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Chapter 1 

 

Introduction 

 

 

A probability distribution can be specified either in terms of the 

distribution function ( )F x  or by the quantile function defined by 

  inf ( ) , 0 1Q u x F x u u       . 

Both distribution function and quantile function convey the same 

information about the distribution with different interpretations. In the 

existing literature of statistical analysis, the concepts and methodologies 

based on distribution function are more popular. However, there are 

many distinct properties for quantile functions that are not shared by the 

distribution functions, which make the former attractive in certain 

practical situations. For inference purposes, statistics based on quantiles 

are often more robust than those based on moments in distribution 

function approach. In many cases, quantile functions provide a much 

simpler straightforward analysis and in some cases like 

characterizations, the solutions exist only in terms of quantile functions 

that are not invertible to distribution functions. 

 Researchers have used the quantile-based measures in various 

applications of statistics even before the nineteenth century.   The 

Belgian scientist Quetelet (1846) initiated the use of inter-quartile range 

as a quantile-based measure for statistical analysis. Subsequently, 
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researchers have focused on different applications of quantiles such as 

representation of distributions by quantile functions, use of different 

measures like median, quartiles and inter-quartile range, estimation 

procedures based on sample quartiles, studying large sample behaviour 

and limiting distribution of quantile-based statistics, etc.. For example 

see Galton (1883, 1889). Hastings et al. (1947) have introduced a family 

of distributions by a quantile function. This was a major achievement, 

which led to the development of many quantile-based families of 

distributions in the later period. The family of distribution by Hastings et 

al. (1947) was later refined by Tukey (1962) to form a symmetric 

distribution, which paved the way for many extensions in subsequent 

years. These include various forms of quantile functions discussed in 

Ramberg and Schmeiser (1974) , Ramberg (1975), Ramberg et al. (1979) , 

Freimer et al. (1988), Gilchrist (2000) and Tarsitano (2004) in the name 

of lambda distributions. The turning point in the development of the 

quantile function is the paper by Parzen (1979) in which he emphasized 

the representation of a distribution in terms of a quantile function and 

its role in data modelling. These were enriched by further works by 

Parzen (1991, 1997, 2004) in different areas. Gilchrist (2000) 

systematically presented various properties of quantile function and its 

use in statistical modelling. 

In reliability studies, the distribution function  F x , the associated 

survival function   1 ( )F x F x   and the probability density function 

( )f x  along with various other characteristics such as failure rate, mean, 

percentiles and higher moments of residual life, etc.., are used for 

understanding how the failure time data arises in practice. Some 

researchers like Parzen (1979), Friemer et al. (1988) and Gilchrist (2000) 
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have indicated the scope of using quantile functions in reliability theory. 

These require conversion of various existing concepts and methodologies 

in terms of quantile functions.   

 A systematic study on the application of quantile functions in 

reliability studies has been carried out by Nair and Sankaran (2009), in 

which they have defined commonly used reliability measures in terms of 

quantile function, and various relationships connecting them were 

derived. They have also analyzed a quantile function model discussed in 

Hankin and Lee (2006) in the context of reliability analysis. Our present 

work extends these basic ideas to develop the necessary theoretical 

framework for the analysis of lifetime data using quantile functions. This 

new approach provides alternative methodology and new models that 

have desirable properties. In this thesis we study more aspects on 

quantile-based reliability analysis such as identifying quantile functions 

that can be used in lifetime modelling, deriving new families of quantile 

functions using various properties of reliability functions and related 

measures, and proposing new measures based on quantile functions that 

can be used for various applications in reliability analysis.  

 The work in this context, presented in the rest of the current 

thesis is organized into eight chapters. After this introductory chapter, in 

Chapter 2 we give a brief review of the background materials needed for 

deliberations in the subsequent chapters. In Chapter 2, we present the 

definition and the properties of quantile function, quantile functions of 

some important concepts such as residual function, score function and 

tail exponent function defined in Parzen (1979), Gini’s mean difference, 

etc.. Subsequently, the definitions of various measures such as moments, 

percentiles, etc. are also given in terms of quantile function. We express 

the distribution and expectation of order statistics in terms of quantile 
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function as the concept order statistics have implications in reliability 

analysis. The definition of L-moments, which are alternative to 

conventional moments and proved to have several advantages over usual 

moments, different reliability measures based on distribution function, 

their equivalent definitions in terms quantile function, the total time on 

test transform (TTT), and various order relations are presented. We 

explain the Q-Q plot, a useful tool to check whether the given quantile 

function is valid for the data situation under consideration. As a topic of 

considerable interest in modelling, we review various lambda 

distributions such as lambda distributions by Ramberg and Schmeiser 

(1974), Freimer et al. (1988), the power Pareto distribution discussed in 

Hankin and Lee (2006) and a model by van-Staden and Loots (2009). 

 One of the objectives of quantile-based reliability analysis is to 

make use of quantile functions as models in lifetime data analysis. 

Representation of reliability characteristics through quantile functions 

permits the use of various lambda distributions, hitherto not considered 

as lifetime models. The lambda distributions are particularly useful, 

when the physical characteristics that govern the failure pattern in a 

specific problem are unknown to choose a particular distribution 

function. This is because, there are members of lambda families that can 

either exactly or approximately represent most of the continuous 

distributions by a judicious choice of its parameters. In Chapter 3, we 

discuss the reliability characteristics of some lambda distributions and 

other quantile function models, and demonstrate their applicability in 

lifetime data analysis. The distributions considered in this chapter are 

lambda distributions by Ramberg and Schmeiser (1974) and Freimer et 

al. (1988), the power Pareto distribution discussed in Hankin and Lee 

(2006), a four-parameter model derived in van-Staden and Loots (2009) 
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and the Govindarajulu distribution proposed by Govindarajulu (1977). As 

order statistics have implications in reliability analysis, the distributions 

and the expectations of order statistics are also derived in the case of 

distributions mentioned above. To ascertain the adequacy of these 

distributions in lifetime modelling we have shown that they represent 

various real data situations. 

 Other than the lambda distributions, we also discuss the 

Govindarajulu model as it is introduced by Govindarajulu (1977) as a 

lifetime model and demonstrated its potential use in reliability studies 

through real data. We undertake a detailed study of the model and 

demonstrate that being a simple model with only two parameters it has 

competing features in terms of model parsimony with regard to other 

competing models. This is ascertained by comparing the distribution with 

some known models in the analysis of a real lifetime data. 

 In addition to the analysis of existing quantile functions, we 

present a method for developing quantile functions with monotone as 

well as non- monotone hazard quantile function using the properties of 

the score functions and tail exponent function, first suggested by Parzen 

(1979).  Our study is motivated by the fact that the functions have nice 

relationship with the hazard quantile function. Further the monotonic 

behaviour of these functions implies those of the hazard quantile 

functions through some simple identities. The quantile functions hence 

derived represent flexible family of distributions that contains tractable 

and intractable form of ( )F x . The reliability properties of the 

distributions are studied, and applications of the distributions in lifetime 

data analysis are ascertained by fitting the distributions to real data. 
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The concept of ageing plays a critical role in reliability analysis. 

Concepts of ageing describe how a component or a system improves or 

deteriorate with age. Many classes of life distributions are categorized or 

defined in the literature according to their ageing properties.  ‘No ageing’ 

means that the age of a component has no effect on the distribution of the 

residual lifetime of the component. ‘Positive ageing’ describes the 

situation where residual lifetime tends to decrease, in some probabilistic 

sense, with increasing age of a component. On the other hand, ‘negative 

ageing’ has an opposite effect on the residual lifetime. Most of the ageing 

concepts exist in the literature are described on the basis of measures 

defined in terms of the distribution function. We will see from the 

discussions in Chapter 3 that many quantile functions can be utilized in 

the lifetime data analysis. Since most of them do not possess tractable 

forms of their distribution functions, the existing definitions based on 

distribution function are not adequate. Thus, as a follow up to quantile-

based analysis, in Chapter 4, we introduce the ageing concepts in terms 

of quantile functions to facilitate a quantile-based analysis. We also 

illustrate various ageing concepts in the case of quantile functions. 

Various ageing concepts  we have considered in Chapter 4 are increasing 

(decreasing) –IHR(DHR), hazard rate increasing (decreasing) average 

hazard rate- IHRA (DHRA), new better than used in hazard rate 

(NBUHR), increasing hazard rate of order 2 (IHR(2)), new better than 

used in hazard rate average (NBUHRA) and IHRA* 0
t , and their duals, 

decreasing (increasing) mean residual life –DMRL (IMRL), net 

decreasing (increasing) mean residual life (NDMRL (NIMRL)), 

decreasing (increasing) variance residual  life DVRL (IVRL), decreasing 

(increasing) renewal mean residual life, decreasing percentile 

residual life (DPRL- ) and new better than used with respect to the 

percentile residual life (NBUP- ) and their duals, new better (worse) 
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than used, NBU (NWU) and those generated from it like NBUE, 

HNBUE, etc.. 

The total time on test transforms (TTT) is a widely accepted 

statistical tool, which has applications in different fields such as 

reliability analysis, econometrics, stochastic modelling, tail ordering, 

ordering of distributions, etc.. In Chapter 5, we study a generalization of 

TTT, named TTT of order n  (TTT-n) by an iteration of the definition of 

TTT. We will show that TTT-n is a quantile function of a random 

variable, say n
X .We derive various identities connecting the hazard 

quantile function, mean residual quantile function and the density 

quantile function of the base random variable X  and the transformed 

random variable .
n

X
 

These relations enable characterization of 

distributions of X  and n
X . We present several theorems in this context. 

One property of the generalized transform is that the distribution with 

constant or decreasing hazard quantile function tends to become a 

distribution with increasing hazard quantile function as the process of 

iteration continues with positive n. This fact is exploited to suggest a 

simple mechanism to derive bathtub hazard quantile function 

distributions. In the last section of Chapter 5 we discuss some order 

relations connecting the baseline and transformed distributions. We also 

define a new order relation known as TTT-n order and its implications 

are studied. 
 

L-moments are alternative to conventional moments, and like the 

conventional moments, L-moments can be used to provide summary 

measures of probability distributions, to identify distributions and to fit 

models to data. It has been proved theoretically and emperially that the 

L-moments have several advantages over conventional moments. In 
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reliability analysis, residual life function and related measures are good 

indicators in describing ageing patterns of a distribution, and these are 

being used in other disciplines also. Note that most popular measures of 

residual life that are discussed in the literature are based on ordinary 

moments, for example the mean of residual life, variance of residual life, 

etc.. Considering the advantages of L-moments over ordinary moments, it 

is worthy to study the measures of residual life based on L-moments. In 

Chapter 6, we investigate the properties of first two L-moments of 

residual life and their relevance in various aspects of reliability analysis.  

The second L-moment of the residual life is half the mean 

difference of the residual life. Thus we can treat the second L-moment of 

residual life as a measure of variation and alternative to variance 

residual quantile function. We derive the relationship of the second L-

moment of residual life with popular reliability functions and study its 

reliability implications. We analyze the relative merits of the second L-

moment of residual life over the well known measure of variation, the 

variance residual quantile function. We show with examples that these 

two functions may not exhibit same kind of monotonic behaviour. We also 

consider the implications between mean residual quantile function and 

the second L-moment of residual life. The expressions of L-moments of 

reversed residual life and their relationships with reliability measures 

are also derived in the chapter. We present some characterization 

theorems employing the reliability concepts discussed above that can 

help the identification of the underlying lifetime distribution. In the last 

section we point out some applications of the derived measures in 

reliability analysis and economics. 

The median residual life function and its generalization, the 

percentile residual function has been evolved as alternative measures to 
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overcome the shortcomings of mean residual life. Schmittlein and 

Morrison (1981) pointed out the advantages of median residual life 

function over the mean residual life function. The general version of 

median residual life function, originally introduced by Haines and 

Singpurwalla (1974), is the th  percentile residual life of the lifetime 

variable X . Theoretically there is analogy in the works relating to 

residual and reversed residual life functions, the properties and models 

relating to them differ substantially to merit the study of the latter. The 

relevance of various existing concepts in reversed time and the enormous 

literature on percentile residual lifetime motivate us to study the 

properties of the reversed version of the percentile residual life function 

(RPRL) in Chapter 7.  

We discuss some properties of RPRL in Chapter 7. To begin with, 

the problem of characterizing the distribution function by the functional 

form of RPRL is studied. We demonstrate through an example that the 

RPRL for a given   does not determine the distribution uniquely. Thus 

we are lead to the search for some general conditions under which the 

distribution function is determined uniquely and we seek for  the 

conditions for two distributions to have the same RPRL for a given  . 

We derived a relationship of RPRL has with reversed hazard rate 

(RHR) as to deduce further features of RPRL. For many of the standard 

lifetime models like exponential, Weibull, Pareto, etc., which have simple 

forms for the hazard rate, the expression for RHR is more complicated. 

Even for such models with simple forms for failure rate, it is difficult to 

deduce properties of RHR from them. Hence it is desirable to have 

models that have simple functional forms for RHR. In Chapter 7, we also 

discuss a general method for obtaining such models.  
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The fact that RHR (RPRL) is non-increasing (non-decreasing) on 

the entire positive real line leaves little scope for classification or 

identification of life distributions on the basis of their monotonicity as 

with the cases of ordinary hazard rate function and percentile residual 

life. To resolve this problem we compare the growth rates of RHR (RPRL) 

to classify the distributions and several examples are given.  

Finally, Chapter 8 summarizes major conclusions of the present 

study and discusses future work that originates from the present study 

to be carried out in this area.  



 

 

 

 

 

 

Chapter 2 

 

Basic concepts and review of literature 

 

 

2.1 Quantile functions 

 In this section we present the definition and properties of quantile 

function, quantile functions of some widely used concepts, expressions for 

different measures such as moments, percentiles, L-moments in terms of 

quantile function, and distribution and moments of order statistics in 

terms of quantile function. All these concepts are needed for the 

discussions in the subsequent chapters. 

2.1.1 Definitions and properties 

In this section, the definition and basic properties of the quantile 

function are presented. 

Definition 2.1 Let X  be a real valued random variable with distribution 

function  F x  which is continuous from right. Then quantile function 

 Q u  of X  is defined as 

                           
     1 inf{ : }, 0 1.Q u F u x F x u u                   (2.1) 

For x   and 0 1u  , 

 F x u  if and only if   .Q u x  
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Thus if there exists an x  such that  F x u , then   F Q u u  and 

 Q u  is the smallest value of x  satisfying  F x u . When  F x  is 

continuous, 

   inf{ : }Q u x F x u   

and when  F x  is strictly increasing too,  Q u  is the unique value of x  

such that  F x u . In this case we can easily write the quantile function 

by solving  F x u  for x  in terms of u . 

Some other important properties of quantile function are: 

1. For a general distribution function, from the definition of  Q u  we 

have 

(i)  Q u  is non-decreasing on  0,1  with   Q F x x  for all 

x   for which  0 1F x  . 

(ii)   F Q u u  for any 0 1u  . 

(iii)  Q u  is continuous from the left, i.e.,    Q u Q u  . 

(iv)    inf{ : }Q u x F x u    so that  Q u  has limits from 

above. 

(v) Any jumps of  F x  are flat points of  Q u  and flat points of 

 F x  are jumps of  Q u . 

2. Since for a uniform random variable U  over  0,1  

   { } { }P Q U x P U F x    

          ,F x  

 Q U  and X  are identically distributed.  
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3. The distribution  1Q u   is the reflection of the distribution 

 Q u  in the line 0x  . 

4. If  1
Q u  and  2

Q u  are two quantile functions then    1 2
Q u Q u  

is also a quantile function. 

5. The product of two positive quantile functions is also a quantile 

function. 

6. If ( )T x  is a non-decreasing function of x , then   T Q u  is a 

quantile function. On the other hand if  T x  is non-increasing, 

then   1T Q u  is also a quantile function. 

7. If  Q u  is the quantile function of X  with continuous distribution 

function  F x  and  T u  is a non-decreasing function satisfying 

the boundary conditions  0 0T   and  1 1,T   then   Q T u  is a 

quantile function of a random variable with the same support as 

X . 

For further details on the properties of the quantile function we refer to 

Gilchrist (2000). 

Definition 2.2 If  f x  is the probability density function of X  , then 

  f Q u  is called the density quantile function. The derivative of  Q u , 

   q u Q u  

is known as the quantile density function of X . The prime ' denotes 

differentiation. Differentiating   F Q u u , we have 

                                                     1.q u f Q u                     (2.2) 
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2.1.2 Quantile versions of some important concepts 

 In this section we give quantile versions of some important general 

concepts, for use in the sequel. 

 The concept of residual life is of special interest in reliability 

theory. The remaining life associated with a lifetime random variable X  

is the random variable 

 | .
t

X X t X t    

The survival function of t
X  is given by 

                                    
 
 

{ } ,
t t

F x t
F x P X x

F t


                              (2.3) 

where    { } 1F x P X x F x    . Thus  

                                         
   

 
.

1
t

F x t F t
F x

F t

 



                   (2.4)  

Let    0
,F t u F x t v    and  t

F x u . Then  

   1
, ,x t Q v x Q u    say. 

We have 

     1 0
Q u Q v Q u   

and from (2.4) 

 0 0
1u u v u    

or 

 0 0
1 .v u u u    

Thus the quantile function of t
X  becomes 

                                  1 0 0 0
1 .Q u Q u u u Q u                      (2.5) 

 Another useful function given in terms of quantile function is the 

score function defined by Parzen (1979) as 
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                                
 
 

 
 2

f Q u q u
J u f Q u

f Q u q u

    .                         (2.6) 

He used this function to classify probability distributions according to the 

heaviness of their right tail by constructing the tail exponent function as  

                            1 1 .u u J u q u                       (2.7) 

The score function defined in (2.7) is equivalent to the Glaser’s function 

                                            
 
 

,
f x

x
f x




                                                (2.8) 

which was used to develop criteria to distinguish increasing, decreasing, 

bathtub, upside down bathtub hazard rates. The score function and tail 

exponent function will be used in Chapter 3 to construct quantile 

functions as models of lifetimes with monotone and non-monotone hazard 

functions. 

 A popular measure that has received wide attention in economics 

is the Gini’s mean difference defined as  

                                     x y f x f y dx dy
 

 
                           

                                2 1F x F x dx



  .                                 (2.9) 

Setting   ,F x u we have 

                           
1

0
2 1u u q u du                              (2.10) 

                                        
1

0
2 2 1u Q u du  .                  (2.11) 

 The equivalent expression in (2.11) is the result of integrating 

(2.10) by parts. One may use (2.10) or (2.11) depending on whether  q u  

or  Q u  is specified. 
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2.1.3 Percentiles 

 The specification of a distribution through its quantile function 

takes away the need to describe a distribution through the moments. 

Alternative measures in terms of the quantiles that reduces the 

shortcomings of the moment based ones can be thought of. Here we list 

out most commonly used measures of location, scale, skewness and 

kurtosis based on percentiles. 

Median is a measure of location, defined by  

                                             0.5 .M Q                           (2.12) 

To measure dispersion, the inter-quantile range 

                                              3 1
,IQR Q Q                                         (2.13) 

where  3
0.75Q Q  and  1

0.25Q Q  can be used.  

Skewness is measured by the Galton’s coefficient 

                                  1 3

3 1

2
.

Q Q M
S

Q Q

 



                          (2.14) 

It can be seen that the Galton coefficient of skewness lies between 1  

and 1 , and the extreme positive skewness occurs when 1
Q M  and 

the extreme negative skewness attains when 3
Q M . When 

distribution is symmetric, 1 3

2

Q Q
M


  and hence 0S  . 

A kurtosis measure based on percentiles is the Moor’s kurtosis defined by 

                                 
       7 5 3 1

8 8 8 8Q Q Q Q
T

IQR

  
 .                         (2.15) 

This measure is proposed by Moors (1988) based on the fact that kurtosis 

can be large when the probability mass is concentrated at the mean or at 

the tail. 
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 As we need only substitute the appropriate value of u , the 

calculation of all the above coefficients are very simple when the form

 Q u  is given. Thus the method of percentiles for estimation by matching 

the sample and population percentiles has been considered by many 

researchers as a simple and effective method. 

2.1.4 Moments 

 The thr  conventional moment 

                                1 r r

r
E X x f x dx




                    (2.16) 

can be expressed in terms of quantile function by  

                                       
1

0

r

r
Q u du    .                 (2.17) 

In particular the mean is  

                                            

 

 
1

0
Q u du   

                                          
1

0
1 u q u du  .                          (2.18) 

Higher moments to describe spread, skewness and kurtosis in terms of 

quantiles are given by 

                     Variance,     
1 222

0
E X Q u du      ,                (2.19) 

                     
1 33

3
0

E X Q u du                      (2.20) 

and  

                     
1 44

4
0

.E X Q u du                        (2.21) 

2.1.5 Order statistics  

 In life testing experiments, suppose n  items are put on test and 

the random variable of interest is their failure times. The failure times 

1 2
, , ...,

n
X X X  of the n  items constitute a random sample of size n  from 
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the population with the distribution function  F x . The random 

variables 1: 2: :
, , ...,

n n n n
X X X  correspond to the ordered sample values 

i
x  of 

, 1, 2, ...,
i

X i n  and are referred to as order statistics, where 

1:
1
min

n i
i n

X X
 

  and 
:

1
max

n n i
i n

X X
 

 . The distribution of thr order statistic, 

                           :
{ }

r r n
F x P X x   

                                    1 .
n

k n k

k r

n
F x F x

k





      
                 (2.22) 

In particular the distributions of 1:n
X  and :n n

X  are  

                                         1
1 1

n

F x F x                                          (2.23) 

and  

                                     .
n

n
F x F x                             (2.24) 

To derive the quantile form of the above distributions recall the 

definitions of beta function, 

   
1 11

0
, 1 ; , 0

nmB m n t t dt m n
    

and the incomplete beta function ratio 

 
 
 

,
, ,

,

x

x

B m n
I m n

B m n
  

where  

    11

0
, 1

x nm

x
B m n t t dt

  . 

The well known relationship between upper tail of the binomial 

distribution and the incomplete beta function ratio is  

                       1 , 1 .
n

n kk

p

k r

n
p p I r n r

k





         
                 (2.25) 

From (2.22) and (2.25), we have  
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                                      , 1 ,
r u

u I r n r                                             (2.26) 

where  r r
u F x  and  F x u . Thus  

                       
    1 , 1 .

rr r u
Q u Q I r n r                                 (2.27) 

Since  1 , 1
ru

u I r n r   . In (2.27), the symbol 1I  represents the 

inverse of the beta function I . The order statistics 1:n
X  and :n n

X  have 

simple forms for their quantile functions given by 

                                
    1

1 1 1
1 1 nQ u Q u                                 (2.28) 

and  

                                         1

.n

n n n
Q u Q u                       (2.29) 

The probability density function of :r n
X  is  

 
 

      1!
1

( 1)! !

n r
r

r

n
f x F x F x f x

r n r

 
 

 

and hence 

                            : :r n r n
E X   

                                  r
x f x dx   

                       
 

   
1

1

0

!
1 .

( 1)! !

n rrn
u u Q u du

r n r

 
         (2.30) 

 The concepts of order statistics have implications in reliability 

analysis and life testing experiments. Consider a system consisting of n  

components whose lifetimes 1 2
, , ...,

n
X X X  are independently and 

identically distributed. The system is said to have a series structure if it 

functions only when all the components are functioning. When the 

components constitute a series system, 1:n
X  represents the lifetime of the 

system. When the system functions, if and only if at least one of the 
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components function, we have a parallel system. Thus 
:n n

X  is the lifetime 

of the parallel system formed by the components. For a k -out-of-n  

system, which functions if and only if at least k  of the components 

function, the lifetime is obviously 
1:n k n

X   .  

2.1.6 L-moments 

 In the Sections 2.1.3 and 2.1.4, we have discussed the moments 

and percentiles that are capable for summarizing probability 

distributions. In this section, we consider the L-moments, which are the 

competing alternatives to the conventional moments. A unified theory 

and a systematic study of L-moments have been presented by Hosking 

(1990). His subsequent works, for example, Hosking (1992, 1996, 2006) 

and Hosking and Wallis (1997) have made detailed studies on the 

properties of L-moments, its application in summarizing and identifying 

probability distributions, estimation techniques based on L-moments, 

characterizations of distributions by L-moments and the comparison 

between the conventional moments and L-moments in analyzing 

measures of distributional shapes. 

 The thr  L-moment of the random variable X  is defined as 

                          
1

1

:

0

1
1 , 1,2,...

r
k

r r k r

k

r
L r E X r

k







        
                     (2.31) 

Using the expression  :r n
E X  given in (2.30), we have 

 
 

   
1 1

1 1

0
0

1 !
1 1 .

! 1 !

r
k kr k

r

k

r r
L r u u Q u du

k r kk


  



          
   

Expanding  1
k

u  in powers of u  using binomial theorem and 

combining powers of u , 
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                              
11

0
0

1 .
r

r k k

r

k

r r k
L u Q u du

k k






              
                        (2.32) 

In particular, the first four L-moments are 

              
1

1
0

,L Q u du                      (2.33) 

           
   

1

2
0

2 1 ,L u Q u du                      (2.34) 

           
   

1
2

3
0

6 6 1L u u Q u du                     (2.35) 

and 

               
1

3 2

4
0

20 30 12 1 .L u u u Q u du                     (2.36) 

The equivalent formulae in terms of quantile density function are 

               
1

1
0

1 ,L u q u du                      (2.37) 

               
1

2

2
0

,L u u q u du                      (2.38) 

               
1

2 3

3
0

3 2 ,L u u u q u du                     (2.39) 

and 

              
1

2 3 4

4
0

6 10 5L u u u u q u du    .                 (2.40) 

 Like the conventional moments, L-moments can also be used to 

summarize the characteristics of probability distributions, to identify 

distributions and to fit models to data. L-moments are capable of 

characterizing a wider range of distributions compared to the 

conventional moments. A distribution may be specified by its L-moments, 

even if some of its conventional moments do not exist (Hosking (1990)). 

The L-moments have generally lower sampling variances and robust 

against outliers. 
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 The L-moments exist whenever  E X  is finite, where as for many 

distributions additional restrictions are required for the conventional 

moments to be finite. A distribution whose mean exists is characterized 

by { , 1, 2, ...}
r

L r  . However, any set that contains all L-moments except 

one is not sufficient to characterize a distribution. See Hosking (1996, 

2006). Using (2.11), we can write, 
2

1

2
L   ; therefore 2

L  is a measure of 

spread. Thus the first (being the mean) and second L-moments provide 

measures of location and spread. Yitzhaki (2003), in his comparative 

study on the relative merits of the variance and the mean difference 

concludes that the mean difference is more informative than the variance 

in deriving properties of distributions that depart from normality. He 

also compares the algebraic structure of variance and  , and examines 

the relative superiority of the later from the point of view of the 

stochastic dominance, exchangeability and stratification.  

As part of the standardization of higher L-moments , 3,
r

L r   define 

the L-moments ratio by  

                                       
2

, 3,4,...r
r

L
r

L
                                     (2.41) 

For a non-degenerate random variable X  with finite mean, | | 1
r
  . Thus 

r
  are dimensionless and bounded. Analogous to the coefficient of 

variation, the L-coefficient of variation is defined by 

                                     

2
2

1

.
L

L
                                                    (2.42) 

In particular from (2.41) for 3,4r  , we get L-skewness 

                                            3
3

2

L

L
                                                   (2.43) 
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and the L-kurtosis 

                                                 4
4

2

L

L
   .                                               (2.44) 

The range of 3
  is  1,1  and that of 4

  is  

 2

3 4

1
5 1 1.

4
     

For more details we refer to Hosking (1990) and Jones (2004). 

2.2 Reliability concepts 

 The notion of reliability, in the statistical sense, is the probability 

that an equipment or unit will perform the required function under the 

conditions specified for its operations for a given period of time. The 

primary concern in reliability theory is to understand the patterns in 

which failures occur, for different mechanisms and under varying 

operating environments, as a function of its age. This is accomplished by 

identifying the probability distribution of the lifetime represented by a 

nonnegative random variable X . Accordingly, several concepts have been 

developed that help in evaluating the effect of age, based on the 

distribution function of the lifetime random variable X  and the residual 

life. In this section, we recall from Lai and Xie (2006) the definitions and 

properties of the reliability measures, that are essential to our 

discussions in the subsequent chapters. 

2.2.1 Hazard rate function 

 Let X  be a continuous nonnegative random variable with 

distribution function  F x . The hazard rate of X  is defined as 

                              
0

{ | }
lim

P x X x X x
h x






   
 .                         (2.45) 
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For small  ,   h x  is approximately the conditional probability of failure 

in the next small interval of time  , given no failure has occurred (0, ]x . 

When  F x  is absolutely continuous with pdf  f x , hazard rate is given 

by 

                            

 
 
 

 logf x d F x
h x

F x dx


                               (2.46) 

for all x  for which   0F x  . From (2.46), on integration, we get 

                                             
0

exp .
x

F x h t dt                                (2.47) 

The equation (2.47) is used to characterize life distributions in terms of 

the functional term of  h x , that could be postulated from the physical 

properties of the failure rate patterns.  

2.2.2 Mean residual function 

 Mean residual function is a well known measure, which has been 

widely used in the fields of reliability, statistics, survival analysis and 

insurance. In section (2.1.2) we have defined the residual life function as 

|
t

X X t X t    

and the survival function of t
X  was given as 

 
 
 t

F x t
F x

F t


 . 

The expected value of t
X  is called the mean residual life function (MRL), 

which is denoted by  m t . If   ,E X   then 

                              
   |m t E X t X t    

                                      
 

 1

t
F x dx

F t



  ,                 (2.48) 
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for all t  for which   0F t  . Clearly    0m E X  . 

 The function  m t  determines the distribution of X  uniquely by 

virtue of the formula 

                                 
   0

exp .
t dx

F t
m t m x

         
                (2.49) 

When  m t  is differentiable, using (2.46) it can easily be shown that  

      1m t m t h t    

or  

                                   
 

 
1 m t

h t
m t


 .                            (2.50) 

 A compact review of the mean residual life function is given in Lai 

and Xie (2006). The references therein help to get the progress in the 

study of mean residual life in such contexts as characterizations, analysis 

of life distributions, monotonic properties, applications in ageing and 

orderings, etc..  

2.2.3 Variance residual life function 

 Variance residual life is another concept which has been developed 

in recent years. For the lifetime random variable X  with  2E X  , 

the variance residual life function (VRL) is defined as  

                                  2 |x V X x X x     

                               |V X X x   

                                  2 2|E X x X x m x     

                              
 

     2 21
,

x
t x f t dt m x

F x



                   (2.51) 
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when the pdf  f x  of X  exists. Integrating the right side of (2.51) and 

simplifying we get 

                 
 

   2 22
, 0.

x x
x F t dtdx m x x

F x


 

             (2.52) 

To know about the earlier development of VRL, we refer to Launer 

(1984), Gupta (1987) and Gupta et al. (1987). The monotonicity of the 

function has been studied by these authors. One important implication of 

the VRL is that it appears in the expression of the variance of the 

estimator of mean residual function. Gupta and Kirmani (2000) 

considered characterizations using VRL (see also Gupta (2006) and 

Gupta et al. (1987)). Gupta (2006) established that  

                                      2 2 2d
x h x x m x

dx
   .                (2.53) 

From (2.47), it follows that  

                                
 

   

2

2 2
0

exp .
x

d
t

dtF x dt
t m t





            

               (2.54) 

The implication of (2.54) is that both  2 x  and  m x  are required to 

retrieve  F x . The ratio  

                                                   
 
 
x

C x
m x


                             (2.55) 

is called coefficient of variation of residual life. Gupta (2006) showed that 

                                  2 21 1
d

x m x m x C x
dx

    .      (2.56) 

 Unlike the hazard rate and mean residual life functions, there is 

no direct formula that expresses  F x  in terms of VRL only. This fact 

motivated many authors to work on the characterization of specific 
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distributions or families by the functional form of VRL. See Dallas 

(1981), Adatia et al. (1991), Koicheva (1993), Ghittany et al. (1995), 

Navarro et al. (1998) and El-Arishi (2005). Most of these results obtained 

are subsumed in the general formula given in Nair and Sudheesh (2010). 

2.2.4 Percentile residual life function  

 The median residual life function and its generalization, the 

percentile residual function has been evolved as alternative measures to 

overcome the shortcomings of mean residual life. Schmittlein and 

Morrison (1981) pointed out the advantages of median residual life 

function over the mean residual life function. The general version of 

median residual life function, originally introduced by Haines and 

Singpurwalla (1974), is the th  percentile residual life of the lifetime 

variable X . The th  percentile residual life of X  is denoted by  p t  and 

is defined by  

                                  1

tp t F   

                               inf | tx F x    

                                 1 1 1F F t t    .                (2.57) 

 p t  is interpreted as the age that will be survived on the average by 

 1 %  of units that have lived beyond age x . It is clear that  p t  is 

solution of the fundamental equation  

                                          1 1 , 0.F p t t F t t                   (2.58) 

The importance of percentile residual life function has been 

revealed through the works of Arnold and Brocket (1983), Joe and 

Proschan (1984), Gupta and Langford (1984), Joe (1985), Csorgo and 

Csorgo (1987), Csorgo and Viharos (1992), Schmittlein and Morrison 
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(1981), Song and Cho (1995), Lillo (2005) and Franco-Perieira et al. 

(2010). 

Gupta and Langford (1984) established that a single percentile 

residual life function does not characterize a life distribution and 

provided a comprehensive solution to the problem. They identified (2.58) 

as a particular case of the Schroder’s functional equation 

                                  , 0 ,R t uR t t                       (2.59) 

0 1u   and  t  is a continuous and strictly increasing function on 

 0,  satisfying  t t   for all t . The general solution of (2.59) is  

                                        0 0
logR t R t K R t ,                        (2.60) 

where  .K
 
is a periodic function with period logu  and  0

R t  is a 

particular solution of (2.59) which is positive, continuous and strictly 

decreasing such that  0 1R  . Thus there is no unique solution to (2.58). 

 Song and Cho (1995) have shown that if  F t  is continuous, 

strictly increasing and for 
 
 

log 1
0 , 1,

log 1


 




 


 is irrational, then  F t  

is uniquely determined by  p t  and  p t . This is the corrected form of 

the result given in Arnold and Brocket (1983). Recently Lin (2009) has 

established some general results. 

 In Chapter 7, we discuss the properties of the percentile residual 

life function in reversed time and characterization problems using it. Its 

relationships with other reliability concepts are also discussed. 
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2.3 Reliability concepts in reversed time 

 In Section 2.2 we have described some commonly used reliability 

concepts that conditioned on the event X x . Recently in a parallel 

theoretical framework some concepts which are conditioned on X x  

have been successfully employed in various applications. They are 

generally called functions in reversed time. These functions help to 

analyse the behaviour of the lifetime random variable X  given that 

failure has occurred in  0,x . In this section, definitions and properties of 

such functions are given. 

2.3.1 Reversed hazard rate 

 For the lifetime random variable X , the reversed hazard rate is 

defined by, 

                  
 

0

|
lim .

p x X x X x
x



  



                (2.61) 

When pdf  f x
 
of X  exists, (2.61) can be written as 

                          
 
 

 log
f x d

x F x
F x dx

   ,                           (2.62) 

for all x  for which   0F x  . From (2.62), we have 

   |x P x X x X x     . 

That is,  x  is approximately the probability that the system with 

lifetime X  which has survived up to x  will fail in the next small 

interval of time   given that it will not survive age x . 

 The function  x  has been first introduced by Keilson and 

Sumitha (1982). Later many researchers have used it in various 

situations such as estimation and modelling of left-censored data, 

stochastic orderings, and characterization of distributions and in 
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evolving repair and maintenance strategies. Block et al. (1998) have 

shown that there does not exist a nonnegative random variable having 

increasing or constant reversed hazard rate function. The function  x  

determines the distribution uniquely through the inversion formula 

                                   exp
x

F x t dt


  .                 (2.63) 

When X  has support  , , ,a b a b    then the  x  has 

relationships with hazard rate  h x  as  

                                       .X X
x h x                               (2.64) 

2.3.2 Reversed mean residual life 

 The random variable  |x X X x   is called the inactivity time or 

reversed residual life of X . It represents the time elapsed since the 

failure of a unit given that its lifetime is atmost x . The distribution 

function of the reversed residual life is 

                                       
   

 x

F x F x t
F t

F x

 
                            (2.65) 

with density function 

                                  
 
 

.
x

F x t
f t

F x


                             (2.66) 

The reversed mean residual life of X  is denoted by  r x  and is defined 

as 

                              |r x E x X X x                     (2.67) 

                                  
 

 
0

1 x

t f x t dt
F x

   

                                  
 

 
0

1 x

F t dt
F x

   .                 (2.68) 
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The relationship between  r x  and  x  is given by 

 
 

 
1 r x

x
r x




  

and hence using (2.63) we have 

                           
 

 
1

exp
x

r t
F x dt

r t

        
 .                 (2.69) 

2.3.3 Reversed variance residual life 

 The reversed variance residual life function of X  is given by 

                          |V x V x X X x    

                          2 2|E x X X x r x      
 

                         2

0 0
2 ( )

x u

F t dtdu r x   .                (2.70) 

For some properties of  V x  we refer to Kundu and Nanda (2010). 

2.4 Quantile-based reliability concepts 

 In the previous two sections, we have described reliability concepts 

and their properties, which are based on the distribution function. There 

exist several quantile functions that cannot be inverted to obtain the 

corresponding distribution functions. These distributions sometimes 

seem useful in analyzing the lifetime data. See Chapter 3 for some such 

models and its applications in reliability analysis. In view of this, we 

need the definitions and properties of these functions in terms of quantile 

functions. In this section, we give these definitions of reliability concepts. 

Main source of this section is Nair and Sankaran (2009). Here we assume 

that  F x  is continuous and strictly increasing. 

 



32           Basic concepts and review of literature 

 

2.4.1 Hazard quantile function 

 Setting  x Q u  in equation (2.46) and then using the 

relationship (2.2), we have the definition of the hazard quantile function 

as  

                               
1

1 .H u h Q u u q u
                      (2.71) 

We interpret  H u  as the conditional probability of failure of a unit in 

the next small interval of time given the survival of unit at  100 1 %u  

point of distribution. From (2.71) 

                                              
1

1q u u H u
                      (2.72) 

and  

                                
   0

.
1

u dp
Q u

p H p


                  (2.73) 

Thus  H u  uniquely determines the quantile function  Q u . 

2.4.2 Mean residual quantile function 

 When X  has a density f , we can write the mean residual function 

 m t  as 

                                
 
 

.t
x f x dx

m t t
F t



 


                 (2.74) 

Letting  t Q u , we have the quantile version of  m t , the mean 

residual quantile function is given by 

                                        M u m Q u  

                                 
11

1 .
u

u Q p Q u dp
                       (2.75) 

In terms of quantile density function, (2.75) can be written as 
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                               
11

1 1
u

M u u p q p dp


   .                (2.76) 

Notice that  M u is the mean remaining life beyond the  100 1 %u  of 

the distribution. From (2.76) we have 

                           
1 11

1
u

M u u H p dp


   .                 (2.77) 

Differentiating (2.77), we get 

                              
1

1H u M u u M u


   .                           (2.78) 

The distribution is uniquely determined by  M u through the formulas 

                           1

0
1

u

Q u M u p M p dp


                    (2.79) 

and 

                                  1
1 .q u u M u M u

                               (2.80) 

2.4.3 Residual variance quantile function 

 The quantile form of variance residual function, the residual 

variance quantile function is defined as 

                       
1 21 21 .

u
V u u Q p dp M u Q u


          (2.81) 

The above expression can easily be obtained by letting  x Q u  in (2.51). 

Nair and Sankaran (2009) derived the relationship between  M u  and 

 V u
 
as 

                                          2 1M u V u u V u                        (2.82) 

or 

                                       
11 21 .

u
V u u M p dp


                   (2.83) 

Since  M u  characterizes the distribution, from (2.82) and (2.83) it 

follows that  V u
 
also characterizes the distribution. 
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 In quantile terminology, the co-efficient of variation is defined as 

                                   
 
 2

V u
c u

M u
 .                            (2.84) 

Using (2.82), (2.84) become 

 
   

 
11

1
u V u

c u V u


   

or 

                           
21

log 1 1 .
d

V u u c u
du

      
                (2.85) 

2.4.4 Quantile forms of some other reliability concepts 

 In this section, we present quantile forms of some more reliability 

concepts, which are useful for the discussions in the subsequent chapters. 

These definitions are listed below. 

(a) Percentile residual quantile function:- 

This is the quantile form of percentile residual life function given 

in (2.57). It is denoted by  P u  and is defined by 

                  1 1 1P u p Q u Q u Q u           .                (2.86) 

(b) Reversed hazard quantile function:- 

It is denoted by  u  and is defined as 

                 
1

u Q u uq u


   .                            (2.87) 

 u  determines the distribution through the formula 

                       
1

0
.

u

Q u p p dp


                              (2.88) 

and  u  related with  H u  as 

                 1
1H u u u u


   .                             (2.89) 

(c) Reversed mean residual quantile function:- 
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The reversed mean residual life function defined in (2.67) can be 

translated to the quantile terminology to get reversed mean 

residual quantile function, which is denoted as  R u  and has the 

form 

                            R u r Q u  

                            1

0

u

u Q u Q p dp   

                         1

0
.

u

u pq p dp                             (2.90) 

 Nair and Sankaran (2009) derived the following relationships 

connecting  R u  with other functions 

                                       1

0

u

Q u R u p R p dp  ,                           (2.91) 

                                 
1

u R u uR u


   ,                           (2.92) 

                              
1

1

0

u

R u u p dp
  ,                 (2.93) 

 and 

                       1 u M u uR u Q u    .                           (2.94) 

(d) Reversed variance residual quantile function:- 

Quantile form of the variance residual function is denoted by  D u  

and is defined as 

                     
2

1 2

0

u

D u u Q p dp Q u R u                   (2.95) 

and has relationship with  R u  as 

                                2R u D u uD u                   (2.96) 

or 

                                1 2

0
,

u

D u u R p dp                             (2.97) 
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where  D u  is the derivative of  D u  with respect to u . 

2.5 Total time on test transform 

 The total time on test transforms (TTT) is a widely accepted 

statistical tool, which has applications in different fields such as 

reliability analysis, econometrics, stochastic modelling, tail ordering, 

ordering of distributions, etc.. When several units are tested to determine 

their life lengths for a specified period of time, some of the units fail 

while others may survive the period of the test. The sum of all observed 

and incomplete life lengths is the total time on test statistic. As the 

number of items becomes infinite, the limit of this statistic is called the 

total time on test transform (TTT). This quantile-based concept was first 

studied in the early seventies (See Barlow and Doksum (1972) and 

Barlow et al. (1972)). A major part of the existing literature on TTT is 

concerned with reliability analysis that include characterization of 

ageing properties, model identification, tests of hypothesis, age 

replacement policies in maintenance, ordering of life distributions and 

defining new classes of life distributions. See Bergman and Klefsjö 

(1984), Bartoszewicz (1995), Haupt and Schabe (1997), Kochar et al. 

(2002), Li and Zuo (2000), Ahmad et al. (2005), Li and Shaked (2007) and 

the references therein for further details. The works in recent years 

manifest the increased interest of the researchers in the properties and 

applications of TTT.  

 The total time on test transform of a nonnegative random variable 

X is defines as  

                                              
 

 
1

1

0

F u

F
H u F t dt



                              (2.98) 
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is called the total time on test transform. When expressed in terms of 

quantile functions, it is given by 

                                        
0

1 .
u

T u p q p dp                   (2.99) 

We call 
( )

( )
T u

u


  as the scaled TTT transform. 

Further properties of this quantile version and its generalization will be 

discussed in detail in Chapter 5. 

2.5.1 Relationships of TTT with reliability functions  

 From (2.71) and (2.99), we have the relationship between the 

hazard quantile function and TTT as 

                                                     
 
1

T u
H u

  .                                  (2.100) 

Again from (2.18) and (2.99), 

         
1

1 1
u

T u p q p dp u M u        

or  

                                          
 

1

T u
M u

u





 .                            (2.101) 

The equation (2.101) gives the relationship between TTT and mean 

residual quantile function. We have, from (2.83), 

   
1

21

1 u
V u M p dp

u


   

and hence 

                                         
 

2
11

1 1u

T p
V u dp

u p

       
                      (2.102) 

or  

                                          
1/2

1 1 .T u u u V u V u                     (2.103) 

With regard to functions in reversed time, 
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     
0

u

T u Q u pq p dp   

or 

     d
uq u Q u T u

du
     . 

Therefore  

                                              
1

.
d

u Q u T u
du

 
   
  

                         (2.104) 

The reversed mean residual quantile function given in (2.90) satisfies 

   
0

u

uR u pq p dp   

               .Q u T u   

Hence 

                                                  .T u Q u uR u                                (2.105) 

Finally, we can connect TTT with reversed variance residual quantile 

function as 

                              2

0

1 u

D u R p dp
u

   

                            
   

2
0

1
.

u Q p T p
dp

u p


                           (2.106) 

The above relationships will be made use of in the discussions in Chapter 

5. 

2.6 Some distributions defined by quantile functions 

 There are many distributions that can be specified by quantile 

functions. Some of them are obtained by direct inversion of the 

distribution function. Others are defined in terms of the quantile 

function only, as there is no analytically tractable distribution function 

for them. In this section, we discuss some distributions belonging to the 
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latter category used in the sequel. It may be noticed that the primary 

focus of the present thesis is such distributions and their analysis in the 

context of reliability theory.  

2.6.1 Lambda distributions 

 The base of the development of lambda distributions is the work of 

Hastings et al. (1947), who introduced a family of distributions by a 

quantile function. During the past sixty years considerable efforts were 

made to generalize this family of distributions and the refined model by 

Tukey (1962) and to study their new applications and inference 

procedures. These generalized versions have been used for the modelling 

and analysis in different fields such as inventory control (Silver (1977)), 

logistic regression (Pregibon (1980)), meteorology (Osturk and Dale 

(1982)), survival analysis (Lefante Jr (1987)), queuing theory (Robinson 

and Chan (2003)), random variate generation and goodness of fit tests 

(Cao and Lugosi (2005)), fatigue studies ( Bigerelle et al. (2005)), process 

control (Fournier et al. (2006)), biochemistry (Ramos Fernandez et al. 

(2008)) and economics (Haritha et al. (2008)). In this work, we try to 

point out the role of lambda distributions and other quantile functions in 

reliability analysis.   

 The Tukey lambda distribution with quantile function 

                                 
 1

, 0 1, 0
u u

Q u u






 
                      (2.107)                        (3.1) 

is the basic model from which all other generalizations originated. When 

0,  

  log ,
1

u
Q u

u

    
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which is the quantile function of the logistic distribution. For 1  and 

2 , (2.107) becomes the uniform over  1,1  and  1 1,
2 2

  

respectively. The density functions are U shaped for 1 2   and 

unimodal for 1 or 2   . Being symmetric and having range for 

negative values of X , it has limited use in reliability modelling. 

2.6.2 Generalized lambda distribution (GLD) 

 Ramberg and Schmeiser (1974) generalized the Tukey lambda 

distribution to a four-parameter distribution specified by quantile 

function                

                             43

1

2

1
1 , 0 1,Q u u u u




                          (2.108)          

where 1
  is a location parameter, 2

 is a scale parameter and 3
  and 4

  

are shape parameters. The distribution (2.108) is called the generalized 

lambda distribution. This is the most discussed member of the family of 

lambda distributions because of its versatility and special properties. The 

distribution takes a wide range of values for X for the different choices of 

parameters as shown in Table 2.1. In these range of parameters, the 

quantile function provides a valid distribution. In all regions 1
  takes 

real values. 

  The quantile function (2.108) is a valid distribution also for values 

in  3 3
1 0, 0    

 
for which 
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and for values in  3 4
0, 1 0      for which 
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See Karian and Dudewicz (2000) for details. 

Table 2.1-Ranges of generalized lambda distribution. 

Region Supports 
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  
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 A constraint on the parameters for the quantile function to be a 

lifetime distribution is   1

2

1
0 0Q 


   . The quantile density function 

has the expression 

                                     43
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and the density quantile function is  
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which should be nonnegative for (2.108) to be a proper distribution. The 

distribution has a wide variety of shapes for the density function as 

shown in figure (2.1). 

    

   

    

 

     

Figure 2.1 - Density plots of the GLD (Ramberg and Shreimer model) when 

 
1 2 3 4
, , ,     are (a) 1, 0.2, 0.13, 0.13 , (b) 1, 0.6, 1.5, 1.5 , (c) 1, 0.2, 0.13, 0.013 , 

(d) 1, 0.2, 0.013, 0.13 , (e) 1, 1, 0.5, 4 , (f)  1, 1, 3, 0.5 . 

2.6.2.1 Moments of Generalized Lambda Distribution 

 The expression for thr  ordinary moment from equation (2.17) is 

given by  
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In particular, the first moment, the mean is 
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                         (2.111) 

Ramberg and Schmeiser (1974) showed that when 1
0  , the thr

moment when it exists has the expression 

       2 3 4
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1 1, 1 ,
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         
    

where  .B  denotes the beta function. Since the arguments of the beta 

function should be nonnegative, the thr moment exists only when 

 3 4

1
min ,

r
 


 . A detailed study of the skewness and kurtosis for 

different values of 3
  and 4

  is given in Karian and Dudewicz (2000). 

2.6.2.2 Percentiles 

 The basic characteristics of the distribution can also be expressed 

in terms of the percentiles. Using (2.12) through (2.15), the median 
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the inter-quartile range 
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Galton’s measures of skewness 
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                (2.114) 

and the Moor’s measures of kurtosis 
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2.6.2.3 L-moments 

 Using the equations (2.33) through (2.36), Asquith (2007) has 

obtained simple expressions for L-moments of the distribution, which are 

given by 
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The L-skewness and L-kurtosis have the expression 
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 All the L-moments exist for every 3
 , 4

1  . It may be noted 

that the conventional moments require more restricted condition that 

3 4

1
,

4
 


  for the evaluation of Pearson’s skewness 1

 and kurtosis 2
.

Thus L-skewness and L-kurtosis permit a larger range of values in the 

parameter space. 
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2.6.3 Generalized Tukey lambda distribution 

 We have seen in the last section that the generalized lambda 

distribution by Ramberg and Schmeiser (1974) has a limitation that the 

distribution is not valid in certain regions of the parameter space. 

Freimer et al. (1988) introduced a modified generalized lambda 

distribution which is well defined for the values of the parameters over 

the entire two dimensional space. This distribution is specified by the 

quantile function 
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The quantile density function is 
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Since our interest in (2.120) is as a life distribution, we should have  

                               1
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1
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if 3

0   and 4
0  . This is a critical point 

to be verified when the distribution is used to model data pertaining to 

nonnegative random variables. The exponential distribution is a 

particular case of the family as 3
   and 4

0  . Considerable 

richness is seen in the density shapes, there being members that are 

unimodal, U-shaped, J-shaped and monotone, which are symmetric or 

skew with short, median and long tails, see Figure 2.2. 
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Figure 2.2- Density plots of the GLD (Freimer model) when  1 2 3 4, , ,     are 

(a)  2,1, 2, 0.5 , (b)  2,1, 0.5, 2 , (c)  2,1, 0.5, 0.5 , (d)  3,1,1.5, 2.5 , (e)  3,1,1.5,1.6 , 

           (f)  1,1, 2, 0.1 , (g)  5,1, 0.1, 2 . 
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2.6.3.1 Moments 

 Using (2.17), the first four moments of the distribution are 

obtained as  
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and 
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 In order to have a finite moment of order k , it is necessary that 

  1
3 4

min , k   . An elaborate discussion on the skewness and kurtosis is 

carried out in Freimer et al. (1988).  

2.6.3.2 Percentiles 

 The measures of location, spread, skewness and kurtosis based on 

percentiles are derived using the equations (2.12) through (2.15) as  
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                                                                                                               (2.129)  

2.6.3.3 L-moments 

 The L-moments of the distribution have simple forms. From the 

equations (2.33) through (2.36) the first four L-moments are 
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2.6.4 Power-Pareto distribution 

 This is a flexible distribution with nonnegative support, obtained 

by multiplying together the quantile functions of the power and Pareto 

distributions (see Gilchrist 2000). A detailed study on the properties such 

as tail behaviour, shape of density functions, skewness and kurtosis, 

approximations with other well known distributions are carried out in 

Hankin and Lee (2006). The distribution has the quantile function 
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The function in (2.134) is the product of power distribution with quantile 

function 
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This is possible that one (but not both) of 
1
  and 

2
  may be zero. The 

quantile density function of the distribution is 
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and accordingly, the density quantile function can be written as 
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In (2.134) C  is the scale parameter, 1
  and 2

 are shape parameters with 

1
  controlling the left tail and 2

 , the right tail. See Hankin and Lee 

(2006) for more details. The shapes of density functions for different 

choices of parameters are given in Figure 2.3. 

            

         

 

Figure 2.3- Density plots Power-Pareto distribution when  
1 2

, ,C    are  

                      (a) 1, 0.5, 0.01 , (b) 1, 1, 0.2 , (c)  1500, 0.2, 0.1 , (d)  1, 0.1, 1 ,  

                      (e)  1, 0.5, 0.001 , (f)  1, 2, 0.001 . 
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2.6.4.1 Moments of the distribution 

 From the equation (2.17), the thr  ordinary moment of the 

distribution is given by the expression 
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. 

A detailed study on skewness and kurtosis of the distribution has been 

made in Hankin and Lee (2006). The measures of skewness and kurtosis 

based on the ordinary moments exist over the range 1 2

1
0, 0

4
    . 

Minimum skewness is -2 attained at 2
0  and minimum kurtosis is 

attained at 2
0  . Both the measures increase with respect to 1

  and 2
 . 

The range of possible kurtosis values increases with increasing 

skewness. They pointed out that the distribution is more suitable for 

positively skewed data and the possible skewness and kurtosis ranges for 
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the gamma, weibull and log-normal distributions lie entirely within the 

range of power-Pareto distribution. 

2.6.4.2 Percentiles 

 We have seen that the usual characteristics based on the 

conventional moments have restrictions due to the nonexistence of the 

moments throughout the parameter space. The measures based on 

percentiles are good alternatives to those based on moments. They have 

simple closed expressions, and can be used in situations where the 

characteristics based on ordinary moments fail. The usual measures 

based on percentiles using equations (2.12) through (2.15) are 
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2.6.4.3 L-moments 

 The first four L-moments of the distribution obtained using 

equations (2.33) through (2.36) are  
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L-moments of all order exist when 2
1  . Thus the utility of L-moments 

is better than that of ordinary moments, as in the case of the latter 

choices of the parameter 2
  shrinks as the order of moments increases. 

The L-skewness and L-kurtosis have simple expressions 

 
  

2 2

3 1 1 1 2 2 2
3

2 1 2 1 2

4

3

L

L

     


   
   

 
  

 

and 

 
 

  

2 2

1 2 1 2 1 24
4

2 1 2 1 2

8 3 2

3 4

L

L

     


   

    
 

   
. 
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2.6.5 van-Staden & Loots model 

 van-Staden & Loots (2009) have proposed a new four-parameter 

distribution  as a parameterization of the GLD. Without proposing a new 

estimation technique, they derived this parameterization to overcome the 

difficulties persist in the estimation procedures of the generalized 

lambda distribution. They generated the new model by considering the 

generalized Pareto model with quantile function 

  
  
 

4

4

41

4

1
1 1 , 0

ln 1 , 0

u
Q u

u








     

 

and its reflexion 

  
 4

4

42

4

1
1 , 0

log , 0.

u
Q u

u

 




   

 

Taking the weighted sum of the above quantile function lead to the 

generation of the new model by introducing the location parameter 1
 .  

The quantile function of the model is 

    
  4

4

1 2 3 3 2

4 4

1 11
1 , 0

uu
Q u



    
 

        
  

 .            (2.140) 

When 4
0,  (2.140) becomes the quantile function of the skew-logistic 

distribution, 

      3 3
1 ln ln 1Q u u u       

and becomes a uniform distribution when  4
1 

 
and also when 3

1

2
 

 

and 4
2  . The support of the distribution is as follows: 
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  Table 2.2 – Ranges of Van-Staden & Loots model. 

Ranges of parameters                   Supports 

 

 

 



3 4 1

2
3 4 1 1

4

3 4

3 2 3 2
3 4 1 1

4 4

3 4 1

2
3 4 1 1

4

0, 0 ,

0, 0 ,

0 1, 0 ,

1
0 1, 0 ,

1, 0 ,

1, 0 ,

  


   



 

   
   

 

  


   



  

       

    

       
  
  
 
    
 

 

The condition for the model to be a life distribution is 
 2 3

1

4

1
0

 





  . 

This gives members with both finite and infinite support, depending 

upon whether 4
  is positive or negative. The quantile density function of 

the distribution is  

                                44
11

2 3 3
1 1q u u u

  
      

.                      (2.141) 

The density quantile function has the expression 

      44

1
11

3 3

2

1
( ) 1 1f Q u u u

 


      
. 

See Figure 2.4 for the shapes of the density function for some selected set 

of parameter values. 
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 Figure 2.4- Density plots of the GLD proposed by Staden and Loots (2009)    

                     when  1 2 3 4
, , ,     are (a) 1, 1, 0.5, 2 , (b)  2, 1, 0.5, 3 ,  

                     (c)  3, 2, 0.25, 0.5  and (d)  1, 2, 0.1, 1 . 

2.6.5.1 Moments 

 The thr ordinary moment of the distribution is given by  

     
1

0
.

r
rE X Q u du   

In particular the mean 
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and the variance 
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                 
             


 

The higher order ordinary moments of the distribution have lengthy 

complicated forms, contains special functions, which make skewness-

kurtosis analysis of the distribution using ordinary moments tedious. 

 

2.6.5.2 L-moments 

 The L-moments of the distribution have closed forms, which can be 

used as a better alternative to the ordinary moments. L-moments of all 

order exist when 4
1  . The general expression for the thr  L-moment 

for 3, 4, ...r  is derived in van-Staden and Loots (2009). The L-

moments are 

                                                1
L   
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where  

                                              
1,

0,

r is odd
S

r is even


 

In particular 
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and 
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Hence the L-skewness and L-kurtosis are 
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van-Staden and Loots (2009) pointed out that as in the case of lambda 

distributions discussed earlier, there is no unique  3 4
, 

 
pair for a given 

value of  3 4
, .  When 3

1

2



 , the distribution is symmetric. L-

skewness covers the permissible span  1,1 and kurtosis is independent 

of 3
  with a minimum attained at 

4
6 1   . 

2.6.5.3 Percentiles 

 Different percentile measures of the distribution are obtained from 

equations (2.12) through (2.15). 
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and 
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2.6.5.4 Estimation 

 The method of ordinary moments to estimate the parameters is 

difficult to use as the third and fourth moments have complicated 

expressions. The simple closed forms of the L-moments allow estimating 

the parameters easily. van-Staden and Loots (2009) have derived 

estimates of the parameters based on L-moments. Using the sample L-

kurtosis 4
t , the estimate of  4

  is  

                             
 

2

4 4 4

4

4

3 7 98 1
ˆ

2 1

t t t

t


   



.                                   (2.142) 

4
̂  can be utilized to estimate 3

  by  

                             

 3 4

4

4
3

4

ˆ 31 ˆ1 , 1
ˆ2 1ˆ

1 ˆ, 1,
2

t 






                

                                  (2.143) 

where 3
t  is the sample L-skewness. 1

  and 2
  can be estimated using 3

̂  

and 4
̂  by 

                                   2 2 4 4
ˆ ˆ ˆ1 2l                                              (2.144) 

and  

                                 
 2 3

1 1

4

ˆ ˆ1 2
ˆ ,

ˆ 1
l

 





 


                                          (2.145) 

where 1
l  and 2

l  are the first two sample L-moments. 
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The method of percentiles can also be used to estimate the parameters. 

The ratio of the Moor’s measure and Galton’s measure is the function of 

4
  alone, using their sample counterparts we can estimate 

4
 . 

Substituting the estimate of 
4


 
in Moor’s measure, the estimate of 

3


 
 

can easily be derived using the sample counterparts of Moor’s measure. 

These two estimates can be utilized to estimate the other two parameters 

with the expressions of the median and IQR along with their sample 

counterparts. 

2.7 Q-Q Plot 

 Once a candidate distribution is chosen to represent the data and 

its fit is obtained by some method, one has to see whether the 

distribution is valid for the data situation under consideration. Though 

there are many methods of validation, one that is relevant to modelling 

with quantiles is the Q-Q plot. The Q-Q plot is the graph of 

 :
( ), , 1, 2, ...,

r r n
Q u x r n  and 

0.5
r

r
u

n


 . Here :r n

x
 

denotes the thr  

ordered observation, when observations are arranged in ascending order 

of magnitude. For application purposes we replace ( )
r

Q u
 
with the fitted 

quantile function. In the ideal case, the graph should show a straight line 

that bisects the axes of coordinates. However, since the sample is random 

and the fitted values of ( )Q u  are points lying approximately along the 

line specified above, it can be taken as indication of a satisfactory model. 

This method will be used in the subsequent chapters when the sample 

size is small enough to create sufficient number of classes to employ 

other conventional tests or when there are other difficulties in carrying 

all the latter.  
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2.8 Order relations 

 There is considerable growth in the study of stochastic orders in 

recent years. Different order relations have been developed using 

measures in connection with many fields such as reliability, economics, 

queuing theory, survival analysis, insurance, operations research, etc.. 

Details of order relations and related results are well documented in 

Shaked and Shanthikumar (2007). In the present section, we give 

definitions of some order relations that are useful for the discussions in 

the subsequent chapters. Equivalent conditions, implications, etc. of the 

given definitions are available in Shaked and Shanthikumar (2007).  

2.8.1 Usual stochastic order 

 Let X and Y be two random variables with distribution functions 

( )
X

F x  and ( )
Y

F x , and quantile functions ( )
X

Q u  and ( )
Y

Q u  respectively. 

We say that X  is smaller than Y  in usual stochastic order, denoted by 

st
X Y  if and only if  

( ) ( ),
X Y

F x F x x   

or equivalently  

( ) ( ), (0,1)X YQ u Q u u   . 

2.8.2 Dispersive ordering 

 With the above notations, if  

( ) ( ) ( ) ( ), 0 1,X X Y YQ v Q u Q v Q u u v       

then X is said to be smaller than Y  in the dispersive order, and denoted 

by 
disp

X Y . As this ordering consider the difference between two 

quantiles, the comparison corresponds to the variability of X  and Y . 
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2.8.3 Convex order 

 (a) For two random variables X  and Y  if    ( ) ( )E X E Y 
 
for all 

convex functions : ,R R   provided the expectations exist, then X  is 

said to be smaller than Y  in the convex order. It is denoted by 
c

X Y . 

In terms of quantile function, c
X Y  if and only if  

0 0
( ) ( )

u u

X Y
Q p dp Q p dp   

or  

1 1

( ) ( )
X Y

u u
Q p dp Q p dp  . 

 (b) Some other orders are defined using the concept of convex ordering. 

For example, if  

( ) ( ) ,
c

X E X Y E Y          

the order is called dilation order, which is denoted by dil
X Y .  dil

X Y

if and only if  

1 1

0

1
( ) ( ) ( ) ( )

1
X Y X Y

u
Q p Q p dp Q p Q p dp

u
           . 

 (c) We say that X  is less than Y  in Lorenz order if    

( ) ( )
c

X Y

E X E Y
 , 

and is denoted by lorenz
X Y .  The Lorenz curve corresponding to a 

nonnegative random variable X is defined as  

0

1
( ) ( )

u

X
L u Q p dp


  . 

Let ( )
X

L u
 
and ( )

Y
L u

 
be the Lorenz curves of X  and Y . Then lorenz

X Y
 
 

if and only if  

( ) ( ), (0,1)X YL u L u u   . 
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2.8.4 Transform orders 

 (a) We say that X  is smaller than Y  in the convex transform order, 

denoted by cx
X Y , if 1 ( )G F x  is convex in x  on the support of F .  

 (b) Another order in this category is the star order. The random variable 

X  is smaller than Y in the star order if  1 ( )G F x

 is star-shaped, that is 

1 ( )G F x

x



 increases for 0x  . This order is denoted by *
X Y . In 

quantile form, *
X Y  if and only if  

( )

( )
Y

X

Q u

Q u
 is increasing for (0,1)u . 

 (c) We say that X  is smaller than Y  in the superadditive order, written 

as su
X Y , where su

  stands for the superadditive order if 1 ( )G F x  is 

super additive in x . That is,  

1 1 1( ) ( ) ( )G F x y G F x G F y     , 

 for all 0x   and 0y . 

2.8.5 The monotone convex and monotone concave orders 

 Two random variables X  and Y  are such that    ( ) ( )E X E Y   

for all increasing convex (concave) functions : R R  , provided the 

expectations exist, then X  is smaller than Y  in the increasing convex 

(concave) order, denoted by icx
X Y ( icv

X Y ). Similarly decreasing 

convex (concave) order may be defined for decreasing convex (concave) 

functions  (denoted by ( )
dcx dcv

X Y  ). 

2.8.6 TTT order and excess wealth order 

 Recall the definition of total time on test transform given in (2.98), 

given by 
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   
 1

1

0
.

F u

F
H u F t dt



    

Another transform that is closely related to the TTT is the excess wealth 

transform, defined as 

 
1 ( )

( ) 0 1.
X

F u
W u F x dx u





    

Notice that  

1( ) ( )
X F

W u H u   . 

For two random variables X  and Y  with distribution function  F x  and  

 G x , X  is said to be smaller than Y  in TTT order (denoted by ttt
X Y ) 

if  

1 1( ) ( )

0 0
( ) ( )

F u G u

F x dx G x dx
 

   for all (0,1)u . 

If    X Y
W u W u , then we say that X  is smaller than Y  in excess 

wealth order (which is also called the right spread order), denoted by 

EW
X Y . 

 

2.8.7 Reliability orders  

 The stochastic orders defined so far has no explicit connection with 

reliability concepts considered in Sections 2.2 and 2.3. We now consider 

some partial orders based on reliability concepts that enable the 

comparison of lifetime distribution. 

(i) If X  and Y  are lifetime random variables with absolutely 

continuous distribution functions, we say that X  is smaller than Y  in 

hazard rate order, denoted by hr
X Y

 
if 

   ,X Y
h t h t  

for all t , where  X
h t  and  Y

h t
 
are the hazard rates of X  and Y

respectively.  
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(ii) We say that X  is smaller than Y  in mean residual life, denoted by 

mrl
X Y , if 

   ,X Y
M t M t  

for all 0t , where  X
M t  and  Y

M t  are mean residual functions of X

and Y  respectively.  

(iii) Another stochastic order that involves the mean residual life is the 

harmonic mean residual order. The random variable X  is said to be 

smaller than Y  in harmonically mean residual life orders, denoted by  

hmrl
X Y  if and only if 

   

1 1

0 0

1 1x x

X Y

dt dt

x m t x m t

    
      
      
  . 

(iv) Recall the definitions of variance residual life function and its 

quantile version given in Section 2.2.3 and 2.4.3. We say that the random 

variable X  is smaller than Y  in variance residual life denoted by 

vrl
X Y

 
if  

   2 2

X Y
x x   for all 0x  . 

 There exist many other orders in the categories discussed above. 

We have given only those concepts that will be used in the forthcoming 

chapters. A general discussion of various stochastic orders and their 

relationships are available in Shaked and Shanthikumar (2007). 



 

 

 

 

 

 

Chapter 3 

 

Quantile function models 

 

 

3.1 Introduction 

 We pointed out in Chapter 1 that one of the objectives of quantile-

based reliability analysis is to make use of quantile functions as models 

in lifetime data analysis. In the present chapter, we discuss the 

characteristics of some quantile function models and demonstrate their 

applicability in lifetime data analysis. The basic characteristics of the 

models such as moments, percentiles, L-moments and measures of 

skewness and kurtosis, etc. were discussed in Chapter 2. Also presented 

here are the commonly used reliability measures in terms of quantile 

function for each model, which are utilized latter to describe reliability 

properties and ageing pattern of the models. 

 The distributions considered are the generalized lambda 

distribution of Ramberg and Schmeiser, the generalized Tukey family of 

Freimer, Kollia, Mudholkar and Lin, the four-parameter distribution  of 

van-Staden and Loots, the power Pareto model, reviewed in Chapter 2 

and the Govindarajulu’s model proposed by Govindarajulu (1977). A 

major objective of this chapter is to introduce the above distributions as 

alternatives to the conventional distributions employed in lifetime data 

analysis. Their adequacy to represent real life situations are examined in 
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*some parts of the materials in this section have appeared in Nair and 

Vineshkumar (2010), Journal of Statistical Planning and Inference – see 

reference no. 93. 

the light of various data sets. We have given special consideration to 

Govindarajulu model as it is a simple model with only two parameters 

and has competing features in terms of model parsimony. Although 

introduced earlier, its properties and applications in the context of 

reliability theory do not appear to have been discussed in the literature.  

In the last major section of this chapter, we introduce a new technique to 

derive new classes of life distributions using the properties of Parzen’s 

score function and tail exponent function. 

3.2 Lambda distributions * 

3.2.1 Generalized lambda distributions  

  When used as a lifetime distribution, the generalized lambda 

family specified by the quantile function  

                  

    43

1

2

1
1 , 0 1Q u u u u




                                     (3.1) 

should be such that the parameters satisfy the condition 
1

2

1
0


  . 

Thus from Table 2.1 the supports of the distribution for different ranges 

of 2 3
,   and 4

  become 1

2

1
,



      
, 1 1

2 2

1 1
, 

 

      
,  1 1

2

1
, 



     
,

1
0  ,  1 2

2

1
, 



     
,  2

0   and  1
,  , 1

0  . Hence the life 

distributions have members with finite and infinite supports. We present 

below some of the properties that have not been discussed in literature.  

3.2.1.1 Order Statistics 

 We have discussed the distribution and moments of order 

statistics in Section 2.1.5. The moments of order statistics of generalized 

lambda distribution have closed forms. Recall from Equation 2.30 that 
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the expectation of the of thr  order statistic of a random sample of size n  

from a population is 

 
 

   
1

1

:
0

!
1 .

( 1)! !

n rr

r n

n
E X u u Q u du

r n r

 
    

In the case of generalized lambda distribution, the above expression 

takes the form

 
 

    43

1
1

: 1
0

2

! 1
1 1

( 1)! !

n rr

r n

n
E X u u u u du

r n r





             

           
3 4

1

2 23 4

( ) ( 1) ( 1) ( 1)1 1

( ) ( 1) ( 1) ( )

r n n r n

r n n n r

 


  

     
  

    
.    (3.2) 

In particular, the expectation of first and thn order statistics are given by 

   
    1: 1

2 3 2 4

! !

1
n

n

n n
E X

n


   
  

 
                             (3.3) 

 and 

                       
    

: 1

2 3 2 4

! !
,

1
n n

n

n n
E X

n


   
  

 
                            (3.4) 

where       1 ... 1
r

n n n n r     is the ascending factorial function. 

Using (2.28) and (2.29), we can obtain the distribution of the order 

statistics 1:n
X  and :n n

X  as  

                      

    

   

1

3
4

1 1

1

1

2

1 1

1
1 1 1

n

n n

Q u Q u

u u

 




  

                

                          (3.5) 

and 

                            

   1

4
3 1

1

2

.

1
1

n

n

n n

Q u Q u

u u








                 

.                                  (3.6) 
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Recall that the implications of the order statistics in reliability modelling 

have been pointed out in Section 2.1.5. Accordingly the expectations in 

equations (3.2) through (3.4) provide the expected life of the r-out-of-n 

system, series system and parallel system respectively. Further (3.5) and 

(3.6) provide nice functional forms for further manipulations. 

3.2.1.2 Reliability functions 

 We can make use of the definitions of quantile-based concepts 

given in Section 2.4 to obtain the reliability functions of the distribution. 

The hazard quantile function has the simple form 

   

      

    43

1

2

11

3 4

1

.
1 1

H u u q u

u u u




 





 


  

                   (3.7) 

The analysis of ( )H u  that reveals the potential of (3.7) in describing the 

physical characteristics of ageing will be taken up in Chapter 4.  

From equation (2.76), the mean residual quantile function has the 

expression 

               

     
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   
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M u p q p dp
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p p p dp
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u u u
u



  

 





  



 

 


   


           



   

The variance residual quantile function is obtained using the equation 

(2.81) as 

      
2

1 1
21 1

1 1u u
V u Q p dp Q p dp

u u

          
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                                        2

1 2 ,A u A u   

where  
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 
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and    
1 11

1
, 1

nm

u
u

B m n t t dt


    is the incomplete beta function. 

The generalized lambda distribution is determined as 

    1
d

a u u
du

  ,  

where ( )u  is the quantile form of the vitality function  E X X x , 

which has the expression 
11

( ) ( )
1 u

u Q p dp
u

 
   when it satisfies  

    
 11

1 ,

d
c uu

u u a b
c d


           

  

for real a , b , c  and d  for which  0 0Q  . 

 From the equation (2.86), the th  percentile residual quantile 

function of the distribution has the expression 
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Various functions in reversed time, following the notations in Chapter 2 

are the reversed hazard quantile function derived using (2.87). 
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from the equation (2.91), the reversed mean residual quantile function 
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and the reversed variance residual quantile function obtained using 

equation (2.95) 
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.  

3.2.1.3 Application to lifetime data 

 To ascertain the application of the distribution in lifetime 

modelling, we fitted the model to the data on the time of the first 
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external leakage of 32 centrifugal pumps cited in Lai and Xie (2006). We 

used the method of L-moments for estimating the parameters by 

equating the first four L-moments of the distribution with the sample 

counterparts. The sample L-moments are calculated using the formula 

   
 

   
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

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 

     .          (3.8) 

that give 

1 2 3 4
5024.7187, 1644.6764, 201.5913 and 110.1990.l l l l     

The equations of estimation are 
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The expressions in the left hand side of the above equations are given in 

(2.116) through (2.119). The above nonlinear equations in 

1 2 3 4
, , and     are solved using the software package Mathematica. 

There are multiple solutions to the equations. Of these solutions, the sets 

that do not conform to the condition 
1

2

1
0


   and those that do not lie 

in the prescribed parameter space were discarded. From among the 

legitimate parameter values, one that provided best fit on the basis of the 

Q-Q plots were selected as the final estimate. This leads to the estimates 

1 2 3 4
ˆ ˆ ˆ ˆ6242.88, 0.000175, 5.17987, 1.67014       . 
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We utilize the Q-Q plot explained in Section 2.7 to ascertain the goodness 

of fit. The Q-Q plot associated with the above solution shows that the 

generalized lambda distribution with the above designated parameter 

values provides a reasonable visual validation of the distribution to the 

data. See Figure 3.1. Further analysis of the data using the model can be 

carried out with the aid of the formula for various functions associated 

with the lifetime. 

 

 3.2.2 Generalized Tukey lambda distribution 

 Now we consider the generalized Tukey lambda distribution 

discussed in Section 2.6.3, specified by the quantile function 

                         
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The quantile density function is 
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We have pointed out in Section 2.6.3 that to be a life distribution we 

should have  
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Figure 3.1 - Q-Q Plot
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and in this case the support becomes 
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4
0  . This is a critical point 

to be verified when the distribution is used to model data pertaining to 

nonnegative random variables. In the following sections, we study the 

relevance of the distribution in reliability analysis.  Commonly used 

reliability measures of the distribution that are capable to analyze the 

reliability properties of the distribution are derived and adequacy of the 

distribution in real life situations is examined. Such a study does not 

appear to have been discussed in literature. 

3.2.2.1 Order statistics 

 Recall the expressions of distribution and expectation of order 

statistics given Section 2.1.5. From equation (2.30), the expected value of 

the thr  order statistic :r n
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The distributions of 
1:n

X  and 
:n n

X , using the equations (2.28) and (2.29)  

are specified by 
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Recalling the use of the concepts of order statistics in reliability analysis, 

which we have pointed out in Section 2.1.5, we can conclude that all the 

expressions derived above have importance. 

3.2.2.2 Reliability functions 

 Various reliability functions of the model have closed form 

algebraic expressions except for the variance which contains the beta 

function. From the quantile density function  
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the hazard quantile function is obtained using (2.71) as 
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From (2.76), the mean residual quantile function simplifies to 
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The variance residual quantile function is  
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Using the equation (2.86), percentile residual quantile function becomes 
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Expressions for functions in reversed time are obtained using equations 

(2.87), (2.90) and (2.95). The reversed hazard quantile function 
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the reversed mean residual quantile function 
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and the reversed variance residual quantile function 
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3.2.2.3 Application to real data 

 We fitted the distribution to the observed lifetimes of 100 strips of 

aluminium coupon (omitting the last observations to extract equal 

frequencies) in Birnbaum and Saunders (1958) by estimating the 

parameters using the method of L-moments. The estimates are obtained 

by equating the expressions of equations (2.130) through (2.133) with the 

corresponding sample moments in equation (3.8).  

          For the data considered here 1 21391.79, 215.6837374,l l 

3 3.570321583l 
 
and 4

20.767677l  . The estimates of the parameters 

are selected from the set of solutions as explained in Section 3.2.1.3. The 

estimates hence obtained are 

 1 2 3
ˆ ˆ ˆ1382.18, 0.0033, 0.2706    

 
and 

4
ˆ 0.2211  . 

The data arranged in ascending order of magnitude were divided into 10 

groups each containing 10 observations. Using the expression  Q p  for 

1 2
, ,...

10 10
p  and the fact that if U  has uniform distribution on 0,1   , 

then X  and  Q u  have identical distributions, the observed frequencies 

were found as 10,10, 9,12, 8,11,10, 8,12  and 10 . The resulting 
2 1.8  , 

does not reject the lambda distribution for the given data. 

3.3 Power-Pareto distribution 

 Recalling from equation (2.134), the power-Pareto distribution is 

specified by the quantile function 
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1 2
1 , 0 1, , , 0Q u Cu u u C

  


     .               (3.11) 

The quantile density function corresponding to (3.11) is 
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                               (3.12) 
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Although Gilchrist (2000) was the first to introduce this distribution and 

later Hankin and Lee (2006) have studied various properties of (3.11), 

several aspects of this distribution still remains to be explored. We state 

a few new results that are relevant to the present study. 

3.3.1 Order statistics 

 The expectation of thr order statistic has simple form, which is 

derived using (2.30) and is expressed in terms of beta function by 
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The quantile functions of the 1st  and thn order statistics are given by  
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and 

 

In views of the discussions in Section 2.1.5, the above concepts seem 

useful in lifetime modelling with power-Pareto distribution. 

3.3.2 Reliability functions 

 Most commonly used reliability functions of the distribution are 

the hazard quantile function defined in (2.71) 
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the mean residual quantile function given in (2.76) 
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the reversed hazard quantile function (using equation (2.87)) 
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and the reversed mean residual quantile function obtained using the 

equation (2.90) 
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 Note that the reliability functions except hazard quantile function 

and reversed hazard quantile function contain special functions. Nair 

and Sankaran (2009) have studied the reliability properties of the 

distribution and analyzed the nature of the hazard quantile function. 

They pointed out that  H u
 

decreases when   2

1 2 2
1 4 4 0    

 
or 
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1
0   for all u  or when   2

1 2 2
1 4 4 0      for all u  outside the 

interval  ,  , where   and   are the admissible roots of the equation 

       2 2 2

1 2 1 1 1 2 1 12 2 1 0,g u u u             
 
with   , 

 where  g u is the term that determines the sign of  H u .  

When   is the only admissible root of    0,g u H u decreases 

whenever u or u    and   2

1 2 2
1 4 4 0.       H u

 
is increasing 

for all u  in  ,   whenever   2

1 2 2
1 4 4 0.      There is no value of u  

for which  H u  is monotonic in other case. They have also established 

some characterization results using the relationships between the 

reliability functions. Note that when 1 2    ,
 

 Q u
 
is the quantile 

function of log-logistic distribution.  

3.3.3 Application to lifetime data 

 To ascertain the adaptability of the distribution to real lifetime 

data, we examined its adequacy to the times to failure of 20 electric carts 

reported in Zimmer et al. (1998) by the method of L-moments. The 

estimates were found from the solution of the equations obtained by 

equating the population and sample moments. These equations are 
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 The estimates thus obtained are 

1 2
ˆ ˆ ˆ1530.53, 0.234621, 0.09669C     . 
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The goodness of fit is tested by the Q-Q plot, since the number of 

observations is small to accommodate the chi-square test. The Figure 3.2 

shows that the distribution gives a reasonable fit to the data. The 

example vindicates the scope of the distribution to use as a lifetime 

model. 

 

 

Figure 3.2- Q-Q plot 

3.4 van-Staden & Loots model 

 Recall the van-Staden & Loots model discussed in Section (2.6.5). 

The distribution has the quantile function  

          

   
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                 (3.13) 

and quantile density function   
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  
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                             (3.14) 

The condition for the model to be a life distribution is 
 2 3

1

4

1
0

 





  . 

This gives members with both finite and infinite support, depending 

upon whether 4
  is positive or negative.  
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3.4.1 Order statistics 

 The 1 andst thn order statistics of the distribution have quantile 

functions (obtained using equations (2.28) and (2.29)) 
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From (2.30), the expectation of the thr order statistic is 
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In particular, the expectations of first and nth order statistics are 
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The last three formulae can be used to find the expectations of life of an 

r-out-of-n system, a series system and a parallel system of components 

whose lifetimes are assumed to follow van-Staden and Loots distribution.   

3.4.2 Reliability functions 

 The hazard quantile function obtained using (2.71) has the 

expression 

                             
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1H u u q u
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Its derivative is 
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When 40 1  ,   0H u  , means  H u  is increasing. The hazard 

quantile function  H u  possesses different shapes. See appendix of 

Chapter 4. 

From (2.76), the mean residual quantile function 
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The reversed hazard quantile function derived from (2.87) is 
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and from (2.90) reversed mean residual quantile function is 
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Using (2.86), the percentile residual quantile life function has the 

expression 
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3.4.3 Application to real data 

 We fitted the distribution to the data on lifetimes (in cycles) of 20 

sodium sulphur batteries given in Lai and Xie (2006) (page 348). We used 

the L-moment estimates given in Section 2.6.5.4 for estimating the 

parameters of the distribution. The first four sample L-moments of the 

data are  

           1 995.9,l 

 

2 470.2684,l  3 145.2l   and 4 51.6703.l   
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The two sets of estimates of the parameters obtained using expressions of 

L-moment estimators given in equations (2.142) through (2.145) are  

1. 1 2 3 4
ˆ ˆ ˆ ˆ254.569, 1224.41, 1.10731, 0.18927      

 
and 

2. 
1 2 3 4
ˆ ˆ ˆ ˆ3026.65, 14342.3, 0.142828, 4.04509       . 

For the first set of estimates, we have the good fit (see the Q-Q plot given 

in Figure 3.3) and the parameter values satisfy the condition for the 

model to be a life distribution. While the second set does not satisfy the 

condition and hence discarded from further consideration. 

 

Figure 3.3- Q-Q plot
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** Part of the discussion in this section has appeared in Nair, Sankaran 

and Vineshkumar (2012), Communications in Statistics- Theory and 

Methods (see reference no 88). 

3.5 Govindarajulu distribution **  

 The quantile models discussed in the previous sections like various 

forms of generalized lambda distributions contain at least four 

parameters. Although highly flexible in nature, the application of these 

models becomes difficult due to various theoretical and computational 

problems in the estimation of the parameters. Govindarajulu (1977) 

introduced the distribution specified by  

          
 1( ) ( 1) , , , 0, 0 1Q u u u u                (3.15)  

and demonstrated its potential as a lifetime model by fitting it to the 

data on the failure times of a set of 25 refrigerators which were run to 

destruction under advanced stress conditions. However, other than 

proposing the model, Govindarajulu (1977) did not investigate the 

various characteristics of the distribution as a general model as well as 

its role in reliability analysis. Accordingly in this section we carry out a 

detailed study of the model. 

 The support of the distribution (3.15) is    (0), (1) ,Q Q     . 

Since we treat (3.15) as a lifetime model,   is set to be zero, then the 

Govindarajulu distribution has only two parameters and simple quantile 

functional form 

 
 1( ) ( 1)Q u u u      

The quantile density function is  

                                         
1( ) ( 1) (1 )q u u u     .                            (3.16) 

The distribution function or density function of X  cannot be expressed in 

closed form by solving (3.15) and has to be evaluated numerically. Thus 

no analytical manipulation of the properties of X  based on the 
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distribution function is possible in this case. However in view of 

equations (2.2) and from (3.16), we can write  

                             
   1 11( ) ( 1) ( ) 1 ( ) .f x F x F x 

                        (3.17) 

Hence the Govindarajulu model belongs to the class of distributions 

defined in Jones (2007) and inherits the general properties discussed 

therein. From the derivative of ( )q u , 

 2( ) ( 1) ( 1)q u u u        , 

we conclude that the quantile density is monotone decreasing for 1 

and ( ) 0q u   gives 1( 1)u    .  Thus there is an antimode at 

1( 1)    when 1 . Figure (3.4) shows the shapes of density function 

( )f x  at 
1

, 2
2

   and 3 respectively. 

           

    

                                               

Figure 3.4- Density plots of Govindarajulu distribution when 

                  (a) 3  , (b) 0.5   and (c) 2   
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3.5.1 Moments 

 Recall the expressions of moments given in (2.17) through (2.21). 

The thr conventional moment is given by 
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and in particular, mean, 

12 ( 2)      

and variance  
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(5 7)
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The third and fourth ordinary moments are  
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The measures of skewness and kurtosis based on ordinary moments have 

lengthy expressions that make further analysis difficult.  
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3.5.2 Percentiles 

 The location and dispersion measures using the percentiles have 

been obtained using the equations (2.12) and (2.13). These measures are  

Median, M ( 1)1
2 ( 2)

2
Q        

 

and the inter-quartile range  
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4 3 ( 4) (3 4) .
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The measures of skewness and kurtosis given in (2.14) and (2.15) have 

the forms 

1 3
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. 

3.5.3 L-moments 

 Compared to the conventional descriptive measures discussed in 

the previous sections, the L-moments have compact expressions. The first 

four L-moments derived using equations (2.33) and (2.36) are 
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 The L-coefficient of variation, analogous to the coefficient of variation 

based on ordinary moments defined in (2.42) is given by  

2
2

1
3

L

L





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
. 

To measure the skewness of the distribution we use the L-coefficient of 

skewness given in (2.43) 

3
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Being an increasing function of  , the limits for 3
 are obtained as 0

and  . Thus 3
  lies between

1
, 1

2

     
. Hence the distribution has 

negatively skewed, symmetric (at 2   when 3
0  ) and positively 

skewed members. From (2.44), the L-coefficient of kurtosis is  
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which is non-monotone decreasing initially, reaches its lower value in the 

symmetric case and then increases to unity. 

3.5.4 Order statistics 

    A particularly attractive property of the Govindarajulu 

distribution is the simple form for the expected values of the order 

statistics. If :r n
X  denotes the thr  order statistic in a random sample of 

sizen , the density function of :r n
X  is  

 

 

1

1

1
( ) ( ) ( ) 1 ( )

( , 1)

1
( ) 1 ( )

( 1) ( , 1)

n rr

r

n rr

f x f x F x F x
B r n r

F x F x
B r n r



 



 

 
 

 
  

 

by virtue of (3.17). Hence 

   

  

   

1

:
0

1
1

0

1
1 1

0

1

1
( ) 1 ( )

( , 1)

1
( ) (1 ) ( )

( , 1)

1
(1 ) 1

( , 1)

1 1

n rr

r n

r n r

r n r

E X xF x F x dx
B r n r

Q u u u q u du
B r n r

u u u u
B r n r

u u du






  



  

 

 

  

   



 
 

 
 

    

  







            

! ( )
( 1)( 1) ( 1)

( ) ( 2)

n r
n r

r n

 
 




       

. 

In particular,  

 1:

( 1)!

( 1) ... ( 1)
n

n
E X

n


 




  
 

and 

 :

( 2 1)

( ) ( 1)
n n

n n
E X

n n

 
 
 


  

. 

Further using (2.28) and (2.29), 1:n
X  and 

:n n
X  have quantile functions 
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1

1
( ) 1 (1 )nQ u Q u

       
 

1 1

1 (1 ) 1 (1 )n nu u



 
                  

 

and 

 
1

1

( ) ( 1)n n n
n

Q u Q u u u
 

  
 

     
 

 . 

3.5.5 Reliability functions 

 Reliability function of the Govindarajulu distribution has tractable 

forms. The hazard quantile function obtained using (2.71) is given by  

                   

1
( ) (1 ) ( )H u u q u

     

                             
1

1 2( 1) (1 ) , 0 1.u u u 
                             (3.18) 

For 1, ( )H u   as 0 or 1u and for 1, ( ) 0 as 0.H u u    

When 1, ( )Q u   is invertible to obtain  

1

2

( ) 1 , 0 ,
x

F x x 


      
 

the rescaled beta distribution function, where  

 
1

2( ) 2(1 ) .H u u 


 
 

 Life distributions are classified according to the behaviour of their 

hazard quantile functions. To study the reliability properties of the 

Govindarajulu distribution we need the following notions 

(a) A lifetime random variable X  is increasing (decreasing) hazard 

quantile, IHR (DHR) if and only if its hazard quantile function 

satisfies ( ) ( )0H u    for 0 1u  . 
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(b) Further, X is said to have a bathtub-shaped (upside down 

bathtub-shaped) hazard quantile function if ( ) ( )0H u    for u  in 

0
(0, )u , 

0
( ) 0H u   and ( ) ( )0H u    in 0

( , 1)u . We call 
0

u
 
as a 

change point. These concepts are further explained in Chapter 4. 

Differentiating (3.18) 

3

1
( )

( 1) (1 )

u
H u

u u

 
 

  
 

, 

so that ( )H u  is increasing for 1   and for 1, ( )H u  decreases in the 

interval 
1

0,
1




      
 reaches a minimum at 

1

1
u








 and then increases 

in 
1

, 1
1




      
. We conclude   that X is IHR for 1   and bathtub-shaped 

for 1  with change point at 
1

1
u








. See also Govindarajulu (1977) 

for the same conclusion in terms of the hazard rate.  

Recalling the equation (2.76), the mean residual quantile function has 

the expression 

   
   

     

1
1

1
1 1

( ) (1 ) 1

(1 ) 1 1 1

u

u

M u u p q p dp

u p u p dp 



 

  

    




 

              11 2
2 ( 1)( 2) ( 2) ( 1) ( 2)(1 ) .u u u u

         
           

              

                                                                                                            (3.19) 

The behaviour of the function ( )M u and the second L-moment of residual 

life are discussed in Chapter 6. 

 In the expression for the quantile function, the parameter   is 

influential in controlling the left tail and therefore the concepts in time 
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conditioned on  X x  are of significance. Three important concepts in 

this context are the reversed hazard quantile function given in (2.87)  

 

 

1

1

( ) ( )

( 1) (1 ) ,

u uq u

u u  





 

  
 

the reversed mean residual quantile function given in (2.90) 

   

 

1

0

1 1

0

( ) ( )

1 1

2 ( 1)
2

u

u

R u u pq p dp

u p p p dp

u u





 


 





 



  

   




  

and from equation (2.97), the reversed variance residual quantile 

function 

1 2

0

2 2 2 2 2
2

2

( ) ( )

( 1) ( 2)
( 2) .

( 2) 2 3 2 1

u

D u u R p dp

u
u u

   


  



          


 

Further note that the product  

                      
1 1( 1) ( 2)

( ) ( )
1

u
R u u

u

    
 


,                                    (3.20) 

which is a bilinear function in u . Expressions of quantile forms of some 

other measures useful in the modelling and analysis of lifetime data are 

total time on test transform (TTT) given in (2.99) 

2

0

( 1)
( ) (1 ) ( ) 1 2

2

u

T u p q p dp u u u 
  



       
  

  

and the percentile residual quantile function given in (2.81) 

 

     

( ) 1 (1 )(1 ) ( )

1 (1 )(1 ) 1 (1 )(1 ) 1 .

P u Q u Q u

u u u u



 



     

    

              
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 Characterization problems by the relation between the reversed 

hazard rate and reversed mean residual life function in the distribution 

function approach are discussed in the literature, e.g. Chandra and Roy 

(2001). So far no characterization in terms of quantile-based functions 

appears to have been proposed. Motivated by (3.20), we prove the 

following result. 

Theorem 3.1 

 For a nonnegative random variable X , the relationship  

                                      
( ) ( )

1

a bu
R u u

u


 


                                           (3.21) 

holds for all 0 1u   if and only if  

                                  
1 1

1

( ) ,
1

a a
a

Q u K u au
a

       
                                 (3.22) 

provided that a  and b are real numbers satisfying 
1 1

1.
a b
   

Proof: Assume that (3.21). Then 

                             

 
1

0

1
( )

1

u a bu
pq p dp uq u

u u

          
                              (3.23) 

Equation (3.23) simplifies to  

0

( ) 1

( )( )

1
.

( )

u

uq u u

u a bupq p

a b

au a a bu







 



  

Integrating  

0

1
log ( ) log log( ) log

u a b
pq p dp u a bu K

a ab


     

or 

1

0
( ) ( ),

u
apq p dp Ku a bu   on using 

1 1
1

a b
  . 
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Hence 

1 1
1

( ) a a
a bu

uq u K u b u
a

    
 

 

or 

1
2

( ) (1 )aq u Ku u


  . 

Integrating the last expression over (0, )u and noting (0) 0Q  , we have 

(3.22). The converse part follows from the equations  

1
1

1

( ) (1 )au Ku u


 

    
 

 

and 

1
1

( 1 )
( )

1

aKau a u
R u

a


 




. 

Remark 3.1 The Govindarajulu distribution is verified when

1(1 )a    . The condition on a  and b  assumed in the theorem can be 

relaxed to real a  and b , to provide a more general family. Another 

characterization result using the relationship between first and second L-

moments of reversed residual life will be discussed in Chapter 6. 

3.5.6 Estimation and application to lifetime data 

The conventional methods of estimation like matching regular 

moments, percentiles, or the method of least squares, usually applied for 

quantile functions work out quite easily for the model. The simple 

algebraic expressions of the L-moments derived in above admit the 

applicability of the L-moment method for estimating the parameters of 

the Govindarajulu distribution. 
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 We carried out a study to learn whether the three matching 

methods viz, method of moments, percentiles and L-moments generate 

fair estimates, and to study which method behave better. Thousand 

samples of sizes 25, 50 and 100n  for two sets of parameter values  

1, 2    and 5, 0.5    were generated using the result that if U  

has uniform distribution over  0,1  then ( )Q u  and X  have the same 

distribution. The method of moment estimates are obtained by equating 

the mean and variance of the population with those of the samples. We 

matched 25th and 75th percentiles to get the percentile method of 

estimates. The equations used to obtain the L-moment estimators are  

1

2

2
l







 

and 

2

2

( 2)( 3)
l


 


 

, 

where the left hand side of the equation corresponds to first two L-

moments given in Section 3.5.3  and the right hand side corresponds to 

the sample L-moments. The MSEs calculated are summarized in 

Table.3.1. These indicate that the method of moments and L-moments 

give better estimates compared to the method of percentiles. For the 

parameter , the former methods give estimates with almost same MSE, 

while for the parameter   the method of L-moment give lower MSE. 

Note that for smaller sample sizes, the MSE is comparatively high and 

decreases as sample size increases. Based on this limited empirical study 

carried out here, we conclude that the method of L-moments gives better 

estimates in comparison with other two methods.   

 In Govindarajulu (1977), it is already demonstrated that the model 

can be a lifetime model. More importantly it can also provide good 
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approximations to many other lifetime model specified in terms of 

distribution functions. We illustrate this by appealing to a real data 

situation. 

Table 3.1- MSE of Estimates  

Method of Estimation Moment Percentile L-moment 

M
S

E
  
o
f 

 E
st

im
a

te
s 

 w
h

e
n

 

25n  

1  0.005234 0.020553 0.004971 

2   0.352435 0.381133 0.370841 

5  0.022991 0.016421 0.011447 

0.5   0.024805 0.030126 0.023722 

50n  

1  0.002185 0.008364 0.001927 

2   0.134422 0.182411 0.137226 

5  0.011068 0.005743 0.004987 

0.5   0.010098 0.014061 0.009285 

100n  

1  0.001051 0.004537 0.000895 

2   0.063119 0.095118 0.063487 

5  0.005035 0.002888 0.002187 

0.5   0.00482 0.009029 0.004836 

 We consider the data on the failure times of 50 devices (Aarset 

Data) arranged in order of magnitude cited in Lai and Xie (2006). In view 

of the above empirical study, it is proposed to use the L-moment method 

for the analysis. The parameters of the distribution, estimated by the 

method of L-moments are  

ˆˆ 93.463 and 2.0915.    

Dividing the data into 5 groups of 10 observations each and taking 

, 1, 2, ..., 5
5

i

i
u i   the corresponding x  values of the random variable 
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were computed using (3.15) (taking 0 ) with the estimates quoted 

above. The observed frequencies in the 5 classes were 11, 8, 8, 13 and 10 

against the expected frequency of 10 in each class (U  has uniform 

distribution over  0,1  then ( )Q u  and X  have the same distribution). 

Thus the chi-square value of 1.8 realized here does not reject the 

hypothesis that the model follows Govindarajulu distribution. With the 

model adequacy verified, we can reanalyze the data with reference to the 

various reliability aspects mentioned in the previous sections. We note 

that the hazard quantile function (see Figure 3.5) is bathtub-shaped with 

change point at 0.3531u   

 

3.5.7 Comparison with other models 

 We compare the Govindarajulu distribution with some other 

distributions in literature that have bathtub-shaped failure rate 

function. Xie et al. (2002) introduced the modified Weibull extension with 

survival function 

( ) exp 1 exp , 0, , , 0
x

F x x



   


                   
. 

The failure rate is  

1

( ) exp ,
x x

h x

 


 

                    
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Figure 3.5- Shape of ( )H u  
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which is bathtub-shaped for 1  . For the Aarset data considered in the 

previous section the estimates of the parameters (Xie et al. (2002)) are 

ˆˆ 110.0909, ˆ 0.8408, 0.0141     . 

With above value of ̂ , the failure rate is bathtub-shaped with change 

point 0
15.211.x   Later Lai et al. (2003) proposed another modification 

to the Weibull distribution by suggesting the model  

( ) exp ,xF x x e       

with  

1( ) ( ) xh x x x e      . 

The turning point of ( )h x is  

, 0 1.x
 





    

Using the probability plot they estimated the parameters using the same 

data as  

   ˆ ˆ, ˆ 0.0876, 0.389, 0.01512 .     

These estimates were further refined in Bebbington et al. (2008) with  

   ˆ ˆ, ˆ 0.0624, 0.3548, 0.0233 ,     

which also gave a satisfactory fit and bathtub failure rate. The 

transformation model introduced by Mudholkar et al. (2009) is 

represented by 

1 1
( ) exp , 0 ,

1

x
F x x

x



  

          
 

with failure rate 

1

2

1
( ) .

1

x
h x

x x






 

    
 

They found that for the Aarset data with  
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 ˆˆ, ˆ, (354.4160, 0.3850, 0.0116)     

provide a fit that is better than some of the above models giving bathtub 

shape. 

As mentioned earlier, a more general version of the Govindarajulu 

distribution is the Jones (2007) family specified by the quantile density 

function  

( ) (1 ) , 0 1.q u Ku u u       

Being a three parameter family with   controlling the left tail also, it is 

natural to expect that it should describe the data at least as good as the 

member, the Govindarajulu distribution. The method of L-moments was 

used to estimate the parameters by matching the first three moments 

 1
1 , 2 ,L K B      

                   
 2 1

1
2 , 2

3
L K B L


 

 


   
   

and 

                    

   3

1

2 3 , 2 2 , 2

( )(1 )
,

(4 )(3 )

L K B B

L

   

  
   

       
 


   

 

with their sample counterparts from the Aarset data 

1 2 3
45.686, 18.7672 and 1.00173.l l l  

 

The estimates are  

ˆˆˆ -2.46032, -2.96332, 7571.68 .K   
 

In the chi-square goodness of fit test,
2 0.2   offers a very close fit, 

better than that of Govindarajulu model. Since the parameter values are 

less than unity, from Jones (2007), the corresponding distribution is the 

complementary beta with density function 
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 
   

1 ,1
( ) ,

1 ,1 1 1 ,1
u u

B
f u

I I
 

 

   

 


             

 

where  1 ,1
u

I     is the inverse of the incomplete beta function ratio. 

It is obvious from the form of the density that the general properties and 

reliability functions have complicated expressions and requires more 

involvement theoretically and computationally in application than the 

Govindarajulu model. 

All the models discussed above give satisfactory fits to the same 

data set and also a bathtub-shaped failure rate. The only difference 

between the models is that they give different change points. The change 

points estimated from the data for the different models are given in 

Table 3.4. Thus for analyzing Aarset data, Govindarajulu distribution is 

preferable as its reliability aspects are easier to analyze in comparison 

with that of other models.   

Table 3.4 -Change points of the failure rate 

Model 
Change 

Point (in u ) 

Xie et al. (2002) 0.58 

Lai et al. (2003) 0.22 

Bebbington et al. (2008) 0.26 

Mudholkar et al. (2009) 0.11 

Govindarajulu 0.35 

Jones (2007) 0.38 
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Usually the 2  value and the Akaike information criterion are 

employed to evaluate the performance of a model among competing ones. 

The number of parameters involved in the model has a marked influence 

in both cases. Since Govindarajulu distribution has only two parameters 

as against three other models, a comparison appears less objective. We 

have considered some of the two parameter distributions like those of 

Mukherjee and Islam (1983), Chen (2000), etc. for comparison with our 

distribution. But we could not find real data that give satisfactory fit to 

such models as well as the Govindarajulu distribution to make a 

comparison among two parameter models.  

In the above sections, we have considered different lambda 

distributions and the Govindarajulu distribution, derived their basic 

properties and checked their applications to lifetime data analysis by 

fitting them to real data. Tractable expressions of reliability functions 

and their properties reveal that the distributions can be utilized in 

lifetime data modelling when one wishes a quantile-based analysis.  In 

the next section we consider a new technique of deriving life distributions 

using Parzen’s score function and tail exponent function.
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***The discussions in this section have appeared in Nair, Sankaran and 

Vineshkumar (2012), Statistics (see reference no 89).  

3.6 Modelling lifetimes by quantile functions using Parzen’s 

score function and tail exponent function *** 

 Construction of life distributions with non-monotonic hazard rates 

have been a fertile topic of research in reliability analysis and allied 

fields during the last five decades. Various methods of construction of 

bathtub-shaped models include, postulating forms of hazard rates and 

deriving the corresponding survival functions, considering mixtures of 

distributions, models based on convex functions, models arising from 

series systems and distributions derived from physical properties of 

failure patterns. A survey of different models along with their 

characteristics is available in Rajarshi and Rajarshi (1988), Lai and Xie 

(2006) and Bebbington et al. (2007). A method for constructing bathtub 

distribution using a general version of TTT will be discussed in Chapter 

5.  

One common feature of all these approaches is that the distribution of 

failure times is represented by the distribution function. In the previous 

discussions we have seen that lifetime models can also be described in 

terms of quantile functions. In this section we introduce a method for 

developing quantile functions with monotone as well as non-monotone 

hazard rates using the properties of the score functions and tail exponent 

function, first suggested by Parzen (1979) in connection with the study of 

heaviness of probability distributions.  Our study is motivated by the fact 

that the functions have nice relationship with the hazard quantile 

function. Further the monotonic behaviour of the functions implies those 

of the hazard quantile functions through some simple inequalities. 
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3.6.1 Reliability properties of the Parzen’s functions 

 Consider a nonnegative random variable X  with absolutely 

continuous distribution function ( )F x , survival function ( )F x  and 

probability density function ( )f x . Recall the definitions and properties of 

( )Q u of X given in Chapter 2. In Section 2.1.2, we have given definitions 

of Parzen’s score function and tail exponent function. We also point out 

the equivalency of score function with the quantile form of Glaser’s 

function. For the sake of convenience we recall the definitions of score 

function and tail exponent function here. The Parzen’s tail exponent 

function is given by  

                                 (1 ) (1 ) ( ) ( ),u u J u q u                                         (3.24) 

where ( )J u  is called the score function defined as 

                                
  2

( )
( ) ( )

( )

q u
J u fQ u

q u

  ,                                      (3.25) 

which is the quantile form of Glaser’s function ( )x , given in (2.8). Note 

that using the definition of hazard quantile function ( )H u  in (2.71),  

                         

1
( ) (1 ) ( )

( )

d d
J u u H u

du q u du
                                (3.26) 

or 

                                (1 ) ( ) ( ) ( ).u H u H u J u                                       (3.27) 

Thus X  has increasing (decreasing) hazard quantile function as 

( ) ( ) ( )H u J u   for all u . Further change points of non-monotonic ( )H u  

are zeroes of ( ) ( )H u J u . Geometrically for increasing (decreasing), the 

( )H u  curve lies above (below) ( )J u  and for bathtub (upside-down 

bathtub), ( )H u crosses ( )J u  from below (above). By the equivalence of 

( )x  and ( )J u , all results in Gupta and Warren (2001) can be 
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reformulated in terms of quantiles. For instance their main result in 

Theorem 4.1 translates as follows.  

Theorem 3.2 

 Let ( )q u  be twice differentiable on (0,1) . If ( )J u  has n  zeros 

0 1 2
0 ... 1

n
u u u u      , there exists atmost one zero of ( )H u  in the 

closed interval 1
[ , ], 1, 2, ...,

k k
u u k n  . 

From 3.26, we have  

1
1

( ) ( ) .
u

q u J p dp
 

  
    

Thus ( )J u  uniquely determines the distribution of X  (provided ( ) 0f  

). Further there exist simple relationships between ( )J u and ( )H u  that 

characterize many life distributions. See the following example. 

Example 3.1 Consider the generalized Pareto model  

1 1( ) (1 ) 1 , 1, 0
a

aQ u ba u a b
  

     
  

. 

Then 

1

2 1
( )

(1 )
a

a

a
J u

u
 





 

and 

1

1 1
( )

(1 )
a

a

a
H u

b u
 





. 

Thus we have the relationship of the form 

                                            ( ) ( ).J u CH u                                            (3.28) 

Using (3.25) and the expressions for ( )H u  given in (2.71), we can easily 

show that (3.28) characterizes generalized Pareto distribution (which 

includes exponential, Pareto and rescaled beta distribution). Thus a 
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method of construction can be envisaged through a relationship between 

( )J u  and ( )H u  in which ( ) ( , ) ( )H u J u    can result in distributions 

that are increasing (decreasing, bathtub or upside-down bathtub). 

 To examine the reliability properties of tail exponent function, we 

have from (3.24) that  

                                               

( )
(1 )

( )

J u
u

H u
    .                                     (3.29) 

Thus (1 ) ( )1u     provides distributions possessing increasing 

(decreasing) hazard quantile function and (1 ) 1u    for some 0
u  and 

(1 ) ( )1u     in 0
(0, )u and (1 ) ( )1u     in 0

( , 1)u leads to upside-

down bathtub or decreasing (bathtub or increasing). These observations 

are employed in Section 3.6.2 to construct life distributions with 

desirable properties. The function (1 )u  is also useful in comparing life 

distributions, in terms of ageing concepts, with the aid of stochastic 

orders. A brief account of some results in this connection is given below. 

 Let X and Y  be lifetime random variables with distribution 

functions F  and G  respectively. We have from section 2.6.4, when the 

support of X  is an interval, we say that X is smaller than Y  in convex 

transform order denoted by cx
X Y , if  1G F x

 
is convex on the support 

of X . This means that 

 
 

 
1

1

f xd
G F x

dx gG F x




  

is increasing. Converting to quantile function we see that cx
X Y

 
if and 

only if 
 
 

Y

X

q u

q u
 is increasing or equivalently  
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 
 

 
 

Y X

Y X

q u q u

q u q u

 
  .                                      (3.30) 

Alzaid and Al-Osh (1999) have proved (also evident from the above) that 

   1 1 .
cx F G

X Y u u     
 

In terms of the hazard quantile function 
 
 

Y

X

q u

q u
 

is increasing is 

equivalent to
 
increasing 

 
 

X

Y

H u

H u
. When    0 0

X Y
Q Q

 
and Y

Q
 
is strictly 

increasing we say that X is less IHR than Y  if and only if  
( )

( )
X

Y

H u
H u

 

is increasing for [0,1]u . Then 
 

(1 ) (1 )
X Y IHR

u u X Y      . 

The IHR order implies the IHRA and NBU orders as well as the DMRL 

and NBUE orders discussed in Shaked and Shantikumar (2007). Our 

inequality (1 ) (1 )
X Y

u u   
 

gives a simple sufficient condition to 

verify the validity of all these orders. For several implications of cx
X Y  

with other stochastic orders we refer to Shaked and Shantikumar (2007).  

3.6.2 Models based on score function 

 In this section we utilize the relationship between ( )H u  and ( )J u

in deriving life distributions in terms of quantile functions that have 

monotone and non-monotone hazard quantile functions. 

Theorem 3.3 

 The relationship 

                                         ( ) ( )J u AH u B                                           (3.31) 
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is satisfied for all u  and real constants A and B if and only if the 

distribution has quantile function

   
1 1

1

1

log 1 (1 ) , 1, 1
1 1

( ) .

log , 0, 1
log(1 )

B B
AB B

c u c A
A A

Q u
c

B c A
c B u







    
 



  
 

                                     (3.32)

 

Proof: Assuming (3.31), we have  

2

( )

( ) (1 ) ( )

q u A
B

q u u q u


 


. 

This is a Bernoulli differential equation which is solved by reducing it to 

a linear equation after setting 
1

( )
Y

q u
 . The solution is  

 
 

1

(1 )
(1 ) , 1

1( )

(1 ) log(1 ) , 1.

AB u
c u A

Aq u

u c B u A



           

On integrating ( )q u from 0  to u , we have (3.32). The quantile density 

function is  

                      
 

1

1 1

11

(1 ) (1 ) , 1
1( )

(1 ) log(1 ) , 1.

AB
u c u A

Aq u

u c B u A


 



                                (3.33)

 

Calculating ( )H u  and ( )J u  from (3.33), we have  

                           

1(1 ) , 1
( ) 1

log(1 ), 1

AB
cA u A

J u A

B c B u A

        

                             (3.34) 

and  

                             

1(1 ) , 1
( ) 1

log(1 ), 1

AB
c u A

H u A

c B u A

       

                            (3.35) 

which verifies (3.31). This completes the proof. 
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 The quantile function (3.32) represents a flexible family of 

distributions that contains tractable form of ( )F x  in common use as well 

as other that require the use of quantile-based analysis. Some of the 

known members are: 

(i) When 1, 0,A B   

 ( )
1

c
q u

u



. 

Therefore X  is exponential with mean 1c . 

(ii) When 1, 0,A B   

 
1

2( ) (1 )Aq u c u
     , 

 

1

0

1

( ) (1 )

1
1 (1 ) ,

(1 )

u
A

A

Q u c u du

u
c A





    

     


 

which is the quantile function corresponding to the rescaled beta 

distribution 

  ( ) 1 , 0 , , 0

d
x

F x x R R d
R

       
 

   with 
1 1(1 ) , (1 ) .R c A d A

        The distribution has reciprocal 

linear hazard rate which is decreasing. 

(iii)  For 1, 0,A B   we have the Pareto model having  

  ( ) 1 , 0, , 0
x

F x x



 


      
 

with 
1( 1)c A   , 

1( 1)A   . The distribution has increasing 

reciprocal linear hazard rate. 

(iv) The half logistic distribution with survival function, we get 
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  
1

( ) 2 1 , 0, 0
x

F x e x 


    , 

when 12,A B    and 1c  . The corresponding hazard 

rate is increasing. The relevance of the distribution in reliability 

studies is discussed in Balakrishnan (1992). 

(v) The Gompertz law 

   1( ) exp 1 BxF x B e     

for 1, 1, 0A c B    and the negative Gompertz for 

1, 1, 0A c B   . The properties and hazard rate behaviour of 

these two distributions are evident from the discussions given 

below. 

From (3.35) 

                       

2( 1)(1 ) , 1

( ) .
, 1

1

Ac A u A

H u B
A

u

       

                               (3.36) 

Thus in general, the hazard quantile functions of (3.32) are monotonic. 

When 1A   and 0B , ( )H u  is decreasing and the case 1, 0A B   

gives increasing hazard quantile function. They are increasing whenever 

1, 0A c   or 1, 0A c  . The distributional characteristics of the 

model for 1A  , namely Gompertz law, are described in Marshall and 

Olkin (2007). When 1A  , using (2.2) density function of X  has the form 

                       

1( ) ( ) ( ) , 0
1

AB
f x F x cF x x

A

 
   
  

                             (3.37) 

and 

1
1

( ) 0 ( ) .
(1 )

AB
f x F x

cA A

     
  

 

Thus the densities are either monotone or unimodal for 1A  with the 

mode at  
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1
1

1 ( )
(1 )

AB
u F x

cA A

    
  

. 

 Thus various percentiles and there from the median and inter-

quartile range (IQR), as measures of location and dispersion are readily 

obtained, using the expressions given in (2.12) through (2.15). One can 

also obtain the L-moments and descriptive measures based on them 

using (3.32). 

 Our second illustration is a family of distributions that has non-

monotone hazard quantile function for some of its members and 

monotone function for others. 

Theorem 3.4 

 The functions ( )J u and ( )H u  are such that  

                            

   B
J u A H u

cu

     
                                          (3.38) 

for all u  if and only if 

                            
     

1 ,
A

q u Ku u
  

                                         (3.39) 

where 
1Bc   and A  are real constants, and K  is the normalizing constant. 

Proof: Equation (3.38) is equivalent to 

 
 

   
1

2
1

q u B
A u q u

q u cu

           
 

or 

 
 

  1
1 .

q u B
u A

q u cu

       
 

Integrating we have 

     log log 1 log log 1 log
B

q u A u u u K
c
          
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or  

 
log ( ) log (1 )

BB A
ccq u Ku u

  
  

  
 

leads to (3.39). For the distribution (3.39), we have  

1 1( ) (1 )AH u K u u       

and 

1 1 1( ) (1 ) ( )AJ u K u u Au         . 

From these expressions we can easily verify (3.38), which completes the 

proof. 

 The family of distributions given by (3.39) nests several well 

known distributions. Of these the models of interest in reliability include 

(i) The exponential ( 0, 1A  ), Pareto ( 0, 1A  ) and rescaled 

beta( 0, 1A  ) mentioned in the Theorem 4.2 

(ii) When 2, 1,A      

      111 1 ,q u u u
 
     

 which is the quantile density function of log logistic distribution 

specified by  

1

1 1
( ) , 0, , 0.

x
F x x

x



 

 



  



 

The reliability aspects of the distribution are discussed in Gupta et al. 

(1999). Further  

2 1
( ) ( ),

u
J u H u

u

 
  

shows that X is upside-down bathtub in this case, with change point 

1u   . 

(iii)   Setting 1    and A   
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1( ) (1 )q u Ku u   

and ( 1)K     gives 

 1( ) ( 1) ,Q u u u          

the Govindarajulu distribution discussed in Chapter 3. 

(iv)   In terms of distribution function (3.39) has the form. 

              
     1 .

A

f x K F x F x
                                            (3.40) 

    We further note that if  Q u  satisfies (3.38), then  KQ u also 

satisfies the equation for any 0K  . Thus equation (3.40) belongs to the 

class of distribution defined by the relationship between their density 

and distributions of Jones (2007). We refer to Jones (2007) for the 

distributional properties. Among the members of this class, when

1, 1A    , we have the complementary beta distribution studied 

in detail in Jones (2002). Since the reliability properties are not 

mentioned in the above papers, we note that the hazard quantile 

function is 

    11 1 .
A

H u K u u
      

Now 

       11 1 1 1
A

J u H u K u u A u
 

            ; 

Therefore we conclude that X  has increasing hazard quantile function 

for 0, 1A  , decreasing for 1, 0A   , bathtub for 0, 1A   and 

upside-down bathtub for 0, 1A  . 

Theorem 3.5 

 The relationship  

                    
  

1

( ) log 1 ( )J u A B u H u
     

                                       (3.41) 



118                                         Quantile function models 

 

is satisfied for all u and real A and B  if and only if  

                       
      1 log 1 .

BA
q u K u u


                                      (3.42) 

Proof: Equation (3.41) is the same as 

 
     1 1 log 1

q u A B

q u u u u


 

  
 

Integrating, we have (3.42). To prove the converse, applying logarithmic 

differentiation on (3.1), we get 

 
     1 1 log 1

q u A B

q u u u u


 

  
, 

which is equivalent to (3.41). 

 The quantile function corresponding to (3.42) when , 1A B  is  

      1 1
1 1 , log 1

B A
Q u K A I B u

 
    , 

where   1

0

,

x

t aI a x e t dt   is the incomplete gamma function. The density 

function of X  is  

                      
        1 log 1 , 0

BA

f x C F x F x x                  (3.43) 

Some known special cases of (3.42) are 

(i) The Weibull distribution, corresponding to 
1

1,A B




 

,with shape parameter   and scale parameter K  .The 

exponential  and Rayleigh distributions are further special 

cases. 

(ii) Uniform, when 0, 0A B  . 

(iii) Pareto  1, 0A B  and rescaled beta  1, 0A B  . 

  The hazard quantile function is 
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      1̀
1 log 1

BA
H u K u u


     

              1`2
1 log 1 1 log 1 1

BA
H u K u u A u B u

             
 , 

which shows that 

 X is IHR whenever 1, 0A B   or 1, 0A B   

     X  is DHR whenever 1, 0A B   or 1, 0A B   

     X  is bathtub whenever 1, 0A B   

     X  is upside down bathtub whenever 1, 0A B   and 

     X  is exponential if 1, 0A B  . 

From (3.43 ) we see that the distributions are either unimodal or 

monotonic, with mode at 
0

1 exp
B

u
A

         
. The summary measures 

of the distribution can be obtained from the L- moments. Using 

(2.37) through (2.40), the first four L- moments are 

                        
 

 

1

1 1
0

1
1 ,

2
B

K B
L u q u du

A



  


  

                     

   
1

1
2

2 1
0

2
1 ,

3

B
A

L u u q u du L
A

          


      

                    

   
1

3 2

3
0

1 1

1

2 3

2 1
3 2 1

3 4

B B

L u u u q u du

A A
L

A A

 

  

                      


 

and 

     

   
1

4 3 2

4
0

1 1 1

1

5 10 6

5 4 3
5 10 6 1 .

2 2 2

B B B

L u u u u q u du

A A A
L

A A A

  

   

                                    


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Thus the measure of skewness is 3
3

2

L

L
 

 

and the measure of kurtosis is 

4
4

2

L

L
  , which are more reliable than the usual moment based measure 

and needs only the existence of 1
L  as the condition for their finiteness .  

3.6.4 Application to real data 

 The fact that all the three models presented in the last two 

sections contain as special cases several life distributions considered in 

literature. This points out the applicability of the models in a wide range 

of situations. Further all the models can represent different data 

situations either exactly or approximately show that they are flexibile. In 

this section we demonstrate the adequacy of two representative models 

in real life situations. Since our objective is confined only to verification 

of the adequacy of the models to real data, an extensive data analysis or 

refined methods of estimation comparing desirable properties is not 

attempted. 

 Our first analysis is based on model (3.39) against the data on 

survival times in days from a clinical trial on gastric carcinoma involving 

90 patients quoted in (Kleinbaum (1996), p.296). The survival times 

alone is considered as a single set in fitting the distribution. For 

estimating the parameters, the method of percentiles is used by equating 

the sample and population percentiles at 0.25,0.50u  and 0.75 . The 

population percentiles are derived from 

     

0

1

u
A

Q u Kp p dp
  

   

at the above u values. We obtain the estimates of the parameters as 

ˆˆ 0.3128, 1.7692A  and ˆ 296.267,K   
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based on which the observed and expected frequencies are exhibited in 

Table 3.5. 

Table 3.5 Observed and expected frequencies (Oi and Ei) for the Gastric 

Carcinoma data 

 

 The 2  value of 3.14 does not reject the hypothesis that (3.39) is 

appropriate for the data. The hazard quantile function for the above 

parameter values has upside-down bathtub shape as seen from the 

Figure 3.9.  

Secondly we have considered the model (3.42) and the data on failure 

times of 50 devices given in (Lai & Xie 2006, p.353). Again the method of 

percentiles was used with the choice of 0.25,0.50u  and 0.75 . Notice 

that in this case 

      
0

1 log 1 .

u
BA

Q u K p p dp


     

The estimates were found to be 

A =-1.8224, B = -1.2576 and k =875.927. 

 

Table 3.6. Observed and expected frequencies for the failure time data  

                   given in Lai & Xie (2006). 

 



122                                         Quantile function models 

 

 The 2  value of 4.809 does not reject the model. The hazard 

quantile function for the above parameter values has bathtub shape as 

seen from Figure 3.9. 

 These two data sets have been analyzed earlier by means of 

distributions that do not form any of the exact particular cases that were 

discussed in connection with (3.39) and (3.42). This and our experiments 

with other data sets reveals that the quantile functions introduced here 

have the scope of approximating other life distributions that are not 

particular cases of the four models. An extensive study of the four models 

regarding their distributional properties as well as approximations they 

can offer to other acclaimed models will be presented as a future work. 

 

       

 

 

Figure 3.9 

 

 

 



 

*Part of the contents of this chapter has been published in Nair and 

Vineshkumar (2011), Statistics and Probability Letters (see reference no 

92). 

 

 

 

Chapter 4 

 

Ageing Concepts* 

 

 

4.1 Introduction 

 The notion of ageing plays an important role in reliability analysis 

and in identifying life distributions. Ageing represents the phenomenon 

by which the residual life of a unit is affected by its age in some 

probabilistic sense. Most of the ageing concepts exist in the literature are 

described on the basis of measures defined in terms of the distribution 

function. It is seen in Chapter 3 that many quantile functions can be 

utilized for the lifetime data analysis. When one wishes to analyze the 

ageing properties of such models, the existing definitions based on 

distribution function are not adequate. Thus, as a follow up to quantile-

based analysis, in the present chapter, we review the existing definitions 

and express them in terms of quantile functions to facilitate a quantile-

based analysis. The definitions and the properties of the basic ageing 

classes using the distribution function have been taken from Lai and Xie 

(2006) and the references for others are given in the text at the 

appropriate places. The ageing concepts are studied in three broad heads, 

those based on hazard quantile function, residual quantile functions and 

quantile functions. We also illustrate the various ageing concepts in the 

case of quantile functions. 



124                                                             Ageing Concepts 

 

 The objectives of the work in the present chapter are manifold. 

Firstly it enables understanding of the failure mechanism of the unit 

under observation, through a distribution modelled by an appropriate 

quantile function. Secondly various concepts generate classes of life 

distributions, so that the identification of the model can be limited to 

that particular class. Lastly we have a new methodology that paves way 

for different kinds of analysis.       

4.2 Ageing concepts based on hazard quantile function 

 Recalling the notations introduced in Chapter 2, a random 

variable X or its distribution function represented by ( )F x is said to be 

increasing hazard rate (IHR) (decreasing hazard rate (DHR) if the 

hazard function ( )h x  is increasing (decreasing). In terms of survival 

function, F is IHR (DHR) if and only if for all t the survival function of 

the residual life,  

( )
( )

( )
t

F x t
F x

F t


  

is decreasing in t  for all 0x  . The following proposition describes this 

concept based on quantile function. Since we are seeking equivalent 

conditions as in the conventional definition, the same names for the 

various concepts will be retained for the ageing classes under the 

quantile approach also.   

Proposition 4.1 

The random variable X  has increasing hazard quantile function 

(IHR) (decreasing hazard quantile function (DHR)) if and only if any of 

the following equivalent conditions hold 

(i) 2 1 2 1 1 2
( ) ( ) ( ) for all , 0 , 1H u H u u u u u      

(ii)  (1 ) ( )Q v v u Q v    is decreasing (increasing) function of  v  
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(iii) ( ) ( )0,H u    provided ( )H u is differentiable. 

Proof: (i) follows from the condition 2 1
( ) ( ) ( )h x h x   for all 2 1

x x  for 

IHR (DHR), by setting ( ), 1, 2.
i i

x Q u i   To prove (ii) we first note that 

X  is IHR (DHR) if and only if the survival function 

( )
( )

( )
t

F x t
F x

F t


  

of the residual life  t
X X t X t  

 
is decreasing in t . The quantile 

function of t
X

 
is  (1 ) ( ).Q v v u Q v    Assuming (ii),  

 (1 ) ( )Q v v u Q v    is decreasing in v  

                                    (1 ) (1 ) ( )q v v u u q v      

                  

 

    

 

1 1

( ) (1 ) (1 )

1 1

(1 ) ( ) 1 (1 ) (1 )

( ) (1 )

is IHR, by (i)

q v u q v v u

v q v v v u q v v u

H v H v v u

X

 
  

 
     

   



 

Condition (iii) is obvious from  

  ( )
( ) 0 ( ) 0 0

( ) ( )

d d H u
h x h Q u

dx dQ u q u


      

and ( ) 0q u   since ( )Q u  is an increasing function. 

Remark 4.1: When ( ) 0H u   for all u , X  is exponential. 

Remark 4.2: The distribution F  is bathtub failure rate distribution (BT) 

(upside down bathtub failure rate distribution (UBT)) if and only if 

( ) ( )0h x    for x  in 0
(0, )x , 0

( ) 0h x   and ( ) ( )0h x    in 0
( , )x  . In 

terms of quantile function, if ( ) ( )0H u    in 0
[0, )u , 0

( ) 0H u   and 
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( ) ( )0H u    in 
0

( ,1),u  we say that the hazard quantile function is 

bathtub-shaped (BT) (upside-down bathtub-shaped (UBT)). 

Example 4.1 From (3.7), the hazard quantile function of the lambda 

distribution by Ramberg and Schmeiser (1974) has the simple expression 

3 4
1

1 11

2 3 4
( ) (1 ) (1 ) .H u u u u

   
          

Its derivative is 

3 4

3 4

2 12

2 3 3 3 4

2
1

3 4

( 1) (1 )
( )

(1 ) (1 )

u u u
H u

u u u

 

 

    

 

 



       
     

, 

the sign of which depends on  

34 212

2 4 3 3 3
( ) (1 ) ( 1 ) .g u u u u

             

The distribution accommodates increasing, decreasing, BT and UBT 

shaped hazard quantile functions. To illustrate this we consider some 

special cases. When 3
0  , the distribution is IHR if 2

0   and DHR if 

2
0 

 
 subject to 

1

2

1
0


  . Setting 4

0  , 

3 2

2 3 3 3
( ) ( 1 )g u u u

         . 

In this case ( )H u  is increasing for points in 2 3
( 0, 0 1)     and BT 

for values in 2 3
( 0, 1)    with change point 3

0

3

1
u






 . Finally let

3 4
2, 1   ,  

2
( ) (4 1)g u u  , 

so that when 2
0  , ( ) 0g u   at 

1

4
u   and the distribution is UBT with 

change point at 0

1
.

4
u   In Figure 4.1 the shapes of hazard quantile 

function for some selected values of parameters are presented. The 
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shapes of hazard quantile function for arbitrary choice of parameter 

values of other quantile models are given in the appendix of this chapter. 

 

 
Figure 4.1-Shapes of hazard quantile function when (1) 𝜆1 = 1,  𝜆2 = 100,  𝜆3 =

0.05, 𝜆4 = 0.5, (2)  𝜆1 = 0,  𝜆2 = −1000,  𝜆3 = 0, 𝜆4 = −2  (3) 𝜆1 = 1,  𝜆2 = 10,  𝜆3 =

2,  𝜆4 = 0, (4) 𝜆1 = 0,  𝜆2 = −1000,  𝜆3 = −2,  𝜆4 = −1. 

Another basic concept is increasing (decreasing) average hazard 

rate- IHRA (DHRA) defined by the condition 
0

1
( )

x

h t dt
x   is increasing 

(decreasing) in x . Equivalently the distribution is said to be IHRA 

(DHRA) if 
1

log ( )F x
x

    
 is increasing (decreasing) in 0x  . In this 

connection we have the following proposition.  
 

Proposition 4.2 

 We say that X is IHRA (DHRA) if and only if any one of the 

following conditions are satisfied 

(i) 0

0

0

( ) ( ) 1 log(1 )
( ) ( )

( ) ( )( )

u

u

u

H p q p dp u
H p q p dp

Q u Q uq p dp

 
 





 is increasing 

(decreasing) 

(ii) 
log(1 )

( ) ( ) .
( )

u
H u

Q u

 
   

2 

4 

0 0.2 0.4 0.6 0.8 1 
u 

0 

200 
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800 

1000 
H
(
u
)

 

)
 

 
 

3 

1 
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Proof: Recall that X is IHRA if and only if  
0

1
( )

x

h t dt
x   is increasing. Now  

0 0

1 1
( ) is increasing ( ) ( ) is increasing

( )

x u

h t dt H p q p dp
x Q u

  , 

by setting ( ) and ( )x Q u t Q p  , completes the proof of (i). 

To prove (ii), 

0 0

1

0

1
( ) ( ) is increasing ( ) ( ) ( )- ( ) ( ) ( ) 0

( )

( ) ( ) (1 ) 0

1
( ) log(1 ).

( )

u u

u

H p q p dp Q u H u q u q u H p q p dp
Q u

Q u H u p dp

H u u
Q u



 

   

  

 



 

Remark 4.3 In the quantile formula IHRA takes into consideration a 

weighted average of ( )H p with weight 
( )

for in (0, ).
( )

q p
p u

Q u
 

 Some other notions which are less frequently used in analysis are 

new better than used in hazard rate (NBUHR), increasing hazard rate of 

order 2 (IHR(2)), new better than used in hazard rate average 

(NBUHRA) and IHRA* 0
t , and their duals. A lifetime X is  

(i) NBUHR if and only if (0) ( )h h x  for all x (Loh (1984)).  

(ii) NBUHRA if and only if 
0

1
(0) ( ) , 0

x

h h t dt x
x

    

(Loh (1984)).  

(iii) IHR (2) if and only if 
0 0

( ) ( )
x x

s uF t dt F t dt 
 

0,for all x u s   (Deshpande et al. (1986)).  

(iv) IHRA* 0
x  if and only if for all 0 ,x x  

0

0 0
0

1 1
( ) ( )

x x

h t dt h t dt
x x

   (Li and Li (1998)).  
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From the above definitions the following results are straight forward. 

Proposition 4.3 

(i) X  is NBUHR (NWUHR) if and only if 

(0) ( ) ( ), 0 1H H u u     

(ii) X   is NBUHRA (NWUHRA) if and only if 

0

0

( ) ( )
(0) ( ) , .

( )

u

u

H p q p dp
H for all u

q p dp

 



 

(iii) X  is IHR(2) if and only if  

   
0 0

(1 ) ( ) ( ) (1 ) ( ) ( )
u u

Q t t v Q t q v dv Q s s v Q s q v dv                
 

                   0for all u and t s  . 

(iv)  X  is IHRA* 0
u  if and only if 

0

0 0
0

0

( ) ( ) ( ) ( )
for all

( ) ( )

u u

H p q p dp H p q p dp
u u

Q u Q u
 

 
. 

Example 4.2 It has been of interest in reliability theory to find 

distributions whose hazard rates ( )h x  have simple functional forms like 

linear, quadratic, reciprocal linear, etc. in x . In a similar fashion we seek 

distributions for which hazard quantile function is linear, that is 

( ) .H u a bu   

From the representation (equation (2.73)) 

0
( ) ,

(1 ) ( )

u dp
Q u

p H p


  

we have  

                                     

1
( ) log

1

a bu
Q u C

a b u


 

 
.                                (4.1) 
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Setting 0u , the constant C  is determined as 1( ) logC a b a  . Thus 

the distribution of X  with linear ( )H u  is  

                         

1

( ) log , 0 1, 0
(1 )

a ba bu
Q u u a

a u

        
                        (4.2)  

with quantile density function 

                             
1

( ) (1 )( )q u u a bu
     .                                             (4.3)  

In fact (4.2) represents a family of distributions. When 0, 0a b   

1
( ) log(1 )Q u u

a
  , 

which is exponential with mean a . When 0a b   

1 1
( ) log

2 1

u
Q u

a u





 

corresponds to the half logistic distribution.   

Taking 0, , 0 1,a b ap p     

1 1
( ) log , (1 )

1

pu
Q u a p

u





  


 

is the quantile function of the exponential-geometric distribution of 

Adamidis et al. (2005). Notice that the family is IHR, IHRA and NBUHR 

for 0b .  

Example 4.3 For the Govindarajulu model discussed in Section 3.5, as 

illustrated in Section 3.5.5, we conclude   that X is IHR for 1   and 

bathtub-shaped for 1  with change point at 
1

1
u








 . 

4.3 Concepts based on residual function 

 First we discuss the concepts based on the mean of the residual 

life. Recall the definitions given in (2.48) and (2.75). Based on the 

distribution functions, F  is said to be in decreasing (increasing) mean 
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residual life –DMRL (IMRL) class if ( )m x  is a decreasing (increasing) 

function in 0x  . That is, ( ) ( ) ( )m s m t   for 0 s t  . Equivalent 

conditions of this ageing concept in terms of quantile function are given 

in the following proposition.  

Proposition 4.4 

 We say that X  is decreasing mean residual quantile function 

(DMRL) (increasing mean residual quantile function (IMRL)) if and only 

if one of the following equivalent conditions hold 

(i) 
1 2 1 2

( ) ( ) ( ),M u M u u u    

(ii)   
1

0
(1 ) ( )Q u u p Q u dp    is decreasing (increasing) in u  

(iii) ( ) ( )0M u    

(iv) 
1

( ) ( )
( )

M u
H u

   

Proof: To prove (i), from the condition 

X  is DMRL  ( ) ( ) ( )m s m t   for 0 s t   

                                            1 2 1 2
( ) ( ),M u M u u u   

by setting 
1

( )t Q u  and 
2

( )s Q u . 

 We have from equation (2.75)  

     
11

( ) 1 .
u

M u u Q p Q u dp
        

Substituting (1 ) ,t u u p    we have  

 
1

0
(1 ) ( ) ( ).Q u u p Q u dp M u        

Now assume (i), which means  

 
1

0
( )  is decreasing (1 ) ( ) is decreasing

 (ii).

M u Q u u p Q u dp     



  
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Clearly (iii) (ii). We have from (2.77)  

      
1 11

1 .
u

M u u H p dp


    

Differentiating 

1
(1 ) ( ) ( )

( )
u M u M u

H u
    

or  

1 1
( ) ( )

(1 ) ( )
M u M u

u H u

       
. 

Now 

1 1
( ) 0 ( ) 0

(1 ) ( )

1
( ) .

( )

M u M u
u H u

M u
H u

        

 

 

Hence (iii)  (iv), which completes the proof. 

 Example 4.4 For the linear hazard quantile function distribution (4.2) 

    
11

( )
1

1
log .

(1 )

u
M u Q p Q u dp

u

a b

b u a bu

 





 


 

Note that  

1 1 1
log

(1 ) ( ) (1 ) ( )

a b a b

b u a bu a bu b u a bu H u

 
  

    
 

for 0b  and hence X  is DMRL by (iv) of Proposition 4.4. 

Four other ageing properties involving mean residual life are net 

decreasing (increasing) mean residual life (NDMRL (NIMRL)) defined by 

( ) ( ) (0),m x m   used better (worse) than aged (UBA (UWA)) defined by 

(Alzaid (1994)) 
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( ) ( )exp , ( ) ,
( )

t

x
F x m

m

 
     
  

 

used better (worse) than aged in expectation, UBAE (UWAE) (Alzaid 

(1994)) satisfying  

( ) ( ) ( )m x m    

and decreasing (increasing) mean residual life in harmonic average, 

DMRLHA (IMRLHA) that satisfies the condition (Deshpande et al. 

(1986)) 

1

0

1

( )

x dt

x m t

 
 
  
  decreasing (increasing) in x . 

In the following proposition, the above definitions are expressed based on 

quantile functions.  

Proposition 4.5 

 A lifetime random variable X  with 
1

(1) lim ( )
u

M M u


 
 
is  

(i) net decreasing (increasing) mean residual function, 

NDMRL (IDMRL) if and only if ( ) ( ) (0)M u M   

(ii) UBA (UWA) if and only if  

  1
(1 ) ( ) ( ) log(1 )

(1)
Q u u v Q u u

M
        for all

0 , 1u v  . 

(iii) UBAE (UWAE) if and only if ( ) ( ) (1)M u M   for all 

0 1u   

(iv)  DMRLHA (IMRLHA) if and only if 
0

0

( )

( )

( )

u

u

q p
dp

M p

q p dp




 is 

(decreasing) inu . 

Proof: To prove (i), we know that X is NDMRL if and only if  
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( ) (0)m x m . 

Setting ( )x Q u  and noting (0) 0Q  , we have X  is NDMRL if and only 

if 

( ) (0)M u M , 

which proves the assertion (i). The random variable X  is UBA if and 

only if  

( ) exp , ( ) .
( )

t

x
F x m

m

 
    
  

 

In the above inequality, left side is the survival function of 

t
X X t X t    and right side is the survival function of the exponential 

distribution with mean ( ) .m    Recalling from Section 2.1.2, the 

quantile function of 
t

X
 
is  

 1
( ) (1 ) ( )Q u Q v v u Q v     

by setting ( )F t v  and ( )
t

F x u . The quantile function of the 

exponential distribution mentioned above is 

1
( ) log(1 ),

(1)
E

Q u u
M


   

where 
1

( ) lim ( ) (1)
u

m M u M


   . Thus X  is UBA if and only if  

  1
1 (1 ) ( ) 1 log(1 )

(1)
Q v v u Q v u

M

           

or  

  1
(1 ) ( ) log(1 )

(1)
Q v v u Q v u

M

        . 

The proof of (iii) is straight forward from the definition of UBAE. To 

prove (iv), note that  

1

0

1
is DMRLHA is decreasing

( )

x dt
X

x m t

 
 
  
 . 
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Setting ( )x Q u , the above condition is equivalent to  

1

0

1

0

0

0

0

1 1
( ) is decreasing

( ) ( )

1
( )

( )
is decreasing

( )

1
( )

( )
is increasing.

( )

u

u

u

u

u

q p dp
Q u M p

q p dp
M p

q p dp

q p dp
M p

q p dp





 
 
  

 
 
 

  
 
 
  













 

This completes the proof. 

 Other ageing concept based on residual quantile function is in 

connection with the variance of residual function (VRL) discussed in 

Section 2.2.3 and its quantile version given in Section 2.4.3. The random 

variable X has decreasing (increasing) variance residual life, abbreviated 

as  DVRL (IVRL) if and only if  2( )x  is decreasing (increasing) in x . 

Recall the quantile-based definitions of VRL given in (2.70) through 

(2.72) and the coefficient of variation in (2.73). We have the following 

proposition for DVRL (IVRL) in terms of quantile function. 

Proposition 4.6 

The following conditions are equivalent 

(i) X  is DVRL (IVRL)  

(ii) ( ) ( )1,C u    where 2

2

( )
( )

( )

V u
C u

M u
                          (4.4) 

Proof: Assume that (i) is true. To prove (ii) we have  

1
21

( ) ( ) .
1 u

V u M p dp
u


   

Differentiating  
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2( ) (1 ) ( ) ( )V u u V u M u    

or  

2(1 ) ( ) ( ) ( )u V u V u M u   , 

since X  is DVRL, 

2( ) 0 ( ) ( ) 0

( ) 1,

V u V u M u

C u

    

 
 

which proves the assertion.  

 Another version of mean residual life is obtained by considering 

the mean of the asymptotic distribution of residual life given survival 

beyond age x , called the renewal mean residual life (RMRL) (Nair and 

Sankaran (2010)) defined as  

( ) ( )
( )

( )

x
R

x

t x F t dt
m x

F t dt










. 

Setting ( )x Q u , we have the renewal mean residual quantile function 

                         
 

1

1

( ) ( ) (1 ) ( )
( ) .

(1 ) ( )

u
R

u

Q p Q u p q p dp
M u

p q p dp

 







                       (4.5) 

A lifetime variable X  is decreasing (increasing) RMRL, DRMRL 

(IRMRL) if and only if ( )
R

m x or equivalently ( )
R

M u  is decreasing 

(increasing) in ( )x u .  

Proposition 4.7 

 X , DRMRL (IRMRL)  ( ) ( ) ( )
R

M u M u   for all u . 

Proof: We have  
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 
1

1

( ) ( ) (1 ) ( )
( )

(1 ) ( )

u
R

u

Q p Q u p q p dp
M u

p q p dp

 







 

or  

 
1 1

( ) (1 ) ( ) ( ) ( ) (1 ) ( )
R

u u
M u p q p dp Q p Q u p q p dp     . 

Differentiating, we get 

(1 ) ( ) ( ) ( )(1 ) ( ) ( )(1 ) ( )
R R

u q u M u M u u M u q u u M u     
 

 or 
 

( ) ( )
( )

( ) ( )
R

R

M u q u
M u

q u M u



 

Thus X is DRMRL (IRMRL) ( ) ( ) ( )
R

M u M u   . 

 Various researchers have used percentile residual life (PRL) 

defined in Section 2.2.4 to define ageing classes. Important ageing 

concepts based on PRL are decreasing percentile residual life (DPRL-

 ) and new better than used with respect to the percentile residual 

life (NBUP- ) and their duals. We say that F  is DPRL-  if ( )p t  
is 

decreasing in t  and NBUP-  if (0) ( )p p t   for all t . For the earlier 

development of these ageing classes we refer to Haines and Singpurwalla 

(1974) and Joe and Prochan (1984). Recently Franco-Pereira et al. (2010) 

have proved the equivalence of the following conditions for F  to be 

DPRL- .  

(i) ( )p t  is decreasing 

(ii)  1

(1 ) ( ) (1 ) ( )f t f F F t 
    

 
 

(iii)     1
1(1 ) ( ) (1 ) , 0 1f F u f F u u 

      
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(iv)  ( ) ( ) , (0, )h t h t p t t T   .     

Thus we have the following proposition.  

Proposition 4.8 

 If X  is DPRL- , then the following conditions are equivalent. 

(i) ( )P u  is decreasing. 

(ii) ( ) (1 ) 1 (1 )(1 ) , 0 1q u q u u           

(iii)  ( ) 1 (1 )(1 )H u H u     

Proof: Note that 

X is DPRL- ( )p t is decreasing 

( ) 0

( ( )) 0
( )

( )
0

( )

( ) is decreasing

d
p t

dt

d
p Q u

dQ u

P u

q u

P u









 

 


 



 

Assuming (i), we have 

 1 (1 )(1 ) ( )Q u Q u     is decreasing

 

Thus (i)  (ii). 

Also from (ii) 

 

 

   

 

( ) (1 ) 1 (1 )(1 )

(1 ) ( ) (1 )(1 ) 1 (1 )(1 )

(1 ) ( ) 1 1 (1 )(1 ) 1 (1 )(1 )

( ) 1 (1 )(1 )

q u q u

u q u u q u

u q u u q u

H u H u

 

 

 



    

       

           

    

means (ii) (iii) ,which completes the proof. 

 1 (1 )(1 ) (1 ) ( ) 0q u q u       


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 In quantile terminology,  is new better than used with respect to 

the percentile residual life (NBUP- ) if . 

4.4 Concepts based on survival functions 

 The ageing properties in this class are obtained by comparing 

survival at different points of time. Most important among them are the 

new better (worse) than used, NBU (NWU) and those generated from it 

like NBUE, HNBUE, etc.. We say that  is NBU (NWU) if and only if  

, for all  

Based on this definition we have the following proposition. 

Proposition 4.9 

 A lifetime variable  with quantile function  is NBU (NWU) 

if and only if  

                   for all                           (4.6) 

Proof: The random variable is  NBU (NWU) if and only if  

, for all  

Setting  and , so that . Now 

 

as asserted. 

The equality sign in (4.6) holds good when 

 

or 

                                 (4.7) 

which reduces to the form 

X

  (0) ( )P P u 

X

( ) ( ) ( ) ( )F x t F x F t   , 0.x t

X ( )Q u

( ) ( ) ( ) ( )Q u v uv Q u Q v     , .u v

X

( ) ( ) ( ) ( )F x t F x F t   , 0.x t

( )x Q u ( )t Q v ( ) ( )x t Q u Q v  

( ) ( ) ( ) 1 ( ) (1 )(1 )

( )

( ) ( ) ( ),

F x t F x F t F x t u v

F x t u v uv

Q u Q v Q u v uv

       

    

    

     1 (1 )(1 ) 1 (1 ) 1 (1 )Q u v Q u Q v        

     1 (1 )(1 ) 1 (1 ) 1 (1 ) ,Q u v Q u Q v        
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The last equation transform to the Cauchy functional equation 

 

with .   

The only continuous solution to the above functional equation is  

. 

Thus 

 

and for this to be a quantile function we must have . Hence  

 

represents the exponential law. 

Example 4.5 The power-Pareto law in Section 3.3, specified by the 

quantile function   

    21

1 2
1 , , 0, 0 1Q u Cu u C u

  


      

contains both NBU and NWU distributions. An obvious case is when

, the model represents the power distribution, which is NBU. On 

the other hand when ,  becomes Pareto and hence NWU. In 

general, by (4.6) the NBU (NWU) cases are sorted out from the inequality 

 for all . 

For example, when , we have log-logistic distribution that is 

NWU. 

 There are some generalizations of the NBU concepts in the form of 

NBU* , NBU- , NBU(2) and NBU(2)-  along with the corresponding 

dual classes. A distribution is a NBU-  (NWU-
 

class of life 

distribution if it satisfies 

     1 1 1 1
1 1 1 .Q x y Q x Q y    

( ) ( ) ( )a xy a x a y 

( ) (1 )a x Q x 

( ) loga x k x

( ) log(1 ),Q u k u 

, 0k c c 

( ) log(1 ),Q u c u 

2
0 

1
0 

3
( )Q u

1 1 2 2 2( ) ( ) (1 ) (1 )u v uv u v u v
           ,u v

1 2
1  

0
t

0
t

0
t

0
t

0
)t
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. 

See Hollander et al. (1985) for details. We say that,  is NBU*  

(NWU* ) if  

  (Li and Li (1998)). 

The difference between NBU-  and NBU*  is that in the former  is a 

fixed time while in the later it extends beyond . A lifetime random 

variable  is said to be NBU(2) (NWU (2)) if and only if  

 

for all . This class is obtained by Deshpande et al. (1986) and 

more details are available there. Elabatal (2007) studied the extension of 

NBU(2) class at specific age . The identification of these classes of 

quantile functions is as follows. The proof follows from Proposition 4.9. 

Proposition 4.10 

We say that is  

(i)  NBU- (NWU- ) for some , 

 for all  

(ii)  NBU* (NWU* ) if and only if  

 for all  and 

 

(iii) NBU(2) (NWU (2)) if and only if  

     

(iv) NBU(2)- if and only if  

                   

0 0
( ) ( ) ( ) ( ), 0F t x F t F x x   

X 0
t

0
t

0
( ) ( ) ( ) ( ), 0, 0F x y F x F y x t y     

0
t

0
t

0
t

0
t

X

0 0

( )
( ) ( )

( )

x x F t y
F y dy dy

F t


  

, 0t x 

0
t

X

0
u

0
u

0
0 1u 

0 0 0
( ) ( ) ( ) ( )Q u u uu Q u Q u     0 1u 

0
u

0
u

( ) ( ) ( ) ( )Q u v uv Q u Q v     0 1u 

0
v u

1

0 0

1
1 ( ( ) ( )) ( ) (1 ) ( ) , 0 , 1

1

u u

Q Q p Q v q p dp p q p dp for all u v
v

          

0
u

 1

0
0 0

0

1
1 ( ) ( ) ( ) (1 ) ( )

1

u u

Q Q p Q u q p dp p q p dp
u

        
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                        for some . 

  

An integrated version of the NBU (NWU) definition leads to the 

NBUC (NWUC) class defined by Cao and Wang (1991). We say that  is 

NBUC (NWUC) if and only if  

 

and it extends to NBUC- for a specific age . The counterparts of these 

two classes in quantile form are presented in the following proposition. 

Proposition 4.11 

 A lifetime variable  belongs to the ageing class  

(i) NBUC (NWUC) if and only if   

  

(ii) NBUC- (NWUC- ) if and only if for some in    

     

 

Proof: To prove (i), setting so that 

 and , the condition  

 

or  

 

is equivalent to  

, 

since                      11 1 .F y t F y t Q Q p Q u        

0
u

X

( ) ( ) ( )
t

x x
F y dy F y dy

 

  

0
t

0
t

X

 
1 1

11
1 ( ) ( ) ( ) ( ) (1 ) ( )

1 u u
Q Q p Q v q p dp p q p dp

v

         

0
u

0
u

0
u [0,1)

 
1 1

1

0

0

1
1 ( ) ( ) ( ) (1 ) ( )

1 u u
Q Q p Q u q p dp p q p dp

u

        

( ) and ( ) ,F t v F y p 

( ), ( )t Q v y Q p  ( )dy q p dp

( ) ( )
t

x x
F y dy F y dy

 

 

1
( ) ( )

( ) x x
F y t dy F y dy

F t

 

  

 
1 1

11
1 ( ) ( ) ( ) (1 ) ( )

1 u u
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The proof of (ii) is similar to that of (i) by taking , a fixed value in 

. 

 The (ii) part of Proposition 4.11 brings its relationship with NBU(2) 

(NWU (2)) and NBUC (NWUC). Finally, we have still larger class called 

harmonically new better (worse) than used in expectation (HNBUE 

(HNWUE)), which is defined by 

 for all . 

This leads to the next proposition. 

 

Proposition 4.12 

 The HNBUE (HNWUE) property holds for  if and only if  

(i) 
 

 

(ii)  

Proof: The proof of (i) is straight forward from the definition of HNBUE 

by setting  and . To prove the equivalence of (i) and (ii), 

 

This completes the proof.  
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 The equilibrium distribution specified by the density function (of a 

random variable , say) 

                     
   

                                              (4.8)  

plays an important role in evolving new ageing classes and also in 

proving relationships between various concepts. Equation (4.8) is 

obtained as the asymptotic distribution of age or residual life (or of 

forward and backward recurrence times) in renewal theory. The 

distribution function of becomes 

 

Setting  

 

Note that  is the quantile version of the total time 

on test transform of  and  is the scaled transform (See 

Section 2.5 for further details). Hence  

 

and  

                                                                                   (4.9) 

give the relationship between the quantile functions of  and . Since 

 is also a quantile function and denoting the random variable 

corresponding to  as ,  is the quantile function of . 

These results help the analysis of equilibrium distributions in terms of 

quantile functions. As an example,  for the exponential 
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distribution and hence  and  are identically distributed. Also 

is the distribution function of a uniform random variable over . 

Example 4.6 The linear hazard quantile family of distributions 

discussed in Example 4.2 has the quantile density function 

 

and hence  

0
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

 

The inverse of is  

 

a distribution function on . Hence, from (4.9) 

 

is the quantile function of the equilibrium distribution.  

 There are few ageing classes that involve  and its residual life

. One is new better (worse) than renewal used (NBRU 

(NWRU)), which is identical with NBUC (NWUC), discussed earlier.  The 

renewal new is better (worse) than used (RNBU (RNWU)) is defined by 

(Abouammoh et al. (2000))  
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while its integrated version  

                                         
  

                                         (4.11) 

is the renewal new better (worse) than used in expectation (RNBUE 

(RNWUE)). Further we have renewal new is better than renewal used 

(RNBRU) and its dual RNWRU are defined by 

 

and the corresponding integrated version in renewal new better (worse) 

than renewal used in expectation (RNBRUE (RNWRUE)), whenever 

                                           
                                         

(4.13) 

Alternative expressions for the classes in terms of quantile functions are 

given below. The proof of this proposition is straight forward by following 

the steps in the proof of Proposition 4.11. 

Proposition 4.13 

 A lifetime variable  belongs to  

(i) RNBU (RNWU) class if and only if    

  

(ii) RNBRU (RNWRU) class if and only if 
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1 u
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as asserted. With the above substitutions the proof of (ii) is direct from 

(4.12). 

Remark 4.4 The expectations in (4.11) and (4.13) are obtained by 

integrating the quantile functions of the variables  and  between 

0 and 1.  

In conclusion, we have provided the definitions of various ageing 

classes in terms of quantile functions. These definitions become essential 

when we deal with life distributions specified by quantile functions, 

especially when they do not have tractable forms of distribution 

functions. We have given several examples that illustrate this situation.  
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Appendix 

 

Figure 1-Shapes of hazard quantile function of Power Pareto model when 

(1) 𝐶 = 0.1, 𝜆1 = 0.5,  𝜆2 = 0.01 (2) 𝐶 = 0.5, 𝜆1 = 2,  𝜆2 = 0.01 

(3) 𝐶 = 0.01, 𝜆1 = 2, 𝜆2 = 0.5  (4) 𝐶 = 0.01, 𝜆1 = 0.5,  𝜆2 = 0.5 

 

Figure 2-Shapes of hazard quantile function of Freimer et al. model when  

(1)𝜆1 = 0,  𝜆2 = 100,  𝜆3 = −0.5, 𝜆4 = −0.1, (2)  𝜆1 = 0,  𝜆2 = 500,  𝜆3 = 3, 𝜆4 = 2 

(3)𝜆1 = 0,  𝜆2 = 2,  𝜆3 = 10, 𝜆4 = 5, (4) 𝜆1 = 0,  𝜆2 = 100,  𝜆3 = 2, 𝜆4 = 0.5 

(5) 𝜆1 = 0,  𝜆2 = 250,  𝜆3 = 2, 𝜆4 = 0.001 
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Figure 3-Shapes of hazard quantile function of Staden and Loots model when  

(1)𝜆1 = 0,  𝜆2 = 0.01,  𝜆3 = 0.5, 𝜆4 = −2, (2)  𝜆1 = 0,  𝜆2 = 100,  𝜆3 = 0.5, 𝜆4 = 10 

(3)𝜆1 = 0,  𝜆2 = 1,  𝜆3 = 0.6, 𝜆4 = 0.5, (4) 𝜆1 = 0,  𝜆2 = 0.1,  𝜆3 = 1, 𝜆4 = −5 

 

 

Figure 4-Shapes of hazard quantile function of Govindarajulu model when 

(1) β =0.1,   (2) β =2 
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*Part of the materials in this chapter has appeared in Nair, Sankaran 

and Vineshkumar (2008), Journal of Applied Probability (see reference 

no. 90)  

 

 

 

Chapter 5 

 

Total time on test transform of order n* 

 

 

5.1 Introduction 

 We have discussed the concept of total time on test transform and 

some of its properties in the context of reliability analysis in the Section 

2.5. Although introduced in the early seventies new results and 

applications in connection with TTT continue to appear in literature.  It 

is seen that from the potential of TTT in different applied fields, its 

generalizations have been studied by different researchers like Barlow 

and Doksum (1972).  

   In the present chapter we study a slightly different version of TTT, 

named TTT of order  by an iteration of the definition given in (2.99). In 

the next section we present a quantile-based definition of TTT of order  

(TTT- ) and derive some identities connecting the reliability functions 

of the baseline and transformed distributions. Characterizations of some 

quantile functions by properties of the  order transforms, comparison 

of ageing properties of the initial and transformed distributions, various 

order relations connection with the  transform and their applications 

are discussed in the subsequent sections. It is shown that the 

n

n

n

thn

thn
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generalization proposed has potential to wider the area of application 

than the usual notion of TTT. 

5.2 Definition and properties of TTT-n 

            Recall the definition of TTT, given in equation (2.99) 

 

and the relationships 

 

and  

     1 ,T u u M u    

given in Section 2.5. 

Definition 5.1 The TTT of order  of a random variable  is defined 

as     

                       
     1

0
1 , 1,2,...

u

n nT u p t p dp n                              (5.1) 

with   and  provided that  

, 

with , the usual transform. It may be noted that in (5.1)  

 is also a quantile function. For instance  is a quantile 

function with support . It also follows that . 

 We denote by  the random variable (where ) with 

quantile function , mean , hazard quantile function  and 

mean residual quantile function . Differentiating (5.1) we have 

                                                           (5.2) 
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and 

                         (5.3)    

From (5.2) and (5.3), we have the identity connecting the hazard quantile 

function of  and  as 

                         1 , 0, 1, 2,...,
n

nH u u H u n                                 (5.4) 

with , representing the hazard rate of  . 

Using (2.101)  and are related as  

                                                                     (5.5) 

from which 

                                      1 1 .n n nt u M u u M u
                                       (5.6) 

This along with  and (5.6) specified for =0 gives 

the following relationships between the mean residual quantile function 

of    and  

                          (5.7) 

Some important life distribution along with the expressions for , 

 and  are exhibited in Table 5.1 given at the end of the chapter 

to enable calculation of the above functions for these distributions. 

Remark 5.1 Definition 5.1 extends to negative integers as well. For 

example  can be considered as the transform of , etc.. In this 

backward recurrence, 

 

and 
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Equivalently, one can assume a given distributional form for  and 

revert to the distribution of . 

 

Remark 5.2 From (5.4), it is clear that the sequence  increases 

for all positive  and decreases for negative .Thus the random 

variable  (or the order transform) generates a distribution whose 

hazard rate is larger (smaller) than that of  

5.3 Characterizations  

 Various identities connecting the hazard quantile function, mean 

residual quantile function and the density quantile function of  and 

enable characterization of distributions of  and . First we note 

that 
 
characterizes the distribution of . This follows from 

 

and 

 

The following theorem tells us how the successive transforms change the 

distributional properties. 

Theorem 5.1  

       The random variable , 1, 2, 3, ...n   has rescaled beta distribution if 

and only if is distributed as either exponential, Lomax or rescaled beta. 

Proof: From the expression of quantile density function 
 

of 

exponential distribution
 
in Table 5.1, the  transform is 
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which is rescaled beta with parameter . When  is Lomax 
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which is the quantile function of rescaled beta with parameters 

 in the support of 
 
and similarly 

when  is rescaled beta with parameter ,  has the same 

distribution in  with parameters . 

This proves the if part. 

To prove the converse, we assume that  is distributed as rescaled beta 

so that we can write  

for some constants ., 0.nc   Thus 

 

or 

 for all . 

This means that is a factor of the right side and therefore  
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Hence 

. 

Since is independent of , taking  we have 

        11

1 1 1
0

1 1 1 .
u k

Q u q p dp k R k u      

Hence for ,  follows rescaled beta distribution , 

Lomax law for  . Finally taking limit as  by applying L-

Hospital’s rule, we have  

, 

which represents the exponential law.  

Remark 5.3 The transformed random variable  has 

Lomax distribution if and only if is distributed as either exponential or 

beta or Lomax. The negative transforms are as mentioned in Remark 5.1. 

The proof is similar as that of Theorem 5.1. 

 Our next characterization is by a relationship between the mean 

residual quantile function of and . 

Theorem 5.2  

 follows generalized Pareto distribution with quantile function  

                                    (5.8) 

if and only if for all  and  

                                                        (5.9) 

Proof: Assuming (5.9),  
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, 

which is simplified to 

 

or  

. 

Integrating 

                                               .                               (5.10)                                    

Substituting (5.10) in the expression (equation (2.79)) 

1

0
( ) ( ) (1 ) ( )

u

Q u M u p M p dp      

 and noting that , we have  

 

Thus we have quantile function (5.8) with . This proves the if part. 

Next we assume that  has the distribution specified by (5.8), we have  

. 

Using (5.3) we have  
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, 

so that (5.9) holds and proof is completed.  

Remark 5.4 Since  is a decreasing function of  and 

 for all  we see that  for all  and 

. Thus the process of iteration reduces the mean residual life 

to the mean residual life of the generalized Pareto law. 

 Some observations regarding Theorem 5.1 and Remark 5.2 seem to 

be in order. They reveal that distribution with constant or decreasing 

(increasing) hazard quantile function tend to become a distribution with 

increasing (decreasing) hazard quantile function as the process of 

iteration continues with positive (negative) n . Thus property of the TTT 

is not visible when the first order TTT alone is observed. We will later 

show that this behaviour is in general true and that it provides a method 

of generating new models with the increasing (decreasing) hazard 

quantile function compared to the original one. Results in Theorem 5.1 

and Remark 5.3 further identify two distributions where the 

monotonicity of hazard quantile function retains the same nature inspite 

of the iteration. Further the rescaled beta and Lomax distributions play 

an important role in comparing the ageing properties of   and  as 

the subsequent discussions exemplify.  

5.4 Characterization of ageing concepts 

 As we pointed out in Section 2.5.4, the TTT plays an important 

role in characterizing ageing concepts. Earlier researchers have 

characterized popular ageing concepts in terms of TTT. We present some 

of these results, which seem useful for the discussions in the sequel in 

Theorem5.3 without giving proof. 
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Theorem 5.3 

 A lifetime random variable  is  

(i) IHR (DHR) if and only if the scaled TTT is concave (convex) 

for . (Barlow and Campo (1975)) 

(ii) IHRA (DHRA) if and only if is decreasing (increasing) for 

. (Barlow and Campo (1975)) 

(iii) DMRL (IMRL) if and only if is decreasing (increasing) in 

. (Klefsjo (1982)) 

(iv) NBUE (NWUE) if and only if for . 

(Bergman (1977)). 

(v) BT (UBT) if  has only one reflexion point such that 

 and it is convex (concave) on  and concave 

(convex) on . (Barlow and Campo (1975)). 

 Now we consider the ageing properties of the transformed random 

variable  in relation to the baseline random variable . It was seen 

in the last section that each iteration of the TTT transform, the hazard 

quantile function increases for positive  and decreases for negative . 

Another important aspect is to ascertain the ageing behaviour in each 

iteration. Here we prove some general results about the ageing patterns 

of  in relation to . 

Theorem 5.4  

(i) If is IHR then  is IHR for all . 
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(ii) If is DHR then is DHR if  , IHR if 

 and BT if there exists a 
 

for which 

 in  and  in . Here 

denotes the quantile function of Lomax distribution in 

Table 5.1. 

Proof: Since , derivative of  

                  
 .                              (5.12) 

Using Theorem (5.3), is IHR (DHR) if  is concave (convex). Hence 

from (5.12), 

 

Similarly, when is DHR, is convex and accordingly 
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The last part of (ii) follows from the above result and part (v) of Theorem 

5.3. 

Theorem 5.5  

(i) If  is DHR then is DHR 

(ii) If is IHR then is IHR if , 

DHR if  and UBT if there exists a 

 
for which  in  and 

 in .  denotes the 

rescaled beta with parameter . 

Proof: Following the steps of Theorem 5.4, we can prove this result. We 

have 

                                            

                                            (5.13) 

 

Similarly when  is IHR,  is concave and therefore  

 

Again from part (v) of Theorem 5.3, we have the proof of last part of (ii). 
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Remark 5.5 The importance of theorems 5.4 and 5.5 is that they help 

the construction of BT and UBT distributions by a simple mechanism. To 

obtain BT distribution one need to only look DHR distributions for which 

 has a point of inflexion. Similarly for getting UBT distributions 

we look for IHR distributions and perform backward recurrence  to 

reach a quantile density function that has an inflexion point. The 

procedure is illustrated in the following examples.     

Example 5.1 The Weibull distribution in Table 5.1 has  

, 

 

and 

. 

Now 

. 

When  is convex on  and concave , where  

. 

Hence  has bathtub-shaped failure rate for . With increasing 

values of  the change point of the failure rate becomes larger so that 

the range for which  is IHR increases. Note also that for , 

 and hence  is IHR for all . 

Remark 5.5 Haupt and Schabe (1997) proposed a method of constructing 

bathtub-shaped distribution by choosing a twice differentiable function  

 satisfying  and  with  having only 
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one inflexion point  such that it is convex on  and concave on 

. Then the solution  of the differential equation  

                                  
                   (5.14) 

is a bathtub-shaped distribution. Converting (5.14) in terms of quantile 

functions , we have  

 

or  

. 

Thus the solution is a twice differentiable  for some  for which 

there is a inflexion point, and therefore the results of Haupt and Schabe 

(1997) are subsumed in Theorem 5.4. 

Theorem 5.6 

(i) is DMRL (decreasing mean residual lifetime) implies that 

is DMRL. 

(ii)  is IMRL (increasing mean residual lifetime) implies that 

is IMRL, when n is negative. 

Proof: To prove (i), recall from Theorem 5.3 that is DMRL if and only if  

 is decreasing in  

or alternatively  

 is decreasing 

or by differentiating  

. 

Further 
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where  

 

Now, 

 

Thus  is DMRL. The proof of (ii) is similar with negative . 

Theorem 5.7 

(i)  is IHRA is IHRA 

(ii)  is DHRA   is DHRA, when n is negative. 

Proof: From Theorem 5.3,  is IHRA if and only if  is decreasing 

for all . This means that . We then have 

 

With the similar steps for negative , we can prove (ii). 

Theorem 5.8 

(i)  is NBUE is NBUE 

(ii)  is NWUE   is NWUE 
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Proof:  is NBUE if and only if  for . Hence 

 

i.e.,  
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n n n
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which implies that is NBUE. 

 From the above theorems it is evident that when is ageing 

positively the successive transforms are also ageing positively. It may 

also be noted that the converse of the above theorems need not be true in 

view of the characterizations given in Theorem 5.1 and Remark 5.3. 

5.6 Order relations 

 In Section 2.8 we have described the importance of order relations 

and we have given some well known order relations. In this section we 

discuss the implications of the results obtained so far in developing some 

order relations connecting the baseline and transformed distributions. 

Furthermore, a new partial order based on transforms of order , which 

extends some of the existing results, is introduced. 

 Let  and  be two nonnegative random variables with finite 

expectations, distribution functions  and , quantile functions 

 and , and TTT transform 
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immediate form (5.4) that 
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 We have seen in Section 2.8.2 that  is smaller than  in the 

dispersive order, ( ) if and only if 

 

which means that 

, 

where  and  are quantile density functions of  and 

respectively. Setting and , we have

. 

 From Section 2.8.4,  is smaller than  in the convex transform 

order ( ) if  is convex in the support of . In terms of 

quantile density functions, this condition is equivalent to  

increasing in  and hence, . 

 In Shaked and Shantikumar (2007),  implications of the different 

orders such as hazard rate order 
hr

X Y , usual stochastic order 

, mean residual life order , variance residual life order , 

harmonic mean  residual life order , dilation order , 

increasing concave order , star order , super additive 

order , excess wealth order , decreasing mean residual 

life order , NBUE order   , Lorenz order , 

are discussed. Here we give some of these implications, which are useful 

to derive the implications of orders connecting  and  in the 

following theorem.  
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Theorem 5.9 

(i) If and are two random variables then  

(a)  

(b)  

(c) . 

(ii) For two random variables  and  with finite means if 

 then . 

(iii) If  and  be two random variables with left end points of 

supports  and  such that , then  

. 

(iv) When   and  are two nonnegative random variables, the 

following implications hold 

(a)  

(b)  

(v) Let  and be two random variables, each with support of 

the form  Then  

(a)  

(b)  

(c) . 

Using the results given in Theorem 5.9, we summarize the implications 

of orders connecting  and  in the following diagram.  
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Definition 5.2 It is said that  is smaller than  in the TTT 

transform of order  written as (or equivalently, ). 

If  for all  in , where  and  denote the 

TTT transforms of order  of  and , respectively. 

First we note that, from the above definition 

                                    (5.15) 

Hence, all the implications starting from the stochastic order in the chain 

presented above are implications of the TTT-n order. 

Furthermore, the usual TTT order between  and satisfies 

 

as an extension of the result in Shaked and Shantikumar(2007,Theorem 

4B.29). 

 Another order of interest is the NBUE order defined as is 

smaller than in the NBUE order,  if 
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, for                                   (5.16) 

where  and  are the mean residual quantile function of 

and  respectively. An equivalent statement of (5.16) is (using (2.76)) 

                                           

                                             (5.17) 

Since  and  are quantile functions of and , 

successive application of (5.17) for  in the definition for the 

NBUE order gives 

 

and 

. 

These results extend Theorem4B.26 of Shaked and Shantikumar (2007). 

 When  and  have finite mean and 0 as common left 

endpoints of their supports, then, for any  with  , 

. 

From (5.18) and (5.20), 

. 

Note that TTT transform of  is the scaled TTT transform that is 

extensively used in many practical applications, including 

characterization of ageing classes. 
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 An interesting property of the TTT order is that it is preserved 

under the minima of independent and identically distributed random 

variables (Kochar et al. (2002)). Following the lines of proof of this result, 

we prove a similar result for the TTT-n order. 

Theorem 5.10 

 Let and be independent copies of two 

random variables and that are identically distributed. If 

then ,where and

. 

Proof: The survival functions of  and  are  and 

. From Section 2.1.5, if  is the quantile function 

 of  is related to it as 

 

or 

 

Similarly, using the symbols of  and  for quantile density functions of 

and , 

. 

Since , we have, using the notation 
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Applying lemma A.2(b) of Kochar et al. (2002), which states that for a 

measure W defined on ( , )a b  if ( ) 0
t

a
dW x   for all ( , )t a b  then 

( ) ( ) 0
t

a
g x dW x  , where (.)g  is a nonnegative decreasing function 

defined on ( , )a b , we have with   1
( ) ( ) ( ) and ( ) 1

n
W p r p q p g p p


    , 

. 

Setting , we have 

, 

which proves the result. 

 Another application of the TTT-n order concerns the proportional 

hazard models that extend the results of Li and Shaked (2007). Let 

be a random variable of a proportional hazard model with survival 

function , , corresponding to with models associated with 

and  are and  with respective quantile density 

functions  and . 

 Retaining the previous notation, we can write 

 

and 

. 
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Proof: Taking ,  is the same as 

              
,                            (5.18) 

where . The last inequality reduces to 

 

 

which is  

                    
                        (5.19) 

Thus, if (5.19) holds then (5.18) applies, which is the first part of the 

theorem. The case in which  is similar. 

 To conclude, we note that the order TTT transform presented 

here has helped to achieve a more explicit understanding of the effect of 

transforms on the properties of the baseline distributions. It generates 

new models that are more IHR or DHR and also BT or UBT from models 

in common use, and adds more flexibility to model choice by adopting 

quantile functions that do not convert into simple forms of distribution 

functions. The reliability properties and order relations extend the 

existing results and leave scope for new ageing classes. The sample 

counterpart of TTT-n viz.  order TTT statistics along with their 

relationships with the TTT statistic of the original distribution, which is 

being investigated, can further strengthen the applicability of the 

theoretical results in the present work. 
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Table 5.1- Quantile-based functions of life distributions 
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*The discussions in this chapter is based on Nair and Vineshkumar 

(2010) appeared in the Journal of Statistical Planning and Inference (see 

reference no. 93) 

 

 

 

Chapter 6 

 

L-moments of residual life* 

 

 

6.1 Introduction  

 In Section 2.16, we have discussed the basic features of L-

moments. We pointed out there that the L-moments are alternative to 

conventional moments and they have several advantages over the 

ordinary moments. In reliability analysis, residual life function and 

related measures are good indicators in describing ageing patterns of a 

distribution, and these are being used in other disciplines also. Note that 

most popular measures of residual life that are discussed in the 

literature are based on ordinary moments, for example the mean of 

residual life, variance of residual life, etc.. Considering the advantages of 

L-moments over ordinary moments, it is worthy to study the measures of 

residual life based on L-moments. In this chapter we investigate the 

properties of the first two L-moments of residual life and their relevance 

in various aspects of reliability analysis. This problem does not appear to 

have been considered in literature. 

6.2 Definition and properties 

Recall the definition of L-moments of order r from Section 2.1.6, which is 

given by  
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where :r nX  is the thr  order statistic in a sample of size n  from  F x
 
and 

 f x  is the density function of X . The truncated variable   tX X X t  
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which is the vitality function discussed widely in reliability analysis. 

Since 1( )L t  is widely discussed with references to its properties and 

applications (e.g. Kupka and Loo (1989)), we bestow our attention to the 

second moment. When 2r  
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where ( )m t  is the mean residual function. It follows that    2 L t m t . 

However, the equality sign does not hold for any non-degenerate 

distribution. Thus  2L t
 

is strictly less than the mean residual life 

function. 

 Differentiating (6.3), we have 
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Setting ( )F x p  and  F t u  in (6.2), we get the expression for the thr L-
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In particular, from (6.5) 
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Of the last two functions 1( ) u  is the quantile form of vitality function. 

Hence its properties are not pursued further. Note that  1( ) u  determines 

 Q u  through the formula 
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obtained from (6.6). The following theorem establishes the relationship 

between 1( ) u , 2 ( ) u
 

and ( ),M u  and shows that these functions 

determine  Q u  uniquely.  

Theorem 6.1. The function 1( ) u , 2 ( ) u
 
and ( )M u  determine each other 

and  Q u  uniquely. 

Proof:  We have  

                               

 

 

1

1

1 1 1

1
( ) ( ) ( )

(1 )

( ) ( )

( ) ( ) (1 ) ( )



  

 


 

   


u

M u Q p Q u dp
u

u Q u

u u u u

 

                                        1(1 ) ( ). u u                                                   (6.9) 

Differentiating (6.7), we have  

 

1
2

2 2

1

(1 ) ( ) 2(1 ) ( ) 2 ( ) ( 1) ( ) ( )

(1 ) ( ) ( )

(1 ) ( ) (1 ) ( ) ( )

(1 ) ( )

 
         
  

  

    

 





u

u

u u u u uQ u u Q u Q p dp

u Q u Q p dp

u Q u u M u Q u

u M u

 

or 

                               2 2( ) 2 ( ) (1 ) ( ).   M u u u u                                      (6.10) 

Again from (2.79) 

                          
  1

0
( ) (1 ) ( )    

u

Q u M u p M p dp .                         (6.11) 

Thus  M u  determines ( )Q u , and  1 u  and  2 u  determine  M u . Also 

we have from (6.9) 

                                      1
0

( )

1
 


u M p

u dp
p

                                             (6.12) 
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   2 2

0

2 (1 )
.

1

   



u p p p

dp
p

                   (6.13) 

Equation (6.12) and (6.13) determines  1 u  in terms of  M u
 
and  2 u , 

and (6.8) recovers ( )Q u  from  1 u . We also have  

                                      2

2(1 ) (1 ) ( ).  
d

u u u M u
du

                          (6.14) 

Integrating  

 
1

2

2(1 ) (1 ) ( )   
u

u u p M p dp  

or 

                                       
 

 

1
2

2

1
2 2

1

(1 ) (1 ) ( )

(1 ) (1 ) ,









  

  




u

u

u u p M p dp

u p p dp

                   (6.15) 

determining   2 u  from  M u  and  1 u . Given  2 u ,  M u  can be 

determined from (6.10) and hence ( )Q u  from (6.11). Hence the proof. 

Remark 6.1. Equation (6.3) is important in deducting the conditions for 

the monotonic behaviour of 2 ( )L t  when ( )F x  is used instead of ( )Q u . 

Remark 6.2 Recall the definition of Gini’s mean difference given in (2.9) 

through (2.11). Gini’s mean difference of the residual random variable tX  

is  

  2 ( ) ( )


  t t
t

G t F x F x dx . 

In terms of the quantile functions, this becomes 

   
1

2

1
2

2

(1 )( )
( ) 2 ( )

(1 )

2
( ) ( ) .

(1 )

    


   






u

u

p p u
u G Q u Q p dp

u

p p u up Q p dp
u  

Integrating by parts, we have  
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 

 

1

2

2

2
(2 1) ( )

(1 )

2 .

   





u

u p u Q p dp
u

u

                     (6.16) 

Further 2 (0)  is half the mean difference of X , which is extensively used 

as a measure of spread and the latter is an accepted measure of 

dispersion in the analysis of income and poverty in theoretical and 

applied economics. 

 The second L-moment of the conditional distribution of X X t  is 

half the mean difference of X X t . Since the mean difference is location 

invariant the second L-moment of tX
 
is same as that of   tX X t X t . 

Thus we can treat  2 u  as the second L-moment of residual life, a 

measure of variation and alternative to variance residual quantile 

function. 

Remark 6.3. Theorem 6.1 shows that the dispersion of the residual life 

in the sense of mean difference is specified in terms of the mean, by 

means of equation (6.15). 

To derive more reliability implications of  2 u , we have connected 

it with some other important reliability functions. Firstly consider the 

total time on test transform (TTT) defined in (2.99)  

  '

0
(1 ) ( ) 

u

T u p Q p dp . 

Using its relationship with  M u
 
(equation (2.101)) 

   (1 )  T u u M u
 

and (6.15), we can easily write 
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                                     
1

2

2 ( ) (1 ) ( ) .   
u

u u T p dp                           (6.17)  

Since  2 u
 
is conceived as a measure of dispersion its relationship with 

the variance residual function is of interest. We have 

 

1
1 2

1 21

2 2

( ) (1 ) ( )

(1 ) 2 ( ) (1 ) ( ) .

u

u

V u u M p dp

u p p p dp 





 

   




 

A comparison between  V u  and  2 u seems to be in order as they 

are competing measures of variability in the residual life. The functional 

form of  2 u  or equivalently that of the mean difference quantile function 

(or its reversed form) characterizes the life distribution, and therefore it 

can be used to identify the distribution. The variance of residual life also 

characterizes the associated distribution, but unlike  2 u , there is no 

simple expression relating  Q u
 
in terms of  V u or between   F t  and 

 2 t . As mentioned in Section 2.1.6, Yitzhaki (2003) has compared the 

relative merits of variance and mean difference as measures of variability, 

which is also valid for  V u
 
and  2 u . He points out that 

 (a) the mean difference is more informative than the variance in 

deriving properties of distributions that depart from normality  

(b) mean difference can be used to form necessary conditions for 

second degree stochastic dominance while variance cannot.  

We notice that most of the reliability models are non-normal and second 

order stochastic dominance is used in defining ageing concepts. In these 

contexts  2 u  seems to have preference over variance residual life. 
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The two functions  V u  and  2 u  may not exhibit same kind of 

monotonic behaviour. Even when  V u  increases for larger u,  2 u  can 

show a decreasing trend. As an example, consider the distribution with 

quantile function 

  3 44 3 , 0 1   Q u u u u , 

which is a particular case of Govindarajulu (1977) model discussed in 

Chapter 3. In this case, using the expression of  M u
 
given in (3.19) with  

3  , we have 

   

 

1
2

2 3 4 5 6 7 8

1

1

1
22 6 34 62 50 78 106 9 38

175




        


u

V u M p dp
u

u u u u u u u u

 

giving  

   2 3 4 5 6 71
6 68 186 200 390 636 63 324

175
        

dV u
u u u u u u u

du
, 

which initially decreases in  00, u
 
and then increases in  0, 1u

 
with a 

unique change point at 0 0.554449u . On the other hand  

 
 

2
2

2

1

5





u
u  

and  

   2

2

4
1 0

5


   u u u ,  

showing that  2 u  is decreasing for all u  in  0,1 . 

 There are situations when  2 u
 
promises to give better results 

than residual variance quantile function. We give two such examples 

that bring out the comparison. 
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Example 6.1 Let X  be distributed as exponential with parameter  . Then 

2( ) V u  and     1

2 2 


u . Five hundred samples were generated from 

the distribution for each of the values 0.5, 1   and 5 . The 

parameter was estimated by equating the sample and population values 

of   V u
 
and  2 u . We found that  2 u  gives a better approximation to 

the model (equivalently estimates of   with less bias). Also the variance of 

the estimates of   is considerably less when we use  2 u .Table 6.1 

contains the number of cases in which each of the functions gave better 

model, reveal that  2 u  perform better. 

Table 6.1 Comparison of   V u
 
and  2 u  

Function 

  

Number of cases of better 

approximation 

0.5  1.0  5.0  

 2 u  360 349 278 

 V u  140 151 222 

Example 6.2 Mudholkar and Hutson (1996) analyzed the data on 

annual flood discharge rates of the Floyd river at James, Iowa using the 

exponentiated Weibull distribution. In an attempt of modelling the data 

using power-Pareto distribution  

1 2

1 2( ) (1 ) , , , 0 ,     Q u Cu u C  

discussed in Chapter 3, we have classified the 39 observations into 5 

classes and estimated the parameters by equating the sample and 

population L- moments (This method has been discussed in Chapter 3). 

The estimates thus obtained were  

  
1 23495.2, 0.6226, 0.5946   C . 
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The 2 value of 2.375 as against the tabulated value 3.84 for one degree 

of freedom does not reject the power-Pareto model for the data.  

In studying the variation, among the two measures  V u  and 

 2 u , only  2 u  can be utilized as the variance residual quantile 

function (given in Chapter 3) does not exist for the above parameter 

values since 2 0.5  . The above discussions reveal some reasonable 

grounds on which further properties of the second L-moment of residual 

life can be pursued in the following sections. 

Now we consider the implications between mean residual quantile 

function  and . We show with the following examples that 

 and  may or may not possess same monotonicity. 

Example 6.3. Consider the modified Tukey-Lambda distribution of 

Freimer et al. (1988) discussed in Chapter 3. The distribution has  
  
 

 
3 34 1

2 4 3 3
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After taking location and scale parameters , we have,  

 

and 

. 
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In this case, both  and  can be decreasing (e.g. ), 

linear ( ) or decreasing first and then increasing (

). However the behaviour of  and  need not be 

similar as in the case of    in which case the former is 

decreasing and increasing, while the latter is decreasing.  

  In Chapter 3, we fitted the distribution to the aluminium coupon 

data with parameter values 

 and . 

The graphs of and 
 
of the fitted distribution given in Figure 

6.1 shows that both are decreasing functions of . 

 

 

                                                               

Figure 6.1- and of the generalised lambda distribution 

Example 6.4 The Govindarajulu distribution has (see Section 3.5.5), 

 

and  

 

( )M u 2 ( ) u 3 42, 1  

3 41, 1  

3 410, 5   ( )M u 2 ( ) u

3 41, 5  

  
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we find that  and  decrease for  and when  both 

functions either decrease or first increase and then decrease with the 

change point increasing as  increases. In Govindarajulu (1977), the 

distribution is fitted to the data on failure times of a set of refrigerator 

motors, with the estimate of   viz.  Taking , for this value 

of   initially increases and then decreases with approximate 

change point at  and  decreases for all  See Figure 6.2. 

 

                                           

Figure 6.2- and of Govindarajulu distribution 

Example 6.5 In the case of power Pareto distribution described in 

Chapter 3,  

 

and 

, 

where 

 

In general and possess different patterns of failures, through 

its functional behaviour, such as, both are increasing (e.g.

), first increasing and then decreasing (e.g.

( )M u 2 ( ) u 1 1
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0.1) and also first decreasing and then increasing (e.g.

).  

 For the electric cart data given in Chapter 3, we have found the 

estimates as 

 

The nature of  and functions for the data is presented in 

Figure 6.3.  

 

 

                                       

Figure 6.3- and of power-Pareto distribution 

 In the above discussions we compared the second L-moment of 

residual life with the mean and variance of the residual life. The 

coefficient of variation of residual life defined by  

                                              
( )

( ) .
( )




x
C x

m x
                                              (6.18) 

Encouraging from the properties of coefficient of variation of residual life, 

here we define the L-coefficient of variation by 

                                                                                            (6.19) 

Gupta and Kirmani (2000) have shown that the coefficient of variation of 

residual life characterizes the life distribution. We now demonstrate that 

1 21, 5,   C

1 21, 1, 0.2   C

1 2
ˆ ˆ ˆ=0.234621, =0.0966912, 1530.53  C

( )M u 2 ( ) u

 

0.2 0.4 0.6 0.8 1 

200 

300 

400 

500 
___ ( )M u  

----  2 ( )u    

u

( )M u 2 ( ) u

2

1

( )
( ) .

( )





u

c u
u



186                                       L-moments of residual life 

 

a similar result exists for the L-coefficient of variation of the residual 

quantile function defined as . 

Theorem 6.2. If is differentiable, then  

                                       ,                            (6.20) 

where 

. 

Proof: From the definition of , (6.6) and (6.7),  

1 1

(2 1) ( ) (1 ) ( ) ( )
u u

p u Q p dp u c u Q p dp     . 

Differentiating and simplifying 

, 

rearranging the terms 

 1

( ) (1 ) ( ) ( ) 1
.

(1 ) 1 ( )( )
u

Q u u c u c u

u c uQ p dp

  


 
 

Integrating the above, we get 

 

from which (6.20) follows. 

Example 6.6 As a simple example, if 

                                              
                                            

(6.21) 

then 
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and 

 

Applying Theorem 6.20, we have  

, 

shows that  determine the quantile function of uniform distribution 

with a change of scale. 

 In the next section we give the definition and the properties of L-

moments of reversed residual life. 

6.3 L-moments of reversed residual life 

 On almost similar lines we can treat the functions related to 

reversed residual life by considering  whose distribution is 

. Using (6.1) the  L-moment of  has the 

expression 

                       (6.22) 

In particular 

                                                            (6.23) 

and 

                                                    (6.24)  

Setting  and , we have  

                                                                              (6.25) 

and 
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                                          2

2
0

( ) (2 ) ( )
u

u u p u Q p dp   .                       (6.26) 

From (6.25), we have  

                                                .                              (6.27) 

Further from (6.26), 
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Again from (6.28), we have 

 

Integrating, we have  

                                                                           (6.29) 

From (2.91) we have  

                                          .                         (6.30) 

Hence using similar arguments in Theorem 6.1, we can conclude that 

each of ,  and determine the others uniquely. We 

have from (2.97), the reversed variance residual quantile function  

                                                        (6.31)   

Similar to (6.19), we define the L-coefficient of variation in reversed time 

as  
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                                                                                            (6.32) 

Following the steps of the proof of Theorem 6.2, we can show that 

determines the distribution up to a change of scale as  

                                   (6.33) 

As an example we can easily show that the power distribution is 

characterized by a constant value for . 

6.4 Characterizations 

In this section we present some characterization theorems 

employing the reliability concepts discussed above that can help the 

identification of the underlying lifetime distribution. Our first result 

concerns the generalized Pareto distribution with quantile function  

                                                  (6.34) 

which is a family consisting of the exponential distribution , 

rescaled beta  and the Lomax distribution . The family 

is characterized by a linear mean residual life (reciprocal linear hazard 

rate) function in the conventional reliability analysis. 

Theorem 6.3. Let be a nonnegative continuous random variable with

. Then follows the generalized Pareto distribution (6.34) if 

and only if any one of the following conditions is satisfied for all  in (0, 

1).  
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                                       (ii)  

                                       (iii)  
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Proof: For the model (6.34), we have  

, 

 

and 

. 

Then we have  

                                                                                  (6.35) 

                                                               (6.36) 

and 

                                                                             (6.37) 

Equations (6.35), (6.36) and (6.37) verify the conditions (i), (ii) and (iii). 

To prove the only if part of (i), we assume (i), then from (6.15) 

. 

On differentiation, 

 

Rearranging, 

. 

On integration this leads to 
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Since , we can write  for  and obtain the 

generalized Pareto distribution. Notice that the exponential (rescaled 

beta, Lomax) distribution is characterized by . 

In the case of (ii), it implies  

 

or 

 

Differentiating and simplifying 

. 

Again differentiating, we have 

. 

This is a linear differential equation with integrating factor  and 

hence the solution is  

. 

Setting  and therefore, 

, 

which is a generalized Pareto form (the form (6.34) results from the 

reparametrisation ). The result (iii) follows from (i) 

and (ii) and the proof is completed. 
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Remark 6.3 The relationship between variance residual life and as 

measures of dispersion is of interest. It is seen from direct calculations 

that for the generalized Pareto distribution,  

                                       

                                               .                         (6.38) 

Now we examine whether (6.38) is a characteristic property. Equation 

(6.38) means that  

                                        .               

Differentiating and simplifying the resulting expression,   
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Since 
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Substituting in (6.39), 
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But using (6.10), we have  

 

which can be written by taking  as  

                                       ,                                            (6.40) 
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The solutions of (6.40) are  

. 

The first solution leads to  

 

and as such by (i) of Theorem 6.3,  is distributed as generalized Pareto 

distribution and with exponential (rescaled beta; Lomax) when  

. However the second solution gives 

, 

for all  and therefore  is distributed as rescaled beta. As an 

example when  is exponential  or rescaled beta with  

gives . Thus (6.38) is not a characteristic property of the 

generalized Pareto distribution. 

Remark 6.4.  characterizes the generalized 

Pareto distribution. To see this, use the above relationship in  

, 

. 

Differentiating 
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which leads to 
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( ) 2
.

( ) (1 )(1 )
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Integrating and simplifying  
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
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the expression for of the generalized Pareto distribution. This 

result is proved earlier in Gupta and Kirmani (2004) using the 

distribution function approach. 

The next theorem states the distribution corresponding to the sum 

of two second L-moment of residual lives (mean residual lives). 

  Theorem 6.4. If and are second L-moment 

(mean residual) quantile function of two random variable  and , then 

 
is the second L-moment residual (mean 

residual) quantile function of the distribution with . 

Proof: Follows directly from the definitions of 
 
and . 

Parallel characterizations hold in the case of reversed L-moment 

quantile functions, where the role of the generalized Pareto distribution 

is taken by the power distribution. The proof follows the same pattern as 

in the previous cases and therefore they are omitted. 

Theorem 6.5 Let  be distributed as the power distribution with 

quantile function  

                                                                (6.41) 

Then for all ,  
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                                            (iii) , 

and conversely. 

Remark 6.5 for the power distribution, reduces to the 

quadratic equations  

, 

where . As before the solutions are  

. 

Since  one should have for the first solution and the 

second solution is valid for all . Hence there is a characterization of 

the power solution for all  and two power distributions result as 

solutions whenever . 

Theorem 6.6 The identity  

                                                                                 (6.42) 

is satisfied for all  and constants  satisfying  

                                                                (6.43)  

if and only if  follows Govindarajulu distribution. 

Proof: When  has the distribution stated in the theorem 
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showing that form (6.42) and condition (6.43) are met with. Conversely 

from (6.42) and definitions of the function involved,  

                                .                  (6.44) 

Differentiating (6.44) with respect to  and simplifying 

 

The last factor vanishes by virtue of (6.43) and hence on integration,  

 

or 

, 

which is the quantile function of Govindarajulu distribution with 

parameters  This completes the proof. 

Remark 6.6 Condition (6.43) can be modified to derive a more general 

family of distributions satisfying (6.42), but the resulting four-parameter 

family provides much complicated forms of properties which are not easy 

for practical use.  
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6.5 Applications 

We have indicated some applications of  and in 

modelling lifetime data in the previous sections. In this section we point 

out some more applications in reliability analysis and also in economics. 

A detailed study has to be taken up separately. 

6.5.1. Reliability:  

When conceived as a reliability function the L-moment can 

also be employed in distinguishing life distributions based on its 

monotonic behaviour. Since  and  are twice the mean 

difference, the monotonic behaviour of and  are those of the 

corresponding mean differences. Thus we have the following definition of 

the ageing class based on mean difference in terms of   and . 
 
 

Definition 6.1: The random variable  is said to be increasing 

(decreasing) mean difference quantile function – IMDQ (DMDQ) 

according as  is increasing (decreasing). Similarly increasing 

reversed mean difference quantile function (IRMDQ) and decreasing 

reversed mean difference quantile function (RDMDQ) are defined with 

respect to . Further the mean difference quantile function is first 

increasing (decreasing) and then decreasing (increasing) with change 

point at 
 
will be denoted by IDMDQ (DIMDQ). 

Example 6.7 From the expressions of  given in the proof of 

Theorem 6.3, it is clear that the Lomax distribution is IMDQ and the 

beta distribution is DMDQ. In the Govindarajulu distribution, as it is 
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mentioned earlier that  is first increasing and then decreasing for

, the Govindarajulu distribution is IDMDQ. 

The analytic condition for  to be IMDQ or DMDQ is derived 

from  

 

as 

. 

Thus is IMDQ (DMDQ) according as . In the case of 

ID (DI) MDQ, the change point  is obtained from . 

Obviously, the exponential distribution, as in the case of other ageing 

classes, separates the increasing and decreasing MDQ classes with 

constant mean difference. 

On the other hand, the behaviour of results with  

                                                                      (6.45) 

and hence the turning point of , if any will be the solution of 

. Looking at a more general equation,  

, we find  

        ,       (using (6.29)      

Differentiating and simplifying  
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Applying  on (6.45) 

, 

which provides a proper distribution on the positive real line only if 

. For ,  implies that for a nonnegative random 

variable there is no change point for  and it is an increasing 

function for all . Unlike , there is limited use for  in 

classifying life distributions on the basis of its monotonicity. 

6.5.2 Economics 

In this section we point out the scope of L-moment of reversed 

residual life in the field of economics. Let be the random variable 

representing the personal incomes in a population. Modelling the 

distribution of incomes is a traditional problem in which the use of 

lambda distributions is of recent interest (Tarsitano (2004), Haritha et 

al. (2008)). One important application of income distributions is the 

analysis of poverty in a population. This is often accomplished by the 

choice of a criterion that decides whether an individual is poor and an 

index which summarizes the amount of poverty in the population under 

consideration. Taking the poverty line as , so that an individual 

whose income is below  is considered as poor, the well known index, 

proposed by Sen (1976) is often used in this context. The Sen Index is 

defined as  

                                    ,                            (6.46)  

where is interpreted as the headcount ratio,  

                                                                              (6.47) 

is known as the income gap ratio for the poor and  
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                                         (6.48) 

is the Gini index for poor. In terms of quantile functions,  

                                        (6.49) 

Note that  

 

and  

 

Thus (6.49) become  

, 

the L-coefficient of variation and  

. 

Thus the Sen index (5.46) has the quantile analogue  

 

Using the above expression we can express  in terms of  and 

alone by noting  as  
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The above formula becomes handy when quantile functions, whose 

distributions are not available in closed form, are employed for modelling 

income data (like the lambda distributions). A detailed discussion in this 

respect is available in Haritha et al. (2008). Further from (5.29) and 

(5.30) it is evident that, instead of the distribution, if  can be 

specified then can be determined from it. 

From the earlier discussion it also evident that there is one to one 

correspondence between the income gap ratio  (and also the Gini 

index ) and the baseline income distribution of . The same cannot 

be said about the correspondence between  and . 

We conclude the present study by noting that the second L-

moment of residual life (or equivalently the mean difference) possesses 

properties similar to the variance residual life. It can be useful in 

modelling, characterizing and analyzing lifetime data, and the quantile-

based approach adds to its applicability to empirical models where the 

distribution function cannot be expressed in simple analytical form. 

 R u
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( )Q u ( )P u



 

*The discussions in this chapter is based on Nair and Vineshkumar 

(2011) appeared in the Journal of Korean Statistical Society (see reference 

no. 94) 

 

 

 

Chapter 7 

 

Reversed percentile residual life and 

related concepts* 

 

 

7.1 Introduction 

         In Section 2.2.4, we have given a brief review on percentile residual 

life function (PRL). A compact review provided there help to know the 

developments of PRL in different periods. Theoretically there is analogy 

in the works relating to residual and reversed residual life functions, the 

properties and models relating to them differ substantially to merit the 

study of the latter. The relevance of various existing concepts in reversed 

time and the enormous literature on percentile residual lifetime 

mentioned above motivate us to study the properties of the reversed 

version of the percentile residual life function in the present chapter. 

Such a study along with the relationships that reversed percentile 

residual life has with other concepts used in this connection, does not 

appear to have been discussed in literature. 

 In this chapter we discuss the properties of the reversed percentile 

residual life function (RPRL) and its relationship with the reversed 

hazard function (RHR). Some models with simple functional forms for 

both RHR and RPRL are proposed. A method of distinguishing 
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decreasing (increasing) reversed hazard rates (reversed percentile 

residual lives) is also presented. 

7.2. Definition and properties 

 Let F  be the distribution function of a lifetime random variable 

(such that ) with quantile function . We have from (2.65) 

that the reversed residual life   has distribution 

function 

                                                              (7.1) 

Accordingly for , the reversed percentile residual life function 

of X is defined as  

 
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                                        ,                 (7.2)                      

with  as the right hand end point of the support of 

F. From (7.2) we see that the functional equation that solves for  is 

 

or 

                                          .                              (7.3) 

 In terms of the quantile function  the -th RPRL, as a function of 

u, is obtained as    

                                   .                 (7.4)                                    

This definition is quite useful in situations where the quantile functions 

exist in the simple forms but whose distribution functions do not have 

closed forms to utilize (7.1) and (7.2). We have seen several such models 
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in Chapter 3 and its application in analyzing lifetime data. As a simple 

example, for power Pareto distribution given in Section 3.1.3, specified by  

, , , 

has 

                        .             (7.5) 

We now discuss some properties of RPRL. First is the problem of 

characterizing by the functional form of . We demonstrate 

through the following example that the RPRL for a given  does not 

determine uniquely. In other words the functional equation (7.3) is 

satisfied by more than one distribution function for a given .See the 

following example. 

Example 7.1 Assuming that  follows the power distribution 

 

From (7.2), for the choice of  

 

Now consider the distribution specified by 

,    

so that . Then for the above choice of  and ,  
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so that both  and  have the same RPRL satisfying (7.3). 

 Thus we are lead to the search for some general conditions under 

which  is determined uniquely. Equation (7.3) is a particular case of 

Schroder’s functional equation 

                                                                 (7.6) 

discussed in Gupta and Langford (1984), where  and  is a 

continuous and strictly increasing function on  which satisfies 

 for all . The general solution of the equation is  

, 

where  is a periodic function with period  and  is a 

particular solution which is continuous and strictly decreasing and 

satisfies . In our case, in analogy with (7.6),    t t q t   , 

which does not satisfy the requirement    for the above solution. 

Therefore we seek the conditions for two distributions to have the same 

RPRL for a given , which is presented in the following theorem.  

Theorem 7.1. 

Let F  and  be two continuous and strictly increasing 

distribution functions with corresponding RPRL’s   and . Then 

a necessary and sufficient condition that for all  is that  

                          ,                                      (7.7)  

where  is a periodic function with period ,  . 
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Proof: Assume that for a given , for all t. Then from 

(7.2)  

                                .                          (7.8)                     

Setting , 

                                        (7.9) 

For the function  

                                                                                  (7.10) 

 

showing that (7.10) solves (7.7). Further  

 

Thus K (.) is periodic with period   and therefore, the condition 

is necessary. Conversely if (7.7) holds for all t, 

            

Since F is strictly increasing, 

 

and hence as desired. 

Remark 7.1 In equation (7.9), if we set , we have 

, 

which is a particular case of the Schroder’s equation. 
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In the next  tsheorem we seek conditions for the distribution to be 

determined by two RPRLs. 

Theorem 7.2 

If F is strictly increasing and continuous and   is 

irrational, then  F is uniquely determined by the RPRL’s  and . 

Proof: Since  is a particular solution, another distribution function 

satisfying (7.7) can be expressed as  

 

Thus from the condition that and are RPRL’s we have  

 

where  are periodic functions with periods 

 respectively. The condition of the irrationality 

of the periods ensures that  where c is a constant. As

 

Now we look at some more properties of RPRL. For deducing 

further features of RPRL, we find a relationship it has with RHR. From 

(7.3), 

 

Now we recall the definition of the reversed hazard rate, given in 

Section 2.3.1. We have  
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 
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                                                                                           (7.11) 

Differentiating with respect to ,t  when is differentiable, we have  

 

or 

                                                                             (7.12) 

Since 

 

we conclude that  Hence as t tends to zero from above

. If we assume that  is decreasing we should have 

for all  which is impossible. Thus we have 

(a) there is no strictly decreasing RPRL on the whole positive real 

line; 

(b) whenever  is decreasing, is increasing and 

(c) the function  cannot be a constant on . 

To prove (c), we note that the class of distributions with same  

has the form 

 

where  is a distribution with RPRL . Taking  

 

we note that  which is a constant. Thus the class of 

distributions characterized by constant RPRL is 
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Hence there is no distribution on  with constant RPRL. 

These results show that unlike the percentile residual life 

functions has limited use in describing ageing classes among 

various life distributions. 

7.3. Models 

 Equation (7.12) provides a simple identity that relates RPRL with 

RHR. For many of the standard lifetime models like the exponential, 

Weibull, Pareto, etc. which have simple forms for the hazard rate, the 

expression for RHR is more complicated. Even for such models with 

simple forms for failure rate it is difficult to deduce properties of RHR 

from them. Hence it is desirable to have models that have simple 

functional forms for RHR. In the present section, we discuss a general 

method for obtaining such models from the following theorem. 

Theorem 7.3. 

 For a nonnegative random variable X with hazard rate , its 

reciprocal  has RHR  that satisfies  

. 
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Remark 7.2. Suppose RHR of ,  is decreasing. Then 

 

which means that ( ) 0 ( )h t h t    is decreasing. It follows that if 
 
has 

increasing RHR,  has decreasing failure rate. 

Example 7.2. Consider the form  
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For b<0, there is no proper distribution function. When a>0, b>0  we 

have with appropriate reparametrization,  

 

while for a<0, b>0 
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                                             .                       (7.13) 

The distribution defined in (7.13) is called the reciprocal exponential 
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Pareto distribution with reciprocal linear failure rate discussed in Lai 

and Xie (2006). 

Example 7.3 Consider the Weibull distribution with survival function 

  exp , , 0
t

F t



 


            
 

The hazard rate function is 
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t

h t



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Using Theorem 7.3, 
1

Y
X

 has reversed hazard rate 
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1
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t

t
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

  

which defines a distribution function for , 0  . We call this 

distribution as reciprocal Weibull distribution. The RPRL of Y  has the 

expression 

1 log(1 )
( ) .

log(1 ) 1

t
q t

t

 

  

 
 

 


 
 

 The RHR and RPRL of the above distributions and those of others 

obtained by the same method from some standard life distributions are 

given in Table 7.1, at the end of the chapter. The hazard rate properties 
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of these distributions and other reliability aspects are documented in 

Marshal and Olkin (2007). 

7.4 Classification of distributions 

 The fact that   is non-increasing (non-decreasing) on the 

entire positive real line leaves little scope for classification or 

identification of life distributions on the basis of their monotonicity as 

with the cases of ordinary hazard rate function and percentile residual 

life. One way of resolving this problem is to compare their growth rates. 

For the reversed hazard rate we define its growth rate as 

                                               .                         (7.14) 

It is easy to see that  determines  up to a constant.  Hence the 

function  is an appropriate quantity to distinguish a suitable model 

among the class of decreasing reversed hazard rate distributions. From 

the expressions of  t  of different distributions given in Table 7.1, we 

can easily find out the growth rates. For example the power distribution 

has  

1( )t at   

and hence the growth rate  

1
( )g t

t


 . 

Similarly the growth rate of reciprocal Weibull distribution is 

  1( ) 1g t t    . 

Table 7.2 exhibits the growth rate and behaviour of some important 

models. 

 It seems desirable to compare the relative growth rates of one 

distribution with respect to another distribution to see the extent to 

 t  ( )q t

  1 ( )
, 0

( )

d t
g t t

t dt




 

 g t ( )t

( )g t
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which changes are taking place in their reversed hazard rates. Here we 

study the relative growth rate by comparing the rate of a given 

distribution with that of the reciprocal exponential. This is motivated by  

(i) there is no distribution on  with constant growth 

rate, which would have been the natural choice if one 

existed,  

(ii) the RHR of reciprocal exponential has a simple form, 

(iii) there are many distribution that have growth rate less or 

more than that of reciprocal exponential and 

(iv) 
1

X
 has exponential distribution. 

Definition 7.1 A life distribution  is said to have higher growth rate – 

HGR (lower growth rate- LGR) in reversed hazard rate compared to the 

reciprocal exponential if 

 

where RE stands for reciprocal exponential distribution. 

 Using the above definition, we can see that there exist classes of 

distributions, in the same way as get classes using the monotonicity of 

failure rates or mean residual life functions.  

Example 7.3 Consider the expressions of   presented in Table 7.2. 

For example  of power distribution is  

, 

. 

Now 

 0, 

F

( ) ( ) ( ) for all 0,F REg t g t t  
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1
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
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2
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t
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, 

means that the power distribution is LGR.  For reciprocal Weibull 

distribution 

, 

which is >1,  and <1 for . Hence the distribution is HGR for 

 and LGR for  . In the case of reciprocal beta  

 

Since  means the distribution is HGR. 

While the generalized power law is initially HGR and then LGR with a 

change point at . To show this note that  

 

Behaviour of some other distributions is exhibited in Table 7.2. In a 

similar manner, we define growth rate for the reversed percentile 

residual life.  

Definition 7.2 is said to have higher growth rate in reversed 

percentile life –HGP (lower growth rate-LGP) if  

                                 
    for all ,                            (7.15) 

where 

                                                  .                                (7.16) 
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 Although  determines  up to a constant, the latter does not 

characterize the corresponding distribution. 

Example 7.4 The growth rate in reversed percentile residual life of the 

reciprocal exponential distribution is  

. 

For the power distribution the growth rate is 

. 

Now 

 

Hence power distribution has LGP. On the other hand for the reciprocal 

beta we have 

. 

Hence  for all and hence for this range of

, reciprocal beta has HGP. Thus the classification is well defined. 
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Table 7.1 RHR and RPRL of Distributions 

Distribution ( )F t  RPRL RHR 

Power   , 0
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t t b
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Table 7.2 Growth rate of reversed hazard rate 

 Distribution ( )g t   

Power 1t  LGR 

Reciprocal Exponential 12t  HGR/LGR 
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Chapter 8 

 

Conclusions and future works 

 

 

Reliability analysis is a well established branch of statistics that 

deals with the statistical study of different aspects of lifetimes of a 

system of components. As we pointed out earlier that major part of the 

theory and applications in connection with reliability analysis were 

discussed based on the measures in terms of distribution function. In the 

beginning chapters of the thesis, we have described some attractive 

features of quantile functions and the relevance of its use in reliability 

analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) 

and Gilchrist (2000), who indicated the scope of quantile functions in 

reliability analysis and as a follow up of the systematic study in this 

connection by Nair and Sankaran (2009), in the present work we tried to 

extend their ideas to develop necessary theoretical framework for lifetime 

data analysis. In Chapter 1, we have given the relevance and scope of the 

study and a brief outline of the work we have carried out.  

 Chapter 2 of this thesis is devoted to the presentation of various 

concepts and their brief reviews, which were useful for the discussions in 

the subsequent chapters. We have pointed out in Chapter 1 that one of 

the objectives of the quantile-based reliability analysis is to make use of 

quantile functions as models in lifetime data analysis. When one wishes 
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to model a lifetime data with a quantile function, so as to carry out a 

quantile-based analysis, he needs different choices of quantile functions 

to select an appropriate one. Motivated by this, the objectives of the 

discussions in Chapter 3 were two-fold. Firstly we have identified some 

existing quantile functions for lifetime data analysis. Secondly, we have 

derived new models for use of quantile-based lifetime analysis. The 

identified distributions were lambda distributions by Ramberg and 

Schmeiser (1974) and Freimer et al. (1988), the power Pareto 

distribution, a new model proposed by van-Staden and Loots (2009) and 

the Govindarajulu distribution. As the Govindarajulu distribution is a 

simple model with competing features in terms of model parsimony, a 

detailed study of the distribution in the context of reliability analysis has 

been carried out. As an effort to fulfill the second objective, we have 

derived three new families of quantile functions that nest several known 

models using the properties of Parzen’s score function and tail exponent 

function, and demonstrated their applicability in lifetime data analysis. 

  

In the introduction of Chapter 4, we have pointed out the role of 

ageing concepts in reliability analysis and in identifying life 

distributions. As we have mentioned there, all the ageing concepts exist 

in the literature were defined in terms of measures based on distribution 

functions. As there exist quantile models useful in the analysis of lifetime 

data, to describe their ageing properties, quantile-based definitions seem 

essential. Motivated by this fact, in Chapter 4, we have translated the 

definitions of most commonly used ageing concepts in terms of quantile 

function and ageing properties of some quantile functions have been 

discussed.  
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 In Chapter 5 we have defined a generalization of TTT called TTT 

of order n (TTT-n), obtained by the iteration of the definition of TTT. It 

has been shown that TTT-n is also a quantile function of a random 

variable, say 
n

X . We have derived various identities connecting the 

reliability measures of X  and 
n

X . We have made use of some of these 

identities to derive some characterization results. We have proposed the 

process of iterations as a method to generate new distributions with 

different monotonicity for hazard quantile function. We have also 

considered the ageing properties of 
n

X  in relation to the baseline random 

variable X . We have proved some general results about the ageing 

patterns of 
n

X  in connection with that of X . We have proposed a simple 

mechanism for construction of bathtub or upside-down bathtub 

distributions. Many results that give the order relations connecting the 

baseline and transformed random variables were also proved in Chapter 

5. A new order relation based on TTT-n has been defined and its 

preservation property under the minima has been established. As we 

mentioned in Chapter 5, sample the sample counterpart viz. thn  order 

TTT statistics along with their relationships with the TTT statistic of the 

original distribution, which is being investigated, can further strengthen 

the adaptability of the theoretical results in the present work. 

 In Chapter 6, we have studied the first two L-moments of residual 

life and their relevance in various applications of reliability analysis. We 

have shown that the first L-moment of residual function is equivalent to 

the vitality function, which have been widely discussed in the literature. 

Relationships of the second L-moment of residual life, 
2
( )u  with some 

commonly used reliability measures were derived. We have treated 
2
( )u  

as a measure of variation and studied its merits over the usual variance 
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of residual life (VRL). The monotonicity of 
2
( )u  in relation with the 

mean and variance of residual life have also been discussed. We have 

also defined the L-moments of reversed residual life and studied their 

properties. In the last section of Chapter 6, we have pointed out some 

applications of L-moments of residual life in the field of reliability and 

economics.  

 In Chapter 7, we have defined percentile residual life in reversed 

time (RPRL) and derived its relationship with reversed hazard rate 

(RHR). We have discussed the characterization problem of RPRL and 

demonstrated with an example that the RPRL for given does not 

determine the distribution uniquely. We presented the conditions for 

RPRL to determine the distributions. We have derived many models with 

simple form of RHR and RPRL. As RHR (RPRL) is non-increasing (non-

decreasing) on the entire positive real line, it leaves little scope for 

classification or identification of distributions on the basis of their 

monotonicity. We have used the growth rates of RHR (RPRL) for the 

classification of distribution and several examples were given.  

 On the basis of the present study and continuing demand for new 

models it is felt that the following problems need resolution. 

1. Distribution functions by themselves cannot provide adequate 

models for certain types of data. Identification of more quantile 

functions and their study in the context of reliability analysis with 

the aid of quantile-based theory developed so far is required. This 

can be achieved by using the Parzen’s functions, the generalized 

TTT and specific functional form for quantile-based reliability 

measures. 
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2. Researchers have identified many practical difficulties in 

estimation procedures of various quantile functions such as 

lambda distributions. Studies are needed to arrive at families of 

quantile functions which are versatile in answering modelling 

problems and at the same time with simple methods of estimation. 

3. In Chapter 4, we have derived a new model based on the linear 

hazard quantile function. Likewise one can consider various 

functional forms of hazard quantile function and other reliability 

measures to generate new quantile function models, which 

remains as an open problem.  

4. Another future work is the detailed study on the applications of L-

moments of residual life in reliability analysis and economics, 

which we have pointed out in Chapter 6. The study on the 

properties of higher order L-moments of residual life, and the 

multivariate extensions of the first and second L-moments of 

residual lives are also open problems.  

5. Ordering of quantile-based reliability functions are essential for 

comparison of the properties of the underlying quantile function. 

These orderings are different from the existing ones. 

We are currently attempting to resolve some of these problems and 

hopefully work in this direction is expected to be presented in a future 

work. 
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