t = 0.1
0.1 0.1606 12.8165 0.0527 0.1776
0.2 0.4473 12.7243 0.0534 0.3944
0.3 1.1011 12.6396 0.0541 0.6644
0.4 4.0879 12.5338 0.0621 1.0092
0.42 6.6965 12.4965 0.0692 1.0889

t = 0.2
0.1 0.1603 12.7498 0.0523 0.3533
0.2 0.4459 12.6665 0.0531 0.7847
0.3 1.0965 12.5926 0.0546 1.3226
0.4 4.0617 12.5065 0.0601 2.0121
0.42 6.6384 12.4759 0.0622 2.1723

Table 3.4: Effect of S on Model-1 p = 0.4, q = 0.8,r = 0.7,t = 0.2
S EC EI ER EL EP

s = 5
20 4.0273 13.5903 0.0272 0.0200 2.1474
25 4.2123 16.8719 0.0188 0.0195 2.6738
30 4.3317 20.2636 0.0139 0.0191 3.2172
35 4.4148 23.7516 0.0108 0.0189 3.7763
40 4.4757 27.3252 0.0086 0.0188 4.3500

Table 3.5: Effect of S on Model-2
S EC EI ER EP

p = 0.4,q = 0.8,t = 0.2,s = 5
20 3.328 10.6827 0.0547 1.6660
25 3.6540 13.2296 0.0405 2.0923
30 3.8737 15.7639 0.0322 2.5150
35 4.0320 18.2906 0.0268 2.9357
40 4.1516 20.8126 0.0229 3.3554
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Table 3.6: Effect of S on Model-3
S EC EI ER EP
p = 0.4,q = 0.8,r = 0.7,t = 0.2,s = 5

20 4.0617 12.5065 0.0521 2.0121
25 4.2585 15.0120 0.0392 2.4338
30 4.3873 17.5167 0.0315 2.8533
35 4.4781 20.0208 0.0263 3.2718
40 4.5455 22.5245 0.0226 3.6897

Table 3.7: Effect of q on Model-1 p = 0.2, r = 0.2, s = 5, S = 20
q EC EI ER EL EP

t = 0.2
0.5 0.8722 15.4927 0.0018 0.0250 1.4897
0.6 0.6114 15.4821 0.0009 0.0286 1.2576
0.7 0.4691 15.4654 0.0005 0.0310 1.0844
0.8 0.3798 15.4276 0.0003 0.0328 0.9513
0.9 0.3188 15.3850 0.0002 0.0342 0.8463

Table 3.8: Effect of q on Model-2
q EC EI ER EP

p=0.2, ,t=0.2,s=5,S=20
0.3 4.4758 11.8175 0.0205 1.9380
0.4 1.5624 11.6950 0.0277 1.4368
0.5 0.9457 11.6349 0.0349 1.1435
0.6 0.6780 11.5993 0.0422 0.9508
0.7 0.5285 11.5758 0.0495 0.8143
0.8 0.4331 11.5592 0.0568 0.7125
0.9 0.3669 11.5471 0.0641 0.6335
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Table 3.9: Effect of q on Model-3
q EC EI ER EP

p=0.2, ,r=0.2,s=5,S=20
0.3 4.4720 12.4965 0.0192 3.0699
0.4 1.5774 12.4915 0.0256 2.3029
0.5 0.9580 12.4888 0.0319 1.8432
0.6 0.6881 12.4869 0.0382 1.5372
0.7 0.5369 12.4852 0.0446 1.3187
0.8 0.4402 12.4834 0.0509 1.1548
0.9 0.3731 12.4818 0.0573 1.0273

Table 3.10: Effect of s on Model-1 p = 0.4,q = 0.8,r = 0.7,t = 0.2
s EC EI ER EL EP

S = 50
5 4.5581 34.6949 0.0058 0.0186 5.5359
10 4.5217 35.7418 0.0070 0.0187 5.7265
15 4.4754 36.8552 0.0086 0.0188 5.9268
20 4.4145 38.0412 0.0108 0.0189 6.1365
25 4.3314 39.3062 0.0139 0.0191 6.3544

Table 3.11: Effect of s on Model-2
s EC EI ER EP

p=0.4,q=0.8,t=0.2,S=50
5 4.3201 25.8475 0.0178 4.1928
10 4.1212 27.5870 0.0208 4.4511
15 3.9763 29.6050 0.0250 4.7650
20 3.8098 31.9197 0.0314 5.1163
25 3.6407 35.0729 0.0308 5.5661
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Table 3.12: Effect of s on Model-3
s EC EI ER EP
p = 0.4,q = 0.8,r = 0.7,t = 0.2,S = 50
5 4.6390 27.5308 0.0176 4.5245
10 4.5973 30.0275 0.0198 4.9296
15 4.5452 32.5240 0.0226 5.3316
20 4.4777 35.0203 0.0263 5.7287
25 4.3868 37.5161 0.0315 6.1183

Table 3.13: Effect of r on Model-1 p = 0.4, q = 0.8, s = 5, S = 20
r EI ER EL EW EP

t = 0.2
0.2 11.6383 0.0202 0.0733 0.0435 1.7738
0.4 12.9973 0.0243 0.0364 0.0095 2.0177
0.6 13.4627 0.0265 0.0236 0.0026 2.1171
0.8 13.6833 0.0278 0.0173 0.0007 2.1707
0.9 13.7535 0.0283 0.0152 0.0003 2.1891

Table 3.14: Effect of r on Model-3 p = 0.4, q = 0.8, s = 5, S = 20
r EI ER EL EW EP

t = 0.2
0.2 11.6734 0.0464 0.0084 0.0349 1.7694
0.4 12.2710 0.0501 0.0070 0.0043 1.9196
0.6 12.4561 0.0516 0.0000 0.0004 1.9892
0.8 12.5435 0.0524 0.0000 0.0000 2.0303
0.9 12.5717 0.0527 0.0000 0.0000 2.0451

Table 3.15: Variations in arrival rate p with ETC. q = 0.8, r = 0.7, t = 0.1,
s = 5, S = 20,c0 = 100, c1 = 10,c2 = 2,c3 = 3,c4 = 5,c5 = 4

c6 = 2
model 1 model 2 model 3

p ETC ETC ETC
0.1 34.9534 38.6341 231.2867
0.2 34.9990 37.6558 240.1999
0.3 37.8456 37.7351 256.9755
0.4 51.1865 43.1437 317.7525
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Figure 3.4: Model-3 : q versus ETC when s = 5, S = 20, p = 0.2, r = 0.5,
t = 0.3, c0 = 100, c1 = 10, c2 = 2, c3 = 3, c4 = 5, c5 = 4



Chapter 4

(s, S) policy with inventory

dependent customer arrival

4.1 Introduction

In chapters 2 and 3 we assumed that customers do not join the queue if

there is no item in the inventory. In other an arriving customer joins the

system if there is atleast one item in the inventory. However during lead

time customers may be discouraged to join the system in case inventory on

hand is less than or at most equal to the number of customers present in

the system. In this situation such an arrival will get service only after the

commodity is replenished. In the extreme case a new arrival does not join if

the inventory level is less than or equal to the number of customers in the

system. This leads to a finite system where as the system described at the

beginning of this paragraph turns out to be a countably infinite system.

In this chapter we discuss two inventory models with positive service time

75
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and lead time. In model 1 we assume that an arriving customer joins the

system only if the number in the queue is less than the number of items in

the inventory at that epoch. In model 2 it is assumed that if the inventory

level is greater than or equal to s+1 at the time of arrival of a customer, then

he necessarily joins. However if it is less than or equal to s (but larger than

zero) then he joins only if the number of customers present is less than the on

hand inventory since this guaranties that he gets service without waiting for

replenishment. In real life situation, if the quantity of life saving medicine

in a medical shop is less than the number of customers waiting for that

medicine, the newly arriving customer decides not to join the system and

goes elsewhere.

4.2 Mathematical Formulation of Model 1

Consider a single product (s, S) inventory system in which customers ask-

ing for the product arrive according to a Bernoulli process with parameter

p. Each demand is for exactly one unit. Here we assume that an arriving

customer joins the system only if the number in the queue is less than the

number of items in the inventory at that epoch. The service time follows

geometric distribution with parameter q. Whenever the inventory level de-

pletes to s due to demand, an order is placed for replenishment up to S.

Lead time for replenishment of the inventory has a geometric distribution

with parameter r. Each time a replenishment is done, the on hand inventory

is raised up to the maximum level S.
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4.3 Analysis of the model

At time m+ the system can be described by {Xm : m ∈ N} = {(Nm, Im) :

m ∈ N} where Nm is the number of customers in the system and Im is the

inventory level.

It can be shown that {(Nm, Im) : m ∈ N} is a Markov chain with finite state

space

E = {(i, j) : 0 6 i < j; 0 6 j 6 S}.

The corresponding one-step transition probability matrix P is given by

P =



B0,0 B0,1

B1,0 A1,1 A1,2

A2,1 A2,2 A2,3

. . . . . . . . .

AS−2,S−3 AS−2,S−2 AS−2,S−1

AS−1,S−2 AS−1,S−1 AS−1,S

AS,S−1 AS,S


where

[B0,0] is of dimension (S + 1)× (S + 1) and is given by

[B0,0]ij =



r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

0, otherwise

[B0,1] is of dimension (S + 1)× S and is given by

[B0,1]ij =


p r, j = i, i = 1, 2, . . . , s

p r, j = S, i = 0, 1, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

0, otherwise
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[B1,0] is of dimension S × (S + 1) and is given by

[B1,0]ij =


q r, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A1,1] is of dimension S × S and is given by

[A1,1]ij =



q r, j = i, i = 1

p q r, j = i, i = 2, 3, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S

p q r, j = S − 1, i = 1, 2, . . . , s

p qr, j = S, i = 1, 2, . . . , s

0, otherwise

[A1,2] is of dimension S × (S − 1) and is given by

[A1,2]ij =


pq r, j = i, i = 2, 3, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S, i = 1, 2, . . . , s

0, otherwise

[A2,1] is of dimension (S − 1)× S and is given by

[A2,1]ij =


q r, j = i− 1, i = 2, 3, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise

[A2,2] is of dimension (S − 1)× (S − 1) and is given by

[A2,2]ij =



q r, j = i, i = s− 1

p q r, j = i, i = s

p q, j = i, i = s+ 1, s+ 2, . . . , S

p qr, j = S, i = 2, . . . , s

pqr, j = S − 1, i = 2, 3, . . . , s

0, otherwise
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[A2,3] is of dimension (S − 1)× (S − 2) and is given by

[A2,3]ij =


pq r, j = i, i = s

p, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S, i = 1, 2, . . . , s

0, otherwise

...

AS−1,S =

[
0

p

]
;

AS,S−1 =
[
q 0

]
;

AS,S = q.

4.4 Long run System behaviour

Assuming p, q, r ∈ (0, 1) the Markov chain {Xm} is seen to be irreducible

and positive recurrent. An irreducible Markov Chain on finite state space is

stable.

Let x = (x0,x1, . . . ,xS−1, xS) be the steady-state vector of {Xm}. Then

xP = x and xe = 1 gives

x0 = x1D0 where D0 = B1,0(I −B0,0)−1;

x1 = x2A2,1(I − A1,1)−1D1 where D1 = [I −D0B0,1(I − A1,1)−1]−1;

x2 =x3A3,2(I−A2,2)−1D2 where D2 =[I−A2,1(I−A1,1)−1D1A1,2(I−A2,2)−1]−1;

x3 = x4A4,3(I−A3,3)−1D3 where D3 =[I−A3,2(I−A2,2)−1D2A2,3(I−A3,3)−1]−1;
...

xS−1 =xSAS,S−1(I−AS−1,S−1)−1DS−1

where DS−1 = [I−AS−1,S−2(I−AS−2,S−2)−1DS−2AS−2,S−1(I−AS−1,S−1)−1]−1.
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xS can be found using the normalizing condition

x0e + x1e + . . .+ xS−1e + xS = 1.

4.5 System Performance Measures

Let the steady-state probability vector x be partitioned as x0 =(x0,0, x0,1, . . . , x0,S);

x1 =(x1,1, x1,2, . . . , x1,S); x2 =(x2,2, x2,3, . . . , x2,S); . . . ;xS−1 =(xS−1,S−1, xS−1,S);

xS =xS,S.

We have then the following measures for evaluating performance of the

system.

1. Expected number of customers in the system is given by

EC =
S∑
i=0

ixie.

2. Expected inventory level is given by

EI =
S∑
j=1

j∑
i=0

j xi,j.

3. Expected reorder rate is given by

ER = q
s∑
i=1

xi,s+1.

4. Expected replenishment rate is given by

ERR = r
s∑
j=1

j∑
i=0

xi,j.

5. Probability that the inventory level is zero is
S∑
i=0

xi,0.
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6. Expected loss rate of fresh arrivals is given by

EL = p

S∑
i=1

xi,i.

7. Expected rate of departure after completing service is ED = q
S∑
j=1

j∑
i=1

xi,j.

4.6 Model 2

In this model we assume that at the time of arrival of a customer, if the

inventory level is > s+ 1, then he joins. However if it is 6 s (but larger than

zero) then he joins only if the number of customers present is less than the

on hand inventory.

4.7 Analysis

The state of the system can be described by {Xm} = {(Nm, Im) : m ∈ N}
where Nm is the number of customers in the system and Im is the inventory

level at epoch after the occurence of probable events. Then {Xm} is a Markov

Chain with countably infinite state space

{(i, j) : i > 0; 0 6 j 6 S}. It is partitioned into levels as {(0, 0), . . . , (0, S),

(1, 0), . . . , (1, S), . . . , (s, 0), . . . , (s, S), (s+1, 0), . . . , (s+1, S), . . .}. When the

inventory level j satisfies s+ 1 6 j 6 S, transition from (i, j) to (i+ 1, j) is

possible with probability p which is not possible when j 6 s and i > j.
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The corresponding one step transition probability matrix P is

P =



0 1 2 · · · s− 1 s s+ 1 s+ 2 · · ·
0 E0 C0

1 B1 E1 C1

2 B2 E2 C2
...

. . . . . . . . .

s Bs Es Cs

s+ 1 A2 A1 A0
...

. . . . . . . . .


where each sub-matrix is of order (S + 1)× (S + 1). They are given by

[E0]ij =



r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pr, j = S, i = 0, 1, . . . , s

0, otherwise

[Ek]ij =



r, j = i, i = 0, k = 1, 2, . . . , s

q r, j = i, i = 1, . . . , k k = 1, . . . , s

p q r, j = i, i = k + 1, . . . , s, k = 1, . . . , s− 1

pqr, j = i− 1, i = k + 1, . . . , s, k = 1, . . . , s− 1

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

pr, j = S, i = 0, k = 1, 2, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

p q r, j = S − 1, i = 1, 2, . . . , s k = 1, 2, . . . , s

p qr, j = S, i = 1, 2, . . . , s k = 1, 2, . . . , s

0, otherwise
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[C0]ij =


p r, j = i, i = 1, 2, . . . , s

p r, j = S, i = 0, 1, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

0, otherwise

[Ck]ij =



pr, j = S, i = 0 k = 1, 2, . . . , s

pqr, j = S, i = 1, 2, . . . , s k = 1, 2, . . . , s

pq r, j = i, i = k + 1, . . . , s, k = 1, . . . , s− 1

pq j = i, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

0, otherwise

[Bk]ij =



qr, j = i− 1, i = 1, . . . , k k = 1, . . . , s

pqr, j = i− 1, i = k + 1, . . . , s k = 1, . . . , s− 1

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S k = 1, 2, . . . , s

pqr, j = S − 1, i = 1, 2, . . . , s k = 1, 2, . . . , s

0, otherwise

[A1]ij =



r, j = i, i = 0

pr, j = S, i = 0

q r, j = i, i = 1, 2, . . . , s

p q, j = i, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

p qr, j = S, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 2, s+ 3, . . . , S

0, otherwise

[A2]ij =


q r, j = i− 1, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1, s+ 2, . . . , S

pqr, j = S − 1, i = 1, 2, . . . , s

0, otherwise
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[A0]ij =



pr, j = S, i = 0

pqr, j = S, i = 1, 2, . . . , s

p, j = i, i = s+ 1, s+ 2, . . . , S

pq, j = i, i = s+ 1, s+ 2, . . . , S

0, otherwise

4.8 Stability condition

For determining the stability condition for the system under study, consider

the transition probability matrix A = A0 + A1 + A2 , which is obtained as

[A]ij =



r, j = i, i = 0

r, j = S, i = 0

qr, j = i− 1, i = 1, 2, . . . , s

q r, j = i, i = 1, 2, . . . , s

qr, j = S − 1, i = 1, 2, . . . , s

qr, j = S, i = 1, 2, . . . , s

pq, j = i− 1, i = s+ 1

p+ p q, j = i, i = s+ 1

q, j = i− 1, i = s+ 2, s+ 3, . . . , S

q, j = i, i = s+ 2, s+ 3, . . . , S

0, otherwise

Let π = (π0, π1, . . . πs, πs+1, . . . , πS) be the stationary probability vector

associated with A. Then πA = π and πe = 1, where e is a column vector of

1’s of appropriate order. πA = π gives

πj =


(1−r)(1−q r)j−1

(q r)j π0, j = 1, 2, . . . , s;
(1−r)(1−q r)j−1

p q(q r)j−1 π0, j = s+ 1;
(1−r)(1−q r)j−2

q(q r)j−2 π0, j = s+ 2, s+ 3, . . . , S − 1.
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πS = (1−r)[q(q r)s+q(1−q r)s]
q(q r)s π0.

Further πe = 1 gives

π0 = q(q r)s

(1−q r)s[p q+(S−s−1)r+r q]+rq(q r)s

πA0e = (1−q r)s[pr+(S−s−1)pp qr]+ppqr(qr)s

pq(q r)s π0.

πA2e = (1−q r)s[qr+r+(S−s−1)pr]−(q r)s+1

(q r)s π0.

Theorem 4.8.1. The Markov chain under study is stable if and only if

(q r)s(pq2r + ppqr)

(1− q r)s [pq2r + pqr − pr + (S − s− 1)pr(p− q)]
< 1 (4.1)

4.9 Steady-state analysis

Let x = (x0,x1, . . . ,xs, xs+1, xs+2, . . .) be the steady-state vector of Xm,

where xi =(xi,0, xi,1, . . . , xi,S) for i > 0.

Then

xP = x, xe = 1. (4.2)

Under the stability condition (4.1), the steady-state probability vector x is

obtained as xi = xs+1R
i−(s+1); i > s + 2, where R is the minimal non

negative solution to the matrix equation R2A2 +RA1 +A0 = R. The vectors

x0,x1, . . . ,xs, xs+1 are obtained from the equations

x0E0 + x1B1 = x0 (4.3)

xi−1Ci−1 + xiEi + xi+1Bi+1 = xi, 1 6 i 6 s− 1 (4.4)

xs−1Cs−1 + xsEs + xs+1A2 = xs (4.5)
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xsCs + xs+1A1 + xs+2A2 = xs+1 (4.6)

From (4.6), we get xsCs + xs+1(A1 − I −RA2) = 0.

Thus xs+1 = xsCs(I−A1−RA2)−1 = xsRs, where Rs = Cs(I−A1−RA2)−1.

From (4.5), we have

xs−1Cs−1 + xs(Es − I −RsA2) = 0.

Thus xs = xs−1Cs−1(I − Es −RsA2)−1 = xs−1Rs−1, where

Rs−1 = Cs−1(I − Es −RsA2)−1.

From (4.4) we have

xi = xi−1Ri−1; 1 6 i 6 s− 1 where Ri−1 = Ci−1(I − Ei −Rs−1Bi+1)−1.

Finally x0 can be found from the normalizing condition

x0 e+ x1 e+ . . . +xs e+xs+1(I −R)−1e = 1.

That is, x0

(
I +

s−1∑
i=0

∏i

j=0
Rj +

∏s

j=0
Rj(I −R)−1

)
e = 1.

4.10 System Performance Measures

1. Expected number of customers in the system is given by

EC =
∞∑
i=1

i xie =
s∑
i=1

i xie + xs+1R(I−R)−2e + (s+1)xs+1(I−R)−1e.

2. Expected inventory level is EI =
∞∑
i=0

S∑
j=1

j xi,j.

3. Expected reorder rate is ER = q

∞∑
i=1

xi,s+1.

4. Expected replenishment rate is given by ERR = r
∞∑
i=0

s∑
j=0

xi,j.

5. Expected loss rate of fresh arrivals is given by EL = p

∞∑
i=0

xi,0.



4.11. Cost Analysis 87

6. Expected rate of departure ED after completing service = q

∞∑
i=0

S∑
j=1

xi,j.

4.11 Cost Analysis

We analyze numerically the steady-state expected total cost with the follow-

ing.

Let c0 denote the fixed ordering cost

c1 - procurement cost/unit

c2 - holding cost of inventory /unit/unit time

c3 - holding cost of customers/unit/unit time

c4 - cost due to the loss of customers /unit/unit time

Then

For Model 1 and Model 2, the Expected Total Cost

ETC = [c0 + (S − s)c1]ER + c2EI + c3EC + c4EL.

Table 4.1: Effect of S on Model-1. p = 0.3, q = 0.7, s = 5
S Pidle EC EI ER EL ED

r = 0.4
20 0.41041 1.35927 12.51734 0.02506 0.00251 0.41272
25 0.40548 1.40085 15.04177 0.01894 0.00208 0.41616
30 0.40230 1.42963 17.56195 0.01523 0.00175 0.41839
35 0.40007 1.45077 20.07878 0.01273 0.00151 0.41995
40 0.39843 1.46692 22.59291 0.01095 0.00132 0.42110
45 0.39716 1.47962 25.10484 0.00960 0.00118 0.42199

Table 4.3 shows that as the arrival rate p increases, expected number of

customers as well as expected inventory level increases. Expected reorder

rate decreases which is completely against our expectation. This may be due
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Table 4.2: Effect of S on Model-2. p = 0.3, q = 0.7, s = 5
S Pidle EC EI ER EL ED

r = 0.4
20 0.5716 0.52443 12.45552 0.01941 0.00004 0.01361
25 0.5715 0.52477 14.95997 0.01467 0.00003 0.01028
30 0.5715 0.52485 17.46261 0.01179 0.00003 0.00826
35 0.5715 0.52491 19.96405 0.00985 0.00002 0.00690
40 0.5715 0.52495 22.46473 0.00847 0.00002 0.00593
45 0.5714 0.52498 24.96490 0.00742 0.00002 0.00519

to the increase in the number of customers above the reorder level. Expected

rate of departure after completion of service increases. From table 4.4 we

notice that the expected number of customers increases and the expected

inventory level decreases as p increases which is as expected. Here expected

reorder rate and ED also increase with increasing value of p.
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Table 4.3: Effect of p on Model-1. q = 0.7,s = 5,S = 20
p Pidle EC EI ER EL ED

r = 0.3
0.400 0.18429 3.10560 12.30936 0.02388 0.02734 0.57100
0.425 0.13985 3.69822 12.33383 0.02117 0.04100 0.60210
0.450 0.10388 4.30922 12.38669 0.01779 0.05797 0.62728
0.475 0.07627 4.91289 12.46673 0.01416 0.07776 0.64661
0.500 0.05602 5.48963 12.56962 0.01068 0.09967 0.66078
0.525 0.04170 6.02814 12.68933 0.00764 0.12302 0.67081
0.550 0.03181 6.52450 12.81963 0.00517 0.14723 0.67773
0.575 0.02507 6.97973 12.95500 0.00330 0.17191 0.68245
0.600 0.02047 7.39737 13.09107 0.00199 0.19681 0.68567

r = 0.4
0.400 0.17118 3.24947 12.44302 0.02443 0.02636 0.58017
0.425 0.12573 3.88555 12.47622 0.02156 0.04004 0.61199
0.450 0.08945 4.53842 12.53896 0.01800 0.05715 0.63738
0.475 0.06219 5.17810 12.62933 0.01422 0.07718 0.65647
0.500 0.04272 5.78265 12.74208 0.01063 0.09938 0.67009
0.525 0.02939 6.34053 12.87043 0.00752 0.12302 0.67943
0.550 0.02052 6.84898 13.00772 0.00504 0.14751 0.68564
0.575 0.01471 7.31071 13.14836 0.00319 0.17245 0.68970
0.600 0.01093 7.73089 13.28813 0.00191 0.19760 0.69235

r = 0.5
0.400 0.16281 3.35611 12.52091 0.02476 0.02569 0.58604
0.425 0.11690 4.02446 12.56128 0.02176 0.03937 0.61817
0.450 0.08072 4.70769 12.63205 0.01807 0.05657 0.64349
0.475 0.05401 5.37252 12.73057 0.01417 0.07673 0.66220
0.500 0.03536 5.99544 12.85078 0.01050 0.09909 0.67525
0.525 0.02293 6.56511 12.98532 0.00737 0.12288 0.68395
0.550 0.01490 7.07996 13.12730 0.0049 0.14750 0.68957
0.575 0.00983 7.54417 13.27118 0.00308 0.17256 0.69312
0.600 0.00666 7.96420 13.41294 0.00182 0.19782 0.69534
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Table 4.4: Some measures of Model-2 q = 0.7,s = 5,S = 20
p Pidle EC EI ER EL ED

r = 0.3
0.400 0.4312 0.78998 12.09634 0.02503 0.00087 0.01534
0.425 0.3958 0.87849 12.03603 0.02655 0.00115 0.0156
0.450 0.3610 0.97460 11.98145 0.02803 0.00147 0.01583
0.475 0.3266 1.08523 11.92748 0.02953 0.00185 0.01600
0.500 0.2925 1.21591 11.87408 0.03109 0.0023 0.01612
0.525 0.2588 1.37615 11.82097 0.03278 0.00281 0.01620
0.550 0.2255 1.58437 11.76729 0.03473 0.00337 0.01622
0.575 0.1925 1.88187 11.71082 0.03724 0.00400 0.01624
0.600 0.1592 2.38153 11.64574 0.04096 0.00469 0.01635

r = 0.4
0.400 0.4275 0.81025 12.25618 0.02583 0.00020 0.01535
0.425 0.3938 0.88429 12.22904 0.02720 0.00026 0.01572
0.450 0.3586 0.98327 12.18449 0.02876 0.00034 0.01592
0.475 0.3234 1.09829 12.14019 0.03036 0.00044 0.01605
0.500 0.2885 1.23601 12.09601 0.03203 0.00057 0.01611
0.525 0.2537 1.40836 12.05153 0.03385 0.00071 0.01612
0.550 0.2191 1.63981 12.00552 0.03601 0.00088 0.01626
0.575 0.1845 1.99035 11.95475 0.03889 0.00107 0.01645
0.600 0.1489 2.64823 11.89015 0.04345 0.00129 0.01656

r = 0.5
0.400 0.4268 0.81367 12.36443 0.02621 0.00004 0.01545
0.425 0.3933 0.88673 12.34523 0.02759 0.00006 0.01587
0.450 0.3578 0.98719 12.30706 0.02920 0.00008 0.01607
0.475 0.3223 1.10471 12.26897 0.03086 0.00010 0.01618
0.500 0.2870 1.24682 12.23077 0.03260 0.00013 0.01623
0.525 0.2517 1.42754 12.19189 0.03452 0.00017 0.01631
0.550 0.2164 1.67716 12.15079 0.03683 0.00021 0.01642
0.575 0.1807 2.07595 12.10320 0.04002 0.00027 0.01656
0.600 0.1433 2.91097 12.03631 0.04538 0.00033 0.01669



Chapter 5

Discrete time (s, S) production

inventory system with positive

service time

5.1 Introduction

In earlier chapters we studied (s, S) inventory system with positive service

time. Order for replenishment was placed when inventory level depletes to s.

Study of inventory system where the processing of inventory requires some

positive amount of time was started by Sigman and Levy [52] in continuous

time set up. Later Bruneel and Kim [13] introduced positive service time in

inventory where service time is assumed to be constant and obtained opti-

mal order quantity that minimizes the total cost using Dynamic Programme

technique. They assumed that new customers can join the system while a

service is going on. Hence a queue of demands can be formed even when

the inventory is available. Berman and Kim [8] assumed probabilistic service
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time and obtained steady state behavior of the system. Krishnamoorthy and

Viswanath [30] were the first to study production inventory with positive

service time in the continuous case. In (s, S) production inventory system,

when the inventory level reaches s, production process is switched on and

when the inventory level reaches S, production process is switched off. Each

production is of one unit. When the inventory level is between s + 1 and

S − 1, the production status is in either ‘on’ or ‘off’ mode. Hence to de-

scribe the system both the inventory level and the production status should

be taken into consideration thereby obtaining a discrete time Markov chain

by providing required additional information such as residual/elapsed service

time.

5.2 The Mathematical model and its analysis

We discuss an (s, S) production inventory system where the processing of

inventory requires a positive random amount of time (discrete). This leads

to the formation of a queue of demands. Demands arrive according to a

Bernoulli process. Service time and lead time are distributed geometrically.

In an (s, S) production inventory system, when the inventory level falls

to s, the production process is immediately ‘switched on’. It is ‘switched off’

when the inventory level reaches S. Each production is of one unit. When

the inventory level is in between s+ 1 and S− 1, the production process can

be either in ‘on’ mode or in ‘off’ mode.

We consider the production inventory system with a single server. De-

mands occur according to Bernoulli process with parameter p. Processing

of inventory requires a positive random amount of time, which is distributed

geometrically with parameter q. When the inventory level reaches s, the pro-

duction is ‘switched on’ and stays in that mode until the inventory reaches S.
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Production time for each unit follows geometric distribution with parameter

r. No customer is allowed to join the system when the inventory level is zero.

Let Nm denote the number of customers in the system, Im, the inventory

level and Cm, the status of the production process at epoch m. Then the

corresponding DTMC is χ = {(Nm, Im, Cm) : m ∈ N}. When the inventory

level is such that 0 6 Im 6 s, the production process is in ‘on’ mode and it

is in ‘off’ mode if Im = S.

If s+ 1 6 Im 6 S − 1, define

Cm =

{
0, if the production is ‘off’ at epoch m

1, if the production is ‘on’ at epoch m
The state space of the Markov Chain χ is given by

E =
⋃
i>0

{{(i, j) : 06j 6 s} ∪ {(i, j, k) : s+16j 6 S−1; k=0, 1} ∪ {(i, S)}}

The transition probability matrix of the process χ is given by

P =


C0 C1

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where each entry is a square matrix of order 2S − s which are given by
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C0 =



r pr

B1 pr
. . . . . .

B1 pr

B1 D1

B2 D2

. . . . . .

B2 D2

B2 D3

B3


with

B1 = p r; B2 =

[
p 0

0 p r

]
; B3 = p;

D1 =
[

0 pr
]
; D2 =

[
0 0

0 pr

]
; D3 =

[
0

pr

]
.

C1 =



0 pr

pr pr
. . . . . .

pr pr

p 0

pr pr
. . . . . .

p 0

pr pr

p


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A2 =



0

qr pqr

pqr pqr
. . . . . .

pqr pqr

E1 F1

E2 F1

. . . . . .

E2 F1

E2 F2

E3 0


with E1 =

[
pq

pqr

]
; E2 =

[
pq 0

0 pqr

]
; E3 =

[
pq 0

]
;

F1 =

[
0 0

pqr 0

]
; F2 =

[
0 0

pqr 0

]
.

A1 =



r pr

α β

γ α β
. . . . . . . . .

γ α β

γ α G0

G1 G2

. . . . . .

G1 G2

G1 G3

G4


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with G0 =
[
β 0

]
; G1 =

[
δ 0

γ α

]
; G2 =

[
0 0

β 0

]
; G3 =

[
0

β

]
; G4 =δ

where α = pqr + pqr; β = pqr; γ = pqr; δ = pq.

A0 =



0 pr

pq r pqr
. . . . . .

pq r pqr

p
. . . . . .

pq r pqr

p


,

where p = 1− p, q = 1− q, r = 1− r.

5.3 Steady-state analysis

For finding the steady-state vector of the process χ = {(Nm, Im, Cm) : m ∈
N}, consider the production inventory system where the time in serving the

inventory is negligible and no backlogs are allowed once the inventory level

reaches zero.

The corresponding Markov chain may be defined as χ̂ = {(Im, Cm) : m ∈ N},
where Im and Cm are as defined earlier. The state space of the process χ̂

is given by Ê =
s⋃
i=0

{i}
S−1⋃
i=s+1

{(i, k) : k = 0, 1}
⋃
{S} and the corresponding

transition probability matrix is given by
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P̂ =



r r

pr B1 r
. . . . . . . . .

pr B1 r

pr B1 D̂1

Ê1 B2 D̂2

Ê2 B2 D̂2

. . . . . . . . .

Ê2 B2 D̂2

Ê2 B2 D̂3

Ê3 B3


where D̂1 =

[
0 r

]
; D̂2 =

[
0 0

0 r

]
; D̂3 =

[
0

r

]
;

Ê1 = p
pq
E1; Ê2 = p

pq
E2; Ê3 = p

pq
E3; and B1, B2, B3 are as defined earlier.

For determining the steady-state vector of the process χ̂, rearrange the tran-

sition probability matrix P̂ as

P̂ =

 P11 O R1

P01 P00 0

0 R2 p

, where

[P11]ij =



r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , S

pr j = i− 1, i = 1, 2, . . . , S − 1

r j = i+ 1, i = 0, 1, . . . , S − 1

0, otherwise

R1 =

[
0

r

]
S×1
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P01 =

[
0 0 . . . p 0 . . . 0

0 0 . . . 0 0 . . . 0

]
(Q−1)×S

P00 =


p

p p
. . . . . .

p p


(Q−1)×(Q−1)

R2 =
[

0 p
]

1×(Q−1)

Let π̂ = (πon, πoff, πS) be the steady-state vector of the process χ̂, where

πon = (π1,0, π1,1, . . . , π1,s, π1,s+1, . . . , π1,S−1),

πoff = (π0,s+1, π0,s+2, . . . , π0,S−1)

π̂ satisfies π̂P̂ = π̂ and π̂e = 1

π̂P̂ = π̂ gives

πon P11 + πoff P01 = πon

πoff P00 + πS R2 = πoff

πon R1 + πS p = πS

By solving the above system of equations, we get

πon = R2 (I − P00)−1 P01 (I − P11)−1 πS and πoff = R2 (I − P00)−1 πS.

From the normalizing condition πe = 1, we can find πS which is obtained as

πS = 1
1+R2 (I−P00)−1(e+P01 (I−P11)−1e)

.

Now, using the vector π̂, we shall find the steady-state probability vector

of the original system. Let x be the steady-state distribution of the original

system. Now let x0 = ρπ̂ and xi = ρ( p
pq

)iπ̂, for i > 1, where ρ is a constant

to be determined. This will satisfies xP = x and xe = 1. Normalizing

condition gives ρ = 1− p
pq

. Now we have the following theorem

Theorem 5.3.1. Under the necessary and sufficient condition that

p < pq , the steady-state vector of the Markov chain {Xm : m > 0} with
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transition probability matrix P , is given by x = (x0,x1, . . . , ) where x0 = ρπ̂

and xi = ρ(
p

pq
)
i

π̂ for i > 1, ρ = 1− p
pq

and the finite probability vector π̂ is

given by π̂ = (πon, πoff, πS) where

πon = R2 (I − P00)−1 P01 (I − P11)−1 πS,

πoff = R2 (I − P00)−1 πS

and πS = 1
1+R2 (I−P00)−1(e+P01 (I−P11)−1e)

.

Above theorem indicates that there exists a decomposition of the state

space of the system state. Let M(z) denote the probability generating func-

tion of the number of customers in the system and N(z), that of the number

of items in the inventory when the production is in ‘on’ mode. Then the joint

partial generating function can be written as the product of the individual

generating functions. This result holds when the production is in ‘off’ mode

as well. Thus we have the following decomposition result.

Theorem 5.3.2. Under the condition of stability, the generating func-

tion for the system state is the product of generating functions of the number

of customers in a Geo/Geo/1 queue and that of the number of items in the

inventory.

5.4 System Performance Measures

1. Mean number EC of customers in the system is given by

EC = p
pq−p .

2. Expected inventory level EI in the system is given by

EI =
s∑
i=0

iπ1,i +
S−1∑
i=s+1

i(π0,i + π1,i) + SπS.
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3. Expected production rate EPR is given by

EPR = r

(
s∑
i=0

π1,i +
S−1∑
i=s+1

π1,i

)
.

4. Expected loss rate of customers ELR when the inventory level is zero

is given by

ELR = p π1,0.

5. Expected rate at which production process is switched ‘on’, is given by

Eon = q

[
∞∑
i=1

ρ(
p

pq

i

)π0,s+1

]
.

5.5 Production cycle

A production cycle is defined as the time between a switch ‘on’ and the

next switch ‘off’ of the production process. When the inventory level is

at s+1 and the production process in ‘off’ mode at a service completion

epoch T0, the production process is switched ‘on’. Then the production

process is turned ‘off’ only at an epoch T1 where the inventory level

reaches the maximum S. The length T1−T0 is the time until absorption

in the Markov Chain {Ym : m > 0} = {(Nm, Im) : m ∈ N} where Nm

and Im are the number of customers in the system and the inventory

level respectively, during the production cycle. The state space of the

process Ym is given by Ê = {(i, j) : i > 0, 0 6 j 6 S − 1}
⋃
{?}, where

? denotes the single absorbing state, representing the switch ‘off’ mode

in the production cycle.

The transition probability matrix of the process Ym is given by

Pm =

[
H e−He

0 1

]
where



5.5. Production cycle 101

H =



D4 D5

D6 B5 B4

D6 B5 B4

D6 B5 B4

. . . . . . . . .


with

[D4]ij =


r, j = i, i = 0

p r, j = i, i = 1, 2, . . . , s

pr j = i+ 1, i = 0, 1, . . . , s− 1

0, otherwise

[D5]ij =


pr, j = i+ 1, i = 0, 1, . . . , s− 1

pr, j = i, i = 1, 2, . . . , s

0, otherwise

[D6]ij =


qr, j = i− 1, i = 1

pqr, j = i− 1, i = 2, 3, . . . , s

pqr j = i, i = 1, 2, . . . , s

0, otherwise

[B5]ij =



r, j = i, i = 0

pr, j = i+ 1, i = 0

p q r + pqr, j = i, i = 1, 2, . . . , s

p qr, j = i+ 1, i = 1, 2, . . . , s− 1

pqr, j = i− 1, i = 2, 3, . . . , s

0, otherwise

[B4]ij =


pr, j = i+ 1, i = 0

pq r, j = i, i = 1, 2, . . . , s

pqr, j = i+ 1, i = 0, 1, . . . , s− 1

0, otherwise.

Now define y = (y0, y1, . . .) where yi = (yi1, yi2, . . . , yiS) with yij stand-

ing for the expected time until absorption in the process, given the
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process has reached the state (i, j). Also define the probability vector

τ = (τ0, τ1, . . .), where each τi is of dimension 1 × S such that τij is

the probability of i customers and j inventory in the system, the pro-

duction process being in the switched ‘on’ mode. Then the expected

length of a production cycle is given by ELP =
∞∑
i=0

τisyis.

5.6 Cost Analysis

Let ck be the fixed cost for starting a production run;

ch -holding cost of inventory /unit/unit time;

cp -the cost of production per inventory;

cl -the cost incurred due to loss of customers.

Consider the cost function ETC = ckEon + clELR + chEI + cpEPR.

The following tables are constructed by fixing values of input parame-

ters and then varying over one or more of them.

5.7 Numerical illustration

Table 5.1: Effect of S on various measures. p = 0.3, q = 0.7, r = 0.3, s = 5,
ck = 1000, cl = 25, ch = 2, cp = 100.

S EI EPR ELR Eon ETC
15 7.4694 0.4642 0.0039 0.0166 78.0475
20 10.0530 0.3887 0.0026 0.0110 70.0410
25 12.5916 0.3491 0.0020 0.0082 68.3430
30 15.1141 0.3252 0.0016 0.0065 69.2880
35 17.6289 0.3093 0.0013 0.0054 71.6210
40 20.1395 0.2980 0.0011 0.0047 74.8060

From table 5.1 we see that, as the maximum inventory level increases, the
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Table 5.2: Effect of s on various measures. p = 0.3, q = 0.7, r = 0.3, S = 25,
ck = 500, cl = 25, ch = 2, cp = 100.

s EI EPR ELR Eon ETC
2 12.2614 0.2562 0.0051 0.0037 52.1210
4 12.4647 0.3126 0.0027 0.0079 60.2070
6 12.7204 0.3912 0.0014 0.0086 68.8960
8 12.9495 0.4938 0.0008 0.0096 80.1000
10 13.0878 0.6265 0.0004 0.0108 94.2400

expected inventory level also increases, expected production rate and loss rate

of customers decreases. Expected total cost (ETC) is convex in nature as S

increases. Table 5.2 shows that as the reorder level increases, the expected

inventory level and the expected production rate increases, expected loss rate

of customers decreases. Expected total cost increases with increase in s.



Chapter 6

Discrete time inventory system

with arbitrarily distributed

service time

6.1 Introduction

In previous chapters we considered (s, S) inventory system where service

time follows geometric distribution. In this chapter we consider inventory

system with arbitrarily distributed service time. Here we analyze two inven-

tory models with geometric inter arrival time with parameter p and general

service time with distribution function B(.). In both models we use (s, S)

inventory control policy. When the inventory level depletes to s due to de-

mands, an order is placed to bring the inventory level back to S. Also one

unit from the inventory is used to serve one customer. In the first model, we

assume that materialization of order for replenishment takes positive amount

of time and that no customer joins when the inventory level is zero. In the

105
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second model we assume that materialization of replenishment order is in-

stantaneous.

At time m = 0, 1, . . ., one or more of the following events may occur: a

demand arrival, materialization of a replenishment order and a service com-

pletion. We assume that departure occurs in (m−,m) and customer arrival

in (m,m+). The service times are i.i.d random variables with distribution

{wi}∞i=1, where wi = probability of the service time duration equal to i,

i=1,2,. . . , having generating function W (x) =
∞∑
i=1

wix
i, with mean service

time β1 (assumed to be finite). After service completion the served customer

leaves the system for ever with one item from the inventory and will have

no further effect on the system. The load of the system is ρ = pβ1. The

inter-demand times and service times are mutually independent.

Below we analyze the two models separately.

6.2 Model 1

We consider an (s, S) inventory system in which demands arrive according to

a Bernoulli process with parameter p. i.e., inter-demand times follow geomet-

ric distribution with parameter p. The service time duration are independent

and identically distributed with distribution function B(.). When the inven-

tory level depletes to s due to demands, we place an order to bring back the

inventory level to S. Assume that materialization of order for replenishment

takes a positive (discrete) amount of time. Let the lead time for replenish-

ment be distributed geometrically with parameter r.
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6.2.1 Analysis of the model

At time m+, the system can be described by {Ym : m ∈ N} with Ym =

(Jm, Im, Nm), where Jm denotes the remaining service time of the customer

currently being served, Im denotes the number of items in the inventory and

Nm denotes the number of customers in the system. Note that for convenience

for analysing the system, here we use the notation (Jm, Im, Nm) in this order

unlike previous chapters.

It can be shown that {Ym : m ∈ N} is a Markov Chain with state space

E = {(i, j, k) : i > 0; j = 0, 1, . . . , S; k > 0}.
Now we find stationary distribution

πi,j,k = lim
m→∞

P{Jm = i, Im = j,Nm = k}, i > 0; j = 0, 1, . . . , S; k > 0.

The one step transition probabilities are given by

P(0,0,0)(0,0,0) = p r,

P(1,1,1)(0,0,0) = p r,

and for i = 0, k > 0

P(i+1,j,k)(i,j,k) = p, j 6 S

P(i+1,j,k−1)(i,j,k) = p, j 6 S

P(i+1,j1,k)(i,j,k) = pr, j1 6 s, j = S

P(i+1,j1,k−1)(i,j,k) = pr, j1 6 s, j = S

P(1,j+1,k+1)(i,j,k) = pwi, j 6 S

P(1,j+1,k)(i,j,k) = pwi, s 6 j 6 S

P(1,j1+1,k+1)(i,j,k) = prwi, j1 6 s, j = S

P(1,j1+1,k)(i,j,k) = prwi, j1 6 s, j = S

where p = 1− p.
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The Kolmogorov equations for the stationary distribution are

p r π1,1,1 = (1− p r) π0,0,0 (6.1)

and
πi,j,k = pπi+1,j,k + pπi+1,j,k−1(1− δ0k) + prπi+1,j,k

+prπi+1,j,k−1(1− δ0k) + pwiπ1,j+1,k+1

+pwiπ1,j+1,k + prwiπ1,j+1,k + prwiπ1,j+1,k+1

(6.2)

for i > 0; j = 0, . . . , S; k > 0.

The normalizing condition is
∞∑
i=0

S∑
j=0

∞∑
k=0

πi,j,k = 1

To solve equations(6.1) and (6.2) we define generating function

φ(x, y, z) =
∞∑
i=0

S∑
j=0

∞∑
k=0

πi,j,k x
iyjzk

The following theorem gives the solution of the Kolmogorov equations in

terms of φ(·, ·, ·).

Theorem 6.2.1. The stationary distribution of the Markov chain {Ym :

m ∈ N} has the generating function

φ(x, y, z) =
xyzr(p+ pz){W (x)−W [(1 + r)(p+ pz)]}

[x− (1 + r)(p+ pz)]{W [(1 + r)(p+ pz)]− zy}
.

Proof. Multiplying both sides of (6.2) by zk and summing over k, we get

∞∑
k=0

πi,j,k z
k = (1 + r)(p+ pz)

∞∑
k=0

πi+1,j,k z
k

+ (1+r)(p+pz)
z

wi

∞∑
k=0

π1,j+1,k z
k − (1 + r)pwi π1,j+1,1

(6.3)

Next we multiply both sides of (6.3) by yj and sum over j, to get
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S∑
j=0

∞∑
k=0

πi,j,k y
jzk = (1 + r)(p+ pz)

S∑
j=0

∞∑
k=0

πi+1,j,k z
kyj

+ (1+r)(p+pz)
zy

wi

S∑
j=0

∞∑
k=0

π1,j,k z
kyj

−(1 + r)(p+ pz)wi π1,1,1

(6.4)

Finally multiplying both sides of (6.4) by xi and summing over i, we get
∞∑
i=0

S∑
j=0

∞∑
k=0

πi,j,k x
iyjzk

= (1+r)(p+pz)
x

[
∞∑
i=0

S∑
j=0

∞∑
k=0

πi,j,k x
iyjzk − x

S∑
j=0

∞∑
k=0

π1,j,k y
jzk

]

+ (1+r)(p+pz)
zy

W (x)
S∑
j=0

∞∑
k=0

π1,j,k y
jzk − (1 + r)(p+ pz)W (x) π1,1,1

(6.5)

Let φ(x, y, z) =
∞∑
i=0

S∑
j=0

∞∑
k=0

πi,j,k x
iyjzk

Then from the above equation, we have

[
x−(1+r)(p+pz)

x

]
φ(x, y, z) =

[
(1+r)(p+pz)

z

]
[W (x)− zy]

∞∑
k=0

π1,1,k z
k

− (1+r)(p+pz)(1−p r)
p r

W (x)π0,0,0

(6.6)

put x = (1 + r)(p+ pz) in (6.6) we get

∞∑
k=0

π1,1,k z
k =

z(1− p r)W [(1 + r)(p+ pz)]

p r{W [(1 + r)(p+ pz)]− zy}
π0,0,0 (6.7)

Substituting(6.7) in (6.6) we get
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φ(x, y, z) =
xyz(1 + r)(p+ pz)(1− p r) [W (x)−W ((1 + r)(p+ pz))]

p r[x− (1 + r)(p+ pz)][W ((1 + r)(p+ pz))− zy]
π0,0,0

(6.8)

with

π0,0,0 =
p rr

(1 + r)(1− p r)
(6.9)

Substituting (6.9) in (6.8) we get

φ(x, y, z) =
xyzr(p+ pz){W (x)−W [(1 + r)(p+ pz)]}

[x− (1 + r)(p+ pz)]{W [(1 + r)(p+ pz)]− zy}
. (6.10)

Next we look for the system stability.

6.2.2 Stability condition

Theorem 6.2.2. The system is stable if and only if ρ < 1 where ρ = pβ1.

We have the generating function of the number of customers in the system

and its mean value as given below:

• The probability generating function of the number of customers in the

system is given by ψ(z) =

φ(1, 1, z) =
r(1 + r)(1− p r)(p+ pz){1−W [(1 + r)(p+ pz)]}

(1 + r − p r)[1− (1 + r)(p+ pz)]{W [(1 + r)(p+ pz)]− z}

• Mean number of customers in the system is given by

EC = [
d

dz
ψ(z)]z=1 =

(1 + r)(1− p r)[pW (1 + r) + prW ′(1 + r)− p]
(1 + r − p r)[1−W (1 + r)]
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6.3 Model 2

This is a particular case of model 1 wherein we assume the lead time to be

negligible. As a result we expect sharper results. We consider a discrete

time Geo/G/1 queue with inventory under (s, S) policy in which demands

arrive according to a Bernoulli process with parameter p. i.e., inter-demand

times follow geometric distribution with parameter p. The service times

are independent and identically distributed with distribution function B(.)

having probability wi for service time to have duration of i slots, i > 1. When

the inventory level reaches s (< S
2
), an order is placed so that the inventory

level is brought up to S at the time of replenishment. The assumption 2s < S

is made to avoid perpetual order placement. Assume that the lead time is

zero. Further no shortage is permitted.

6.3.1 Analysis of the Markov chain

At time m+, the system can be described by {Xm} : m ∈ N} with the

triplet Xm = (Jm, Im, Nm), where Jm denotes the remaining service time of

the customer currently being served, Im denotes the number of items in the

inventory and Nm denotes the number of customers in the system.

It can be shown that {Xm} : m ∈ N} is a Markov Chain whose state space

is E = {0, 1, 2, . . .} × {s+ 1, s+ 2, . . . S} × {0, 1, 2, . . .}.
To find the stationary distribution

πj,0 = lim
m→∞

P{Jm = 0, Im = j,Nm = 0}, j > s+ 1

πi,j,k = lim
m→∞

P{Jm = i, Im = j,Nm = k} for i > 0; j = 0, . . . , S; k > 0.

The one step transition probabilities are given by
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P(j,0)(j,0) = p, j = 0

P(1,j+1,1)(j,0) = p, j > s+ 1

If i > 1, k > 1, then

P(i+1,j,k)(i,j,k) = p, s+ 1 6 j 6 S

P(i+1,j,k−1)(i,j,k) = p, k > 2

P(1,j+1,k+1)(i,j,k) = pwi, s+ 1 6 j 6 S

P(1,j+1,k)(i,j,k) = pwi, s+ 1 6 j 6 S

P(j,0)(i,j,k) = pwi, k = 1, j = S

The Kolmogorov equations for the stationary distribution are

p π0,0 = p π1,1,1 (6.11)

p πj,0 = p π1,j+1,1 for s 6 j 6 S − 1. (6.12)

and

πi,j,k = p πi+1,j,k + p πi+1,j,k−1 + pwi π1,j+1,k+1 + pwi π1,j+1,k + pwi πj,0 δ1,k

(6.13)

Since the lead time is assumed to be zero, the replenishment is instantaneous.

Thus the number of customers in the system (level of the Markov chain) and

the number of items in the inventory (phase of the chain) are independent.

Therefore

πi,j,k = 1
Q
Pi,k, where probability of number of items in the inventory is 1

Q
,

Q = S − s.(See [53])

Hence equations (6.12) and (6.13) become

p P0,0 = p P1,1 (6.14)

and
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Pi,k = p Pi+1,k + p Pi+1,k−1 + pwi P1,k+1 + pwi P1,k + pwi P0,0 (6.15)

The normalizing condition is

P0,0 +
∞∑
i=1

∞∑
k=1

Pi,k = 1

To solve equations(6.14) and (6.15) we define generating function

φ(x, z) =
∞∑
i=1

∞∑
k=1

Pi,k x
izk

The following theorem gives the solution of the Kolmogorov equations in

terms of the preceding generating function

Theorem 6.3.1. If ρ < 1, the stationary distribution of the Markov

chain {Xm : m ∈ N} has the generating function

φ(x, z) =
pxz(1− z)[(W (x)−W (p+ pz)]

[x− (p+ pz)][W (p+ pz)− z]
P0,0

where P0,0 = 1− ρ.

Proof. Multiplying both sides of (6.15) by zk and summing over k, we

get
∞∑
k=1

Pi,k z
k =

p
∞∑
k=1

Pi+1,k z
k+p

∞∑
k=1

Pi+1,k−1 z
k+pwi

∞∑
k=1

P1,k+1 z
k+pwi

∞∑
k=1

P1,k z
k+pwi

∞∑
k=1

P0,0z
k

Substituting (6.14), we get

∞∑
k=1

Pi,k z
k = (p+ pz)

∞∑
k=1

Pi+1,k z
k + (

p+ pz

z
)wi

∞∑
k=1

P1,k z
k − pwi(1− z) P0,0

(6.16)

Multiplying both sides of (6.16) by xi and summing over i, we get
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φ(x, z) =
∞∑
i=1

∞∑
k=1

Pi,k x
izk

=(p+pz)
∞∑
i=1

∞∑
k=1

Pi+1,k x
izk+(

p+ pz

z
)
∞∑
i=1

wi x
i

∞∑
k=1

P1,k z
k−p

∞∑
i=1

wi x
i(1− z)P0,0

=(p+pz
x

)φ(x, z) + (p+pz
z

)[W (x)− z]
∞∑
k=1

P1,k z
k − p(1− z)W (x)P0,0.

∴

(
x− (p+ pz)

x

)
φ(x, z) =

(
p+ pz

z

)
[W (x)−z]

∞∑
k=1

P1,k z
k−p(1−z)W (x)P0,0.

(6.17)

Put x = p+ pz in (6.17) we get

∞∑
k=1

P1,k z
k =

pz(1− z)W (p+ pz)

(p+ pz)[W (p+ pz)− z]
P0,0. (6.18)

Substituting(6.18) in (6.17) we get

φ(x, z) =
pxz(1− z)[(W (x)−W (p+ pz)]

[x− (p+ pz)][W (p+ pz)− z]
P0,0.

Normalizing condition is

P0,0 + φ(1, 1) = 1 (6.19)

Now

φ(1, z) =
z[1−W (p+ pz)]

W (p+ pz)− z
P0,0 (6.20)

lim
z→1

φ(1, z) =
pW ′(1)

1− pW ′(1)
P0,0

i.e., φ(1, 1) =
pβ1

1− pβ1

P0,0 (6.21)
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Substituting (6.21) in (6.19) we get

P0,0 = 1− pβ1

= 1− ρ
Since P0,0 > 0, we get ρ < 1, which is a necessary condition for the ergodicity

of the Markov chain.

Therefore (6.20) becomes

φ(1, z) =
z[1−W (p+ pz)]

W (p+ pz)− z
(1− ρ). (6.22)

6.3.2 Stability condition

Theorem 6.3.2. The system is stable if and only if pβ1 < 1.

• The probability generating function of the number of customers in the

system is given by

φ(1, z) =
z[(1−W (p+ pz)]

W (p+ pz)− z
P0,0

• The server is idle with probability P0,0 = 1− pβ1

• The server is busy with probability, PSB given by φ(1, 1) = ρ

• Average inventory level EL =
S∑

j=s+1

1

Q
j = s+

(Q+ 1)

2

• Mean number of customers in the system

EC = [
d

dz
φ(1, z)]z=1 =

(
p2W ′′(1)− 2p2[W ′(1)]2 + 2pW ′(1)

2[pW ′(1)− 1]2

)
(1− pβ1)
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• Mean time a customer spends in the system

(including the service time),

ET =
EC

p
=

(
pW ′′(1)− 2p[W ′(1)]2 + 2W ′(1)

2[pW ′(1)− 1]2

)
(1− pβ1)

6.4 Cost Analysis

Introduce the following costs:

c1 - the fixed ordering cost

c2 - procurement cost/unit

c3 - holding cost of inventory /unit/unit time

c4 - holding cost of customers /unit/unit time.

Then

holding cost of customers per unit time= c4
2

(
p2W ′′(1)−2p2[W ′(1)]2+2pW ′(1)

[pW ′(1)−1]2

)
P0

holding cost of inventory=c3

[
s+ (Q+1)

2

]

Total expected cost per unit time, ETC=Holding cost+Reorder cost

i.e., ETC = c3[s+ (Q+1)
2

] + (c1 +Qc2)D
Q

, where D is the expected number of

demands per unit time.

Then ETC is a separable convex function of both s and Q and the optimal

value of Q is obtained as Q =
√

2c1D
c3
.

Since no shortage is permitted, optimal value of s is zero. Hence the optimal

value of S is same as that of Q.

Thus the expected minimum cost of the system is
√

c1c2D
2

+c2D+ c3
2

+c3

√
c1D
2c2
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6.5 Numerical illustration

Table 6.1: Effect of p on Model-1.w1 = 0.4, w2 = 0.3,w3 = 0.2,w4 = 0.1
p EC ET PSB

r = 0.3
0.05 0.7499 14.9889 0.6858
0.10 0.6154 6.1540 0.7179
0.15 0.4637 3.0913 0.7468
0.20 0.2973 1.4864 0.7857
0.25 0.1182 0.4727 0.7968

Table 6.2: Effect of p on Model-2.w1 = 0.4, w2 = 0.3,w3 = 0.2,w4 = 0.1
p EC ET PSB

0.05 0.1042 2.0833 0.1000
0.10 0.2188 2.1875 0.2000
0.15 0.3482 2.3214 0.3000
0.20 0.5000 2.5000 0.4000
0.25 0.6875 2.7500 0.5000

Table 6.1 shows that as the arrival rate p increases, the expected number

of customers and the mean time the customer spends in the system decrease.

The probability that the server is busy increases with increase in the arrival

rate p. Table 6.2 shows that as the arrival rate p increases, the expected

number of customers and the mean time the customer spends in the system

increases. Also probability that the server is busy increases with increase in

p when the lead time is assumed to be zero.



Chapter 7

Solution of (s, S) inventory

problems: A Markov Decision

Theory Approach

7.1 Introduction

This chapter deviates from the theme of previous chapters in that Markov

decision approach to certain classes of inventory problems is discussed here.

A large class of problems of sequential decision making under uncertainty

can be modeled as stochastic dynamic programs, which, in general, is re-

ferred to as Markov Decision Problems. The Markov Decision model is a

powerful tool for analyzing probabilistic sequential decision processes. It is a

five tuple (T, I, A, p, c) where T is a point of time known as decision epoch; I

the state space; A the action space; p the state transition probability distri-

bution function and c the instantaneous cost. Decisions or actions are made

at certain event occurrence epochs. When we choose an action in a state,

119
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then an immediate cost is incurred and the system moves to another state

according to certain transition probability. A solution to a Markov Decision

Process is a policy, which is a function from states to actions that minimizes

the long-run average costs.

We proceed to model a few inventory models as Markov decision problems.

First we formulate those problems. Then the Markov decision approach is

employed to compute the optimal solution.

7.2 Model Description

Consider an (s, S) inventory system, where demands follow a Bernoulli pro-

cess with parameter p. Order for replenishment is placed when inventory level

drops to s. The time between placing an order and its receipt is distributed

geometrically with parameter r. Assume that service time is negligible. At

the time of replenishment, the following decisions or actions are made: Re-

plenishment can take place when inventory level is in any one of the states

i = s, s − 1, s − 2, . . . , 1, 0. We consider the model in which replenishment

quantity varies according to the on hand inventory. In this situation we have

to take decisions on how much to buy at the time of replenishment. We use

Markov Decision Process for the solution.

Let Q,Q+ 1, Q+ 2, . . . , Q+ (s− i) be the possible replenishment quan-

tities when the inventory level is i at the replenishment epoch 0 6 i 6 s.

Here Q = S − s. When the inventory level is s, the replenishment quan-

tity is Q with probability p
(s)
Q which is equal to one. Assign probabilities

p
(i)
Q , p

(i)
Q+1, . . . , p

(i)
Q+s−i for the replenishment quantity to be Q,Q+ 1, . . . , Q+

s − i, i = 0, 1, . . . , s where replenishment occurs at inventory level i. Note

that

Q+s−i∑
j=Q

p
(i)
j = 1, i ∈ {0, 1, . . . s}.

The set of possible states of the inventory level process is denoted by I =
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{0, 1, 2, . . . , s, s+1, . . . , S}.

When the inventory level is > s+1, no action is taken. For each state in I,

a set of decisions can be made. Let A(s), A(s−1),. . . , A(1), A(0) be the set of

possible actions associated with the states s, s−1,. . . ,1, 0 respectively. Then

A(s) = as,1, where the replenishment quantity (r.q) is Q having probability

p
(s)
Q (=1 ; since there is only one choice for purchase quantity).

If replenishment takes place when inventory level is s−1, then the actions

are:

A(s− 1) =

{
as−1,1, where the r.q is Q with probability p

(s−1)
Q

as−1,2, where the r.q is Q+1 with probability p
(s−1)
Q+1 .

For state s−2 the actions are:

A(s−2) =


as−2,1, where the r.q is Q with probability p

(s−2)
Q

as−2,2, where the r.q is Q+ 1 with probability p
(s−2)
Q+1

as−2,3, where the r.q is Q+ 2 with probability p
(s−2)
Q+2 .

...

Finally for state 0 the possible actions and the corresponding probabili-

ties are:

A(0) =


a0,1, where the r.q is Q with probability p

(0)
Q

a0,2, where the r.q is Q+ 1 with probability p
(0)
Q+1

...

a0,s+1, where the r.q is Q+ s with probability p
(0)
Q+s.

One step transition probabilities are given by

p
(k)
ij (ak,l) = p

(k)
Q+l−1, where k = 0, 1, . . . , s− 1, s and l = 1, 2, . . . , s+1−k
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such that
s+1−k∑
l=1

p
(k)
Q+l−1 = 1.

Let the stationary policies corresponding to states s, s − 1, . . . , 1, 0 be

Rs, Rs−1, . . . , R1, R0 respectively. Then Rj = {aj,k : k = 1, 2, . . . , s+1−j};
j = s, s−1, . . . , 0.

7.3 Description of the problem

Let Xn be the state of the system at time n; and let Dn be the decision

or action chosen. Then under a given policy R, Yn = (Xn, Dn) is a two-

dimensional Markov chain with the transition probabilities

P{Xn+1 = j,Dn+1 = d′|Xn = i,Dn = d} = p(j|i, d)p(d′|j) (7.1)

where p(j|i, d) is the conditional probability of the chain moving to the state

j at time n + 1, given the current state is Xn = i and a decision Dn = d is

taken and p(d′|j) is the probability of a decision Dn+1 = d′ being chosen at

state Xn+1 = j. Suppose demand arrival is according to a geometric process

with parameter p and lead time is geometric with parameter r. Also assume

that the service time is negligible. Then the one step transition probability

matrix of the inventory level process is given by
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P =



0 1 · · · s s+1 · · · Q Q+1 · · · Q+s−1 Q+s

0 r rp
(0)
Q rp

(0)
Q+1 . . . rp

(0)
Q+s−1 rp

(0)
Q+s

1 pr p r rp
(1)
Q . . . rp

(1)
Q+s−2 rp

(1)
Q+s−1

...
. . . . . . . . . . . .

...

s−1 pr p r rp
(s−1)
Q rp

(s−1)
Q+1

s pr p r rp
(s)
Q

s+1 p p
...

. . . . . .

Q+s p p



7.4 The long run average cost per unit time

Since the state space and action sets are finite stationary policies exist. (See

Tijms [57]). Among different stationary policies, we look for the optimal

one, which minimizes the long run average cost per unit time. Suppose a cost

CXn,Dn is incurred when the process is in state Xn and a decision Dn is made.

Being a function of both Xn ∈ {0, 1, . . . , s} and Dn ∈ {as,1, . . . , a0,s+1},
CXn,Dn is also a random variable. Its long-run average cost per unit time

averaging over N periods is

lim
N→∞

1

N

N−1∑
n=0

E [CXnDn ] =
s∑
i=0

∑
j∈{Q,Q+1,...,Q+s}

πijcij

where πij is the stationary probability distribution associated with the tran-

sition probabilities in (7.1). For an irreducible Markov chain, πij > 0, ∀i, j

and
s∑
i=0

∑
j∈{Q,Q+1,...,Q+s}

πij = 1. (see [56]).
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7.5 The Optimal Policy and the Policy im-

provement Algorithm

Our objective is to find a policy that minimizes the long run average cost.

For that purpose, we need to introduce the set of feasible policies and the

associated Markov chains, the action sets associated with each state and the

immediate cost associated with each state.

Assume that the Markov chain Yn = (Xn, Dn) is irreducible. Then there

exists a unique equilibrium distribution {πj(R), j ∈ I}. (see [57])

For any j ∈ I,

lim
m→∞

1

m

m∑
n=1

p
(n)
ij (R) = πj(R),

which is independent of initial state i. The πj(R) are the unique solution to

the system of equilibrium equations

πj(R) =
∑

i∈{0,1,...,s}

pij(Ri)πi(R), j ∈ {Q,Q+ 1, . . . , Q+ s}

with
∑

j∈{Q,Q+1,...,Q+s}

πj(R) = 1.

Let g(R) represent the long run expected average cost per unit time under

any given policy R.

Then,

g(R) =
∑

j∈{Q,Q+1,...,Q+s}

cj(Rj)πj(R).

Let V n(i, R) denote the total expected cost with i as the initial state, R as

the stationary policy and evolving over a period of length n. Then we have
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the recursive formula

V n(i, R) = ci(Ri) +
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri)V
n−1(j, R) (7.2)

It follows that the total expected cost V n(i, R) consists of the cost incurred

when action a = Ri is taken in state i at the first decision epoch and the

remaining n− 1 decision epochs, when the next state is j.

Since the Markov chain under consideration is irreducible, the average

cost function gi(R) defined by gi(R) = lim
n→∞

1

n
V n(i, R) is equal to g(R), inde-

pendently of the initial state i ∈ {0, 1, . . . , s} . This relation motivates the

heuristic assumption that bias value vi(R), i ∈ I, exists such that, for each

i ∈ I,

V n(i, R) ≈ ng(R) + vi(R) for large values of n (7.3)

Substituting (7.3) in (7.2) , we get

ng(R) + vi(R)

= ci(Ri) +
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri)[(n− 1)g(R) + vj(R)]

= ci(Ri) + (n− 1)g(R)
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri) +
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri)vj(R)

= ci(Ri) + (n− 1)g(R) +
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri)vj(R).

i.e.,

g(R) = ci(Ri)− vi(R) +
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri)vj(R),

for i = 0, 1, . . . , s, with V 0(i, R) = 0.

Solving this system of equations, we get the long run average cost per unit

time g(R) if policy R is used. An optimal policy is that of the lowest cost
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g(R?). To obtain the optimal policy, we use an iterative procedure, called

policy-improvement algorithm (see [57]). This procedure begins by choos-

ing an arbitrary stationary policy R. Then compute the unique solution

{g(R), vi(R)} to the following system of linear equations:

vi = ci(Ri)− g +
∑

j∈{Q,Q+1,...,Q+s}

pij(Ri)vj, i ∈ I

with normalizing equation, vk = 0, where k is an arbitrarily chosen state. In

the second step, we can find an improved policy R. For that, determine an

action ai , for each state i ∈ I ,which yields the minimum in

min
a∈A(i)

{ci(a)− g(R) +
∑

j∈{Q,Q+1,...,Q+s}

pij(a)vj(R)}.

Then R is obtained by choosing Ri = ai, ∀i ∈ I with the convention that Ri

is chosen equal to the old action Ri when this action minimizes the policy-

improvement quantity.

In the third step, if R = R, then the algorithm is stopped with policy R.

Otherwise, go to the beginning step with R replaced by R.

Since the state space is finite, there are only a finite number of possible

stationary policies. Hence after a finite number of iterations, we will be able

to reach the optimal policy.

7.5.1 Performance measures

We have then the following measures for evaluating performance of the sys-

tem.

1. Expected replenishment quantity when the inventory level is i

= 1
s−i+1

[Q+ (Q+ 1) + . . .+ (Q+ s− i)]
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= Q+ s−i
2

where 1
s−i+1

is the uniform probability that the replenishment quantity

is Q,Q+ 1, Q+ 2, . . . , Q+ (s− i), i ∈ {0, 1, . . . , s}.

2. Expected replenishment quantity is given by

ERQ = (Q+ s
2
)( pr

1−p r )
s + r

s∑
i=1

(Q+
s− i

2
)

(pr)s−i

(1− p r)s−i+1
.

3. Mean time required for an arrival =
∞∑
k=1

k(1− p)k−1p.

4. Mean number of demands lost EL, when the inventory level is zero is

given by

EL =
∞∑
k=1

∞∑
n=k

∞∑
l=n

k nCk(1− p)n−kpkql,

= pq
(1−q)3 , 0 < p, q < 1.

7.5.2 Cost analysis

We define the following costs:

c0 - fixed cost for order placement

c1- cost per unit item of inventory

c2 - revenue loss due to unit customer lost when inventory is empty.

α, 0 < α < 1 - is the discount factor.

For calculating the Expected Total Cost (ETC) at different states and the

respective actions, we need expected cycle length from replenishment to re-

plenishment.

Let Ei,j be the expected duration of the cycle with replenishment at state

i and replenishment quantity j, where i = {0, 1, . . . , s − 1, s} and j =

{Q,Q+ 1, . . . , Q+ s}.
Then Expected Total Cost (ETC) can be calculated as:
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State Action ETC

s as,1
c0
Ei,j

+ c1Qp
(s)
Q , i = s, j = Q

s− 1 as−1,1
c0
Ei,j

+ c1Qp
(s−1)
Q , i = s− 1, j = Q

as−1,2
c0
Ei,j

+ c1p
(s−1)
Q+1 [Q+ α], i = s− 1, j = Q+ 1,

...
...

...
...

...
...

0 a0,1
c0
Ei,j

+ c1Qp
(0)
Q + c2EL, i = 0, j = Q

a0,2
c0
Ei,j

+ c1p
(0)
Q+1[Q+ α] + c2EL, i = 0, j = Q+ 1

a0,3
c0
Ei,j

+ c1p
(0)
Q+2[Q+ 2α] + c2EL, i = 0, j = Q+ 2

...
...

a0,s+1
c0
Ei,j

+ c1p
(0)
Q+s[Q+ sα] + c2EL, i = 0, j = Q+ s

7.6 Numerical Illustration

Let us consider s = 3 and S = 7 so that Q = 4. The states are 0, 1, 2 and 3.

The set of all possible actions or decisions on the states are defined as :

{A(i) : i = 0, 1, 2, 3}, where A(i) = {ai,l : l = 1, . . . , 4 − i}. Here replenish-

ment quantity is 3 + l having probability p
(i)
3+l.
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Table 7.1: c0 = 100, c1 = 10, c2 = 1, p = 1
2
, q = 2

3
, α = 1

3
, p

(3)
4 = 1,

p
(2)
4 = p

(2)
5 = 1

2
, p

(1)
4 = p

(1)
5 = p

(1)
6 = 1

3
, p

(0)
4 = p

(0)
5 = p

(0)
6 = p

(0)
7 = 1

4

States Actions with costs Minimum cost Action

a0,1 a0,2 a0,3 a0,40
37.50 29.83 29.00 28.64 28.64 a0,4

a1,1 a1,2 a1,31
25.80 24.20 23.80 23.80 a1,3

a2,1 a2,22
32.50 31.67 31.67 a2,2

a3,13
52.50 52.5 a3,1

Table 7.2: c0 = 100, c1 = 10, c2 = 1, p = 1
2
, q = 2

3
, α = 1

3
, p

(3)
4 = 1,

p
(2)
4 = 2

3
, p

(2)
5 = 1

3
, p

(1)
4 = 1

2
, p

(1)
5 = p

(1)
6 = 1

4
, p

(0)
4 = 3

8
, p

(0)
5 = p

(0)
6 = 1

4
, p

(0)
7 = 1

8

States Actions with costs Minimum cost Action

a0,1 a0,2 a0,3 a0,40
36.50 29.82 29.00 22.39 22.39 a0,4

a1,1 a1,2 a1,31
32.50 20.83 20.00 20.00 a1,3

a2,1 a2,22
39.17 24.40 24.40 a2,2

a3,13
52.50 52.5 a3,1
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Table 7.3: c0 = 100, c1 = 10, c2 = 1, p = 1
2
, q = 2

3
, α = 1

3
, p

(3)
4 = 1,

p
(2)
4 = 1

3
, p

(2)
5 = 2

3
, p

(1)
4 = p

(1)
5 = 1

4
, p

(1)
6 = 1

2
, p

(0)
4 = 1

8
, p

(0)
5 = p

(0)
6 = 1

4
, p

(0)
7 = 3

8
.

States Actions with costs Minimum cost Action

a0,1 a0,2 a0,3 a0,40
26.50 29.82 29.00 34.89 26.50 a0,1

a1,1 a1,2 a1,31
22.50 20.83 31.67 20.83 a1,2

a2,1 a2,22
25.83 38.89 25.83 a2,1

a3,13
52.50 52.5 a3,1
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