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CHAPTER 1



INTRODUCTION

1.1 THE CONCEPT OF STABILITY

Stability theory has become of dominant importance in
the study of dynamical systems. It has many applications 1in
basic fields 1like meteorology, oceanography, astrophysics and
geophysics- to mention few of them. The concept of stability
was developed very early in the eighteenth century and was
specialized in mechanics to describe some type of equilibrium of
a material particle or system. In precise mathematical terms,
the equilibrium of a particle, subjected to some forces, 1is
called stable if, after any sufficiently small perturbations of
its position and velocity, the particle remains for ever
arbitrarily near the equilibrium point with arbitrarily small

velocity.

This definition of stability was found useful in many
situations, but inadeguate in many others so that a host of other
important concepts have been introduced in past many years which
are more or less related to the first definition and to the

common sense meaning of stability.

The mathematical formulation of stability theory

proceeds from the nonlinear differential equations which



describe the problem of mathematical physics under consideration,

under the most general conditions.

The next great advance came in hydrodynamic stability
which laid foundations of the stability theory in fluid
mechanics. Hydrodynamic stability has been recognized as one of

the central problems of fluid mechanics.

In recent years the theoretical developments in the
studies of instabilities and turbulence have been as profound as
the developments in experimental methods. Classical theory of
stability is the linearized theory in which the effect of a small
fluctuation away from a solution to the equations is examined as

a function of a parameter such as the Reynolds number.

Another major development is the application of new
mathematical concepts from the qualitative theory of differential
equations, sometimes known as theory of dynamical systems, to the
problem of transition to turbulence which have provided
new 1nsights 1in recent years. Traditional method 1like

bifurcation theory have also contributed major new insights.

The exponential instability property of geodesics on
mapifolds of negative curvature has been studied by many authors
beginning with Hardmard,Hopf etc.{(see Arnold(1978)). This type of
instability leads to the stochasticity of the corresponding

geodesic flow. Geodesics are motions of an ideal fluid,



therefore the calculation of the curvature of the group of
diffeomorphisms gives us some information on the instability of

ideal fluid flows.

The study of stability problems is relevant to the
study of structure of a physical system. It 1is particularly
important when it is not possible to probe into its interior and

obtain information on its structure by a direct method.

1.2 HYDRODYNAMIC STABILITY

The essential problems of hydrodynamic stability were
recognized and formulated in the nineteenth century most notably
by the pioneers like Helmholtz, Kelvin, Rayleigh and Reynolds.
Reynolds (1883) introduced these problems clearly in his own

experiments on the instability of flow in a pipe.

Not every solution of the equations of motion, even if
it 18 exact, can actually occur in nature. On the other hand few
laminar flows correspond to known solution of the nonlinear
equations of motion. The flows that occur in nature must not
only obey equations of fluid mechanics, but also be stable.
Instability of flows may be causged by various physical
aspects of flow namely, disturbance of the equilibrium of
Lhe external forces, 1inertia and viscous stregses etc..
Centrifugal and Coriolis forces are also regarded as external

forces in the case of rotation of the whole system in which the



fluid moves. Surface tension exerts a stabilizing influence;
particularly on disturbances of small length scale by minimizing
the area of a surface. A magnetic field can inhibit the motion
of an electrically conducting fluid across the magnetic lines of
force and thereby stabilize flows. A fluid moves according to
the equilibrium between its 1inertia and internal stresses of
pressure in the absence of any external force or of viscosity. A
small disturbance may upset this equilibrium. The tendency of
fluid to move down pressure gradients may anplify

disturbances of certain flows and thereby create instability.

Viscosity has great stabil i1 zing 1influence. It
disgipates the energy of any disturbance and thereby stabilize a
flow. It has also the more complicated effect of diffusing
momentum. Due to viscosity, some flows like parallel shear flows
beconme unstable although the same flows of an inviscid fluid are
stable. Thermal conductivity or molecular diffusion of heat hau
also some effects similar to those of viscosity or molecular
diffusion of momentum and has usually a stabilizing influence.
The boundaries of a flow constrain the development of a
disturbance and when they are closer together the flow will bao
nore stable. However, they sometimes give rise to strong shear

in boundary layers which leads to instability of the flow.

The problem of hydrodynamic instability originated in
the differentiation between stable and unstable patterns of

permissible flows. To solve these problems, one must follow



¥the solution of a system of nonlinear part 1 al differential
kequations. Analysis of dynamic instabilities dates back to the
'ywork of Helmholtz and Reynolds. Helmholtz(18%90) has analyzed the
;stability of wave motion along surfaces of discontinuity assuming
8harp changes in wind and density along the verticals and showed
.that the over-all surface is unstable under sufficiently large
.perturbations. He bhas also shown that a finite discontinuity in
.the wind will result in reduced stability. Later Rayleigh (1913)
studied the stability of horizontal parallel flows and has shown
that the flow stability depends on the shape of the velocity

profile. Thus he formulated the result as follows:

Parallel flows of an inviscid fluid are stable if

the velocity profile has no point of inflection ".

This is known as Rayleigh's theorem. The theorem gives
a necessary condition for instability or a sufficient condition
for stability for inviscid fluids. Later Tollmien (1936) showed
Lhat this condition is also sufficient for velocity
distributions of certain typés. A physical mechanism for

interpreting this result was derived by Lin (1945), wusing an

acceleration formula derived on the basis of von Karman's
(1934) mechanism of vorticity redistribution. Rossby (1949)
applied these ideas to the motion of polar air masses,
fundamental in atmospheric process. A stronger form of

Rayleigh'a theorem was obtained later by Figrtofl (1950), who
proved that for instability the value of vorticity of the primary
flow must have a maximum in the domain of £flow. This theorem

also gives only a necessary condition for instability.



Some of the instabilities which arise from different
{cauges are Rayleigh - Taylor instability and Kelvin - Helmholtz
instability (Chandrasekhar (1961)). The first derives from the
character of the equilibrium of an incompressible heavy fluid
of variable density (i.e, of heterogeneous fluid). An
important special case 1is that of two fluids of different
densities superposed one over the other or accelerated towards
each other; the instability of the plane interface between two
fluids, when it occurs (particularly in the second context), is
called Rayleigh-Taylor instability. The second type of
instability arises when the different layers of a stratified
heterogeneous fluid are 1in relative horizontal motion. The
gpecial cage i3 when two superposed fluids flow one over the
other with a relative horizontal velocity, the instability of the
plane interface between two fluids being called Kelvin-Helmholt:x
instability. The physical mechanism of Kelvin-Helmholtz
instability has been described by Batchelor (1967) in terms of
the vorticity dynamics. In Rayleigh-Taylor 1instability, the
quantitative observations have been made by Lewis (1950) and
others. The method has been applied by Pramod (1989) to study

interfacial waves.

1.3 NONLINEAR STABILITY

Nonlinear stability analysis 1i1s necessary when one
investigate the development of secondary flows and the onset of

higher instabilities. Reynolds (1883) has appreciated the



importance of nonlinear disturbances of Poiseuille flow in a pipe
and Bhor (1909), Noether (1921) and Heisenberg (1951) treated
them theoretically for special problems. The main concepts of
the theory of nonlinear hydrodynamic stability are due to Landau
(1944). Hopf (1948) has developed similar ideas on turbulence as
the Reynolds number increases, through the repeated bifurcation

of the solution representing the flow.

One of the gpecific methods in the strongly nonlinear
theory of hydrodynamic stability is the energy method, which
originated in the early work of Reynolds (1895) and Orr (1907).
In the global theory of stability the energy methods have an
important place. This method leads to a variational problem and
a definite criterion for the stability of basic flow. In fact,
any method based on a variational problem c¢an be considered as
energy method in a generalized sense. This aspect of subject has
been extensively studied by Serrin (1959) and a fuller account
of this method till that date has been given by Joseph (1976).
The significance of this method 1is that it provides rigorous
criteria for stability with respect to arbitrary disturbances

whereas the linear theory provides criteria for instability.

At the end of the last century the celebrated Russian
Mathematician Liapunov (1892) elaborated a general method for
investigating stability of the solutions of a system of

differential equations:



This method 1s

(second method), since 1t yields

that is, without solving the differential

formulated the concept of

instability in a precise form.
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The second method of Liapunov for establishing
gstability i1s a natural extension of the energy method. The
sufficient condition for stability can be deduced by seeking a
constant of motion with a local maximum or minimum at the
equilibrium. In many examples Lhisg constant of motion is energy.
Zubov (1957) and Movchan (1959) have generalized the method in
order to apply to continuous systems, though it has been used
for over sixty years to determine stability of system of
ordinary differential equations before them. Pritchard (1968)
has derived some criteria.for.the nonlinear stability of Benard

convection and couette flow between rotating cylinders.

The principal draw back of Liapunov's direct method 1is
that no general procedure is known to construct auxiliary
functions suiting specific theorems. That is why, in stability
problems, one should a priori neglect no available information
concerning the solutions. In particular, the first integrals will
often be helpful, either to facilitate the search for auxiliary

functions or to eliminate part of the variables and thus decrease

the number of equations to examine.

In hydrodynamic stability we often consider the
stability of steady basic flows and s0 are interested
particularly in autonomous systems. The Euler's equations of
motion for a rigid body have as their analog in hydrodynamics the
Euler's equations of motion of an ideal fluid. Euler's theorem

on the stability of rotation around the large and small axes of



the inertia ellipsoid corresponds in hydrodynamics to a slightl
generalization of Rayleigh's theorem on the stability of flows

without inflection points of the velocity profile.

1.4 VARIATIONAL PRINCIPLES AND CONSERVATION LAWS

A variational principle can be used as the basis for
the description of a dynamical system. This approach views the
motion as a whole and involves a method of searching the path in
configuration space which vields a stationary value for a certain
integral. Lin (1963) has shown that the governing equations of
hydrodynamics can be derived from a variational principle by
introducing the requirements that the end points of the particle

trajectories or their boundary values are not to be varied.

The concept of conservation laws plays a key role 1in
the analysis of basic properties of the solutions of 8ystems of
differential equations. The general principle relating symmetry
groups and conservation laws was first determined by Noether
(1918). It provides a one to one correspondence between

variational symmetries and conservation laws for non-degencrate

systems.

The Lagrangian variational formulation is comparatively
easy and almost straight forward. In fluid dynamics, the Buler
description is usually preferred because it reduces the

complexity of the governing equations which is not possible in



Lagrangian description. The difficulties with variational
principles have become most apparent 1in this description.
Attempts for variational formulations of hydrodynamics have been
bequn with Bateman (1929), Lichtenstein (1929) and Lamb (1932).
Eckart (1938) and Taub(1949) extended this variational principles
to adiabatic compressible flows. Both Lagrangian and Eulerian
variational formulation for ideal fluid flows have been obtained
by Herivel (1955). Following the work of Bateman, Lin (1963)
and others, Seliger and Witham (1968) have shown how Euler'u
equations of motion of inviscid flows might be obtained from a
variational principle with a simple Lagrangian function - the
pressure. Drobot and Rybarski(1959) have formulated a variational
principle for barotropic flows by introducing hydromechanical
variations of the fields. Based on this, Mathew and Vedan (1989)
and Joseph (1993) have developed a variational principle for
non-barotropic flows . This method has the advantage that it
avoids such conditionsg like Lin constraints and provides a
systematic approach using Lie group theory leading to

conservation laws.

Kelvin (1887) has shown that the Kinetic energy of an
incompressible inviscid fluid has a stationary value when the
flow is steady, and that the flow 1s stable if the stationary

value is either a maximum or a minimum.

The existence of suitable variational principles for

different classes of flows often forms a natural basis for the



study of stability of flows . The method leads to a variational
problem and a definite criterion for the stability of basic
flow. Any such method can bé considered as an energy method in a

generalized sense.

Arnold (1965a,65b,1966,69) has wused such a method
to study the stability of stationary flows of an ideal
incompressible fluid. Arnold has showed that it is possible to
construct variational principles for stationary flows using a
special combination of two integrals of motion - 1integral of
energy conservation and integral of vorticity conservation. This
functional being a first integral also, has all the properties of
a Liapunov function. Thus Arnold substantiated the Rayleigh
criterion for stability in an exact nonlinear sense. This
method was first developed for two dimensional flowa but were
later generalized to the case of three dimensioanl flows. The
method is called augmented energy method . The success of
Arnold's method is based on the possibility of constructing a
functional 1in instantaneous states of hydrodyrnamic fields which
is conserved by virtue of the equations of motion and has a given
flow as itas extremum. If this extremum is a true maximum or tLrue
minimun the flow is stable. In the three dimensional case the
problem becomes more complicated and Arnold's method involves
congsideration of very unwieldy implicit expression for surfaces
in functional spaces which are no longer the level surfaces of
certain functionals. 1In this case Dikii (1965b) has used the

congservation of potential vorticity in place of vorticity: for



adiabatic flow of non-homogenous incompressible fluid.
Arnold's this method is somewhat similar to that of
Fjg¢rtoft(1950), although Fjgortoft used the linearized equations
rather than a variational principle. Arnold has used this method
also to show that the swirling flow in an irregular annular
domain is stable to two-dimensional perturbations if the

velocity-profile is concave.

The stability of inviscid fluid flows under finite
perturbations evolving according to the nonlinear dynamics of the
system has been discussed extensively over the past several years
using the augmented energy method, Rayleigh had derived the
stability condition for infinitely small perturbations of
plane-paralleled flows which sufficed that the velocity profile
had no points of inflection. Rayleigh's condition is sufficient
also for stability with respect to finite perturbations.
But, in addition to that, Arnold has proved the stability of
certain flows which have one point of inflection. He has
conslidered only perturbations which do not change the value of

velocity circulation along each boundary.

Arnold (1965b) himself has exanined further
the properties of a flow whose kinetic energy and vorticity are
conserved. Drazin and Howard (1966) have obtained results
reminiscent of Arnold's by use of the equations of energy and
vorticity, rather than by wuse of a variational principle. Dikii

(1965 a,b), and Dikii and Kurganskii (1971) bave applied Arnold's



method to flows relative to a rotating frame in order to find

various criteria of stability.

1.5 SOME DEFINITIONS OF STABILITY

Following Drazin and Reid (1981), We introduce some of
the various definitions of stability which are the most widely

used and studied.

DEFINITION 1.1

To analyse the stability of any laminar flow we have
to consider the fields like velocity U(x,t), pressure P(x,t)

and temperature 6(x,t) which define the basic flow .

1f this basic flow is disturbed sightly, tLthe
disturbance may either die away, persist as a disturbance of
similar magnitude or grow so much that the basic flow becomes a
different laminar flow or a turbulent flow. We call such
disturbances (asymptotically) stable,neutrally stable or unstable

respectively.

DEFINITION 1.2

A basic flow is stable (in the sense of Liapunov) 1if,
for any & > 0 , there exists some positive number [ (depending

upon & ) such that if

| utx,0) — v(x, 0}, || p (x,0) — P(x,0)f] , etc. <L , then



| atx,t) — u(x,t)]|, || ptx,t) — P(x,t)]|, etc.< &, for all t 2 0,

where u is the velocity field and p is the pressure field which
satisfy the equations of motion and the boundary conditions.
The basic flow is asymptotically stable(in the sense of Liapunov)

if,

| utx,t) — O(x,t)]}] , etc ——> 0 as t —> + o .

These definitions may be not satisfactory when the norm
of the basgsic flow itself decrcases or increases substantially in

time.

DEFINITION 1.3 ( Chandrasekhar, (1961))

Consider a hydrodynamic system 1in a stationary state,
which i1s defined by a set of parameters xi,xz,...,xf Suppose the
gsystem is disturbed. 1If the disturbance gradually die down, then
we say that the system is stable with respect to the particular
disturbance and i1f the disturbance grow in amplitude in such a
way that the system progressiQely departs from the initial =state
and never reverts to it, then we say that the system 1s unstable.
The locus which separates the two classes of states defines the

states of marginal stability of the system ( neutral stability).

A system can be considered stable if it is stable with

regspect Lo every possible disturbance to which 1t can be



subjected and a system must be considered as unstable even if

there is only one special mode of disturbance with respect to

which it is unstable.

Following Holm et al. (1985), we identify four
interrelated concepts of stability of a dynamical system which

are adapted to fluid dynamics.

DEFINITION 1.4

Neutral or Spectral Stability

For a dynamical system

S _ da _ g,=
a = 'd—L = X{u) ’
an equilibrium point ﬁe gsatisfying i(ﬁe) = 0 i8 called spectrally

stable, provided the spectrum of the linearized operator Di(ﬁe)
has no strictly positive real part. A special case 1s neutral
stability, for which the spectrum is purely 1maginary. For

Hamiltonian systems spectral stability and neutral stability

coincide.

DEFINITION 1.5

Linearized Stability

The equilibrium solution ﬁe is called linearized stable
or linearly stable relative to a norm |[|[$G]] on infinitesimal
variations &u provided for every >0, there is a [ >0 such that

if



w

lisuj] < ¢ t t =0, then ||60]] < « for t>0, where &u evolves

according to (&) = Di(ﬁe)éﬁ.

Linearized stability implies spectral stability. The
converge is not generally true (For counter example, sece Holm

et al. (1985)).

DEFINITION 1.6

Formal Stability

The equilibrium solution ﬁe of a system @& = X{(u) is
formally stable if a conserved quantity is found whose first
variation vanishesg at the solution and whose second variation at

the solution i1s positive( or negative) definite.

Formal stability implies linearized stability. The
converse 1is8 not generally true (For counter example, see lloln

et al.(1985)).

DEFINITION 1.7

Nonlinear Stability

An equilibrium point ﬁe of a dynamical system is said
to be nonlinearly stable if for every neighbourhood U of ﬁe there
is a neighbourhood V of ﬁe such that trajectories u(t) initially
in V never leave U. 1In terms of a norm ||.||, nonlinear stability

means that for every = > 0, there 15 a{ > 0 such that if



| Gtor-a || < &, then || w(t)-u || < e for t > 0.

Formal stability need not imply nonlinear stability.
Neither formal nor lineraized stability i=s necesgsary for
nonlinear stability. For a Hamiltonian system, gpectral
analysis can provide sufficient condition for instability, but
it can only give necessary condition for stability. In finite
dimensions, formal stability implies stability (a <classical
result of Lagrange). In infinite dimensional case formal
stability peed not imply stability. Nonlinear stability
requires both formal stability and some convexity estimates to
be satisfied. For dissipative systems it has been shown that

lineraized stability implies stability.

Formal stability of fluid and plasma has been
considered by Fjertoft( 1946) , Eliassen and Kleinschmidt (1957),
Bernstein et al.(1958), Kruskal and Oberman (1958), Fowler(1963),
Gardner (1963), Rosenbluth (1964), Dikii (1965a), Herlitz (1967)
and Davidson and Tsai (1973). More recently, formal stability
has been established by Blumen (1968), Zakharov and Kuznetsov
(1974), Sedenko and Iudovich (1978), Benzi et al.(1982) and

Grinfeld (1984), who emnployed some aspects of Arnold's method

(but not the convexity analysis).

Nonlinear stability for conservative fluid and plasma
systems has been studied by the Liapunov method by Arnold(1969a),

Benjamin (1972), Bona (1975), Mckean (1977), Laedke and Spatschek



(1980), Holm et al.{(1983), Holm (1984), Holm et al.(1985),

Bennet et al.(1983),Wan (1984) and Hazeltine et al.(1984).

1.6 SCOPE OF THE THESIS

The present thesis is a study of hydrodynamic stability
by Arnold's method using variational principles of Drobot and

Rybarski (1559) and Mathew and Vedan (1989).

In chapter 2 we present the Hamiltonian formulation of
both barotropic and non-barotropic flows. The Lagrangian
formulations for barotropic and non-barotropic flows have been
developed by Drobot and Rybarski and Mathew and Vedan
respectively. We find that by applying Donkin's theorem it is
possible to express the evolution equations for hydrodynamics as
a finite dimensional Hamiltonian system. Though it is known that
Kelvin's circulation theorem follows from the 1invariance of
Poincare-Cartan integral for the Hamiltonian system it is to be
noted that the well-known application of Hamiltonian mechanics is
treating the evolution equations as an infinite dimensional

Hamiltonian system.

Joseph and Vedan have obtained helicity conservation by
applying Noether's theorem from the variational principle of
Drobot and Rybarski. In chapter 3, we show that their result 1is
valid only for incompressible flow and the result is obtained for

a general barotropic flow.



In this chapter we also use Arnold's method to study
stability of barotropic flows. The infinitesimal generator of
transformation group that leaves bhelicity invariant 1is used to

define the structure that remains invariant under the flow.

In chapter 4, we discuss stability of non-barotropic
flows. Though laws of conservation of circulation and helicity
have been generalized to non-barotropic flows, these are nol
applicable as in the case of barotropic flows. Instead, we use
the conservation of potential vorticity to define the invariant
structure of the flow. The transformation group which
corresponds to consgservation of potential vorticity is identified

and stability criterion is formulated.

The thesis is concluded with a dgeneral discussion of

Lhe results obtained.



CHAPTER 2



LAGRANGIAN AND HAMILTONIAN FOR FLUID FLOWS

2.1 INTRODUCTION

In this chapter we present the Hamiltonian formulation
of both barotropic and non-barotropic flows. The Lagrangian
formulations for the barotropic and non-barotropic flows have
been developed by Drobot and Rybarski (1959) and Mathew and Vedan
(1989) respectively. The advantage of their method 1is that 1t
avoids such conditions like Lin constraints and provides a
gsystematic approach wusing Lie group theory leading to

conservation laws.

We develop the Hamiltonian formulation of both
barotropic and non-barotropic flows by applying Donkin's
theorem and prove that it is possible to express the evolution
equations for hydrodynamics as a finite dimensional Hamiltonian

system using a non canonical Poisson bracket.

2.2 VARIATIONAL PRINCIPLE FOR BAROTROPIC FLOWS

Following Drobot and Rybarski (1959) and Mathew and
Vedan (1989) we consider the Euclidean four dimensional space X4.
A point x inmn X

. (e} (8] .
4 has coordinates x , a = 0,1,2,3 where x is

the time t and x", ¢ = 1,2,3 are space-like coordinates. F is a



function space of 4—dimensional vector valued functions p(x) with
components pa(x), a =0,1,2,3. Then x4 x F, the tangent bundle is
a manifold. The particular choice pP= f-H [} = pui, where p is
the density and u ( and ﬁi) the velocity componentsa, defines a
vector field on X4 which is section of the fibre bundle.

In Lagrangian approach the fluid flow is the flow
generated by the vector field pa. But in an Eulerian approach we
are not interested in the motion of the individual fluid
particles. Here the governing equations form a asystem of partial

differential equations with independent variables x> and

dependent variables p“. The system of egquations define a
subvariety of the first order jet space X, % F(l) (Olver, (1986),
p.98). Though this jet space involves the prolongation of

the vector field pa, in our case the computation need not
involve the prolongation because of the particular choice of the

Lagrangian.

DEFINITION 2.1

Let S be a three dimensional submanifold of X and

4
dsa an oriented element of S. Then padSa is a differential
3-form on S. The integral
‘ o
J p ds_ , . (2.1)
S
is called the flux of matter flow across S. We consider a

volume T 1in X4. Then the action W is defined as



w o= J dr L (x,p(x)) , (2.2)

T

where Lagrangian density L is a function of x> and pP only.

We consider a one-parameter group of transformations of

x4 x F into itself with the infinitesimal generator

P (2.3)

where ¢% = £%(x,p) and »® = n®(x,p), a = 0,1,2,3.
The flow generated by V is subjected to the conservation laws
of momentum and mass. This leads to the definition of

hydromechanical transformation (Joseph).

DEFINITION 2.2

a

For arbitrary ", the one-parameter family of
transformations generated by
\—]_Eaaa+na_a
ax dp
where 0% = o (2% - 5% (2.4)

is called a hydromechanical transformation. Suffix denotes total



derivative with respect to corresponding independent variable.

Since n° is defined in terms of Ea, the independent variation
is given by Ea only and it is known as horizontal variation,
since they are in the direction of x only (Moreau 1981).

For barotropic flow of an inviscid fluid the Lagrangian density

is chosen as

L o= — [B9%+ 597 + (8] —es”) - v, (2.5

2p
where & 13 the internal energy and U is the potential of
external forces. We consider the action of a transformation v

(2.3) on W. Then the total variation is defined as

AW = J- ar 4 2 % 48 (L f“)} . (2.6)
ol A
T ap

Now we state the variational principle:

For all Ea vanishing on the boundary, the total variation

AW = Jd‘r {@a aﬁ(;/?ga - pafﬂ) + a_(L f,o‘)} =0 (2.7)
T ap

ie., Jdr{aﬁ(’l‘/;fa)——wafa}=0 ,

T

where



)

dag_:a+62(L—p7§£) , (2.8)

o

and

<€
I

a Pﬁ{aﬁ(z—:a)—aa(g—:ﬁ)} , (2.9)

The above variational principle gives the hydromechanical

Euler-Lagrange equations :

v =0 , (2.10)

Since paw =0 , (2.11)

the four equations of motion (2.10) are linearly dependent.

For a 0, the equations (2.10) give the Bernoulli's equation and

for a 1,2,3 , the Euler's equations of motion.

2.3 VARIATIONAL PRINCIPLE POR NON-BAROTROPIC FLOWS

The hydromechanical variational principle of Drobot and
Rybarski ( 1959) has been extended to the case of non-barotropic
flows by Mathew and Vedan (1989). 1In that case we have one more
four dimensional vector field s(x) with components sa(x); a =
0,1,2,3, where - g” = ps and Bt are ans, i =1,2,3; = being the

specific entropy.



Now consider the function space F of vector valued

functions pa(x), s™ (x) and the one-parameter group of

transformations of x4 x F 1into itself with the infinitesimal

generator
v = fa _ga + na _aa + ea_.‘za (2.12)
ox ap as
where % = £%%,p.s), n° = n%(kx,p,m), 6% = &%(x.p,®) .

Here the flow generated by V is subjected not only to the
conservation laws of mass and momentum but to the conservation of
entropy. This leads to the definition of generalized

hydromechanical transformation (Joseph).

DEFINITION 2.3

For arbitrary fa, the one-parameter family of

transformations generated by

where 7" 3B(pﬁfa - ﬁafﬁ] ’

and e

3.0 a3
?ﬁ(s % - &%y, (2.13)

is called a generalized hydromechanical transformation.



DEFINITION 2.4
The flux of matter-flow across an oriented sBurface 1is
defined as in the case of barotropic flows. 1In addition entropy

flux of the flow across a surface is defined by

I 2 ds . (2.14)
ol
S

For non-barotropic flow of an inviscid fluid the Lagrangian 1is

chosen as

Lo= 2 [EH? 897+ (P - %% — U, (2.15)

2p

where the internal energy e is a function of pp and s° .

The action W is defined as

W = I dr L (x,p{(x),s(x)) . (2.16)

T
We consider the action of the transformation V (equation(2.12))

on W.

Then the total variation is

AW = J ar { 9L & 8L 4%, 5 (L g“)} _ (2.17)
Q ol [}
ap a8



We state Lhe variational principle as follows:

For all Ea vanishing on the -boundary the t.otal

variation

AW = I ar {ﬂ.‘a aﬂ(};ﬁg“ - p“gﬂ) + ‘_3.50( aﬁ[s’?}:a - sazﬂ]
. ap asg

ol
+ aa(L b4 )} =0 . (2.18)

ie., J-dr{aﬁ('rﬁg“)—waf"‘} =0 ,

where

R 9L L L sf o g 2 L 2Ry (2.19)
a o 'd

apa as” apy as

and

v, o= pﬁ{aﬁ(ﬂa)_aa(::—})}+sﬁ{aﬁ(ar‘ ) - ( i-‘ﬂ)}

dp as”
(2.20)
The above variational principle gives the generalized
hydromechanical Euler-Lagrange equations
v, = 0. (2.21)
. (=3
Since Py, = 0, (2.22)

the four equations of motion (2.21) are linearly dependent.

When « = 0, we get the generalized form of Bernoulli's



equation. For o = 1,2,3 the equations (2.21) lead to the Euler

equations of motion.

In conventional calculus of variations we consider the
vertical variations , that 18, variations of the dependent
variables. Moreau (1982) has introduced the concept of
horizontal variations, that is, the variations of the independent
variables which was later named as transport method. In both
these cases the variations are infinitesimal transformations
acting either on the spacé of dependent variables or on the space

of independent variables.

The method of Drobot & Rybarski (1959) and Mathew and
Vedan (1989) amount to considering transformation groups acting
on the space of dependent and independent variables in an
Eulerian frame work. When the transformation 1is restricted to
hydromechanical ones, the variations of the dependent variables
are expressed only in terms of the variations of the independent
variables. Thus this method has closest analog in literature to
horizontal variations or transport method of Moreau (1982). A
closely related variational principle has been discussed by

Zaslavskli and Perfilev (1969).

2.4 HAMILTONIAN FORMULATION FOR BAROTROPIC FLOWS

In the theory of classical mechanics Hamiltonian

formulation 1is restricted by their excessive reliance on



canonical coordinates. The advances in the study of dynamical
systems have led to the concept of the Hamiltonian system of
differential equations and has formed the basis of much of the
more advanced work in classical mechanics including motion of a
rigid body , celestial mechanics and quantization theory. A
coordinate free approach to Hamiltonian system has led to the
developnent of the theory with Poisson bracket as the fundamental
object of study. This approach to Hamiltonian system admits
Bamitonian structures of varying rank which are important in the
study of stability. The special case of Lie Poisson bracket on
the dual to a Lie algebra plays a key role in representation
theory and geometric quantization and provides a theoretical

basis for the general theory of reduction of Hamiltonian systems.

In the case of finite dimensional system Darboux's
theorem assures that it is always possible to introduce canonical
coordinates. But the theorem is no longer valid for an infinite
dimensional system to which system of evolution equations of
continuum mechanics belongs. In this case the concept of
Poisson manifold for finite dimensional system has led to a

natural generalization-to infinite dimensional system.

In classical mechanics the transformation from a
Lagrangian system to the corresponding Hamiltonian system is
accomplished by Legendre transformation. It is to be noted that

Lhere exist a Hamiltonian formulation of hydromechanics as a



finite dimengional gystem (Arnold (1988) and Gantmacher (1975)).
Following Gantmacher, we show that starting from the above
Lagrangians for barotropic and non-barotropic flows the evolution
equations for hydrodynamics form a Hamiltonian systemn.

Now we state Donkin's theorem:

DONKIN'S THEOREM {(Gantmacher (1975),p.74)

Given a certain function X (xi,...,xh), the Hessian of

which 18 different from zero:

2 n
det [ a X ] - 0 (223)
8x. 8x
L k L,k = 1
let there exists a transformation
&———)-yt
of the variables generated by the function X (xi,...,xh):
Y, = . = aaeeean) (2.24)

Then there exists a transformation, the inverse of transformation

(2.24), generated by a function ¥ (yi,...,yn)

X = . (L =12,.0.,n0) . (2.25)

Here the generating function ¥ of the inverse transformation 1is

related to the generating function X of the direct transformation



™3

=1

If the function X contains the parameters D yeea,, then Y
also contains these parameters and
ay _ - ox

an = EJ » (J =l,u-.,m) (2-27)

We utilize Donkin's theorem to make the transition from
the Lagrangian variables to the Hamiltonian variables by

replacing in the theorem

the function X by L ’
the variables X, by ﬂ' v
y by p .
and the parameters Qpeoe s by xa and p .

Now we define a‘ corresponding to the field ﬁﬁ

where L 1is given by (2.5)

By actual computation we have . = u and the Hamiltonian

density

B o= zo [+ () + )] + <) + pU , (2.28)



which is same as the total energy of unit volume. Clearly if we
substitute po = p and E; = pu‘L the hydromechanical
Euler-Lagrange equations reduce to the equations of motion.
They are in canonical form. Kelvin's circulation theorem has

been obtained as a consequence of the invariance of

Poincare-Kartan integral associated with this Hamiltonian.

It has been shown by Holm et al.(1985) that the

equations for barotropic flow are Hamiltonian with Poisson

bracket
= &G 5F S5F 5G
{F.,G} = Jdv{m'[(ﬁa'V)Sﬁ - G5 ') zx ]
\"
+p[g—§'<vg_§)—‘§%-(v§g)]} . (2.29)
. — 1 2 9 & 5
where F and G are functionals and M = (p ,p ,p ) and ZH & 55

variational derivatives. Thus the evolution equations are given

by

_g_i = {F,H}' . (2-30)

in which H 1is given by the equation (2.28).
This bracket is earlier found in Morrison and Green (1980), Holm,
Marsden, Ratiu and Weinstein (1985) and Marsden (1982). This

bracket is the Lie-Poisson bracket for a semi-direct product.



2.5 HBAMILTONIAN FORMULATION FOR NON-BAROTROPIC FLOWS

In the case of non-barotropic flows we apply Donkin's

theorem with the following transformations:

Replace the function X by L

the variables X by ﬂ',

y. by p .

1 18

and the parameters (at,...,am) by xa, p and a” .

o - . . - - . .
Here only s 1is8 entering into our variational principle

n
We define H = §¥ p E,L—L i

where L 18 given by (2.15).

Thus we get

1
H= 5p [(u1)2+ (u2)2+ (ug)Z] + elp,ps) + pU , (2.31)

as the Hamiltonian for the non-barotropic flows. As in the case

of barotropic flows, the Hamiltonian is the total energy of unit

volune.

Following Morrison and Green (1980) and Holm et al

{1985) it can be found that the equations of non-barotropic flow



can be treated as an infinite dimensional Hamiltonian system

with Poisson bracket

\Y
+ p [ g; *(V gg ) ~ gg (v gg )]
+a[g%-<v_§§)’-%g-<v§§)]} , (2.32)
where M = (pf,pe,pg) and o = g° = pos .

2.6 DISCUSSION

In the theory of fields it is well-known that the
Lagrangian formulation is preserved in a natural way when we go
from the discrete to the continuous case. It is general to use
superscript 1,2,3 to denote the spacial coordinate and by setting
t = xo, the four vector x = xo, xi, xz, x denotes a point or
event in the four dimensional space time. ie, four-space. This

treatment leads to Euler-Lagrange equations which involve partial

derivatives of the gradient of the fields.

Abarbanel and Holm (1987) have studied non-linear
stability for . inviscid, incompressible and barotropic flow.
They use both Lagrangian and Eulerian treatment. It is

well-known that a variational principle for Eulerian fluid flow



cannot be given fully in terms of the field variables velocity
and density. Following Lin, they are considering Lagrangian
Markers in their Eulerian treatment. Further analysis also
involves the Lagrangian Markers . The enlargement of fluid phasc
gspace by adding the Lagrangién labels is a return to a full set
of phase gpace coordinates from the reduced space of coordinates

u and p.

Passing from the Lagrangian to Hamiltonian formulation
for a system of particles one set of canonical equations 1is the
Lagrangian equations of motion expressed in terms of conjugate
variables and Hamiltonian and the remaining are following from
Lthe definition of conjugate momenta. This is precisely in the

case of Hamiltonian system we have obtained also.



CHAPTER 3



HELICITY CONSERVATION AND STABILITY OF BAROTROPIC FLOWS

- e - - S e B B G S e e e e SMe M e A W e e AN M M S e e e e M D My S G e S e A . o=

3.1 INTRODUCTION

This chapter focuses on the stability studies of
barotropic flows based on Arnold's (1965a,b) method using the
variational principles of Drobot and Rybarski (1959). The
infinitesimal generator. of transformation group that leaves
helicity invariant is used to define the structure that remains
invariant under the flow. We show that the helicity
conservation obtained by Joseph (1993) by applying Noether's
theoremn from the variational principle of Drobot and Rybarski
(1959) is valid only for incompressible flow and the result is

obtained for a general barotropic flow.

The complete analysis of three dimensional stability
problem is too complicated for mathematical treatment. Even 1in
two dimensional case we have to resort to certain assumptions for
the problem to be mathematically amenable. Thus in the case of
stability of atmospheric flows two approaches are used. 1In
baroclinic stability problem, the current is assumed to vary in
the vertical direction only and latitude variations are neglected
[Charney (19479 and Kuo (1952)]. On the other hand in barotropic
stability problem, the current varies in the latitude direction

only and the vertical variations are neglected. It has been shown



by Foot and Lin (1950) and Kuo (1949,1951) that barotropic basic

current is8 stable if the absolute vorticity profile is monotonic.

In the general theory of inviscid £fluid dynamics
barotropic flows are s8ingled out because of the special
conservation laws associated with such flows. Instability studies
of these flows have drawn special attention due to simplicity in

analysis.

The stability of inviscid barotropic flow has been
studied by Lynden-Bell and Katz (1981) based on the invariance of
the classical integrals of energy, momentum, angular momentum and
the initial position supplemented by all the invariants implied
by Kelvin's circulation theorem. It is shown that all states of
steady flow, even those that are only steady when observed from
rotating axes,are stationary states of an energy functional. The
minimization of the energy is clearly sufficient for stability.
They have also developed a Lagrangian formulation based on
Clébsch‘s variables so that the conserved circulation appears as
Lthe momenta conjugate to ignorable coordinates and then proceeded
to a Ruthian. The method is truly Lagrangian. Some examples are

also discussed.

Islamov (1982) has analyzed the stability of barotropic
flows on the basis of a finite-difference analog of the
linearized vorticity equation. The conditional formal stability

of two dimensional equivalent barotropic modon has been



investigated by Swater's (1986) and he has obtained that the
criteria for stability depend on the wave number of the initial

disturbance.

Arnold's (1965) method has been extensively used in the

study of stability of barotropic and non-barotropic flows.

3.2 ARNOLD'S METHOD (Arnold (1965))

The equations of three dimensional hydrodynamica of an

ideal fluid are infinite dimensional analog to the following

finite dimensional situation. Consider a dynamical system

x = f(x), x = ( x N (3.1)

g

Assune that this space is decomposed into k-dimensional sheets,
each of which is an integrable manifold. A point x of a sheet F
is regular, if in the neighborhood of this point there exists

(a system of) coordinates Y, - +Y, such that the sheets are
given by

- - L]
Yisa= Cppgrocececss¥,= ¢, « (¢ 's constantsa).

Arnold's stability arguments for fluid flows are based
on well-known results for the stability of Eulerian rotation of a
rigid body (top) around its large or small axis of inertia
(Landau and and Lifshitz (1976),p.116-117). Let the principal

axes of inertia I I, and I, be such that I, >1I > I

17 2 1 2"

The

Euler's equations for rigid body rotation have two constants of



motion namely, energy E and angular momentum M. These are

A
I 't 1 ¢ 2 .
+ 2 a

(3.2)
and M +M+M = M ,
1 2 k- |

where (Mi.Mz.Ms) i8 the angular momentum vector. These are the

equations of an ellipsoid with semi axes ¥ 21311,'f2EI2 ,*/_fﬁa and
a sphere of radius M 1in the (Mi,Mz,Mg) space respectively. When
the angular momentum vector moves relative to axes of inertia of
top, its terminus moves along the line of intersection of these
two surfaces. Let the axes of ellipsoid be in the direction of
principal axes. It is noted that for M near to 2EI1 and 2E13,
the paths of the terminus are closed curves along the X1 and Xa
axes respectively near the poles. These correspond to stability
of top motion. For M near 2EI2 the paths are ellipses
intersecting at the poles of the xz axis and so correspond to
ingtability. Conditional maximum and minimum corregpond to
M = 2E13 and M = 2EIl regspectively which correspond to uniform

rotation about the X and x1 axes respectively. These give the

equilibrium of the Euler's equations for the rigid body rotation.

Coming to the system (3.1), suppose it has a first
integral £ . Let a point X on F be a local conditional extremum
of the constant £, X, is a reqular point and the quadratic form
LE is non-singular on ¥ . Then X 18 an equilibrium of the

system. If this extremum 1is maximum or minimum then the



equilibrium is stable for small finite perturbations.

Euler's equations for inviscid flows form a system like
(3.1) in the infinite dimensional space of the vector field of

possible velocities u that 1is, satisfy equation of

au

at 0

continuity and boundary conditions. For steady flows ,
which correspond to equilibrium position of the system. The space
of the field u is decomposed into sheets based on Kelvin's
circulation theorem. Based on the total energy which is a first

integral, Arnold formulated the stability criterion. The results

are summarized in Arnold (1978).

Some well-known results of Arnold has been generalized
by Grinfeld (1984) and proved that stationary three dimensional
barotropic flow of an ideal fluid yields an extremum of the total
mechanical energy with respect to variations of the hydrodynamic
fields that possess the same vorticity and derived gomne
gufficient conditions for the stability of corresponding

stationary flows.

Arnold's method for nonlinear stability of ideal
incompressible flow in two dimensions has been extended to the
barotropic compressible case by Holm et al. (1983) and the
results applied to planar shear flows. Abarbanel et al.(1984)
have derived the necessary and sufficient conditions for the
formal stability of a parallel shear flow in a three dimensional

gtratified fluid. Holm et al.(1985) established nonlinear



stability of fluid and plasma problema. Nonlinear stability of
stationary solutions of incompressible inviscid stratified fluid
flow in two and three dimensions has been analyzed by Abarbanel
et al.{(1986). They have treated both the Euler's equations and
their Boussinesq approximation. The resulting nonlinear
stability criteria involve standard gquantities such as the
Richardson number, but they differ from the linearized stability

criteria.

Abarbanel and‘ Holm (1987) have investigated the
nonlinear stability of a homogeneous fluid and of a barotropic
fluid in three dimensions. It is shown that three dimensional
flows are not formally stable due to a particle vortex stretching

mechanism.

In this chapter we follow Arnold's method to study
stability of barotropic flows. The invariance criterion for
helicity based on the variational principle of Drobot and
Rybarski (1959) is used to define equihelicity sheets in the

space of velocity vector fields.

3.3 NOETHER'S THEOREMS AND CONSERVATION LAWS

Associated with a variational problem we can consider a
variational symmetry which is a local transformation group under
which the action integral is invariant. The relation between such

variational symmetries and conservation laws associated with the



corresponding classical Euler-Lagrange equations is embodied in

Noether's theorem.

The system corresponding to our variational principle
is under determined as is clear from equations (2.22). Classical
Noether's gsecond theorem is concerned with such systems for which
there may be trivial conservation lawg determined by non-trivial
variational symmetry groups. In this sense theorem 2 of Drobot
and Rybarski (1959) and theorem 4.9 of Mathew and Vedan (1989)
are essentially classical Noether's second theorem adapted to
hydromechanical variational principle (In Drobot and Rybarski
Noether's first theorem corresponds to transformations depending
on scalar parameters and second theoren, transformations
depending on scalar functions). The symmetries under

congideration are called generalized symmetries.

Let us consider the action integral

W = Jdr L { x,p(x)) . (3.3)

T

We note that definition (4.10) of Olver ((1986),p.257)
define a variational symmetry and theorem (4.12) gives the

condition for

Vo= faew % &,



to_be the infinitesimal generator of an ordinary variational
symmetry. Theorem (4.29)(p.278) is the Noether's first theorem
connecting ordinary symnetry to conservation laws of
Euler-Lagrange equations and definition (4.33)(p.283) is used to
relax conditions on variational symmetry so that Noether's
theorem follows. This defines a divergence symmetry. In the case
of generalized symmetries this is used to define a generalized
variational symmetry. Thus Noether's theorems(5.42) and (5.50)
(p.328,337) are not based on the 1invariance of the action

integral but on the definition of variational symmetry.

Joseph (1993) has used the criterion for the invariance
of the action integral (3.3) to derive the conservation law of
helicity for a barotropic flow. He points out that the
infinitesimal criterion for the invariance leads to

a o o
Oﬁ('[ﬁlf)—wa{ -t o = 0 . (3.4)

oL
o’
Thus a linear combination of usual Euler-Lagrange expressions and
the hydromechanical Euler expressions is a divergence. This leads

us to the following definitions.

Let —-V— = E -_— + 70 —_ y

where n

o}
1
Q
w
—
2
2
!
Q
~
w
~—rf



DEFINITION 3.1

V is a hydromechanical variational symmetry if
V() + LDivE +a g %% 2 - o, (3.5)
al apﬁ .

or is a divergence.

DEFINITION 3.2

The action W (equation (3.3)) 1is said to be

hydromechanically div-invariant if

a L a

P ;;ﬁ E

V(L) + L Div £ + 3,
is a divergence.

DEFINITION 3.3

The action W 18 g8aid to be hydromechanically

invariant if

oL

¢ =0 .
apﬁ

V(L) + L Div & + aap(?

THEOREM 3.1

If n° = 0 ,then the action W is hydromechanically div

invariant.



PROOF ¢

In this case we have

-_— . fond [al
V(L) + L Div ¥ + 8, = 8a(L b4 ) . (3.6)

aL o
o

Hence the theorem.

THEOREM 3.2 ( Drobot and Rybarski (1959))

The hydromechanical variation na = 0 if and only if
Y = Pa¢ + Eg_ K 6K¢“ (3.7)
P q,

where ¢ 1is an arbitrary scalar function, is an arbitrary

93

vector, and ¢H is any vector satisfying the equations
px ( 3¢ — a @ ) = 0 (3.8)
A TN ° -

PROOF :

Refer Drobot and Rybarski (1959, p.405)

THECREM 3.3

The variations ED = 0 and Ei = , L =1,2,3 where

w = Vxu preserves vorticity.



PROOF

In theorem 3.2 let ¢ = oL and ¢ = 0. Then
o apH
P (8¢, —08) = ¢ = 0,
AT TP H
for the fluid flow. Let us choose q, = -1 and q = e, i =1,
2,3. Then
. i
RS Y - (3.9)
a ik o]
P P
. L .
Thus when EL = Eb y nL =0 .
P

In this case conservation of helicity can be obtained for a
barotropic flow, where we can relax the conditions on L and

incompressibility, by applying Noether's theorem.

3.4 CONSERVATION OF HELICITY

THEOREM 3.4

In the case of barotropic flows the total helicity
Jdv Qe . (3.10)

is a constant of motion, where V is the three dimensional domain

of flow.



PROOF :

ol
. Then hydromechanical variations

Let £°

e DlE

4 2—a . By theorem 3.1, we have

ax

vanish. Thus v

V(L) + L pivE + o g 2k £

; = a_(L Ea) )

Then we have

- Coef3
AW = I dr aﬁ(L 7).

ie., f ar [ aﬂ(ﬁz %) ~ v, £7] = J dr 2, (L )

T T

for arbitrary volume 7t .
ie., aﬁ(Tﬁ :“) - v, Y = 6ﬂ(L fﬁ) .
3L a Q3 o
aﬁ a_a(tﬁf —pf)}—‘#af = 0.,
P
v, €% = ot 2 (p”f“—p“f”)} :
dp

During motion, v, = 0 ,s0 that we have

aL a a_f3 _
aﬂ ;;P (Pﬁf - pPE )} = 0 .



The corresponding conserved quantity is

dv pPEL EEL .
9p
aL

Substituting the values of EL and — , we get the above
aﬁ'
integral as

which is the helicity integral. Though it is the  total helicity
which is seem to be conserved, it has been shown by Moffat (1969}
that the result holds when V is any volume with surface on

which @ .n = 0 .

3.5 EQUIHELICITY FIELDS OF FLOWS

DEFINITION 3.4

Two velocity fields u and u’ are equihelicity
fields if there exist a smooth, volume preserving mapping ¢ of

the domain V into itself such that

Jdv a (VY x u) = Jdv a e (Y x u') (3.11)
\Y . gV

Then the law of conservation of helicity takes the following form :



THEOREM 3.5

let u(x,t) be the velocity field of a barotropic fluid

flow. Let x(t) be the trajectory of a fluid particle and g be
the flow map

y x(t)

g : x(0)

Then the fields u(x,0) and u(x,t) are equihelicity fields.

PROOF ¢

The proof follows from the conservation of helicity.

Drobot and Rybarski (1959) have stated the variational
principle from which the equations of motion follows. Conversely

we can state the theorem as follows:

THEOREM 3.6

In the case of barotropic flows the action integral

18 invariant wunder all hydromechanical transformations, £

vanishing on the boundary.

The absolute invariance of the action integral W wunder
Galilean transformation shows that the system has the total

energy as a first integral. That is,



J E dv (3.12)
\"

where

E = _10 [(p)%+ (pH%+ (p1)%] + etp”) + U, (3.13)
2p

is a constant. Hence the total energy is a constant of motion.
Now we consider the Euler's equations as a system of evolution
eguations in the infinite dimensional space of the vector fields
pP. Following Arnold we give a structure to the space of pa as

follows:

Two fields belong to the same sheet if there exist a
transformation between them which leaves the helicity 1integral

invariant.

By theorem (3.5) this structure is invariant under the
flow. The steady state flow is the equilibrium position of the
system. It is to be noted that we can obtain steady state flow
equations from the variational principle by considering a
3-dimensional volume instead of 4-dimensional space considered by
Drobot and Rybarski. Also we have obtained the helicity
conservation from the variational principle by considering
variation in which Eo = 0 and na vanishing. Now we consider the

energy integral E (equation (3.12)) of steady flow.



THEOREM 3.7

A J av e =0 , (3.14)
\Y
EL being the variation corresponding to which na =0 (and

vanishing on the boundary of V ).

PROOQF
i
AJ-dVE—J-dV o (EZ)
\Y v
\ 2p
= 0
i w*
Taking £ = - we get the following result:

TREOREM 3.8

E has stationary value for steady flow compared to all

equihelicity flows.

PROOF :

Proof follows from theorem 3.7 with Et given by (3.9).



Now by Arnold's method stability of barotropic flows
can be studied based on the positive or negative definiteness of

the second variation of total energy integral.

3.6 STABILITY OF STEADY BAROTROPIC FLOWS

In order to study the stability we find the second
variation of the energy integral on the sheet of equihelicity
flows. The stability criterion can be obtained if the second

variation is of definite sign.

Let us denote the energy inteqral (3.12) by I. Then

) .
A%T = AJdV 61(EEL)
\

Without giving its derivation we merely set down the second

variation as

A’ = Jdv{ (5 . v) &U +% (p'w ujuj) (6p)% — 2uj 6uj<5p

1 i 2.0 1K
t 3 S(pu’) 6(puj) * Py S°u + P 6)(( . @ 6p)},

(3.15)

& = EL 2_1’ being the local variation and P = pP 250— e ,the
ax ap

pressure.



The integrand cannot be of definite s8ign for an
arbitrary three dimensional flow due to vortex stretching. Thus

the steady flow 1s potentially unstable.

EXAMPLE 3.1

As an example we consider stability of three
dimensional steady barotropic flows wilt:th a free surface above a
plane bottom with respect to two dimensional disturbances of
fixed period. We use =2 and X for vertical and horizontal
coordinates respectively. This 1is the classic example which
Arnold used in his original nonlinear stability analysis. In
strictly two dimensional case clearly vorticity is 1n the
direction normal to the ¢{x,2> plane and second variation is

identically zero. But here we permit vorticity corresponding to

the perturbation in the (x,z2> plane also. For the steady
undisturbed flow the velocity u = (u(z),0,0) and vorticity
w = (0,u" (z),0). We shall choose the inertial reference system

in which the free boundary of the stationary motion is at rest.

Then the formula for the second variation of the enerqgy is
2 = 1 2 2 1
AT = v - v &S0 + - ‘— 1] - 2 Su b
J d { (w ) svu 5 (p'— u") (&p) u Su dp
v

1 h] 2 1 1 k
+Eému)ém%)+puéu+l?%(;zw &ﬂ}

(3.16)
The flow 1is stable if the integrand 1is positive

definite or negative definite.



Grinfeld (1984) has studied this problem for two
dimensional disturbances and Abarbanel et al.(1987) has
considered this problem to study the effect of vortex stretching.
While Grinfeld uses equivorticity flows to study barotropic flows

Abarbanel et al. use conservation of potential vorticity.

Grinfeld's analysis does not involve study of effect
of vortex stretching. He has obtained sufficient conditions

for stability.

The first four terms in (3.16) are comparable with
the terms of equation (83) of Grinfeld. But e¢quation (3.16)
shows that in the presence of vortex stretching the conditions
given by Grinfeld are not sufficient for stability. The role of
vortex stretching in stabilizing or destabilizing flows under two
dimensional perturbations 18 evident from this. In this context
it 18 worth to recall that Abarbanel et al.have noted that three
dimensionality of the equilibrium flow (1986) is required for

stability norm to exist in the shear flow cxamples.



CHAPTER 4



CONSERVATION OF POTENTIAL VORTICITY AND STABILITY OF
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4.1 INTRODUCTION

Unlike barotropic flows the stability of non-barotropic
flows is rarely treated in literature. One of the reasons 1is
that till recently non-barotropic flows were not known to have
sufficient conserved quantities as in the case of barotropic
flows. But it has been shown by Eckart (1960), Bretherton (1970)
and Mobbs (1981) that well-known conservation laws associated
with vorticity for barotropic flows can be generalized to the
case of non-barotropic flows by replacing velocity u in some of
their quantities by u - n¥s where n is thermacy and s the
specific entropy. Further, it is to be noted that Kelvin's
circulation theorem for barotropic flows is a special case of a
more genéral one in which the closed curve is lying on tho
surfaces s = constant (Pedlosky (1979)). It has been shown by
Joseph (1993) that the basis of these conservation laws is that
the flow considered is isentropic. The only available results of:
sstability of non-barotropic flows are the stability of adiabatic

flows by Dikii (1965b) and Holm et al.(1985)

In this chapter we obtain the stability criterion for
non—-barotropic flows based on the variational principles due to

Mathew and Vedan (1989). The infinitesimal generator of



transformation group that leaves the potential vorticity
invariant is used to define the structure that remains invariant

under the flow.

4.2 CONSERVATION OF POTENTIAL VORTICITY

Although we have introduced a new four-vector s¥,la =
0,1,2,3) in chapter 2 for non-barotropic flows, the Lagrangian

. o o - - .
contains only s so that only s enters into our variational

principle. Following Mathew and Vedan (1989) we consider na =0,
and 6% =0, (a = 0,1,2,3). We use generalized hydromechanical
transformation with Eo = 0 . Let (fi,fz,fz) be the components
of the three-dimensional vector £ and (ui,uz,ua) be thea

components of u. Let V denote the spacial divergence operator
V = [asax", asex®, a/ax"] .
Then we find that in equation (2.17)
n =0 and e =0, a=(0,1,2,3) ., (4.1)
provided

ve(ef ) =0, pf+¥s = 0 and gE (pF) + Vx( pExa ) = 0. (4.2)

Then

-'\"
I

VE x Vs , (4.3)

Dim=



is a solution of equations {4.2), where £ gatisfies

the equation

v [DE/DE]Y « Vs = 0, (4.4)

where D/Dt is the material differentiation operator.

Equation (4.2) and its solution (4.3) have appeared in
Katz and Lynden-Bell (private communication) and Friedman and
Schutz (1978). Joseph (1993) has pointed out that conservation of
potential vorticity follows from the above equations by comparing
the derivation of Katz and Lynden-Bell. Here we give the

details as follows:

Let a = (a, ;o ,0.) be any three vector such that
Da/Dt = 0 . Then the equation (4.4) is satisfied if f = f(a).

Mathew and Vedan (1991) have proved the following theorem.

‘THEOREM 4.1

If there exists a divergence symmetry for the action

integral

W = J.d*r L (x,pt{x),s(x)) , (4.5)

T

depending on r arbitrary functions and their derivatives up to &

given order q , there exist exactly r linearly independent



identities between the Euler-Lagrange expressions v, and their

derivatives, provided the symmetry corresponds

hydromechanical transformations. Theorem

equation

4.1

to generalized

leads to

From the above choice of Ea we have Eo = 0 and fL given
the equation (4.3), i = 1,2,3 . Then
o % - Lz% = u - VE x s
Thus we have
Jdv u - vf x 9s ,
V
i8 a constant.
Using Green's theorem ,
Jdvﬁ- VExVS =—stﬁ- (G'Vs)f+jdv f(Vxu) Vs
T S v

where V 18 a three dimensional volume with surface S.

the

by

(4.6)



We choose f which is non-zero only within volume V . Then the

first term on the right hand side vanishes. Since £ is arbitrary

we get

w ¢« Vs (4.7)

18 a constant, where w is the vorticity. This is the law of
conservation of potential vorticity. Thus we have seen that the
infinitesimal generator of the transformation of the domain for

which the potential vorticity is constant is £ = % VEf x Vs .

Potential vorticity conservation can also be obtained
directly from the infinitesimal c¢riterion for hydromechanical

invariance (Chapter 3).

The generalized form of the variational principles of
Drobot and Rybarski (1959) and Mathew and Vedan (1989) is based
on extending the field of dependent variables by considering the
entropy flux vector s” in addition to the momentum flux vector
pa in the four dimensional manifold X4. These lead to the

following definitions in the case of non-barotropic flows .

Let V = ¥ —, tn =, re —_ . (4.8)
ax ép ax
o a o f3
where n = aﬁ[ pﬁf -pZ) .
{(4.9)
s 3 a_f3
and 8 = aﬁ[ B — st} .



DEFINITION 4.1

V is a hydromechanical variational symmetry if

V(L) + L Div £ + o g OL ¢ 4 a 8P 8L g2 - ¢ (4.10)

) r
8 “ ad’
or 18 a divergence.

DEFINITION 4.2

The action integral W (equation (4.5) is said to be

hydromechanically div invariant if

V(L) + L Div £ + 6apﬁ oL £% o+ 6asﬂ oL o

a 6sﬂ
is a divergence.
DEFINITION 4.3
The action W is said to be hydromechanically
invariant if
V(L) + Lpive +a g 2L 2 4 5 9L ¢ - o,
ot a IE]
a as
THEQOREM 4.2
a a . . .
If n and 8 vanish, then the action W is

hydromechanically div invariant.



PRODF :

We havae
VL) + LpivE + o 2 ¥ e ff 2L g - 5 (127 (4.11)
o agﬂ a 95 o

Hence the theorem.

THEOREM 4.3

The hydromechan?cal variations na and 8% vanish, if
F = = 9f % Vs ,

where f satisfies the equation
v [DE/Dt] x Vs =0 ,

s being the entropy.

PROOF :

Follows from equations (4.1)-(4.4)

THEOREM 4.4

In the case of non-barotropic flows potential vorticity



is a constant of motion.

PROOF :

| =

Let ¥ = = Vf x Vs

LS

Then by theorem 4.3 we have na = 0 and 6% = 0 , a = (0,1,2,3).

Thus V = § —~_ .

By theorem 4.2 we have

—_ . —_ o a .
Vi +opivE + o 2 % a L L -0 (L) .

2 asl’

Then we have the variation

3
AW = J ar o (L) .

T

ie., J dr { a,( Tg %) -, £° } = j dr 2, (L ey .,

where Tg and y, are given by equations (2.19) and (2.20).

Since T is arbitrary ,

5(Th %) — v, % = (n ") .



aa

ie., aﬂ gia (pﬁfa _ pafﬁ) + Qka [sﬁf“ _ safﬁ)} _— 2 = 0.

ie., oy, &% = o, Z_:F ( 2% - p%%) - ?a CRaE s"‘zﬂ)} :

s

During motion Yy = 0 , s0 that we have

o { 2 (e -5 2 (e - ) - o

ap as

Thus the corresponding consgserved density is

v p

Substituting £ from equation (4.3) and Qki =u, we get the

ap
above integral as

J dV u * Vf x Vs .
\Y,

Thus we have VJ dv u * Vf x Vs is a constant.

Comparing with equation (4.5), the result follows.

It is to be noted that though vorticity conservation
and Helmholtz theorem were obtained by Mathew and Vedan directly
from Noether's theorem, the derivation of conservation of

potential vorticity (1991) was not straight forward. Helicity



conservation was obtained by Joseph (1993) from the invariance
criterion, but potential vorticity conservation was obtained by
relating the equations (4.1,4.2,4.3) to a corresponding result by
Katz and Lynden-Bell. Here we complete the proof first by
investigating the correct relation with equations of Katz and
Lynden-Bell and then show that this can be easily obtained from
Lthe invariance criterion itself. The more general case of
symmetries corresponding to non-vanishing hydromechanical

variations is still an open problem.

4.3 EQUI-POTENTIAL VORTICITY FLOWS

DEFINITION 4.4

Two fields (p,u,8) and (p’' ,u’ ,8' ) are equi-potential
vorticity fields if there exists a smooth, volume preserving

mapping g of the domain V into itself such that

P P’

J av {(V x u)+9s - J av (V x u' )*Vs’ (4.12)
\" gv

The law of conservation of potential vorticity has the

following form:

THEOREM 4.5
Let x(t) be the trajectory of a fluid particle and g
be the flow map
g : x(0) —> x(t)

Then the fields (p(x,0),u(x,0),s(x,0)} and (p(x,t),ulx,t),s(x,t))



are equi-potential vorticity ficlds.

PROOF :
The proof follows from the conservation of potential

vorticity.

Mathew and Vedan (1989) have stated the variational
principle from which the equations of motion follows. Conversely

we can state the theorem as follows:

THEOREM 4.6

In the case of non-barotropic flows

W = J dr L

T

is 1invariant under all hydromechanical transformations, 4

vanishing on the boundary.

The action integral W is absolutely invariant under
the Galilean transformation. This shows that the system has a

first integral

J dv E , (4.13)
v

where



E = _1_5 [(p)%+ (pD*+ (p)*] + a(p®,8%) + P°U ,  (4.14)
2p

is the total energy. Hence the total energy is a constant of

motion.

As in the case of barotropic flows the equations for
non-barotropic flows form a system like (3.1). The steady statec

corresponds to equilibrium position of the system.

Following Arnold we give a structure to the space of

pa and s8” as follows:

Two fields belong to the same sheet 1if they are
equi-potential vorticity fields. That is, two fields belong to
the same sheet 1if there exists a transformation between them

which leaves the potential vorticity invariant.

By theorem 4.5 this structure is invariant under the
flow. As in the case of barotropic flows we can obtain steady
state flow equations from the variational principle by
congidering three dimensional volume instead of four dimensional
space considered by Mathew and Vedan (1989). Also we have
obtained the conservation of potential vorticity. Now we

consider the energy integral (4.13) of steady flow.



THEOREM 4.7

AJdVE=0'
A\

EL being the variations corresponding to which na = 0 and 8% = 0

and vanishing on the boundary of V.

PROOF :

A .[dVE = Jdv ai(E:j')

\" \"

1 1.2 2 2 a. .z o o o 1
= J av a, {[ ;;5 [(p)+ (p)°+ (p)7] *+e(p,8) +pU £ }
\Y

Taking & = é Vf x Vs, where & = (Z‘,{z,fn), we get the

following result:

THEOREM 4.8:

E has stationary value for steady flows compared to all

close equipotential vorticity flows.

PROOF

Proof follows from theorem 4.7 with ¢ given by (4.3).



4.4 STABILITY OF NON-BAROTROPIC FLOWS

Using the variational principle (Chapter2) developed by
Mathew and Vedan (1989) we have found out the fa which
corresponds to the invariance of potential vorticity. Among all
fields pg, s> and which correspond to a constant potential
vorticity, steady flow has an extremum for the total energy. Wo
have to find out the second variation of the energy integral

(4.13) to study the stability of non-barotropic flows. If it 1=

of definite sign the flow is stable.

Let J = J dv E ,
\"

where E 18 given by equation (4.14). Then the second variation

of the functional J 1is

A% = A JdV 2 (E Yy .

\Y

Without writing the derivation we give the simplified form of the

variation as

A%y = J dv {( w9 )éU + ;‘3- ( P’ — “ju.i )(6p)2— 2uj éujép
\V/

R~ 2, -
+p¢5(pu)c5(puj) +pujéu + P 3 (pzz_o ép)} .

(4.15)



where pressure P = p — +8 — — & .

The integrand in the second variation has the same form
as for the barotropic flow. But it is to be noted that the
variations to be considered are different as they correspond to

equi—-potential vorticity flows.

As pointed out in the beginning the study of stability
of non-barotropic flows is still in the initial stages. Though
we are not giving any specific examples, as for barotropic flows
the role of vortex stretching seems to have a significant role in

destabilizing flows.



CONCLUSION



CONCLUSION

The results obtained in this thesis can now be

summarized as follows:

Arnold's method for stability study is based on a
suitable variational formulation for fluid flows. Following
Drobot and Rybarski, Mathew and Vedan, Joseph and Vedan have
studied the variational formulations of barotropic and
non-barotropic flows. The wuse of a FEuclidean space X4 to
represent the space-time configuration space of system leads to a

systematic method for deriving governing equations for fluid

flows form a suitable action integral.

In Lagrangian approach the configuration space 1is
essentially Riemannian and not Euclidean. But the curved
Riemannian space flattens out more and more 1f we restrict
ourselves to smaller and smaller region. This is the case when
we consider the 4-dimensional manifold X4.

In the case of Hamiltonian formulation the phase space
18 Euclidean. The concept of phase flow is based on the motion
of a system in the phase space. This motion 1is, 1in terms of
hydrodynamics, a Lagrangian description while the Liouville's

theorem for phase flow 1s based on Eulerian equation of



continuity. On the basia of this analogy it 18 natural to expect
a simpler theory of fields in L.agrangian and Hamiltonian
formulation for hydrodynamics compared to other physical systems.
1t seems that the Lagrangian and Hamiltonian formulations of
fluid dynamics obtained above can be justified in this sense and
the evolution equations written in terms of material derivative

in chapter 2 can be considered finite dimensional.

Poisson bracket formulation of field theory 1is not
carried out in step by step correspondence with that for discrete
systemns. For example, Poisson bracket 1in field theory are
defined only in terms of a pair of densities. A 'way for doing
this is to define Poisson bracket as an integral, the 1integrand
being variational derivatives. But Arnold uses the Poisson
bracket with the gradients of the functions

ar _ = =
FE—{VI'},

where {A B} is the Poisson bracket of the vector fields defined
by

fA B}, = ¥ (dA/ 8x.)B— (8B / @x )A
|8 |9 3 J v 3 J

This can be compared to the Hamiltonian system we have obtained

in chapter 2,

The equilibrium solution of the equations of
non-dissipative continuum mechanics are usually found by
minimizing appropriate variational integral. However, when

presented with a dynamical problem one encounters systems of



evolution equations for which the Lagrangian view point, even if
applicable is no longer appropriate or natural to the problem.
In this case, the Hamiltonian formulation of systems of evolution
equationa assumes the natural variational role for the system.
The excessive reliance on canonical coordinates guaranteed by the
Darboux theorem in finite dimensions, is no longer valid for the

evolution equations. The Poisson bracket approach generalizes in

this context.

The Poisson brackets of the Hamiltonian system of two
dimensional incompressible 1inviscid flow, two dimensional
barotropic flow and three dimensional adiabatic (non-barotropic)
flow are given in Holm et al. (1985). Here we note that for
barotropic and non-barotropic flows the Poisson brackets are
defined in terms of the wvariable pa of Drobot and Rybarski
(1959). These Hamiltonian structures are used by them 1in the

stability studies.

But it 18 to bhe noted that the Hamiltonian structure
is used only for obtaining integrals of motion in the study of
sstability. 1Instead the variational formulation developed by
Mathew, Joseph and Vedan can be used to get known conservation
laws of motion and the corresponding infinitesimal generators can
be used to define flows with given constants of motion. These

are used to define concepts like equivorticity used by Arnold.



In the case of two dimensional flows it is shown by
Arnold (1965) that a suitable combination of two 1integrals of
motion, being a first integral, has all the properties of a
Liapunov function in a suitable metric and may be used to
establish stability in an exact nonlinear sense. In the case of
three dimensional flow the conservation of vorticity does not
permit the construction of a Liapunov function, instead he uses
the property that a stationary flow possesses an extremum 1in
kinetic energy with respect to the variations of velocity fields
with the same prescribed vorticity. Arnold has proved this for
incompressaible flow. Later Grinfeld has generalized this to the
case of inviscid barotropic flow in a potential field. He wuses
only the condition on constancy of sign to establish sufficient
condit:ion for stability of flow. The formula for the second
variation of fields of equivorticity is derived and used in

stability analysis.

In chapter 3, we have generalized the result of Joseph
in finding the 1infinitesimal generator for the variational
principle from which the conservation of helicity follows. The
stability criterion obtained refers only to formal stability but
shows that the conditions obtained by Grinfeld in his example may

not be sufficient for stability.

In chapter 4 again we have obtained infinitesimal
generator for variational symmetry. This leads to conservation

of potential vorticity in the case of non-barotropic flows. The



stability criterion is obtained.

Our studies point to a new direction for stability
studies based on Lagrangian formulation instead of the
Hamiltonian formulation used by other authors. The role and
applicability of Arnold's method are being widely discussed 1in
Lthe literature. 1It is interesting to note that after more than
two decades Rouchon (1991) has given a mathematical proof of a
remark by Arnold (1965) that nonlinear stability criterion for
steady state solutions for incompressible equations 18 never
satisfied when three dimensional rather than two dimensional
perturbations are considered. A stronger mathematical foundation
for Arnold's ﬁethod and deeper investigation into its

applicability are challenging open problens.



GLOSSARY OF SYMBOLS

x4 Euclidean 4-dimensional space

F Function space

P Momentum flux

X4 x F Tangent bundle

X4 x F(l) Jet space

S 3-dimensional submanifold of X4
dSol Oriented element of S

T 4-dimensional volume

W Action integral

L Lagrangian density

v Infinitesimal generator

fo) Density

& Internal energy

u Potential of the external forces
A Total variation

6a Total derivative with respect to X0
62 Kronecker delta

L Hydromechanical Euler-Lagrange expressions
s Entropy flux

s Specific entropy

v 3-dimensional volume

H Hamilton density

M Momentum vector

v Spaeial divergence operator



Q

A
OMH

£ g1

=3

s

Ricci's symbol
Velocity vector
Vorticity vector
Total energy
Local variation
Preasure

Thermacy

Material differentiation operator
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