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CHAPTER 1

Introduction

1.1 Description of queueing problems

In many real life situations customers have to wait in a queue for

getting service. For examples customers wait in a bank counter, patients

wait in a hospital, airplanes wait to take off or for landing etc. Queues may

be reduced in size or prevented from being formed by providing additional

service facilities which results in a drop in the profit. On the other hand

excessively long queues may result in lost sales and loss of customers.

Hence the problem is to achieve a balance between the cost associated with

long queues and that associated with the reduction I prevention of waiting.

Queueing theory is that branch of applied probability which studies such

service systems and provides answers to the above problem.

Although there are many types of queueing systems, the following are

the basic characteristics of any queueing process.

Arrival pattern of customers

The arrival pattern describes the rnamier in which customers arrive

and join the queueing system. It is often measured in terms of average

number of arrivals per unit time (mean arrival rate) or the average time

between successive arrivals (mean inter arrival time). The arrival of

customers is often expressed by means of a probability distribution of the

I



1. Introduction

number of arrivals or of the inter arrival time. Arrival may also occur in

batches instead of one at a time.

If the queue is too long a customer may decide not to enter it upon

arrival. Such a situation is called balking. On the other hand, a customer

may enter the queue, but after some time lose patience and decide to leave.

This is known as reneging. Another case is, when there is more than one

queue, customers may switch from one to another which is called

jockeying.

Service pattern of servers

The mode of service is represented by means of a probability

distribution of the time required to serve a customer. Service may also be in

single or in batches.

If the system is empty, the server is idle. The servers who become

idle may leave the system for a random period called vacation. These

vacations may be utilized to perform additional work assigned to the

servers. However in retrial queues with no waiting space, it may be noted

that each service is preceded and followed by an idle period.

Queuing discipline

The queuing discipline specifies the manner in which the customers

are selected for service when a queue is formed. The most common

disciplines are FIFO (First in First out) and LIFO (Last in First

out).Another queue discipline is SIRO (Service in Random order). In some

cases customers are given priorities upon entering the system. The ones

2



1. Introduction

with higher priorities are selected for service ahead of those with lower

priorities.

Service channels

The number of service channels refers to the number of parallel

service stations which can provide identical service to the customers.

Stages of service

A service may have several stages. That is a customer has to

progress through a series of service stages prior to leaving the system. Such

situations occur in tandem queues, network of queues etc.

1.2 Description of inventory systems

Inventory may be defined as stock of goods, commodities and other

resources that are stored for the smooth conduct of business. ln inventory

models the availability of items is also to be considered in addition to the

features in Queueing theory. If the time required to serve the items to the

customers and time required to replenish the items (lead time) are both

negligible then no queue is formed except in the case when order for

replenishment is placed only when a number of back orders accumulate. If

either service time or lead time or both are taken to be positive then a queue

is formed; in the case of negligible service time with positive lead time, a

queue of customers is formed provided backlog is permitted.

An (s, S) inventory policy is a policy according to which when

inventory level drops to s then an order is placed. The order quantity is

3



1. Introduction

Q = S-s so that the maximum inventory level is S. Such an inventory model

is called (s,S) inventory model. In (s, S) policy, s and S are control variables

with s, the reorder level and S the maximum number of items that can be

held in the storage. Here we use (s, S ) policy in the sense defined in Stanfel

and Sivazlian [63]: the on hand inventory, on reaching the level s, an order

for the fixed quantity S-s of the item is placed There are several other

ordering policies: Order up to maximum S policy in which replenishment

order is placed at levels smallest where as replenishment quantity is S-i

when inventory level is i (0 5 i S s) at replenishment epoch. In random

order quantity policy, the order quantity can be any thing between s +1 and

S—s. Yet another ordering policy is to place replenishment order when

inventory level belongs to {0,l,....,s}.

1.3 Some basic concepts

Stochastic process

A stochastic process is a collection of random variables {X(t),te T].

That is for each te T, X(t) is a random variable. The index t is often

referred to as time and we refer to the possible values of X(t) as the state

space of the process. The set T is called the index set of the process. If T is

a countable set then the stochastic process is said to be a discrete (time)

process. If T is an interval of the real line then the stochastic process is said

to be a continuous (time) process. For instance, {X,,, n=O,l,.....} is a

discrete time stochastic process indexed by the set of non negative

integers, ,while {X(t),t 2 0} is a continuous time process indexed by non

negative real numbers.

4



l. Introduction

Markov Process

A stochastic process[X(t),teT] is called a Markov process if it satisfies

the condition

Pr{ X(t,,) = x,, I X(t,,-1)=x,,-|, X(t,,.2) = x,,-2,.....X(t0)=x0]=Pr{X(t,,)=x,, I X(t,,-,)=x,,_g|} for

t0<t,<.....<t,,-,<t,, and for every n ; x0, x,,.... x,, are elements of the state

space. This means that the distribution of any future occupancy depends

only on the present state but not on the past.

Exponential distribution

A continuous random variable X is said to have an exponential

distribution with parameter 7t if its probability density function is given by

f(x) = ?te' 7*" ,x20 and 7t >0. This distribution has the memoryless property;

that is P[X>t+s / X>t] =P[X>s] for all t, s 2 0. Exponential distribution is

relatively easy to work. In making a mathematical model for a real life

phenomenon we often assume that certain random variables associated with

the problem under study are exponentially distributed.

Renewal Process

Let {N(t), t 2 0}be a counting process and X“ denote the time

between the (n~ 1)“ and nfl‘ renewal. If the sequence of non negative random

variables {X,,X2,.....}is independent and identically distributed then the

counting process (the number of renewals up to time t), [N(t),t 2 0} is

called a renewal process. Consider a renewal process having inter arrival

times X,,X2,. . ..with distribution function F. Set Sn == iX,.,n 2 1; S0 =0.
i=l

5



1. Introduction

Then we have N(t) = max{ n: Sn 5 t} and the distribution of N(t) is given by

P{N(t) = n]=F,,(t) - F,,+1(t) where F“ is the n-fold convolution of F with

itself. The Poisson process is a renewal process where F is an exponential

distribution.

Poisson Process

A renewal process { N(t), t30] is said to be a Poisson process having

rate it if

(i) N(0) =0.

(ii) The process has stationary and independent increments.

(iii) P{N(h)=l }= 7th +o(h) .

(iv) P{N(h)Z2}= 0(h) .

It follows from the definition that for all s,t 3 0,

P{(N(t+s)—N(s)) = n} =e'”-(%I—,n =0,1,....

For a Poisson process having parameter 7t the inter arrival time has an

exponential distribution with mean 1/ X .

Continuous-time Phase type (PH) distributions

Consider a Markov chain Q on the states {l,2,....,m+l }with

infinitesimal generator matrix Q =[€ 20] where the m><m matrix T

satisfies Tii< 0 for l 5 i 5 m and Tij 3 0 for i ryfi j; T0 is an mxlcoloumn

matrix such that Te+T°=0 , where e is a column matrix of l’s of appropriate

order. Let (a, a,,,+,),where a is a Ixm dimensional row vector and a,,,+, is a

scalar such that ae+a,,,+, -W-1,be the initial probability vector of Q. m+l is an

6



1. Introduction

absorbing state for the Markov chain Q .For eventual absorption into the

absorbing state, starting from the initial state, it is necessary and sufficient

that T is non singular. The probability distribution F(.) of time until

absorption in the state m+l corresponding to the initial probability vector

(a, a,,,+ 1) is given by F(x)=l-aem‘) e ,x 2 0.A probability distribution F(.) is a

distribution of phase type if and only if it is the distribution of time until

absorption of a finite Markov chain described above. The pair (a, T) is

called a representation of F(.). The moments about origin are given by

E(X")=,u;=(-l)"k!(a’1""e) for k 2 0.When m = 1 and T=[-,1], the

underlying PH-distribution is exponential.

PH-renewal process

A renewal process whose inter-renewal times have a PH

distribution is called a PH~nenewal process. To construct a PH-renewal

process we consider a continuous time Markov chain with state space

{l,2,...,m+l} having infinitesimal generator Q;-[21  The m><m

matrix T is taken to be nonsingular so that absorption to the state m+l

occurs with probabilityl from any initial state. Let (a,0) be the initial

probability vector. When absorption occurs in the above chain we say a

renewal has occurred. Then the process immediately starts anew in one of

the states { 1,2,. . .,m} according to the probability vector a . Continuation of

this process gives a non terminating stochastic process called PH-renewal

process.

7



1. Introduction

Level Independent Quasi-Birth -Death (LIQBD) process

A level independent quasi birth and death process is a Markov

chain on the state space E={(i, j),i 20,13 j sm}with infinitesimal

generator matrix Q given byq— q
B0140

IBIAIAO
A2/1.1%Q=i A2 A A0 (1.1), I

r\ \t 0 31 -L
The above matrix is obtained by partitioning the state space E into

I-'\H

..==>>
I15)

W

l\J>
Q

>

levels }, wherei = {(i, j),i 20,1 s j 5 m}. The states within the

levels are called phases. The matrix B0 denotes the transition rates within

level 6, matrix B1 denotes the transition rates from level 1 to level  A2,

A1 and A0 denote transition rates from level; to (i:1),i and (ii-1)

respectively.

Matrix Analytic Method

Matrix analytic approach to stochastic models was introduced by

M.F Neuts to provide an algorithmic analysis for M/G/1 and GI/M/lo type

queueing models. The following brief discussion gives an account of the

8



l. Introduction

method of solving an LIQBD using the matrix geometric method. For a

detailed description, we refer to Neuts[56], Latouche and Ramaswami[52].

Let x=(xQ,x,,x2,...), be the steady state vector ,where xfs are

partitioned as x;=(x(i,0),x(i,l),x(i,2)....,x(i,m)), m being the number of

phases with in levels.

Let xi == x0R‘ , izl .Then from xQ = 0 we get

xo/40 +x,A, +x2A2 =0

.r0A0 +x0RA, + xoR"A2 =0

x0(A0+RA, +R2A2) =0

Choose R such that R2A,+ RA, +/to = 0.

Also we have x0B0 + x,B, = 0, which gives

x0B0 + xoRB, = 0

i.e. x0(BU + RB,) == 0 .

First we take xo as the steady state vector of B0 +RB|. Then xi , for i 21

can be found using the formulae; xi =- x0R‘ for £21. Now the steady state

probability distribution of the system is obtained by dividing each x,._ with

the normalizing constant [xo + xl +...] e = x0(l-R)"e.

The above discussion leads to the following theorem.

Theorem The QBD with infinitesimal generator Q of the form (l.l) is

positive recurrent if and only if the minimal non negative solution R of the

matrix quadratic equation R2A2+RA,+A0=O has all its eigen values inside

the unit disc and the finite system of equations x0(B0+RB|)=0 ,x0(I-R)"e=l

has a unique solution x0. If the matrix A=A0+A1+A2 is irreducible, then

sp(R) <1 if and only if 1:A0e < 1|;A;e, where at is the stationary probability

9



1. Introduction

vector of A = AO+A1+A2. The stationary probability vector x=(x0,x,,...) of

Q is given by x,-=x0R" for 1'21.

Level Dependent Quasi Birth Death (LDQBD) Process

A level dependent Quasi-Birth -Death process is a Markov process

on a state space &{(i, j),i Z 0,1 5 jg ni} with infinitesimal generator matrix

Q given by

.;1 A10 A00 if
A A21 A-.1 A0!

§ A22 A12 A02Qzy A23 A13 A03 L2
i i ° 1_ _.J

The generator matrix Q is obtained in the above form by partitioning the

I-*"'\

.=>>
:-*>
_t\.>>

state space E into levels }. Here the transitions take place only to

the immediately preceding and succeeding levels for i 3 1. However the

transition rate depends on the level i, unlike in the LIQBD, and therefore

the spatial homogeneity of the associated process is lost.

A special class of LDQBD’s is those which arise in retrial queueing

models.

Neuts-Rao Truncation method

Since the repeating structure is lost in LDQBD, its analysis is much

more involved. However Neuts and Rao [57] suggested a truncation

10
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procedure using which certain class of LDQBD’s which include retrial

models can be made to have a repeating structure from a certain level Nd‘ ,

where N‘“ is sufficiently large. For giving a brief idea of their method, we

assume that ni =m for every iZN so that each level 3 N contains the same

number of states. Note that this is the case in most of the retrial queueing

models. To apply Nuets -Rao Truncation, we take A1,=A,N, A2i=A2N

and A{,i=A0N for all i 3 N .In the case of the retrial queues this is equivalent

to assuming that retrial rate remains constant after the number of orbital

customers exceeds a certain limit N.

Define AN = A0,, + Am + AZN and EN =( 7IN(0,O), 2rN(0,l),

JEN (0,2), ....... .., 2rN(0,m)) be the steady state vector of the matrix AN.

Then the relations EN AN =0 together with 7:“ e =1 when solved give the

various components of JEN . The truncated system is stable if and only if

7Z'~ Awe > 2:” Awe and the original system is stable if Lim file-< l.“Q” 7: we

This thesis is on inventory with positive service time. We consider

both classical and retrial queueing process associated with this. Also we

discuss questions related to interruptions in service of customers. In

addition production inventory with interruptions is also investigated.

Further we bring in ‘protection’ of service and/production from

interruption. Optimization problems related to these are extensively

analyzed in this thesis.

Having described the tools for analysis, we move on to provide a

review of the work done in the theme of the present thesis.

ll
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1.4 Review of related works

In all the studies on inventory systems prior to Berman et al [8], it

was assumed that the sewing of inventory is instantaneous. However, this

is not the case in many practical situations. For example in a TV

showroom, a customer usually spends some time with the salesperson

before buying the TV or in a computer shop, after selecting the model, one

will have to wait until all the required softwares are installed. In Berman ct

al [8] it is assumed that the amount of time taken to serve an item is

constant. This leads to the analysis of a queue of demands formed in an

inventory system. This study was followed by numerous studies by several

researchers on many kinds of inventory models with positive service time.

These studies include the papers Berman and Kim[9] and Berman and

Sapna [10]. Among these, the first one takes a dynamic programming

approach and the second one takes a Markov renewal theoretic approach.

More recently, Krishnamoorthy and his co-authors used Matrix

geometric Method to study inventory models [13,27,33,35,39,43,44,45,69],

where positive service time for providing the inventoried item is assumed.

In Krishnamoorthy et. al. [43], and Deepak et. al. [14], an explicit product

form solution for an inventory system with service time could be arrived at

due to the assumption of zero lead time. It is worth mentioning that

Schwarz et. al. [58] could obtain product form solution for the joint

distribution of the number of customers in the system and the inventory

level even in the case of positive lead time .This is achieved through the

assumption that no customer joins the system when the inventory is out of

stock; those who are already in the queue stay back. We refer to the survey

paper by Krishnamoorthy et. al. [36] for more details on inventory models

with positive service time.

l2
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In an (s, S) production inventory system, once the production

process is switched on (at the level s, as the inventory falls from S to s), it

is switched off only after the inventory level goes back to S, the maximum

inventory level. This makes it distinct from (s, S) inventory system with

positive lead-time, where once the order is placed (the moment at which the

inventory level hits the re-order level s), the replenishment takes place by a

quantity S—s after a random amount of time; usually the ordering quantity is

taken such that the inventory level goes above s at the time the order
materializes.

Krishnamoorthy and Viswanath [47] introduced the idea of positive

service time in to a production inventory model by considering MAP

arrivals and a correlated production process. This model being a very

general one as far as the modeling parameters are concerned, only an

algorithmic analysis of the model could be carried out there. In a very

recent paper Krishnamoorthy and Viswanath [48], assuming all the

underlying distributions as exponential, obtained a product form solution in

the steady state for a production inventory model with positive service

time. The above work was partly motivated by the paper by Schwarz et al.

[58], where a product form solution has been obtained in an (s, S) inventory

model with positive service time.

Because of the fast growing applicability in the COIIlIl1llI1iC3I.lOI1 and

other fields, retrial queueing models are getting more and more attention.

The literature on these type of queueing models is vast. We refer to the

book by Falin and Templeton [16] and the very recent one by Atralejo and

Gomez Corral [2] for an extensive analysis of both theory and applications

on retrial queues.

13



1. Introduction

The first study on inventory models with positive lead-time and

unsatisfied customers thus created, going to an orbit and retry for inventory

from there, was made by Artalejo et. al [6]. Analytical solution to the

problem discussed there could be found in Ushakumari[42]. Following

these, a number of papers on inventory models with retrial of unsatisfied

customers emerged. A few among them are listed in what follows. The

papers by Krishnamoorthy and Islam [30,3l]: of which the first paper is on

a production inventory model with retrial of customers and the second one

analyses a production inventory model with random shelf times of the

items with retrials of the orbiting customers. The papers by
Krishnamoorthy et. al. [33,44], study inventory models with positive
service time and retrial of customers from an orbit with an intermediate

buffer of finite capacity . The paper by Krishnamoorthy and Jose [34]

investigates and compares different (s, S) inventory models with an orbit of

infinite capacity, having I not having a finite buffer.

Service interruption models studied in the literature include

different types of service unavailability that may be due to server taking

vacations, server breakdown, server interruptions, arrival of a priority

customer etc. The paper by White and Christie [73] on an M/M/1 queuing

model with exponentially distributed service interruption durations was the

first one to introduce the concept of service interruption. Some of the later

papers which analyze queuing models with service interruptions, assuming

general distribution for the service and interruption times, are by laiswal

[20,21]. Gaver [l8], Keilson [23], Avi-Itzhak and Naor [7] and

Thiruvengadom [65]. In all these papers it is assumed that the arrival of a

high priority customer interrupts the service of a lower priority customer.

Some other papers on service interruption models include Ibe and Trivedi

14
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[19], Federgruen and Green [17], Van Dijk [70], Takine and Sengupta [64],

Masuyama and Takine [53]. Kulkarni and Choi[49] study two models of

single server retrial queue with server breakdowns. In the first model, the

customer whose service is interrupted, either leaves the system or rejoins

the orbit; whereas in the second model the interrupted service is repeated

after the repair is completed. Some other papers which study retrial queues

with an unreliable sewer include Aissani and Artalejo [1], Artalejo and

Gomez-CorraJ[3], Wang et a.l[71], Sherman and Kharoufeh[59], Sherman

et.al.[60]. Marie and K.Trivedi [55] study the stability condition of an

M/G/1 priority queue with two classes of jobs. Class l jobs have

preemptive priority over class 2 jobs. They consider three different types of

preemptions and the effects of possible work loss (due to preemption) on

the stability condition for the queueing system.

The queueing model analyzed by Krishnamoorthy and

Ushakumari [42], where disaster can occur to the unit undergoing service,

the one by Wang et al [72] with disaster and unreliable server are also

models with server interruptions.

In a recent paper Krishnamoorthy et. al. [37] study queues

with service interruption and repair, where a decision on whether to repeat

or resume the interrupted service is made according to whether a phase

type distributed random clock that starts ticking the moment interruption

strikes, realizes after or before the removal of the current interruption.

Another paper by Krishnamoorthy et. al. [29] studies a queuing model

where no damage to the server is assumed due to interruption, so that the

server there needs no repair. A decision is to be made whether to restart or
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resume the interrupted service. Interruption being a random variable is

determined by the competition of two exponential random variables.

For more detailed reports on queueing models with interruptions we

refer to the survey paper by Krishnamoorthy et al [38]. Priority queueing

models are not discussed by them since in such cases it is not server

breakdown that causes interruption of service of lower priority customers.

There are numerous studies on inventory systems where interruption

occurs due to unreliable suppliers. We refer to the papers by Tomlin

[66,67] and the paper by Chen and Li [12] for details on such studies. Our

work is in an entirely different direction from described above in [66,67,l2]

for the following reasons. First of all, in the above papers, interruption

occurs due to an unreliable supplier, whereas in our models, we do not

assume that the supplier is unreliable and it is the unreliable server who

causes interruptions. Most importantly, in our models, interruptions occur

in the middle of a service and there is no restriction on the number of

possible interruptions during a service. Krishnamoorthy et al [41] can be

considered as the first paper to introduce the concept of service

interruption, which occurs in the middle of a service, in an inventory

system. The steady state distribution has been obtained explicitly in product

form in the above paper. In another paper [40] by the same authors, the

above model has been extended by considering positive lead-time.

In a queueing system where the service process consists of certain

number of phases, with service subject to interruptions, the concept of

protecting a few phases of service (which may be so costly to afford an

interruption) from interruption could be an important idea. Klimenok et al

[25] studies a multi-server queueing system with finite buffer and negative

customers where the arrival is BMAP and service is PH-type. They assume

that a negative customer can delete an ordinary customer in service if the
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service of a customer goes on in any of the unprotected phases; whereas if

the service process is in some protected phase, the service of the customer

is protected from the effect of the negative customers. Klimenok and Dudin

[24] extends the above paper by considering disciplines of complete

admission and complete rejection. Further, Klimenok and Dudin [24]

assumes an infinite buffer. Krishnamoorthy et al [28] introduces the idea of

protection in a queueing system where the service process is subject to

interruptions. They assume that the final m-n phases of the Erlang service

process with m phases are protected from interruption. Whereas if the

service process belongs to the first n phases, it is subject to interruption and

an interrupted service is resumed/repeated after some random time. There

is no reduction (removal) in the number of customers due to interruption

and no bound was assumed on the number of interruptions that can

possibly occur in the course of a service. In this way, this study differs

from the earlier ones where atmost one interruption was possible during a

service and where the customer whose service got interrupted is removed

from the system. The interruption models that we discuss in this thesis fall

under the category of type I counter. This amounts to saying that when a

server is under going an interruption no further interruption can befall it.

1.5 An Outline of the Present Work

This thesis is divided into six chapters including the present introductory

chapter.

in the second chapter, we consider a single server queueing system with

inventory where customers arrive according to a Poisson process.

Customers, finding the server busy upon arrival, join an orbit of infinite

capacity from where they retry for service. Service times are exponentially

17
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distributed. Immediately after the completion of a service the server either

picks a customer from the orbit with probability p for the next service, if

there is item in the inventory, or remains idle. Inventory is replenished

according to the (s, S) policy, with lead times following exponential

distribution. Primary arrivals do not join the orbit while the inventory level

is zero. Stability of the above system is analyzed and steady state vector is

calculated using Neuts-Rao truncation. An extensive numerical study of

various performance measures such as mean and variance of waiting time

of an orbital customer is carried out.

In the third chapter, we consider a single server queuing system

with inventory where customers arrive according to a Poisson process.

Inventory is served according to an exponential distribution. Replenishment

of inventory is according to the (s, S) policy with lead time also following

an exponential distribution. The service process is subject to interruptions,

with the occurrence of the latter constituting a Poisson process. The

interrupted server is repaired, the repair time being exponentially

distributed. We assume that during interruption the customer being served

waits there until his service is completed and also that no inventory is lost

due to interruption. We also assume that while the server is on interruption

no arrival is entertained and replenishment order placed, if any, is

cancelled. Further when the inventory level is zero no fresh customer is

permitted to join the system. Stability of the above system is analyzed and

steady state vector is calculated numerically. Several system performance

measures including waiting time of a customer in the system are also

studied numerically.
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In chapter 4 we discuss a special case of chapter 3. In that chapter, we

consider a single server queuing system with inventory where customers

arrive according to a Poisson process. Inventory is served according to an

exponential distribution provided there are customers. Inventory is

replenished according to the (s, S) policy with zero lead-time. The service

process is subject to interruptions, which occurs according to a Poisson

process. The interrupted server is repaired with the repair time following an

exponential distribution. We assume that during interruption, the customer

being served waits there until his service is completed and also that no

inventory is lost due to this interruption. Stability of the above system is

analyzed and steady state vector is calculated explicitly. Explicit formulas

for system performance measures such as expected number of customers in

the system, expected inventory size, expected interruption rate, waiting

time of a customer in the system are also obtained.

In the fifth chapter we consider a single server queueing system to

which customers arrive according to a Poisson process each demanding

exactly one unit of an inventoried item. Service time durations are

exponentially distributed. Inventory is replenished according to (s,S)

policy, with lead time following exponential distribution. The service may

get interrupted according to a Poisson process and if so the service restarts

after a time interval that is exponentially distributed. Customers, upon

arrival, finding the server busy, leaves the service area and joins an orbit

from where they retry for sen/ice. The interval between two successive

repeated attempts is exponentially distributed.
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We assume that while the server is on an interruption an arriving

customer joins the system with a certain probability. We also make the

assumption that while the server is on an interruption a retrying customer

goes back to the orbit with a certain probability and otherwise leaves the

system. Again no arrival or retrial is entertained when the inventory level is

zero. Stability of the above system is analyzed and steady state vector is

calculated using Neuts-Rao truncation. A thorough numerical study of

various performance measures such as mean and variance of waiting time

of an orbital customer is carried out.

In the sixth chapter we consider a production inventory system

with positive service time, with time for producing each item following

Erlang distribution. Customers arrive according to a Poisson process. When

the inventory level falls to s, production process is switched on and it is

switched off when inventory level reaches S. Service time to each customer

also follows Erlang distribution. The service gets interrupted according to a

Poisson process and if so the service is repeated after an exponentially

distributed time. The final few phases of the service process are assumed to

be protected in the sense that the service will not be interrupted while being

in these phases. The same is the case with the production process.

We assume that no inventory is lost due to a service interruption and

that the customer being served waits there until his service is completed

.On the other hand in the case of interruption to production process we

assume that the item being produced is lost. Stability of the above system is

analyzed and steady state vector is calculated numerically. A thorough

numerical study of various performance measures is carried out.
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CHAPTER 2

An Inventory Model With Retrial And Orbital Search *

2.1 Introduction

Because of the fast growing applicability in the communication and

other fields, retrial queueing models are getting more and more attention. The

literature on these type of queueing models is vast. (We refer to the books by

Falin and Templeton [16] and Atralejo and Gomez Corral [2], for an extensive

analysis of both theory and applications on retrial queues).

The first study on inventory models with positive lead time and

unsatisfied customers thus created going to an orbit and retries for inventory

from there was done by Artalejo et. al [6]. After their work, a number of

papers on inventory models with retrial of unsatisfied customers emerged. A

few among them can be listed as follows. The papers by Krishnarnoorthy and

Islam [30,3l]; of which the first paper is on a production inventory model with

retrial of customers and the second one analyses a production inventory model

with random times for the shelf life of the items as well as for the retrials the

2' The results in this chapter was presented as a paper at the international symposium on
probability theory and stochastic process in honour of Professor S.R.S Varadhan FRS held at the
Cochin university of Science and Technology from February 06-09,2009. It was also published in
the Bulletin of Kerala Mathematics Association, Special Issue. 47-65, October 2009; Guest Editor:
S. R. S. Varadhan FRS .
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of orbiting customers. The papers by Krishnamoorthy et. al. [33,4-4],

study inventory models with positive service times, retrial of customers from

an orbit, and an intermediate buffer of finite capacity to store the commodity.

The paper by Krishnamoorthy and Jose [34] compares different (s, S)

inventory models with an orbit of infinite capacity, having and not having a

finite buffer.

One peculiarity of the classical retrial queueing models is that, every

service is sandwiched between two idle periods of the server. Deviating from

this, Artalejo et. al. [5] analyzed an M/G/1 queueing model with retrial of

orbital customers, where a service completion may be followed by beginning

of a new service. They accomplish this by introducing an entity called ‘orbital

search’ done by the server immediately after a service completion. Precisely,

they assumed that immediately after a service completion, the sewer, with

some probability makes an instantaneous search for an orbital customer for the

next service. This model was generalized by Dudin et. al. [15], by assuming

that the arrival process is BMAP and also that the search time is not negligible

but is a random variable with a general distribution that depends on the

number of customers in the orbit. An M/G/1 retrial queue with orbital search

and non-persistant customers was studied by Krishnamoorthy et. al. [26].

Chakravarthy et. al. [1 1], analyzed a multi-server retrial queueing model with

Poisson arrival process and orbital search. Wuchner et. al. [74] introduces an

orbital search in finite-source retrial queues and uses MOSEL-2 tool for their

analysis. A recent paper by Krishnamoorthy et. al. [46] on a MAP/PH/1 retrial

queue with service interruption applies the idea of orbital search to a queueing
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system where the server becomes free either by service completion or by an

interruption. Search time was assumed to be negligible in [1 1,26,46,74].

This chapter is on an (s, S) inventory system, where a positive lead­

time for replenishment and a positive time for meeting the demand is assumed.

Those customers, encountering an idle server and positive inventory, are

immediately taken into service and customers who at the time of arrival find

an idle server with zero inventory are considered lost. In this case those who

are already present will stay back. A customer who finds the server busy, joins

an orbit of infinite capacity and from there retries for service, with inter-retrial

times exponentially distributed. For decreasing the waiting of orbital

customers we introduce the orbital search. Hence at a service completion

epoch, the server, with probability p , makes a search in the orbit and picks a

customer, if any, randomly from the orbit, provided there is at least one item

left in the inventory for the next service. Only at service completion epochs

and not at arbitrary time points in an idle period, does the server makes a

search for orbital customers . The search time is assumed to be negligible.

Orbital search was introduced with the hope that it would decrease the

length of server idle period. However studies (see, Artalejo et al) [5] on retrial

queueing models how that the search probability p has no effect on the steady

state probability that the server is idle. But as p increases, the expected

number of customers in the orbit and hence the expected waiting time of

orbiting customers, decrease. Hence in our model, we study the waiting time

of an orbital customer by approximating it with the waiting time in the
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corresponding model with finite orbital capacity. The approximation

procedure is similar to that carried out in Artalejo and Gomez Corral [4]. It

may be noted that the search of orbital customers brings down the expected

waiting time of orbital customers.

This chapter is arranged as follows. In section 2.2, we describe the

mathematical model under study. In section 2.3, a necessary and sufficient

condition for the stability of the system is obtained and steady state

distribution is found. Section 2.4 is devoted to some system performance

measures like the expected waiting time of an orbital customer. Finally in

section 2.5 we provide some results of the numerical experiments carried out

for analyzing different aspects of the system under study.

2.2 Mathematical Model

The model under study is described as follows. Customers arrive to a

single server counter according to a Poisson process of rate 7t where inventory

is served. Service times are iid exponential random variables with parameter p.

Inventory is replenished according to (s,S) policy, the replenishment time

being exponentially distributed with parameter n. An arriving customer,

finding the server busy, enters an orbit from where it retries for service. The

interval between two successive repeated attempts is exponentially distributed

with rate j9, given that the number of customers in the orbit is j. Immediately

after a service the server goes for a search of customers in the orbit and picks a

customer from the orbit with probability p or remains idle with probability
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1- p. When the inventory level is zero no arrival or retrial is entertained. In the

sequel, I denotes an identity matrix and e denotes a column vector of 1’s of

appropriate orders.

Let N(t) be the number of customers in the orbit and L(t) be the

_ _ 1, ifthe S6I'V6I' is busyinventory level at time t. Also let C (t)= _ . _ be the server
O, if the server is idle

state. Then

Q= {X(t),t z 0} = {(N(t),C(t),L(t)),t 2 0) is a Markov chain on the

state space ((Z+ U{O})><{0,l}><{1,2,?;,...,S}) U((Z+ U{0})><{O}><{O})_

The state space of the Markov chain is partitioned in to levels  defined as

§= i 0,0,0), 0,0,1), 0,0,2),..., 0,0,5), (i,O,s+1),..., 0,0,Q), (i,0,Q+1),...,

0,0,s), 0,1,1), (i,1,2),..., 0,1,8), (i,l,s+1),..., (i,1,Q), (i,0,Q+1),.... 0,0,s) },

:2 0 and Q=S-S.
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2.2 Mathematical Model

This makes the Markov chain under consideration, a level dependent quasi

birth death process with infinitesimal generator matrix

"Aw A0 0 0 _
A21 1 A0 0

x_ Q An
Q" 0 0

_P>
IQ

M5“

g=~ooo
pupqooo

A1 @
A23 At

O O Q1 i
where each entry is a square matrix of order (2S +1).

A0:
O0
0/11

The transition from level i —> i +1 is represented by the matrix

The transition from level i -> i-I is represented by the matrix ,

c, ~ '
k=1toS.

The transition i—> i is represented by the matrices

A1):

,q—

where,

o:‘~7°§Jc:o_U

zbawoohbo
§1<>Q,b¢>_p
o@p¢>¢>,p
oaboopo
5-POEQQUOCD

lg

»;+r
6

0 B
A2]. r-[0 1”] , where BU. (k+l,S+1+k )= j9 and C2]. (S+1+k,S+k)= pp forJ

,1” " 19*?
/Mel

J)

5/21*’
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2.2 Mathematical Model

D, is an (s+1)x(s+l) matrix whose non-zero entries are given by D,(i, l)= -n

and D,(k, k)= -(11+7t+j9), for kaé 1.

D2 is an (s+l)x(s+1) matrix whose non-zero entries are given by D2(k, k)= n.

D3 is an (s+l)x_s matrix whose non-zero entries are given by D3(k+1,k)= X,
for k=1 to s. 3;

D4 is an (S-2s-l)x(S-2s-1) matrix whose non-zero entries are given by

D4(k,k) = -( )t+j9 ).

D5 is an (S-2s-1)x(S-2s—1) matrix whose non-zero entries are given by

D5(Kk) = 7*­

D5 is an (s+l)x(s+1) matrix whose non-zero entries are given by

D6(k,k) == -(7\+J'9)­

D7 is an (s+l)x(s+l) matrix whose non-zero entries are given by D7(k,k) = 7L.

D8 is an sx(s+1) matrix with non-zero entries given by Ds(kJ() = (l—p)p ,

for kqfi 1 and D8(1,l) = p.

D9 is an sxs matrix whose non-zero entries are given D9(k,k)= -(1]+7t+ p).

D10 is an sx(s+l) matrix whose non-zero entries are given Dm(k,k+l)= 11.
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2.3 Analysis of the Model

D1 1 is an (S-2s+l)x(s+l) matrix whose non-zero entries are given by

Dn(1»$+1)= (1'P)l-l­

D12 is an (S-2s-l)x(S-2s-l) matrix with non-zero entries given by

D12(k+1»k) = (LP) ll­

D|3 is an (S-2s~1)x(S-2s-1) matrix with non-zero entries given by

D1a(1<,l<)=-(l+ 11 )~

D14 is an (s+1)x(S-2s-l) matrix with non-zero entries given by

D14 (1, S-2s-l)= (1-p)p.

D|5 is an (s+1)x(s+1) matrix whose non-zero entries are given by

D15 (k+1,k) = (1-P)»

D16 is an (s+1)x(s+l) matrix whose non-zero entries are given

D16 (k»k)=-( M’ I1)­

2.3 Analysis of the Model

In this section we perform the steady state analysis of the model by first

deriving the stability condition of the model under study.

2.3.1 Stability Condition

For finding the stability condition for the system under study, we apply

Neuts-Rao truncation first. Suppose Ah. = Am and A2‘. = A2,, for alli ZN.

Then the generator matrix of the truncated system will look like this:
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2.3 Analysis of the Model1 -¢

S‘?
P-=;=~

63>-0

55*}-<:>c>

,,>c><:~<:>

coo
oo
ca

A22A12
10 0 A,,
!'*' 1 co on

Q: Am AIN A0
0A1NAlNA00i ._.

Define AN = A0 + Am + A2,, and JIN =( 2:1,, (0,0), 75,, (0,1),

2rN (0,2), ....... .., 7Z'N (0,S), 2rN (1,1), EN (1,2), ....... .., 7:1,, (1,S)) with

75,, (i,j) 20 and 7rN (0,0) + JEN (0,l)+ .......... ..+ IIN (l,S) =1 .Then the

relations EN AN =0 and 2rN e =1 when solved gave the various components ofirN as '
Ir, (1,1)=% Ir, (0,0)

7Z'N (l,i) = =1 1. 7?p+2+eN9 EN (0,0); for i= 2 to s+l1;(1;+,u)“‘ [ 17+/1+N6 Tlll

1:1,, (l,s+1) = 1rN (l,s+2)= .................. .. = 21",, (1,Q)

7Z'N (1,Q+j) = TIN (l,Q)- 71}, (l,j) ; forj =1 to s
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2.3 Analysis of the Model

ZN (l,Q+2) = 2:1,, (1,Q)- JEN (1,2)

1; ((),i) =  (1-p) n (77+/1+N6)i—:. JEN (0,0) ;f0r i=1 to sN ,u"" (1;p+/'t+N6)
0, 1 = 1_ (17T’1+N6)s 0,0

”"( 3+ ) ,u’*‘ ( P)“ (r;p+/l+N6)‘(/l+N6) ”"( )
1rN (0,s+1)= 2rN (0,s+2)=. .... ..= rrN (0,Q-1)

1,, (0,Q+j)=(1-p) E1-+5‘-E; JEN (1 ,Q+j+1)+ Z/7%?) 2rN (0,3) ;for j= 0 to S-1

rrN (0,S)= Z/T7776; 1rN (0,s) .

Let ’
SA=

[N6s(l— P)” + N66 in 2si_l)(1_ pm " "Nam PM + P.U($ -1) + P.u(Q -— s) + mu]

and

/l+N6 /l+N9 /l+N0

SB=N9TI(_1*P)/l_ N917 +,]p_
,u(/1+N6) »l+N6

The tnlncated system is stable if and only if 7£'~ AM e > 71'” A0 e. That is iff

"('1 [<'I+'1+”‘9)  ¢;N (5110) SA- ¢;,,(0,/0)sB >  ,: __(r,J6<>)lli,J”. (Up+/1+  - -' J. A /-“ b (A /I
l Nwfi I  11%))?‘ (Vvr _»fi~)£b);)

>tQ ”"’+‘”‘ [‘”*~’l*””)l 71' 46.0) ’ "K" 7”?‘ K“flS+l N /(1; p + A + N 0)

As N tends to infinity, this reduces to i <1.
I1

Thus we have the following theorem for stability of the system under study.

31



2.3 Analysis of the Model

Theorem 2.1

The Markov Chain Q is stable if and only if -4- <1.
/1

The above theorem shows that the stability of the inventory system under

study is independent of the search probability p.

2.3.2 Computation of Steady State Vector

We find the steady state vector of Q, by approximating it with the

steady state vector of the truncated system. Let Ir = (:r0,2r,,7r2,...) , be the

steady state vector, where each 1:, = zri (i, k), j = 0,1 and k=1,2,...,S.

Suppose Ah. = Am and A” = Am for alli 2 N. Let zrm, = 1rN_, RP" , for

r?.0,thenfrom2rQ=0weget

’F~_1 A0 + IN Am + 1%. Aw =9

2rN_1 A0 + ¢r~_l R Am + rrN_, R2 A2,, = 0

:r~_1 (A0 +R Am +R’ Aw) =0

Choose R such that

A0 +RA,N +R2A2~ =0.

We call this R as RN. Also we have

7Z'~_2 A0+ 2rN_, A,N_, + Ir” Aw =0.

FM A0 + 1%-, (AlN~l + R~ A2»: )= 0

1%-. = -rm A0(A1N-I + RN /m‘~

= 7r~_2 RM , where
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2.4 System Performance Measures

RM = - A0 (A1N_1+ RN Aw)" Also

EN-3 A0 + an-2 Am-2 + 771v-1 A2»:-1 = 0­

75M-3 A0 + 7:»:-2 (Am-2 + RN-l A2.v-:)=0_ -1
an-2 " ‘flu-3 A0 (Am/~2 + RN-l Am-1) '

= 7rN_3RN_2,where

RN_2= - A0 (Am_2 + RH A2N_, )'1 and so on. Finally

1:0 Am + it, A2, = 0 becomes

1r.,(A,0+R,A.,,)=0 ’?‘
First we take no as the steady state vector of Aw + R1 A2,. Then zri, for £21

can be found using the recursive formulae;

r:,.=2r,.__1R,,foril£i£N—l. \
Now the steady state probability distribution of theftruncatgd _system is

obtained by dividing each 7:, _ with the normalizing constant
1

[E0 + 1:1 + .......... ..]e'= [zro + 2:, + ....... ..+ 2rN_2 + zz'~,_, (I- RN)‘ ]e.

2.4 System Performance Measures

2.4.1 Waiting time analysis of an orbital customer

Since no queue is formed in the orbit, customers independent of each

other try to access the service .Therefore computation of the waiting time

distribution is extremely complex. Hence we limit ourselves to the

computation of expected waiting time.

We mentioned in the introduction that the search probability p has no

effect on the server idle probability; but it brings down the number of
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2.4 System Performance Measures

customers in the orbit and hence their waiting time. So here we give some

numerically tractable approximation formulae for calculating the moments of

the waiting time of an orbital customer. Though we can find the expected

waiting time using Little’s Law, the second moment and variance of the

waiting time are not easy to find. These moments are found by approximating

the waiting time in the system under study by those in a corresponding system

with finite orbit capacity.

Let E(WL) be the expected waiting time of an orbital customer in the

system under study and E(WL(N’) be that in the corresponding system with

finite orbit capacity N. Then

E<W,,>-= 533 E<W.‘”’>.

For the system with finite orbit capacity, WLW) can be found as the time

until absorption in a Markov chain {X(t),t 2 0} = {(N(t),C(t),L(t)),t 2 0} ,

if the tagged customer is in the orbit ,where

N (t) =number of customers in the orbit including the tagged customer

1, if the server is busyC(I)= . . .
0, if the server IS idle

L(t)=inventory level at time t and X(t)=A,if the tagged customer gets

service. The state space of X(t)is {A} u(i,j,k) , i=I,2,....,N ;j=],2 ; k varies

from 0 to S if j=0 and k varies from lto S if j=l .The generator matrix of

X(t) is

T T“
é.(~) {O O].
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2.4 System Performance Measures

where T° is an N (2S+l) x 1 matrix given by

To ((i-1) (2S+l)+j,l) = 9, = Z I0 S+1 ,' i=1I0 N,

T°((i-1) (2S+1)+j, 1) = Bi‘-5, j = s+3 :0 2s+1 ,- i=1to N and

A-1 A0

tA21 A12 A0

50 A22 An A0T=\ ” ,0 0 A23 AH A0

m ~_ Azm-1) Azzv
where

- 0 5.
A2j= _2!

0 C2;

With

(:2; (s+1+1<,s+1<) =  pp for 1<=1 to sJ

an (1<+1,s+1+1< ) =10 for k=1 to s

and all other matrices are as defined in the generator matrix Q. Thus

E(W,_‘”’)=- a T""e,

where a= 7Z'L = (7ru,,7t,_,,7rL2, .... ..1rw) ; Ir”-=2r,. with entries corresponding

to server is idle states taken as zero. It was verified numerically that for large

N, E(WL(N’ ) converges according to Little’s theorem.
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2.4 System Performance Measures

2.4.2 Other Performance Measures

The following system performance measures are calculated numerically

1. The probability that sewer is busy is given by

P(B)= iizmgl, j)
i=0 j=0

2. The expected number of customers in the system is given by

E(o)=- ii{z'1r(i,1,j)+i7r(i,0, 1)}.
i=0 j=0

3. The effective search rate is given by
w S

EF$R=ZZ p/w(i,1.1')
i=l J=O

4. The expected inventory level is given by
M S

E(w)= ZZ1'{¢r(i.0.j)+rr(i,l, 1)}
i=0 j=0

5. The expected number of successful retrials is given by
M S

E(st)= Z Zzw:(i,0, j)
i=0 ;=0

6. The expected replenishment rate is given by

EFRR= ZZwr(i,0,j)+wr(i,1,1)
i=0 ;=0

7. The probability that inventory level is zero is given by
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2.5 Numerical Illustration

P(L=0)= Z 2r(i, 0, 0) + 2r(i, 1, 0)
i=0

8. The probability that inventory level is greater than s is given by
M S

P(L>s)=  h=Z+lrr(i,0, j) +2z'(i, 1, j)

2.5 Numerical Illustration

In this section we provide numerical illustration of the system

performance as underlying parameters vary.

2.5.1 System behavior as different parameters vary

Effect of search probability on various performance measures

Tables 1 and 2 show that the search probability has only a

narrow effect on server busy probability; even that, we suspect may be due to

approximation errors. We are not yet able to find an analytic expression for the

probability of server busy, though we strongly believe that it will be

independent of the search probability p .The behavior of measures like the

expected number of customers in the orbit, and effective search rate as p

increases, is as expected; where, as the first measure decreases, the second one

increases. Tables 3 and 4 show that expected waiting time as well as the

variance decreases with increase in p; which are clear indicators of the fact

that search mechanism increases the performance of the system. Another

interesting observation that We can get from Tables l and 2 is that the expected

37



2.5 Numerical Illustration

rate of successful retrials, E(sr) decrease with increase in p. This shows that

introduction of search increases the number of unsatisfied retrials which may

lead us to wonder whether to increase the search probability. All these

phenomenon can be visualized from figures 1,2,3 and 4.

Effect of replenishment rate 1| on various performance measures

Table 5 shows that an increase in the parameterq makes an increase in

measures like server busy probability, effective search rate, rate of successful

retrials and expected inventory level; whereas the expected number of

customer in the orbit decreases. From Table 6 one can see that as rpincreases,

initially there is a comparatively high decrease in expected waiting time and

variance which seems to be stabilizing as 1; increases further.

Effect of the service rate p on various performance measures

From Table 7, we observe that as the service rate increases all the

measures like server busy probability, effective search rate, effective rate of

successful retrials and expected number of customers, decreases. Where the

decrease in the effective search rate can be attributed to the decrease in server

busy probability. The decrease in effective rate of successful retrials, in spite

of an increase in server idle probability, may be due to the simultaneous drop

in expected number of orbital customers. Table 8 shows the decrease in mean

and variance of waiting time, as ,u increases. The comparatively heavy drop in

the variance as the service rate changes from 1.2 to 1.6 (arrival rate being 1),
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2.6 Cost Analysis

shows a more stabilized system can be achieved increasing the service rate a

bit.

Effect of the reorder level s on various performance measures

Table 9 shows the increase in s with other parameters fixed, makes the

effective replenishment rate to increase, which is expected because as s

increases, more orders will be placed. Same is the reason behind the increase

in expected inventory in the system. From the table it is also evident that

reorder level does not too much vary other performance measures.

Effect of the maximum inventory level S on various performance

measures

Table 10 shows the behavior of system performance measures with

increase in S is same as that with increase in s; except for the measure

effective replenishment rate, which decreases. This is because of the delay,

caused by increase in S, in placing a new order.

Effect of retrial rate on various performance measures

Table ll shows the behavior of system performance measures with

increase in 9. As the retrial rate increases the expected number of successful

retrials also increases. Hence the expected number of customers in the system

decreases and so the effective search rate also decreases as expected. The other

performance measures are not much affected by the retrial rate. .

2.6 COST ANALYSIS

For finding an optimal value for p and other parameters, we introduce

a cost function C = CRP*EFRR + CN* E(o) + CI* E(0)) + CSR*EFSR +
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2.6 Cost Analysis

CIDL* (1-P(B)), where CRP is the cost of inventory procurement, CN is the

cost of holding customers, CI is the cost of holding inventory, CSR is the

search cost and CIDL is the cost per unit time due to an idle server. For

various values of the parameters we saw that some of the performance

measures increases while the others decrease. As an example as p increases

E(o) decreases, EFSR increases whereas other performance measures doesn’t

have any significant change. Hence we were able to get a concave shape for

the cost curve. The problem of optimizing the cost for various parameter

values was carried out. Few illustrations are given below.

Figures 5,6,7 and 8 show an optimum value in terms of the cost

function C, for the parameters p , S, s and ,u respectively. Here we wish to

point out that these optimum values may depend on the particular costs taken.

Table 2.1. Effect of p on the various performance measures

1:1, $1.5, 0=4, q=0.1, Sr-"5, S-=15

l

lp P03) ‘ P(L>s) “ EFRR 7 13(6) 1 13(6)  Em) EFSR

0.1 0.41156 0.40169 ll 0.06173 4.13544  2.04305 1 0.36878

’ 0.2
l

0.41151
l

1 01.401717“ 0.06173 4.136387 1.99077 10.32684 L- . 4

0.04278

7 0.08467

0.3 0.41 145 0.40173 0.06172 4.13731 1193959 7 0.28578 0.12567

0.4 0.4114 0.40174 0.06171
7 . .  J
14.13822 7 1.8895 0.24561 0.16579

0.5 0.41135 0.40176 0.0617
- . 1 - y
.4.139l2 1.8405 I 0.20632 0.205037

06 0.4113 1 0.40178 0.0617 4.14001 1.79257 0.16789 0.24341

p 0.7 0.41126 7 0.40179 0.06169 1 4.14089 1.74571I *1 0.13032 0.28094“

0.8 0.41121 4 0.40181 0.06168 4.14175 1 1.69999 0.0936
0.31761‘

I 0.9 0.41117 0.40182 0.06167 7 4.14259 1.65513 0.05771 0.353491
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2.6 Cost Analysis

Table 2.2 Effect of p on the various performance measures

7\.=1, p:1.5, 0=4, 1|=1, s=S, S=15

p 1 3 P(B) P(L>s) EFRR EFSR7 7
13(6) L Em) E(c0)

0.1 0.66481 . 0.91959 0.09972 0.07344 5 1.78043 0.59138 9.5014

0.2
I

0.66479 0.91928 0.09972 0.14524 1.72639 1 0.51954 9.50143

0.3 0.66476
0.91898

0.09971 0.21544 1.67356 0.44933 9.50147

0.4 0.66474 I 0.91867 0.09971 0.28402 4 1.62193 0.38072 9.5015

0.5 0.66471 7 0.91837 0.09971 0.35102 1.5715 1 0.3137 9.50153

' 0.6 »
1

0.66469 0.91808 0.0997 0.41644 1.52225 0.24825 9.50157

0.7 0.66466
1

0.91778 0.0997 0.4803 ” 1.47417 0.18436 9.5016

‘0.8 0.66464 0.91749 0.0997 0.542627 1.42724 0.12201 9.50164

0.9 i 0.66461 0.91727
- I.

0.09969 0.60343 1.38146 0.06118 9.50168

Table 2.3 Variation in waiting time with search probability p

l=1, n=0.1, 0-=4, ,1=1.5, s=5, s=15

1

. P A5 E(0) E(Wf) 5 1/(W1)

0.2 1.9901 1 .9907 j 38.9522 34.9914 ”

0.4
. 1 .

3 1 1.8889 1.8895 36.3992 32.831

7 0.6 1.7921 T 1.7925
1 .

34.0213 1 30.80967

0.8 1.6995 1.6999 31.8082 28.9199 1
1. 11.611 1.6113 29.7498 27.1543
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2.6 Cost Analysis

Table 2.4. Variation in waiting time with search probability p

).=1, p=1.S, 0:4, 1|=0.1, s=8, S=15

Table 2.5 Effect of 1] on various performance measures

P E( W,_) 13(9)
.1

E (W12 ) V(W,_)

0. .1 2.0642 . 2.0649 43.810 39.549

70.2 1

, 2.0121 1 .

2.0127
1

42.3525 1 38.3037

1 0.3 1.961112 . 1.9617 1 40.9446
J.

37.0984

0.4

0.5
.1_

1.9112

1 1.8624

]__

12 1

1.9117

1 .8629
.,1

39.5850

38.2724

35.9321

34.8039

1

1

0.6
1 0.7

-7

1.8146

1.7678

1.815

1.7683

37.0054

35.7826
,1

33.7126

32.6573

5 0.8
1

1.7221 7 1 1.7225 34.6029 31.637

0.9 1 .6774
1 .

1.6778
V _ _1

1 33.4647 30.6507

1..
1

1.6338 T
1

1.6342 32.3668
1

29.6974

1

1

71:1, |.t=1.5, 0=4, p=0.l, S=5, S=l5
7?

. _1 1>(0) 1\P(L>s) 1113111212 B13812 513(6).._1

E(s1) F-(<9)

1 0.1 0.4115 750.4016 7 0.6173 700.0427 2.043 0.3687 4.1354
_1

0.3 -41 . . ._| _0.6142 0.7185 0.0918 10.066 1.8378J“ 0.5464 7.397

0.5
.1­

0.6501 0.8284 0.0975 0.0711 1 1.7972 0.579 8.5371 1.

0.7 ,1 1 31 _. .11 5_ _ __1 _1 10.66045 5 10.880110.0990 0.0726 1.7856 0.5877 9.080 1

150.9
1 _

1.1
.1 __

1. 0.6639 0.9093 0.0995 0.0732 1.7814
0.6653 0.9279 0.0998 0.0732 1.7797

11

0.5906

0.5918

9.3913

9.5917

>

I

J
11.3 0.6659 0.9405 50.0999 0.0735 151.7789 0.5923 9.731

'1 1.5 0.663 10.9497 0.09994 0.0736 31.7785 0.5925 9.8334

1 1.7
_1

1-9
413

42

0.6665 0.9620 0.09998 0.0738 11.7781
710.6664 10.9566 70.09997 _*0.07377’1.7782 7

Q

0.5926

0.5927

9.9118

9.9736
1

1.



2.6 Cost Analysis

Table 2.6. Effect of the replenishment rate 11 on the waiting time

ll P 571;-1, 0:4, =l.5, =0.l, =5, S=l5
'7 E( WL) E(o)9 ” E0’/5) V( WL)

0.1 2.0424 2.043 1 40.2976
_1._

36.1261

0.5 ‘
' 1

1 .7967 1.7972
1

1 3 .2469 10.0185

0.9 7 1.7809
W. ..

1.7814 12.5669 9.395

1.3 7 1 .7784 1 .7"/89 12.4739 9.3112

1.77 1.7777 l .7782 12.4525 9.292

Table 2.7 Effect of service rate ,u on various performance measures

1 11 P(B) P(L>s) EFRR EFSR E(0) E(s'r) 15(0)) y—___ 2 .  .9--— L
1.2 0.8308 0.91 0.0997 0.34621 4.398 0.4346 9.5014

A 1.6 0.6231 0.9207 0.0997
in 0.2676 1.2814 0.3555 9.5015”

%

i 2 0.4985 0.9268 0.0997 0.217 0.6421 ‘ 0.2014 1 9.5015

1 2.4 0.4154 0.9308 0.0997 0.1823 0.3991W0.233 9.5015

2.8
1

0.356 0.9336 0.0997 0.1571  0.2772 0.1989 9.5015 .

3.2 0.3115 0.9357 2 0.0991 0.133 0.2064 0.1735 9.50151
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Table 2 8 Effect of the service rate 11 on the waiting time

- , 0:4, 11:1, p=0.5, s=5, S=15

E( WL) K 15(9) E(wf)3 A v(WL)

4.519 4."/729 72.649
ml

52.22"/5 7

1.2393
1.2394

6.6186 5. 826

0.6175 0.6175 1.8549
T.

1 .4735
—r1 1

0.3811
1

0.3811 0.7941 0.6488

0.2631 0.2631 0.4225 0.3533

1.-_-1, 11:1, 0=4, p=0.4, ,.=1.s, s=31

Table 2 9 Effect of reorder level s on various performance measures

P(I>s)9 EFRR EFSR E(o) E(s1) E co

0 6659 ‘ 0.9686 . 0.0384 A 0.2851 1.6201  0.3809 T17 509_ 1 .. . . 5‘ ..
J06664 * 0.966 0.0416 0.2854 1.6193 0.38091. 18501

06666 0.9629 0.0454 0.2856 1.6191 0.381 19

06666 0.95921 0.05 02856 1.6191 ei 0.381 20499
T
. __1

0666609546 0.0555 0.2856 1.619 0.381 21499
I .

06666 0.949 0.0625 W 0.2856 1.619 0.381  22 49
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2.6 Cost Analysis

Table 2.10. Effect of Maximum inventory level S on various performance

measures

l=l, 1]=l, 0=4, p=0.4, p=l.5, S=5
st" P(B) 1P(L>s)  EFRR EFSRl 15(6) Em) E((0)

12 0.6639 0.8839 0.1422 0.2833 1.623 0.3805 7.9956

140.66450.9096 0.1107 0.2838. 1.622 0.3806 9
i. __ _ I _ ._ _ . .7

16 0.6649 0.926 0.0906 0.2841 1.6216 0.3807.10.0021  - 6 - — A 6
18 1 0.6651 “ 0.9374 0.0767 ‘0.2844 1.6212 0.3807 11.004_ 1 |
20 0.6653 0945700665 0.2845 1” 1.6209 0.3808 12.005

22 0.6655 0.9521 0.0587 0.2846 1.6207 0.3808 113.006

Table 2.11. Effect of Retrial rate on various performance measures

1». =1, 1] = l, |.l =4, p = 0.5, S=15, S =5

0 P(B) P(L>s) EFRR EFSR E(0) E(s'r) ' E(c0)

V 1 10.24926‘. 0.939 0.09971’0.15967 0.20402?0.0896 9.50174
1.2 0.24926 0.93897"0.09971 0.155  0.1887 0.0937 9.50111

I

1.4 0.24926 0.93893 0.099"/1|0.15221 0.1"/691700970 9050174..1-. . it 1; . at _. .  .
1.6 0.24926 0.93889.0.09971 0.14955 0.1675 0.0997 9.50181. - 8 . - 1. .

. 1.8 0.24926 0.93886 0.09971 0.14736 0.1599 0.1019 9.5016

. 2 0.249267‘0.93882 0.099710.14552 0.1535 0.1037 9.50166
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2.6 Cost Analysis

Figure 2.1. Search probability versus Expected Waiting tn
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Figure 2.3 Search probability verses expected number of successful retrials
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CHAPTER 3

An Inventory Model with Server Interruptions

And Positive Lead Time

3.1. Introduction

In the previous chapter we concentrated on retrial inventory with

orbital search. Now we focus service and production interruption in inventory

with positive service time. Service interruption models studied in the literature

include different types of service unavailability that may be due to server

taking vacations, server breakdown, server interruptions, arrival of a priority

customer etc.

Unlike in Marie and Trivedi [55] in this chapter the interrupted

service is assumed to resume on completion of interruption. The queueing

model analyzed by Krishnamoorthy and Ushakumari [42], where disaster can

occur to the unit undergoing service, the one by Wang et al [72] with disaster

and unreliable server are also models with server interruptions.

A recent paper by Krishnamoorthy et. al. [37] studies queues with

service interruption and repair, where a decision is to be made on whether to

repeat or resume the interrupted service according to whether a phase type

distributed random clock that starts ticking the moment interruption strikes,

realizes after or before the removal of the current interruption. Another paper
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3. An Inventory Model with Server Interruptions and Positive Lead Time

by Krishnamoorthy et. al. [29] studies a queuing model where no damage to

the server is assumed due to interruption, so that the server there needs no

repair. But after interruption, a decision is to be made whether to restart or

resume the interrupted service, which requires a random time determined from

the competition of two exponential random variables.

The first study on inventory systems where a processing time is

required for sewing the inventory is due to Berman et. al.[8], which was a

deterministic model. Berman and Kim[9] and Berman and Sapna [10] are the

first to discuss inventory with positive service time (exponential distribution)

and that with arbitrary distribution, respectively. Whereas [9] is concemed

with infinite waiting room case with zero lead time, [10] considers a finite

waiting space only. Among these, the first one takes a dynamic programming

approach and the second one takes a Markov renewal theoretic approach.

More recently, Krishnamoorthy and his co-authors used Matrix

Analytic Methods to study a few inventory models [13,27,33,35,

39,43,44,45,69], where a service time for providing the inventoried item is

assumed. In Krishnamoorthy et. al. [43], and Deepak et. al. [l4], an explicit

product form solution for an inventory system with service time could be

arrived at due to the assumption of zero lead time. It is worth mentioning that

Schwarz et. al. [58] could obtain product form solution for the joint

distribution of the number of customers the system and the inventory level

even in the case of positive lead time, at least with assumption that no

customer joins the system when the inventory is out of stock.
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3. An Inventory Model with Server Interruptions and Positive Lead Time

There are numerous studies on inventory systems where

interruption occurs due to an unreliable supplier. We refer to the papers by

Tomlin [66, 67] and the paper by Chen and Li [12] for more details on such

studies. Our work is in an entirely different direction from the above works,

due to few reasons. First of all, in the above papers, interruption occurs due to

an unreliable supplier, whereas in our model, we do not assume that the

supplier is unreliable and it is the unreliable server who causes interruptions.

Most importantly, in our model, interruptions occur in the middle of a service

and there is no restriction on the number of possible interruptions during a

service.

This chapter introduces the concept of interruption to an inventory

system where the processing of inventory requires a random time, which leads

to a queue of customers waiting for inventory. The arrival process is assumed

to be Poisson and service time follows an exponential distribution. During the

processing of inventory, the service may be interrupted due to breakdown of

the server. The failure time of a busy server is assumed as exponentially

distributed and the failed server is taken for repair immediately, where the

repair time also follows an exponential distribution. Inventory is managed

according to an (s,S) policy with zero lead time. In the papers by Nicola ,

Kulkarni and Trivedi [51] as well as Marie and Trivedi [55] different policies

for the lost work upon service interruption namely namely. prs (preventive

resume), pri (preventive repeat identical) and prd (preventive repeat different)

have been considered. Since in our model the service times are exponentially

distributed we need not consider these cases, other than in “repeat same”,

separately. Here we consider the case of repeat different only.
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3.2 Mathematical Model

As in [43] and [14], the assumption of instantaneous replenishment leads to an

explicit steady state analysis under the stability condition. The optimal values

for reorder level s and maximum inventory level S is also analyzed based on a

cost function.

This chapter is arranged as follows. In section 3.2, we provide

the mathematical modeling of the above system; in section 3.3 we obtain the

stability condition and steady state distribution is found. Section 3.4 is devoted

to some performance measures like expected waiting time of a customer and

their behavior is analyzed with variation of parameters in section 3.5. A cost

function is also constructed in that section and its nature studied numerically.

3.2. Mathematical Model

The system is described as under. Customers arrive to a single server

counter according to a Poisson process of rate /l. where inventory is served.

Service times are iid exponential random variables with parameter p.

Inventory is replenished according to (s,S) policy, the replenishment time

being exponential random variable with parameter 17. While the server serves

a customer, the service may be interrupted, the interruption time being

exponential random variable with parameteré]. Following a service

interruption the service restarts according to an exponentially distributed time

with parameter 52.

For the model under discussion, we make the following assumptions:
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3.2 Mathematical Model

0 No inventory is lost due to service interruption.

' The customer being served when interruption occurs waits there until

the interruption is repaired .

' No arrival is entertained when the inventory level is zero.

0 While the server is on an interruption, an order placed if any, is
cancelled.

Let N (t) be the number of the customers in the system including the

one being served (if any), L(t) be the inventory level and

0 if the server is idle

S(t) = 1 if the server is busy .
2 if the server is on interruption

Then Q={X (t), t20} = {(N(t),S(t),L(t)), t20} is a Markov chain with state

space E={(0,0,k)l0$k5S}u{(i,0,0)li21}u{(i,j,k)li21,j=1,2,lsk$S}.

The state space of the Markov chain is partitioned into levels 7 defined as

6={(0,0,0),(0,0,1),...,(0,0,s)}, and

F = {(i,0, 0), (i, 1,l),...,(i,1,S),(i, 2, l),...,(i, 2,s) }. for z z 1.

This makes the Markov chain under consideration, a level independent Quasi

Birth Death (QBD) process. In the sequel, S-s = Q, In denotes identity

matrix of order n, I denotes an identity matrix of appropriate order and

e denotes a column vector of l’s of appropriate order.
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3.2 Mathematical Model

C.
Q

0 # . 0 u
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3.3 Analysis of the Model
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,where G1=[ 0

.._f, 0
(17+}.+,u+5,)I

0

G2 = "It-1+1) ’ G3 =':5I ] * G4 :”(’1+/1+51)I(s-2;-1) 1 G5 = 5lI(s-2;-1)’I 5 (s+l)><s

G6 = -(/1+ p+ 6,)1(,+,, , 0, = 5,1U+,,, G8 = [0 521 $].¢x(.s+l), G9 = -(,1 +1; +52)1s,

Gm = [O 771’ ]*><(I+') ’ G11 = 5216-2s—l) ’ G12 = ‘('1 + 52)I(S—2s—-1) 1 G13 = 52I(;+1)1

0 0
G14 ="'('1+52)I(_¢+1) ' A0 :[0 [U ]and A2 :2s 3
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3.3 Analysis of the model

3.3.1 Stability condition

Define A= A0 +A, +A2 and let Jr: (7r(0,O),2r(l,1),2r(l,2)....,2r(l,S),

rr(2,l),. .. , 2r(2,S)) be the steady state vector of the generator matrix A. Then

1rA=0 gives the following equations.
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3.3 Analysis of the Model

—r;1r(0, 0)+ ,u2r(l,l) =0

-(1;+,u+6])7r(1,i)+,u2r(1,i+1)+6,2r(2,i) = 0;15 i 5 s

—(;1+5,)1r(l,i)+;ur(l,i+1)+621r(2,i) = 0;s+15 i 5 Q—1 (3.1 a)wr(0.0)-(11+<2)1r(1,Q)+wr(1.Q+1)+<21r(2, Q) =0 '
1pr(l,i)-(/1+<5])1r(l,Q+i)+,ur:(l,Q +i+1)+621r(2,Q+i) =0;l 5 i 5 s—1

1]7Z'(l,s)—(/1 + 6,)1r(l,S)+ 621r(2, S) = 0

6l2r(1,i)—(17+52)2r(2,i) =0;15i5 s

6‘1Jz'(l,i)—522r(2,z')=0;s+l5i5Q (3.1.b)
5lrr(l,Q+i)+1]1r(2,i)-6,7r(2,Q+i)--=0;l 5i5 s

Adding all the equations in (3. l.b) we get

5
:r(2,1)+ 2r(2, 2) +....+1r(2, S) =—(-5_l(7r(1,1)+2r(l, 2) +....+rr(1, S)) (3.1.c)2

By a known theorem, the QBD process with generator H is stable if and only

if it/toe < r:A2e (see Neuts [56]).

That is, if and only if

/1(2r(1,1)+...+zr(1,S)+zr(2,l)+...+:r(2,S))<,u(2r(1,1) +...+2r(1,S)).

Applying 3.1.0, the above inequality reduces as

5111 __1i
<(@+52)­

Thus, we have the following theorem for stability of the system under study.

Theorem 3.1

51/1

The Markov chain Q is stable if and only if 1 <a32“)‘
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3.3 Analysis of the Model

3.3.2 Computation of steady state vector

We find the steady state vector of -Q numerically. Let

7: = (n'0,7r,,7r2,...) be the steady state vector, where 7Z0iS partitioned as

Ito = (711, (O, 0), 1:0 (O, l),..., Ito (0, S )) andizj. ’s are partitioned as

1:, = (Jr,(0,0),n;(1,1),zq(1,2),...,2q(l,S),:r,(2,1),1r,(2,2),...,1g(2,8)). Since Q is a

level independent QBD process, its steady state vector is given by

71". = rr,R"‘, i 21 (see Neuts [56]), where R is the minimal non-negative solution

2
of the matrix-quadratic equation R A2 + RA1 + A0 = 0. For finding the boundary

vectors 7:0 and Jrl, we have from 7Z'H = 0 ,

%Q+mA+@@=0

ie_ 7:08, +7r,(Al +RA2) =0

ie. Ir, = _7r0B1(Al + RAJ‘

= 750W , where W =-B;(A1 + RAQYI.

pm-met, 1:080 + 2:13, = 0

ie_ 1ro(B0 +WB2) = 0

First we take 770 as the steady state vector of the generator matrix B0 +WB2.

Then Ir, , for 1'21 can be found using the formulae:
2:, =7:0W, Ir, =1z',R"", i 22 . Finally, the steady state probability distribution

of the system under study is obtained by dividing each 1:‘. _with the normalizing

constant

2r0e+(zr, +25 +...)e =1r0(I +W(I—R)"‘)e.
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3.4 System Performance Measures

3.4 System Performance measures

3.4.1 Expected waiting time of a customer in the queue

For computing the expected waiting time in the queue of a tagged

customer, who joins as rm customer in the queue, we consider the Markov process

‘P = (1§'(r),S(r),L(r)) , where 190) denotes the rank, which is the position of the

customer in the queue; S (t) and L(t) have the same definition as in section 2. The

state space of the Markov chain ‘P is given by
i7={(i,0,0),1srs r-l}u{(i,j,k),l$i5r;j=1,2;11<_k SS}uA.

where A is an absorbing state which corresponds to the tagged customer being

taken for service. The infinitesimal generator matrix of the process ‘P is given by

A T T°
Q=[0 0], where T°is an(r(2S+l)—1)><1 matrix such that_ 0_pi 00 A, 0
T°(i,l)=;1,f0r2£i$S+land T=’  where

L=>¥=-s

MO

,_?>-taco
Ugo. .

0 0A \L A13;
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oogbo o 031
c:>:°°<:>o,$#=o

5-P°oc>,E1b o,§I1

c>o§Juc>o.50

o§°oo.,F<=o
-§°o5°°§<=oo

B:  B1=‘:—” 0 :|1 B2 =01!“ ay ; 0 -(v+#+51)1t.

3 611-‘ (s+1)><.s' ’

B4 : ‘(Au + 6l)IS——2s-—l B5 : 6.lIS'2-‘"1 9 B6 = _('u + 6| )1-‘*1 9

R

B, = a,1,+,;1-2,1 = 5,1S_2,_1, B13 = 621%,, B12 = -521S_2,_,, 3,4 = -5215+, ,

B9 = -(q+ 52)1s, B8 = [0 5,1513%), 3,0 == [0 q1,]m+l) ,

§(i,j)=B(i+l,j+l);1$i,js2S,

;i,(i,j)=A,(z+1,j);1szs2s,1sjs2s+1.

Now, the waiting time W’ of the tagged customer who joins as the rm customer in

the queue, which is the time until absorption in the Makov process ‘I’ is given by

the column vector W’ = in (-T")e, where F28 =[0 l2S]{2s)M2s+lt)_1). Hence, the

expected waiting time of a general customer is given by

E(WL) =i¢%,w',
r=1

where J?,is a 1><2S dimensional row vector defined by 7?,(i)=7r,(i+l),

IS i S 2S . In a similar manner, we can find the second moment of the waiting

time of an orbital customer as

E(WL’) = 2 aw; , where W2’ = 2?” (T“2)e (see Neuts [56]).
r=1
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3.4 System Performance Measures

The variance of the waiting time of a customer is given by V(WL) = E(WL2)­

(E(wL))2'

3.4.2 Other performance measures

ID/]8
IP4“

H

1. The probability that server is busy is given by Pfl = .(1, j).

OP S

2. The probability that server is on interruption is given by Pa = Z275‘. (2, j) .
i=1 1-=1

3. The probability that server is idle is given by P7 = 1- Pa - Pfl.

4. The expected inventory level is given byS on S
BIL = Z11: (0, 1) +ZZjva<1, 1>+1e~(2,1'>1_0j=I i=l j=l
5. The expected number of customers in the system is given by

EN=iiwe<1,1>+ve<2,.m+iw,<0.0>i=1 ;=1 :'=-I
6. The expected rate of ordering is given by EOR= Z/17€~(1»5 +1)

i=l

5:»

I.[\/18
‘2D’]~=

$1

7. The expected interruption rate is given by Ema = (L1) .

8. The expected replenishment rate is given by

E1=RR=Z Z/vr(i.0. 1) +v1r(i,1, 1') +wr(i,2. 1),
i=0 j=0

X

9. Loss rate due to no item in the inventory is given by LZI= /12/t,.(0,0)
i=0

62



3.5 Numerical Illustration

3.5 Numerical Illustration

In this section, we provide numerical illustration of the system

performance by studying the effect of different parameters on the system

performance measures.

3.5.1 Effect of the Interruption Rate 5,

In Table 1, we see that as the interruption rate 6]

increases, there is a considerable increase in the expected number of

customers, which is expected since the overall service rate decreases with

increase in 6'1 . At the same time, note the high expected inventory level in the

system and hence the low loss rate of customers from the system. As we

expect an increase in the queue length as a product of low service completion

rate, we also expect an increase in the loss rate also. Since the loss rate itself is

low, in the table, the increase in loss rate is also narrow. Similarly, the increase

in the expected inventory level is also very small. Note that the server idle

probability 1- Pa-P5 is decreasing considerably with increase in 51 and is

equal to 0.09, when 6, is 3.2. However, the fraction of time the server remains

active is also decreasing, which shows how severe is the effect of interruption.

The narrow decrease in the server busy probability can be attributed to a

similar increase in the loss rate of customers. This narrow decrease in Pp and

the high values for the expected number of customers shows that the queue of

unsatisfied customers is building up rapidly with increasing interruption rate.

Table 2 shows an increase in the waiting time of a customer in the queue with

an increase in the interruption rate; but this is as expected in lights of
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discussion in the above paragraph. Also, notice the high variance, Wl'llCh 18

increasing with 5,. All these indicate the severe effect of interruption on the

waiting time.

Table 1: Effect of the interruption rate <5‘, on various performance measures

1:2, “=5, r;=l, 62=2.5,s=10,s=31

5. P;
I_

P0‘ EIL EFRRI _ . .. EN LZII .
2 0.3991 0.3193 19.0046 0.0714 3.4854 0.00463523 I

2.2 I 0.3990I .1. 4 0.3512 I 19.0040 1' 0.0000
2.I .. ._I 4.1674

n 0.00478141
2.4 0.3990 0.3031 19.0049 0.0662 5.0515 0.00492933 I

2.0 I 0.3990I. I 0.4149 ._ _\_119.0051 “Q0035 6.2431 0.00507770

1

T 2.0 0.3990 0.4468 I 19.0052 0.0000 A 7.9364 000522505 i
3 0.3989 0.4787 19.0054 0.0580 10.5327 7 000530021

3.2 _J . I0.3989 0.5106
71

I 19.0055 by 0.0552 T150173 I 000540704I . 1

. 1.

Table 2: Effect of the interruption rate (Z on waiting time of a customer

71::-2, ti -"=5, 7]=1, 52 =2.5, s =5, S‘-=15

12 I raw.) vtw.)  EN 7
2 1 .9495 9.5710 3.4039 ‘L. - _|
2.2 2.3327 13.2140 1 4.1658

2.471 2.7952 18.1585 5.0498

3.3320 24.6826 6.2413 1iii T.I_. _
2.8 I 3.9179 32.8502 7.9345

3 4.4746_--r. ._I_.“I712.0954  10.5009 ‘

3.5.2 Effect of the Repair Rate 52

completion rate and hence a decrease in the expected number of customers in

As the repair rate increases, we expect an increase in the service
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3.5 Numerical Illustration

the system, which can be viewed in Table 3. The decrease in the fraction of

time the server remains interrupted is also as expected. Note that in the Table

when 52 is less than or equal to 2.4, this fraction is larger than the fraction of

time the server is active and this is reversed as 52 increases. The high values

for the expected inventory level can be seen to be the reason behind the low

values for the loss rate. Since the loss rate itself is small, so is its decrease with

increase in 5,. Since the expected inventory level is decreasing, the effective

replenishment rate can be seen to be increasing.

Table 4 studies the effect of the repair rate 62 on the waiting time of a

customer in the queue and it shows that the expected waiting time decreases

with increase in 52. Tables 3 and 4 suggest that increasing the repair rate can

reduce the severe effect of interruption; but how far one can do this may

depend on the particular situation to handle.

Table 3: Efl'ect of the repair rate 52 on various performance measures

1:2, p =5, 7]=l, 5‘ =2.5, S =10, S =31

6,P/3 “Pa TEIL lEFRRlEN L21P  . l_ .;. . .
*2 0.3900 30.4905 19.0000 0.0570 ‘139993 000595035 $1
2.2 0.3989 0.4533 19.0055 ‘K 0.0610 8.7155 1000551963
2.4 10.3990 0.4156 l 19.0051 0.0637 6.3481 0.00515544

Il ¥_.  1 l. _.| __ _. ! T2.0 0.3990 0.3037 19.0049 0.0059 50101 0.00400030

1 2.8 0.3991 0.3563 1 19.0046 1 0.0678 4.1677 ‘l 0.00463955L, 1 1
3 ‘l 0.3991 0.3326 19.0044 0.0695 ‘3.5830 0004455171_. [— __ .
3.2 0.3991 p 0.3110 19.0043 0.0710 13.1573 000417940
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3.5 Numerical Illustration

Table 4: Effect of the repair rate 6, on waiting time of a customer

2.:-2, it =5, n=1, 5, =25, S =5, s =15. _ 1. ._ T
6. E(w.> v<W.>yE~ 1
2 “4.7555 49.1395 13.9966
T 2.2 >4.0965 35.9026 3.7142 l_l .
2.4 3.3662 125.1951 f 6.3464
2.6 2.7840 17.9824 5.0143

i2.6 2.3474 13.2465!4.1653 y
l 2.0206  10.0942?" 3.5611“.. _ -l _ g _. __

3.5.3 Effect of the Re-Order Level s

Table 5 shows that as the re-order level s increases the expected

inventory level in the system also increases. Since the orders are being placed

early with an increase in s, this is expected. The increase in the effective

replenishment rate EFRR and the effective re-order rate EUR is also obvious.

The expected number of customers seems not much affected by the increases

in the re-order level and the reason could be the assumption of disallowing

customers to join the system with zero inventories. Since the inventory level is

increasing, the loss rate can be seen to be decreasing. The narrow increase in

the expected number of customers may be due to the decrease in the loss rate.

Table 5 also shows a narrow increase in the server active as well as the server

interrupted probabilities, which can be attributed to the possible increase in the

number of services due to increase in the expected inventory level.
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3.5 Numerical Illustration

Table 6 shows a decrease in the expected waiting time of a customer in

the queue with an increase in s. For an explanation note that when the re-order

level increases, with the maximum inventory level being fixed, the time

between two order placements decreases. Hence it becomes less probable that

a customer encounters shortage of inventory while waiting, even if he joins the

system when the inventory is in lower levels, which ultimately leads to a

decrease in his/her waiting time. The decrease in the waiting time variance

with increase in s is also in favor of the system performance.

Table 5: Effect of the re-order level s on various performance measures

1:2, p =5, 7]=1, 51 -"=2, 52-'=2.5, S =31

s Pp 1 Pa EIL 1 EF RR EN EOR LZI

5  0.3952 0.3162 ‘l 16.6131 l1 10.0597 3.464965 0.0760 0 0.023612-  - J1 16 03966103173 17.06665" 0.0613
3.485058  0.0793 A 0.017141 l

‘ 7 j 0.3975 50.3160 1 17.5401 A..l
0.0633 3.465156 i 0.0626“ 0.012342

8 0.3982 0.3186 18.0222 0.0657 3.465260 10.0666 9 0.006693

l 9 J 0.3967 0.3190 18.5112 0.0684 3.465344 0 0.0906 it 0.0064151,. . . _1 1
10 0.3991 0.3193 19.00461 0.0714 3.485411 0.0950 0.004635

111 0.3993 A 0.3195 19.5006 0.0749 3.465470 ‘M 0.0996 1 0.003354
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3.5 Numerical Illustration

Table 6: Effect of the re-order level s on waiting time of a customer

#2, ,1 =5, r;=l, <1 =2, 5,=2.5, s=20

S E<W,_> v(w,,) EN .
4 1.9513 l 9.5950 9.4844
5 §1.9495 9.4846 3.4845

6 1.9475 9.3980 é3.4846 F
4 7 1.945698 9.3292 3.4847
is 1.95848 9 9.4904 9.4949I .r_ ..L.

3.5.4 Effect of the Maximum Inventory Level S

In Table 7, one see that as the maximum inventory level S increases,

there is an increase in the expected inventory level but the effective

replenishment rate EFRR and the effective re—order rate EOR decreases. Hence,

the perfonnance of the measures EFRR and EUR with an increase in the

maximum inventory level S is just reverse to that with an increase in the re­

order level s. This is because of the increase in the difference S-s and hence a

possible reduction in the number of order placing, with an increase in S. As in

the case of the re-order level s, here also the increase in the inventory level

leads to a decrease in the loss rate LZI and to a related increase, though

narrow, in the expected number of customers. As in the case of the re-order
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3.5 Numerical Illustration

level s, the server active as well as the server-interrupted fractions is

increasing with increase in S.

Table 8 shows that unlike in the case of the re-order level s, there is an

increase in the waiting time of customers with an increase in S. Here note that

when the maximum inventory level increases, with the re—order level being

fixed, the time between two order placements increases. Hence, it becomes

more probable that a customer, who joins the system while the inventory is in

lower levels, encounter a shortage of inventory while waiting in the queue,

which leads to an increase in his/her waiting time. Though there is an increase

in the waiting time, the table shows that the margin of increase is narrow. This,

together with the decrease in the variance suggests that an increase in the

maximum inventory level favors system performance.

Table 7: Effect of the maximum inventory level S on various performance
measures

#2, “=5, 17=1, 6,=2, §2=2.5,s=10

,261 . .

P.S Pa fl EIL EF RR EN 1 EOR [Z1

“T 23 " 0.3985
0.3188 14.9925 ii

0.1152 3.485248  0.1533 0.00 7475

‘ 24 0.3988
0.3189  15.4948

0.1070 3.485279 ’ 0.1424 0.008943

25 it 0.3987 0.3190 15.9987 0.0999 3.485311 A 0.1329 0.006482
1

9 0.3988
.1

9 0.3190 1 18.4985 4 0.0937 3.485334 0.1248 0.006078
1

27 1 0.3989 0.3191 ‘ 17.0000 0.0882 3.485347 it 0.1173 0.005722

528 1 0.3989L . . 1 0.3191‘ 17.5013 T 0.0833 3.485389 J 0.1108 9"‘ 0.005405
1

0.399029 0.3192 l 18.0025 0.0789 3.485385 0.1050 9 0.005121
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3.5 Numerical Illustration

Table 8: Effect of the maximum inventory level S on waiting time of a
customer

2t=2, “=5, 1;=_-1, 5,=2, 52=2.s, s=5

s E<w,_) v(W.) . EN
10 1.9562 10.1594 1 3.4821

I

1 1 1.9564 10.0265 3.4827
12 11.9572 9.93840 3.4831

1
‘14 1.9591 .9.as11o!9.49as F

13 11.9581 y9.87650 3.4834

15 1.9601 9.7970 3.4839
20 1.9645 9.7103 94945

3.5.5 Effect of the Replenishment Rate 17

Table 9 shows that the parameter that affects the expected inventory

level besides the re-order level s and the maximum inventory level S is the

replenishment rate 1;. As 1) increases, the expected inventory level and the

effective replenishment rate, both increases. As the expected inventory level

increases, the loss rate decreases; but because of the high-expected inventory

level in the system, the loss rate is narrow. The increase in the server busy as

well as the server interruption probabilities and the narrow increase in the

expected number of customers, with increase in 1], has the same reasoning as

in the case of increase in the re-order level s.
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3.5 Numerical Illustration

Table 9: Effect of the replenishment rate 11 on various performance
measures

x=2, 11 =5, 5, =2, 62=2.5. .1 =10, s=31

0 Pfl Pa EIL EFRR EN L21‘
I‘ 1.0 0.39907 ‘ 0.31926

19.0 0.0714 3.4854 0  0.004635 7

1.27 0.3995247 0.31964 19.3 0.0721 3.4856 71.002271

A 0.39962 0.31936 Q
1.5 19.7 0.0732 3.4857 0.000895

2.0  0.39995 70.31996 20.0 0.0743 3.4857 F 0.000242

2.5‘  0.39999 0.319997 20.2 0.0762 3.4857
0.000082 1”

{ 0.39999 0.31999 .
3.0 7 20.3 0.0775 3.4857 0.000032

6.0 0.40000  0.32000 20.7 0.0825 3.4857 “ 0.0000006. ._L. _
110.0 0.40000 0.32000
!L_ , 20.8 0.0860 3.4857 1 0.0000002 7*_ 1
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3.6. Cost Analysis

3.6 Cost Analysis

In subsections 5.3 and 5.4, we noted that the increase in the re-order as

well as the maximum inventory levels is in favor of the system performance.

Now, for checking the existence of optimal value for the levels s and S, we

introduce a cost function

om, =CI><EIL+CN><EN+CR><E,m +(K+(S-S) K1)><E0R+CL><LZ1,

where CI is the cost of holding inventory, CN is the cost of holding customers,

CR is the cost incurred due to interrupted service, K is the fixed cost of

ordering , K , is the cost of a single inventory and CL is the cost incurred due to

the loss of customers when the inventory level falls to zero.

3.6.1 Optimality of the Maximum Inventory Level S

Among the measures involved in the cost function, the effective re­

order rate EOR and the loss rate LZI are decreasing and all other measures are

increasing. Hence, we expect a concave shape for the cost function from which

we can get the optimal value for the maximum inventory level S. However,

Figure 1 (a) shows a linear cost function, which indicates that the nature of the

cost function depends on the costs involved. Figure 1 (b) shows that if the unit

time cost CL incurred due to loss of customers is increased so as to catch the

decrease in the loss rate LZI, we can get a concave cost function, which gives

S:-12 as the optimal value for the maximum inventory level S.
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3.6. Cost Analysis

Figure 1: Effect of maximum inventory level S on the Cost functlon
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3.6. Cost Analysis

3.6.2 Optimality of the Re-Order Level s

In the case of increase in the re-order level s, loss rate is the only

decreasing measure, which is involved in the cost function. Hence, the cost

function will be linear unless we select the cost CL to capture the decrease in

the loss rate. Figure 2(a) shows a linear cost function, whereas Figure 2 (b)

shows that by increasing the cost CL from 100 to 7500, we get a concave cost

function, which gives 4 as the optimal value for the re-order level s.

Figure 2: Effect of the reorder level s on the Cost function.

CI=40, CN=30, CR=75, K=500, K ;=35; L--2, ,u =10, 61-=2, 52 =2.5, 1]=3, S=2O
(a) CL=lOO

8 Cost 1320mm   _    3,l so1182 l g 13001 ~ /*‘

-fiv-OO|\J

1280 ~ e e ii1203 l 125°7 M  mo  t 7 t _/t t1223 °¢§'52o.l t 77 AZ   _________g H . l 120011 .....  .......................... .-_   cl

\-IODO1
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(b) CL=750O
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CHAPTER 4

An Inventory Model with Server Interruptions’

4.1. Introduction

The results in this chapter turn out to be a particular case of what was

discussed in chapter3. Nevertheless the sharper assumption of zero lead time

has produced several stronger results in this chapter. One consequence is the

explicit expression for the stability of the system and the closed form

expression for the system state distribution. Further our investigation of the

optimal reorder level (s) and the maximum number(S) of items that could be

stored in the inventory could be made analytical.

This chapter introduces the concept of intenuption to an inventory system

where the processing of inventory requires a random time, which leads to a queue

of customers waiting for inventory. The arrival process is assumed to be Poisson

and service time follows an exponential distribution. During the processing of

inventory, the service may be interrupted due to breakdown of the server. The

failure time of a busy server is assumed as exponentially distributed and the failed

server is taken for repair immediately, where the repair time also follows an

exponential distribution. Inventory is managed according to an (s,S) policy with

zero lead time. As in [43] and [14], the assumption of instantaneous

replenishment leads to an explicit steady state analysis under the stability

' The results in this chapter was presented as a paper in the 5”‘ International Conference on
Queueing Theory and Network Applications; July 24-26, 2010, Beijing, China . It is also
published in the ACM Digital Library, Proceedings of the 5“ Intemational Conference on
Queueing Theory and Network Applications ,Pages 132-l39.d0i>l0.1 145/18378561837876

76
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condition. The optimal values for reorder level s and maximum inventory level S

is also analyzed based on a cost function. This chapter is arranged as follows. In

section 4.2, we do the mathematical modeling of the above system; in section 4.3

we obtain the stability condition and the explicit steady state probability vector

under stability. Explicit expressions for several important performance measures

are obtained in section 4.4 and their behavior, as different parameters vary, is

discussed in section 4.5. A cost function is also constructed in that section and its

nature studied numerically.

4.2 Mathematical Model

The system is described as under. Customers arrive to a single server

counter according to a Poisson process of rate 2. where inventory is served.

Duration of service are iid exponential random variables with parameterp.

Inventory is replenished according to (s,S) policy, the replenishment being

instantaneous. Further no shortage is permitted. While the server serves a

customer, the service can be interrupted, the inter occurrence time of

interruption being exponentially distributed with parameterb]. Following a

service interruption the service restarts according to an exponentially

distributed time with parameter 52.

For the model under discussion, we make the following assumptions:

1. No inventory is lost due to service interruption.

2. The customer being served when interruption occurs, waits there until his

service is completed.
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4.2 Mathematical Model

At time t let N(t) be the number of the customers in the system

including the one being served, L(t) be the inventory level and set

0 if the server is idle

S(t) = l if the server is busy
2 if the server is on interruption

Then o={ xa), t 2 0 }= {(N(t),S(t),L(t)), :20} will be a Markov

chain with state space E={(0,0,k)ls$k$S-1]u{(i,j,k)li2l,j=1,2,s+1Sk5S}.

X

The state space of the Markov chain is partitioned into levels i defined as

6 = {(0,0,s),...,(0,0,S-1)}, and 'i'= { (i,l,s+1), ..... ..,(i,l,S), (i,2,s+l), ....

(i,2,S)}, for i 31. This makes the Markov chain under consideration, a level

independent Quasi Birth Death (QBD) process. In the following sequel, Q

stands for S-s, In denotes an identity matrix of order n and e denotes a

column matrix of 1’s of appropriate order.
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4.2 Mathematical Model

Now the infinitesimal generator matrix of the process is

"B0 0 0
0 0_ O 0 ‘

T: 0 A0 () , where

On?

Q§I>__.Tr>_U::

..?°~_>><?'©

_D>-¢>>oc:

coco

0 0 /ti
/1 0 . 0. . . #1

BU=—/1IQ,B,=[Dl 0]QX2Q, D1: 0 ,1 0  ,B2=[JI 0 O 0
_O O /I O_QXQ

—(l + p + 5| )1 5,1 _ _A, = , where each block IS a QX Q matrix
531 —(/1 + 62)] 1Qx2Q

D, 0 _ _
A0 = /1139 and A3 =[ 0* 0:} , where each block IS a Q><Q matrix.ZQx1Q
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4.3. Analysis of the Model

4.3. Analysis of the Model

4.3.1 Stability condition

Define A=A2+A|+A0 and let 2:=( 1t(l,s+l),...., /r(l,S_),

7r(2,s+1),....., 1r(2,S)) be the steady state vector of the generator matrix A.

The relations /rA=0 and 2z'e=l when solved result in the values of various

components of izas

2r(l,s+l)=.......= ¢:(1,s)= and a'(2,s+l)= ....... ..= ::(2,s)=

é
Q(5. +62)‘

The QBD process with generator T is stable if and only if the rate of drift to

the left is larger than the rate of drift of the level to the right; that is

JIA0 e < 7! A2 e (see Neuts[56]), that is if and only if

it <i-—.
(6,+5,)

Thus we have the following theorem for stability of the system under study.

Theorem 4.1

The Markov chain Q is stable if and only if —/lg 9% <1.2

Note: Since the lead-time is assumed as zero, the absence of the inventory

parameters s and S is expected. The quantity gifl is actually the expected/1 2

duration of an effective service (this has been derived in section 4.2), which is
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4.3. Analysis of the Model

subject to interruptions at a rate 51 and to repairs at rate 62. Therefore,

/I (5 + 6 )
— —'-5_———i is the number of arrivals during a service, which should be less/1 2
than 1 for stability of the system under study.

4.3.2 Computation of steady state vector

We find the steady state vector of Q explicitly. Let 7r=( 7r0,7r, ,2r2,...),

be the steady state vector ,where rrois partitioned as 1z'0=( 1r0(0,s+l),....,

7L'0(0,S)) and 2ti’s are partitioned as 7r,.=(1r‘.(1,s+l),....,Jr,(l,S), 1q.(2,s),

2:, (2,s+1),..., 1r‘.(1,S)).

Then from 7rT=0 and 7z'e=lwe get

—/12rO(0,j)+,mr,(1,j+l)=0,ssjsS—1 3.2.1

,12:0(0,j)-(/1+,u+6])2r,(1,j)+52:z,(2,j)+,u2r2(l,j+1)=0, s+lsjsS-1

/12z},(0,s)—-(2.+;1+<5‘,)zr,(l,S)+522r,(2,S)+;ur2(t1,s+1)=0, 3.2.2

/11r‘.(l, j)—(,1+;1+¢fi)2q+,(l,j)+522rm(2, j)+;ur‘.+2(l,j+l)=0, s+lS j 5 S-1

/12z}(1,S)—(/1+,u+6])rr,H(1,S)+621rH,(2,S)+;1r:,+2(l,s+1)=0 , izl 3.2.3

6,¢:,(1,j)-(,t+6,)::,(2,j)=0, s+1Sj$S—l 3.2.4
/11ri(2,j)+é]2r,+,(1,j)—(fl.+52)2ri+,(2,j)=0 ,i21, s+l 3 j5S—l. 3.2.5
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4.3. Analysis of the Model

For solving the above system of equations, we first consider an M/PH/1

queue with arrival process Poisson with parameter 7t and service time for each

customer having PH distribution with representation (a,K), where the initial

— 5 6
probability vector is a=(l,0) and the matrix K=[ (/16+ 1)  Then the2 _ 2
generator matrix of this system (namely, the M/PH/lqueue) has the form:

T-,1 /la 0 0 0 . .K° K-21 A1 0 0 .
,0 K°a K-/11 A1 0 . ..r0 0 K“ K-/ll/110.;T=1 a  where K”Q O O ‘ '

H 0 oii i
Let x = (x(0), x(l), x(2),...) be the steady state vector of T‘ . Partitioning x(i) s’

as x(0) = x(0,0) , x(i) = (x(i,l),x(i,2)),i 2 l , the steady state relation xf = 0 ,

gives us the following equations.

-—/1x(0, 0) + /1x(1, 1) = 0 3.2.a
/1x(O, 0) — (2. + ,u + 6'1 )x(1, 1) + 52x(l, 2) + px(2,1) = 0 3.2.b

5,x(l, 1) -— (/1 + 52)x(l, 2) = 0 3.2.0
/1x(i,l) — (/1+,u + 5,)x(i +l,l)+ 62x(i+1, 2) +_ux(i + 2,1) = 0, izl 3.2.d

/1x(i,2)+6,x(i+l,l)—(/1+52)x(i+l,2)=0 1'21 3.2.e
If we assume that

rr0(0,s) ==1r,,(0,s+1) =...=7tO(0,S—l)and (3 21)
7r,.(j,s+1)=7ri(j,s+2)=...=7q(j,S),i_2l,j=l,2 ' ' ’
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4.3. Analysis of the Model

then the S-s equations in 3.2.1 for each value of I will be the same as the

single equation 3.2.a and similarly equations 3.2.2 to 3.2.5 reduce to 3.2.b to

3.2.e respectively and therefore the probabilities 7:, (j,k) can be obtained from

the corresponding x(i, j) as

IQ’-"(Qw­

7ro(0,k)=—x(0,0),s$k'SS—l
(3.211)

7r,.(j,k)=—-x(i,j),j=l,2;s+1Sk $8

The intuition behind the assumption 3.2.1 is that, since replenishment is

instantaneous, in the steady state, there will be equal chance for each inventory

level to be visited. It can be verified that the 7r,.(j,k) ’s obtained from 3.2.11,

satisfies the steady state equations 3.2.1 to 3.2.5 and so are the unique steady

state probabilities of the system under the stability condition.

Now for the steady state probabilities x(i, j), we have results available for the

standard M/PI-I/1 queue (see Neuts[56]), which gives

x(i) = x(l)R‘_‘ ,i 2 1, where

~=‘$.+.£s.

>»
Q’)

3 'u(Z+62) A and
/1(u+<‘>'.)

R=@

,u(/1+62)_;1­

__ /1 pp  _ ___ Z __ /H6, + 52)
x(1) - x(O)[# flu + 62)] , x(O) - x(0,0) 1 —-T1162
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4.4 System Performance Measures

4.4.1 Expet:tedN|nnba'0t'iI1ten11p1imsenomu1temdbyaustm1er

For computing expected number of interruptions encountered by a

customer we proceed in the same line as in Krishnamoorthy et. al. [29] by

considering a Markov process {X1(t),t 2 0}={(Nl(t),S1(t)),t 2 0}, where N1(t)

denotes the number of interruptions that has occurred up to time t ; S|(t)=0 or

1 according as the service is under interruption or not at time t . The Markov

process {X1(t), t2 0} has state space{0,l,2,....}><{0,l}u{A}, where A is an

absorbing state which denotes service completion. The infinitesimal generator

of the process is the same as in [20]:M00000..­
I A A
Ba A00 /is 0 <1

A1 A0 0

=; 0 A‘ /3° A‘ ° ‘. , where in the present case,i 00A,/10.­

Q>

s>4s==»a>>

@@CD

r A

i I1 —¢.~ ~ A » » -(2 52
B00:[1u]’ A00=[_(»u+61)]’ A.,.=w. 01,  A.=[ 0 _W(,1)]

d A 0 0an = .
A0 (2 0

If yk is the probability that absorption occurs with exactly k interruptions, then
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:--A 43 ZL
yo ‘A00 (D ‘t+6~l

___ _" -1" _"-1“ k-|_"-1" = 1” W5 k =
yk_( At!)  Al  ( Al   vk ls2a3a~~~
The expected number of interruptions before absorption is given by

= <-/%;'»im> [12—<-»i;‘»i,>]"e=%­

4.4.2 Expected duration of an interrupted service

Here we calculate the average duration of an interrupted service.

The procedure for this is again similar to that in [29]. The service process with

interruption can be viewed as a Markov process with two transient states 0 and

1, which denote whether the server is interrupted or is busy respectively, and a

single absorption state A. The absorption state A denotes the completion of

the service after the intervening interruptions and repairs. The process can be

represented by )Z'(t)= {0,l,A}. Let T be the time until absorption in the

process X (t) .The infinitesimal generator matrix of the process is given by

H [rs] h ii ["52 52 ]and§ W= , ,w ere = = .° Q —(/H50 ° 11
The probability disuibution F(.) of T is given by F(x)=1- Q exp(l§ x)e,x?_0. Its

density function F '(x) in (0,<><>) is given by F'(x) = 5 exp(l§x) lio. The

Laplace-Stieltjes transform f(s) of F(.) is f(s): §(sI- 1.? )" lie . The expected time

ES for service completion is

ES=€ (- 1? )"<= = la‘ +5’
/152
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4.4.3 Expected amount of time a customer is served during his

(possibly interrupted) service

In section 4.4.2, we derived the expected number of interruptions as5 . . . . . . 1
E, =—i. Since each interruption has a repair time with mean-5-, the total/I 2. . . . . 5 .
expected time of repair during a service IS E” =  The expected durationll 2

of time a customer is served during the service process is then given by
1

ES 1 En :::_­
ll

4.4.4 Analysis of waiting time

Though we can find the expected waiting time using Little’s

formulae we do so otherwise and verify the result obtained using the above..

For any M/G/1 queue the mean waiting time of a customer in the system is

given by E{W}= E{WQ+s} = E(s)+E{WQ} [see 52]

6 +/1 5 /1 " ».= E, —'—-*E( 2) = It 4 2 * s 2 ('B7*
+2(1_P) S /162 +2{1_’l(51+6z)} g e

/162
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=51+51+ '1 -2 {5+(5+5)’}-- 512+5"1+‘351 We
#6. 2{1_!%,#’@.*” ' ' ’ ”<¥.:w.—»1<@.+<‘>‘.>i'

#52

have obtained the expression for the expected number of customers in the
2

system as EN: '1 .6’ +6"1e+(2 6’ .Hence Little’s theorem is verified.
52 #52 -/1(5, + 52)

4.4.5 Busy Period

We have the expected duration of a busy period T is given by [54]2. 6+6,/#6 5+5ET=E ) iE(’)= 1 - 2 = 1 2
U (‘+20-p) S {1-,1(al+a2)/#5,} #52-/1(5,+52)

4.4.6 Other performance measures
00 S

l. Probability that server is busy is given by P5 = Z Z 7:‘. (1, j) -=:t’-it-.i=l j=s+l

2. Probability that server is on interruption is given by

_ °° S - -51
Pa"“‘§j§‘n.;(2vJ)"62 ll‘

3. Probability that server is idle is given by

P =l—P —P =1-i Hi .7 0' .5 ,u 62
4. Expected inventory level is given by

EIL- S ::(0 ')+“ S 7r(l ')+¢:(2 ")-i-Z0’; ZZ.~»1.,1-2­j=s+l i=l j=s+l
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5. Expected number of customers in the system is given by°° S it 6’+62.+65EN== '.1,'".2,'= —-R"=.2 ‘*2.
gjgllvqr 1>+w,< 1)} ¢q(I > e 52 fl52_M+52)

6. Expected rate of ordering is given by E0R= Z,un',.(l,s+1)= £­1 l. . . . °° S . 5/1
7. Expected interruption rate IS given by E MR = 5,2 Z 2r,(1, j) =—;1—.s+|i=l ;=

4.5 System behavior with variations in parameters

The explicit expressions for all the system performance measures make

the analysis of their dependence on various parameters more transparent.

The maximum inventory level S and the reorder level s affects the

expected inventory level and expected reorder rate only. The other

performance measures are independent of s and S. This can be attributed to the

fact that replenishment is instantaneous.

The expression for server interruption probability Pa shows that, if we

take 5, = 52, the probability Pa is just 11- which is independent of both 5, and/1

52.

The expected number of customers in the system increases with

increase in arrival rate /1 and decreases with decrease in service rate p; both

these facts are clear from the expression for expected number of customers.

However, since the effect of the parameters 6, and 52 on the expected number

of customers is not that clear from the expression for EN , we studied this

numerically. Table 1(a) and l(b) show the effect of 5, and 62 respectively on
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4.5. System behavior with variations in parameters

EN . Table 1(a) shows that as 5,, the intemlption rate increases, EN also

increases ,which is expected as the interruptions become more frequent, the

effective service time of a customer increases and this leads to an increase in

the queue length. Table 1(b) shows that an increase in the repair rate 52 , results

in a decrease in the expected number of customers in the system. This is also

expected as the repair rate increases; the server becomes active in a shorter

time after an interruption which leads to an increase in the service completion

rate and hence the queue length also.

1

a1  WEN 1 a2 ‘ EN q2 1.417 3 2“ 2.5
2.2 1 1.561

2.4 11.722 .
2.6 1 .902

2.8 2.104
3 12.33 1
3.2 A 2.595

3.4 1 2.897

3.6 3.25 .___ .. k
3.8 q 3.667 1

4 14.1671 (a) (b)
Tablelz Effect of 5, and 52 on E (0) with kl, u=3, s=6, S=20; we have taken

for table 1(a), 62:3, and for table 1(b), 5, =2
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4.6. Cost Analysis

4.6 Cost Analysis

For computing optimal values for s and other parameters, we

introduce a cost function C==CI* EIL +CN* EN +CR* EMR +{K+(S-s)K1}* EOR,

where CI is the cost of holding inventory ,CN is the cost of holding customers,

CR is the cost incurred due to interrupted service, K is the fixed cost of

ordering and K, is the cost of a single item in inventory . The problem of

optimizing the cost for various parameter values is carried out. A few

illustrations are given below.

EIL and EOR are the only measures involved in the cost function,

which are affected by the reorder level s. As values of these measures increase

with increase in s, an increase in the cost function with s is expected; figure l

shows this. Thus the optimal value for the reorder level can be concluded to be

0. This can also be explained heuristically. Since lead time is zero and no

shortage is permitted, it is optimal to order for replenishment of inventory

when the level falls to zero at a service completion epoch. Further if at a

service completion epoch the inventory level has fallen to zero and no

customer is left behind in the system, then it is optimal to place order for

replenishment at the arrival epoch of the first customer to the idle system. This

results in drastic reduction of holding cost. These explain why the optimal

value s* of s is zero.

In the case of the maximum inventory level S, EIL increases with

increase in S but EOR decreases with increase in S. Hence depending on the

nature of the costs attached to these measures, the cost function either

increases with S, which is the case with figure 2, or shows a convex nature as

in figure 3. For figure 2, the fixed cost K was taken as 35 whereas for figure 3,
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4.6. Cost Analysis

a much larger value 750 for K is assumed, which brings the convex

(non linear) nature to the graph.

As the arrival rate /1 increases or the interruption rate 6, increases, the

measures involved in the cost function either increases or remain fixed; as a

result the cost function also increases with an increase in the parameters /1 and

(Z. These results can be visualized in figures 4 and 5 respectively. As

compared to parameters Z and 6,, the parameters ,u and 6', have a reverse

effect on the performance measures involved in the cost function; that is these

measures decrease as ,u and 52 increase. Hence the curve corresponding to

the cost function has a negative slope in the cases of the parameters ,u and 52

which can be visualized from figures 6 and 7 respectively.

Conclusion:

We analysed an (s,S) inventory problem with service interruption.

Incidence of interruption forms a Poisson process; service times and removal

of interruptions are independent exponentially distributed random variables.

Lead-time is assumed to be zero and further since no shortage is permitted, the

inventory level probability tums out to be discrete uniform. Explicit

expression for the rate matrix could be arrived at. Several measures of

performance for optimal system design have been computed.
Convexity/monotonicity of cost function in S is numerically arrived at. Also

the optimal reorder level is shown to be zero. The computation of the effective

service time is achieved through the matrix analytic method.
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4.6. Cost Analysis

Figure 2: Effect of maximum inventory level S on Cost function.

CI=40,CN=30,CR=75,K=35,K1=350,l:1,|.1=3,81=2,82--=3,s-=6
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Figure 3: Effect of S on Cost. CI=40, CN=30, CR=75, K=750, K,=35, 71:1,

Maximum inventory level S versus Cost

[,l=3, 81:2, 83:3, S=3
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Figure 6:Effect of p on Cost.
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CHAPTER 5

An Inventory Model with Server Interruptions and

Retrials *

5.1 Introduction

In the previous chapter we assumed that replenishment is instantaneous

and no shortage is permitted (shortage cost infinity).In this chapter we assume

that replenishment of inventory does not materialize immediately as placement

of order ,rather takes a random amount of time for order materialization .Thus

we have now a finite shortage cost situation. Another salient feature of this

chapter is that the QBD we develop here is level dependent. The reason behind

this is the state dependent retrial rate of orbital customers. LDQBD’s are much

more complex than LIQBD’s since we do not get a repeating pattern for the

entries of the infinitesimal generator of the process. However we make it level

independent through a process called truncation.

The first study on inventory models with positive lead time, with

unsatisfied customers thus created going to an orbit to try again for inventory

from there, was by Artalejo et. al [6]. Whereas their approach is algorithmic,

Ushakumari [68] produces analytical solution to the same model. Following

these, a number of papers on inventory models with retrial of unsatisfied

customels emerged. One may refer to Krishnamoorthy and Islam [30,31] Two

other papers where an inventory model with retrial of demands is considered

" The results of this chapter was presented as a paper at the8“‘ lntemational Workshop on
Retrial Queues; July 27-29, 2010, Beijing, China .It has also been accepted for
publication in the joumal ‘Operational Research’(article No: DO]: l0.l007/s12351-011­
0120-8)
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are by Sivakumar [6l,62]; where the first one considers an (s, S) perishable

inventory system in which demands occur from a finite source and those

demands that arrive in a stock-out period, are sent to an orbit. The discussion

in [62] is on a two-commodity system where customers, encountering both

commodities out-of-stock, proceed to an orbit of infinite capacity. In

Krishnamoorthy and Jose [34], the authors analyse and compare different

(s, S) inventory models with an orbit of infinite capacity. They consider

situations where a finite waiting station/no waiting station is provided for

fresh/retrial customers. In all these models, the presence of the retrying

customers results in an in-flow and out-flow pattern that is distinct from those

where only a queue of unsatisfied demands has been considered. In this regard

the paper by Krishnamoorthy and Islam [32], where an (s, S) inventory system

with a finite pool of unsatisfied demands is studied, has an in-flow and out­

flow pattern that is distinct from both the above type of models.

Different kinds of interruptions in service such as server breakdown,

server going on vacation, arrival of priority customers, being common real life

phenomena, analysis of queueing models with these features partially or

completely incorporated, is important. An MIM/1 queueing model with service

interruption was first studied by White and Christie [73]. The service

interruption of such customers is assumed to be due to arrival of priority

customers. The policy adopted is preemptive repeat. However, it may be noted

that in the case of exponentially distributed service time, repeat or resumption

of intermpted service do not make any difference. Krishnamoorthy et. al

[29,37, 38] provide a glimpse of earlier work on queues with service

interruption and provide several new results.
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In a very recent paper, Krishnamoorthy et. al [41] considered an (s,S)

inventory model with positive service time and instantaneous replenishment,

where the service process is subject to intenuptions. In the present chapter, we

extend the above model by assuming that replenishment of items requires a

random amount of lead-time. As in [41], the service in the present case is also

subject to interruptions. Now since the replenishment is not instantaneous, an

increase in waiting time is probable which motivates us to introduce a retrial

queueing model here. It may be noted that the interruption process assumed

here has the property that, at a time only one interruption is encountered by the

server. In our model, whenever the service is restarted after interruption, it is

assumed that the entire service is repeated from the beginning and further it is

prd. This is in contast to Nicola ,Kulkarni and Trivedi [51] as well as Marie

and Trivedi [55].

This chapter is arranged as follows. In section 5.2, we describe the

mathematical model under study. In section 5.3, a necessary and sufficient

condition for the stability of the system is obtained and steady state

distribution is computed. Section 5.4 is devoted to some system performance

measures like the expected waiting time of an orbital customer. Finally in

section 5.5 we provide some results of the numerical experiments carried out

for analyzing different aspects of the system under study. Concluding remarks"),

are given in section 6.

5.2 Mathematical Model

Before proceeding with the modeling of the problem under investigation, We

introduce a few notations and assumptions that are used in the sequel:
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I Arrival of primary customers -- Poisson process of rate 7»

I service time -- exponential random variable with parameter |.1

I s is the reorder level and S is the maximum number of items that can

be stored (S > 2s)

I lead time (the time elapsed from placing an order for replenishment of

the item until it is delivered) -- exponentially distributed with parameter 1]

I service interruption process-- Poisson process of rate 6,

I interruption duration -- exponential random variable with parameter 62

I retrial rate -- j9, when there are j customers in the orbit (thus retrial rate

turns out to be level dependent)

I probability of a primary customer joining the system when the server is

in interrupted state -- p

I probability of an orbital customer quitting the system after an

unsuccessful retrial due to server in interrupted state -- q

I identity matrix of order n -- I H

I identity matrix of appropriate order -- I

I column vector of l’s of appropriate order -- e

The model under study is described as follows: Customers arrive to a

single server counter according to a Poisson process of rate A where inventory

is served. Service times are iid exponentially distributed random variables with

parameter p. Inventory is replenished according to (s, S) policy, with the lead

time distribution exponential with parameter 1].

While the server serves a customer, the service may get interrupted

with the interruption process governed by a Poisson process of rated]. It is

100



5.2. Mathematical Model

assumed that while the server is under interruption, no further interruption can

befall the server. On completion of an interruption the service restarts, with the

duration of an interruption exponentially distributed with parameter 52. No

waiting space is provided for customers, other than for the one whose service

gets interrupted. An arriving customer, finding the server busy, leaves the

service area and joins an orbit of infinite capacity from where it retries for

service. The duration of the interval between two successive repeated attempts

is exponentially distributed with parameter j9 when the number of customers

in the orbit is j. While the server is on an interruption, an arriving customer

(primary) joins the system with probability p and a retrying customer goes

back to the orbit with probability (1-q). With complementary probabilities the

customer leaves the system in both cases. When the inventory level is zero no

primary arrival or retrial is entertained (primary arrivals have to leave the

system without getting admission to orbit and retrial customers stay put in the

orbit).

Let N(t) be the number of customers in the orbit and L(t) be the

inventory level at time t. Also let

0, if the server is idle

C (t)= 1, if the server is busy

2, if the server is on interruption

be the server status. Then Q. = {X(t);t 2 O} = {(N(t),C(t),L(t));t 2 O}

is a Markov chain on the state

space((Z+ U {O}) X{O,l,2} ><{1,2,3,...,S}) U ((Z+ U {O})><{0}X {O}).
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The state space of the Markov chain is partitioned in to levels  defined as

{(i,0,J');0$ J'$3}U{(i,l,J');l 5 1'5 5}v{(i.2,J');1$ 1'5 5'} , 1'2 0 and Q = 5-S­

5.2.1 A typical illustration of the transitions of the Markov chain

is as given below:

For i20 ,

(i,O,k)—’1—>(i,1,k);l S k 3 S

(i,0,/<)i>(:,0,k+Q);0s k s s
/10’ s 3 0 19]-9k(I 1 k) 0+ ) (i,l,k)l,—>(i,l,k+Q);lSk és

A',2,k --->" ' 1,2,k(‘ ) 0+ ) (z,2,k)i>(i,2,1<+Q);1s1<ss0',0,k -_>‘ '-1,1,1< ;1_k5S ­(' ) (' ) < (i,l,k)-—‘i—>(i,0,k-l);1sksS. qi6 .__
(z,2,k)i—>(z l,2,k) (l_,Lk) 51 (l_,2’k)

(i,2J<)i-2—>(i.1,/<)
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The Markov chain Q. in which the above transitions occur, is a level­

dependent quasi birth and death process (LDQBD) with infinitesimal

generator matrix
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5.2. Mathematical Model

‘Am/in 0 000‘
/1.. AHA0 000

52:0 /1../1../=..<><>HL ’;
where each entry is a (3S +l)x (3S +1) mahix, which is explained in detail

below:

0 O O
A0 = 0 /Us 0 represents transitions from level i to i+1 due to arrival

0 O p/Us
of a customer; note that by assumption, arrival rate is p/1 , when the server is

interrupted.

0 B2). 0
A2}. = l 0 0 0 represents transitions from level j to j-1, where

*0 0 qi6I,
0

B2). =; _0I ] represents transitions from level j to j-1 due to retrial of an-J 5 ($+1)><s

orbital customer becoming successful and qj 615 represents those due to an

orbital customer leaving the system after an unsuccessful retrial finding the

interrupted server.

D, D2 0
A1 1. = D4 D5 D6 represents transitions within the level j, where the sub­

0 D8 D9

matrices are explained as follows.
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5.2. Mathematical Model

Dll 0 fl[(s+l)
D1 = 0 —(/1+ j6)I(S_2x_,) 0 , with

0 0 —(/1+ j6)I(H,)

» Zr" 0 lH 0  (.s'+l)><(s+l)
represents transitions within level j, where the server status remains as idle;

note that the only transition here is that due to replenishment of the items

represented by 111.5“, .

0

D2 = [H ] represents transitions within level j, where the server5 (S +1)>< S

status changes from idle to busy due to arrival of a customer.

D4 is an Sx(S +1) matrix which represents transitions within level j, where

the server status changes from busy to idle due to a service completion; further

the non-zero entries of D4 are given by (D4 ),-,,- = ,U , 15 i s S .
.1­§—(17+/1+,u+6,)I_€ 0 C

05 .-_- 0 -(,1 + p + 5, )1(s_2s_U 0 and
@_ 0 O —-(/1+ p + 5, )IM,
4_p -(17+ p).+62 + jq6)I5 0 C

D9 = A 0 —-( p/l. + 52 + jq9)I(S_2s_U O
_ 0 "( Pl + 62 + jq6)I<;+1)

with C=[0 r;1,]sX(s +1), represents transitions within level j, where the server

status remains as busy and intemlpted respectively. Note that the only

transition here is that due to replenishment of the items represented by the

matrix C.
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5.3. Analysis of the Model

D6 = 5,15 represents transitions within level j, due to server interruption

and D, = 521$ those due to server status changing from interrupted to busy.

5.3 Analysis of the Model

In this section, using Matrix Analytic Methods (for details on Matrix

Analytic Methods, see Neuts [56]), we perform the steady state analysis. First

let us look at the stability of the system.

5.3.1 Stability Condition

For investigating the stability condition of the system under study, first

we apply Neuts-Rao [57] truncation to the LIQBD. To this end suppose that

Ah. = Am and A2,. = A2,, for alli ZN. The generator matrix of the truncated

system QM will look as under:

@..>..==~h-¢

§‘==‘*¢=~

..~?*é’*<=*

geoo
COO
CDQ

CD

Q”: . ­
FA A2»: Am A0

0 Am Am A0 Oi
O O‘ C

l1 _..
Define AN = A0 + Am + A2,, and let EN =.(1rN (0,0),7z'N (0,l),1z',,

(0,2),...,2rN (0,S), 1:], (1,1), Jr,“ (l,2),..., KN (l,S), ZN (2,1), 1:1,, (2,2),..., 2rN

(2,S)) be the steady state vector of AN .

106



5.3. Analysis of the Model

From the well-known results of Matrix Analytic Methods (see Neuts [56]), it

follows that the truncated system, which is a level-independent quasi birth death

process, is stable if and only if 1r~ A2,, e > 7z'~ A0 e , that is, if and only if

1v0[:z,, (0,1)+::,,(0,2)+...+¢:,,(0,s)]+ qN6[1rN(2,l)+2rN(2, 2)+...+1:,,(2,s)]>

/1[2r~(1,1)+7r,,(l,2)+...+zr,,,(1,S)]+ p/t[::,,(2,1)+r:~(2,2)+...+¢r,,(2,s)].

This reduces to the system being stable if and only if

{_N6/1 +qN65.).+N6 5, }[¢:,, (1, 1)+¢:,, (1, 2)+...+::N (1,s)]>

{,t+l1;i}[¢:,,(1,1)+¢:,, (1,2)+...+¢:,,(1,s)],_

which on further simplification yields that the system is stable if and only if

/1+ep'w‘<sN9‘u +QN66‘.
52 /l+N6 62

Because of the second factor on the right hand side of the above inequality,

we see that the system is stable whenever the probability q is greater than zero.

Now, when q = O, taking the limit in the above inequality as N —><><>, it

reduces to:

/15/1 -P-L .
+ 52 < ,u

Thus we have the following theorem for stability of the system under study:

Theorem 5.1

When the probability q that a retrying customer leaves the orbit after an

unsuccessful retrial, is greater than zero, the Markov Chain Q is stable
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5.3. Analysis of the Model

irrespective of the other system parameters and when q = 0, it is stable if and

only if ,t+i$*< p.
52

5.3.2 Computation of Steady State Probability Vector

We find the steady state vector of Q, by approximating it with the
K

steady state vector of the truncated system, QN with generator matrix QN. Let

Ir“) = (7ro,rr,,rr2,...) , be the steady state vector of QN where each 7:, is a

row vector consisting of 3S+l elements represented as

7z;.=(1z'(i,0,0),1r(i,0,1),2r(i,0,2),...,rr(i,0,S),7r(i,1, l),1r(i,1,2),...,1z'(i,1,S),1r(i,2, l),zr(i,2,2),...,2z'(i 2 S))

Then from known results of Matrix Analytic ‘Methods (see Neuts [56]), it

follows that

rim, = 7£'~_l (RN)'“, for r20,

where RN is the minimal non-negative solution of the matrix quadratic

equation,

(RN )2 Aw +RN Am + A0 =0’ and
I

7rN_i = 7r~_,._,R~_i, for 15 i S N -1 , where

RN-i = “A0 (Aw-1 +RN—i+lA2,N—i+l )_l ­

Now for computing 1:0, we have the equation 7:0 (Aw + R, A2,) = 0. First we

take 7:0 as the steady state vector of the generator matrix A“, + R, A2,. Then

72',-, for 15 i $ N —l, can be found using the recursive formulae; IL‘; =7r,_,R,..

The steady state probability distribution of the truncated system is then

obtained by dividing each 2.1;, with the normalizing constant
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5.4. System Performance Measures

[zro + 7Z1+...]e = [zro + 2:, +...+ 1r,,,_, + 1r~_, (I- R~)‘1]e.

5.4. System Performance Measures

5.4.1 Waiting Time Analysis of an Orbital Customer

Since no queue is formed in the orbit, customers, independently of each

other, try to access the server. Therefore computation of the waiting time

distribution becomes extremely complex though it has been achieved in some

special cases (see books [2, 16] for details). Hence we restrict ourselves to the

computation of the moments of the waiting time. Though we can find the

expected waiting time using Little’s Law, the second moment and variance of

the waiting time are not easy to find. These moments are found by

approximating the waiting time in the system under study by those in a

corresponding system with finite orbit capacity.

Let E(WL) be the expected waiting time of an orbital customer in the

system under study and E(WL(N) ) be that in the corresponding system with

finite orbit capacity N. Then 1~:(w,) = Lim E(W ‘”’).N-we L

For the system with finite orbit capacity N, WLW’ can be found as the

time until absorption in a Markov chain {X(t),t 20}, where

{X(t),t20}={(N(t),C(t),L(t)),t20}, if the tagged customer is in the

orbit and X(t) =A, if either the tagged customer gets service or quits the

system. In the above, NU) denotes the number of customers in the orbit

including the tagged customer, C(t) and L(t) are as defined in section 2. Since
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5.4. System Performance Measures

the orbit capacity is N, we have 15 1§I(t)$N . The state space of the process

{X(t),tz0} is

{A}u{(i,0,k)|1si5N,0sk $S}u{(i,j,k)|l£i$N,l5j52,15k ss},

where A is an absorbing state. The generator matrix of this process is

é. (N) =  T00].

where T° is an N (3S+l) x 1 matrix given by

T°((i-1)(3S+l)+j,l)= 6, j --= 2 to S+1 ;i=1 to N,

T“((i-1) (3S+1) +j,1) = q6 ,j = 2S+2 to 3S+l ; i =1 to N

and the matrix T is given by

W A.
+1.. A12 A.

Q

01%./a.A.T = , where. .I \A i
A2<~__2> A1(N—l) A0_ Azuv-1;

A

0 B2}. 0
A2]. = 0 0 0

0 0 (j—1)q6IS

withA O 0 ..B .= _ and = +
2!  0](S+1)xtS+l) AIN Al” A0
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5.4. System Performance Measures

and all other matrices are as defined in the generator matrix Q. Thus

E(WL‘”’)= - a T ‘le (see Neuts [56], page 46),

where 0:: IL = (7r,_0,7ru ,2rL2,...,7r,_~) ; 7z'u=7r,. with entries corresponding to

server is idle states taken as zero. It has been verified numerically that for

large N, E(WL‘N)) converges according to Little’s theorem.

In a similar manner, we can find the second moment of the waiting time of an

orbital customer as

E(W ’)= Lim E((w ‘”’)’),L N_>m L

where EKWLW’ )2) is the corresponding second moment in the truncated system

and is given by

EKWLW)  = 2 a‘ T” e (see Neuts [56], page 46).

Finally, the variance of the waiting time of an orbital customer is given by

v(wL) = E(Wf)- (E(W,))’.

The conditional probability that a customer leaves the system without taking

service given that he arrives while the server is busy is given by

PwS= - a T”? (see Neuts [56], page 46),

where Tis an N(3S+l) x I matrix whose non zero entries are given by

1° ((i-l) (3S+1)+j,l) = q6,j = 2s+2 to 3s+1 ;i=1to 1v
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5.4. System Performance Measures

5.4.2 Other Performance Measures

The following system performance measures are calculated numerically.
4» 5

1. The probability that server is busy is given by PB = Z2‘/r(i, 1, j).
:=o ;=1

2. The probability that server is on interruption is given by
w S

g=ZZqm@.
i=0 ;=1

3. The probability that server is idle is given by PF 1- Pa - PB

4. The expected number of customers in the orbit is given by
Q» S w S

13(6) .-= ZZm(z,0, j)+zZi{1r(i,l, j)+7r(i,2, 1)}.i==0 ;=0 i=0 ;=1

5. The expected inventory level is given byw S M S
F-(0J)=  J'7F(5,0» 1')-|'  }'{7?(i» 1» 1) +7501 2, 1)}i=0 j=0 i=0 ;=|

w S
6. The effective rate of successful retrials is given by E(st)= ZZi67r(z',0, j)

i=0 j=0

7. The effective replenishment rate is given by

EFRR = iir):r(i,0,j)+ii17{:r(i,l,j)+2r(i,2,j)}i=0 ,-=0 i=0 j=l
8. The probability that inventory level is zero is given by

P(L=0) = i,~:(z, 0, 0).
i=0

9. The probability that inventory level is greater than s is given by

P(L>s) = i i {7r(i,0, j)+1r(i,1, j)+7r(i, 2, j)}.
i=0 j=.s-+1
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5.4. System Performance Measures

0° S

10. The effective interruption rate is given by EINTR = 51ZZ2r(i, 1, j).
i=0 j=l

w S
1 1. The effective repair rate is given by Em»: 5,ZZ2r(i, 2, j).

- H) F‘

12. The effective loss rate of orbital customers after seeing an interrupted

server on retrial is given by ERLOSS = £02‘/j';qi67r(i, 2, j).. ,~=

13. The effective rate at which arriving customers are lost on seeing an

interrupted server EALOSS = (1—- p)/lii1r(i,2, j)
.'=o ,-=1

14. The effective rate at which customers are lost finding the inventory level

as zero Eowss = 2/t1:(z,0,0)
{=0

@

15. The effective rate at which orders are placed EROR =-Z,u7r(i,1, s +1)
i=0

16. The expected rate at which customers are lost

ELOSS=ERLOSS+EALOSS+EOL0SS

5.4.3. The Cost Function

To investigate whether an optimal value exists for the re-order level

s, we studied the following cost function.

COST = CH\I’FR*EN;R+CLOSS*EL0sS+CN* E(o) +CI* E(co),

where CINTR is the cost per interruption per unit time, CLOSS is the unit time

cost assigned when a customer is lost, CN is the holding cost per customer per

unit time and CI is the inventory holding cost.
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5.5 Numerical Illustration

5.5 Numerical Illustration

In this section, we provide numerical illustration of the system

performance as the underlying parameters vary.

5.5.1 Effect of the Retrial Rate 6

Table l(a) shows that as the retrial rate 6 increases, the loss rate of

retrying customers ER|_Q$$ increases; the main reason for this is the high value

for the system quitting probability q (= 0.6). This increase in the loss rate leads

to a decrease in the expected number of customers E(o) and hence a decrease

in the server busy probability PB and server interruption probability Pa. Note

that the decrease in the server interruption probability may be occurring

because of the possible decrease in the number of services due to customer

loss from the orbit. Hence the decrease in Pu, considering the corresponding

decrease in PB , should not be viewed as a gain to the system under study. Also

the decrease in the interruption probability Pu may be taken as the reason for

the decrease in the loss rate EALOSS of arriving customers. From the Table.

one can infer that the idle probability of the server is increasing With9; but

this does not imply an increase in the number of successful retrials E(sr). This

decrease in E(sr) with increase in 6 may be due to the decrease in the number

of customers in the system. There is a slight increase in the expected inventory

level and a narrow decrease in the effective replenishment rate EFRR; the

reason for this could be the decrease in server busy probability. Because of the

increase in the expected inventory level, the loss rate due to zero inventory

EO|_Q$$ must be increasing; but the Table displays a constant EO|_Q$$, which

indicates that the change may be too small. Table l(b) shows a decrease in the

114



5.5 Numerical Illustration

expected waiting time of an orbital customer with increase in retrial rate 6;

but one can see in the same Table that the conditional probability that a

customer may quit the system without receiving any service is increasing. So

the decrease in the waiting time does not favor the orbital customers.

Table 5.1 (a): Effect of retrial rate 6 on various performance measures

21:2 , 11 =4, q=l, 61=2, 8;=2.5, p=-0.5, q=0.6, s==l0, S=31

0 PB P11 EFRR EALDSS P-Rross Eowss E(o) E(st) E(c0)

3.0 1 0.3332 0.2666 0.0635
0.2666 1

0.4798 1 0.0004 0.7449 0.5334 19.6672

3.2 0.3325 0.2660 0.0633 0.2660 0.5108 0.0004 0.7065 0.5284 19.6698

3.4 0.3319 0.2655 0.0632 0.2655 ‘ 0.5417 0.0004 1 0.6727
1

0.5236 19.6723

3.6 0.3313
1

0.2651 0.0631 0.2651 1 0.5725 1 0.0004 0.6426 0.5191 19.6747

3.8 0.3308 0.2646 0.0630 0.2646 0.6033 0.0004 0.6157 0.5148 19.6770

14.0 1 0.3302 0.2642 0.0629 0.2642
__1

1

1

0.6340
7

0.0004 0.5915 0.5108 19.6791

4.2 0.3297 0.2638 0.0628 0.2638 0.6647 0.0004 0.5696 0.5070 19.681 1

4.4 4
1

0.3292 0.2634 0.0627 1 0.2634 0.6954 0.0004 0.5496 1 0.5034 19.6830

Table 5.1 (b): Effect of retrial rate 0 on waiting time

z.=2, "=4, “=1, 8,=2, 8,=-.2.s, p=0.5, q=0.6, s=4,S=10

° 1 E(w1. ) i
V(w1.) Pws E(c)

1 3.01_ 1
1

0.2985 0.2042 0.1728 0.7517

3.2 0.2858 0.1883 0.1762 0.7133

3.4

1 3.6 ‘
.1

1

0.2745

0.2644

'1

0.1748

0.1631

0.1794

0.1825

1.

1 0.6794

0.6493
1

3.8 0.2552 0.1529 0.1854 0.6223

4.0 0.2469 0.144 0.1882 0.5981

; 4.2 . 0.2393 1 0.1361 0.1909 0.5761 1

4.4 0.2323 0.1291 0.1935 0.5561
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5.5.2 Effect of the Interruption Rate 5,

It follows from Table 2(a) that, as the interruption rate 61 increases, the

probability that the server being interrupted Pa increases and the server busy

probability PB decreases; but the server busy probability is high compared to

the server interruption probability and the reason for this may be the high

repair rate compared to that of interruption rate. Note that as the interruption

rate increases, this gap between Pa and PB diminishes with Pa dominating

PB. As frequent interruptions can cause lengthier services, loss rates EA|_Q$$

and ERLOSS increases with increase in 61. Note that the expected inventory

level is increasing with interruption rate, which may be due to the decrease in

the server busy probability and so less inventory may be served. Same

reasoning can be made for the decrease in the effective replenishment rate

EFRR. The increase in the expected inventory level points to a decrease in the

probability that the inventory level in the system is 0, and hence a decrease in

the loss rate EODOSS. The increase in the loss rate explains the decrease in the

expected number of orbital customers. From the Table, one can infer that the

idle probability is decreasing and this in tum leads to a decrease in the

expected number of successful retrials E(sr); another reason for this could be

the increased loss rate of orbital customers. In Table 2(b), one can see that the

expected waiting time of a customer in the orbit is decreasing with increase in

the interruption rate and at the same time the conditional Pws probability that

an orbital customer leaves the system without opting for service increases,

which together points to the fact that the decrease in the waiting time is not in
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favor of the customer. This happens despite a low number of customers in the

orbit, which indicates the hann, which interruptions can cause.

Table 5.2(a): Effect of the interruption rate 6; on various performance measures

I.-=2, p =4, 0=3, 1|=1, 5;=2.5, p=0.5, q=0.6, Sr-"=10, S=3l

8, PB
L

PI! EINTR

1 7 ' A T
EALOSSEFRR

i

ERwss 501.088

“I

E(9) E(st) E((0)

1.0703941 '1
0.1577 0.3941 0.075 1

‘A 0.1577
0.4414 0.0010 0.8498 0.6831 1 9.42-34

1.2 0.3798 0.1823 0.4557 '1 0.0723 0.1823 0.4962 ‘00008 0.8214 0.6457 19.4808

91.4 A 0.3667 0 0.2053 1

L

0.5134 0.0698 0.2053
_ ._1
1 0.5453
l_.

0.0007 1 0.7976 0.6128 19.5332

1.6 \“
70.3547 1. _| 0.2270 0.5676 1 0.0676 J“ 0.2270 0.5896 0.0006 0.7774 1 0.5836 19.5813

1.8 0.3435 0.2473 0.6184 0.0654 0.2474 0.6300 71.0005 0.7600 A 0.5572 19.6258
1

1 2.0 0.3332 1' 0.2666 T 0.6664 0.0635 0.2666 0.6670 0.0004 1 0.7449 0.5335 19.6672
1 _

2.2 ‘0.3236 1L 1 0.2847 0.7118 ’ 0.06161 170.2847 0.7011 0.0004 0.7316 1 0.5118 19.7057

' 310 0.2966 0.3487 0.8717 0.0553 1 0.3487 |_.0.4885 1 0.0002 70.6917 0.4413 19.8377

T 6.0 0.2124 0.5098
L

1.2748 0.0405 1 0.5098
L

0.6405 5 0.0000 70.6239 0.2942 20.1503
1

Table 5.2(b): Effect of the interruption rate 6, on waiti"8

7.=2, 11:4, 9:3, q=l, 8;=2.5, p=0.5, q=0.6, s-=4, S=10
81 E(W1. )

‘ T

1

WW1.) 15(6) Pws

1.0 01 0.3052 1 0.2509 0.8635 1 0. 1027
1

'|

4 1.2
L

0.3025 0.2374 0.8332 7

|_
0.1185

I 1.4 0.3007 1 0.2266 0.8078 0.1333

1.6
1.

0.2995 “ 0.2179 0.7863 0.1473 1

.1

1.8 7 0.2988 0.2104 ‘ 0.7677
I

L
0.1604

_7­

T _

2.0 012985 0.2042 0.7516
I

0.1728
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Figure 5.1(a), (b). Impact of the interruption rate 61 on the expected

number of customers in the system E(o) and on the expected inventory

level E(tn) with parameters 1:2 , u =4, 11:1, 61=2, 8;=2.S, p=0.5, q=0.6,

s=10, S=31 : The Figures show an opposite behavior of the measures E(o)

and E(co) with increase in the interruption rate; where the expected number of

customers is decreasing due to loss and the expected inventory increases

because of a possible drop in the number of service completions. The Figures

reflect the harm brought to the system by interruption.

5.5.3 Effect of the Repair Rate 62

In Table 3(a), one sees that, the increase in the repair rate leads to a

decrease in the server interruption probability and to an increase in the server

busy probability. This is expected; as the repair rate increases, the span of

interruption period must be decreasing. The reason for increase in the effective

interruption rate EMR is the increase in the server busy probability. Here note

that the interruption rate 6, and the repair rate 52 are the only two parameters
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whose changes make the server busy probability Pa and the server interruption

probability Pa to vary in opposite directions; that is, if one probability

increases, the other probability decreases. Now as these probabilities vary in

opposite directions, the effective interruption rate varies in the same direction

as server busy probability. Coming back to the repair rate 52, from the Table

3(a), one observes that as the repair rate increases, the loss rate of the retrying

customers ERLQSS decreases and hence the expected orbit size E(o) increases.

This is expected, since fast repairs allow the server to render service to more

customers. Now more number of services leads to a decrease in the inventory

level, an increase in the effective replenishment rate EFRR and a narrow

increase in the loss rate of customers due to zero inventory EOLQSS. From

Table 3(a), one can infer that the server idle probability is increasing, which is

also due to an increase in the number of fast service completions and after

each service completion, the server becomes idle as we are considering a

retrial queue. The increase in the server idle probability then leads to a

decrease in the loss rate of arriving customers EALQSQ and to an increase in the

expected number of successful retrials. In Table 3(b), one can see that the

expected waiting time of an orbital customer is decreasing with increase in 52 ,

which is also due to fast service completions. Note also that the conditional

probability that an orbital customer may leave the system without receiving

service is decreasing when the repair becomes faster.
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Table 5.3(a): Effect of the repair rate 8, on various performance measures

1:2, p =4, 9=3, 11:1, 6,=2.5, p=0.5, q=0.6, s=l0, S=31

P3
+1 .

.1.

Pa Bum: EFRR EA1.oss ERl.0ss EOLOSs E(0) E(sr) 13(0))

1

” 0.2307

0.2942

0.3743

0.3461
X 0.5614
0.5334 ’ 0.056

0.0535 0.3743

0.3461
0.6737

0.6230

0.0001

0.0002

0.6973 if 1 0.4335 7

0.7082 0.4530
19.8771

19.8232

0.3059 0.3220 0.6117 0.0533 1 0.3220 0.5795
.-J

0.0002 0.7183 0.4799 19.7765

0.3161 3 0.3010 0.6322 0.0602 0.3010 0.5419 0.11102 0.7277 0.4995 1.9.7356

0.3251 . 0.2827 0.6503 0.0619 0.2827 0.5089 0.0002 0.7365 0.5172 19.6994
,_

1

0.3332 T172666 0. 7 0.0635
V :

0.2666 0.4798 0.(D03 0.7449 0.5334 I 1
1

19.6672

2.7 0.3405 0.2522 0.6809 . 0.0648 0.2522 0.4539 0.0003 0.7528 0.5483 19.6382I a
Table 5.30)): Effect of the repair rate 62 on waiting time

70=2, p =4, 0=3, 1]=1, 51=2, p=0.5, q=-0.6, S=4, Sr-10

E(Wr ) WW0) PWS Etv)

0.3061 0.1879 0.2437 0.702

0.3037 0.1915 0.225 0.7133

0.3019 0.1949 0.209 0.7239

0.3005 0.1982 0.1953 0.7337

0.2994 0.2012 0.1333 0.7429
J

0.2985 0.2042 0.1728 0.7517

0.2978 0.2070 0.1636 0.7599

5.5.4 Effect of the Re-Order Level s

Tables 4(a) and (b) describes the effect of the re-order level s on various

system performance measures. As the re-order level s increases, expected

inventory level increases and hence the probability for a loss due to zero

1 20



5.5 Numerical Illustration

inventories in the system decreases. Note that the rate at which the retrying

customers and arriving customers are lost due to interruption increases with

increase in s. The reason for this may be the increase in the server busy

probability PB and a corresponding increase in the server interruption

probability Pu. The decrease in the expected number of customers in the orbit

also has the same reason. The Table shows that as s increases, there is a slight

decrease in the rate of successful retrials; which can be attributed to the slight

decrease in the server idle probability. Obviously, the effective replenishment

rate EFRR has to increase with increase in s but the lower values for EFRR as

well as the high values for the expected inventory level together suggests that

replenishment is not frequently occurring in the system. Despite of the high

service rate (twice as much as the arrival rate), the less frequent

replenishments points to the severe effect of interruption on the system

behavior. Table 4(b) shows a narrow decrease in the waiting time of a
customer in the orbit with an increase in s. Note that one has to wait for some

time besides a low expected number of customers in the orbit; and that there is

a high probability that one may choose to leave the system with out opting for

service.

Table 4(a) shows that the expected inventory level in the system is high

even when the re-order level s is small. This made us to investigate whether an

optimal value for s can be found. For this we studied the cost function defined

in section 4.2. In the cost function, the measures EM-R and E(to) shows an

increase with increase in s, while the measures ELOSS and E(o) shows a

decrease. Here note that the increase in the expected inventory is significant as

compared to the changes in the other measures and therefore the cost will
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5.5 Numerical lllustration

ultimately be increasing with s, which points to the optimal value zero for s.

What we want to capture is the decrease in the measures ELOSS and E(o); and

hence get a convex nature for the cost function and an optimal value other than

zero for s. For doing this, we assume a comparatively large cost for the loss of

customers CLOSS, which is also reasonable in many practical situations. As

expected, this assumption leads us to an optimal value for s (s = 5), as one can

infer from Table 4(0). This Table also shows that if the cost CLOSS is not very

high, the cost function is linearly increasing. These results can be more easily

verified from Figures 3(a) and (b).

Table 5.4(a): Effect of the re-order level s on various performance

Ill€3Slll'€S

k2, p=4, 0=3, I]=1, 5|=2, 5;=2.5, p=0.5, q=0.6, S=3l
1

|

V S

4 ii. - . . .  ' 7 ' 77 7 ._ ..__ i1 1
PB P. EFRR E-Atoss ER|.oss EOlDSs I-3(0) E(sr) E(0J)

05
-F .__. ._

1 0.3323 0.2658 0.0511 0.2658 0.4785 70.0058 0.7457 0.540 1 17.16

6 0.3327 0.2662 0.0532 0.2662 0.4791 0.0034 0.7454 0.537 17.68

V 7 0.3329 0.2664 0.0555 0.2664 0.4794 0.0020 0.745 1 0.535 18.17

L 8
1

0.3331 0.2665 0.0579 0.2665 0.4796 0.0012 0.745 0.534
I

1

1

18.67

§ 9 0.3332 0.2665 0.0606 0.2665 0.4797 0.0007 0.7449 0.534
1

1 193.17
1

1

1 0 0.3332 0.2666 0.0635 I

I

0.5666 0.4798 0.0004 0.7449 0.533 19.67
'1

11 0.3332 0.2666 0.0666 36.32666 0.4799 0.0002 0.7449 0.533 20.17
1'.

12 0.3333 0.2666 0.0702 0.2666 0.4799 0.0001 0.7448 0.533 20.67
1
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5.5 Numerical Illustration

Table 5.4(b): Efiect of the re-order level s on waiting time
1:2, |,l =4, 0=3, 1|=1, 61=2, 8;=2.5, p=0 5, q=0 6, S=15

1 S E(WL) v(wL) Pws E-5(0)
ll

3 .
L

0.2984 0.2022 W 0.1733 0.750s

14 0.2981 0.1952 (11746 1 0.7486 1

5 1 0.2979 0.1910 AT.
0.1754 0.7472

76
0.2977 0.1884- . 4.(11759 “ 0.7463

7 . 0.2977“ 0.1869 7 11176177 0.7458

Table 5.4(c): Effect of the re-order level s on the cost functnon

l.=2,p =4, 6=3, 1|=l, 61:2, 6,=2.5, p=0.5, q=0 6

S=25,CN=50,CI=60,CINTR=40

S (C1933: l3 7546 1075

|, I 7510 A10945 7500 1117
L

97504 11401 1
7 7516 .1164 1

8 7534 1189

9 7555 711213
I
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Figure 5.2 (a), (b). Impact of the re-order level s on expected waiting time

and on the loss rate of customers with parameters 2.=2, p =4, 9=3, 11:1,

61=2, 5;=2.5, p=0.5, q=0.6, S:-15 : Both the waiting time and the loss rate

are decreasing with increase in s. An increase in the expected inventory in the

system brought by the increase in s can be thought of as the reason for the

decrease in the total loss rate. A reference to table 4(a) shows that with an

increase in s, there is a slight increase in the loss rate due to customers (both

orbital and extemal) seeing an interrupted server. This together with the

increase in the expected inventory level can be thought of as the reason behind

the decrease in the waiting time. Note that the waiting time of an orbital

customer may end with a quit from the system without receiving service.
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Figure 5.3 (a), (b). Investigation of an optimal value for the re-order level

s with parameters ).=2, u =4, 6=3, 11:1, 81:2, 62=2.5, p=0.5, q=0.6,

S=25, CN=50, CI=60, CINTR=40:

The cost curve in Figure (a), where the cost incurred due to customer loss is

high (=l0000), shows a convex nature for the cost function and an optimal

value 5 for the re-order level s; while in Figure (b), as the loss cost is not very

high (=500), the cost function is linearly increasing with increase in s.

5.5.5 Effect of the Maximum Inventory Level S

Table 5(a) shows that as the maximum inventory level S has only

very little effect on majority of the system performance measures. The

decrease in the effective replenishment rate EFRR and the increase in the
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5.5 Numerical Illustration

expected inventory level in the system is quiet natural with increase in S.

Because the inventory in the system is increasing, the loss due to zero

inventories is decreasing. There is a very narrow increase in the server

interruption probability, which may be due to the narrow increase in the
number of orbital customers.

Table 5.S(a): Effect of the maximum inventory level S on various

performance

measures with 1:2, ll-T-4, 0=3, q=1, 8;=2.5, 61 =2, p=0.5, q=0.6, s--=10

P5 S B P11 ‘ E]NTR EFRR EA1.oss ER1.oss

. 9*. . ._-  .. T
Eomss

E(o) E(st) . E(w)

123 0.3332 0.2665
.. 1 _ .

0.6663 l 0.1025 0.2665 0.4798 0.0007 0.7449 0.5338 75.666

24

25
1

0.3332

0.3332

0.2665

2665

0.6663

0.6664

0.0952

0.0888
1

0.2665

0.2665

0.4798

0.4798

0.0006

0.0006

0.7449

0.7449

0.5337

0.5336

16.166

1.6.666

J .

26 0.3332

0.

0.2665
.1.

0.6664 0.0833 0.5665 0.4798 0.00057 0.7449 0.5336 17.166

27 0.3332 0.2665 0.6664 0.0784 0.2665 0.4798 0.0005 0.7449 0.5336 17.666

28 0.3332 0.2665 0.6664 0.074 0.2666 0.4798 0.0005 0.7449 0.5335 i8.l66

29 0.3332 0.2666 0.6664 0.0701 0.26667 0.4798 0.0005 0.7449 0.5335 7718.666

30 0.3332 0.2666 0.6664 ‘ 0.0666
l__

0.2666 0.4798 0.0004 0.7449 0.5335 19.166
5

Table5. 5(b): Effect of the maximum inventory level S on waiting time

1:2, |l=4, 0=3, 11:1, 61=2, 5;=2.5, p=0.S, q=0.6, s=4

. s E(Wr ) WW1.) Pws 13(6)

10 0.2985 0.2042 0.1728 0.7517

11
. K

0.2984 * 0.2014 0.1734 0.7507

12 0.2983 0.1993 0.1738 0.7500

13 0.2982 0.1976 0.l74l 0.7494

l4 70.2981 0.1963 0.1744 0.7490

T15 0.2981 0.1952 0.1746 0.7486
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5.5.6 Effect of the Joining Probability p

Table 6(a) and (b) studies the effect of the joining probability p of an

arriving customer on the system behavior. Quiet naturally, the loss rate of

arriving customers decreases with increase in the joining probability p. As

more customers join the system, the expected number of customers E(o),

increases; the increase in E(o) then leads to more retrials and therefore an

increase in both the successful number of retrials E(sr) and in the loss rate

after retrials ERLQSS. The increase in the number of orbital customers makes

the server busier; but as the number of services increases, the probability of

seeing an interrupted server Pa also increases. The possible increase in the

number of services leads to an increase, though narrow, in the effective

replenishment rate EFRR. For similar reasons, there is a decrease in the

expected inventory level in the system and an increase in the loss rate of

customers due to zero inventory EOLOSS. Both these changes, especially that

in EOLQSS, are narrow which reflects the interruption factor affecting the

system performance. Table 6(b) shows a slight decrease in the expected

waiting time of a customer in the orbit; also note that the conditional

probability that an orbital customer quits the system without receiving service

is decreasing with increase in p. This is expected because when the joining

probability p increases, the server busy probability shows a significant

increase compared to the increase in the server interruption probability; and

the customer loss, on arrival, takes place with probability 1-p only when the

sever is interrupted. Thus increase in p leads to more service completions and

this favors the system performance.
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Table 5.6(a): Effect of the joining probability p on various performance

IIl€3SIll'€S

21:2, “=4, 0=3, q=l, 6,=2, 6,=2.5, q.-.=.-0.6, s=10, s=31

p 1 P15 g Pa EFRR EALOSS A ERLOSS Eotoss 151(0)

I

1

E(s'r) E(w)

0 0.3186 0.2549
0.0607 0.5097 >0.4588 0.0003

0.5180 0.4220 19.7257

7 0.25961 0.2 0.3244 0.0618 0.4153 0.4672 '; 0.0004 0.6052 0.4666 19.7022

0.4 0.3303 0.2642 0.0629 0.3171 0.4756 0.0004 0.6971 _I
1 0.51.12 19.6788

0.6 5 0.3361. 0.2689  0.0640» 0.2151 1 0.4340
0.0004 0.7939 0.5556 1.9.6550

0.8 1 0.3419 0.2735 0.0651 0.1094 K 0.4923 07.0005 0.8955 0.5998 19.6324

0.27811 1 0.3476 1 0.0662 0 0.5006 4 0.0005 1 .0020 0.6436
& 19.6094

F

Table 5.6(b): Effect of the joining probability p on waiting time

7»=2, 11 =4, 0=3, 1]=1, 51=2, 5;=2.5, q=0.6, S=4, S=10

P E-(W1. ) WW1.) Pws E(o)

07 0.3067 0.2214 0.132 0.5251

4 0.2 0.3015A  0.2114 0.61220.1769

_ 0.4 5 0.2990 71.2053 7 0.1738 0.70401? ;; — .; ­
§ 0.6 0.2985 %0.2033 10.1722

0.8006

0.8 ’0.2995 0.2030 A 0.1717
0.9020

1 0.3017 70.2044 10.1721 1 .0080

5.5.7 Effect of the System Quitting Probability After an
Unsuccessful Retrial q

After studying the effect of the joining probability p, now in Tables

7(a) and (b), we focus our attention on the effect of the system quitting

probability q of an orbiting customer after an unsuccessful retrial. The increase
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in the loss rate after retrials ERLQSQ and a resulting decrease in the expected

number of orbital customers E(o) with increase in the loss probability q is

obvious. The decrease in the number of customers results in a decrease in the

server busy probability PB and also in the server interruption probability Pa.

Now this decrease in the probability Pu leads to a decrease in the loss rate of

an arriving customer EALQSS. Note that the decrease in the server busy

probability leads to an increase in the expected inventory level in the system

and hence to a decrease in the effective replenishment rate EFRR and in the

customer loss rate due to zero inventory in the system, EOLOSS. Table (b)

shows that an increase in q implies a decrease in the expected waiting time of

an orbital customer; again this is not in favor of the customers as the

probability that the customer quits the system before taken in to service is

increasing.

Table 5.7(a): Effect of the system quitting probability q on various

perfomlance measures with 2.=2, it =4, 0=3, 11:1, 82=2.S, 61 =2, p=0.5,

s=10, S=31. . _ _ p V i _|
EFRR EALOSS ERuossq APB LP11 EOLOSS E(o) E(s'c) E(t0)

0.4163 0.3331 " 0.0793 0.3331 0 0.0170
3.6393 \' 1.7600 H 19.335._  I ._

0.2 10.3593 0.2374 “0.06s4l ­ 0.2874 0.1724
I

0.0006 L, ; l_1.2639 70.7324 l19.563
0.3423 0.2739 l 0.0652

0.65‘ 0.3332 0.2666 70.0635

0.2739

0.2666

0.3286

0.4798

0.0005

0.0004

0.9104 0.603]. 1.9.631

0.7449 1 0.5334 1 19.667 7. 2. . _. 1
0.3274 0.2619 0.0624 0.2619 0.6286 0.0004 0.6475 l 0.4391 ‘19.690 1

E

0.3234 70.2537 1 0.0616 0.2587 0.776 0.0003 0.5829 “0.4ss3 l19.707
L
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Table 5.7(b): Effect of the system quitting probability q on waiting time

71:2, p =4, 0=3, 1]=1, 51=2, 5¢=2.5, p=0.5, S=4, S=10

q E-(W1. ) V(Wt) Pws 13(9)

. 0 fly
1

1.3443 “Z1315 0 0 3.6609

0.2 0.4819 0.4784 0.1131 1.2753

0.4 0.3549 0.2728 0.1497 0.9171

i 0.6
0.2985 0.2042 0.1728 0.7517

0.8 0.2655 0.1702 0.1900 0.6542ll 0.2434 0.1497 0.2037 0.75895

5.6 Concluding Remarks

In this chapter we have considered an (s,S) inventory problem with

positive service time and lead time. This is the first work in inventory with

service interruption---server is subject to interruption while service is in

progress. No waiting space is provided for customers, other than for the one

whose service gets interrupted. Hence when a service is going on an extemal

arrival has to go to an orbit of infinite capacity. Customers do not join the orbit

when inventory level is zero nor when the server is under interruption. Retrial

rate is a linear function of the number of customers present in the orbit. Retrial

customers, encountering the sen/er in breakdown condition, leave the system

for ever with positive probability. This leads to the system being stable always.

Also a primary customer, encountering the server in breakdown condition,
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chooses to leave the system with positive probability or joins the orbit with

complementary probability. All distributions involved are assumed to be

exponential.

This system is studied by analyzing a truncated system and then we

extended the results to the system with unlimited capacity for the orbit. The

system is shown to be stable whenever the probability of leaving system for

ever with positive probability as a consequence of the retrial customer

encountering the server in break down condition. In the absence of this

explicit condition for stability is derived.

A first step to extend the results here is to replace a few of the

exponential distributions assumed in the chapter by more general distributions,

such as the phase type. If service time duration is assumed to be phase type or

at least Erlang of order two or more, then a few of the phases could be

provided with protection from interruption. The cost of such protection could

be incorporated to investigate the optimal number of phases to be protected.

The quality of approximation of the expected waiting time will be improved in

a future work.
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CHAPTER 6

Production Inventory with Service Time and

Interruptions
6.1 Introduction

In all the studies on inventory systems prior to Bennan et al

[8], it was assumed that the serving of inventory is instantaneous. However

this is not the case in many practical situations. For example in a TV

showroom, a customer usually spends some time with the salesperson before

buying the TV or in a computer shop, after selecting the model, one might

have to wait until all the required software are installed. In Berman et al [8] it

has been assumed that the amount of time taken to serve an item is constant.

This leads to the analysis of a queue of demands formed in an inventory

system. This study was followed by numerous studies by several researchers

on many kinds of inventory models with positive service time.
Krishnamoorthy and Viswanath [47] introduced the idea of positive service

time in to a production inventory model by considering MAP arrivals and a

correlated production process. This model being a very general one as far as

the modeling parameters are considered, only a numerical study of the model

was carried out there. In a very recent paper by Krishnamoorthy and

Viswanath [48], assuming all the underlying distributions as exponential, a
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product form solution for the steady state has been obtained in a production

inventory model with positive service time. The above paper had been

motivated by the paper by Schwarz et al. [58], where a product form solution

has been obtained in an (s, S) inventory model with positive service time.

The delay in the service caused by server intenuptions being a common

phenomenon in almost all practical situations, White and Christie [73] was the

first study to introduce this in a queueing model. Following this, there had

been extensive study on these type of queueing models. We refer to the survey

paper by Krishnamoorthy and Pramod [38] for more details on such studies.

Though there had been numerous studies on inventory models, where

interruption occurs due to an unreliable supplier [64,63, 12] and the references

therein], Krishnamoorthy et al [41] can be considered as the first paper to

introduce the concept of service interruption, which occurs in the middle of a

service, in an inventory system. They assume that there is no bound on the

number of interruptions that can occur in the middle of a single service and

also that an order is instantaneously processed (zero lead-time). The steady

state distribution has been obtained explicitly in product form in the above

paper. In another paper [40] by the same authors, the above model has been

extended by considering positive lead-time.

In an (s, S) production inventory system, once the production process is

switched on (as the inventory falls from S to s), it is switched off only after the

inventory level goes back to S, the maximum inventory level. This makes it

distinct from an (s, S) inventory system with positive lead-time, where once

the order is placed (the moment at which the inventory level hits the re-order
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level s), usually the ordering quantity is taken such that the inventory level

goes above s as the order materializes.

In a queueing system, where the service process has certain number of

phases, which are subject to interruptions, the concept of protecting certain

phases of service (which may be so costly to afford an interruption) from

interruption could be an important idea. Klimenok et al [25] study a multi­

server queue with finite buffer and negative customers where the arrival is

BMAP and service is PH-type. They assume that a negative customer can

delete an ordinary customer in service if the PH-service process belongs to

some given subset of the set of service phases; whereas if the service process

belongs to some phase outside the above subset, the ordinary customer is

protected from the effect of the negative customers. The above paper is

extended by assuming an infinite buffer in Klimenok and Dudin [24].

Krishnamoorthy et al [28] introduces the idea of protection in a queueing

system where the service process is subject to intemlptions. They assume that

the final m-n phases of the Erlang service process are protected from

interruption. Whereas if the service process belongs to the first n phases, it is

subject to interruption and an interrupted service is resumed/repeated after

some random time. There is no reduction in the number of customers due to

interruption and no bound was assumed on the number of interruptions that

can possibly occur in the middle of a service. In this way, this study differs

from the earlier one where at most one interruption was possible in the middle

of a service and where the customer whose service got interrupted is removed

from the system.
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This chapter introduces the concept of service interruption to a production

inventory model with positive service time. The service time and the time to

produce one item are assumed to follow distinct Erlang distributions. The

service process as well as the production process is subject to interruptions and

certain number of phases in both these processes are protected from

interruption.

This chapter introduces a production process in to the sum of the

inventory models studied earlier in this thesis. This adds an item to the

inventory one at a time while the production is on. We use the (s,S) policy to

control the production. This policy was used in the previous chapters for

replenishment (with or with out lead type). Such a situation can be regarded

as production in bulk in a production cycle. We incorporate interruption in

production as well as in service. Another important entity that we introduce in

this chapter is ‘protection’ against interruption, both for production and service

processes. Unlike in previous chapters, were all distributions involved were

exponential, in the present chapter we go for the Erlang distribution. We

introduce protection from interruption to a few among the last stages of service

and production. This involves economic consideration. We look for the

optimal number of stages (phases) of service/production processes to be

protected. Unlike in chapter 5 here the underlying Markov chain turns out to

be level - independent quasi birth and death processes.

This chapter introduces a production process in to the sum of the

inventory models studied earlier in this thesis. This adds an item to the
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inventory one at a time while the production is on. We use the (s,S) policy to

control the production. This policy was used in the previous chapters for

replenishment (with or with out lead type). Such a situation can be regarded

as production in bulk in a production cycle. We incorporate interruption in

production as well as in service. Another important entity that we introduce in

this chapter is ‘protection’ against interruption, both for production and service

processes. Unlike in previous chapters, were all distributions involved were

exponential, in the present chapter we go for the Erlang distribution. We

introduce protection from interruption to a few among the last stages of service

and production. This involves economic consideration. We look for the

optimal number of stages (phases) of service/production processes to be

protected. Unlike in chapter 5 here the underlying Markov chain turns out to

be level — independent quasi birth and death processes.

An example for the applicability of the model: In the production

process, assume that less expensive components of a system are assembled

first. (These could be done without any protection). Next the expensive parts

are to be assembled. These need protection from negligent handling. Thus

such stages of the assembly are protected which involves additional cost.

Similar example could be given in the case of service in phases with last few

service phases protected.

We apply a novel method, which works even if we assume general

PH distributions for the production as well as the service processes, for finding

an explicit expression for the stability of the system. Studies like [3, 4], have

analyzed inventory system where customers are not allowed to join the system,

when there is a shortage of inventory and had found that the stability of such
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systems is not affected by the inventory parameters. However, in the above

studies, the underlying distributions were all exponential. Our proof for the

stability of the system shows that the above phenomenon holds even if the

underlying distributions are general PH distributions and hence it gives a

characterization of the stability of inventory systems where the customers are

not allowed to join the system when there is shortage of inventory.

In the section to follow, the mathematical formulation of the model is

provided. Section 3 is concerned with the investigation of the stability of the

system. The long run system state distribution is also given in that section. In

section 4, numerous system performance measures are provided. Numerical

investigation of performance measures is extensively discussed in section 5.

Finally, section 6 concludes the discussion.

6.2. The Mathematical Model

The model under study is described as follows: Customers arrive to a

single server counter according to a Poisson process of rate /i where inventory

is served. Service time duration follows Erlang distribution, with Phase-type

representation (T, B) of order m where [3= ( 1,0,. . .,0) and

lF— ,u, 0 . 0 -6-/1. #1 0 ­

COCO;
O

C

T—..-=

- ‘-'/‘Ital:
0-,u.t_ L.)

Production is by one unit at a time. The production process starts whenever the

inventory level falls to s and continues until the inventory level reaches S. The
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6. 2 Mathematical Model

production process follows Erlang distribution with Phase-type representation (U,

tr) of order n with or = (1,0,...,0) and

,,u;z0.0,
0-—,up0.§

0- -11 n0 .0--pii 111
Interruption to the service process occurs according to a Poisson process of

rated}; the server is subject to at most one interruption at a time and, further only

when service is going on, the server is subject to interruption (that is an idle server

is not affected by the interruption process). An exponentially distributed amount

of time with parameter 6'2is required to resume service from where it was stopped.

That is the system recovers from the interruption after a repair having

exponentially distributed duration with parameter 52. Similarly, the production

process also encounters interruptions, with the interruption process following

Poisson process with parameter 53 and recovers from it on being repaired, with

repair time following an exponential distribution with parameter 64. In contrast to

the case of service interruption, after repair an interrupted production process

needs to be restarted from the beginning. In other words, we assume that an item

being produced is discarded due to an interruption. For reducing the adverse

effect of interruptions, we apply the concept of protection of certain phases of

service as well as the production process from interruptions. Precisely, the last ll

phases of the service process are assumed to be protected in the sense that the

service will not be interrupted while being in these phases; so interruptions to the

service can occur only while in service in the first m—l, phases. Similarly, the
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final I phases of the production process are assumed to be protected in the sense

that the item being produced will not be affected and the processor will not be

subject to interruption while being in these phases; so interruptions to production

can occur in the first n—'l phases. It is important to note our assumption

conceming the two interruption processes: while in interruption (service or

production) another interruption cannot befall in the sense that the system behaves

like a Type I counter (see Karlin and Taylor [14]). Further, a customer’s service

may encounter any number of interruptions. However, it may be noted that since

the item being produced is discarded consequent to an interruption of the

production process, there can be at most one interruption to a unit being produced.

All distributions involved are assumed to be mutually independent.

For the model under discussion, we make the following assumptions:

' No inventory is lost due to a service interruption.

0 The customer being served when interruption occurs, waits there until his

service is completed.

Q The inventory being produced is lost due to a production interruption.

v A customer, who finds no inventory on his /her arrival, leaves the system

forever.

0 Only when production is on, that process could get interrupted and the

service gets interrupted only while the server is busy providing service.

Let NC (t) denote the number of customers in the system including the one

getting service (if any) and N , (t) denote the inventory level in the system

at time t. Further let

0 if the server is idle

V(r) = l if the server is busy
2 if the server is on interruption
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Pm = {O if the production process is in ojff model if the production process is in on mode

V10) = {O if the production process is not interrupted/off1 if the production process is interrupted

Finally, let Z, (1) and Z2(t) denote the phases of the service and productionprocesses, respectively. Then
‘P={(NC(t),V(t),N,(I),P(t),\fi(t),Z,(t),Z2(t)); t20} forms a continuous time

X Av

Markov chain on the state space  L(i) , where I:(i) ’s, which are called the levels,
are the collection of states defined as follows:

11(0) = £(0, 0) =  Z(0,0, 1)

For 035$, Z10, 0, 1) = 170,0, 1,1) =L(0, 0, j,1,0)u L(0, 0, 1,1,1),

for s+1SjSS-1, Z(0, 0, 1) = L(0,0, 1,0) u L(0,0, 1,1,0) U L(0,0, 1,1,1), and

Z(0,0,s) = L(0,0,S,0).

For 1 z 1 , 110') = 11030) U £0‘, 1) U £0‘, 2) , whereA 1 j“ - iL(i, 0) - L(i, 0, 0) _ L(i, 0,0,1) _ L(i,0,0, 1, 0) LJ 1.030, 0, 1,1)

11(1,1')= (§lE(1,z', 1), 1' = 1, 2, where,1

Z031’, 1) = Z031’, 1,1) = L(i,l', 1,1,0) U 1.(1,z’, 1,1,1), 15 1 s S

Z031’, 1) = 1.(z,1’, 1,0) u L(i,I', 1, 1,0) u 1,0,1’, 1,1,1) , 1+1 5 1 s s -1

Z(z,z',s)=-~ L(i,l',S,0)

Finally, with 617 as Kronecker delta,

L(i,0,0,1,1,)={(1,0,0,1,1,,1,);1 s 1, fin-—¢i_].!l], 120,1, =0,1

L(0,0,1,1,1,)=1(0,0,1,1,1,,1,);1s 1, sn-5,__,.'z},1515.9-1,1,=0,1

L(0,0,j,0)=L(0,0,j,0,0)={(0,0,j,0,0)}, s+1SjSS
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L(i,l',j,l,j,)={(i,l',j,l,j,,j2,j3); ls jz sm-621.1,, l:§j3 sn—51.,~,z},
£21; 1'=1,2; lsjss-1;j,=0,1

L(i,l', j,0) = {(i,l',j,0,0, 12); 15 j, s m—52_,,l1}, 1'2 1; 1'=1, 2; 3+1 5 jS S.

It turns out that the continuous-time Markov chain ‘Pis a Level Independent

Quasi Birth- Death (LIQBD) process with infinitesimal generator given by-|_ -p‘

Q

Q »=> s 5*

@»;°‘_;°“gw

Q>_?>¢?>o

_;>°J>oc:>

g» coococo
r°F'-‘?’°t°

|

r

I. .
l1_ ° _l

where the matrix Amrecords the transition rates within the level f,(0), B00 those

from level f,(0) to f,(l); Am govems transitions from Z(l) to 5(0) and the matrices

A, and An constitute respectively, the transition rates within a level I11‘) and from

level l:(i) to f,(z'+1) fori 21. Finally, the matrix A2 governs transitions from levelQ Q
L(i) to L(i -1) for 2'2 2. A detailed description of the transitions that govem the

generator matrix W can be found in Appendix I.

In the sequel, Q = S-s, In denotes the identity matrix of order n, edenotes

a column matrix of l’s of appropriate order, en denotes a column matrix of l’s of

order n ><l and 0,, denotes a zero matrix of order n >< n.
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6.3. Analysis of the Model

6.3.1 Stability Condition
In section 2, we have assumed that the service time follows a PH

distribution of order rn, with representation (T, ,6). It follows that the service

process which is subject to possible interruptions has a PH distribution with

representation (T“ , ,6‘ ) , where
‘ ~ T—-51], 5,12 _ L I(m_l) O,6’ =(fl,0)andT = ,w1thJ,= I ,6213  0 0(mph) (m><m)

J2=niI(m—l,)] ,]3=[1(m_l) 0] _0 (m><m—-11) I (m-_l'xm)
Let T°' be the column matrix such that T'e + T“. -= 0 and let 2m -Z, = m’.

Similarly the production process subject to possible interruptions also has a PH

distribution with representation (U ‘,a") where 0:‘ = (a, 0) and

* U — 5,J,, 6,1, 1 I 0
U = 54.16 -541 "I4 = n0_ »(n -1) O (n><n)
_ In-I _

J5 _i 0 i(nXn—l),J6-{em} 0](n_lXn).

Let U 0' be the column matrix such that U 'e +U°' -= 0 and let 2n -l = n’.

Then \P' == (N (t),L(t),P(t), Z,'(t), Z2"(t)) , where Z,"(t) and Z2‘(t) denote the

phases of the above service and production process, models the same Markov

process as ‘P . The infinitesimal generator matrix of the process ‘Ir is given by
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W*==

.|_

A'00

A‘l0

O

0

@g3§

0 0 0
A}, 0 0
A‘; A“0 0
A#2  AG

COCO
QCDQCD

+­

v_
Since the form of the matrices A‘w , B11, and A'm will not affect the stability of the

Markov chain ‘P’, we do not give their detailed description here; the other block

matrices are given as follows:

Au’, : _- A*g0.2l  0

7

A,,__0 0_° 011’_ 0 _.
I A¢t20,0)  0

A*;°~"(1) 0
OA*g0,1)

A4-$03)  0

A*g'0.3)  O 5’— Aré0.4)(1) OM
where A*;°-°> (1) = T°' ® 1,, , A*g°-'> (1) = T°' ,6‘ ® 1,, , A*g°~" (1) = [T°',6* 0],

T°',6'®1. 0 T°',B"®I,A#g0.2)(l) = l>T0 H‘ ®a*:|’ A#g0.3)(l) : [T0 B. 0 ] and
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6. 3 Analysis of the Model

_A*:0,0')  A*fi1,0)

A*iU,l')  A¢%1,l)

A*€O,l)  A*I{l,Z)

A"l = E A*€0.2}  A*%l.3)(],)

A*i0,2)

i

T‘ - A1 , 0
with A,*‘°~” (1) = [ '"* ] ; A‘{°'°’ (1) = U‘; A,"°"’ (1) = T‘ 60 U‘ ;0 T‘ 620* - /11,",

A,*“"” (1) = T‘ - A1,, ; A'1“'°) (1)= 5’ ® (u°'a‘ ); A‘.“"‘(1) = 1m,®(U°'a‘) ;

A.,1.2,(1)=[0 Im,®(U°'a*)]; A.,w(1)=F m (‘L M]0 1.® °' ‘ ‘
0

A»~I(1.40>(1)= _ .
1,,,®(U°)

Let A = A 2 +A I +A 0 and x = (xo,x,,....,xs,xM_0,xH1',, .... ..,xS_,’o,xs_u,xs) be the

steady state vector of A, where xm and x,._, , s +1 5 i S S —— 1, represent the

probabilities corresponding to the production ofi and on states respectively. Then

xA = 0 gives us the following system of equations.

xuU' +x,T°' <01". =0 (3.11)
x0,B" ®U°'a" +x,(T' @u‘)+x2T°',6‘ ®1,, =0 (3.1.2)

x,_,1m, ®U°'a' +x,(T' @U‘)+xMT°'p‘ or, =0, 2 sis S-'1 (3.13)

x_,_,1,,, ®U°'a‘ +xs(T" €BU')+x,+mT°.fl’ ®a" +xH,_,T°',6‘ ®1,, =0 (31.4)
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6. 3 Analysis of the Model

x_,1m. o U°'a* + .tm_,(T* o U’) + x,+2_,T°'fl"' ® 1". = 0 (3.1.5)

xmzm. <>:<>U°'a* +e;._,(T' ea U‘) +xM1T°',t9* ® 1,, = 0, S + 2 5 z 5 s - 2 (3.115)

xS_2,,1m. ®U°'a'* + xS_,_|(T' on‘) = 0 (11.7)
xS_lJIm’ ®U°' + xST* = 0 (3.1.s)
.e,_0T* + x,+1_0T°' ,6‘ = 0, S +151: s -2 (3.19)

xS_,,0T* + xsT°',6‘ = 0. (3.1.10)
Noting that T*e=—T0. and that /3"e=l, right multiply each equation in the

system of equations (3.l.9) and (3.1.l0) by the column vector e to obtain the

system of equations:

x,.,0T°. =x,.+mT°., s+lSiSS—2 (3.1.11)
xS_L0T° = xsT° (3.l.l2)
Now, (3.l.2) and (3.l.3) together result in:

xm(T'+T°',6*)=0, s+1.€i$S—l. (3.l.l3)
From (3.1.ll) and (3.l.l3), we get that xfim = xsm, =  = xS___,_o , which is the left

eigen vector of the irreducible generator mat1ix(T* + T°' ,6‘) .

Right multiplying equation (3.1 .1) by en., we get the equation

--x0U°' + xlT°' ® en, = O

Noticing that )6‘ ® x0u°' = to/3' ® U °' aha that /3‘ ® T°' = T°' ,6‘ , we take the left

Kronecker product in the above equation with ,B' to obtain the equation:

—x0fl' ®U°' + xlT°'/3' ®en' =0

(3.l.l4)
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Right multiplying each equation (3.l.2) to (3.1.7) byIm,®e,,, we get the

following equations

x0fl' ®U°' +xl(T' ®en-)—x,(Im. ®U°')+x,T°‘/3‘ ®e,, =0

(3.1.l5)

x‘._,1,,, ®U°' +x,.(T‘ ®e,,)-xi(1m. ®U°' )+x,+,T°',6* ®en- = 0, 2 s 1' s S -1

(31.16)

x,_,Im» ® U0‘ + xs (T" ® en, ) - xx (Im, ® U0’ ) + xs+1_0T°.fl' + xs+1_lT°'fl‘ ®en, = O

(31.17 A)

xii”, ® U°' + x,+,_, (T" ® e,,.)- xH,_, (1,, ®u°' ) + x,+,_1T°',6* ®e,,. = 0

(3.118)

Jcpulm, ®U°' + xi’, (T* ®en-) — x,?l(Im, ®U°' ) +xM_1T°'fl” ®e,, = O , s+2 S i 3 S -2

(3.119)

xS_,’,1,,, ®u°' + xS_,_1 (T ® en’) - x,_1_,(1,,, ®U°' ) = 0

(3.l.20)

From equations (3.1. 1 1) and (3.1 .12), we note that xs+1_oT°' = xs_,_0T°‘ = xST°';

using which, we re-write the equation (3.1.l7 A) as

xs_,1,,, ®u°' + xs(T‘ ®e"-)--xS(Im, ®u°' ) +151" ,6‘ + xs+,_,T°'fi' ®e,, = 0

(3.l.l7)

Now, adding equations (3.1.8) and (3.1 . 13) to (3.l.20), we get the equation

(x, +x2 +...+ xs +;c,+u +....+xs_,_, )((T" +T°',6')®en,)+

(xm +....+ xm + xs)(T‘ +T°',B") = 0

Noticing that, for any row vector {E of dimension l>< m'n' , we have
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§((T' + T °' ,8‘) ® en’) = (¢‘(Im, ® e,,))(T" +T°'fl*), we write the above equation as,

((x, +x2 +...+x_, + x_,,,_, +....+ x,_,', )(1m, ®@,, ))(T" +r°',6') +

(xm, +....+x,_,,0 +x, )(T‘ +T°',6*) = 0.

(3.l.2l)

Since the generator matrix T‘ + T“. fl' is irreducible, equation 3.1.21 implies that

(x, + x2 + ...+ xs + xsm +....+ xS_,,, )(Im, ® en-) + (xmo + ....+ xS_,_0 + xs) = ap ,

where P is the steady state vector of the generator matrix T' +T°',B’ and a is a

scalar. Now, since xe =1 , it follows that a = 1- 1606",.

The Markov chain ‘P' and hence the Markov chain ‘P are stable if and only if

xA‘0e < xA‘2e (see Neuts [15]). From the structure of the matrices A"0 and /1'2 , it

follows that,

xA"Oe = (1 — xnenv)/I and

xA'2e = ((x, + x2 + ...+ xi + xml +  + xS_,,, )(Im, ® en’) + (xH,_0 + ....+ xS_,,0 + xs ))T°'

= (1- xoenv )pr°'

Hence the inequality xA‘0e < xA'2e reduces to

(1- x,,@,,.)2 < (1 - x,,e,,)pT°' .

That is, the Markov chain W is stable if and only if /1 < pT°' . We summarize the

above as:

Theorem 6.3.1

A necessary and sufficient condition for the stability of the Markov chain ‘P is

/1< pT°' .
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Note:

We notice that the above stability condition is the same as that for an

M I PH /1 queueing system, where the arrival process is Poisson with parameter

/land the sen/ice time follows a Phase-type distribution with representation

(T‘, ,8‘) of orderm'. Also, notice that the production process as well as the re­

order and maximum inventory levels have no influence on the stability of the

model studied. The proof of Theorem 3.1 reveals that barring customers from

joining the system when there is shortage of inventory is the reason behind this

phenomenon and hence characterizes the stability of such inventory systems.

6.3.2 Computation of the Steady State Vector

Next we compute the steady state vector of ‘P numerically. Let 7z'= (£0 ,1z',, 723 ,

...), be the steady state vector of ‘P , where F0 = Z00 = (irw (1),z:00(2),7r00(3));

300(1) = (rr00(O,l,0,*),1r00(0, 1,1, '),1r00(l,l,0,*),2r00(1, 1, 1, ¢),....,rr00 (s, 1, O,*),7rm(s,l,l 0))
I
9

100(2) = (1:00 (s +1, 0, 0),7r00(s +1, 1, 0, *),2rm(s +1,1, l,'),7tm(s + 2, 0, 0),7t00(s + 2,1,0, *),

7l'w(s +2, 1, l,¢),....,7r00(S —1,0,0),r:00(S — l,1,0,*),2r00(S -—1,1,0,~))

; 7roo(3) = 7Z'w(S,(},0). Here irw (z',1,0,*) is a row vector of dimension n and that of

7rw(i,l,l,¢) is n-l. For r Z l,

lira (0) = (7:,O(0, 1, 0,*),1r,0(0, 1,0, 0));

1,00)=(1I,0(l.l.0.O.*)JF,0(l,1.l.°,°),7r,0(2,1.0.°,*).fl',0(2.l.l,°,°), ----- .JI,0(S.l,0,°,*).1I,0(S.1 l.<> °))

;f!,0(2) = (1F,0(-Y + 1,0, 0, O)./‘!,0(8+ 1,1, 0, 0, *)JI,0(S + 1,1, 1,0, °),

zz',O(s+2,0,0,<>),2z',0(s+2,l,0,<>,*),2r,0(s+2,1,l,o,¢), ....

Jr,-()(S _—la09O9O)1fl",-Q(S —ls1a Os O9*)97rr0(S-1, 1919 Os .)) 7:;-0(3) = (Jr;-g(S909 09O)'

Here 1r,0(0,1,0,*) is a row vector of length n , 7r,0(0,1,0,') is a row vector of

length n-I, 2r,O(i,1,0,<>,*) is a row vector of length mn, rr,0(i,tl,1,<>,~) is a row
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vector of length m(n-I) , 2r,0(i,0,0,<>) is a row vector of length m , The

description of 717,1 is identical to that of 71',“ except for

71,1 = (1r,,(1), 2r,_,(2),1r,, (3)) and m—l1 coming in place of m .

The sub vectors 7;. of the vector it are given
byirf =-—7r0B00(A‘+RA2)_' RH, 1'21, whereRis the minimal non-negative

solution of the matrix-quadratic equation R2/-12 +RA, +A0 =0 (see Neuts [15]).

The sub V6Ct0I‘JZ'0iS first found as the steady state probability vector of the

generator matrix/la, -B00 (A, + RAQ) It Am and then normalized using the

condition 7Z'0e + Zirie = Jroe + 71', (I —- R)_l e =1. For computing the R matrix, we
:21

applied the logarithmic reduction algorithm by Latouche and Ramaswami [17].

6.4. System Performance Measures

1. The probability that server is busy

PSB = Z 1,0 e
r 2 0

2. The probability that server is on interruption

PSI = Z 2,, e
r 21

3. The expected inventory level when there are no customers in the system

“M”
R‘

M=K

"M"
7"!" DII- in

X

- - - s-1
EIL (0) = 'rr,,0(i, 1, 0,k) '1r00(i,l,l,k)+ Z i1r00(i, 0, 0)+'= = '= = i=s+l

S2rw(S,0,0)

4. The expected inventory level when there is at least one customer in the system

and server is busy
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1591[*4 :
Ms

IP43
rM3
_l§_41

1 .- 1
EIL(1) = '1r,,,(i,1,O,k,,k2)+ Z '1r,0(i,1,l,k,,k2)+_ = = = 1'21 = = =

‘1

X

U: ""
1 .3­3 ...

R­

N'­N

::,,,(i,0,0,1<,) + ZZvr,,,(s,0,0,k,)= = r21 k]=l

‘I

'x[‘4
9!

1
3*“

It *..

5. The expected inventory level when there is at least one customer in the system

and

sen/er is on interruption

S-1 m_l| P! - """ ­
EIL(2)= ZZZZi::,,(z,1,0,k,,1<,)+ '::,,(i,1,1,1<,,1<,)+rzl r=: k,=l x2=1 = = =

4”]
IM2
FMS
EM;

fi1M~hai »-I
JFMQI-I -S“§

— "" "I-I]
'14, 0, 0, 0, 1<,) + Z Z $1,, (s,0, 0, k,)= = 1'21 k|=l

6. The expected inventory level in the system

EIL= EIL (0) +EIL (1) +EIL (2)

7. The expected number of customers in the system

ENCS = Z r7r,0e+ Z rJZ',1er20 r20
8. The expected production switch ofl rate

X

PSWOF = :r,,,(s -1,1,0,-)0” + Z¢:,,,(s -1,1,0,-,-)6", ®U°
r=l

+21% (s -1, 1, 0, ~, -)@,,,_,I ®u° .
r=I

9. The expected production commencement rate

PCOM = Z¢:,,,(s + 1,0,0, k, )T°
r=I

10. The expected interruption rate of production
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14. Loss rate of customers due to zero inventory
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17. Probability that inventory level is greater than s,
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19. Fraction of time server is interrupted and production is in on mode
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20. Fraction of time production is in on mode with no customers in the system

llvlf
:[‘4=

vi

FPON/UC = 1rm(i, l,0,k) + ZZ1r00(i, l,1,k)- = i=0 k=1

152



6. 5 Numerical Illustration

21. Fraction of time production is in on mode with server active

F Pan / SA: FPOn - (F Pon/OC + F Pon/SI)

6.5. Numerical Illustration

In this section, we provide the results of the numerical experiments that

has been carried out for studying the impact of different parameters on various

system performance measures.

6.5.1 Effect of the Service Interruption Rate 5,
Intuitively, as the interruption rate 6, increases, the length of a service,

which is subject to interruptions, increases, which in turn leads to lesser number

of service completions and to increased queue length and loss rate. The increase

in the measures PSI, ENCS and LZI in Table 1 supports the above intuition. From

Table 1, one can observe that the sum of the two fractions PSB and PSI is

increasing, whereas the fraction PSB, which is the fraction of time, the server

remains active, is decreasing. This shows that the decrease in the server idle

probability is not in favor of the system. We think the possible decrease in the

number of service completions with increase in (Z could be the reason behind the

decrease in the server active probability PSB. The same reasoning can be

attributed to the decrease in the fraction of time the service process remains in

protected phases F SP. The decrease in the service completion rate as 5, increases,

leading to a slow depletion rate of inventory in the system, can be pointed out as

the reason for the increase in the expected inventory level EIL. In the Table, one

can see that EIL is above the production switch on level s and is increasing; this

can be pointed out as the reason behind the increase in the production switch of

rate PSWOF as well as the production commencement rate PCOM.
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6. 5 Numerical Illustration

Table 1: Effect of the Service Interruption Rate 5, on Various Performance

Measures

l=3, l1=3,n=7,m=7, _u =25, ,u, =35,s=4,S=1O,7t=2, 52:2,

83=2,8.=31 F T . .
]._ 77 mw _ 7 *‘ 2 i.  7. . .2

6.5.2 Efiect of the Service Repair Rate 52

When the repair rate increases, one would expect faster service

completions, which leads to decreased queue length and loss rate. The decrease in

the measures PSI, ENCS and LZI in Table 2 supports the above intuition. In

contrast to the case of increase in the interruption rate 5, , here the server active

probability PSB and the server idle probability are increasing. For a moment one

may suspect that the increase in the server idle probability is not in favor of the

system; however, a closer look at Table 2 reveals that the increase in the sewer

idle probability = 1-PSB-PSI is due to the high decrease in the fraction PSI as

compared to the increase in the fraction PSB. The increase in the server active

probability suggests increasing the repair rate as a remedy to interruption;

however to what extent one can achieve this may depend on the particular

situation at hand. Faster recovery from interruption can be thought of as the

reason behind the slight increase in the fraction of time the service process is in

protected phases F SP.
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6. 5 Numerical Illustration

The decrease in the expected number of customers as well as in the loss

rate of customers points to a faster depletion of inventory in the system. However,

the Table shows a narrow increase in the expected inventory level EIL. This can

be thought of as due to an increase in the production by a narrow margin as

indicated by the narrow increase in the fraction F Pon.

Table 2: Effect of the Service Repair Rate 62 on Various Performance

Measures

l=3,l1=3,n=7,m=7, ,0=2s, p,=35,s=3,s=s,;.=2, 0 =2, 03 =2,

64 = 3

<52 PSB PSI EIL ENCS F-SP PSWOF ; PCOM ‘ LZ! FP071

. 1.4 0. 863462 0.2967 4.000200 __0.57077 0.10077l 0.00740 0.007401 0.102005 0. 764012

‘ 1.0 Q. 365842 0.261316 4.28675 2. 70606 0.156791 0.08778 0.087776 0.170786 0. 769015

1.04 0.367506 0.23333 7 4.29&384 80.100700 0.157502 0.00777 00.007774 0.10245 0. 772513

2 _ 0.388702 0.210000 4.305717 1.862118 0.150015 0.00702 " 0.00702 0.150404 0. 775026

2.2 7 0. 3695 75 0.191987 _4. 310007 1.641239 0.15839 0.0874 .l0.087398l 0.152119 0. 776863

2.4 0. 3 70225 0. 1 76297 l 4.012004 1.476432? 0.158668 _ 0.08715 0.087152 I 0.148873 0. 778227

6.5.3 Effect of the Production Interruption Rate 53

As the production becomes slower due to an increase in the interruption

rate, we expect a decrease in the measures like expected inventory level EIL,

production switch off rate PS WOF and the production commencement rate

PCOM. Table 3 supports these intuitions. The increase in the fraction FPon can

be seen to be due to an increase in the length of the production process brought by

the increase in the interruption rate. The decrease in the expected inventory level

leads to an increase in the loss rate LZI. The possible decrease in the number of

service completions due to an increased loss rate can be seen to be the reason

behind the decrease in the server active probability PSB. The decrease in PSB can
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6. 5 Numerical Illustration

be thought of as the reason for the slight decrease in the server interruption

probability PSI and hence this decrease in PSI is not in favor of the system under

study. Again the decrease in PSB can be thought of as the reason behind the

narrow increase in the expected number of customers in the system.

Table 3: Effect of the Production Interruption Rate 6, on Various
Performance Measures l= 3, l1= 3, n = 7, m = 7, p = 25, ,u, = 35, s = 3, S = 8,

7t=2, 61:2, 62:3, 64=2
E11.53 PSB ENCS lFsP PSWOF PCOM LZ1 FPONPs1

1.4 0.36876 0.14048 4.319611 1.177674  0.15604 0.09197 0.091972 +0.156195 0. 7664799
1.6 0.36298 0.138018 4. 1462.56 1.1794 0. 08233 0. 082324 0. 188505 0.791344

1.8 0.355355 0. 1%373 3.96877 iy 1.17886 , 0.15295
T.‘ .

0.0791; Q-.QZ3l~.'3.4 0.223219 0.814541

y 2 Q-. 0. 132565 3. 788857 1.179261 0.149196 0.06471 0.064706 026006 0.99601;
V 2.2 0. 34024 0.129615 3. 608022 1 1.179601 0.145617 91955963 0.296799 - 0666723
‘+_
, 2.4 0.332188 0.126547 3.42779 i 1.179879 0.04991 0.049906 0.339057 0.873673661

6.5.4 Effect of the Production Repair Rate 6,

As the production repair rate 54 increases, the average span of production

process being intenupted decreases and hence the production rate increases. The

increase in the production switch off rate PS WOF as well as the expected

inventory level EIL and the decrease in the fraction of time that the production

process is in on mode FPOn can be seen to be due to an increase in the overall

production rate. The same reasoning can be applied to explain the increase in the

production commencement rate PC OM. Since the expected inventory level

increases, the expected loss rate LZ1 of customers decreases. This decrease in LZ1

can be thought of as the reason for the slight increase in the expected number of

customers in the system ENCS. Note that in the case of increase in 52 , which was

discussed earlier, the decrease in the loss rate does not lead to an increase in
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6. 5 Numerical Illustration

ENCS. Here, one can notice that in the case of increase in 52, it is the faster

service completion, that leads to a decrease in the number of customers and an

increase in the service completion rate can’t be expected in the case of increase

in 54. The increase in the fraction of time PSB as well as PSI may be attributed to

the increase in ENCS.

Table 4: Effect of the Production Repair Rate 64 on Various Performance
Measuresl=3,l1=3,n=7,m=7, ,u=25, ,u‘=35,s=3,S=8,7t=2, 6, =2,
6,=s,6.=2

1 64 PSB
y . i ­
PS! f Ell. sues FSP H PSWOF PCOM ;LZ1 FPON

1.4 0.314368
.._. ‘. . . _.

1

0.179639 3.259093; 1.85844 0.134729 0.04832 |i_0.048318 0.428 149 0.676677
1.6

i 0.327259 _ 0.187006? 3.476104 1.860745 0. 140264 0.06462 V 0.05482 ___0. 363696 0.859958
1.8 0.337441 8 0.192624 A 3.666436  1.662656 0.144616 0.06083 0.0606251 0.312766 i_0,64-1474

|_g2 0.345574 0.197471] 3.612373 1.664207 0.148103 0.06635 0.066347 0.272124 0. 83023
2.2 0.352143 0.201224 1 3.943064 i 1.666446 0.150918 0.0714 . 0.0714 0- 239281 0.817153

2.4 0.357505 80.204266 _4.064663' 1.666421 pi 0.163213 0.07602 0.076017 0.21247 0.805187

6.5.5 Effect of the Maximum Inventory Level S

When the maximum inventory level S increases, it takes more time for

switching ofi“ the production process, once it is switched on. This is reflected as

the decrease in the production switch off rate in Table 5. The decrease in the

production commencement rate PCOM and the increase in the fraction FPon have

the same reasoning. Since the production remains in on mode for a longer time,

the expected inventory level EIL increases with increase in S. The presence of

sufficient inventory in the system leads to a decrease in the loss rate LZI and also

to an increase in the server active probability PSB. The increase in the server

interruption probability PSI is due an increase in PSB. In Table 5, it can be seen

that the expected number of customers is decreasing in spite of a decrease in the

loss rate. This may seem contradictory with what we said in the case of increase

in the production repair rate, 54. We point out the significant increase in the
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expected inventory level with an increase in the maximum inventory level,

compared to the increase when 64 increases as the reason for this contradiction.

Table 5: Effect of the Maximum Inventory Level S on Various Performance
Measures

l=3,l1=3,n=7,m=7, p=25,;1,=35,s=3,2t=2, a=2, 1g=3,

53=2,04=3

.8 I PS8 l PSI 51¢ ENCS FSP . PSWOF 1 PCOM 1.211 7 l .
9 5 0.374236 I 0.142566 _ 4.861727 1.1776495 0.160387 0.070329  0.070329 0.128815

|— I. _ . . 4_10 0.37007 0.143493 5._4190lV1.170907i 0.101429 0.05090 0.05090 0.11005. 0791774
11 0.370755 0.144200 5.97940 1.170425 _0_.102320_-0.050000_ 0.050000 0.100222 079010
12 M 0.300555 0.144973 g 0.53001 1.1759_47-0.100091§ 0.044205 0.044205l 0.09722 07999441 I 1 ‘ '_" T’

. 13_ 0.90212 0.145509; 7.00504 ‘ 1.175530 5.103705 50.009100 0.0391071 0.009399 0003232.. _ .__
14- » 0.303407 0.14509 7.0290401 1.175109 0.104051- 0.035112 0.035112 0.002502 0000107

6.5.6 Effect of the Re-Order Level s

As the re-order level s increases, production switch 0n’s and switch off ’s

occur more frequently and hence the increase in the measures PCOM, PSWOF,

FP0n and EIL are expected. Increase in the expected inventory level can be

thought of as the reason for decrease in the loss rate LZI as well as the increase in

the server busy probability PSB. As in the case of the increase in the maximum

inventory level S, here also the expected number of customers is decreasing

despite a decrease in the loss rate. The same reasoning as in the case of S can be

given in this case also.
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Table 6: Effect of the Re-Order Level s on Various Performance Measures

l=3,l1=3,n=7,m=7, ,u=25, ,u,=35,S= l5,)t=2, 6, =2, 52=3,

6,=2,6,=3

C0

PS8 1 PSI EIL ENCS FSP PSWOF PCOM LZ1 FPon

O)

i _0.66466610.146546 6.16762; 1.174667 0.164666 0.061764 0.061764 0.076552" 0.606666

-LU1

0.666767? 0.147649 6.462661 11 1.1744407 0.165765 0.066656 ,,0,0666§6, 0.066061 0.616045
0.6665261 0.14601 5 6. 712697, 1.174057 0.166512 0.066467 0.066466 0.057656 0.6167041 1

05

0.669965 0.1465651 6.999142  1.176766 0.167166 0.069626 0.069626 0.050075 0.619766

\l

,0..'.j’Q1_2_1,.f?,_ 0.149033 9.280952} 1.173458 0.167662 0.044108 0.044108 0.043936 0.822347

6.5.7 Effect of the Number lof Protected Phases of the Production Process

As the number! of protected phases in the production process increases,

since the harm due to interruptions is reduced, production becomes faster. Recall

that the production repair rate 54, when increased, accelerates the production

process by reducing the adverse effect of interruption. Hence, as l increases, we

expect a similar impact on the performance measures as in the case of increase in

the production repair rate 6'4 . Comparison of Tables 4 and 7 shows that, the

expected number of customers, ENCS is the only measure, which shows an

opposite behavior in the two tables. Precisely as 5,, increases, ENCS increases

and when I increases, ENCS shows a narrow decreasing nature. As we pointed out

in the case of the parameters S and 54 , here also the comparatively high inventory

level in the case of increase in l as compared to the increase in 54 could be the

reason for the above phenomenon.
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Table 7: Effect of the Number lot‘ Protected Phases of the Production

Process on Various Performance Measures

z,=3,n=0,m=7,,0=4s,;1.=45,.¢=3,s=s,x=2, (i=2, 02=3,

1g=2,04=2

P00 at _Ps1 5 011. _ 1_ENCS FSP _ PSWOF P0001 p  111 FRON p pl

T.‘

0.201501 1 0.11107l 4.01740 0.7550001 0.124055 ' 014L702  0.141701; 0.125000 0.042002‘

C0

l 0.207140 0.113100 _4.004700 2 0.755004 J 0.127340 5+ 0.101021 0.101010 _0.000702  0.501200.
i

1

-A

1 .__ 0.303504 it 0.114003} 4.00704 0.7550775 0.120251 0.101432 0.101432I 0.0011001 0.540007 up
l

U1

A 0.305052

N0)

0.307001
J 0.300033

., I . . . I ‘_ .. , _.0.110211 L 5.23527  0.755422 E 0.100730  00.200702  0.200702 0.0300357 0.401104
5 0.117212- 0.30450 10.755122 0.131000 0.210005 0.210305 0.022041  0.440453

0.117955 3 5.50981 0.75479] 1 0.132699 A; 0.237032 0.237032 I 0.009491 A 0.398101

6.5.8 Effect of the Number I, of Protected Phases of the Service

Process

As the number of protected phases of the service process increases,

intuitively, service becomes faster, which leads to a decrease in the expected

number of customers ENCS as well as in the server interruption probability PSI.

Table 8 supports the above intuition. Notice that in Table 8, the expected

inventory level is close to 5.5, whereas the re-order level is 3. Since there is

sufficient inventory, the customer loss rate is not significant. This could be

thought of as the reason behind the almost unchanged values for the performance

measures PSB, PCOM, PSWOF and FP0n.

Table 8: Effect of the Number ll of Protected Phases of the Service Process on

Various Performance Measures

l=3,n=7,m= ll, ,u=45, ;1,=45,s=3,S=8,7t=2, 51:2, 52:3,

0,=2,04=3
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.!__Q)?‘

PS8
0.484998

PS1 rm
0._23515_ g

51!.-- .  ENCS
5.536363 2.3564

FSP

0.71%?
I ;_

_l.

P OF
0.220386

SW PCOM

0. 220385
I21

0.015909

FPON

0.446394

-A

0.4641974 0.205746 5.56041 2.02771 0.176354 0.2006 0.016011 0.446371

U1

0.484954 0.176347 5.54655  1.7546 0.20433
l

0.220061

0.219788 0.219788 0.016093 0.446353

Q-43494 0.146951 I 5.5554 7 1.52402 0.264513 0.2 19569 0.2 19569 0.016152‘ 0.44634

N0)

0.484932 0- 1.1.7559; 5.532303 i 1.325333 0.308593 0.219466 0.219406 0.016166 E 0.446333

Q

0.088169 | 5.546095 1.153372 _,__0.352677 0.219299 0.219299 0.016188 A; 0.446332__

6.5.9 Cost Function

For studying the optimality of the parameters like the re-order level s, the

maximum inventory level S, the number of protected phases of the service as well

as the production processes, we construct the following cost function

Cost = CI*EIL + CN *EN CS + CIP*EIRP + CI S *EIRS + CPON*FPON +

CZ *LZI + CPPR*F PP + CSPR*FSP + CPRR *FPRS + CSRR*FSRS +

CPCOM*PCOM,

where CI is the inventory holding cost per item per unit time, CN is the holding

cost per unit time per customer, CIP is the cost per unit time per interruption, CIS

is the unit time cost incurred due to server interruptions, CPON is the unit time

cost incurred for running the production process, CZ is the cost incurred for the

loss of customers due to shortage of inventory, CPPR is the unit time cost

incurred due to protection of the production process, CSPR is the unit time cost

incurred due to the protection of the service process, CPRR is the unit time cost

incurred due to repair of the production process, CSRR is the unit time cost

incurred due to the repair of the service process and CPCOM is the unit time cost

for switching on the production process. Using this cost function, the optimality

of the parameters s, S, I and I1 has been studied. Following are a few illustrations.
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6. 5 Numerical Illustration

6.5.9.1 Optimality of the Re-Order Level s

Table 6 shows that loss rate LZI and the expected number of customers,

ENCS are the only measures that shows a decreasing nature, which are involved

in the cost function, as the re-order level increases. Therefore unless we select the

cost CZ and CN so as to capture this decrease, the cost function will be linearly

increasing. Figure '1 (a) shows that by taking a comparatively high cost CZ, optima]

value of s is 5 and in Figure l(b) the cost curve shows a linearly increasing nature

suggesting s=2 as the optimal value.

Figure 1(a): Effect of the Re-Order Level s on the Cost Function

l=3,n=7,l1=3,m=7,k=25,lq=35,S=1'/,l= 1.2, 5 =2, 52 =1, 53 =2.5,

5,, = 1.5

CN=lO0O, CI=l0O, CPPR=7SO, CPRR=750, CSPR=75O, CSRR=75O,
CPON=500, CPCOM=500, CIP=500, CIS=500, CZ=17000

COST F F F
_ _ ,_ _g i 3500 _ ________________________________  ................................................................................................  ............ ___;

-l>~0OI\JIO

,, 9504.491 1
+ g  3550 T____ .............................................................................9 9999.797  _ ,79974.475 \\ //| \

CD \l CD OI

cosr

§

. I‘.

. 9977.209 ‘ 3-*9  91 9999.092   /~
J _    3400  ........................................._9 99451229  99 T10__ 9499.021 1 ° 5 ‘°
11,1 49591495 4

_ F

i912 y 9579.579

Figure 1(b): Effect of the Re-Order Level s on the Cost Function

l=3,n=7,l;=3,m="-7,k=25,k1=35,S= l7,7t= 1.2, 5, =2, 52:1, 5, =2.5,

5, =15
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CN=200, CI=300, CPPR=200, CPRR=400, CSPR=I00, CSRR=200,

CPON=250, CPCOM=I0O, CIP=250, CIS=300, CZ=I35O

COST 500., , _ ,,,, at F
3287,48  450° - .....................................................................  _________.

H L 3413_-14 [ 4000  2 HHAJF’/tr’)
T 7 1 L 8 25(3) ,;' .    _ .................._g 3826.6 aw L

3972.2? 2 ‘5°° T i1 1000 +4119.32 F we is

oo§io>,_,,4=-comm

4266,22 l 0  l 1 <2‘I9 pH10 i4411.a1t ° 5 ‘° *5
7 12 j 4695.78 l_
11 i_4555.92 '   l

6.5.9.2 Optimality of the Maximum Inventory Level S

Table 5 shows that as the maximum inventory level S increases, the

measures which show a decreasing nature are ENCS, PSWOF, PCOM and LZI.

But the magnitude of the above decrease is small as compared to the increase in

the measures like EIL. Figure 2(a) shows that particular choice of high costs

corresponding to the measures which show a decreasing nature, an optimal value

for the maximum inventory level is attainable. However, if we use the same costs

as for Figure l(b), we get a linearly increasing cost function as in Figure 2(b).

Figure 2(a): Effect of the Maximum Inventory Level S on the Cost Function

l=3,n=7,l1=3,m=7,k=25,k1=35,s=3,7t= 1.2, 6] =2, 52:1, é;=2.5, 54
= 1.5

CN=l00O, CI=200, CPPR=500, CPRR=1000, CSPR=500, CSRR=500,
CPON=5000, CPCOM=5000, CIP=500, CIS=1000, CZ=lOOOO
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6. 5 Numerical Illustration
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6.5.9.3 Optimality of the Number ll of Protected Phases of the
Service Process

Figure 3(a) shows an optimal value for the number of protected phases of

the service process for the selected costs, whereas if we use the costs as for Figure
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6. 5 Numerical lllustration

1(b), the cost curve shows a decreasing nature suggesting that to attain the optimal

cost, we have to protect all the service phases.

Figure 3(a): Effect of I1 on the Cost Function
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6. 5 Numerical Illustration
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5.9.4 Optimality of the Number I of Protected Phases of the Production
Process

Figure 4(a) shows an optimal value, for the costs selected, for the number

of phases to be protected for the production process; however, if we take the costs

as for Figure 2(a), the cost function decreases, which suggests that protecting all

the production phases leads to the optimal value of the cost function.

Figure 4(a): Effect of I on the Cost Ftmction

11:3, n=-14, m=6, K=25, K;=30, s=3, S=8, /i=1.2, 61:2, 62:1, 53=2.5, 64=1.5

CN =200, CI =300, CPPR=200, CPRR=400, CSPR=I00, CSRR=200, CPON

=250, CPCOM=100, CIP =250, CIS =300, CZ=1350
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6.6 Conclusion

6.6 Conclusion

We analyzed an (s, S) production inventory system, where the processing of

inventory requires some random amount time. Erlang distributions are used to

model the service as well as the production processes, which are subject to

multiple interruptions. For reducing the adverse effect of the interruptions, the

concept of protecting certain phases of the service as well as the production

process from interruption has been introduced. We further assumed that no

customers would be allowed to join the system if there is no inventory in the

system. This assumption lead us to derive an explicit expression for stability

condition, which even holds if one assumes general PH in place of the assumed

Erlang distributions.

In Studies like [3, 4] on inventory systems where customers are barred to join

the system when there is shortage of inventory, the authors were able to show that

the stability of such inventory systems is not affected by the inventory parameters

and also that their steady state distributions can be obtained in product form.

However, in these studies, the underlying distributions were all exponential. The

proof, which we have given for the stability of the system, can be used to

characterize the stability of the above said inventory systems with more general

underlying distributions. However, we have not yet able to check whether some

kind of product form expression for the steady state distribution is possible, which

will be really interesting if one can do that.
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6.7 Appendix I

I. Transitions leading to an increase in the level:

Transitions due to arrival of customers

From L(0,0, j,1, jl) —-> L(l,l, j, 1, jl) is governed by

/3®/11n_%,; 1$j£S—1;jl=0,l

From L(0,0, j,0) —> L(l,1, j,0) is governed by /1,3; s+l$ j S S

From L(i,1)u L(i, 2) -> L(i + 1,1) u L(i +1, 2) is governed by /ll (note that these

are diagonal transitions)

II. Transitions leading to a decrease in the level:

Transitions due to service completion

L(l,l,j,1,j,)—>L(0,0,j-l,l,j,) is govemed by T°<>:<>1,,_%,; isjss-1;]; =0,1

L(1,1, s + 1,0,0) —-> L(0,0, s, 1,0) is govemed by To ® a (note that the production

process needs to be switched to on mode the moment such a transition occurs)

L(l,1,j,0,0)-—> L(0,0,j-1,0,0) is governed by T°; s+ 2 5 j 5 s

For i 2 2 ,

L(i, 1,1, 1. 1,) -> L(i -- 1, 0, 0, 1, 1,) is governed by T“ ® 1,,_¢,.M,; j, = 0,1

L(i,1, j, 1, 1,) -> L(i—-1,1, j-1,1, 1,) is govemed by

T" ®,6®1n_,.M,; 2s. j ss-1;)‘, =0,1

L(i,l,s+1,0,0) -> L(i—1,l,s,l,0) is govemed by T° ® ,B®a

169



Appendix I

L(i,l, 1,0,0) -> L(i-- 1,1,_;- 1,0,0) is governed by T“ ®,6; 8+2 s jg s

III. Transitions where no level change occurs:

IH(a) Transitions due to a production completion

L(0,0,j,l,0) -> L(0,0,j+l,1,0) is governed by 11° ®a; 05 j ss-2

L(0, 0, s - 1,1,0) -> L(0, 0,5,0, 0) is govemed by 0°

L(0,0, 1,1,0) -> L(0,0,j+l,1,0) is govemed by U° ®a; 0s j s s-2

L(i,0, 0,1,0) —> L(z',l,1, 1,0) is governed by ,B®U° ®a; 1' 2 l

L(i,l',j,l,0) —-> L(1',I',j+1,1,0) is govemed by

1m__M®u°®a;1z1;1'=1,2; l$j$S—2

L(i,["S —l,1,0) —> L(i,1',S,0,0) is governed by Im_¢,;_J,,l ®Uv; 1'21; 1': 1,2

III(b) Transitions due to a production interruption

I

L(0,0,j,l,O)—>L(0,0,j,1,l) is governed by 63E; Oé jSS—1, where E=[ 3]

L(z',0,0, 1,0) -—> L(i,0,0,1,1) is governed by 53E; £21

L(i,l', j, 1, 0) —> L(i,l', j, 1, 1) is govemed by

I ®5E;i>l;l'--l,2;l<j<S—l177-621"! 3 — _. 1 1

IH(c) Transitions due to completion of repair of an interrupted production

process

L(0,0,j,l,1) —> L(0,0,j,l,0) is governed by 64e®a; 05 j SS--1
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L(i,0,0, 1,1) —-> L(i,0, 0,1,0) is governed by 54e®a; £21

L(i,l', j,1,l) —> L(i,l', j,1,0) is govemed by

Im_5U,,l ®54e®a; 1'21; l'=-1,2; 15 j$S—l

IH(d) Transitions due to a service interruption

L(i,l.,j,1,j,)——>L(i,2,j,l,j,)is govemed by5,I§‘:]; 1'21; 1$j£S-1; j, =O,1,

where E J.‘ = [I(m_m(n_(W) O]

L(i,l, 1,0) -> L(i, 2, j, 0) is governed by 5, (i.=I‘° )T ; :21; S +1 s j s s, where

E° =[1(,,,_¢1, 0]

IH(e) Transitions due to completion of repair of an interrupted service

L(i,2,j,l,j,)—+L(i,1,j,1,j,)is governed by52l3fj|; :21; l$jSS—1;j, =0,1

L(i,2,j,0) —-> L(i,l,j,O) is governed by 52E°; izl; s+1S jSS
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CONCLUSION

In this thesis we have developed a few inventory models in which items

are served to the customers after a processing time. This leads to a queue of

demand even when items are available. In chapter two we have discussed a

problem involving search of orbital customers for providing inventory. Retrial

of orbital customers was also considered in that chapter; in chapter 5 also we

discussed retrial inventory model which is sans orbital search of customers. In

the remaining chapters (3, 4 and 6) we did not consider retrial of customers,

rather we assumed the waiting room capacity of the system to be arbitrarily

large. Though the models in chapters 3 and 4 differ only in that in the former

we consider positive lead time for replenishment of inventory and in the latter

the same is assumed to be negligible, we arrived at sharper results in chapter 4.

In chapter 6 we considered a production inventory model with production time

distribution for a single item and that of service time of a customer following

distinct Erlang distributions. We also introduced protection of production and

service stages and investigated the optimal values of the number of stages to

be protected. In all problems investigated closed form expressions for the

system stability were derived. Our conclusions in each chapter are provided

with numerous illustrations.
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