
Ph.D Thesis

An Error-Localization, Validation and Optimization Tool
for Embedded Code Augmentation: an Architecture

Oriented Approach

Submitted to
Cochin University of Science and Technology

In partial fulfillment of the requirements for the award of the degree of

Doctor of Philosophy

by
MARIAMMA CHACKO

Under the guidance of

Dr. K. POULOSE JACOB

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF TECHNOLOGY

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
COCHIN, INDIA 682 022

August 2011

ii

An Error-Localization, Validation and Optimization Tool for
Embedded Code Augmentation: an Architecture Oriented Approach

Ph.D Thesis in the field of Embedded Systems

Author

MARIAMMA CHACKO
Department of Computer Science
Cochin University of Science and Technology
Cochin,
Kerala,
India 682 022
Email: mariamma@cusat.ac.in

Research Advisor

Dr. K. POULOSE JACOB
Professor
Department of Computer Science
Cochin University of Science and Technology
Cochin,
Kerala,
India 682 022
Email: kpj@cusat.ac.in

August 2011

mailto:mariamma@cusat.ac.in
mailto:kpj@cusat.ac.in

iii

“Yea, though I walk through the valley of the
shadow of death, I will fear no evil: for thou art
with me; thy rod and thy staff they comfort me”.

Holy Bible, Psalms: 23:4

iv

v

Lovingly dedicated to my parents,
Husband

and daughters

vi

vii

CERTIFICATE

This is to certify that this thesis entitled “An Error-Localization,

Validation and Optimization Tool for Embedded Code Augmentation: an

Architecture Oriented Approach” is a bona fide record of the research work

carried out by Mrs. Mariamma Chacko under my supervision in the

Department of Computer Science, Cochin University of Science and

Technology. The results presented in this thesis or parts of it have not been

presented for the award of any other degree(s).

Dr. K. Poulose Jacob

(Supervising Guide)
Professor

Department of Computer Science
Cochin University of Science and Technology

Cochin 22
22-08-2011

viii

ix

DECLARATION

I hereby declare that the work presented in this thesis entitled “An

Error-Localization, Validation and Optimization Tool for Embedded Code

Augmentation: an Architecture Oriented Approach” is based on the original

research work carried out by me under the supervision of Dr. K. Poulose

Jacob, Professor, in the Department of Computer Science, Cochin

University of Science and Technology. The results presented in this thesis

or parts of it have not been presented for the award of any other degree.

MARIAMMA CHACKO

Cochin 22
22-08-2011

x

xi

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my research guide Dr.
K. Poulose Jacob, Professor & Head of the Department, Department of
Computer Science, Cochin University of Science and Technology for his
guidance, support and timely advice. I could not have completed the thesis
without his encouragement and valuable suggestions.

My heartfelt debt and thanks goes to my teachers and former heads of
the department of Electronics Prof. (Dr) K. G. Nair, Prof. (Dr) C. S. Sridhar
and Prof. (Dr) K. G. Balakrishnan, for their advice and encouragement
during the past years.

I would like to acknowledge the support provided by all my
colleagues in the department of Ship Technology.

I thank the entire library, technical and administrative staff of the
department of Computer Science as well as the department of Ship
Technology for their co-operation and support.

My special thanks to the doctors who have treated me during my
adverse health conditions and to my friend Mrs. Santha Roy for her love and
companionship during these years.

Let me also remember at this moment the co-operation provided by
my daughters during these years.

I would like to thank all of the people who have helped, encouraged and
supported me directly or indirectly during the period of my research work.

Finally, and most of all, I would like to thank my husband James for
his love, support, guidance and understanding without whom completion of
this dissertation would not have been possible.

xii

xiii

ABSTRACT

An Error-Localization, Validation and Optimization Tool
for Embedded Code Augmentation: an Architecture

Oriented Approach

Embedded systems are usually designed for a single or a specified set of

tasks. This specificity means the system design as well as its hardware/software

development can be highly optimized. Embedded software must meet the

requirements such as high reliability operation on resource-constrained

platforms, real time constraints and rapid development. This necessitates the

adoption of static machine codes analysis tools running on a host machine for

the validation and optimization of embedded system codes, which can help

meet all of these goals. This could significantly augment the software quality

and is still a challenging field.

This dissertation contributes to an architecture oriented code validation,

error localization and optimization technique assisting the embedded system

designer in software debugging, to make it more effective at early detection of

software bugs that are otherwise hard to detect, using the static analysis of

machine codes. The focus of this work is to develop methods that automatically

localize faults as well as optimize the code and thus improve the debugging

process as well as quality of the code.

Validation is done with the help of rules of inferences formulated for the

target processor. The rules govern the occurrence of illegitimate/out of place

instructions and code sequences for executing the computational and integrated

xiv

peripheral functions. The stipulated rules are encoded in propositional logic

formulae and their compliance is tested individually in all possible execution

paths of the application programs. An incorrect sequence of machine code

pattern is identified using slicing techniques on the control flow graph

generated from the machine code.

An algorithm to assist the compiler to eliminate the redundant bank

switching codes and decide on optimum data allocation to banked memory

resulting in minimum number of bank switching codes in embedded system

software is proposed. A relation matrix and a state transition diagram formed

for the active memory bank state transition corresponding to each bank

selection instruction is used for the detection of redundant codes. Instances of

code redundancy based on the stipulated rules for the target processor are

identified.

This validation and optimization tool can be integrated to the system

development environment. It is a novel approach independent of

compiler/assembler, applicable to a wide range of processors once appropriate

rules are formulated. Program states are identified mainly with machine code

pattern, which drastically reduces the state space creation contributing to an

improved state-of-the-art model checking. Though the technique described is

general, the implementation is architecture oriented, and hence the feasibility

study is conducted on PIC16F87X microcontrollers. The proposed tool will be

very useful in steering novices towards correct use of difficult microcontroller

features in developing embedded systems.

xv

Abstract xiii
List of Tables xix
List of Figures xxi
Abbreviations xxiii

Chapter 1 INTRODUCTION ... 1-15

1.1 Background and Motivation 2

1.1.1 Reliable Software 3

1.1.2 Redundant Codes 4

1.1.3 Software Constraints 5

1.2 Embedded System Development 6

1.2.1 Real Time Systems 9

1.3 Validation and Optimization Techniques 10

1.4 Programmable System on Chip (PSoC) 12

1.5 Thesis Roadmap 13

1.6 Summary 15

Chapter 2 REVIEW OF DEBUGGING AND OPTIMIZATION TECHNOLOGIES..................... 17-69

2.1 Embedded System Constraints 18

2.2 Software Development Tools 21

2.2.1Embedded Software 23

2.2.1.1 Assemblers and Compilers 25

2.2.1.2 Dependable Software 28

2.2.1.3 Emerging Technologies 30

2.2.2 Fault Localization Techniques 30

2.2.2.1 Source Level Debugger 34

2.2.2.2 Program Slicing 36

2.2.2.3 Static Analysis Tools 39

2.2.2.4 Static Analysis of Executables 42

xv

Abstract xiii
List of Tables xix
List of Figures xxi
Abbreviations xxiii

Chapter 1 INTRODUCTION ... 1-15

1.1 Background and Motivation 2

1.1.1 Reliable Software 3

1.1.2 Redundant Codes 4

1.1.3 Software Constraints 5

1.2 Embedded System Development 6

1.2.1 Real Time Systems 9

1.3 Validation and Optimization Techniques 10

1.4 Programmable System on Chip (PSoC) 12

1.5 Thesis Roadmap 13

1.6 Summary 15

Chapter 2 REVIEW OF DEBUGGING AND OPTIMIZATION TECHNOLOGIES..................... 17-69

2.1 Embedded System Constraints 18

2.2 Software Development Tools 21

2.2.1Embedded Software 23

2.2.1.1 Assemblers and Compilers 25

2.2.1.2 Dependable Software 28

2.2.1.3 Emerging Technologies 30

2.2.2 Fault Localization Techniques 30

2.2.2.1 Source Level Debugger 34

2.2.2.2 Program Slicing 36

2.2.2.3 Static Analysis Tools 39

2.2.2.4 Static Analysis of Executables 42

xv

Abstract xiii
List of Tables xix
List of Figures xxi
Abbreviations xxiii

Chapter 1 INTRODUCTION ... 1-15

1.1 Background and Motivation 2

1.1.1 Reliable Software 3

1.1.2 Redundant Codes 4

1.1.3 Software Constraints 5

1.2 Embedded System Development 6

1.2.1 Real Time Systems 9

1.3 Validation and Optimization Techniques 10

1.4 Programmable System on Chip (PSoC) 12

1.5 Thesis Roadmap 13

1.6 Summary 15

Chapter 2 REVIEW OF DEBUGGING AND OPTIMIZATION TECHNOLOGIES..................... 17-69

2.1 Embedded System Constraints 18

2.2 Software Development Tools 21

2.2.1Embedded Software 23

2.2.1.1 Assemblers and Compilers 25

2.2.1.2 Dependable Software 28

2.2.1.3 Emerging Technologies 30

2.2.2 Fault Localization Techniques 30

2.2.2.1 Source Level Debugger 34

2.2.2.2 Program Slicing 36

2.2.2.3 Static Analysis Tools 39

2.2.2.4 Static Analysis of Executables 42

xvi

2.2.2.5 Static Analysis of Embedded Software 47

2.2.2.6 Dynamic Analysis 48

2.2.3 Debugging Systems and Tools 50

2.2.3.1 Testing on Host Machine 52

2.2.3.2 Simulator 53

2.2.3.3 Oscilloscopes and Logic Analyzers 53

2.2.3.4 In-Circuit Emulators 54

2.2.3.5 On-Chip Debuggers 55

2.3 Hardware and Software Integration 56

2.4 Control Flow Checking 58

2.5 Optimization 60

2.5.1General Optimizations 62

2.5.2 Processor Specific Optimizations 64

2.5.3 Interprocedural Optimizations 65

2.5.4 Profile-Guided Optimizations 66

2.5.5 Optimization of Bank Switching Instructions 66

2.6 Summary 69

Chapter 3 METHODOLOGY... 71-78

3.1 Program Partitioning 71

3.2 Rule Formation and Codification 73

3.3 Validation and Fault Localization 74

3.4 Optimization 75

3.5 System Realization 76

3.6 The Development Support Systems 77

3.7 Summary 78

Chapter 4 CODE VALIDATION AND ERROR LOCALIZATION.. 79-120

4.1Validation Technique 81

xvii

4.1.1Background 82

4.1.2 Applicability in RISC Architectures 87

4.1.3 Control Flow Graph Construction 87

4.1.4 Codification of Rules 90

4.1.5 Analysis Technique 92

4.2 Tool Chain 96

4.3 Feasibility Study on PIC16F87X MCU 97

4.4. Code Validation and Error Detection 99

4.4.1Fault Localization 99

4.4.2 Fault Diagnosis 109

4.4.2.1 Discrepancy in the Opcodes or Operands 109

4.4.2.2 Illegal Opcodes 110

4.4.2.3 Missed Instructions 112

4.4.2.4 A Deadlock 116

4.4.3 Error Correction 117

4.5 Results and Discussions 118

4.6 Summary 120

Chapter 5 CODE OPTIMIZATION .. 121-150

5.1. Motivation and Approach 123

5.2. Detection of Redundant Bank Switching Codes 126

5.2.1Relation Matrix Formulation 128

5.2.2 Realization 132

5.2.3 Tool Evaluation 136

5.3 Optimization Technique 141

5.3.1 Variable Partitioning 141

5.3.2 Optimum Memory Bank Allocation 143

5.4 Redundant I/O port Configuration 147

xviii

5.5 Redundant ADC Channel Selection 148

5.6 Software Realization 149

5.7 Summary. 150

Chapter 6 CONCLUSIONS ... 151-159

6.1Contributions 151

6.2 Highlights of the Work 153

6.3 Merits and Demerits 154

6.4 New Research Directions 158

6.5 Summary 158

REFERENCES .. 161-175

LIST OF PUBLICATIONS ... 177-178

INDEX ... 179-182

APPENDIX- A ... A1- A4

xix

LIST OF TABLES

Table 4.1 A-clusters for instructions MOV C, E; ADD B & POP B 83

Table 4.2 Examples of (a) B-Cluster and & (b) C- Cluster 84

Table 4.3 A sample assembly language program used to describe the 94
partitioning concepts and analysis of the proposed code validation technique

Table 4.4 (a) to (i) List of governing rules formed for the PIC16F87X 101
microcontrollers

Table 4.5 Code sequence governing rule 1 of Table 4.4(c) 113

Table 4.6 Code sequence governing rule 2 of table 4.4(a) 114

Table 4.7 A delay program and its erroneous version resulting in a 117
deadlock

Table 5.1 Bank switching instructions and their symbols 129

Table 5.2 Relation matrix formation with PAMB and bank switching 130
instructions

Table 5.3 Results of the analysis 140

Table A.1 Evaluation of programs developed using different compilers/assemblers A3

xx

xxi

LIST OF FIGURES

Fig. 1.1 Possible stages in the development process for the program of a
simple embedded system project.

7

Fig. 2.1 The architectural differences between (a) general purpose
microprocessor system and (b) a microcontroller (single chip).

19

Fig. 2.2 Activities that involve testing, debugging, verification/ validation in a
typical software development process.

24

Fig.2.3 Construction of the syntax tree from the binary code of a program. 46

Fig.2.4 A typical optimization sequence in an advanced compiler. 62

Fig. 3.1 A sample design developed for simulation using PROTEUS VSM for a
traffic signaling application based on PIC16F877 microcontroller.

77

Fig. 4.1 CFG abstraction details for the sample program given in Table 4.3. (a)
shows the program graph, (b) shows the formation of subprograms 1, 2
and 3 by eliminating the incoming arcs of the merge nodes 6 and 8
whereas (c) shows the CFG.

94

Fig. 4.2 The tool chain used for the proposed validation technique of embedded
system machine codes.

96

Fig. 4.3 Screen shots for the analysis and reporting of violation of sleep mode
operation of ADC if any. (a) the rule is validated when the antecedent
(0x0063immediately follows0x151F) of the formula is found true at
addresses 24h and 25h preceded by the consequent (0x179F and
0x171F) satisfied at addresses 1Bh and 1Ch. (b) reports the violation of
the rule as the antecedent is true at locations 4Bh and 4Ch without
satisfying its consequent.

108

xxii

Fig. 4.4 Screenshots for the results of the analysis for TRISB register configuring
for programs developed in high level languages. (a) in the erroneous
program a warning is generated of the use of portB as output port
without corresponding trisb setting at location 3Fh. (b)in the correct
program the rule is validated as the antecedent and its consequent
are satisfied at locations 3Eh and 3Bh respectively.

115

Fig. 4.5 The directed graph representations for the delay routines given in
Table 4.7 where each node numbered in bold represents an
instruction and arrows represent the control flow between instructions.
(a) shows the digraph for the correct version and (b) shows the same
for the incorrect version.

117

Fig. 5.1 State transition diagram showing the bank switching scheme. 130

Fig. 5.2 Flowchart explains the identification and pruning of redundant MBSWC in
the machine code sequence of a program.

133

Fig. 5.3 CFG of the sample program for the analysis. 137

Fig. 5.4 Screen shot of the developed MC_CODE ANALYZER v1.02 for the
sample program.

138

Fig 5.5 Screen shot of the developed MC_CODE ANALYZER v3.00 for the
sample program.

138

Fig. 5.6 CFG of the sample program with the worst case data allocation
scheme.

145

Fig 5.7 The number of redundant bank switching instructions reported in the
64 data allocation schemes of the program.

147

Fig. 5.8 Various steps realized in software for the code optimization. 149

xxiii

ABBREVIATIONS

ADC : Analog to Digital Converter
AMB : Active Memory Bank
ASIC : Application Specific Integrated Circuit
BDM : Background Debug Mode
CASE : Computer Aided Software Engineering
CFC : Control Flow Checking
CFE : Control Flow Errors
CFG : Control Flow Graph
CISC : Complex Instruction Set Computer
CPU : Central Processing Unit
DSP : Digital Signal Processor
EEPROM : Electrically Erasable Programmable Read Only
Memory
FPGA : Field Programmable Gate Array
ICE : In-Circuit Emulators
IDE : Integrated Development Environment
IPO : Interprocedural Optimization
JTAG : Joint Test Action Group
MBSD : Model-Based Software Debugging
MCU : Microcontroller Unit
NVP : N-version programming
OCD : On-Chip Debuggers
OCG : Omniscient Code Generation
PAMB : Previously Activated Memory Bank
PDG : Program Dependence Graph
PELAS : Program Error–Locating Assistant System
PGO : Profile-Guided Optimizations

xxiv

PSoC : Programmable System on Chip
RAM : Random Access Memory
RB : Recovery Blocks
RISC : Reduced Instruction Set Computers
ROM : Read Only Memory
RTOS : Real Time Operating System
SDG : System Dependence Graph
SFR : Special Function Register
SIHFD : Software Implemented Hardware Fault Detection
SIMD : Singe Instruction Multiple Data
SIS : Signatured Instruction Streams
SoC : System on Chip
STAD : System for Testing and Debugging
VHDL : VHSIC Hardware Description Language
VHSIC : Very High Speed Integrated Circuit
VLIW : Very Large Instruction Word
VSA : Value-Set Analysis
WET : Whole Execution Trace

Introduction

1

1
INTRODUCTION

1.1 Background and Motivation .. 2
 Reliable Software
 Redundant Codes
 Software Constraints

1.2 Embedded System Development 6
 Real Time Systems

1.3 Validation and Optimization Techniques....................... 10
1.4 Programmable System on Chip (PSoC) 12
1.5 Thesis Roadmap... 13
1.6 Summary... 15

These days embedded systems are everywhere, appearing in places like the

home, office, industry, transport, communication, automobile, robotics and in

safety-critical applications such as military, medical and nuclear systems where

human lives are at stake [1, 2, 3]. An embedded system can be defined as: A system

whose principal function is not computational, but has embedded software and

computer hardware, which makes it a system dedicated for an application(s) or

specific part of an application or product or part of a larger system [4, 5]. It is

often a complex mix of external stimuli and system responses, controlled by one or

more processors and dedicated hardware [6].

Testing and debugging of embedded software remains a black art, with only

ad hoc methods and techniques available. Tool availability dictates the quality of a

testing process. The implications of software failure are much more severe in

Chapter 1

Department of Computer Science2

embedded systems than in desktop systems [6]. The lockout of a PC for sometime

may result in loss of certain files or results of some application program, whereas

suspending a time critical task controlled by an embedded system could be

disastrous. Embedded systems are dedicated to specific tasks which means that

design engineers can optimize it for high performance and reliability because the

range of tasks the device must perform is well bounded. Due to strict timing

constraints owing to real time concerns, the code optimization problem is more

complex than for general purpose systems. It is desirable to have automated

debugging, code validation and optimization methods which utilize the vast power

of host machines available today to generate efficient machine codes. An efficient

compiler can provide compact code, without having to learn the intricacies of the

device architecture. This makes these devices more accessible to engineers with

limited programming experience who are increasingly using MCUs in their product

designs [7, 8].

1.1 Background and Motivation

Most of today’s technological application utilizes embedded processors as a

part of their infrastructure. It is common to select a processor based on its

performance and to rely on the compiler to deliver this performance. This is

particularly true of high-performance RISC (Reduced Instruction Set computer)

based devices. Often performance is found to be hindered by the constraints of

available debugging technology [7]. Developing programs for these systems in

assembly language will take more coding time, as it is less flexible, than in a

higher-level language. But developers prefer assembly language modules for

critical real time applications requiring stringent timing and code size. The

reliability and short time-to-market requirements of embedded systems are much

better met by using high level language compilers. Even though code optimization

Introduction

Cochin University of Science and Technology 3

is integrated with some of the compilers, they cannot eliminate code redundancy in

many cases. Typically, a developer would guess what the problem is and try to gain

visibility on the suspect variables or code segments by adding debugging

statements, assertions, and breakpoints into the program. This trial and error

process can be time consuming for long running programs. Moreover, a

developer’s intuitions may not necessarily be dependable especially if the errors are

caused by his own misconceptions in the first place. [9].

1.1.1 Reliable Software

The development of error-free software for complex real time systems is an

achievable goal within the reach of current software development technology.

There are various approaches for developing highly dependable software through

software fault tolerance techniques that uses diversity as the main ingredient [10,

11]. Static bug detection methods attempt to analyze a program for possible bugs

without running it. Static tools can verify that a program is correct for all inputs,

whereas dynamic tools can only find errors triggered by input test cases [9]. The

notion of static program slicing was first proposed by Mark Weiser as a debugging

aid [12]. In-lining of assembly code in high level language is a characteristic for

embedded system software development to enable direct access to the device's

hardware. Static analysis on machine code rather than source code eliminates the

requirement of knowledge of the semantics of high level language. Several

techniques have proposed to obtain information from executables by means of

static analysis [13, 14, 15]. In the existing static bug detection methods, program

verification is indecisive in general, and has only been applied successfully to small

programs. Furthermore, static tools often require manual specification. Though

dynamic program slicing is useful in debugging programs, the size of dynamic-

dependence graphs can be very large and thus it is not possible to keep them in

Chapter 1

Department of Computer Science4

memory for realistic program runs [16]. All these techniques for developing

dependable software cause software overheads to the system.

1.1.2 Redundant Codes

Most of the embedded control systems are designed around a

microcontroller unit which integrates on-chip program memory for storing and

executing application code, data memory (RAM), various peripherals and I/O

ports. Due to their architectural features there are various possibilities of

introducing redundant codes by the programmer/compiler. The integration of

processor cores and memory in the same chip effects a reduction in the chip count,

leading to cost effective solutions. Typical examples of optional memory modules

integrated with the processor on the same chip are: Instruction Cache, Data Cache,

and on-chip SRAM. Many MCUs have banked memories that cannot be addressed

simultaneously. Bank switching is a technique that increases the program and data

memory in microcontrollers without extending the address buses [17]. A bank-

sensitive program statement requires the appropriate bank to be made active prior

to its execution. Use of macros simplifies the program development by managing

memory resources of the target processors [18]. But, when they are used without

care there is a possibility of introducing unnecessary bank select instructions which

make the program too large for the device's program memory. Advanced compilers

are utilizing algorithms for optimization technique to minimize the overhead of

bank switching, but do not guarantee the optimal placement of bank selection

instructions [17]. Generating efficient memory access code for bank switched

architectures is still a challenging research problem. I/O port direction switching

too may cause redundancy.

Introduction

Cochin University of Science and Technology 5

1.1.3 Software Constraints

The increasing complexity of embedded systems and the increasing need

for development standards in building safety-critical systems are driving

development groups to use more systematic processes [19]. In embedded

applications, the cost and the short time-to-market are the leading issues [20]. It is

highly desirable to develop an easy method, which will take the burden away from

the software engineer by automating the error detection, identification and location

steps [21] resulting in improved quality while shortening design cycles [22].

Embedded software must meet conflicting requirements such as being developed

rapidly, running on resource-constrained platforms and being highly reliable. Static

program analysis can help meet all of these goals [23]. Static analysis is important

as these systems are used in safety critical applications and can be hard to upgrade

once deployed; it is useful to detect software bugs early [6, 24, 25]. Some of the

techniques proposed to find bugs in software automatically [26, 27, 28] require

sophisticated program analysis. In this context a software tool to assist

programmers to develop the application programs for the embedded controllers in

assembly language as well as in high level language with more efficiency would be

of great use.

The present state-of-the-art technology in system development uses tools

like in circuit debuggers and loaders so that the compiled code can be transferred to

the system and tested in real time. The integration of a code validation and

optimization tool will easily fit into such a development environment for error free

and efficient program development. To the best of author’s knowledge, the related

literature is limited to a method for statically guaranteeing stack safety of interrupt-

driven embedded software based on context-sensitive dataflow analysis of object

code [24], model checking of microcontroller assembly programs [29], static

Chapter 1

Department of Computer Science6

analysis on embedded assembly code to validate DSP software [30] and code

optimization [17, 31, 32, 33, 34].

1.2 Embedded System Development
Embedded systems require specialized tools and methods to be efficiently

designed. The various phases in a design cycle include system specification and

design, hardware/software design and debug, prototype debug and system test. The

specific toolset necessary depends on the nature of the project to a certain extent.

At a minimum, a good cross compiler and good debugging support are needed. In

many situations, facilities such as in-circuit emulators (ICE), simulators, and so on

are needed. The traits that separate embedded software from applications software

are [6]:

 Embedded software must run reliably without crashing for long periods of

time.

 Embedded software is often used in applications in which human lives are at

stake.

 Embedded systems are often so cost-sensitive that the software has little or

no margin for inefficiencies of any kind.

 Embedded software must often compensate for problems with the embedded

hardware.

 Real-world events are usually asynchronous and nondeterministic, making

simulation tests difficult and unreliable.

 A company can be sued if their code fails.

The possible stages in the development process for the program of a simple

embedded system project are similar to those of a desktop/personal computer. The

programmer writes the program, called the source code, in high level/assembler

Introduction

Cochin University of Science and Technology 7

language. This is then assembled by the cross-assembler/compiler running on the

host computer. If the programmer has access to a simulator then one may choose to

test the program by simulation. This is likely to lead to program errors being

discovered, which will require alteration to the original source code. When satisfied

with the program, the developer will then download it to the program memory of

the microcontroller itself, using either a stand-alone ‘programmer’ linked to the

host computer or a programming facility available in the embedded system itself.

Then the program running in the actual hardware is tested. Again, this may lead to

changes being required in the source code. The various stages and their functions

are shown in Fig. 1.1 [35].

Fig. 1.1 Possible stages in the development process for the program of
a simple embedded system project.

The different software tools are usually bundled together into what is called

an Integrated Development Environment (IDE). It contains all the software tools

Chapter 1

Department of Computer Science8

necessary to write a program in Assembler, assemble it, simulate it and then

download it to a target system using a programmer. The latter must be built or

bought, or designed in to the target system. With certain IDEs like MPLAB,

software tools can be bought and then integrated, both from Microchip and from

other suppliers. This includes alternatives to what MPLAB already offers – e.g.

Assemblers or simulators, as well as tools which offer much greater development

power, like C compilers or emulator drivers.

In times past, the process of downloading the program to a microcontroller

always used to require the IC carrying the memory (whether a stand-alone device

or memory in a microcontroller) to be placed in a programmer. This was linked to a

desktop computer for the process to be carried out. As memory technology has

improved, it has become increasingly easy to design the necessary programming

circuitry into the target system. This means that many microcontrollers can now be

programmed in situ, i.e. within the target system. Most of the modern

microcontrollers are equipped with on-chip program memory using Flash

technology.

If a systematic approach to test and realization is followed the first step is to

ensure the correct power supply, proper running of oscillator, correct status of the

Reset pin and a properly downloaded program. Once these fundamental conditions

have been satisfied, a further set applies if the system is to run continuously and

achieve a moderate level of functionality. These include plausible circuit and

program designs, correct hardware assembly and all the peripherals being

configured appropriate to the situation. As the conditions indicated are met, the

system should progress to a stage of optimization. Now it shows a good level of

functionality, although still imperfect in some areas. From here it is likely that

further tests must be accompanied by ongoing incremental design development,

Introduction

Cochin University of Science and Technology 9

which may lie in either hardware or the program. Finally, one expects to see a

system functioning to the full anticipated level of performance [35].

In this procedure our work contributes to the early validation and

optimization of embedded software by conducting a static analysis on the

machine code. This takes care of any error in the instruction sequence including

the testing of configuration of peripherals to see that it is appropriate to the

situation resulting in some sort of validation and optimization as well as the

elimination of redundant instructions.

1.2.1 Real Time Systems

A system is said to be real-time if the total correctness of an operation depends

not only upon its logical correctness, but also upon the time in which it is performed.

Many embedded system must meet real-time constraints. A real-time system must

react to stimuli from the controlled object (or the operator) within the time interval

dictated by the environment. A hard real-time system guarantees that critical tasks

complete on time. The application may be considered to have failed if it does not

complete its function within the allotted time span. Examples of hard real-time systems

include components of pacemakers, anti-lock brakes and aircraft control systems. In

firm real-time systems infrequent deadline misses are tolerable, but may degrade the

system's quality of service. The usefulness of a result is zero after its deadline. In soft

real-time systems violation of constraints results in degraded quality, but the system

can continue to operate. If the task should take, for example, 4.5ms but takes, on

average, 6.3ms, then perhaps the inkjet printer will print two pages per minute instead

of the design goal of three pages per minute [6, 36].

Chapter 1

Department of Computer Science10

1.3 Validation and Optimization Techniques

The most crucial step in embedded system design is the integration of

hardware and software [7]. Software validation involves many activities that take

place throughout the lifecycle of software development. A substantial portion of the

validation process is software testing, which is the development of test procedures

and the generation and execution of test cases. Validation confirms that the

architecture is correct and the system is performing optimally. Target level testing

occurs extremely late in the development lifecycle and only a small window is

allocated for hardware/software integration testing [37]. The most difficult errors to

reveal and locate are found extremely late in the testing process, making them even

more costly to repair.

System integration requires special tools to manage the complexity: tools

that (mostly) reside on the development platform but that allow the programmer to

debug a program running on the target system [6]. At a minimum these tools must:

 Include a debug kernel for controlling the processor during code development

 Support a convenient means to replace the code image on the target

 Provide non-intrusive, real-time monitoring of execution on the target.

The process of integrating embedded software and hardware is an exercise

in debugging [6]. The integration phase really has three dimensions to it:

Hardware, software, and real-time. The hardware can operate as designed, the

software can run as written and debugged, but the product as a whole can still fail

because of real-time issues. Emulators are the premier tools for HW/SW

integration. An emulator’s close coupling of run control, memory substitution, and

trace facilities generates a synergism that significantly increases the power of each

component.

Introduction

Cochin University of Science and Technology 11

Optimization is very important for embedded systems, due to limited

system-on-a-chip memory sizes, real-time constraints of embedded applications,

and the need to minimize power consumption of mobile devices [38]. The

compilation process starts with source code analysis and source level optimization.

Standard optimizations techniques, such as constant folding, common

subexpression elimination, or jump optimization [39, 40] need only a minimum of

machine-specific information. These are also performed at the intermediate

representation (IR) level, where complex source code constructs have already been

split into a simple form, such as three-address code. In case of multimedia

applications mapped to VLIW processors, loop unrolling, where loop iterations are

duplicated, resulting in larger basic blocks and thereby in a higher potential for

parallelization of instructions during scheduling, is a very effective means of code

optimization [38]. Function inlining is a well-known technique, in which function

calls are replaced by copies of function bodies, so as to reduce the calling overhead.

These optimizations come at the price of an increased code size. When the machine

independent IR statements are mapped to assembly instructions, all machine-

specific features, such as special-purpose registers, complex instruction patterns,

and inter-instruction constraints need to be taken into account. This is what makes

efficient code generation for embedded processors generally difficult.

More advanced approaches use a dedicated optimization phase for

partitioning the program variables between the dual memory banks which are

accessible in parallel in such a way, that potential parallelism is maximized [41,

42]. In embedded processors having partitioned memory architecture, where the

memory banks cannot be accessed in parallel minimal placement of bank switching

instructions results in code optimization [17, 31, 32, 33, 34]. Post pass optimizers

usually work on the assembly language or machine code level which takes the

executable output by an "optimizing" compiler and optimize it even further. For

Chapter 1

Department of Computer Science12

embedded systems high code quality is much more important than high

compilation speed.

Debugging software is an inevitable and arduous task. The responsibility of

the fault diagnosing is to delve deeply into the bug and determine the root cause of

the malfunction. Embedded systems provide the additional challenges of limited

visibility of the system through a small number of inputs and outputs. Today’s

debugging methodologies for embedded systems can be inadequate for overcoming

this problem with a low cost and flexible solution. The capability of automatic

detection, identification and location of an extensible set of logic errors adds

intelligence to the debugger [21, 43].

1.4 Programmable System on Chip (PSoC)

FPGA (Field Programmable Gate Array) and ASICs (Application Specific

Integrated Circuits) are the modern revolutions in embedded-systems design since

processors and associated peripherals can be integrated to a single chip [44, 45, 46].

ASICs are also the technology of the SoC (System on Chip) revolution that is still

being sorted out today. Until recently, designers have been limited to the choice of

microprocessor versus microcontroller. Now, at least for mass-market products, it

might make sense to consider a system-on-a-chip (SOC) implementation, either

using a standard part or using a semi-custom design compiled from licensed

intellectual property. Today, it’s common for a customer to completely design an

application-specific embedded system containing multiple CPU elements and

multiple peripheral devices on a single silicon die. Individual elements are designed

in the form of “synthesizable” VHSIC (very high speed integrated circuit)

Hardware Description Language (VHDL) or Verilog codes [44, 46]. Engineers

connect these modules with custom interconnect logic, creating a chip that contains

Introduction

Cochin University of Science and Technology 13

the entire design. Unlike an ASIC, an FPGA can be reprogrammed without a high

silicon development charge.

1.5 Thesis Roadmap

This Thesis deals with the constraints in the existing tools in embedded

software development and some solutions. A code validation, fault localization and

optimization tool and its applications in RISC (Reduced Instruction Set Computer)

microcontrollers, to assist in efficient software development is described. This is

achieved through the static analysis of machine codes by applying the rules and

algorithms formulated. An algorithm which helps to eliminate the redundant bank

switching instructions in partitioned memory architectures is also presented.

The thesis explores the various debugging and optimization technologies

available for embedded systems in chapter two. The static and dynamic analysis

techniques for localizing errors in a program are discussed. Static analysis of

executables, various program slicing methods and their usefulness in debugging are

examined. The role of simulation in providing a useful environment for software

testing is considered. The scope of oscilloscopes and logic analyzers in debugging

embedded software are limited due to the inaccessibility of buses of

microcontrollers. In Circuit Emulators as a powerful technique for testing both

hardware and software are examined. On chip debug supports like BDM

(Background Debug Mode) and JTAG (Joint Test Action Group) standard interface

protocols are briefed. Verification and Validation- the two important components

of integrating hardware and software are explained. Fault tolerance through control

flow checking for dependable embedded system development and various

optimization techniques provided by advanced compilers are also discussed.

Chapter 1

Department of Computer Science14

Chapter three introduces the methodology adopted by the static machine

code analyzer for the architecture oriented validation, fault localization and

optimization of embedded software. The concepts behind the program partitioning

and formation as well as codification of rules are briefed. Analysis of machine code

resulting in validation and optimization is presented. Programming in Visual Basic

and development support systems are discussed.

Chapter four describes an approach towards code validation of RISC

microcontrollers, at the level of machine instruction stream. Formulation and

codification of rules governing the occurrence of illegal instructions and code

sequences for executing the CPU/Integrated peripheral functions is explained.

Development of a prototype based on PIC 16F87X microcontrollers is discussed.

Retrieval of machine code from Intel hex file and the construction of CFG (Control

Flow Graph) from the machine code array are described. Identification of all

possible execution paths in the CFG leading to the analysis of the machine code by

applying the rules governing the occurrence of illegal instruction sequence is

discussed. The process of locating, diagnosing and reporting of errors and possible

error corrections are presented. Results of the analysis are discussed.

Chapter five deals with the optimization of embedded code by the

elimination of redundant bank switching instructions in application programs for

microcontrollers with banked memory architecture. A state transition diagram

representing the memory bank switching corresponding to each bank selection

instruction is drawn and a relation matrix, for the active memory bank state

transition, is derived. The algorithm developed for eliminating the redundant bank

switching instructions using the relation matrix and its implementation in Visual

Basic is explained. Analysis of the machine code to take care of the

intraprocedural, loops and interprocedural routines of an application program is

Introduction

Cochin University of Science and Technology 15

also shown. A compiler strategy that can automatically determine the optimum data

allocation among the memory banks resulting in the minimum bank switching code

is presented. Elimination of redundant codes based on some of the rules stipulated

in chapter four are also considered.

Chapter six is to enumerate the conclusions of this research work. The

advantages and disadvantages of static analysis on machine code for the validation

and optimization of embedded system code are listed. The extension of the use of

these techniques to other applications is suggested. The major contributions of this

research work as well as suggestions for improving the performance of the

techniques are described.

1.6 Summary

This thesis proposes a static analyzer for embedded system software, which

is close to a target level testing tool that is portable. Primary goal is to develop

techniques that can be implemented in tools that are useful for people developing

embedded software for the early validation and optimization of embedded software

by conducting a static analysis on the machine code. The focus of our work is to

develop methods that automatically localize faults and thus enhance the debugging

process as well as reduce human interaction time without software or runtime

overhead. Analysis is done on machine code rather than source code because this

eliminates the requirement of knowledge of the semantics of high level

language/assembly language and it is independent of the compiler; developers are

free to change compilers or compiler versions.

Introduction

17

2
REVIEW OF DEBUGGING AND

OPTIMIZATION TECHNOLOGIES
2.1 Embedded System Constraints..................................... 18
2.2 Software Development Tools .. 21

 Embedded Software
 Fault Localization Techniques
 Debugging Systems and Tools

2.3 Hardware and Software Integration 56
2.4 Control Flow Checking .. 58
2.5 Optimization .. 60

 General Optimizations
 Processor Specific Optimizations
 Interprocedural Optimizations
 Profile-Guided Optimizations
 Optimization of Bank Switching Instructions

2.6 Summary... 69

Embedded applications are among the most complex software systems

being developed today. Embedded systems control many of the common devices in

use today. Since the embedded system is dedicated to specific tasks [38], design

engineers can optimize it, reducing the size and cost of the product, or increasing

the reliability and performance. Embedded applications have traditionally been

event driven rather than computation dependent; viz not used for general purpose

computing applications. Consequently, software development of embedded

systems has become a very challenging and critical task. The state-of-the-art is to

Chapter 2

Department of Computer Science18

be incorporated with new and innovative technologies to ensure that the customer

requirements are met quickly and cost effectively.

Superficially, there are great similarities between the way embedded

systems are programmed and how desktop software is developed. For example,

much the same programming languages - C and C++ - are the most common. The

attitude toward bugs is where the approaches differ [47]. Desktop software is

commonly shipped with known bugs. These may be limitations in functionality or

degradations in performance over time, for example. This is considered acceptable,

as failure of the software is unlikely to cause any significant harm - certainly not to

put life in danger. The worst case generally results in loss of data. The attitude

toward bugs in embedded software differs in three key respects:

 Many embedded applications are concerned with machinery, the

malfunction of which, would be dangerous and/or expensive

 Issuing software updates for embedded applications is rarely convenient or

economic

 An embedded system may be run for long periods without being reset or

power-cycled. So bugs that accumulate in significance over protracted

execution times are more likely to become critical.

2.1 Embedded System Constraints

General purpose microprocessors do not contain RAM, ROM or I/O ports as

such. But a microcontroller has CPU, ROM, RAM, I/O ports, timer, ADC and

other peripherals integrated. Fig. 2.1(a) and (b) shows the details. A typical

embedded system contains a single chip microcontroller and is programmed for a

pre-defined, dedicated task. The logic is often invisible as it forms part of the

appliance or system.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 19

(a)

(b)

Fig. 2.1 The architectural differences between (a) general purpose microprocessor

system and (b) a microcontroller (single chip).

The target processor of an embedded computer is typically minimal in

function and size. For consumer and portable applications, a combination of cost,

size and power consumption considerations may result in the quantity of memory

Chapter 2

Department of Computer Science20

and inbuilt resources also being restricted. Although the amount of memory may

not be small, it typically cannot be added on demand [7]. The current methods and

tools for software testing and debugging require computing resources that are not

available on the target environment. Target hardware of an embedded system

normally will not support software development tools. Usually the application

program is developed on a host platform and cross compilers and linkers are used

to generate code and download it to the target processor by the help of loaders.

Therefore, a large gap exists between the methods and tools used during evaluation

on the host and those used on the target. Tools that run on the host provide a high

level interface and give users detailed information on and control over their

program execution. However, little is provided on the target. Typically, the best

information obtainable is a low-level execution trace provided by an in-circuit

emulator. Unfortunately, many errors are only revealed during testing in the target

environment. The software must not only be correct, but must also interface

properly with the devices it is controlling.

Embedded software is often constrained by

 Real-time constraints

 Embedded target environments

 Distributed hardware architectures

 Device control dependencies

Each of these properties of embedded software severely restricts execution

visibility and control, which consequently restricts the testing and debugging

process [37]. The current ability of designers to determine the reliability of

embedded system depends on the techniques used in the specification, design and

implementation of embedded software [2].

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 21

Nowadays, resorting to assembly language is rarely a convenient option.

The complexity of the software, short development time and reliability

requirements force the use of high level language for program development, while

the critical modules are developed in assembly language. A thorough

understanding of the efficient use of high level language and the effects and

limitations of optimization are crucial. Otherwise, memory demand and real-time

overheads do build up and would become apparent only late in a project, when a

redesign of the software is not an option [7].

Consumer applications are characterized by tight time-to-market constraints

and extreme cost sensitivity. This leads to some interesting challenges in software

development. Currently most of the consumer products support upgradable

software. If some bug is detected after the deployment of a product, a new version

of the software can be reloaded into the device. But in safety critical systems such

upgrading might be impractical.

2.2 Software Development Tools

To develop even a simple project, a selection of different software tools is

beneficial. These are usually bundled together into what is called an Integrated

Development Environment [35]. The development of error-free software for

complex real- time systems, such as highly critical systems in defense, atomic

power plants, air traffic control or space craft, is an achievable goal within the

reach of current embedded software development technology. The software

development technique includes process definition, state-of-the-art software

engineering principles, rigorous inspection of work products across the process,

independent software verification, sophisticated defect cause analysis and use of

specialized tools to enhance development and testing. To meet the increased need

Chapter 2

Department of Computer Science22

for software of the highest quality, knowledge engineering, expert systems, and

value gained from “lessons learned” can be applied [48].

As processor architecture evolves and the complexity of instructions

increases, the role of the compiler in application development becomes

increasingly important. The applications developed in the embedded industry are

becoming progressively more intricate, placing even more emphasis on software

tools. An optimal compiler can not only increase the performance of an application,

but can also decrease development cost and engineering cycle time, thereby

accelerating time to market (TTM) [49]. With modern simulation technology, the

code can be run, together with any real-time operating system on the host

computer, and link it to a graphical representation of the user interface (UI). This

enables developers to interact with the software as if they were holding the device

in their hand. This capability makes checking out all the subtle UI interactions a

breeze [7]. Code development techniques can be automated improving quality

while shortening design cycles. With the spread of desktop computers, the mid-

1980s have seen the introduction of automated environments and tools that make it

practical and economical to use formal system-development methods. This

technology known as CASE (Computer Aided Software Engineering), lets

computer professionals develop and validate system designs and specifications,

automating and enhancing the manual methods of the 1970s and 1980s [50]. CASE

tools, which impose a systematic approach on program writing, grow ever more

popular as adjuncts to assemblers and compilers. CASE tools enforce documenting

and modeling an application from the initial user requirements through design and

implementation, and can test for consistency, completeness, and conformance to

standards. They help in simulating, organizing, documenting, and generating

specifications for the application. They provide facilities for drawing and managing

system architectural diagrams, describing and defining functional and data objects,

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 23

identifying relationships between system parts, and providing annotations to aid

project management [51]. A Source-level Debugger together with an optimizing

compiler provides a fully integrated real-time software development environment

for embedded applications that encompasses source-level debugging, window-

oriented editing, automated program building, execution profiling, and

project/version control.

Right choice of the software development tools enables the programmers to

develop more reliable, more capable, higher performance software in less time, at a

lower development cost. Tools for embedded system development include: cross

compilation systems, in-circuit tools, simulators, debuggers etc. The features,

benefits and tradeoffs of these tools, and how they apply to each stage of software

development, are examined.

2.2.1 Embedded Software

NASA, in their report [25] defines Embedded Software as software that is

designed to execute in a computational device in order to control or to perform a

specific process in support of an end item. The activities that involve testing,

debugging, verification and validation in a typical software development process

[52] are shown in Fig. 2.2. The starting point of system software development is

requirement analysis and design. This is followed by implementation which

involves developing code for all units and testing them individually. The final

stage is integration and software component level testing [53]. An embedded

system software development environment is an integrated collection of software

development tools that manage the entire embedded software development process.

Some of the technical and management activities included in independent

verification and validation for embedded software are: requirements analysis and

tracing; peer reviews, status monitoring and reporting, walk-through, dynamic

Chapter 2

Department of Computer Science24

analysis, simulations, risk analysis, code inspection, software library maintenance,

audits, and independent verification and validation (IV &V) testing using software

analysis tools. These activities come into play during the various phases of the

software development life cycle. Software tools are employed to automate many of

these program analysis techniques. They are used to help identify actual or

potential errors in the developed code, and to reformat and consolidate information

to facilitate manual analysis. Software tools present a reliable, cost-effective means

to supplement manual program analysis techniques. To maximize the visibility of

software development quality, coding analysis is performed in parallel with code

development. Automation reduces manpower costs, lowers skill levels necessary to

do the work and improves the quality of the finished product [48].

Fig. 2.2 Activities that involve testing, debugging, verification/ validation in a

typical software development process.

It is advantageous to discover and eliminate software errors prior to the

integration of a software system; this allows the system testing to proceed in a

smooth and efficient manner. Software errors found prior to software integration is

easier to repair than errors found after the product is in use [25, 48].

Chapter 2

Department of Computer Science24

analysis, simulations, risk analysis, code inspection, software library maintenance,

audits, and independent verification and validation (IV &V) testing using software

analysis tools. These activities come into play during the various phases of the

software development life cycle. Software tools are employed to automate many of

these program analysis techniques. They are used to help identify actual or

potential errors in the developed code, and to reformat and consolidate information

to facilitate manual analysis. Software tools present a reliable, cost-effective means

to supplement manual program analysis techniques. To maximize the visibility of

software development quality, coding analysis is performed in parallel with code

development. Automation reduces manpower costs, lowers skill levels necessary to

do the work and improves the quality of the finished product [48].

Fig. 2.2 Activities that involve testing, debugging, verification/ validation in a

typical software development process.

It is advantageous to discover and eliminate software errors prior to the

integration of a software system; this allows the system testing to proceed in a

smooth and efficient manner. Software errors found prior to software integration is

easier to repair than errors found after the product is in use [25, 48].

Chapter 2

Department of Computer Science24

analysis, simulations, risk analysis, code inspection, software library maintenance,

audits, and independent verification and validation (IV &V) testing using software

analysis tools. These activities come into play during the various phases of the

software development life cycle. Software tools are employed to automate many of

these program analysis techniques. They are used to help identify actual or

potential errors in the developed code, and to reformat and consolidate information

to facilitate manual analysis. Software tools present a reliable, cost-effective means

to supplement manual program analysis techniques. To maximize the visibility of

software development quality, coding analysis is performed in parallel with code

development. Automation reduces manpower costs, lowers skill levels necessary to

do the work and improves the quality of the finished product [48].

Fig. 2.2 Activities that involve testing, debugging, verification/ validation in a

typical software development process.

It is advantageous to discover and eliminate software errors prior to the

integration of a software system; this allows the system testing to proceed in a

smooth and efficient manner. Software errors found prior to software integration is

easier to repair than errors found after the product is in use [25, 48].

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 25

2.2.1.1 Assemblers and Compilers

Traditionally embedded processors mostly are programmed in assembly

language due to efficiency reasons. With the advanced processor architecture and

their complex applications, the need for a practical high-level language became a

necessity, and several options emerged. With the increasing use of 32-bit

technology, the two languages that persisted were C and Ada. The latter is

prevalent in defense-oriented systems. Now, between one-quarter and one-third of

embedded systems code is found to be written in C++ [7].

To implement the solution to a given programming problem, the factors

relevant to a language decision probably include at least:

 Efficiency of compiled code

 Source code portability

 Program maintainability

 Typical bug rates (say, per thousand lines of code)

 The amount of time it will take to develop the solution

 The availability and cost of compilers and other development tools

 Experience of developers with specific languages or tools

The choice of programming language has far-reaching consequences, for it not

only influences the number and types of development tools available, but also

determines the software development schedule and future maintenance costs.

Assembly language is generally best for smaller, less complicated applications-

appliances like microwave ovens, consumer electronics such as video camcorders, and

simple instruments like battery testers. Its advantages are that it requires less memory

than high-level languages, executes faster and controls critical peripheral resources

Chapter 2

Department of Computer Science26

more precisely. The use of assembly language implies time consuming programming,

extensive debugging and low code portability. Re-design is particularly painful in

assembler since many decisions are written into the code. Development tools for

assembly language-range from simple, ROM-based debugging monitor programs to

more powerful source-level debugging programs and in-circuit emulation systems with

bus analyzers. More advanced assemblers offer, in order of increasing complexity and

cost, cross-referenced symbol tables, file inclusion, conditional assembly, macros, and

structured assembly statements [51].

The requirements of short time-to-market and reliability of embedded

systems are obviously much better met by using high level language compilers

instead of assembly. High-level languages are favored in larger, more complex

applications such as automotive electronics, instrumentation, and industrial

automation. They make programming faster, easier, and more accurate. Software

development can be done faster and more reliably in high-level languages,

particularly with access to a resource-aware compiler [54]. One key to low cost,

high quality software is use of structured software development methods and test

environments in conjunction with high level languages [48]. Drawbacks to high-

level languages are their higher memory requirements and slower execution, but

these are often negligible today, with the high bus speeds and power available in

even mid range microcontrollers. C has emerged in recent years as the language of

choice in embedded control. Its popularity is well deserved, for C combines

compactness and speed; the best of assembly language; and portability, control

flow constructs, data structures, and modular programming support; the best of

high-level languages [51].

Development tools for high-level languages range from simple tools for

inserting PRINT statements to more powerful source-level debugging programs and

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 27

in-circuit emulation systems with bus analyzers. Whatever the application, the

entire cost of the development tools must be considered, including the host

computer system, the development system (high-level-language compiler,

assembler, linker, debugger monitor software, debugger hardware, and cables), and

training (whether through formal classes or through reading manuals and learning

the systems) [51].

It is well known that compiler generated code usually shows an overhead,

both in code size and performance as compared to assembly code. Due to the need

for efficient embedded systems, this overhead must be very low in order to make

compilers useful in practice. In turn this requires new compiler techniques that take

the specific constraints in embedded system design into account. The specialized

architectures of the recent embedded processors are not yet sufficiently exploited

by the existing compilers. No compiler can generate provably optimal code for

arbitrary source programs. Therefore a common reference for “efficient” machine

code is assembly code, manually written by expert programmers, which can be

regarded as close to optimum. In almost all cases compilers for embedded

processors are cross compilers i.e., they generate a code for a target processor,

which is different from the compiler host machine. Consequently simulators are

needed that emulate the target system by executing host instructions [38].

Application programmers want as much help as possible from the compiler in

locating errors in their programs [55]. Compilers do various kinds of optimization

and global analysis, but in the absence of application knowledge, it is hard to bind

their runtime. The special demands on compilers, in the design of embedded

systems are extensively discussed in “Code Optimization Techniques for embedded

processors-Methods, Algorithms and Tools” written by Rainer Leupers [38].

Chapter 2

Department of Computer Science28

2.2.1.2 Dependable Software

Software fault tolerance [2, 11, 56, 57, 58, 59, 60] is the ability for software

to detect and recover from a fault that is happening or has already happened in

either the software or hardware in the system in which the software is running in

order to provide service in accordance with the specification. Software faults are

most often caused by design faults. It is estimated that 60-90% of current system

errors are from software faults [61]. Software faults may also occur from hardware;

these faults are usually transitory in nature, and can be masked using a combination

of current software and hardware fault tolerance techniques.

The key ingredient to software fault tolerance is diversity. Various forms of

diversity are design diversity, data diversity and functional diversity. Design

diversity is defined as the production of two or more software or systems aimed at

delivering the same service through separate designs and realizations[10].The N-

version programming (NVP) [11, 59] and recovery blocks (RB) are the two

primary techniques for software fault tolerance through design diversity. The N-

version programming uses different implementations, also known as versions or

variants, of the software for the same purpose hopefully in a different way, and

generates a consensus output by majority voting, median selection, or by some

other process. Using N-version software, it is encouraged that each different

version be implemented in as diverse a manner as possible, including different tool

sets, different programming languages, and possibly different environments. N-

version software can only be successful and successfully tolerate faults if the

required design diversity is met.

Though the RB approach uses multiple versions of the software, the

principle of operation is different than NVP. The output of the primary module

goes the acceptance tests for verification of the correctness of the result. If it passes

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 29

through acceptance tests it is given as a final result. If it fails, then the system rolls

back and starts executing an alternate module from the previously established

correct intermediate point or system state, known as the recovery point. This

sequence of operation goes on till an acceptable result is obtained, or till all the

modules are exhausted.

Diversity in data space, like diversity in design space, tolerates certain

classes of software failures. Diversity in data space can be achieved either by

exploiting changes in data that might naturally occur with respect to time or by

deliberately altering the data by re-expression which is the generation of logically-

equivalent data sets. The N-copy system is similar to an N-version system but uses

data diversity instead of design diversity. Each of N identical copies of a program

operates on a different set of data produced by re-expression. A voter decides the

system output.

Functional diversity is an artificial intelligence approach based on the

premise that although the system may fail to achieve the final goal in its normal

way, it may be able to achieve the goal in some other way by modifying plans and

operations. Artificial intelligence techniques are used to reason its goals, to devise

methods of accomplishing the task and to develop and carry out plans for achieving

its goals.

Self-checking software are the extra checks, often including some amount

of check-pointing and rollback recovery methods added into fault-tolerant or safety

critical systems. While self-checking may not be a rigorous methodology, it has

shown to be surprisingly effective.

Chapter 2

Department of Computer Science30

2.2.1.3 Emerging Technologies

The increasingly wide range of processing devices has a number of possible

impacts on the software designer. Obviously, suitable programming tools must be

available to support this array of processors; it is preferable that the tools are

consistent from one device to another. More importantly, the necessity of migrating

both code and programming expertise from one device to another is becoming

commonplace. This need not present major problems. By careful code design and

adherence to recognized standards, porting may be quite straightforward.

In the last few years, although hardware design has become more complex,

the amount of software has grown drastically, now often forming 70–80% of the

total design effort. Since more software needs to be developed in a shorter time, an

environment for testing is required sooner. Various solutions are available,

including native code execution prototyping environments, instruction set

simulation, and the use of standard, low-cost, off-the-shelf evaluation boards. In

addition, low-cost host-target connection technologies are becoming common,

typically using a JTAG interface [7].

2.2.2 Fault Localization Techniques

Fault localization is one of the most difficult activities in software

debugging. A number of fault localization techniques have been developed to

reduce the time in manually debugging a faulty program. A traditional approach to

fault localization is to insert print statements in the program to cause the program

to generate additional debugging information to help identifying the root cause of

the observed failure. Essentially, the developer adds these statements to the

program to get a glimpse of the runtime state, variable values, or to verify that the

program has reached a particular program point. Another common technique is the

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 31

use of a symbolic debugger which supports additional features such as breakpoints,

single stepping, and state modifying. Symbolic debuggers are included in many

integrated development environments (IDE) such as Eclipse, Microsoft Visual

Studio [62], Xcode and Delphi [63]. Traditional debugging techniques such as

dumping memory, scattering print statements, setting breakpoints by users, and

tracing program execution only provide utilities to examine a snapshot of program

execution. Users have to use their own strategies to do fault localization.

Shapiro [64] proposed an interactive fault diagnosis algorithm, the Divide–

and–Query algorithm, for debugging programs represented well by a computation

tree. The computation tree (the target program) is recursively searched until bugs

are located and fixed. Renner [65] applied this approach to locating faults in

programs written in Pascal. With this method, users can only point out procedures

that contain bugs; other debugging tools are needed to debug the faulty procedures.

The similar result is obtained in [66].

The knowledge–based approach attempts to automate the debugging process

by using techniques of artificial intelligence and knowledge engineering.

Knowledge about both the classified faults and the nature of program behavior is

usually required in this approach. Many prototype debugging systems have been

developed based on this approach since the early 1980s [67,68]. However,

knowledge about programs in the real world is complicated. These prototype

systems can only handle restricted fault classes and very simple programs.

Program slicing proposed by Weiser [12, 69] is another approach to

debugging. This method decomposes a program by statically analyzing the data–

flow and control-flow of the program - referred to as static program slicing.

Program dicing, proposed by Lyle and Weiser [70], attempts to collect debugging

information according to the correctness of suspicious variables involved in static

Chapter 2

Department of Computer Science32

program slices. Focus [71] is a debugging tool based on program dicing to find the

likely location of a fault. Because static program slices contain many irrelevant

statements that make fault localization inefficient, studying program slicing based

on dynamic cases to get the exact execution path is warranted. Dynamic Program

Slicing [72,73, 74] is a powerful facility for debugging and dependency analysis.

Nevertheless, it has not been systematically applied to fault localization. In

Agrawal’s dissertation [74], he briefly alluded to the idea of combining dynamic

program slices and data slices for fault localization.

Osterweil [75] tried to integrate testing, analysis, and debugging, but gave

no solid conclusion about how to transform information between testing and

debugging to benefit each other. Clark and Richardson [76] were the first to

suggest that certain test strategies (based on the symbolic evaluation) and classified

failure types could be used for debugging purposes. However, only one example is

given to describe their idea, and no further research has been conducted.

STAD (System for Testing and Debugging) [77] is the first tool to

successfully integrate debugging with testing. Its testing and debugging parts do

not share much information except for implementation purposes (e.g., they share

the results of data flow analysis). The debugging part of STAD will be invoked

once a fault is detected during a testing session, and leads users to focus on the

possible erroneous part of the program rather than locate the fault precisely.

PELAS (Program Error–Locating Assistant System) [78] is an implementation of

the debugging tool in STAD. Korel and Laski proposed an algorithm based on

hypothesis–and–test cycles and knowledge obtained from STAD to localize faults

interactively [79]. However, STAD and PELAS only supported a subset of Pascal,

and limited program errors are considered.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 33

Collofello and Cousins [80] proposed many heuristics to locate suspicious

statement blocks after testing. A program is first partitioned into many decision–

to–decision paths (DD-paths), which are straight-line codes existing between two

consecutive predicates of the program. Two test data sets are obtained after testing:

one detects the existence of faults and the other does not. Then, heuristics are

employed to predict possible DD-paths containing bugs based on the number of

times that DD-paths are involved in those two test data sets. The deficiency of their

method is that only execution paths (DD-paths), a special case of dynamic program

slicing, are examined. After reducing the search domain to a few statement blocks

(DD-paths), no further suggestion is provided for locating bugs.

Hsin Pan and Eugene H. Spafford [81] have built a prototype debugging

tool, Spyder, to assist users in determining statements involved in program failures,

and restoring program state to a specific statement for verification. In their work, a

set of heuristics is proposed to confine the search domain for bugs to a small

region. The heuristics are based on dynamic program slices that are collected by

varying test cases, variables, and location of variables. Although it is not

guaranteed that faults can be found in the domains suggested by the proposed

heuristics, a confined small region containing faults or information leading to fault

discovery is provided for further analysis.

Aimed at drastic cost reduction, much research has been performed in

developing automatic software debugging techniques and tools. Model-based

software debugging (MBSD) techniques have been advocated as powerful

debugging aid that isolates faults in complex programs [82]. By comparing the

state and behavior of a program to what is anticipated by its programmer, model-

based reasoning techniques separate those parts of a program that may contain a

fault from those that cannot be responsible for observed symptoms. Model-based

Chapter 2

Department of Computer Science34

reasoning approaches use prior knowledge of the system, such as component

interconnection and statement semantics, to build a model of the correct behavior

of the system. While delivering higher diagnostic accuracy, they suffer from high

computation complexity.

Abreus’ thesis [63] aims to contribute to advancing the state-of-the-art in

automatic fault localization. He describes a spectrum-based reasoning approach

[83] to fault localization in embedded software that shortens the test-diagnose-

repair cycle by reducing the debugging effort. A program spectrum is an execution

profile that indicates which parts of a program are active during a run. Spectrum-

based fault localization entails identifying the part of the program whose activity

correlates most with the detection of errors. Examples of tools that implement this

approach are Tarantula [84], whose implementation focuses on the analysis of C

programs, and AMPLE [85].

2.2.2.1 Source Level Debugger

Testing and debugging of software constitutes a significant amount of the

development time. Debugging is an iterative, trial and error process, that is, more

than one pass through each step may be needed in order to successfully remove the

bug from the program. In order to remove a bug from software, the programmer

first has to detect the erroneous behavior in the program and find out the type of

error, locate the error in the code and modify the code piece at the error location to

remedy the situation. An experienced programmer can do it in a better way [21].

Debugging time itself can account for up to 50% of the total time required for

software development [86].

Source-level debugger is a tool whose interface is based on source code files

rather than the binary object produced by the files. Source-level debuggers tightly

couple the usually high-level implementation language with the debugging process.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 35

They allow the programmer to debug an application program, while viewing the

source code it was written in [51]. It is a powerful windowing debugger that

enables program loading, execution, run control, and monitoring. It provides

debugging high level as well as assembly level. It provides an exhaustive set of

debugging features, to find and fix bugs: Setting and clearing Breakpoints on any

executable statement line by marking the line on the screen or entering the line

number, Single-Stepping through one language statement at a time, Examining and

changing values of Variables, Display Stack Trace, graphical user interface,

Memory Viewer, editor window, mixed language debugging [87]. The user sees all

the comments in the source file and can concentrate on the debugging process itself

rather than become concerned with the hexadecimal locations involved.

In an ideal world, source-level debugging would always be preferable to

symbolic-level debugging. But a source-level debugger may not exist for the

microcontroller, language, and platform chosen. And even if one is available, it

may lie outside the developer’s budget. Symbolic debugging uses the symbolic

labels generated by the program rather than the absolute hexadecimal values of the

labels. Primitive symbolic debuggers force the user to manually enter the symbols

and values, while more advanced versions automatically read files for the symbols

and values so that there is little chance of error. A file may be an assembly listing

file itself, a special symbol table file generated from the assembler or from the

linker, or the product of a post processing utility program. During the debug

process, the user can freely use the symbolic labels to set breakpoints and examine

memory locations. Program disassembly will match addresses and operands to the

symbol table and show them in the assembly-language disassembly display in the

proper places. The program disassembly listing therefore looks likes the generated

source code listing [51].

Chapter 2

Department of Computer Science36

2.2.2.2 Program Slicing

To help software engineers in debugging the program during the coding

process, many new approaches have been proposed and many commercial

debugging environments are available. Integrated development environments

(IDEs) provide a way to capture some of the language-specific predetermined

errors (e.g., missing end-of-statement characters, undefined variables, and so on)

without requiring compilation. Considerable work has been done in trying to

automate the debugging process through program slicing [52, 86, 88].

Program slicing is a decomposition technique that extracts statements

relevant to a particular computation from program. The notion of static program

slicing was first proposed by Mark Wieser [12] as a debugging aid. When

debugging unfamiliar programs programmers use program pieces called slices

which are sets of statements related by their flow of data. Formalization of this

debugging activity led to the first algorithms for program slicing [69, 89]. Different

types of program slices are characterized by the type of dependency analysis and

the type of statements in the slice. Weiser's static slice [12, 69] is an executable

subprogram for computing variables of interest for any test case. To compute a

static slice, Weiser's algorithm decomposes a program by statically analyzing the

data flow and control flow of the program. An alternative approach is to compute

the slice based on graph reachability in the program dependence graph (PDG), as

presented by Ottenstein and Ottenstein [90, 91]. New ways of representing

programs allowed Susan Horowitz [88] to extend Weiser’s method

interprocedurally. Horowitz describes two graphs: the Program Dependence Graph

(PDG), which represents a single procedure, and the System Dependence Graph

(SDG), which connects procedures together. Once the program dependence graph

is constructed, the intraprocedural slice can then be found with a very simple

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 37

algorithm given by Horowitz. He also goes into detail extending the method

interprocedurally using the System Dependence graph to create function

summaries. Summary edges were added to the SDG at call sites to capture certain

transitive dependences [91, 92]. Static analysis identifies statements that, if

executed, may affect the variable at the given location. A static slice is computed

with respect to the program P, variable var, and a location loc in [91, 93]. Tip [94]

explains how compiler optimization techniques can be used to obtain more accurate

slices.

Several kinds of slices are useful in debugging. Dynamic slicing is one

variation of program slicing introduced to assist in debugging [77, 95]. The

problem of finding all statements that influence the value of a variable occurrence

for a given test case is referred to as Dynamic Program Slicing. The particular test

case that exercises the bug helps us focus our attention to only that “cross-section”

of the program that contains the bug. When debugging using conventional

debuggers, one often needs to reexecute the program being debugged from the

start. For large programs such repeated execution from the beginning may be very

cumbersome. Agrawal et al. provided a debugging tool with an execution

backtracking facility with which program state can be restored at any desired

earlier location without having to reexecute the entire program. Agrawal et al. in

their paper [86] presents a novel way for quick localization and removal of

program bugs using dynamic slicing and backtracking. Viravan [91] describes a

dynamic slice computed with respect to the program P, a variable var, a location

loc, and a test case. If program slicing was enhanced to consider weak control

dependency, it would be possible to determine the transfer statements (e.g., return,

break, continue, goto's) that affect the flow of control to a given location [91]. The

dependences that are exercised during a program execution are identified and a

precise dynamic dependence graph is constructed. Dynamic program slice of a

Chapter 2

Department of Computer Science38

variable is computed by traversing the dynamic dependence graph and computing

the transitive closure over data and control dependences, starting at the definition

of variable at point of interest [16].

Frequently, obtaining a static slice may be sufficient to allow the user to

localize a program bug. In such situations, the overhead of obtaining dynamic

slices is clearly unnecessary. In other situations, especially when programs use data

structures involving pointers, the sizes of static slices may approach that of the

original program. In these situations, dynamic slices become extremely valuable.

When debugging, a programmer normally has a test case on which the program

fails. A dynamic slice, which normally contains less of the program than a static

slice, is better suited to assist the programmer in locating a bug exhibited on a

particular execution of the program [89].

Intra and interprocedural slicing of high level languages has greatly been

studied in the literature; both static and dynamic techniques have been used to aid

in the debugging, maintenance, parallelization, program integration, and dataflow

testing of programs. But very little work has been published on the slicing of binary

executable programs [14]. Cifuentes and Fraboulet [13] explain how to apply

conventional intraprocedural static analysis to binary executables for the purposes

of static analysis of machine code and assembly code, such as debugging code and

determining the instructions that affect an indexed jump or an indirect call on a

register. This analysis is useful in the decoding of machine instructions phase of

reverse engineering tools of binary executables, such as binary translators,

disassemblers, binary profilers and binary debuggers [13]. Cifuentes’s paper views

the main problem of disassembly as the separation of instructions from data. The

instructions can jump around the data, so it is not obvious to a disassembler which

is which. During disassembly, one could perform a reaching definitions analysis on

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 39

the assembly code to determine the destination of an indirect branch instruction.

However, more sophistication is needed to obtain a complete result. Cifuentes

suggests using a static slice of the program to determine the register contents.

However, the handling of the jump instruction due to Agrawal [74] is essential to

the analysis, because machine code is unstructured. Bergeron et al. in [96]

suggested to use dependence graph based interprocedural slicing to analyse binaries

but they did not discuss the handling of the arising problems and neither gave any

experimental result. The slicing process for the control flow analysis and data

dependence analysis of binary executables require special handling. A method for

the interprocedural static slicing of binary executables is given in [14]. Special

applications of the slicing of programs without source code are in assembly

programs, legacy software and viruses: code understanding, source code recovery,

bug fixing and code transformation.

2.2.2.3 Static Analysis Tools

Static bug detection methods attempt to analyze a program for possible bugs

without running it. Static tools can verify that a program is correct for all inputs,

whereas dynamic tools can only find errors triggered by input test cases. A static

analysis of code can provide information which can hardly be discovered by

traditional simulation or test techniques. A central advantage of this integrated

approach is the potential for early discovery of design errors much before the costly

experimentations on an actual physical implementation [97].

In certain situations, general purpose software tools that are language

specific in nature can be very useful. These take the form of static code analysis

tools. These tools look for a very specific set of known problems, some common

and some rare, within the source code. All such issues detected by these tools

would rarely be picked up by a compiler or interpreter, thus they are not syntax

Chapter 2

Department of Computer Science40

checkers, but more semantic checkers. Some tools claim to be able to detect 300+

unique problems. Both commercial and free tools exist in various languages. These

tools can be extremely useful when checking very large source trees, where it is

impractical to do code walkthroughs.

One of the best known early tools for finding bugs in software is Lint [98],

which used heuristics to find a variety of common errors in C programs. Compaq

ESC is a static checking tool that asks users to supply invariants at procedure

interfaces and other key program points [99]. Intrinsa’s PREfix [100] is a tool

which statically analyzes the program in C and C++ for undesirable properties like

possible null pointers, leaked memory, use of freed memory, and use of an invalid

resource. PREfix uses path− sensitive analysis to explore multiple execution paths

in a function, with the goal of finding paths along which undesirable properties can

hold. Metal is a static analysis tool which allows users to write invariants about a

program in a state−machine based language [101]. An enhanced compiler checks

that these invariants hold along all possible execution paths. Metal has been

successful in reporting several bugs in large pieces of code, such as the Linux

kernel. Hangal and Lam [9] use instrumentation to detect violations of likely

runtime program invariants, and were able to find the root causes of several

difficult bugs in large Java programs.

Abstract interpretation is a theory of effective abstraction and/or

approximation of discrete mathematical structures as found in the semantics of

programming languages, modelling program executions, hence program properties,

at various levels of abstraction [102]. Abstract interpretation has been applied to

static program analysis of embedded control software by P. Cusot, that is the

automatic (without any human intervention), static (at compile time) determination

of dynamic program properties (that always hold at runtime) involving complex

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 41

abstractions of the infinite state operational semantics [102]. This approach was

successfully illustrated by the ASTR´EE static analyzer which is specialized for

proving the absence of run-time errors in synchronous, time triggered, real-time,

safety critical, embedded software written or automatically generated in the C

programming language [103]. It was able to prove the absence of run-time errors in

large industrial avionic control-command programs [102] without any hypotheses

on the controlled systems (but, maybe, for ranges of variation of very few volatile

input variables). This means that the software will go on functioning without any

runtime error whatever the behavior of the controlled system can be, as long as the

processor on which the program is running does not fail (a situation which can be

handled by fault-tolerance techniques).

Several general static analysis techniques allow specification of code patterns

which may be used to find bugs in programs. Bug patterns are code idioms that are

often errors. Hovemeyer and Pugh [43] have implemented automatic detectors for a

variety of bug patterns found in Java programs. They have found that the effort

required to implement a bug pattern detector tends to be low, and that even extremely

simple detectors find bugs in real applications. They have found that even well tested

code written by experts contains a surprising number of obvious bugs and that simple

automatic techniques can be effective at countering the impact of both ordinary

mistakes and misunderstood language features. Automatic detectors for many bug

patterns can be implemented using relatively simple static analysis techniques. In

many ways, using static analysis to find occurrences of bug patterns is like an

automated code inspection. They have implemented a number of automatic bug

pattern detectors in a tool called FindBugs [43].

Automatic techniques to find bugs in software have been extensively studied

in previous research [9, 43, 98, 100, 104]. Often, these techniques rely on formal

Chapter 2

Department of Computer Science42

methods and sophisticated program analysis. While these techniques are valuable,

they can be difficult to apply, and they aren't always effective in finding real bugs.

A bug checker uses static analysis to find code that violates a specific correctness

property, and which may cause the program to misbehave at runtime. This research

is valuable, offers tremendous promise for improving software quality and many

interesting and useful analysis techniques have been proposed as a result. However,

these techniques have generally not found their way into widespread use.

Caveat is a static analysis tool designed to help verify safety critical

software. It operates on ANSI C programs. It was developed by CEA, the French

nuclear agency and is used as an operational tool by Airbus-France and EdF, the

French electricity company. It is mainly based on Hoare Logic and rewriting of

first order logic predicates. The main features of Caveat are property synthesis,

navigation facilities, and proof of properties [104].

One important issue in bug-finding research is the need to evaluate the

effectiveness of tools in finding bugs. One approach is to simply compare the

output of a number of different bug finding tools; the union of the genuine bugs

found by all tools compared can be considered a lower bound on the number of real

bugs in the program. Rutar et. al. [105] compare a number of tools available for

finding bugs in Java programs.

2.2.2.4 Static Analysis of Executables

Static analysis techniques are generally used to operate on source code. A

binary executable is the machine code version of a high-level or assembly program

that has been compiled (or assembled) and linked for a particular platform and

operating system. Since the machine code is being executed, there is value in

applying static analysis techniques to a binary executable. Several researchers [13,

96, 106, 107] have proposed algorithms for statically analyzing executables.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 43

The first step in the static analysis must be the conversion of the machine

code into assembly language instructions. However, this task itself is challenging,

and has been the subject of much research. On architectures with instructions of

varying size, it is difficult to locate the start of the first machine code instruction in

a section consisting of both code and data. With Intel instructions [108], the opcode

of the instruction can be between 1 and 3 bytes, and this can be followed by 1 to 8

bytes of immediate data and a scaling/offset byte. The instructions are not required

to follow any alignment rules in memory. Because it is possible for control flow to

jump around the program, it is difficult for a disassembler to find the alignment that

yields the correct instructions. The disassembler must follow the path of execution

in the same way as the processor, in order to skip around any data bytes in between

the instructions. This may be as simple as performing a linear scan through the

instructions, or as complex as interpreting the code to follow its path of execution.

Also, malicious code could take advantage of the difficulties in disassembly to hide

its existence. Various static analysis techniques have been developed to analyze

such programs, in order to build up a control flow graph and a call graph.

One of the challenges in applying static analysis directly on the machine

code of a compiled program is building up a control flow graph of a procedure,

since indirect branch instructions accept the contents of a register for the

destination address. Program slicing techniques can be used to reduce the assembly

code to the smallest possible program to compute the value of that register, and

determine the range of values in the register. A major stumbling block when

developing binary-analysis tools is that it is difficult to understand memory

operations because machine-language instructions use explicit memory addresses

and indirect addressing. Balakrishnan and Reps [15] present several techniques that

overcome this obstacle to developing binary-analysis tools. This work concerns

static-analysis algorithms for analyzing x86 executables. By combining this

Chapter 2

Department of Computer Science44

analysis called value-set analysis (VSA) with facilities provided by the IDAPro

disassembler and CodeSurfer R (GrammaTech, Inc) toolkits, they have created

CodeSurfer/x86, a prototype tool for browsing, inspecting, and analyzing x86

executables [15]. From an x86 executable, CodeSurfer/x86 recovers an

intermediate representation that is similar to what would be created by a compiler

for a program written in a high-level language. CodeSurfer/x86 provides an analyst

with a powerful and flexible platform for investigating the properties and behaviors

of potentially malicious code (such as COTS components, plugins, mobile code,

worms, Trojans, and virus-infected code) [107].

Software applications are often distributed in binary form to prevent access

to proprietary algorithms or to make tampering with licensing verification

procedures more difficult. The general assumption is that understanding the

structure of a program by looking at its binary representation is a hard problem that

requires substantial resources and expertise. Software reverse-engineering

techniques provide automated support for the analysis of binary programs. This

usually involves building a control flow graph for each procedure, and looking for

idioms in the code. An idiom is a sequence of instructions that, individually, do not

have meaning, but when taken together form a meaningful operation. The software

reverse-engineering process can be divided into two parts: disassembly and

decompilation. Decompilation [13, 109] is the process of reconstructing higher-

level semantic structures (and even source code) from the program's assembly-level

representation that allows for comprehension and possibly modification of the

program's structure. Translation of assembly code to high-level language code is of

importance in the maintenance of legacy code, as well as in the areas of program

understanding, porting, and recovery of code. Cifuentes and Fraboulet [110]

present techniques used in the asm2c translator, which is a SPARC assembly to C

translator. The techniques involve data and control flow analyses. The data flow

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 45

analysis eliminates machine dependencies from the assembly code and recovers

high-level language expressions. The control flow analysis recovers control

structure statements and simple data type recovery is also done. The techniques

presented are extensions and improvements on previously developed CISC

techniques. The choice of intermediate representation allows for both RISC and

CISC assembly code to be supported by the analyses.

The task of the disassembly phase is the extraction of the symbolic

representation of the instructions (assembly code) from the program's binary

image [111]. Disassembly techniques can be categorized into two main classes:

dynamic techniques and static techniques. Approaches that belong to the first

category rely on monitored execution traces of an application to identify the

executed instructions and recover a (partial) disassembled version of the binary.

Approaches that belong to the second category analyze the binary structure

statically, parsing the instruction opcodes as they are found in the binary image.

Reliable disassembler output is crucial for many security tools such as virus

scanners [106] and intrusion detection systems [112]. Linn and Debray [113]

present obfuscation techniques that successfully confuse current state-of-the-art

disassemblers. Kruegel et al. [114] have developed and implemented a

disassembler which utilizes static analysis techniques to correctly disassemble Intel

x86 binaries that are obfuscated to resist static disassembly. The main contributions

are general control-flow-based and statistical techniques to deal with hard-to-

disassemble binaries.

Bergeron et al. [96] addressed the problem of static detection of malicious

code in binary executables. Malicious codes are pieces of code that can affect

secrecy, integrity, data and control flow, and functionality of a system. As malicious

code can affect the data and control flow of a program, static flow analysis may

Chapter 2

Department of Computer Science46

naturally be helpful as part of the detection process. Statically analyzing a program

requires the construction of the syntax tree of this program, also called intermediate

representation which is shown in Fig. 2.3. In order to translate an executable program

into an equivalent high-level-language program, they used the disassembly tool

IDA32 Pro, An advanced interactive multi-processor disassembler, which can

disassemble various types of executable files (ELF, EXE, PE, etc.) for several

processors and operating systems (Windows 98, Windows NT, etc.). This

intermediate form is abstracted through flow-based analysis as various relevant

graphs (control-flow graph, data-flow graph, call graph, critical-API graph, etc.) that

capture security-oriented program behavior. The aim of flow-based analysis is to

generate information about how control and data flow from one program point to

another. In their system, security policies are specified using security automata,

which enable to encode any safety property. Entrance into the bad state indicates that

the security policy has been violated. Once the critical-API graph is computed, it is

subjected to verification against the security policy to statically determine whether it

exhibits malicious behaviour or not.

Fig.2.3 Construction of the syntax tree from the binary code of a program.

The classic virus-detection techniques look for the presence of a virus-

specific sequence of instructions (called a virus signature) inside the program: if

Chapter 2

Department of Computer Science46

naturally be helpful as part of the detection process. Statically analyzing a program

requires the construction of the syntax tree of this program, also called intermediate

representation which is shown in Fig. 2.3. In order to translate an executable program

into an equivalent high-level-language program, they used the disassembly tool

IDA32 Pro, An advanced interactive multi-processor disassembler, which can

disassemble various types of executable files (ELF, EXE, PE, etc.) for several

processors and operating systems (Windows 98, Windows NT, etc.). This

intermediate form is abstracted through flow-based analysis as various relevant

graphs (control-flow graph, data-flow graph, call graph, critical-API graph, etc.) that

capture security-oriented program behavior. The aim of flow-based analysis is to

generate information about how control and data flow from one program point to

another. In their system, security policies are specified using security automata,

which enable to encode any safety property. Entrance into the bad state indicates that

the security policy has been violated. Once the critical-API graph is computed, it is

subjected to verification against the security policy to statically determine whether it

exhibits malicious behaviour or not.

Fig.2.3 Construction of the syntax tree from the binary code of a program.

The classic virus-detection techniques look for the presence of a virus-

specific sequence of instructions (called a virus signature) inside the program: if

Chapter 2

Department of Computer Science46

naturally be helpful as part of the detection process. Statically analyzing a program

requires the construction of the syntax tree of this program, also called intermediate

representation which is shown in Fig. 2.3. In order to translate an executable program

into an equivalent high-level-language program, they used the disassembly tool

IDA32 Pro, An advanced interactive multi-processor disassembler, which can

disassemble various types of executable files (ELF, EXE, PE, etc.) for several

processors and operating systems (Windows 98, Windows NT, etc.). This

intermediate form is abstracted through flow-based analysis as various relevant

graphs (control-flow graph, data-flow graph, call graph, critical-API graph, etc.) that

capture security-oriented program behavior. The aim of flow-based analysis is to

generate information about how control and data flow from one program point to

another. In their system, security policies are specified using security automata,

which enable to encode any safety property. Entrance into the bad state indicates that

the security policy has been violated. Once the critical-API graph is computed, it is

subjected to verification against the security policy to statically determine whether it

exhibits malicious behaviour or not.

Fig.2.3 Construction of the syntax tree from the binary code of a program.

The classic virus-detection techniques look for the presence of a virus-

specific sequence of instructions (called a virus signature) inside the program: if

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 47

the signature is found, it is highly probable that the program is infected. For

example, the Chernobyl/CIH virus is detected by checking for the hexadecimal

sequence [115]:

E800 0000 005B 8D4B 4251 5050

0F01 4C24 FE5B 83C3 1CFA 8B2B

This instruction sequence constitutes part of the virus body. Christodorescu

and S. Jha [106] have presented an architecture for detecting malicious patterns in

executables that is resilient to common obfuscation transformations. They have

implemented a prototype tool called SAFE (static analyzer for executable) or for

detecting malicious patterns in x86 executables, which they have successfully tried

on multiple viruses. To detect malicious patterns in executables, they build an

abstract representation of the malicious code (here a virus). The abstract

representation is the “generalization” of the malicious code.

2.2.2.5 Static Analysis of Embedded Software

Considering the various constrains in embedded software developments,

static validation methods and tools to analyze programs for possible bugs, without

running them will be of great help. Most of these techniques proposed to find bugs

in software automatically [26, 27, 28] are generally used to operate on source code

which requires parsing of the source code that makes the analysis complex.

Programmers develop microcontroller software in assembly language, high level

languages like Pascal, Basic and dialects of C apart from standard ANSI C. It is

characteristic for embedded system software development that a programmer inter-

leave fragments of assembly code in high level language, to enable direct access to

the device's hardware. Performing static analysis on the high level representation of

the source code requires transforming the embedded assembly code to the high

level representation. Static analysis on machine code rather than source code

Chapter 2

Department of Computer Science48

eliminates this requirement and makes it independent of the compiler so that,

developers are free to change compilers or compiler versions [116]

Venkitaraman and Gupta [30] describe the use of static analysis on

embedded assembly code to validate DSP software for conformity with the Texas

Instruments TMS320 DSP Algorithm Standard's “General Programming Rules”.

‘Hoist’ [23] generates a collection of C- functions that are ready to be linked into

an abstract interpreter which helps people developing analyzers for embedded

object code. J. Regehr et al. [24] had applied static analysis and transformation

techniques for statically guaranteeing stack safety of interrupt-driven embedded

software. They used a powerful dataflow analysis based on context-sensitive

abstract interpretation of machine code. Schlich [29] has developed an approach to

model check microcontroller assembly programs and implemented this approach in

the model checker named [mc]square.

2.2.2.6 Dynamic Analysis

Some of the hardest bugs to track down are those that occur unexpectedly

after a program has deployed. The use of incorrect intermediate results due to

undetected bugs has been known to lead to catastrophes in mission−critical or even

safety−critical situations [117]. This calls for a much deeper understanding of what

happens inside a software program than the conventional visibility offered by the

outputs of a program. Dynamic monitoring can also be used for malicious code

detection. Sudheendra Hangal and Monica S. Lam proposed the idea of finding

program anomalies through an on−line dynamic program invariant detection and

checking engine (DIDUCE). It can find bugs that result from algorithmic errors,

errors in inputs, and developers’ misconceptions of the APIs. It helps

programmers locate bugs in unfamiliar code and, sometimes even in codes that

have not been instrumented [9].

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 49

Program profiles have been analyzed to identify program characteristics that

researchers have then exploited to guide the design of superior compilers and

architectures. Extensive amounts of dynamic information can be collected (e.g.,

control flow, address and data values, data, and control dependences), and

sophisticated dynamic analysis techniques can be employed to assist in improving

the performance and reliability of software [16].

Because of the large amounts of dynamic information generated during a

program execution, techniques for space-efficient representation and time-efficient

analysis of the information are needed. To limit the memory required to store

different types of profiles, lossless compression techniques for several different

types of profiles [118, 119,120,121] have been developed. The control flow profile

captures the complete control flow path taken during a single program run. These

profiles can be analyzed for the presence of hot program paths or traces [118] that

have been exploited for performing path-sensitive optimization and prediction

techniques [122, 123]. Value profile captures the data or addresses values that are

computed and referenced by each executed statement and are used to perform code

specialization, data compression, and value encoding [124, 125]. Address profiles

are used for identifying hot data streams that exhibit data locality, which can help

in finding cache-conscious data layouts and developing data prefetching

mechanisms [126]. The dependence profile captures the information about data and

control dependences exercised during a program run. Data dependence represents

the flow of a value from the statement that defines it to the statement that uses it as

an operand. Control dependence between two statements indicates that the

execution of a statement depends on the branch outcome of a predicate in another

statement. Dependence profiles are used for computing dynamic slices [121], for

studying the characteristics of performance-degrading instructions [127], and for

studying instruction isomorphism [128]. More recently, program profiles are being

Chapter 2

Department of Computer Science50

used as a basis for the debugging of programs. In particular, profiles generated

from failed runs of faulty programs are being used to help locate the faulty code in

the program [16].

A unified representation, called whole execution traces (WETs), and its use

in assisting faulty code in a program is demonstrated by Zhang and Gupta [16].

WETs provide an ability to relate different types of profiles. For ease of analysis of

profile information, WET is constructed by labeling static program representation

with profile information such that relevant and related profile information can be

directly accessed by analysis algorithms as they traverse the representation. An

effective compression strategy has been developed to reduce the memory needed to

store WET. Another reported method is a spectrum-based reasoning approach to

fault localization in embedded software, where a program spectrum created gives

an execution profile that indicates which parts of a program are active during a run.

This aims to contribute to advancing the state-of-the-art in automatic fault

localization that shortens the test-diagnose-repair cycle by reducing the debugging

effort [63, 83]. Static analysis can be used to improve the efficiency of dynamic

analysis techniques [106].

2.2.3 Debugging Systems and Tools

In the software life cycle, more than 50% of the total cost may be expended

in the testing and debugging phases to ensure the quality of the software.

Developing effective and efficient testing and debugging strategies is thus

important [81,129]. Debugging during production or after deployment is very

complicated [52].

Most modern microcontrollers are equipped with on-chip program memory

using Flash technology. These memories have read and write access during

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 51

program execution. This capability can be utilized for downloading program during

development process by loading a small firmware (communication program). Some

firmwares are capable of controlling the program execution by adding breakpoints,

monitoring registers as well as memory contents and port status. The disadvantage

of this type of debugging is that timing constraints cannot be dealt with. This

requires that some code exist in the target system before it is reprogrammed. At

least two existing hardware-based methods can be used to put the initial code there

in the first place: BDM and JTAG. By sending the right commands and data

through a BDM port of a processor, one can push a copy of his programmer into

the target’s RAM space and hand over control to it. The BDM port can also be used

to stimulate the I/O lines of the flash chip, thus programming it directly. It can also

be implemented by hand with a few chips, a PC’s printer port, and by a careful

study of the processor’s datasheets.

JTAG is a fundamentally different technology designed to facilitate reading

and writing of a chip’s I/O lines, usually while the chip’s microprocessor (if it has

one) is held in reset. Like BDM, however, this capability can be used to stimulate a

RAM or flash chip to push a programmer application into it. And also like BDM, a

JTAG interface can be built with just a few components and some persistent

detective work in the target processor’s manual. A JTAG bus transceiver chip,

versions of which are available from several vendors, can be added to systems that

lack JTAG support [7].

Approaches to dealing with limitations inherent in embedded software

development can be divided into hardware solution and software solutions. The

hardware solutions are attempts at gaining execution visibility and program control

and include the bus monitors, ROM monitors, and in-circuit emulators. The

hardware solutions have minima effectiveness for software development. They can

Chapter 2

Department of Computer Science52

only gather information based on low-level machine data. The developer must then

create the mapping between low-level system events and the entities defined in the

program.

As on-chip functions become more complex, emulator vendors will no longer

be able to see into the chip through the pins making them obsolete as well. In future

architectures, the debugging capabilities provided by the chip will need to become

more sophisticated. Perhaps the only possibility to view and control the execution of

hardware is to gain that information from the hardware itself [37, 130].

While hardware approaches are very accurate and non-intrusive, they cannot

be used in the target system, due to the added cost/size/weight and in the volume of

data produced. Application-specific software instrumentation can efficiently gather

information, however, it can be extremely costly to implement and maintain [131].

Modern RTOS uses inbuilt debugging features [21, 35, 132].

Most of the advanced processors have in built debugging and exception

handling capabilities that can identify certain illegal opcodes, stack over/under flow

etc. [133, 134, 135, 177]. The hardware scheme will increase the die foot print,

power consumption and cost.

2.2.3.1 Testing on Host Machine

Embedded software is developed on a host machine which is different from

the target on which the final software is to be run. Test at initial stage is done on

host machine. Unlike host based application developers, embedded system

developers seldom program and test on similar machines. The system integration

requires special tools that mostly reside on the development platform, but that

allow the programmer to debug a program running on the target system.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 53

The host machine is used to test the hardware independent code and also to

run the simulator. It gives a training which will be useful at later stage. It provides

a cross compiler or a cross assembler. The worst case that can happen with a native

debugger is to crash the computer. The consequence of some embedded system

going out of control may be more direr [36].

2.2.3.2 Simulator

The simulation of the target program, instruction by instruction, on the host

computer provides a very useful environment for software testing at almost any

phase of the project. When the hardware is known but unavailable, a simulator will

make rapid progress possible [132]. It permits accurate timings to be taken so that

an engineer can fine-tune critical code sections early in the development cycle. A

simulator uses knowledge of target processor and target system architecture on the

host processor. It first does cross compilation and places this into host system

RAM. The behavior of the target system processor registers is also simulated in

RAM. It uses linker and locator and loads the code into RAM and functions like

the code would have run at the actual target system. The execution of the code may

be monitored in great detail without any intrusion at all. This facilitates 100%

performance analysis and code coverage, which is not possible using other

techniques. Of course, a simulator limited to the simulation of just the core CPU

would be of limited utility. It does not resolve hardware dependant problems. The

simulator must also address the interrupt and I/O systems [7, 36].

2.2.3.3 Oscilloscopes and Logic Analyzers

An oscilloscope is the most powerful general-purpose instrument available

in the electronics world. An oscilloscope is essential in the embedded world for

examining the basic conditions of power supply, oscillator and simple port activity.

With expertise, it can be used for looking at more complex signals. A logic

Chapter 2

Department of Computer Science54

analyzer has some of the characteristics of an oscilloscope, in that it can also

display the value of an input signal against time. Since it has got many inputs it can

be used to look at activity in data and/or address buses to gain a detailed view of

the processor’s execution [21, 35, 37]. The collection of data and its analysis is an

iterative process, typically performed only during the design process [131]. Logic

analyzers were most prominent in the days when systems were built up of multiple

ICs and there was a need to study bus activity. Now in microcontrollers the ICs are

very complex and the buses no longer accessible. They can still be very useful,

however, in looking at complex digital activity, for example a parallel port, or

serial data flow.

2.2.3.4 In-Circuit Emulators

In-circuit debugging is a powerful technique for testing and commissioning

both program and hardware, allowing minimum invasiveness. There are many

situations, however, when we need to be able to undertake the same sort of tests we

were doing with the software simulator, for example testing specific sections of

code or single stepping, but now with the code running in the target hardware. The

solution to this need has been the in-circuit emulator (ICE). This is a device which

replaces the microcontroller in the circuit, replicates its action in real-time as

closely as possible. This connects with a host system across an Ethernet

connection. The host computer has the power to control program execution, in

much the same way as the software simulator does [7, 35, 37]. Real-time emulation

means the faithful reproduction of all target signals in the same mutual

relationships as those the real processor would generate [51].

The problem with ICEs, however, is that they lag behind the processor

production time and become useless as the processor version changes. The

behavior of a processor with on-chip instruction and data cache is invisible to an

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 55

ICE as it is to the logic analyzer, so most ICEs are designed to take advantage of

the on-chip trace and breakpoint circuitry provided by the chip manufacturers.

Furthermore, ICEs are usually expensive and hard to use [21, 36]. They are not

usually good at replicating the action of the microcontroller in terms of the clock

oscillator, and they may have power supply requirements which are less flexible

than the microcontroller itself. They do not allow the genuine final operating

condition of the system to be fully replicated.

2.2.3.5 On-Chip Debuggers

The technique, which is becoming increasingly common, is the debugging

technique using dedicated processor pins [21]. In the latest processors this type of

debugging is done via JTAG pins [136]. As the speed and complexity of processors

increase, the likely cost of in-circuit emulators increases and their feasibility

decreases. As a result, semiconductor manufacturers are increasingly adding debug

facilities to the silicon itself. Some features of the ICE are designed into the

microcontroller itself. Thus, a variety of on-chip test facilities came into being.

This may vary from the provision of hardware breakpoints (address/data

comparators), which should be supported by a monitor debugger, to a special

“debug mode” that requires specific debugger support. Motorola used the

terminology background debug mode (BDM) which is featured in Freescale 683xx

(CPU32) series devices, while Microchip uses the terminology in-circuit debugger

(ICD). Most of the modern processors support some dedicated pins by which a

debugger program can observe some internal signals of the processor and extract

debug information from interpretation of these signals. In this technique, the whole

debugger software runs on a host machine and communicates with the target

processor via these dedicated pins.

Chapter 2

Department of Computer Science56

Most commonly, devices use a JTAG [137] connection to provide on-chip

debug (OCD). A JTAG connection is quite cheap and easy to incorporate into a

design [132]. This standard describes a 5-pin serial protocol for accessing and

controlling the signal levels on the pins of a digital circuit, and has extensions for

testing the circuitry on the chip itself. The standard was developed by the Joint Test

Action Group (hence JTAG), and the architecture described by the standard is

known either as 'JTAG boundary scan' or as 'IEEE 1149'. Assertion of OCD mode

stops the processor and enables a debugger to read and write information to and

from the machine registers and memory. To utilize OCD, an appropriate connector

must be included on the target board, but this low-cost connector does not represent

a significant overhead. Between the host computer and the target board, an OCD

adapter is required. [7]. In the ARM SoC architecture [137] the Embedded ICE

module introduces breakpoint and watchpoint registers which are accessed as

additional data registers using special JTAG instructions, and a trace buffer which

is similarly accessed. Some of the disadvantages of in circuit debugging are

 Some microcontroller resources are taken by the OCD function; this includes

a few I/O pins, some program memory and other internal resources.

 The target microcontroller must be functioning, with its clock running.

 It is generally less powerful than a fully fledged ICE system.

2.3 Hardware and Software Integration

The most crucial step in embedded system design is the integration of

hardware and software [7]. There are numerous ways to perform this integration.

Doing it sooner is better than later, though it must be done smartly to avoid wasted

time debugging good software on broken hardware or debugging good hardware

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 57

running broken software. Two important concepts of integrating hardware and

software are verification and validation (V&V) [11, 25, 52, 138, 139, 140].

Embedded system verification refers to the tools and techniques used to

verify that a system does not have hardware or software bugs. Software verification

aims to execute the software and observe its behavior, while hardware verification

involves making sure the hardware performs correctly in response to outside

stimuli and the executing software. Software Verification is an iterative process

aimed at proving or demonstrating that the program correctly satisfies the design

specifications. Ideally, all of this verification is done before the hardware is built.

The earlier in the process problems are discovered the easier and cheaper they are

to correct. Verification answers the question, “Does the thing we built work?”

Embedded system validation refers to the tools and techniques used to

validate that the system meets or exceeds the requirements. Validation is the

process of evaluating software, at the end of the development process, to ensure

that the system correctly serves the purpose for which it is intended. It answers the

question, “Did we build the right thing?” Validation confirms that the architecture

is correct and the system is performing optimally. Like verification, it is best to do

this before the hardware is built. Tools that provide good visibility make validation

easier.

The benefit of early V&V is clear: fewer bugs will be found and less

rework will be performed during final system integration and test.

Pnueli et al. [141] describe CVT - a fully automatic tool for Code-

Validation, i.e. verifying that the target code produced by a code-generator

(equivalently, a compiler or a translator) is a correct implementation of the source

specification. This approach is a viable alternative to a full formal verification of

the code-generator program. Remarkably, the combination of automatic code

Chapter 2

Department of Computer Science58

generation and validation improves the design flow of embedded systems in both

safety and productivity by eliminating the need for hand-coding of the target code

(and consequently coding-errors are less probable) and by considerably reducing

unit/integration test efforts.

IAR visualSTATE is a set of highly sophisticated and easy to use

development tools for designing, testing and implementing embedded applications

based on state-chart diagrams. It provides advanced verification and validation

utilities. One of its key features is to ensure at an early stage of design that the

application behaves as expected, even before the hardware is realized [142].

2.4 Control Flow Checking

The development of a dependable computing system includes a set of

methods like fault avoidance, fault removal and fault tolerance. In the design and

implementation phase, fault avoidance by proved design methodologies,

technologies and formal verification is important. In the test and debugging phase,

fault removal is performed. Both methods can be referred to as fault prevention,

preventing fault occurrence or introduction. In the operational phase, fault

tolerance methods are applied to provide a proper system service in spite of faults.

Fault forecasting is used to estimate the number, future incidence and

consequences of faults [143].

Some type of faults such as transient faults or intermittent faults that affects

the program control flow cannot be detected off-line, a runtime error detection

mechanism is the only feasible mechanism to detect control flow errors (CFEs)

[116, 144]. For the last three decades, many different control flow checking (CFC)

mechanisms have been proposed to verify proper flow of application programs.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 59

Control-flow checking is usually performed through signature monitoring, where

the errors are detected by comparing the run-time signature with a pre-computed

one. In the proposed software-only approaches [145, 146], additional software code

is inserted into application programs resulting in significant code size penalties,

and poor performance.

Two large classes among signature-monitoring techniques are autonomous

signature monitoring, where the pre-computed signature is stored in a dedicated

memory, and embedded signature monitoring, where the signature is embedded

into the program [116]. The first approach [143, 147, 148] needs an additional

hardware or the modification of the existing hardware. In the embedded signature

monitoring approach [149, 150, 151, 152], the signature is embedded into the

program under control. These approaches are based on low-level descriptions of the

programs and signatures are embedded into program at compile time. The proposed

techniques require special compilers to introduce the signature into program code.

Michael A. Schuette and John Paul Shen [150] present an innovative approach,

called signatured instruction streams (SIS), to the on-line detection of control flow

errors caused by transient and intermittent faults. The program partitioning concept

used to construct the control flow graph has been adopted for our work.

One of the recent approaches for developing safety critical applications is

Software Implemented Hardware Fault Detection (SIHFD) [116]: a technique for

the on-line detection of control flow faults in low-cost embedded systems. The

proposed approach exploits the information available in the Control-Flow Graph

(CFG) to embed suitable instructions of two types: set and test, in the program.

During program execution these instructions check for each basic block, whether

the block is reached from a legal one (according to the CFG); otherwise it possibly

Chapter 2

Department of Computer Science60

indicates a control-flow error. They have performed an in depth analysis at the

assembly code level in order to identify the control-flow errors.

Ragel Roshan G. and Parameswaran present a hardware-software

technique to detect CFEs at the granularity of micro-instructions for the first time.

MIs are instructions which control data flow, and instruction-execution sequencing,

in a processor at a more fundamental level than the level of machine instructions.

CFEs occur due to various low-level errors or failures. The three error models used

in this paper are bit flips in instruction memory, transmission errors during

communication, and errors in registers. Bit flips in instruction memory will be

caused due to burst errors and will corrupt instructions. They will occur in on-chip

or off-chip memory. Transmission errors may occur when bit vectors are

transferred between any two levels of memory hierarchy or between different

functional units. Corruption of register values, in particular those which determine

the destination address or the condition of a branch instruction could cause an

illegal branch in the control flow of an application. The technique proposed in this

paper detects CFE caused by not only independent bit flips, but also bit bursts.

2.5 Optimization

Optimization is a procedure that mainly seeks to maximize performance and

minimize code size. Some optimizations have a positive effect on both code size

and performance whereas in other cases there is tradeoff between the two

optimization goals [38]. In general, a program is processed in six main steps in a

modern compiler:

 Parser: The conversion from high level source code to an intermediate

language.

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 61

 High-level optimization: Optimizations on the intermediate code.

 Code generation: Generation of target machine code from the intermediate

code.

 Low-level optimization: Optimizations on the machine code.

 Assembly: Generation of an object file that can be linked from the target

machine code.

 Linking: Linking of all the code for a program into an executable or

downloadable file.

The parser parses the source code, checking the syntax and generating error

messages if syntactical errors are found in the source. If no errors are found, the

parser then generates intermediate code, and compilation proceeds with the first

optimization pass. The high-level optimizer transforms the code to make it better.

The optimizer has a large number of transformations available that can improve the

code, and will perform those that it deems relevant to the program at hand. When

the high-level optimizer is done, the code generator transforms the intermediate

code to the target processor instruction set. After the code generation is done,

another phase of optimization takes place, where transformations are performed on

the target code. There are many transformations that can only be applied on the

target code. After the low-level optimizer is finished, the code is sent to an

assembler and output to an object file [7]. The optimizations covered are best

applied in the order presented as shown in Fig. 2.4 [49].

Chapter 2

Department of Computer Science62

Fig.2.4 A typical optimization sequence in an advanced compiler.

2.5.1 General Optimizations

Most compilers have a series of options known as general optimizations.

These consist of options that bundle together a variety of safe and easy

optimization techniques. They will most often have a positive effect on the

majority of programs. For example, the "optimize for speed" option does not

include every possible optimization that may increase the performance of a

program, it incorporates optimizations like inlining of intrinsic functions as well as

simple loop optimizations. This option is the best place to start when the

optimization phase begins. Function inlining is a well-known technique, in which

function calls are replaced by copies of function bodies, so as to reduce the calling

overhead. In case of multimedia applications mapped to VLIW processors, loop

transformations are a very effective means of code optimization. A simple example

is loop unrolling, where loop iterations are duplicated, resulting in larger basic

Chapter 2

Department of Computer Science62

Fig.2.4 A typical optimization sequence in an advanced compiler.

2.5.1 General Optimizations

Most compilers have a series of options known as general optimizations.

These consist of options that bundle together a variety of safe and easy

optimization techniques. They will most often have a positive effect on the

majority of programs. For example, the "optimize for speed" option does not

include every possible optimization that may increase the performance of a

program, it incorporates optimizations like inlining of intrinsic functions as well as

simple loop optimizations. This option is the best place to start when the

optimization phase begins. Function inlining is a well-known technique, in which

function calls are replaced by copies of function bodies, so as to reduce the calling

overhead. In case of multimedia applications mapped to VLIW processors, loop

transformations are a very effective means of code optimization. A simple example

is loop unrolling, where loop iterations are duplicated, resulting in larger basic

Chapter 2

Department of Computer Science62

Fig.2.4 A typical optimization sequence in an advanced compiler.

2.5.1 General Optimizations

Most compilers have a series of options known as general optimizations.

These consist of options that bundle together a variety of safe and easy

optimization techniques. They will most often have a positive effect on the

majority of programs. For example, the "optimize for speed" option does not

include every possible optimization that may increase the performance of a

program, it incorporates optimizations like inlining of intrinsic functions as well as

simple loop optimizations. This option is the best place to start when the

optimization phase begins. Function inlining is a well-known technique, in which

function calls are replaced by copies of function bodies, so as to reduce the calling

overhead. In case of multimedia applications mapped to VLIW processors, loop

transformations are a very effective means of code optimization. A simple example

is loop unrolling, where loop iterations are duplicated, resulting in larger basic

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 63

blocks and thereby in a higher potential for parallelization of instructions during

scheduling [38]. If an application runs correctly in debug mode with optimizations

turned off, but not after this option, it is probable that more complex optimizations

will not work either. Using aggressive optimizations will often reveal errors in code

that may have otherwise gone undetected.

Transformations typically applied by a low-level code-improving compiler

are algebraic simplification of expressions, basic block reordering, branch chaining,

common sub-expression elimination, constant folding, constant propagation,

unreachable code elimination, dead store elimination, evaluation order

determination, filling delay slots, induction variable removal, instruction selection,

jump minimization, register allocation, strength reduction, and useless jump

elimination [38, 39, 153]. Even though these techniques are normally considered

machine independent, they sometimes have to be used carefully. Common sub-

expression elimination, for instance reduces the number of computations to be

performed, but on the other hand results in a higher number of registers required.

On a processor with many functional units but only few registers, multiple

recompilation of values can thus be more efficient.

New code optimization techniques dedicated to several classes of embedded

processors are introduced in [38]. Specific processor architectural features are

exploited in order to generate efficient code. The presented techniques are machine

independent and are retargetable to a certain extent. Retargetability inherently

reduces code efficiency because the fewer the assumptions a compiler makes about

the target machine, the less machine specific hardware features can be exploited to

generate efficient code. Machine specific code optimization should be developed

with the idea of retargetability in mind.

Chapter 2

Department of Computer Science64

2.5.2 Processor Specific Optimizations

When the intermediate representation (IR) statements are mapped to

assembly instructions, all machine-specific features, such as special-purpose

registers, complex instruction patterns, and inter-instruction constraints need to be

taken into account. However, modern compilers often fail to generate highly

efficient machine code as the instruction set extensions of modern processors like

digital signal processors (DSPs), cannot be exploited directly in programming

languages like ANSI-C. Examples for such extensions are saturated arithmetic or

multimedia SIMD (Singe Instruction Multiple Data) instructions, where no analog

constructs exist in programming languages.

To exploit such instruction sets within programming languages, inline-

assembly was used in the past: small assembly snippets written and manually

optimized by the programmer were embedded in the high-level source codes. The

use of inline-assembly is disadvantageous because maintenance and portability of

such source codes are poor. Nowadays, almost every compiler for DSPs offers

compiler known functions or intrinsics. Using intrinsics, particular features of a

processor can be exploited by the programmer [154]. The compiler maps a call to

an intrinsic not to a regular function call, but to a fixed sequence of machine

instructions. Using intrinsics, the resulting optimized source code is highly efficient

since the compiler replaces the intrinsic by an extremely fast sequence of assembly

instructions. But since intrinsics are non-standardized programming language

extensions, source codes using intrinsics are no longer portable at all. Currently,

only poor tool support exists to aid the programmer in replacing suitable source

code fragments by efficient intrinsics.

Falk et al. [154] presents techniques for processor-specific code analysis and

optimization at the source-level. In their work, the entire transformation process is

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 65

automated, but results are only presented for three very small loop kernels. In

addition, just simple pattern matching techniques are used to optimize the code.

Some compilers have processor specific optimizations [49] that provide

hints to the compiler about what processor the application is going to be run on.

For example, if an application is going to target a processor capable of running

special instructions, then the compiler needs to know it is free to generate these

instructions where it feels they will be of most use. One important word of caution:

If this application is run on a processor that does not support the generated

instructions, the application will crash.

2.5.3 Interprocedural Optimizations

The options mentioned to this point only affect the span of one function.

Interprocedural optimization or IPO works on the entire program, across procedure

and file boundaries. This option allows the compiler to look at the whole program

as though it were one file. In this way, actions and optimizations taken in one

routine can affect those in another routine. The various steps of IPO process are as

follows.

The first step consists of compiling the source files with the IPO option. The

compiler creates object files containing the intermediate language (IL) used by the

compiler. Upon linking, the compiler combines all of the IL information and

analyzes it for optimization opportunities. Whole-program optimization is time

consuming for large programs.

One of the main optimization techniques enabled with IPO is inline function

expansion. Inline function expansion occurs when the compiler finds a function

call that is frequently executed. Using internal heuristics, the compiler can decide

to replace the function call with the actual code of the function. By minimizing

Chapter 2

Department of Computer Science66

jumps through the code, this creates a higher-performing application. Other typical

interprocedural optimizations are: interprocedural dead code elimination,

interprocedural constant propagation and procedure reordering. The compiler's

main goal is to ensure a correctly running program. If the compiler cannot predict

the full impact of an optimization, it will take the safe route and desist from

performing it [49].

2.5.4 Profile-Guided Optimizations

A compiler is limited to optimizing based on the data available at compile

time. The actual execution of a program could behave in a way that is not intuitive

from simply analyzing the available source code. Perhaps one of the most evolved

optimization techniques is known as profile-guided optimizations, or PGO. This

optimization allows the compiler to use data collected during program execution to

aid in the optimization analysis. Knowing which areas of code are executed most

frequently, the compiler can be more selective about the optimizations it performs

and can also make improved decisions about how to perform them.

New research directions of optimization include low power consumption

and retargetability for support of architecture exploration. Allocation techniques to

statically allocate data to the scratchpad memory for energy saving were introduced

in [155] and [156] whereas [157] presented a dynamic approach. These techniques

are all based on the frequency of data access obtained from the execution profile

and make no attempt to reduce the code size.

2.5.5 Optimization of Bank Switching Instructions

Efficient utilization of on-chip memory space is extremely important in

modern embedded system applications based on microprocessor cores. Memory

banking and memory paging are common techniques, which increase the size of

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 67

data and code memory without extending the address bus. Many MCUs have

banked memories that cannot be addressed simultaneously. Switching between the

memory banks requires at least one bank switching instruction which induces extra

overhead in code size and execution time. The related literature for minimal

placement of bank switching instructions is motivated by objectives, such as less

runtime, low power, small code size, or a combination of these parameters.

Scholz et.al. in [17] assume the variables have already been assigned to

memory banks and presents a novel optimization technique that minimizes the

overhead of bank switching through cost effective placement of bank selection

instruction. They formulate the placement of bank selection instructions as a

discrete optimization problem that is mapped to a partitioned Boolean quadratic

programming (PBQP) problem. Allocating variables to shared memory is useful to

eliminate bank selection instructions. Mengting et al. in [31] presents a dynamic

programming algorithm to generate the optimal assignment of variables in the

shared memory to minimize bank selection instructions. Li et al. [32] prove that it

is NP-Hard to insert the minimum number of bank selection instructions if all the

variables are pre-assigned to memory banks. So they introduce a 2-approximation

algorithm using a rounding method. They consider the case when there are some

nodes that do not access any memory bank and design a dynamic programming

method to compute the optimal insertion strategy when the Control Flow Graph

(CFG) is a tree. An algorithm is presented in [33] devoted to reduce the number of

page selection instructions with careful allocation of functions into pages.

The work presented in [34] aims to utilize variable partitioning techniques

to minimize the size and time overhead introduced by bank switching. Current

practice typically leaves it to the programmer to partition the data among different

memory banks. Whether programming is done in assembly language or in a high-

Chapter 2

Department of Computer Science68

level language, the programmer has to provide data manually by using assembler

directives or compiler pragmatics. Compiler methods are preferable to programmer

directives as they do not require programmer effort; are portable across different

systems; and are likely to make better decisions, especially for large, complex

programs [158]. Most of the current variable partitioning techniques aim at

achieving the maximum instruction level parallelism for processors equipped with

dual data memory banks accessible in parallel [159,160,161]. But these techniques

will not benefit the bank switching optimization because no parallel bank accessing

is allowed in this architecture. The problem of partitioning data into scratch pad

SRAM and cache with the objective of maximizing performance has been

addressed in [162]. A compiler method for automatically allocating program data

among the heterogeneous memory units in embedded processors without caches

resulting in reduced runtime is presented in [161]. All these works mentioned

above are analyzing the source programs for optimum data partitioning.

Due to problems associated with code optimization, it is standard practice in

the safety community to develop all high integrity applications with optimization

disabled. This removes a potentially risky phase from the compilation process and

aids traceability of the source code throughout the compilation [163].

Because software is incorporated in an increasing number of critical

systems, there is a need to ensure that compilers produce machine code that

correctly represents the algorithms specified at the source code level. This is a

formidable task since an optimizing compiler translates a source code program to

machine code while applying hundreds or thousands of compiler optimizations to

even a relatively small program. The work presented in [153] describes a general

approach for the automatic validation of code-improving transformations on low-

level code. To ensure that a compiler produces correct machine code, compiler

Review of Debugging and Optimization Technologies

Cochin University of Science and Technology 69

developers must guarantee that all compiler optimizations are semantics preserving.

The problem of proving the semantics preserving property of optimizing

transformations is exacerbated for embedded systems development [164], where

often either applications are developed in assembly code manually or compiler-

generated assembly is modified by hand to meet speed and/or space constraints.

Engelen et al. [164] describes the applicability of the approach to validate the

optimization of embedded software using an interactive compilation system for

code development. This is an important problem for embedded system developers,

because the cost of malfunctioning software in embedded systems is huge.

2.6 Summary

Software debugging is an arduous task. The embedded software

development constraints and the methods and tools for software testing and

debugging are described. Static bug detection methods, static analysis tools

developed and operation of these tools on binary executables are explained. Use of

dynamic analysis for finding program anomalies are also discussed. Debugging

technique using dedicated processor pins as well as integration of hardware and

software are included. Techniques for the on-line detection of control flow faults in

embedded systems are explored. Various optimization techniques are also

explained.

Introduction

71

3
METHODOLOGY

3.1 Program Partitioning ……………………….................... 71
3.2 Rule Formation and Codification………………….......... 73
3.3 Validation and Fault Localization …………. 74
3.4 Optimization……………. ... 75
3.5 System Realization ……….. 76
3.6 The Development Support Systems …… 77
3.7 Summary………………….. 78

Methodology adopted for the error-localization, validation and optimization

of embedded system code is described here. This work adopts a machine level

approach centered on early detection of instruction sequencing errors associated

with the core as well as peripheral functioning of the target processor in an

embedded system that would lead to malfunctioning at runtime. Static analysis is

done with a control flow graph (CFG) constructed from the machine code,

following the basic program partitioning concepts. The development environment

and tools at each stage of the work are explained.

3.1 Program Partitioning

For the possible realization of this architecture oriented approach, its

feasibility has been verified on systems based on PIC16F87X series of

microcontrollers. This family of microcontrollers constitutes a RISC-based Harvard

Chapter 3

Department of Computer Science72

architecture with instruction size of 14 bits and a data bus of 8-bit width [165, 166].

Each PIC16F87X instruction is a 14-bit word, divided into an opcode which

specifies the instruction type and one or more operands which further supplement

the operation of the instruction.

Static analysis techniques are generally used to operate on source code. But

we need to apply them on machine code. For the implementation of the machine

code analyzer first the machine code together with its address is read from an Intel

hex file. All possible valid sequences of instructions of an application program can

be represented by a directed graph, G =<V,E> called the program graph. V is the

set of nodes where each node in the graph represents a machine code for a single

instruction along with its address and E represents the set of edges where each edge

(arc) represents valid control flow between two instructions. A program graph [14,

39, 96, 150] is constructed from the machine code using all the conditional and

unconditional control transfer instructions and their destination addresses for the

target processor under consideration.

Identification of the modules or subprograms in a program is done by

following the basic program partitioning concepts [16, 39, 150, 167]. For the target

processor the entry points and exit points in the program graph can be identified

from the control transfer instructions [151] and their destination addresses, which

are available from the popular Intel hex file or binary file format. All the merge

nodes, which are nodes in the program graph with more than one incoming edges

are identified. The CFG is abstracted from the machine code array as follows.

In order to get the correct sequencing of instructions, the program (machine

code) is partitioned [150] into blocks of instructions by disconnecting from every

merge node all of its incoming arcs [167]. Hence the program graph is partitioned

into a collection of disconnected sub-graphs where each subgraph corresponds to a

Methodology

Cochin University of Science and Technology 73

set of instructions or subprogram. Since each subgraph is a tree, they have only one

entry point (root node) and there is a unique path, and hence a unique sequence of

instructions, from the entry point to each of the exit points. Now the CFG [88, 106,

163,168] can be constructed whereby each subgraph of the program graph is

represented as a single node with the arcs representing valid control flow between

sub-graphs that correspond to an exit point of a subgraph, represented by the source

node of the arc. Each subgraph is a rooted tree with the merge node being the root

node and all the arcs being directed away from the root node [150].

3.2 Rule Formation and Codification

For the analysis a number of rules are formed based on the instruction set

and architectural features of the target processor. A thorough analysis of various

instructions used for configuring the integrated peripherals of the target processors

has been conducted. The likelihood of occurrence of typical instructions in a stream

is explored and necessary rules are formed in a well-defined manner. These rules

govern the validity of instruction sequence in a given program. Rules to identify

the following illegal codes or code sequences have been formed.

 Opcode that does not decode to any known instruction of a processor

 Any literal byte selected or any instruction for configuring a register which

sets the reserved/unimplemented bits

 Codes that may access unimplemented data memory bank locations.

 Codes that may result in improper read, write, initialization or configuration

of registers associated with the core as well as peripherals.

 Discrepancy in the opcodes and operands

 A missed or redundant instruction in a possible execution path

 Code sequence that may result in a deadlock.

Chapter 3

Department of Computer Science74

The target processor specific requirements in the machine code sequence are

stipulated as rules of inferences and are of the form

(premises  consequent) or (antecedent  consequent)

The premises and consequences are expressed in propositional logic

formulae. The premises are a sequence of machine code pattern and the

consequences are the set of prerequisites or post requisites in the machine code

pattern/sequence for the corresponding premises.

Machine code or code sequences against each of the rules are identified for

the prototype microcontroller. Around one hundred rules have been formed for this

family of microcontrollers.

3.3 Validation and Fault Localization

Using the CFG the entire program can be broken down into a fixed number

of unique execution paths. The rules formed are applied in each of the execution

path to locate an illegitimate/out of place code in the instruction stream. Each rule

is applied independently and the instruction sequence in all possible execution

paths are checked for compliance of the rule. Soundness of the rules is checked

applying the principle that f1  f2 is false only when f1 is true and f2 is false [169];

for all other conditions it is true. For validation of the code the rules formulated are

applied so that the code or code sequence in each path is compared with a code or

code sequence provided by each rule. Each comparison results in setting or

resetting of a number of monitoring flags. At the exit point of each node in the

CFG a number of conclusions are made based on which the analysis of the next

node is done. At a merge node the conclusions made in the entire possible path to

the merge node determines the analysis of the sequence of instructions that follows.

The rule which has invalidated the code leads to the localization of error. The

Methodology

Cochin University of Science and Technology 75

necessary program has been developed in Visual Basic which reports the violation

of the rules and location of errors if any. When this tool is integrated to the system

development environment the debugging process can be made interactive and user

friendly.

3.4 Optimization

When the machine code from the compiler/assembler is subjected to the

analysis based on rules framed for validation, the result is a stream of machine code

with the probable errors eliminated and the stream optimized for code efficiency.

The algorithm developed to assist the programmer for eliminating redundant data

memory bank selection instruction utilizes static analysis of machine codes. The

algorithm rests on a relation matrix ∆ [169], formed for the Active Memory Bank

(AMB) state transition, corresponding to each bank switching instruction in the

machine code sequence of an application program. This relation matrix also helps

the machine code analyzer in identifying the registers as well as peripheral devices

used in the application program.

The memory bank that was active just before the execution of a bank

switching instruction is named Previously Activated Memory Bank (PAMB). A

bank switching/selection instruction is said to be redundant when the execution of

such an instruction switches the memory bank to an Active Memory Bank (AMB)

that does not alter the PAMB. A detailed study on the various PIC families of

microcontrollers has been made in this regard. The default memory bank state is

assigned at start to the Previously Activated Memory Bank (PAMB) of each path

of the 1st CFG node. For each memory bank switching code (MBSWC) in a valid

path, the AMB state is obtained from the matrix ∆. A redundant MBSWC is

located when AMB and PAMB are the same.

Chapter 3

Department of Computer Science76

Analysis of a subprogram identifies the redundancy of the memory bank

switching instructions associated with the intraprocedural routines. As a first step

towards the suppression of false warnings, for all the CFG nodes, even though the

first (pair of) bank switching instruction in any path is found to be redundant, they

are not reported till the interprocedural analysis is over and the redundancy is

confirmed. Hence the AMB associated with the merge node in a subprogram is

taken as the union of AMBs of its incoming arcs. As a second step, the algorithm

considers all the transparent nodes which do not contain any bank switching

instructions.

For optimum data allocation to memory banks, data mapping matrices for

all possible permutation of memory banks and combination of data are considered.

The program with a data allocation scheme that results in the minimum number of

bank switching codes is selected.

3.5 System Realization

The implementation of the validation and optimization algorithm developed

is done in Visual Basic. Visual Basic is one of the most popular and friendly

programming languages available today. The ability to develop object models and

data base integration [170] provides the capabilities needed for this work. Program

modules have been developed for:

 file reading and data extraction

 Program flow identification

 Merge nodes identification

 CFG construction

 Execution paths Identification

 Intraprocedural linear scanning

Methodology

Cochin University of Science and Technology 77

 Merge node processing

 Error reports/ exports

3.6 The Development Support Systems

For carrying out the proposed work, different application modules have

been simulated around various PIC microcontrollers using PROTEUS VSM- an

interactive and graph based system level simulator. This provides the means to

enter the design in the first place, the architecture for real time interactive

simulation and a system for managing the source and object code associated with

each project. CPU Models are available for popular microcontrollers such as the

PIC and 8051 series. This supports various interactive peripheral modules and

component library for product designs. A sample design based on PIC16F877 for a

traffic signaling application is shown in Fig. 3.1 which is utilized for this study.

Fig 3.1 A sample design developed for simulation using PROTEUS

VSM for a traffic signaling application based on PIC16F877

microcontroller.

Chapter 3

Department of Computer Science78

3.7 Summary

The work presented in this thesis utilizes a static analysis of the machine

code to achieve error-localization, validation and optimization of the embedded

system code. CFG construction based on the basic program partitioning concepts is

explained. The application of governing rules to the possible execution paths for

validation is explained. Optimization of the code with the use of a relation matrix is

dealt with. The various program modules developed for the realization of validation

and optimization are introduced. The tools and support systems used in this work

are briefly introduced in this chapter.

Introduction

79

4
CODE VALIDATION AND ERROR

LOCALIZATION
4.1Validation Technique.. 81

 Background
 Applicability in RISC Architectures
 Control Flow Graph Construction
 Codification of Rules
 Analysis Technique

4.2 Tool Chain .. 96
4.3 Feasibility Study on PIC16F87X MCU 97
4.4. Code Validation and Error Detection............................ 99

 Fault Localization
 Fault Diagnosis
 Error Correction

4.5 Results and Discussions ... 118
4.6 Summary... 120

Testing and debugging of embedded software remains challenging, with

only ad hoc methods and techniques available. The time required for the program

development, the efficiency and code size of the developed program, all depends

largely on the skill and expertise of the programmer. It is advantageous to discover

and eliminate software errors in applications prior to the integration of the system;

this allows the system testing to proceed in a smooth and efficient manner. Since

embedded systems are typically resource constrained, addition of real time

validation activities that becomes part of the final system will increase the demand

Chapter 4

Department of Computer Science80

for resources. In this context it is desirable to have automated debugging and code

validation methods which utilize the vast power of machines available today to

reduce human debugging time and to improve the quality of software developed.

Many of the debugging tools incorporate program slicing techniques [52, 86, 88]

proposed by Mark Weiser [12].

A new application domain for the static analysis of machine code; a code

validation technique to assist a programmer in developing error free and reliable

embedded software which may reduce the development time as well as improve the

quality of the software is discussed here. An incorrect sequence of machine code

pattern is identified using slicing techniques on the control flow graph generated

from machine code. With the help of rules of inferences formulated for the target

processor, this tool detects codes and code sequences, which may cause the

program to misbehave at run time. Codification of rules is done in propositional

logic [169] and the compliance of the rules is checked in all possible execution

paths. It can be used to debug a compiler or an assembler generated machine code

on a host machine before the system realization and validation phase. With this

analysis any logical errors as well as code redundancy made by the programmer for

the target processor can be identified by an incorrect sequence of machine code

pattern and can be reported. Unlike the reported techniques, this work neither

require abstract version of each instruction in the target architecture since it does

not deal with the syntax of the construction language nor require a full

disassembler; only the hex code patterns or sequence of the machine code are

compared for the analysis. Analysis can be done without any knowledge about the

source code except the target processor. This work contributes a useful tool in

steering novices towards correct use of difficult microcontroller features in

developing embedded systems. During software development one has to go

Code Validation and Error Localization

Cochin University of Science and Technology 81

through edit, compile and test routines repeatedly which can be reduced

considerably by the proposed tool.

The present state-of-the-art technology in system development uses tools

like in-circuit debuggers and loaders by which the compiled code can be transferred

to the system and tested in real time. The integration of an automatic code

validation tool will easily fit into such a development environment for error free

and efficient program development.

4.1 Validation Technique

Embedded software development requires cross compilers and the code

generation phase of a compiler is processor dependent. Existing compilers and

assemblers can detect any lexical, syntactic or semantic errors in the source code,

while they cannot detect any logical error made by the programmer. It is important

that machine level code should be checked, because this is the code that actually

directs the operation of the processor. The proposed approach incorporates rules of

inferences based on the instruction set and architectural features of a processor to

validate and optimize the compiled or assembled code of an application program.

Hence any discrepancy in the instruction sequence made by the programmer in

configuring the CPU and integrated peripherals functioning can be identified. This

contributes to an effective method of early detection of instruction sequencing

errors resulting from subtle deviations of the hardware specification that had

slipped through conventional testing that would lead to malfunctioning at runtime.

An advantage of this technique is that after the overhead of verification, the

program executes with no run time penalty at all. The error sequence and

redundancy removal can contribute to code optimization.

Chapter 4

Department of Computer Science82

Rules of inferences can be formulated based on different strategies by

classification of the plausible faults under various headings like discrepancy in

opcodes or operands, illegal opcodes, missed/redundant instructions etc. Again

clustering of instruction set can be done to form flag affecting instructions, flag

checking instructions, instructions having same destination register etc. based on

which rules can be formulated. Certain rules can be generalized while others

depend on the architectural features of the processor. The rules hence formed are

converted into machine code sequences/patterns with the help of an assembler for

the target processor. Based on this code sequence, propositions are defined and the

rules are coded into propositional logic formulae. Now these rules are validated by

means of slicing techniques on the CFG generated from machine code of the

application program. CFG is an intermediate representation of a program as a

directed graph with vertices representing instructions and arcs (edges) representing

transfers of control between them [163].

4.1.1 Background

The author had proposed a debugging system based on reasoning obtained by

heuristics with a novel scheme of forming instruction clusters [171] which in turn have

been used to form a knowledge base. A prototype based on Intel 8085 CPU has been

developed. A thorough analysis of the various instruction streams [172] of the

8085/8086 family of processors [173] has been conducted. The likelihood of

occurrence of typical instructions in a stream are explored and clusters formed in a

well defined manner. The logic that is adopted is an offshoot of the method adopted at

clustering. Basic rules have been formulated which guide the occurrence of instruction

in a stream. Based on this a plausible sequence can be predicted and errors identified.

An algorithm has been designed which check the appropriateness of instruction codes.

The algorithm encompasses a wide range of processors, once appropriate clusters are

Code Validation and Error Localization

Cochin University of Science and Technology 83

available for such processors. As a first level attempt, three schemes which produce A-

Cluster, B-Cluster and C-Cluster are proposed.

Scheme 1: A-Cluster for a typical instruction is made up of instructions

which are not likely to follow that particular instruction. For example, consider the

instruction MOV C,E. An instruction like POP B is not likely to follow it, owing to

the reason that both have the same destination for data. Hence POP B will be a

constituent of the A-Cluster for MOV C,E which can be formulated into a rule:

A-Cluster rule: A data transfer instruction to immediately follow another,

with the same destination is illegal or in general an instruction is not to be

immediately followed by its A-Cluster element. Table 4.1 shows samples of A-

Clusters for typical instructions. On an identical approach, rules can be framed in

forming A-Clusters for the complete instruction set of typical processors.

Table 4.1 A-clusters for instructions MOV C, E; ADD B & POP B

I MOV C, E ADD B POP B

[A-Cluster] I

MOV C, r2 MOV A, r2 MOV B, r2

MOV C, D8 MOV A,M MOV C, r2

LXI B,D16 MVI A,D8 MOV B, M

POP B LDA Adr MOV C, M

LDAX rp MVI B, D8

SUB B MVI C, D8

POP PSW LXI B, D16

IN D8 PUSH B

RIM POP B

Scheme 2: B-Clusters are formed by instructions that have a bearing on

status flags. This is done with a view to checking the sequence by identifying a

possible flag checking instruction to follow a B-Cluster instruction. In the typical

case of instructions that affect flag in different ways subdivisions BC1, BC2 and

Chapter 4

Department of Computer Science84

BC3 can be formed to indicate each category. For example, a BC1 instruction will

affect only one flag, BC2 might affect all flags, BC3 not affecting any flag, etc.

Table 4.2(a) shows a sample of B-Cluster which depicts the cluster of instructions

affecting only the carry.

Scheme 3: clusters are formed comprising flag checking instructions. These

constitute C-Clusters. These are mostly conditional transfers which examine the

status of one of the processor flags to determine whether the normal sequential

flow is to be altered. Table 4.2(b) shows the cluster for conditional jump

instructions.

Table 4.2 Examples of (a) B-Cluster and & (b) C- Cluster

DAD rp JZ
RLC JNZ
RRC JC
RAL JNC
RAR JPO
CMC JPE
STC JP

JM
(a) (b)

A rule is formulated to relate instructions in B and C Clusters as:

B and C-cluster rule: Any C-Cluster instruction is necessarily to be

preceded by B-Cluster instruction of the appropriate subdivision. An exhaustive

listing of all the rules that can be formed is not intended, only the basement is

provided which is well indicative of the approach.

Fault location is attempted by making use of instruction clusters that are

formed as per scheme 1. Cluster information is processed to identify an illegitimate

Code Validation and Error Localization

Cochin University of Science and Technology 85

code or an out of place instruction. To illustrate this, the following program

segments are considered.

In the first segment, the fourth instruction is out of place according to A-

Cluster rule. Since the third instruction belongs to a B-Cluster (a flag affecting

instruction), there has to be an instruction that belongs to a C-Cluster that checks a

flag affected by the preceding B-Cluster instruction, in the stream. But if no such

instruction appears before the occurrence of another instruction in the B-Cluster,

then it points to a fault which may be due to a missed instruction or error in the

operand/opcode field, the possibility of instruction being illegal according to

Cluster scheme 1 having been eliminated earlier. This amounts to diagnosis. In

segment 2 the execution of the second instruction which belongs to B-Cluster

affects all condition flags except carry. In the third instruction again a fault is

located according to second rule formulated. There could be an instruction

belonging to BC1 or BC2-Cluster before an INR M instruction, the possibility of

the third instruction being illegal having been eliminated earlier. Adequate rules

Code Validation and Error Localization

Cochin University of Science and Technology 85

code or an out of place instruction. To illustrate this, the following program

segments are considered.

In the first segment, the fourth instruction is out of place according to A-

Cluster rule. Since the third instruction belongs to a B-Cluster (a flag affecting

instruction), there has to be an instruction that belongs to a C-Cluster that checks a

flag affected by the preceding B-Cluster instruction, in the stream. But if no such

instruction appears before the occurrence of another instruction in the B-Cluster,

then it points to a fault which may be due to a missed instruction or error in the

operand/opcode field, the possibility of instruction being illegal according to

Cluster scheme 1 having been eliminated earlier. This amounts to diagnosis. In

segment 2 the execution of the second instruction which belongs to B-Cluster

affects all condition flags except carry. In the third instruction again a fault is

located according to second rule formulated. There could be an instruction

belonging to BC1 or BC2-Cluster before an INR M instruction, the possibility of

the third instruction being illegal having been eliminated earlier. Adequate rules

Code Validation and Error Localization

Cochin University of Science and Technology 85

code or an out of place instruction. To illustrate this, the following program

segments are considered.

In the first segment, the fourth instruction is out of place according to A-

Cluster rule. Since the third instruction belongs to a B-Cluster (a flag affecting

instruction), there has to be an instruction that belongs to a C-Cluster that checks a

flag affected by the preceding B-Cluster instruction, in the stream. But if no such

instruction appears before the occurrence of another instruction in the B-Cluster,

then it points to a fault which may be due to a missed instruction or error in the

operand/opcode field, the possibility of instruction being illegal according to

Cluster scheme 1 having been eliminated earlier. This amounts to diagnosis. In

segment 2 the execution of the second instruction which belongs to B-Cluster

affects all condition flags except carry. In the third instruction again a fault is

located according to second rule formulated. There could be an instruction

belonging to BC1 or BC2-Cluster before an INR M instruction, the possibility of

the third instruction being illegal having been eliminated earlier. Adequate rules

Chapter 4

Department of Computer Science86

have been framed based on such observations and a knowledge base created.

Inferences are drawn which ultimately converge to the fault. In the program

segment 1, the opcode of the fourth instruction could be ADD instead of MOV.

Similarly the opcode of the third instruction in segment 2 could be JZ instead of

JC. Again in segment 1 the error could be in the operand field of the fourth

instruction. If the operand field is changed to C, A from A, C the error may be

corrected. The concept described can be extended and tailored to diagnose such

errors. The necessary algorithm has been formulated. A sample of analysis for the

two program segments is given here.

IF A-Cluster rule Successful for I
THEN IF I  [B-Cluster]

THEN IF any I1  [C-Cluster] follows that checks flag affected by I
THEN IF any I2  [B-Cluster] before I1

THEN next I
ELSE fault or missing instruction or error in the operand/opcode field

ELSE out of place or missing instruction or error in the operand/opcode field
ELSE out of place instruction or error in the operand field

ELSE next I

IF B & C Cluster rule fails for I
THEN IF any I1  [B-Cluster] precedes that affects flag checked by I

THEN next I
ELSE report mismatch [C-Cluster]I

ELSE next I

Sequential information is called for, when used as a debugging tool. Any

actions taken and the results of tests are stored for use as input to the diagnostic

process at the next level [174]. This historical background helps in placing the

missed instruction or correcting such errors. Steps at forming clusters again can be

standard, but the number of clusters and their configuration vary from processor to

Code Validation and Error Localization

Cochin University of Science and Technology 87

processor. The ultimate objective is to foretell the likelihood of errors and their

sources, so that remedial action can be taken in advance.

4.1.2 Applicability in RISC Architectures

This method is particularly significant in RISC machines [38, 137, 163] as

the reduced number of powerful opcodes to be identified in the instruction stream

simplifies the complexity of the algorithm to be developed. The existence of some

relations among the various instructions occurring in a stream forms the basis of

this approach. RISC processors evolved from CISC architectures due to the

observation that complex instructions are used only rarely in practical applications

[38]. The majority of new processors uses RISC technology and typically has

limited addressing modes and a small number of instructions. Another

characteristic of RISCs is a load-store architecture with a large number of general

purpose registers in order to reduce the number of memory accesses in a machine

program. In fact a careful assignment of program variables to registers is the most

important optimization of a compiler for RISC. Still for a fixed application, the

code size for a RISC generally exceeds the code size for a CISC processor. The

largest difference with RISC devices over CISC ones lies in the numbers of

instructions to implement source code functionality [163]. The small size and

simplicity of RISC instruction sets is well suited to the style of error-localization,

validation and optimization presented in this thesis.

4.1.3 Control Flow Graph Construction

Most automatic analysis tools including ours use an intermediate

representation, such as the control flow graph (CFG) or the program dependence

graph (PDG) [88], that is not sensitive to superfluous changes in control flow

[106]. Control flow information, being a collection of processing elements linked

Chapter 4

Department of Computer Science88

 P,V,e,E,V iifiiiG

by (conditional) transfers of control, is represented naturally as a directed graph

with vertices representing computations and arcs representing transfers of control

between them. Such a graph is called a control flow graph [168], which can be

constructed for programs written in any imperative programming language [163].

Given a machine code program, a forward control flow graph is generated

as follows. Identification of the modules in a program is done by following the

basic program partitioning Concepts [16, 39, 150, 167]. The principal aim of the

code validation approach is to check the correct sequencing of instructions of an

application program. The sequence of instructions in an application program can be

represented by a directed graph, called the program graph represented by G = < N,

E >. N represents the set of nodes in the program graph where each node represents

a machine code and its associated address for a single instruction. The edges E =

{x x  (N×N)} represent the directed edges (control flow) between the two nodes

(instructions). A node in a program graph is called a merge node [167] if it has

more than one incoming arc. By disconnecting from every merge node all of its

incoming arcs, a program graph is partitioned into a collection of disconnected

subgraphs where each of them correspond to a set of instructions in the program or

a subprogram. Each such subprogram has exactly one entry point, corresponding to

the merge node, and one or more exit points, including but not necessarily limited

to the leaf nodes of the subgraph tree. Since each subgraph is a tree there is a

unique path or unique sequence of instructions from the entry point to each of the

exit points.

For a total number of K subprograms (subgraph) the ith subprogram can be

represented as an acyclic digraph:

where,

(i) = 1 to K

Code Validation and Error Localization

Cochin University of Science and Technology 89

Vi = {vi1, vi2, …..,vin} represents the nodes in the ith subgraph.

Ei = {x  x  (Vi×Vi)} represents control flow edges between the nodes in

the subprogram.

ei, is the initial node (merge node) of the ith subgraph.

Vif = {x  x  Vi  x is a leaf node}.

 Vif  = M, represents the number of paths in the ith subgraph. If L

represents the number of machine codes (nodes) in the jth path of the ith subgraph,

then

(j) = 1 to M

Pi = {x  x = {xj1, xj2,… xL-1, xjL}  xj1 = ei  xjL  Vif  (q) = 1 to L

(xjq,xj(q+1)  (Vi×Vi)}, represents the set of elementary paths in the ith subprogram.

The program graph can be compacted into a streamlined equivalent graph

called the control flow graph (CFG), where each node in the CFG represents a

subprogram of the program graph. The entry point of a subprogram is either the

instruction stored immediately following a branch instruction or a destination of a

branch instruction. The exit point is either a branch instruction or the instruction

immediately preceding a branch destination [151]. Arcs in the CFG represent a

valid control flow between subprograms that correspond to an exit point of a

subgraph, represented by the source node of the arc.

Though the static control flow analysis of machine code has to overcome

several difficulties [14] an appropriate file format and some architecture specific

heuristics makes the problem manageable. Whether the application program is

developed using a compiler or assembler the executable code is available in Intel

hex file or any other standard format which contains absolute address, code and

Chapter 4

Department of Computer Science90

checksum. Intel hex file format is widely used in microprocessors and

microcontrollers as de-facto standard for representation of code for programming

into microelectronic devices. With a specific architecture of the target processor on

which the code is to be executed many of the problems associated with the static

slicing of executables become manageable.

For the implementation of the code validation first the machine code is read

from the Intel hex file and stored in an array. For the target processor the entry

points and exit points in the program graph can be identified from the conditional

and unconditional control transfer instructions [151] and their destination addresses

which are available from the popular Intel hex file or binary file format. While

constructing the program graph a flow array is created first, this represents each

code with its source and destination addresses. Finding nodes (instructions) in the

program graph without incoming edges, the dead codes are eliminated for the

construction of CFG. Dead code elimination also helps in the efficient utilization of

the available hardware. Merge nodes are identified and the CFG is constructed by

eliminating the incoming arcs of the merge nodes. Within each subprogram the

codes and their addresses of all valid paths are identified. The sequence of

instructions executed by the processor corresponds to a path in the program graph.

Each rule is applied independently and the instruction sequence in all possible

execution paths are checked for compliance of the rule and inferences are reported

if any rule is violated.

4.1.4 Codification of Rules

Rules of inferences are formulated for the target processor after conducting

a through analysis of their architectural features as well as instruction set. The

processor specific requirements in the machine code sequence are stipulated as

rules of inferences and are of the form

Code Validation and Error Localization

Cochin University of Science and Technology 91

(premises  consequent) or (antecedent  consequent)

The premises and consequences are expressed in propositional logic

formulae. The premises are a sequence of machine code pattern and the

consequences are the set of prerequisites or post requisites in the machine code

pattern/sequence for the corresponding premises.

The set of machine codes for a target processor forms the universal set

represented by ‘Z’.

The set of ‘s’ number of rules stipulated for the processor is represented by

R = {r1, r2, r3, ..………rs}

Then (k) = 1 to s

The set of ‘v’ machine codes or their hex values representing the pattern/

sequence generated for the kth rule, Mk = {ck1, ck2, ck3,…..ckv} where Mk  Z, can

be obtained with the help of an assembler for the processor concerned. Reasoning

about the sequence of machine codes for validating a prescribed rule is attempted

using propositional logic.

The sequence of machine codes executed in a valid path is defined by the set

π = {x  x is the hex value of a machine code in a valid path}

For coding each of the rules propositions are defined for the elements of Mk

as well as among the elements of Mk as follows.

(k) = 1 to s

()m,n = 1 to v

Cm: ckm  π ie. mth code in the set Mk of the kth rule  π.

 Cm: ckm  π

Cmn: (ckm  π)  (ckn  π)  (ckm precedes ckn)  m ≠ n ie; (ckn succeeds ckm)

Cmnd: (ckm  π)  (ckn  π)  (ckn immediately follows ckm)  m ≠ n

Chapter 4

Department of Computer Science92

Cx-y: any hex code in the range x-y  π where the range of consecutive hex

codes x-y Mk.

Now (m,n,o,p,q,r) = 1 to v

The rules can be coded based on its property to the following typical

formulas.

A(Cm Co)

A(Cmn Cq (Co Cp))

A(Cm Co Cq Cr)

A(Cm Co Cq (Cr  Cn))

A(Cn  Cmn)

A(Cm  Cmnd)

A(Cx-y  Co  Cm Cp)

Where ‘A’ is the path quantifier “for every path” in temporal logic [29,

175].

4.1.5 Analysis Technique

Soundness of the rules is checked using the principle that f1  f2 is false

only when f1 is true and f2 is false [169]; for all other conditions it is true.

Compliance of the rules is checked individually. For a rule encoded in the form

A(f1  f2) checking of truth value of f1 (premises) leads to the checking of truth

value of f2 (consequent). If in any of the possible execution paths, π╞i f1, where i ≤

|π|, then all the codes that would get executed when f1 is true are marked. Then the

satisfiability of f2 is checked by traversing these nodes in the graph backward or

forward based on the requirement. The result is achieved with a machine code

Code Validation and Error Localization

Cochin University of Science and Technology 93

pattern matching as well as an on-the-fly disassembler and on-the-fly state space

creation wherever necessary.

A sample program segment of a data acquisition system developed in

assembler for PIC16F877 microcontroller given in Table 4.3 is used to describe the

partitioning concepts for the abstraction of CFG. Fig. 4.1(a) gives the program

graph which is constructed as described in section 4.1.3. Fig. 4.1(b) shows the

formation of subprograms 1, 2 and 3 by eliminating the incoming arcs of the merge

nodes 6 and 8 and Fig. 4.1(c) gives the CFG. There exists valid control flow

between instructions in a subprogram which would appear to be a cycle in the

subprogram represented by this node. An isolated node in the CFG may indicate

the presence of an interrupt service routine in the application program. Each node

in the CFG is represented by the address location of its associated instruction.

Using the CFG the entire program can be broken down into a fixed number of

unique execution paths similar to Ball-Larus paths [176]. For the program

considered in Table 4.3, the two paths identified are 0 to

5→6→B→C→D→7→8→A and 0 to 5 →6→B→C→D→7→8→9. The analysis

is done on a sequence of nodes where each node represents an instruction so that

the instructions associated with each execution path can be analyzed to find any

invalid sequence and the programmer is notified with suitable warnings. For

validation of the code the rules formulated are applied so that the code or code

sequence in each path is compared with a code or code sequence provided by each

rule. Each comparison results in setting or resetting of a number of monitoring

flags. The result of one test determines the next code or code sequence to be

compared with the code or code sequence that succeeds or precedes the execution

path.

Chapter 4

Department of Computer Science94

Table 4.3 A sample assembly language program used to describe the partitioning
concepts and analysis of the proposed code validation technique.

MPASM 5.03 IOP_PRG_1_ADC.TXT 1-19-2010 13:35:57 PAGE 1

LOC OBJECT
CODE

SOURCE TEXT

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D

1683
3002
009F
1405
1283
141F
200B
151F
191F
2808
2806
0000
0000
0008

LIST p=16F877 ; PIC16F877 is the target processor
#include "P16F877.INC" ; Include header file

LIST
P16F877.INC Standard Header File, Version 1.00 Microchip Technology, Inc.

LIST
org 00 ; Start up vector.

adconfig bsf STATUS,RP0 ; select bank1
movlw 0x02 ;config.byte foradcon1.
movwf ADCON1 ;leftjust,000, DDDAAAAA(pcnfg3:pcfg0)
bsf TRISA,00 ;porta bit0 analog input.
bcf STATUS,RP0 ; select bank0.
bsf ADCON0,ADON ;ADON,channel-0,fosc/2.

loop call delay ;provide acq.time after channel select.
bsf ADCON0,02 ;issue SOC.

polling btfsc ADCON0,02 ;polling ADCON0 DONE bit0?
goto polling ;wait.
goto loop ; repeat.

delay nop
nop
return
END

(a) (b) (c)
Fig. 4.1 CFG abstraction details for the sample program given in Table 4.3.(a)

shows the program graph, (b) shows the formation of subprograms 1, 2
and 3 by eliminating the incoming arcs of the merge nodes 6 and 8
whereas (c) shows the CFG.

Chapter 4

Department of Computer Science94

Table 4.3 A sample assembly language program used to describe the partitioning
concepts and analysis of the proposed code validation technique.

MPASM 5.03 IOP_PRG_1_ADC.TXT 1-19-2010 13:35:57 PAGE 1

LOC OBJECT
CODE

SOURCE TEXT

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D

1683
3002
009F
1405
1283
141F
200B
151F
191F
2808
2806
0000
0000
0008

LIST p=16F877 ; PIC16F877 is the target processor
#include "P16F877.INC" ; Include header file

LIST
P16F877.INC Standard Header File, Version 1.00 Microchip Technology, Inc.

LIST
org 00 ; Start up vector.

adconfig bsf STATUS,RP0 ; select bank1
movlw 0x02 ;config.byte foradcon1.
movwf ADCON1 ;leftjust,000, DDDAAAAA(pcnfg3:pcfg0)
bsf TRISA,00 ;porta bit0 analog input.
bcf STATUS,RP0 ; select bank0.
bsf ADCON0,ADON ;ADON,channel-0,fosc/2.

loop call delay ;provide acq.time after channel select.
bsf ADCON0,02 ;issue SOC.

polling btfsc ADCON0,02 ;polling ADCON0 DONE bit0?
goto polling ;wait.
goto loop ; repeat.

delay nop
nop
return
END

(a) (b) (c)
Fig. 4.1 CFG abstraction details for the sample program given in Table 4.3.(a)

shows the program graph, (b) shows the formation of subprograms 1, 2
and 3 by eliminating the incoming arcs of the merge nodes 6 and 8
whereas (c) shows the CFG.

Chapter 4

Department of Computer Science94

Table 4.3 A sample assembly language program used to describe the partitioning
concepts and analysis of the proposed code validation technique.

MPASM 5.03 IOP_PRG_1_ADC.TXT 1-19-2010 13:35:57 PAGE 1

LOC OBJECT
CODE

SOURCE TEXT

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D

1683
3002
009F
1405
1283
141F
200B
151F
191F
2808
2806
0000
0000
0008

LIST p=16F877 ; PIC16F877 is the target processor
#include "P16F877.INC" ; Include header file

LIST
P16F877.INC Standard Header File, Version 1.00 Microchip Technology, Inc.

LIST
org 00 ; Start up vector.

adconfig bsf STATUS,RP0 ; select bank1
movlw 0x02 ;config.byte foradcon1.
movwf ADCON1 ;leftjust,000, DDDAAAAA(pcnfg3:pcfg0)
bsf TRISA,00 ;porta bit0 analog input.
bcf STATUS,RP0 ; select bank0.
bsf ADCON0,ADON ;ADON,channel-0,fosc/2.

loop call delay ;provide acq.time after channel select.
bsf ADCON0,02 ;issue SOC.

polling btfsc ADCON0,02 ;polling ADCON0 DONE bit0?
goto polling ;wait.
goto loop ; repeat.

delay nop
nop
return
END

(a) (b) (c)
Fig. 4.1 CFG abstraction details for the sample program given in Table 4.3.(a)

shows the program graph, (b) shows the formation of subprograms 1, 2
and 3 by eliminating the incoming arcs of the merge nodes 6 and 8
whereas (c) shows the CFG.

Code Validation and Error Localization

Cochin University of Science and Technology 95

Analysis starts with the initial node of the first subprogram. At this point the

reset condition of the embedded processor is assumed with all registers assigned

their reset values and the status monitoring flags are initialized accordingly. At the

exit point of each node in the CFG a number of conclusions are made based on

which the analysis of the next node is done. At a merge node the conclusions made

in the entire possible path to the merge node determines the analysis of the

sequence of instructions that follows.

Validation of the given sample program by checking the compliance of one

of the rules stipulated for the peripheral Analog to Digital Converter (ADC)

integrated to the processor is explained as follows. For the correct operation of the

ADC, proper configuring of registers (adcon0 and adcon1) associated with this

peripheral is necessary. Hence after configuring the register adcon1 appropriately,

the device should be made ON by setting the bit adcon0<ADON>, before issuing

start of conversion by setting adcon0<2>. This results in a machine code sequence

0x009F, 0x141F, 0x151F. Coding of this rule is done with the following

propositional logic formula.

A(C1 C3 C12 C23), where

C1: 0x009F  π; C2: 0x141F  π and C3: 0x151F  π.

The antecedent of the above formula is satisfied at node 7 of subprogram 2

of Fig. 4.1(b). Searching for the consequence backwards in the path validates this

rule at node 5 of subprogram 1. Otherwise the analysis can pin point a missing adc

on instruction for the code at location 7h if the machine code 0x141F  π for the

program segment considered. Adding new checks only requires formulating the

rule, identifying code patterns and expressing the rule using propositional logic.

Chapter 4

Department of Computer Science96

4.2 Tool Chain

The tool chain developed explains the practicality of this approach as shown

in Fig. 4.2. The application program developed in assembler or compiler in the

form of Intel hex file is read and the CFG is created. The rules developed are

applied one by one to the possible execution paths and the possible bugs in the

program are reported with suggestions for error corrections if any. In fact the

machine code from the compiler/assembler is subjected to a new pass based on

rules framed for this analysis and hence is a post pass analysis. This pass results in

a stream of machine code with the probable errors governed by the rules eliminated

and optimized for code efficiency.

Fig. 4.2 The tool chain used for the proposed validation technique of

embedded system machine codes.

Chapter 4

Department of Computer Science96

4.2 Tool Chain

The tool chain developed explains the practicality of this approach as shown

in Fig. 4.2. The application program developed in assembler or compiler in the

form of Intel hex file is read and the CFG is created. The rules developed are

applied one by one to the possible execution paths and the possible bugs in the

program are reported with suggestions for error corrections if any. In fact the

machine code from the compiler/assembler is subjected to a new pass based on

rules framed for this analysis and hence is a post pass analysis. This pass results in

a stream of machine code with the probable errors governed by the rules eliminated

and optimized for code efficiency.

Fig. 4.2 The tool chain used for the proposed validation technique of

embedded system machine codes.

Chapter 4

Department of Computer Science96

4.2 Tool Chain

The tool chain developed explains the practicality of this approach as shown

in Fig. 4.2. The application program developed in assembler or compiler in the

form of Intel hex file is read and the CFG is created. The rules developed are

applied one by one to the possible execution paths and the possible bugs in the

program are reported with suggestions for error corrections if any. In fact the

machine code from the compiler/assembler is subjected to a new pass based on

rules framed for this analysis and hence is a post pass analysis. This pass results in

a stream of machine code with the probable errors governed by the rules eliminated

and optimized for code efficiency.

Fig. 4.2 The tool chain used for the proposed validation technique of

embedded system machine codes.

Code Validation and Error Localization

Cochin University of Science and Technology 97

4.3 Feasibility Study on PIC16F87X MCU

This section describes the different aspects of a target processor that is

considered for a case study. Most of the embedded systems are based on

microcontrollers, which are special purpose computers on a single chip and a wide

variety of them are available for various applications. The feasibility of this

approach on systems based on PIC16F87X series of microcontrollers is considered.

These are products of Microchip Technology Inc., and these MCUs offer high

performance and low cost. Due to the availability of processors with wide range of

memory, I/O and integrated peripheral configurations they are highly suitable for

various industrial/consumer applications and systems. This family of

microcontrollers constitutes a RISC-based Harvard architecture with instruction

sizes of 14 bits and a data bus 8-bit wide [165,166]. There are three memory

categories such as program memory, data memory and EEPROM data memory

which are implemented with different technologies. They have 13-bit program

counter capable of addressing an 8K × 14 program memory space. The

PIC16F876/877 devices have 8K×14 bit words of FLASH program memory and

the PIC16F873/874 devices have 4K×14. The reset vector is at 0000h and the

interrupt vector is at 0004h. The data memory is partitioned into four banks which

contain the general purpose registers and the Special Function Registers (SFR).

Bits RP1; bit six of status register (status<6>) and RP0 (status<5>) are the bank

select bits. The register file can be accessed either directly or indirectly through the

file select register (fsr). Each PIC16F87X instruction is a 14-bit word, divided into

an opcode which specifies the instruction type and one or more operands which

accomplish the operation of the instruction.

A thorough analysis of various general purpose instructions and those used for

configuring the integrated peripherals of the target microcontrollers has been

Chapter 4

Department of Computer Science98

conducted. The likelihood of occurrence of typical instructions in a stream is explored

and necessary rules are formed in a well-defined manner. The instruction set of

PIC16F87X series of microcontrollers is highly orthogonal and is divided into byte

oriented, bit oriented and literal and control operations. Analysis is done on machine

code by comparison of bit patterns thereby identifying the opcodes and operands,

whatever is the language/compiler adopted for developing the source code.

For this target processor, the general purpose registers and the special

function registers used in a program can be identified by considering the active

memory bank associated with each instruction. A state transition diagram

developed for the processor (described in section 5.2.1), is used to determine the

active data memory bank associated with each machine code in the instruction

stream. So the atomic proposition Cm: ckm  π ensures that the machine code ckm is

preceded by the required memory bank switching instructions. Configuring an SFR

can be done either using a bit set/ reset instruction or moving the required literal to

w register and transferring the w register content to the SFR. The analysis takes

care of all possible combinations of instructions appropriate to the situation. The

content of w register varies with each instruction that moves a data to this. So an

on-the-fly state space is created to get the w register content associated with each

instruction. So a proposition Cwap is defined as

Cwap: the w register content associated with the write to SFR instruction is

appropriate.

Hence the program states are identified as a combination of machine code

patterns and the state spaces created, which drastically reduces the memory

requirements. The prescribed rules and the approach can be easily extended and

changed to fit other platforms as well.

Code Validation and Error Localization

Cochin University of Science and Technology 99

4.4. Code Validation and Error Detection

A code validation and error detection system is of great importance during a

program development process. Debugging tries to locate and fix faults or bugs after

failures are detected during test or use [81]. Many fault localization techniques

used in current debugging tools (e.g., setting breakpoints) were developed in the

1960s and have changed little [86]. A fault in the instruction stream which amounts

to a bug in the program is rectified by the system in three phases namely fault

localization, fault diagnosis and fault correction. Previous studies [129] found that

locating faults is the most difficult and important task in debugging.

4.4.1 Fault Localization

While traditional debugging techniques such as dumping memory,

scattering print statements, setting breakpoints by users, and tracing program

execution only provide utilities to examine a snapshot of program execution; users

have to use their own strategies to do fault localization [81]. Shapiro [64] and

Renner [65] proposed an interactive fault diagnosis algorithm, where the target

program is recursively searched until bugs are located and fixed. With this method,

users can only point out procedures that contain bugs; other debugging tools are

needed to debug the faulty procedures. Many prototype debugging systems have

been developed based on knowledge based approach since the early 1980s [67, 68].

These prototype systems can only handle restricted fault classes and very simple

programs.

Locating the fault is attempted by making use of rules that are formed for

the use and configuring of registers associated with the core as well as peripherals.

For the proper functioning of the system the peripherals integrated to the devices

Chapter 4

Department of Computer Science100

must be initialized and configured properly. Rules are formulated based on

reasoning obtained by heuristics that are parameterized on the architectural

parameters as well as the instruction set of the processor. These rules hence formed

are processed to locate an illegitimate/out of place code in the instruction stream.

Around one hundred rules have been formed for this family of microcontrollers of

which validation technique for some of them are described in this chapter. The

governing rules are listed in Table 4.4 (a-i).

In order to explain the formation of the rules that governs this analysis the

peripheral ADC integrated to this processor is considered as a typical example. In

this family of microcontrollers the ADC has the unique feature of being able to

operate while the device is in sleep mode. To operate in sleep, the ADC clock must

be derived from its internal RC oscillator. When the clock source is another clock

option (not RC), a sleep instruction will cause the present conversion to be aborted

and the ADC module to be turned off, though the ADON bit will remain set. When

the RC clock source is selected, ADC module waits one instruction cycle before

starting the conversion. This allows the sleep instruction to be executed, which

eliminates all digital switching noise from the conversion. To allow the conversion

to occur during sleep, ensure the sleep instruction immediately follows the

instruction that sets the start of conversion bit [166]. These facts are formulated

into the following rule.

If sleep instruction immediately follows the instruction that sets the

ADCON0’s GO / bit (bsf adcon0, GO), then the clock select bits of

ADCON0 <ADCS1:ADCS0> should be set.

Code Validation and Error Localization

Cochin University of Science and Technology 101

Table 4.4 (a) to (i) List of governing rules formed for the PIC16F87X

microcontrollers.
Table 4.4(a)

Rules evaluating the configuration of I/O port and CPU core registers
1. The PCON< > bit must be set after a power on reset.
2. After a POR, using indirect addressing without loading a valid data into FSR is illegal as FSR content is

don’t care/unknown after a reset condition.
3. After a POR a CALL or GOTO instruction shall see that the PCLATH register is suitably programmed to

access the required page of the program memory.
4. Any instruction that affects status, carry or digital carry bit with its destination register as Status register

results in an illegal opcode.
5. A bank selection instruction that will not change the active memory bank is a redundant instruction.
6. Use of ADRESH and ADRESL registers as general purpose registers when ADCON0 <ADON> bit is set

shall raise a warning even before giving SOC command.
7. A call instruction without a corresponding return/retlw instruction is invalid.
8. A flag checking instruction shall be preceded by a corresponding flag affecting instruction.
9. If the device is PIC16F873/876, the use of PORTD or PORTE register is invalid
10. When the bidirectional ports are used their corresponding TRIS register, which is the data direction

register should be configured appropriately.
11. If TRISE<PSPMODE> is made set, then TRISE<2:0> must be configured as inputs and

ADCON1<PCFG3:PCFG0> must be set to configure pins RE2:RE0as digital I/O.

Table 4.4(b)

Rules for the Read and Write of EEPROM & Flash program memory
1. An instruction that clear EECON1 <WR> or EECON1 <RD> is redundant.
2. An instruction that sets EECON1 <WREN> and <WR> together is illegal.
3. A bsf eecon1, WR instruction must be preceded by the sequence bsf eecon1, WREN, bsf eecon1, EEPGD or

bcf eecon1, EEPGD and bcf p1r2, EEIF.
4. A bsf eecon1, RD must be preceded by either a bsf eecon1, EEPGD or bcf eecon1, EEPGD.
5. If bsf eecon1, RD is preceded by a bcf eecon1, EEPGD, then it shall be preceded by a movwf EEADR which

shall be preceded by a movlw k instruction and the k value msb must be clear if the device is PIC16F873/ 874.
6. If a bsf eecon1, WR instruction is preceded by a bcf eecon1, EEPGD then it shall be preceded by a bcf intcon,

GIE; movlw 55h; movwf eecon2; movlw AAh; movwf eecon2 and shall be followed by bcf eecon1, WREN.
7. If bsf eecon1, RD is preceded by a bsf eecon1, EEPGD, then it shall be preceded by a movwf eeadrh; which

shall be preceded by a movlw k instruction and the k value’s 4-msbits must be clear if the device is PIC16F873/
874and the k valu’s 3 msbits must be clear if the device is PIC16F876/ 877 and it shall be preceded by a
movwf eeadr and it shall immediately follow two NOP instructions.

8. If a bsf eecon1, WR instruction is preceded by a bsf eecon1, EEPGD then it shall be preceded by a
movwf eeadrh which shall be preceded by a movlw k instruction and the k value’s 4-msbits must be clear
if the device is PIC16F873/ 874and the k valu’s 3 msbits must be clear if the device is PIC16F876/ 877
and it shall be preceded by a movwf eedath; which shall be preceded by a movlw k instruction and the k
value’s 2-msbits must be clear; movwf eeadata; bcf intcon, GIE; movlw 55h; movwf eecon2; movlw AAh;
movwf eecon2 and shall be followed by two NOP instructions; bcf eecon1, WREN.

Table 4.4(c)

Chapter 4

Department of Computer Science102

Rules validating the configuration of ADC module
1. Instruction that configure ADCON1 register shall occur before instruction that configure ADCON0 register.

2. If ADCON0 <ADON> is made set, then ADCON1<PCFG3:PCFG0> shall not be configured as b‘011x’ (all port
bits configured as digital I/O).

3. If ADCON0 <CHS2:CHS0> is >b’101’ and the device is 16F876/873 give a warning signal.

4. ADC channel select instruction shall occur only once unless a new channel is to be selected.

5. Port pin’s configuration ADCON1<PCFG3:PCFG0> shall correspond to the analog channel select ADCON0
<CHS2:CHS0> and their corresponding TRIS register must be set.

6. If sleep instruction immediately follows the instruction that sets the ADCON0’s GO / bit (bsf adcon0,
GO), then the clock select bits of ADCON0 <ADCS1:ADCS0> should be set.

7. ADC is on and no configuration done on ADCON0 <CHS2:CHS0> until issue of a SOC implies selection of
channel_0, so the analog input channel AN0 must have the corresponding TRIS bit selected as input.

8. If ADC is on and no configuration done on ADCON0<ADCS1:ADCS0> implies the default clock of FOSC/2.
Verification shall be done on this selection using the clock input value of the programmer.

9. If the clock selection bit configuration ADCON0 <ADCS1:ADCS0> does not matches with the minimum TAD

time of 1.6 µs after evaluating the same from the clock input value of the programmer, either the error or the
correct configuration can be prompted.

10. If a programming on ADCON0 <ADCS1:ADCS0> is done for a second time in the instruction stream, a
warning shall be generated.

11. After selecting an analog input channel ensure that a time corresponding to TACQ is left before setting ADCON0
<GO/ > bit.

12. If ADCON0 <GO/ > bit is made set in the same instruction that turns on ADCON0 <ADON> bit, report
the presence of an illegal opcode.

13. Configuration of A/D result format select bit ADCON1<ADFM> shall be considered when ADRESH and
ADRESL registers are read.

14. Reading ADRESH:ADRESL registers without reading ADCON0<GO > bit and ensuring its zero status is an
error.

15. If an instruction to set P1E1<ADIE> bit is there, there should be an instruction to set INTCON<GIE> bit,
provided the program contains the corresponding interrupt service routine.

16. Any instruction to test the status of P1R1<ADIF> bit indicates the interrupt mode of operation of ADC, so the
satisfactory configuration of ADC shall be checked.

17. If the instructions to set INTCON<GIE> and P1E1<ADIE> bits are in the instruction stream, an instruction to
clear the P1R1<ADIF> bit shall be there in the ISR.

18. Without setting ADCON0 <ADON> bit, setting ADCON0 <GO/ > bit results in a possible missed
instruction.

Code Validation and Error Localization

Cochin University of Science and Technology 103

Table 4.4(d)

Rules validating the configuration of Timer0 module
1. Configuring of OPTION_REG <T0CS> and clearing of INTCON<T0IF> shall precede a write to TMR0 register.
2. If OPTION_REG<T0CS> is made set (counter mode), an instruction to set TRISA<4> shall precede.
3. Polling of INTCON<T0IF> shall be followed by clearing of INTCON <T0IF>.
4. The use of an instruction to clear INTCON<T0IE> shall precede configuring of OPTION_REG<T0CS>, a write to

TMR0 register and shall be followed by polling of INTCON<T0IF> instruction.
5. An instruction to set INTCON<T0IE> shall be preceded by instructions to clear INTCON<T0IF> and set

INTCON<GIE> or all this done simultaneously.
6. Occurrence of an instruction to set INTCON<T0IE> shall precede configuring of OPTION_REG <T0CS>and a

write to TMR0 register.
7. IF an instruction to set INTCON<T0IE>occur in the main program, the ISS shall contain an instruction to clear

INTCON<T0IF> before re-enabling INTCON<T0IE>.
8. A sleep instruction shall not immediately follow a write to TMR0 register.
9. A prescaler assignment shall precede a rate select which shall precede any write to TMR0 register.
10. If the prescaler is assigned to WDT (OPTION-REG<PSA>=b’1’) then a clrwdt instruction shall precede an

instruction that assigns PSA to TMR0.
11. If the prescaler is assigned to TMR0 (OPTION-REG<PSA>=b’0’) then a clrf tmr0 instruction shall precede an

instruction that assigns PSA to WDT and a clrwdt instruction shall follow immediately.
Table 4.4(e)

Rules validating the configuration of Timer1 module
1. T1CON<TMR1ON> is made set only after configuringT1CON register.
2. If T1CON<T10CSEN> is made set then instruction that set TRISC<1:0> is redundant.
3. If T1CON<TMR1CS> is made clear then configuring T1CON< 1 >is redundant.
4. If T1CON<TMR1CS> is made set and T1CON<T1OSCEN>is made clear then a instruction to set TRISC<RC0>shall follow.
5. If T1CON<TMR1CS> is made set and T1CON< 1 >is made clear then a sleep instruction shall not

follow.
6. Configuring T1CON< 1 :TMR1CS >=b’11’ (TMR1 in asynchronous counter mode) followed by configuring

CCP1CON or CCP2CON register in capture or compare mode is invalid.
7. If T1CON< 1 :TMR1CS >=b’11’ (TMR1 in asynchronous counter mode) then a write to TMRH or TMRL

shall be preceded by an instruction to clear T1CON<TMR1CS> (stop timer).
8. If T1CON< 1 :TMR1CS >=b’11’ (TMR1 in asynchronous counter mode) then a read TMR1H register if

any shall occur before any read TMR1L register.
9. Before reading or writing a TMRH or TMR1L register the status of INTCON<GIE> shall be b’0’ (clear or all interrupts are

disabled).
10. If T1CON<TMR1CS >and T1CON<T1OSCEN > are made set, then the software shall include a delay routine

before T1CON<TMR1ON> is made set.
11. In special event trigger mode with CCP1 or CCP2, configuring of TRM1 in interrupt mode is redundant.
12. Any combination of the sequence bsf p1e1<TMR1IE>, bsf intcon<GIE>, bsf intcon<PEIE> shall be preceded by

a P1R1<TMR1IF> clear instruction.
13. If any combination of the sequence bsf p1e1<TMR1IE>, bsf intcon<GIE>, bsf intcon<PEIE>, then the ISS shall

contain an instruction bcf p1r1<TMR1IF> before re-enabling P1E1<TMR1IE>.
14. If P1E1<TMR1IE>is not made set and T1CON<TMR1ON> is made set then a bcf p1r1<TMR1IF> instruction

shall precede and an instruction bit test on P1R1<TMR1IF>shall follow.

Chapter 4

Department of Computer Science104

Table 4.4(f)

Rules validating the configuration of Timer2 module
1. An instruction to set P1E1<TMR2IE> shall be preceded by a bcf p1r1<TMR2IF> instruction.
2. If P1E1<TMR2IE> is made set either INTCON <PEIE>or both INTCON <GIE:PEIE> shall be made set.
3. A write to TMR2 or PR2 register shall occur before T2CON<TMR2ON> is made set.
4. If P1E1<TMR2IE>, INTCON <GIE:PEIE> are made set then ISS shall contain a bcf p1r1<TMR2IF>before re-

enabling P1E1<TMR2IE>.
5. A polling of P1R1<TMR2IF> shall be followed by a bcf p1r1<TMR2IF>instruction.

Table 4.4(g)

Rules validating the configuration of Capture/Compare/PWM module
1. If CCP1CON<CCP1M3:CCP1M0> is configured in capture mode and CCP2CON<CCP2M3:CCP2M0> in

compare mode then CCP2 module shall be in special event trigger mode.
2. If CCP2CON<CCP2M3:CCP2M0> is configured in capture mode and CCP1CON<CCP1M3:CCP1M0> in

compare mode then CCP1 module shall be in special event trigger mode.
3. If CCP1CON<CCP1M3:CCP1M0> is configured in compare mode and CCP2CON<CCP2M3:CCP2M0> neither

disabled nor in capture mode, then it shall be in special event trigger mode.
4. If CCP2CON<CCP2M3:CCP2M0> is configured in compare mode and CCP1CON<CCP1M3:CCP1M0> neither

disabled nor in capture mode, then it shall be in special event trigger mode.
5. If CCP1CON/CCP2CON are enabled in any of the capture/compare mode, then an instruction to clear

P1R1<CCP1IF>/ P1R2<CCP2IF>shall precede.
6. If P1E1<CCP1IE>/ P1E2<CCP2IE> and INTCON<GIE:PEIE> are made set, then P1R1<CCP1IF>/

P1R2<CCP2IF> must be cleared in the interrupt service routine before re-enabling P1E1<CCP1IE>/
P1E2<CCP2IE>

7. Polling of P1R1<CCP1IF>/ P1R2<CCP2IF> must be followed by clearing of those bits.
8. If CCP1CON<CCP1M3:CCP1M0> is configured in capture mode, then TRIS<RC2> shall be made b’1’ (input).
9. If CCP2CON<CCP2M3:CCP2M0> is configured in capture mode, then TRIS<RC1> shall be made b’1’ (input).
10. If CCP1CON<CCP1M3:CCP1M0>/ CCP2CON<CCP2M3:CCP2M0> is configured in capture/compare mode

T1CON<1:0> shall be configured for TMR1 enabled, TMR1CS-0(internal clock) [i.e. Timer1 in timer mode] or
T1CON<2:0> shall be configured for TMR1 enabled, TMR1CS-1(external clock) and 1 -0[Timer1 in
synchronous counter mode].

11. A capture mode change instruction for CCP1CON register shall be preceded by clearing bit PIE1<CCP1IE> and
followed by clearing P1R1<CCP1IF>

12. A capture mode change instruction for CCP2CON register shall be preceded by clearing bit PIE2<CCP2IE> and
followed by clearing P1R2<CCP2IF>

13. If CCP1CON<CCP1M3:CCP1M0> is configured in compare mode, then TRIS<RC2> shall be made b’0’ (output).
14. If CCP2CON<CCP2M3:CCP2M0> is configured in compare mode, then TRIS<RC1> shall be made b’0’ (output).
15. If CCP1CON<CCP1M3:CCP1M0> is configured in PWM mode, then TRIS<RC2> shall be made b’0’ (output).
16. If CCP2CON<CCP2M3:CCP2M0> is configured in PWM mode, then TRIS<RC1> shall be made b’0’ (output).
17. Configuring CCP1CON<CCP1M3:CCP1M0> for PWM operation shall be preceded by a write to PR2 register,

write to T2CON to enable Timer2 and set TMR2 prescale value and a write toCCPR1L register and
CCP1CON<5:4> bits.

18. Configuring CCP2CON<CCP2M3:CCP2M0> for PWM operation shall be preceded by a write to PR2 register,
write to T2CON to enable Timer2 and set TMR2 prescale value and a write toCCPR2L register and
CCP2CON<5:4> bits.

19. A CLRWDT instruction shall be executed before a SLEEP instruction.

Code Validation and Error Localization

Cochin University of Science and Technology 105

Table 4.4(h)

Rules validating the configuration of USART module
1. Instructions that set or clear PIR1<TXIF> and PIR1<RCIF>are illegal.
2. Any instruction to load data into TXREG for the first time shall be preceded or followed by an instruction that sets

TXSTA<TXEN>.
3. If any instruction to clear TXSTA<TXEN> precedes an instruction that loads data into TXREG, then an

instruction that sets TXSTA<TXEN> shall follow.
4. An instruction to set TXSTA<TX9> shall be followed by an instruction to set or clear TXSTA<TX9D>prior to an

instruction that loads data into TXREG.
5. Instruction sequence that set RCSTA<SPEN> and clear TXSTA<SYNC> shall be preceded by loading of

SPBRG register for the appropriate baud rate.
6. Instruction sequence that set RCSTA<SPEN>, PIE1<TXIE> and clear TXSTA<SYNC> shall have instructions

that set INTCON<PEIE> and INTCON<GIE> in that execution path prior to an instruction that sets
TXSTA<TXEN>.

7. A third load instruction to TXREG register onwards shall be preceded by a bit test instruction on TXSTA<TRMT>.
8. Instruction sequence that set RCSTA<SPEN> and clear TXSTA<SYNC>shall ensure that TRISC<7:6> is made

b’10’.
9. Instruction sequence that set RCSTA<SPEN>, PIE1<TXIE> and clear TXSTA<SYNC> shall have instructions

that set INTCON<PEIE> and INTCON<GIE> in that execution path prior to an instruction that sets
RCSTA<CREN>.

10. Instruction sequence that set RCSTA<SPEN>, clear TXSTA<SYNC> shall have an instruction that sets
RCSTA<CREN> prior to a reading of RCREG register instruction.

11. A reading of RCREG register instruction shall be preceded by a bit test instruction on PIR1<RCIF> if not inside
an interrupt service routine.

12. A reading of RCREG register instruction shall be preceded by a reading of RCSTA register instruction or an
instruction to bit test on RCSTA<RX9D> if there exist an instruction that sets RCSTA<RX9> in that execution
path or an instruction to bit test on RCSTA<FERR>.

13. If there exists an instruction that sets RCSTA<RX9>, it shall be prior to an instruction that sets RCSTA<SREN>
or RCSTA<CREN>.

14. If an instruction sequence that set RCSTA<SPEN>, TXSTA<SYNC>, TXSTA<CSRC>, TXSTA<TXEN>, loads
TXREG is followed by an instruction that sets RCSTA<SREN>, it shall be followed by an instruction that clear
TXSTA<TXEN>.

15. If a sleep instruction immediately follows a load TXREG register instruction, then a bit clear instruction on
TXSTA<CSRC> shall precede.

16. An instruction sequence that set RCSTA<SPEN>, TXSTA<SYNC>, clear TXSTA<CSRC> shall be followed by
instruction sequence that clear RCSTA<SREN> and RCSTA<CREN> before an instruction that set
TXSTA<TXEN> .

17. If a sleep instruction follows an instruction sequence that set RCSTA<SPEN>, TXSTA<SYNC>, clear
TXSTA<CSRC> there shall be an instruction that sets RCSTA<CREN> prior to the sleep instruction.

Chapter 4

Department of Computer Science106

Table 4.4(i)

Rules evaluating the configuration of Master Synchronous Serial Port Module
1. If SSPCON<SSPM3:SSPM0>is configured as b’0100’ or b’0101’ (SPI-slave mode) then any instruction that

set SSPSTAT<SMP> is illegal.

2. If SSPCON<SSPM3:SSPM0> is set to SPI-master mode then any instruction that set SSPCON<SSPEN>

shall be preceded by instructions that clear TRISC<5>, set TRISA<5> and clear TRISC<3>.

3. If SSPCON<SSPM3:SSPM0> is set to SPI- slave mode then any instruction that set SSPCON<SSPEN>

shall be preceded by instructions that clear TRISC<5>, set TRISC<3 and, set TRISA<5.

4. When SSPCON register is configured in i2C master mode any instruction that set or clear SSPCON<CKP>is

redundant.

5. If SSPCON<SSPM3:SSPM0> is set to b’0110’ or b’0111’ (i2C slave mode) then any instruction that set

SSPCON<SSPEN> shall be preceded by instructions that set TRISC<4:3>.

6. If SSPCON<SSPM3:SSPM0> is configured in i2C master mode and SSPCON2<ACKEN:RCEN>is made

b’11’ then it shall be preceded by an instruction that set or clear SSPCON2<ACKDT>.

For the target processor considered, the code sequence for the first part of

this rule can be identified as 0x151F (bsf adcon0, 2), 0x0063 (sleep) and for the

second part as 0x179F (bsf adcon0, 7), 0x171F (bsf adcon0, 6). This rule can be

codified to the form

A(C12d  C31 C41)

where C1: 0x151F  π; C2: 0x0063  π; C3: 0x179F  π and C4: 0x171F  π. The

occurrence of the first code pattern identified by a linear scan through a valid

execution path leads to the testing of precedence of the second code pattern in the

same path and any discrepancy can be located. In case the configuring of adcon0

register is done by moving the appropriate literal to W register and transferring the

W register content to this SFR, then the codification of the rule can be of the form

Code Validation and Error Localization

Cochin University of Science and Technology 107

A((Cwap C1  C12d) (C31  C41)), where

C1:a hex code for write to adcon0 register (0x009F)  π; C2: 0x0063  π;

C3: 0x179F  π and C4: 0x171F  π.

The necessary tool/ program for this study and implementation is developed

in Visual Basic. With the help of the graphical user interface, the user can select the

required Intel hex file for validation. Programs developed for ADC conversion in

sleep mode using assembler and high level languages like HI-TECH C as well as

mikroC are tested with this technique. The screenshots shown in Fig. 4.3(a) and (b)

explain the reporting of violation of the above rule for evaluation programs

developed in assembler and HI-TECH C. Along with the warnings, the screen shot

displays the source node address, the hex value of the opcode at this address and

the destination address of each of the edges in the program graph. When this tool is

integrated to the system development environment the debugging process can be

made interactive and user friendly. All the peripherals integrated to the processor

are considered one by one and necessary rules are formulated.

Chapter 4

Department of Computer Science108

(a)

(b)
Fig. 4.3 screen shots for the analysis and reporting of violation of sleep mode

operation of ADC if any. (a) the rule is validated when the antecedent
(0x0063immediately follows0x151F) of the formula is found true at
addresses 24h and 25h preceded by the consequent (0x179F and
0x171F) satisfied at addresses 1Bh and 1Ch. (b) reports the violation
of the rule as the antecedent is true at locations 4Bh and 4Ch without
satisfying its consequent.

Code Validation and Error Localization

Cochin University of Science and Technology 109

4.4.2 Fault Diagnosis

Responsibility of the fault diagnosis is to delve deeply into the bug and to

determine the root cause of the malfunction. Identification of the cause is implicit

in the rule by which the error is located. The bugs in the program located by the

governing rules are characterized according to the causes of their occurrence. They

can be due to an improper use or configuring of a register, a missed or a redundant

instruction resulting in a discrepancy in the opcodes or operands, illegal codes or

even a deadlock.

4.4.2.1 Discrepancy in the Opcodes or Operands

Table 4.4(a)-(i) lists certain rules formulated to diagnose the improper use of

registers associated with the core as well as any discrepancy in the configuration of

SFRs associated with ADC and other peripherals. Machine code sequences against

some of these rules can be identified in the instruction stream as discrepancy in the

opcode or operand field by applying them independently and appropriate warning

or suggestions can be generated. Illustration of identifying the discrepancy in the

configuration of SFRs associated with ADC for the validation of rule 7 of Table

4.4(c) is illustrated with the help of the program segment of a Data Acquisition

System, given in Table 4.3. This program segment configures the ADC registers

and issues a start of conversion with a delay. ADC is made on but no channel

selection instruction included until issuing a start of conversion (bsf adcon0, 02).

This condition assumes the default channel ‘0’. So the instruction stream should

contain the machine code value of a bsf trisa, 00 instruction before the machine

code value of bsf adcon0, 02.in order to configure the tris bit corresponding to

analog ‘channel0’ as input. The machine code pattern for each of these

propositions can be generated with an assembler. The formula that checks this

condition is

Chapter 4

Department of Computer Science110

A(((Co  (((Cwap  Cp)  Cq CrCs)))UCn)  Cmn), where

‘U’ is the until operator in temporal logic.
Co: ‘cko’or 0x141F (bsf adcon0,adon)  π
Cp: ‘ckp’or 0x009F (movwf adcon0)  π
Cq: ‘ckq’or 0x159F (bsf adcon0,03)  π
Cr: ‘ckr’or 0x161F (bsf adcon0,04)  π
Cs: ‘cks’or 0x169F (bsf adcon0,05)  π
Cn: ckn’or 0x151F (bsf adcon0,02)  π
Cm: ckm’or 0x1405 (bsf trisa,00)  π
For this program module suppose the instruction No. 3 is bsf trisa, 01

instead of bsf trisa, 00. Then checking of the above formula in subprograms 1 and

2 of Fig.4.1(b) identifies the violation of this rule as a discrepancy. So an invalid

setting of trisa register or a missing channel select instruction can be reported to

the programmer.

4.4.2.2 Illegal Opcodes

An illegal opcode refers to an instruction opcode that does not match to any

known instruction of a processor. Identifying illegal opcodes is efficient if not all

bit patterns are used by the processor as instruction codes [143]. Identifying an

illegitimate code from the thirty five, 14-bit instructions of the RISC architecture

considered for the proposed code validation is possible by decoding the six most

significant bits. Advanced simulators provide warning messages like ‘Attempt to

execute illegal opcode - nop executed’ when an attempt has been made to execute

an instruction opcode that does not decode to any known PIC instruction. The tool

that has been developed can not only identify such codes but also identify illegal

codes by considering unimplemented bits in various registers which are read as

zeros and reserved bits in certain registers which are to be maintained clear always.

Any literal byte selected for configuring a register which sets the

reserved/unimplemented bits or any instruction that sets such a bit results in an

Code Validation and Error Localization

Cochin University of Science and Technology 111

illegal opcode. Again configuring two bits of certain SFRs simultaneously like rule

number (12) of Table 4.4(c) results in an illegal opcode. Some of the memory

banks contain unimplemented data memory locations. Such address ranges in each

memory bank also provides the required data for analysis. Adequate rules can be

framed based on such observations.

In addition to the above, certain rules like rule number (4) of table 4.4(a) can

also help in identifying an illegal code. Rule number (4) of table 4.4(a) is based on

the fact that the result of an instruction with the status register as destination may

be different than intended. Even though the instructions like movwf and swapf are

not affecting any flag, using these instructions with status register as destination

may change the Z, C or DC flag bits so that the previous status of these flags which

was the result of a corresponding flag affecting instruction will be lost. But users

may wish to save key registers like w and status on the stack while context saving

during interrupts and the two instructions mentioned above are used for this

purpose. So these instructions are not taken as illegal in order to avoid false

warnings. For this rule the set of illegal machine codes (their hex values) obtained

with the assembler is:

Mk = {783, 583, 983, 383, B83, A83, F83, 483, 883, D83, C83, 283, 683}.

The formula used to identify the illegal codes will be of the form A(C1  C2  C3

… Cn) for ‘n’ number of illegal codes. In this formula there is no implication and

the truth condition of any of this proposition identifies an illegal opcode. The

proposed code validation procedure can assess not only the illegitimate code but

also any code that attempts to write, read or configure a register/memory

improperly or those which are out of place and also generate error messages,

warning signals or suggestions for correction.

Chapter 4

Department of Computer Science112

4.4.2.3 Missed Instructions

When a lengthy program is developed especially in assembly language the

possibility of a missing/redundant instruction cannot be ruled out. Some of the

results of the analysis in this direction are described here. Rules are formulated to

identify an instruction that should or should not follow its predecessor. Clustering

of instructions can be done with a view to identifying an instruction that should not

follow a particular instruction. Flag testing instructions, flag affecting instructions,

instructions with same destination register etc. form such clusters. A typical case is

that of identifying any flag testing instruction before a corresponding flag affecting

instruction in any of the possible execution path. A possible missing instruction or

out of place instruction can be reported. This can be tested by

A(Cn  Cmn)

Where Cn: a flag checking instruction  π and Cm: a corresponding flag

affecting instruction  π.

Machine code sequence governing rule 1 of Table 4.4(c) is given in Table

4.5 which forms the elements of the set Mk for this rule. Any of the adcon0 register

configuration code given in second column should occur only after one or more of

the adcon1 register configuration codes given in first which can be tested by coding

the rule as shown below.

For ‘m’ number of codes in the first column and ‘n’ number of codes in the

second column:

(i) = 1 to n

A(Ci  C1i C2i C3i C4i….. Cmi)

Where Ci: any code in the second column of the table  π and

C1, C2, C3,………, Cm.: any code in the first column of the table  π .

Code Validation and Error Localization

Cochin University of Science and Technology 113

Table 4.5 Code sequence governing rule 1 of Table 4.4(c)

(1) (2)
Hex code Instruction Hex code Instruction

009F
101F
109F
111F
119F
139F
141F
149F
151F
159F
179F

movwf
bcf
bcf
bcf
bcf
bcf
bsf
bsf
bsf
bsf
bsf

ADCON1
ADCON1,0
ADCON1,1
ADCON1,2
ADCON1,3
ADCON1,7
ADCON1,0
ADCON1,1
ADCON1,2
ADCON1,3
ADCON1,7

009F
101F
119F
121F
129F
131F
139F
141F
151F
159F
161F
169F
171F
179F

movwf
bcf
bcf
bcf
bcf
bcf
bcf
bsf
bsf
bsf
bsf
bsf
bsf
bsf

ADCON0
ADCON0,0
ADCON0,3
ADCON0,4
ADCON0,5
ADCON0,6
ADCON0,7
ADCON0,0
ADCON0,2
ADCON0,3
ADCON0,4
ADCON0,5
ADCON0,6
ADCON0,7

Another instance of missed instruction occurs in the use of indirect

addressing. Indirect addressing is possible by using the indf register. Any

instruction using the indf register actually accesses the register pointed to by the

file select register. The content of fsr is unknown on a power on reset. So any

indirect addressing not preceded by a valid data loading to fsr (rule (2) of Table

4.4(a)) can be identified as a missed instruction. Table 4.6 shows the instructions

and the corresponding codes using the indf register for indirect addressing. Any of

the instruction in this table should be preceded by a movlw 0x’xx’ (0x30xx) and

movwf fsr (0x0084) instructions which can be tested similarly.

Chapter 4

Department of Computer Science114

Table 4.6 Code sequence governing rule 2 of table 4.4(a)

Hex
code Instruction Hex

code Instruction Hex
code Instruction

0700
0780
0500
0580
0180
0900
0980
0300
0380
0B00
0B80
0A00
0A80
0F00
0F80
0400
0480
0800
0880
0080
0D00

addwf
addwf
andwf
andwf

clrf
comf
comf
decf
decf

decfsz
decfsz

incf
incf

incfsz
incfsz
iorwf
iorwf
movf
movf

movwf
rlf

INDF,0
INDF,1
INDF,0
INDF,1
INDF
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF
INDF,0

0D80
0C00
0C80
0200
0280
0E00
0E80
0600
0680
1000
1080
1100
1180
1200
1280
1300
1380
1400
1480
1500
1580

rlf
rrf
rrf

subwf
subwf
swapf
swapf
xorwf
xorwf

bcf
bcf
bcf
bcf
bcf
bcf
bcf
bcf
bsf
bsf
bsf
bsf

INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,0
INDF,1
INDF,2
INDF,3
INDF,4
INDF,5
INDF,6
INDF,7
INDF,0
INDF,1
INDF,2
INDF,3

1600
1680
1700
1780
1800
1880
1900
1980
1A00
1A80
1B00
1B80
1C00
1C80
1D00
1D80
1E00
1E80
1F00
1F80

bsf
bsf
bsf
bsf

btfsc
btfsc
btfsc
btfsc
btfsc
btfsc
btfsc
btfsc
btfss
btfss
btfss
btfss
btfss
btfss
btfss
btfss

INDF,4
INDF,5
INDF,6
INDF,7
INDF,0
INDF,1
INDF,2
INDF,3
INDF,4
INDF,5
INDF,6
INDF,7
INDF,0
INDF,1
INDF,2
INDF,3
INDF,4
INDF,5
INDF,6
INDF,7

Application of rule (15) in table 4.4(c) can identify another possible missed
instruction owing to the fact that enabling ADC interrupt pie1<ADIE> without
enabling intcon<GIE> will not generate the desired interrupt. Another possibility
of a missing instruction can be due to a lack of appropriate tris configuration.
When the bidirectional ports are used their corresponding tris register, which is the
data direction register should be configured appropriately as stated in rule (10) of
table 4.4(a). So if any of the port read or write instruction is not preceded by the
required tris register configuring, a missing tris register configuring can be
reported to the programmer for appropriate action. The formula is of the form

A(Cm (Cn  Cwap  Cnm)), where

Cm : ckm , a hex code for write/read to a port  π and Cn : ckn , a hex code for
write to a corresponding tris register  π. The correct and wrong versions of the

Code Validation and Error Localization

Cochin University of Science and Technology 115

required program is developed in HI-TECH C, mikroC and assembler and tested
with the tool. Results of the analysis for a missing trisb setting if any, when portB
is used as an output is shown in the screenshots of Fig. 4.4(a) and (b).The results

(a)

(b)
Fig. 4.4 Screenshots for the results of the analysis for TRISB register configuring

for programs developed in high level languages. (a) in the erroneous
program a warning is generated of the use of portB as output port
without corresponding trisb setting at location 3Fh. (b)in the correct
program the rule is validated as the antecedent and its consequent are
satisfied at locations 3Eh and 3Bh respectively.

Chapter 4

Department of Computer Science116

explain that the technique for validation is independent of the compiler/assembler.
The required program has been developed in Visual Basic. The concept described
can be extended and tailored to diagnose such errors.

4.4.2.4 A Deadlock

A possible deadlock during the execution can be identified with a particular

code sequence which can be properly informed to the programmer. As an example

a delay program which stores the count value in a register and its erroneous version

are listed in Table 4.7. Fig. 4.5 (a) and (b) shows their representation by a directed

graph respectively. Each node is numbered in bold and represents a single

instruction. The presence of edge (4,2) in Fig. 4.5(b) indicates the possibility of a

deadlock in the program and the need for a careful inspection of the code in this

region can be reported.

For the instruction set of these RISC processors the use of a conditional

transfer instruction is facilitated most of the time in association with an

unconditional transfer instruction. So the presence of an edge from an exit node,

which is a goto instruction that immediately follows a conditional transfer

instruction, to an entry node that is not the conditional transfer instruction itself in

any possible execution path is indicative of a possible deadlock in the program

which can be formulated as a rule and applied in the algorithm. Then a possible

deadlock during the execution can be identified by the formula

A(Ccgd  Cg-)

where,

Cc: a conditional branching instruction  π; Cg: a goto instruction  π; Cg-:

ckg  π transfer control to its preceding conditional branching instruction.

Code Validation and Error Localization

Cochin University of Science and Technology 117

The hex values of the machine codes together with their addresses can

reveal all the above information. Whether the reported deadlock is a false positive

or not can be decided by the programmer.

Table 4.7 A delay program and its erroneous version resulting in a deadlock

No deadlock Deadlock

delay movlw 0xFF delay movlw 0xFF

w1 movwf count w1 movwf count

loop decfsz count,1 loop decfsz count,1

goto loop goto w1

Fig. 4.5 The directed graph representations for the delay routines given
in Table 4.7 where each node numbered in bold represents an
instruction and arrows represent the control flow between
instructions. (a) shows the digraph for the correct version and
(b) shows the same for the incorrect version.

4.4.3 Error Correction

The proposed code validation technique is verified using programs typically

run on microcontrollers like traffic signaling as well as Data Acquisition System.

Since the causes of errors are implicit in the governing rules, suggestions for error

correction can be reported along with the warnings in many cases. In addition to

Code Validation and Error Localization

Cochin University of Science and Technology 117

The hex values of the machine codes together with their addresses can

reveal all the above information. Whether the reported deadlock is a false positive

or not can be decided by the programmer.

Table 4.7 A delay program and its erroneous version resulting in a deadlock

No deadlock Deadlock

delay movlw 0xFF delay movlw 0xFF

w1 movwf count w1 movwf count

loop decfsz count,1 loop decfsz count,1

goto loop goto w1

Fig. 4.5 The directed graph representations for the delay routines given
in Table 4.7 where each node numbered in bold represents an
instruction and arrows represent the control flow between
instructions. (a) shows the digraph for the correct version and
(b) shows the same for the incorrect version.

4.4.3 Error Correction

The proposed code validation technique is verified using programs typically

run on microcontrollers like traffic signaling as well as Data Acquisition System.

Since the causes of errors are implicit in the governing rules, suggestions for error

correction can be reported along with the warnings in many cases. In addition to

Code Validation and Error Localization

Cochin University of Science and Technology 117

The hex values of the machine codes together with their addresses can

reveal all the above information. Whether the reported deadlock is a false positive

or not can be decided by the programmer.

Table 4.7 A delay program and its erroneous version resulting in a deadlock

No deadlock Deadlock

delay movlw 0xFF delay movlw 0xFF

w1 movwf count w1 movwf count

loop decfsz count,1 loop decfsz count,1

goto loop goto w1

Fig. 4.5 The directed graph representations for the delay routines given
in Table 4.7 where each node numbered in bold represents an
instruction and arrows represent the control flow between
instructions. (a) shows the digraph for the correct version and
(b) shows the same for the incorrect version.

4.4.3 Error Correction

The proposed code validation technique is verified using programs typically

run on microcontrollers like traffic signaling as well as Data Acquisition System.

Since the causes of errors are implicit in the governing rules, suggestions for error

correction can be reported along with the warnings in many cases. In addition to

Chapter 4

Department of Computer Science118

this certain device specific corrections can be reported based on the feedback from

the programmers. As a typical case the processor’s data sheet illustrates how the

AD conversion time per bit TAD is related to the device clock period TOSC with each

ADC clock selection bit pattern adcon0<ADCS1:ADCS0>. Based on this, rules (8)

and (9) of Table 4.4(c) are formed to correct any discrepancy in the configuration

of ADC clock selection so that the minimum TAD time of 1.6µs is assured. The

programmer is asked to input the device clock frequency he is going to use and

based on this following propositions are made.

Cclk0: the device clock frequency ≤ 1.25MHz

Cclk1: the device clock frequency ≤ 5MHz

Cclk2: the device clock frequency ≤ 20MHz

Hex code corresponding to the four instructions that clear or set adcon0<6>

and adcon0<7>  π defines the four propositions Ca, Cb, Cd and Ce respectively.

Then any correction needed in the configuration can be informed by testing the

following formulas.

A(Ca  Cd  Cclk0)

A(Cd  Cb  Cclk1)

A(Ce  Ca  Cclk2)

By incorporating a decompiler/disassembler, the reported errors can be

corrected either by eliminating, inserting or modifying the necessary code.

4.5 Results and Discussions

This work presents an architecture oriented code validation technique

assisting the embedded system software designer in debugging, to make it more

effective at early detection of errors. Commercial static analysis tools typically

check for standard deficiencies which might miss bugs resulting from subtle

Code Validation and Error Localization

Cochin University of Science and Technology 119

deviations of the hardware specification. But the technique presented here is based

on rules of inferences formulated for the target processor that look into platform-

specific properties. Integrating this offline debugging technique with the

development environment can result in reduced debugging time and improved

quality of the software through the elimination of logical mistakes as well as

redundant codes made by the programmer. After the overhead of verification there

is no hardware overhead for detection of such errors; nor any increase in the code

size by this approach, as no signatures or labels are embedded into the program so

also no run time overhead.

For the code analysis, the truth value of the propositional formulae is identified

mainly using the machine code pattern and state spaces are created only for cases

where the machine code is insufficient to evaluate the truth value of a proposition. This

eliminates the need for an instruction simulator and gives a feasible solution to the state

explosion problem in the state-of-the-art model checkers. In conventional model

checkers the user specifies the requirements in the form of formulae and a parser

converts those given by the user into the format needed by the local model checking

algorithm. However in the work presented here, all the required formulae are in-built.

A set of rules can be framed for a family of microcontrollers and a user can select a

processor of his choice for validation. This technique can be easily extended not only

to a wide range of RISC processors but also to other architectures.

Results of our analysis reveal that the technique is independent of

assemblers/compilers. In the proposed approach, the compiler introduced

redundancy can be identified since the machine code reveals the platform specific

choices made by the compiler. It is common to select a processor based on its

performance and to rely on the compiler to deliver this performance. This is

particularly true of high-performance RISC devices. It is unacceptable to be limited

Chapter 4

Department of Computer Science120

by available debugging technology. Though the technique described is general the

implementation is highly architecture oriented and a case study on PIC16F87X

series of microcontrollers is presented here. Since the analysis is performed on the

low level language the range of types of analysis that can now be performed on the

code is significantly reduced. To make the system interactive a

disassembler/decompiler is to be incorporated. The coverage of faults depends on

the rules governing the validation of codes.

4.6 Summary

An approach towards code validation of RISC based microcontrollers, at

the level of machine instruction stream is described in this chapter. The code

validation technique, the background that promoted this work and the feasibility of

this approach in RISC microcontrollers are explained. Abstraction of CFG from

Intel hex file and codification of rules are explained. The rules governing the

occurrence of illegitimate/out of place instructions and code sequences for

executing the computational and integrated peripheral functions of the target

processor under consideration are discussed. The three phases that leads to code

validation like fault localization, fault diagnosis and fault correction are considered.

A prototype developed based on PIC16F87X microcontrollers and the results of

analysis with sample programs are also presented. The chapter concludes with the

discussions on the results.

Introduction

121

5
CODE OPTIMIZATION

5.1. Motivation and Approach ... 123
5.2. Detection of Redundant Bank Switching Codes 126

 Relation Matrix Formulation
 Realization
 Tool Evaluation

5.3 Optimization Technique .. 141
 Variable Partitioning
 Optimum Memory Bank Allocation

5.4 Redundant I/O Port Configuration................................. 147
5.5 Redundant ADC Channel Selection.............................. 148
5.6 Software Realization ... 149
5.7 Summary... 150

Optimization is a procedure that mainly seeks to maximize performance and

minimize code size. As processor architectures have exponentially increased in

complexity, the compiler optimization techniques [38, 39, 178] are continually

advancing. However, no single optimization technique will work for every

application. It is best to apply one optimization at a time, verify the results and

measure any performance improvements before moving on. Optimization is an

important task when developing resource intensive applications like embedded

systems. Embedded systems are usually designed for a single or a specified set of

tasks. Being specific the system design as well as its hardware/software

development can be highly optimized.

Chapter 5

Department of Computer Science122

Optimization by elimination of redundant codes is one among the

optimization technique adopted by many software development tools. An

architecture oriented approach towards the optimization, by the static analysis of

embedded system machine codes resulting in the elimination of redundant code is

described in this chapter. Many of the embedded system controllers use partitioned

memory architecture. Memory banking and memory paging are common

techniques used for microcontrollers, which increases the size of program and data

memory without extending the address buses of the CPU. In these memory banks

that cannot be accessed simultaneously, switching between them requires at least

one bank selection instruction, which induce extra overhead in code size and

execution time. The code size is a major factor rather than speed for the programs

running in many embedded systems, since smaller code size often means less

consumption of ROM as well as energy, and hence minimizing the number of bank

selection instructions is an important research topic. Current compilers provide

limited support to optimum generation of bank switching codes.

This work presents a code optimization technique to minimize the data and

program memory bank switching instructions that assist a programmer in

developing efficient embedded software. A relation matrix formed for the memory

bank state transition corresponding to each bank selection instruction is used for

the detection of redundant codes. It also proposes the optimum memory bank

allocation to the variables in a program by the compiler that results in minimum

number of bank switching codes. An algorithm is developed and utilized to detect

the redundant memory bank switching instructions in the resulting machine codes

from a compiler for different data allocation schemes of the application program.

Then it selects the program with minimum bank switching instructions as the

optimum solution. The basics of the algorithm developed, enhancements made to

Code optimization

Cochin University of Science and Technology 123

the algorithm in order to suppress the false warnings and the results of the case

study using Microchip’s PIC16F877 microcontroller are presented.

The technique presented here achieves optimization of bank switching

instructions without much computational burden by statically analyzing the

machine code with a comparatively simple algorithm. Our algorithm can detect

redundant data memory bank selection instructions that remain even after the

application of optimization techniques by the compilers. For a program developed

in assembly language also, the redundant bank switching instructions, especially

for lengthy programs can be eliminated with this technique. With a well defined

Control Flow Graph (CFG) constructed from the machine codes this algorithm fits

well into large problem sizes as well. Redundant data and program memory bank

selection instructions in the intraprocedural sequence, loops and interprocedural

routines in the application program can be eliminated.

5.1. Motivation and Approach

For any memory space, larger the memory is, the larger the address bus

needs to be. Previous efforts on partitioned memory are to enable memory access in

parallel thereby increasing memory bandwidth and thus improving program

performance. Such partitioned memory banks are found in processors like

Motorola DSP 56000, Intel 8086, i80186 etc onwards. One way of avoiding large

address buses is to divide the memory into a number of smaller blocks - called

banks/ pages - each identical in size in most of the cases so that a smaller address

bus can be used [35]. Smaller address buses result in smaller chip die size, higher

clock frequencies and less power consumption. It can access all banks in an

identical way, with just one of the banks being identified at any one time called the

active memory bank (AMB) [17] as the target of the address specified. The

contents of memory temporarily bank-switched out of the processors address space

Chapter 5

Department of Computer Science124

are inaccessible to the processor. Many MCUs have banked memories that cannot

be addressed simultaneously. For example, Freescale 68HC11 8-bit

microcontrollers [179] allow multiple 64KB memory banks to be accessed by their

16-bit address registers with only one bank being active at a time. Bank switched

SRAMs are employed with ultra-low-power sensors to achieve high code density

[180] and allow the gating of individual memory banks [181]. Other examples

include Intel 8051 processor family and MOS technology 6502 series

microcontrollers. Certain modern microcontrollers use bank switching to manage

read-write memory, non-volatile memory, input-output devices and system

management registers. Most of the PIC microcontrollers [165] adopt a banked

structure for their data as well as program memory of which a case study on

PIC16F87X series of microcontrollers has been made in this work.

Unlike other memory management techniques, bank switching is nearly

always initiated by the application program explicitly, although some real time

operating systems take detailed control of the bank switching operation out of the

application programmer's hands. A bank-sensitive program statement requires that

the appropriate bank is to be made active prior to its execution. Otherwise, the

program semantics are violated. This introduces an additional burden on the

programmer; there is always a possibility for redundant bank switching instructions

Thus, if data in one bank must be copied to another bank, bank selection

instructions are always necessary. Obviously, placing all the variables accessed by

a function in the same memory bank will reduce the number of bank selection

instructions and the total required cycles for the application. However,

conventional compilers have no way of knowing which functions call which

variables and are therefore unable to optimize their memory assignment. Nor do

these compilers have any way of knowing whether or not a particular memory bank

will be selected at any point in the code. As a result, these compilers automatically

Code optimization

Cochin University of Science and Technology 125

generate bank selection instructions for every memory access, whether or not that

bank is already selected, unnecessarily bloating the code - often increasing the code

space requirement. Compiler vendors have addressed this issue by providing bank

qualifiers - extensions to the C-code. This allows the compiler to see the exact bank

an object resides in and reduces the number of bank selection instructions for more

compact code. However, trying to track all the memory addresses across multiple

code modules and ensuring all pointers to have the appropriate qualifiers is a time

consuming and tedious process. This requires substantial expertise as well as run

the risk of introducing programming errors [8]. All the related works [17, 31, 32,

33, 34] are analyzing the source programs for minimal placement of bank

switching instructions.

Analysis of a high level program cannot easily determine the current bank

state. But with a static analysis of the machine code, the state transitions at each

bank switching instruction can be easily determined. Static analysis examines the

code of programs to determine properties of the dynamic execution of these

programs without running them. This technique has been used extensively in the

past by compiler developers to carry out various analysis and transformations

aiming at optimizing the code [40, 96]. Today’s compilers cannot efficiently

exploit the architectural features of advanced embedded processors. This results in

the introduction of redundant codes in their output. This work presents an

algorithm developed, to detect the redundant bank switching codes in the machine

code generated by the compiler. So the compilers can insert bank selection

instructions for every memory access in the conventional way and the output file in

the Intel Hex file format is tested with the algorithm developed to detect all the

redundant bank switching code. So the compiler is deprived of any complicated

analysis needed during compilation to minimize the bank switching code as done

by some advanced compilers like HI-TECH OCG (Omniscient Code

Chapter 5

Department of Computer Science126

Generation)[8]. Now appropriate allocation of data variables to the available

memory banks can again increase the redundant bank switching codes detected by

the algorithm developed, resulting in minimum number of such codes in a given

application program. To the best of the authors’ knowledge only [34] presents a

data partition technique aimed at minimal placement of bank selection instruction

resulting in code as well as runtime saving. Our non profile-guided compiler

method is static and is independent of the compiler but implementation of

algorithm depends on certain architectural features of the target processor. The

optimization of the code is done again following certain algorithms. Some of the

instructions inside a loop will be executed unnecessarily which can be eliminated

by code motion.

5.2. Detection of Redundant Bank Switching Codes

The goal of our optimization is to eliminate the redundant bank selection

instructions in a program while ensuring that the banked memory is accessed

correctly. The detection of redundant bank switching code is done with the help of

a relation matrix derived from the architectural features of the target processor like

number of memory banks and instruction set (memory bank switching codes).

Though the implementation depends on the target processor the formation of the

relation matrix can be generalized as explained below. The feasibility of the

approach has been verified on systems based on PIC16F87X series of

microcontrollers.

A detailed study on the various PIC families of microcontrollers has been

made in this regard. PIC 16F84A have just two banks [35] and the address of either

bank is the 7-bit RAM address. The active bank is selected by bit 5 in the Status

register. The programmer must ensure that the bank bit in the Status register is

correctly set before making any access to memory. The data memory in

Code optimization

Cochin University of Science and Technology 127

PIC16F87X devices is partitioned into four banks of 128 Bytes each, which contain

the general purpose registers and the Special Function Registers (SFR). For

selecting a particular bank, bits RP1;bit six of status register (status<6>) and RP0

(status<5>) are to be configured appropriately. All PIC16F87X devices are

capable of addressing a continuous 8K word block of program memory. The call

and goto instructions provide only 11 bits of address to allow branching within any

2K program memory page. While doing a program branching with call or goto

instruction the upper two bits of the address are provided by pclath<4:3>. When

doing such branching, the user must ensure that the upper page select bits are

programmed so that the desired program memory page is addressed.

The data memory space in PIC18F series devices is divided into as many as

16 banks that contain 256 bytes each [182]. The Bank Select Register,

BSR<BSR3:BSR0> holds the four bit bank; the instruction itself includes the 8

Least Significant Bits, which can be thought of as an offset from the bank’s lower

boundary. The BSR can be loaded directly by using the movlb instruction.

In general, the address space is partitioned into memory banks and the CPU

can access one bank at a time, which is called the active memory bank (AMB),

using bank selection bits or bank selection instruction. For implementing this code

optimization through static analysis of machine code, the memory bank that was

active just before the execution of a bank switching instruction is named as

Previously Activated Memory Bank (PAMB). A bank switching/ selection

instruction is said to be redundant when the execution of such an instruction

switches the memory bank to an Active Memory Bank (AMB) that does not alter

the PAMB.

Based on the study on the various PIC families of microcontrollers

following generalizations are made for the partitioned data memory architecture. If

Chapter 5

Department of Computer Science128

P is the number of memory banks, so that 2r = P, then the number of bits that

decides the bank selection in the bank selection register will be r. The number of

machine codes controlling the bank selection will be P if the bank register is loaded

with a mov instruction. For each PAMB state there will be one bank selection

instruction, which is redundant. If bitset and bitclear instructions on the BSR are

used for bank switching there will be 2r number of machine codes for this

operation and for each PAMB state there will be r number of bank switching

instructions, which are redundant.

5.2.1 Relation Matrix Formulation

The family of Microchip PICmicro MCUs constitutes a RISC-based

Harvard architecture with instruction size of 14 bits and data width of 8 bits [165].

The data memory banks in these embedded controllers contain the General purpose

Registers and Special Function Registers. For proper functioning of the device,

proper configuring of these registers is essential. Since these registers are spread

across different banks they are to be accessed through the bank switching

instructions, which limits the data partitioning optimization for hardware dependent

code. In case of program memory paging when a branching instruction that crosses

the page boundary is made, the programmer should ensure the required page

switching before these instructions. The disadvantage of bank-switched

architectures is the code size and runtime overhead caused by bank selection

instructions.

Instead of having a single bank selection instruction, the PIC16F87X

architecture provides only bit access to the bank selection register, which is the

status register. The assembly instructions that clear or set the bits RP0 and RP1of

the status register are bcf status, RP0; bcf status, RP1; bsf status, RP0; and bsf

status, RP1 and are represented by the symbols a, b, c and d respectively. The hex

Code optimization

Cochin University of Science and Technology 129

codes corresponding to these instructions are 1283h, 1303h, 1683h and 1703h

respectively. The four data memory banks are named B0, B1, B2 and B3. On a

power on reset, the default bank that is active is bank’0’ represented as B0.

Depending on the PAMB state, the AMB state occurs with each bank switching

instruction. The assembly instructions that set or clear the bits RP0 and RP1of the

status register, corresponding machine code sequence, and their symbols used in

the state transition diagram are shown in Table 5.1.

Table 5.1 Bank switching instructions and their symbols

Mnemonics Machine Code in Hex Symbol
bcf status,RP0 1283 a
bcf status,RP1 1303 b
bsf status,RP0 1683 c
bsf status,RP1 1703 d

The Active Memory Bank is a discrete function [169] of Previously

Activated Memory Bank (PAMB) and bank switching instruction. Let the finite

sets

B = {B0, B1, B2, B3} represents the symbols of PAMB states and

I = {a, b, c, d} represents the symbols of bank switching instructions

respectively.

∂ is a mapping of B×I →B which denotes the next-state function.

Then ∆, a (2r×2r) relation matrix, can be obtained by first constructing a

table whose columns are preceded by a column consisting of successive elements

of B and whose rows are headed by a row consisting of the successive elements of

I as shown in Table 5.2. The relation matrix ∆ is obtained as

Chapter 5

Department of Computer Science130





















3312
2302
3110
2100

BBBB
BBBB
BBBB
BBBB

Table 5.2 Relation matrix formation with PAMB and bank switching instructions

Previously Activated
Memory Bank

Active Memory Bank with Bank
Switching Instructions

a b c d
B0 B0 B0 B1 B2
B1 B0 B1 B1 B3
B2 B2 B0 B3 B2
B3 B2 B1 B3 B3

Fig. 5.1 State transition diagram showing the bank switching scheme.

Elements of ∆ represent the AMB for each mapping of B×I→B. A state

transition diagram representing the data memory bank switching with the execution

of each bank switching instruction to the corresponding AMB is shown in Fig. 5.1.

The nodes represent the PAMB states. The occurrence of a loop on each state in the

state transition diagram corresponds to an unnecessary bank switching or a

redundant bank switching instruction, which can be identified and eliminated by

Code optimization

Cochin University of Science and Technology 131

incorporating the necessary algorithm. Eliminating such instructions from a

machine code sequence results in a code optimized for space and speed metric.

For the target processor considered, most of the time the

compiler/macros/user places two instructions to select the required data memory

bank. They are

(bcf status, RP0  bsf status, RP0)  (bcf status, RP1  bsf status, RP1).

i.e. (a  c)  (b  d)

To select bank B3 (i.e. status<RP1:RP0> = b‘11’), the two probable

instructions are bsf status, RP0 (c) and bsf status, RP1 (d). With a PAMB state B2

(i.e. status<RP1:RP0> = b‘10’), only instruction c is needed and instruction d is

redundant since; ∂ (B2, c) = B3 which is evident from the matrix ∆ as well as the

state transition diagram. This redundancy corresponds to a loop in the state

transition diagram which the algorithm identifies and that instruction is eliminated.

Even though the order of the instructions is reversed, the algorithm identifies the

first instruction as redundant since the state transition is to B2 itself or ∂ (B2, d) =

B2. The other situation is selecting a bank which is already the active bank. For

selecting the bank say B1, the two probable instructions are bsf status, RP0 (c) and

bcf status RP1 (b). With a PAMB state B1;

∂ (B1, c) = B1 and ∂ (B1, b) = B1

The algorithm identifies both the bank selecting instructions which are

redundant as evident from the matrix ∆ as well as the state transition diagram and

can be removed. The relation matrix is independent of the application program, but

it depends on the architectural features of the target processor. If P is the number of

memory banks, so that 2r = P, then the number of rows of the relation matrix will

be P. If the bank switching is done with a data transfer instruction then the number

Chapter 5

Department of Computer Science132

of columns of the relation matrix also will be P and in case the bank switching is

done with individual bit set/reset instructions the number of columns will be 2r.

With an identical approach the redundant program memory page switching

instructions (which are bcf pclath, 3; bcf pclath, 4; bsf pclath, 3; bsf pclath, 4) to

switch the four pages in the program memory also can be eliminated. Hence almost

all possible redundancy introduced in the program with respect to the bank

selection instructions are identified and can be eliminated.

5.2.2 Realization

A novel algorithm to assist software developers for eliminating redundant

data and program memory bank selection instructions has been developed; this also

helps developing efficient embedded software utilizing static analysis of machine

codes.

The relation matrix ∆, formed for the AMB state transition, corresponding

to each bank switching instruction in the machine code sequence of an application

program, is used for eliminating the redundancy. For the implementation of the

code optimization the machine code is read from the Intel hex file and stored in an

array. Checking of redundant bank switching instructions should follow the

sequence of instructions executed by the processor which correspond to a path in

the program graph. In order to get the correct sequencing of instructions, the

program (machine code) is partitioned into blocks of instructions by disconnecting

from every merge node (a node in the program graph with more than one incoming

arc) all of its incoming arcs [167]. Hence the program graph is partitioned into a

collection of disconnected subgraphs where each subgraph corresponds to a set of

instructions or subprogram. Since each subgraph is a tree, they have only one entry

point (root node) and there is a unique path, and hence a unique sequence of

instructions, from entry point to each of the exit points. Now the CFG can be

Code optimization

Cochin University of Science and Technology 133

constructed where each subgraph of the program graph is represented as a single

node and the arcs represent valid control flow between subgraphs [38, 150]. From

the CFG the set of elementary paths in a subprogram are identified in the same way

as described in section 4.1.3 of chapter 4.

The flow chart given in Fig. 5.2 explains the algorithm to detect the redundant

bank switching codes. N represents the total number of CFG nodes. M represents the

number of paths in the nth subgraph. L represents the number of machine codes (nodes)

Fig. 5.2 Flowchart explains the identification and pruning of
redundant MBSWC in the machine code sequence of a
program.

Chapter 5

Department of Computer Science134

in the jth path of the nth subgraph. C(n,j,k) represents the kth machine code in the jth path

of the nth subprogram. Since the bank B0 is the default active bank on reset, B0 is

assigned at start to the PAMB of each path of the 1st CFG node. For each memory

bank Switching Code (MBSWC) in a valid path the AMB state is obtained from

the matrix ∆. A redundant MBSWC is located when AMB = PAMB. The AMB

associated with the vif, which is given an Exit ID is assigned to the Exit Active

Memory Bank (EAMB) which becomes the starting PAMB of each path of the next

CFG node. For the analysis of a subprogram a linear scan is sufficient. Analysis of

a subprogram takes care of the redundancy of the memory bank switching

instructions associated with the intraprocedural routines in an application program.

Analysis of the last CFG node is followed by the processing of the merge

nodes. The initial node of a subprogram is a merge node where there is more than

one incoming edge. So the first MBSWC in each path of a subprogram cannot be

eliminated just by observing it to be redundant from the EAMB state of its previous

subprogram. Hence the AMB associated with each of the incoming arc at the merge

node are to be considered. Each of these incoming edges corresponds to a source

node which is nothing but a leaf node, and hence an AMB is associated with it.

Hence the AMB at the entry node of a subprogram need not be unique. A typical

case is that of a function call from different call sites. A call site corresponds to a

node which contains an instruction implementing a function call. All the call sites

need not have the same AMB state. A loop in a program is another case. Therefore,

for all the CFG nodes, even though the first (pair of) bank switching instruction in

any path is found to be redundant, they are not reported till the interprocedural

analysis is over and the redundancy is confirmed. This is the first step done towards

the suppression of false warnings. Hence the AMB associated with the first

Code optimization

Cochin University of Science and Technology 135

instruction in a subprogram is taken as the union of AMBs of its incoming arcs.

During processing of the merge nodes, if it is found that all the incoming edges to a

merge node are having the same AMB associated with them, then the redundancy

marked for the first (pair of) bank selection instruction in that node or in any path

of that subprogram is considered to be redundant and can be eliminated. When it is

not so a decision is made by considering the AMB combinations of the incoming

edges as follows.

If B0 and B2 only then the instruction bcf status,RP0 is redundant

If B0 and B1 only then the instruction bcf status,RP1 is redundant

If B1 and B3 only then the instruction bsf status,RP0 is redundant

If B2 and B3 only then the instruction bsf status,RP1 is redundant

As a second step towards suppression of the false warnings, the algorithm

considers all the transparent nodes which do not contain any bank switching

instructions. If the active memory bank associated with the incoming edges of a

transparent node are not equal then the leaf nodes of this subprogram are assigned

with the combination of incoming edges’ AMBs. Again within a CFG node if any

of the paths is without a bank switching instruction its leaf node is treated similarly.

When the initially detected redundant codes are pruned the AMBs associated with

all the incoming edges to the entry node are taken care of. Hence the algorithm

takes care of the redundant data memory bank selection instructions associated

with all the loops and interprocedural routines of the application program.

Chapter 5

Department of Computer Science136

5.2.3 Tool Evaluation

The code analyzer developed for the detection of redundant bank switching

instructions in an application program is realized in software using Visual Basic.

The tool is evaluated using programs typically run on microcontrollers. For

programs developed in assembler the necessary pair of MBSW instructions were

inserted prior to all bank sensitive instructions and tested. Fig. 5.3 shows the CFG

of a sample program used for the analysis which has got six nodes ‘n1’ through

‘n6’. Each bank sensitive instruction in the program is preceded by an appropriate

pair of MBSWC. Each node in a program graph is assigned with an address and its

associated machine code. The hex values of the addresses corresponding to the pair

of MBSWC are shown encircled and the resulting active memory banks such as

B0, B1 etc. are also shown. B0 results with the instructions a  b, B1 results with

the instructions c  b, B2 results with the instructions a  d and B3 results with the

instructions c  d. The AMB associated with the incoming edges of ‘n1’ through

‘n6’ are also shown. With the MC_CODE ANALYZER v1.02 only the

inraprocedural analysis has been done. Here the analysis of each CFG node

considers the EAMB associated with the exit node of its predecessor only. Results

of the analysis for the sample program above with MC_CODE ANALYZER v1.02

are given in Fig. 5.4 which show all the redundant bank switching codes associated

with all the intraprocedural routines along with their address locations. The source

node address, the machine code at this address location and the destination node

address of the program graph are also displayed in the screenshot. The addresses of

these redundant codes are single starred or double starred in the Fig. 5.3, the latter

being the first (pair of) MBSWC in the subprogram.

Code optimization

Cochin University of Science and Technology 137

Fig. 5.3 CFG of the sample program for the analysis.

With the MC_CODE ANALYZER v3.00 the inraprocedural,

interprocedural and transparent node analysis has been conducted. The first (pair

of) redundant bank switching code/codes in any of the subprogram (the nodes

which are marked **), already identified with the MC_CODE ANALYZER v1.02

are pruned with this analysis to avoid any false warnings. Here the first/first pair of

bank switching code/codes of each subprogram which were found redundant by the

previous analysis are reported to the programmer only if they are found redundant

with the interprocedural analysis too.

Code optimization

Cochin University of Science and Technology 137

Fig. 5.3 CFG of the sample program for the analysis.

With the MC_CODE ANALYZER v3.00 the inraprocedural,

interprocedural and transparent node analysis has been conducted. The first (pair

of) redundant bank switching code/codes in any of the subprogram (the nodes

which are marked **), already identified with the MC_CODE ANALYZER v1.02

are pruned with this analysis to avoid any false warnings. Here the first/first pair of

bank switching code/codes of each subprogram which were found redundant by the

previous analysis are reported to the programmer only if they are found redundant

with the interprocedural analysis too.

Code optimization

Cochin University of Science and Technology 137

Fig. 5.3 CFG of the sample program for the analysis.

With the MC_CODE ANALYZER v3.00 the inraprocedural,

interprocedural and transparent node analysis has been conducted. The first (pair

of) redundant bank switching code/codes in any of the subprogram (the nodes

which are marked **), already identified with the MC_CODE ANALYZER v1.02

are pruned with this analysis to avoid any false warnings. Here the first/first pair of

bank switching code/codes of each subprogram which were found redundant by the

previous analysis are reported to the programmer only if they are found redundant

with the interprocedural analysis too.

Chapter 5

Department of Computer Science138

Fig. 5.4 Screen shot of the developed MC_CODE ANALYZER v1.02 for
the sample program.

Screenshot explaining the results of this analysis for the same sample program

with the MC_CODE ANALYZER v3.00 are given in Fig. 5.5. The machine codes at

addresses 8h, 23h, 2Dh, 2Eh, 29h and 12h are pruned as follows. The redundancy

reported in the first analysis for the code at location 23h is eliminated in the second

analysis since ‘n2’is a transparent node and therefore the leaf nodes of this

subprogram are assigned with the combination of incoming edges’ AMBs. Then the

Figure 5.5 Screen shot of the developed MC_CODE ANALYZER
v3.00 for the sample program.

Code optimization

Cochin University of Science and Technology 139

incoming edges of node ‘n3’ can have active memory banks either B1 or B2. With a

PAMB of B1, the instruction ‘c’ is redundant since ∂ (B1, c) = B1, but with a PAMB

of B2, the instruction ‘c’ is not redundant as evident from the state diagram; hence

the code at location 23h is eliminated from the result. Similarly for the node ‘n4’,

codes at 2Dh and 2Eh are reported redundant in the first analysis since EAMB of the

exit node of ‘n3’ is B3. But with the second analysis only code at location 2Eh is

reported and 2Dh is eliminated since the incoming edges AMB combination is B3

and B2 only. With a PAMB of B3 or B2 the instruction ‘c’ is not redundant, but the

instruction‘d’ is redundant since ∂ (B3, d) = B3 and ∂ (B2, d) = B2. For the node

‘n5’, since the incoming edges are having the same AMB B3, code at location 29h is

reported in both the analysis which is clear from the relation matrix. For the machine

codes at addresses 8h and 12h no change since node ‘n1’ is having only one

incoming edge and for ‘n6’ the incoming edges are having the same AMB which is

B1. The codes which are found redundant in the first analysis but eliminated later

lead to the suppression of false warnings.

Results of the analysis done on machine codes generated with different

compilers as well as assembler are given in Table 5.3. HI-TECH Software is a

world-class provider of development tools for embedded systems and is the number

one third party vendor of compilers for Microchip Technology Inc. For a program

module ‘delay_time_rout’ downloaded from [183] and compiled using HI-TECH C

PRO, the algorithm detected six redundant codes. Sample programs available with

HI-TECH C PRO compiler are tested and the results are given as sl. no. 2 to 6.

These programs are compiled with the optimization enabled; hence the results

prove that the tool developed is superior to the compiler. Serial numbers 7 to 12

gives the results of the analysis on programs available with PROTEUS VSM design

tool. The results of the analysis for an ADC program compiled using HI-TECH C

PRO, mikroC and also the same program developed in assembler are also included

Chapter 5

Department of Computer Science140

(sl. No. 13 to 15) to test the independence of the tool developed on the compiler.

Serial number 12 is a program compiled with PICBASIC.

For a traffic signaling program developed in assembler with each bank

sensitive instruction preceded by a pair of necessary bank switching instructions,

the algorithm detected all the redundant bank switching codes and this is presented

as sl. no.16 of the table.

Table 5.3 Results of the analysis

Sl.No. Program Code
size

MBSWC
present

Redundant
MBSWC
detected.

% Saving in
Code Size

1 delay_time_rout 223 6 6 2.7
2 Lcd_demo 176 12 10 5.7
3 Timer_demo 49 3 0 0
4 Intr_demo 44 2 0 0
5 Pic_demo 700 16 14 2
6 Bootloader 225 19 1 0.44
7 ADC 63 7 1 1.6
8 Doorbell 643 2 0 0
9 PICCLOCK 292 2 0 0
10 RS232LCD 102 5 1 0.98
11 GEPE456 1403 10 2 0.14
12 GLCD_T~1 1044 16 0 0
13 HiTecC_ADC 84 18 8 9.5
14 mikroC_ADC 56 10 2 3.6
15 ASM_ADC 81 9 1 1.2
16 Traffic_signalling 48 16 7 14.6

Code optimization

Cochin University of Science and Technology 141

The tool developed counts the total number of bank switching codes

originally present in the program as well as the number of redundant bank

switching codes. Using the simulation log in PROTEUS VSM the number of

program words in each program is also found. Hence the percentage saving in code

size is computed and presented in the table. A corresponding saving in run time can

also be computed. Including the profile data can give the execution frequency of

each node so that the better approximation of the runtime saving can be computed

which will be conducted as a future work. The same application program can be

compiled using different compilers and the machine codes from each of these

compilers can be tested with the tool developed. Now by counting the number of

redundant codes reported in each of these cases, an evaluation of the different

compiler’s optimization capability in this regard is possible.

5.3 Optimization Technique

This work considers a compiler strategy of allocating z number of data

variables in an application program to P number of data memory banks in the target

processor, with the objective to deliver the machine code with minimum number of

bank switching codes. Since the number of bank switching codes cannot be

expressed as a linear function of the data variable, an ILP solver is not applied in

our approach.

5.3.1 Variable Partitioning

For a banked memory with P banks each of equal size, z number of data

variables can be assigned to the available banks in Pz possible ways provided z ≤

bank size. If the banks are of unequal size the case reduces to the same, provided z

≤ smallest size of the banks. When z>bank size the data mapping can be considered

as the problem of finding all possible z×P integer matrices [184, 185, 186] A with

Chapter 5

Department of Computer Science142

aij  {0,1}, that satisfies the given constraints on its rows and columns. The

cardinality of the set of such data mapping matrices depends on these constraints.

The first constraint is that, every data variable is considered as a single unit and is

allocated to only one memory bank:

(i): 1 ≤ i ≤ z : ∑ a = 1
Second constraint is that the sum of the sizes of all variables allocated to a

particular memory bank Bj must not exceed the size of that memory bank m(Bj):

(j): 1 ≤ j ≤ P : ∑ a ≤ ()
Third constraint is that z must not exceed the sum of sizes of all banks:≤ ∑
The polynomial-time solvability of this case has been proved [187].

Indeed, more constraints may decrease the runtime by decreasing the space of

feasible solutions. For example six variables can be allocated to two memory banks

in 26 (64) ways provided each bank size ≥ 6. But with the constraint of bank

size=3, the feasible number of data mapping matrices (cardinality of the set of

matrices) reduce to 20.

The set of data mapping matrices can be obtained with a depth first search

algorithm. Adding one more row and column to an z×P matrix subject to the

following constraints gives the matrices.

(j) = 1 to P

a (z+1),j = m(Bj)

(i): 1 ≤ i ≤ z

a i,(P +1) = 1

Code optimization

Cochin University of Science and Technology 143

So without any HLL directives the compiler can try all possible combination

of data variable allocation. Prior to all bank sensitive instructions the compiler can

insert as many bank switching instructions as needed. The resulting machine codes

are tested with the algorithm developed to detect the redundant bank switching

codes. The program that results in the maximum number of redundant bank

switching code corresponds to the minimum number of bank switching codes in the

program and can be selected as the optimum data allocation scheme for a given

application.

5.3.2 Optimum Memory Bank Allocation

The compiler designers and MCU manufacturers suggest certain tips for

speed optimization. In processors using banked memory architecture, the bank

switching instructions can be reduced by properly selecting the order in which the

variables are initialized at the start up of a program. They also suggest using

variables in same bank in arithmetic expressions, to avoid bank switching. Another

suggestion is that the variables accessed most often in the program can be allocated

to the memory spaces that are cheapest to access. A careful assignment of program

variables to registers is the most important optimization of a compiler for RISC.

For a given application program, the data variables can be allocated to the

available memory banks by considering all possible permutation of memory banks

and combination of data as represented by the set of data mapping matrices

explained in section 5.3.1. In each of these programs corresponding to the various

data allocation schemes, the compiler puts the necessary MBSWC prior to all bank

sensitive instructions without applying any algorithm for the minimal placement of

bank switching codes. This results in a unique Intel hex file output corresponding

to each of these programs. These files become the input to the machine code

analyzer developed which detects the number of redundant bank switching

Chapter 5

Department of Computer Science144

instructions present. The more the reported number of redundant codes, optimum

is the memory bank assignment. So the number of eliminated code is compared

each time and the most efficient code is selected.

We now discuss an example to illustrate how the approach described above

works in practice. For the target processor under study there are four memory

banks. So z number of data variables can be assigned to the 4 memory banks in 4z

ways when z≤bank size. For testing this tool for optimum data allocation a traffic

signaling program having three data variables is considered. The three data

variables are named S, T and U and are assigned to the four banks in 43 (64) ways

resulting in 64 programs each with a unique data allocation scheme. In these

programs the three data variables S, T and U can be placed in the four memory

banks available, first by placing the entire three in one bank, second by placing the

three data in any of the two banks and third in any of the three banks out of the four

available. Considering the permutation of memory banks and the combination of

data in each of the above cases , programs one to four are with all the three data

allocated to any one of the banks so that there are 4P1= 4 ways of data allocation;

programs five to forty are selecting any of the two banks at a time, so that for the

three variables there are 4P2×3C2= 36 ways of allocating the data and programs

forty one to sixty four are selecting any of the three banks for the three variables in

4P3×3C3 = 24 ways.

For the target processor since the special function registers are implemented

in data memory bank, accessing these registers must ensure the proper bank

switching. The SFRs used in the program considered are trisb and portB. Each

bank sensitive instruction in the program is made preceded by a pair of necessary

bank switching instructions. There are eight number of bank sensitive instructions

so that the number of bank switching instructions altogether in the program is

Code optimization

Cochin University of Science and Technology 145

sixteen. Fig. 5.6 shows the CFG of this program in which the data variables S and

U are allocated to B3 and T is allocated to B0. This results in the worst case

allocation where the number of redundant codes identified is two which are starred

in the figure.

Fig. 5.6 CFG of the sample program with the worst case data allocation scheme.

Code optimization

Cochin University of Science and Technology 145

sixteen. Fig. 5.6 shows the CFG of this program in which the data variables S and

U are allocated to B3 and T is allocated to B0. This results in the worst case

allocation where the number of redundant codes identified is two which are starred

in the figure.

Fig. 5.6 CFG of the sample program with the worst case data allocation scheme.

Code optimization

Cochin University of Science and Technology 145

sixteen. Fig. 5.6 shows the CFG of this program in which the data variables S and

U are allocated to B3 and T is allocated to B0. This results in the worst case

allocation where the number of redundant codes identified is two which are starred

in the figure.

Fig. 5.6 CFG of the sample program with the worst case data allocation scheme.

Chapter 5

Department of Computer Science146

Fig. 5.7 shows the bar graph for the number of redundant bank switching

instructions reported in the 64 data allocation schemes of the program considered. The

first four cases are with all the three variables S, T and U in one bank. Programs five to

forty are with the data variables S, T and U assigned to any of the two memory banks.

Similarly programs forty one to sixty four are with data assigned to any of the three

banks out of the available four. The worst case reported is when S, in B3, T, in B0 and

U also in B3 (sl.no.19 in bar graph) where out of the sixteen bank switching

instructions only two are redundant. The optimum data assignment is with S, T and U

assigned to B0 (sl.no.1 in bar graph) where fourteen out of the sixteen are redundant.

The total number of bank switching instruction depends also on the use of special

function registers in a program which are implemented in these memory banks. Data

allocation schemes 5, 6, 34 and 36 in the bar graph give the indication that there is a

tendency for optimum data assignment even though all the data are not in B0.

Distributing the data allocation to two banks in these cases is more efficient than

allocating all the data to B2 or B3.

From the results the conclusion obtained is that a compiler can insert the

required bank switching instructions prior to any bank sensitive instruction without

any complicated analysis on the source code. The compiler can attempt all possible

data allocation schemes for a given application program. Using this tool it can

determine all the bank switching code to be eliminated along with the optimum

data allocation to the available banks. When the reported redundant codes are

eliminated, the program runs successfully.

Code optimization

Cochin University of Science and Technology 147

Fig. 5.7 The number of redundant bank switching instructions reported
in the 64 data allocation schemes of the program.

5.4 Redundant I/O Port Configuration

The I/O ports available in PIC16F87X series of microcontrollers have tris

registers associated with them. These register configurations control the direction

of the I/O pins even when they are being used as analog inputs. The user must

ensure the bits in these registers are maintained set/ reset appropriate to the

situation. When a lengthy program is developed configuring these pins

unnecessarily may result in code redundancy. Compilers also can introduce such

errors. Even though the use of macros [18] simplifies the program development,

when they are used without care they can also introduce such errors.

0

2

4

6

8

10

12

14

16

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

N
o.

 o
f r

ed
un

da
nt

 c
od

es
 d

et
ec

te
d

64 data allocation schemes of the program

Chapter 5

Department of Computer Science148

These redundant codes can be identified and reported through the static

analysis of machine code developed. If a processor has got ‘M’ number of I/O port

pins then ‘M’ number of port_pin_flags are used in the analysis. A flag is set if the

corresponding I/O port bit is configured as input in the program code sequence and

reset otherwise. Initialization of each of these flags is according to the power on

reset condition of that processor. Using the relation matrix ∆ described in section

5.2.1 of this chapter and the bank switching codes in the given program the use of

all registers as well as ports in the executables can be identified. A linear scan

through the successive nodes in the CFG of an application program can reveal the

existence of a code, the execution of which results in the same pin configuration for

a port as that of the previous one. The resulting codes can be pruned with the

interprocedural analysis where the statuses of the port_pin_flags of all the

incoming edges of a merge node are taken into account.

5.5 Redundant ADC Channel Selection

Programs spend most of their time going around loops. Loops therefore are

the most promising sources to attempt speedups in a program, and it behoves an

optimizing compiler to generate particularly efficient code for loops. In embedded

systems a real time program will be executed in an infinite loop. Though the

control flow trace may indicate a number of repeated paths, the possible execution

paths are fixed. Analysis is to be conducted through the possible execution paths

only. The paths taken by the program can be obtained from the possible

combinations of control flow edges.

Some of the instructions inside a loop will be executed unnecessarily. A

typical case is that of selecting the ADC channel which should be done only once

unless a new channel is to be selected. So channel selection instruction is to be

outside the loop. Evaluation of rule (4) of Table 4.4(c) included in section 4.4.1 of

Code optimization

Cochin University of Science and Technology 149

chapter 4 achieves this result. Similar instances can be identified and the

programmer can be instructed to revise the program for optimization.

5.6 Software Realization

Algorithms for the detection of redundant codes in an application program

are realized in software using Visual Basic. The block diagram given in Fig. 5.8

explains the various steps in the static analysis of the machine code developed. The

selected Intel Hex file of the application program is read and an array of machine

codes are stored with their address values. For generating the program graph a

Fig. 5.8 Various steps realized in software for the code optimization.

Chapter 5

Department of Computer Science150

control flow array is formed which identifies the edges in the program graph with

the source and destination addresses and the corresponding codes. The CFG is

constructed by eliminating the incoming edges of the merge nodes, thereby

identifying the entry nodes, exit nodes and leaf nodes. Then the number of paths in

each CFG node and the codes in each path are identified. Now the algorithm is

applied to identify the redundant codes which are reported to the developer.

5.7 Summary.

This chapter describes the optimization techniques and their realization, for

the static machine code analyzer. This tool helps to eliminate the redundant codes

in bank switching instructions in partitioned memory architectures, in port

configuration as well as in ADC channel selection. Formation of a relation matrix

with PAMB and bank switching instructions is illustrated. A state transition

diagram representing the data memory bank switching with the execution of each

bank switching instruction to the corresponding AMB state is presented. A data

allocation technique to minimize the bank switching is described. Various steps in

the software realization of the machine code analyzer are discussed. Elimination of

redundant codes in the intraprocedural sequence, loops and interprocedural routines

in the application program are illustrated. A prototype based on PIC16F87X

microcontrollers is described and the experimental results obtained with sample

programs are also presented.

Introduction

151

6
CONCLUSIONS

6.1Contributions .. 151
6.2 Highlights of the Work ... 153
6.3 Merits and Demerits .. 154
6.4 New Research Directions.. 158
6.5 Summary... 158

This chapter consolidates the algorithms, features, contributions, results and

applications of the validation, error localization and optimization techniques

developed. The enhancement methods for the improved performance of the tool

developed are proposed. The extension of this work to other applications and

possible future research are also examined.

6.1 Contributions

This research work is concerned with the static analysis of machine code for

embedded system software debugging. An approach towards architecture oriented

code validation and optimization with respect to RISC microcontrollers, at the level

of machine instruction stream, to make it more effective at revealing errors as well

as redundancy is described. The major contributions of this thesis are as follows.

Chapter 6

Department of Computer Science152

 Proposes an architecture oriented code validation technique assisting the

embedded system software designer in debugging, on a host machine, to

make the debugging more effective at early detection of errors.

 Prescribes more than one hundred governing rules of inferences to validate

the code and hence to make code inspection automatic.

 Codifies the formulated rules in proportional logic formulae for testing their

compliance.

 Proposes a relation matrix assisting the validating tool to identify the active

memory bank state of each code in the instruction stream.

 Developed an algorithm to eliminate the redundant memory bank switching

instructions in embedded system software.

 Developed a static tool to analyze the intraprocedural sequence, loops and

interprocedural routines in an application program.

 Proposes an architecture oriented code optimization technique through

static analysis of machine code.

 Proposes a technique for optimum data allocation to banked memory

resulting in minimum number of bank switching code.

 Pioneered a useful tool in steering novices towards correct use of difficult

microcontroller features in developing embedded systems.

 Identifies program states mainly with machine code pattern reducing the

state space creation contributing to an improved state-of-the-art model

checking.

 Proposes a validation and optimization tool that can be integrated to the

system development environment for the early detection of logical errors

prior to the system realization and validation phase.

Conclusions

Cochin University of Science and Technology 153

6.2 Highlights of the Work

The approach towards the code validation and optimization of RISC

microcontrollers, presented in this thesis has explored the following .

(i) A new application domain for the static analysis of machine code; a code

validation technique to assist a programmer in developing error free and

reliable embedded software which would reduce the development time as

well as improve the quality of the software has been presented. In order to

achieve the early detection of bugs in programs being developed, more

than hundred rules of inferences based on the instruction set and

architectural features of the target processor have been formulated.

Codification of the formulated rules has been done in proportional logic.

The construction of the CFG from the machine codes and identification of

all possible execution paths required for the analysis also have been

incorporated.

(ii) The feasibility of the approach has been verified on systems based on

PIC16F87X series of microcontrollers. The algorithm can encompass a

wide range of RISC processors, once appropriate rules are available for

such processors. The pattern of the code sequence used for the evaluation

of the governing rules has been identified. A method to automatically

localize faults, diagnose, and correct if possible, has been proposed to

enhance the debugging process. The validation tool that is developed has

been tested with sample programs and the discrepancy in the instruction

sequence made by the programmer in configuring the CPU and integrated

peripherals functioning in different cases have been identified.

(iii) A relation matrix has been formulated which assists the code analyzer in

identifying the active memory bank associated with each code in the

Chapter 6

Department of Computer Science154

instruction stream. A state transition diagram that shows the memory bank

state transition from PAMB to AMB corresponding to each bank selection

instruction has been used for the optimization.

(iv) An optimization algorithm has been developed and implemented for a

static machine code analyzer which helps to eliminate the redundant data

as well as program memory bank switching instructions in partitioned

memory architectures. A compiler strategy which utilizes the algorithm

developed to determine the optimum data allocation to the available

memory bank, resulting in the minimum number of bank switching code

has been proposed. The feasibility of the approach has been verified on

systems based on PIC16F87X series of microcontrollers. Optimization of

the code based on the architectural features of the target processor

considered is also included. Validation and optimization technique in the

intraprocedural sequence loops and interprocedural routines in an

application program are considered. The tool has been tested with sample

programs and the results of the analysis have been studied.

6.3 Merits and Demerits

A code validation and optimization technique assisting the embedded

system software debugging to make it more effective at revealing errors and

redundancy is proposed. Since the method adopts a static analysis, the tool

developed has the merits and demerits of static analysis. Since the analysis is done

on machine code this work has got the advantages and disadvantages of machine

code analysis.

A static analysis of machine code can provide information which can hardly

be discovered by traditional simulation or test techniques. Commercial static

Conclusions

Cochin University of Science and Technology 155

analysis tools typically check for standard deficiencies but cannot identify any

logical mistakes. But the technique presented here is based on rules of inferences

formulated for the target processor that look into platform-specific properties. This

contributes to early detection of software bugs resulting from subtle deviations of

the hardware specification that had slipped through conventional testing which

would lead to malfunctioning at runtime.

Dynamic techniques are generally limited to finding bugs in the program

paths that are actually executed whereas static analysis can find bugs in all possible

execution paths. Though dynamic program slicing is useful in debugging of

programs, the sizes of dynamic-dependence graphs can be very large and thus it is

not possible to keep them in memory for realistic program runs. The validation

method adopted in this work identifies the program states mainly with machine

code pattern, which drastically reduces the state space creation contributing to an

improved state-of-the-art model checking.

Instructions that perform memory operations use explicit memory addresses

and indirect addressing, which complicates the task of understanding the overall

behavior of the code with static analysis. To be able to analyze the control flow of a

program available in machine code the boundaries of the low level instructions

with which the program is constructed is to be detected, which can again cause

several problems. When a function is called from different call sites the

determination of the return addresses present further problems. It is very hard to

furnish a general solution that handles all the problems associated with the control

flow analysis of machine code, but with more information and some architecture

specific heuristics the problems become manageable.

The results obtained show that the technique for validation and optimization

is independent of the compiler/assembler used for the software development. The

Chapter 6

Department of Computer Science156

compiler introduced redundancy can also be identified since the proposed approach

is realized through the static analysis of machine code. There is no hardware

overhead for detection of errors; nor any increase in the code size by this approach,

as no signatures or labels are embedded into the program so also no run time

overhead. As the architecture advances only the code sequence to be tested need

to be varied while the methodology remains the same.

Error checking schemes based on codes usually have limited fault coverage.

In this work the coverage of faults depends on the rules governing the validation of

codes. Applying rules to validate the code and thus making code inspection

automatic eliminates intensive manual effort. Finding and eliminating dead code

and inefficient code can help ensure that the software uses the full potential of the

hardware. Since the analysis is performed on the low level language the range of

types of analysis that can now be performed on the code is significantly reduced.

To make the system interactive a disassembler/ decompiler is to be incorporated.

The technique presented in this work achieves optimization of bank

switching instructions without much computational burden by analyzing the

machine code with a comparatively simple algorithm. Analysis of a high level

program cannot easily determine the current memory bank state in partitioned

memory architectures. But with a static analysis of the machine code, the state

transitions at each bank switching instruction can be easily determined. Redundant

data memory bank selection instructions in the intraprocedural sequence, loops and

interprocedural routines in the application program can be eliminated. The relation

matrix assists the code analyzer in identifying the active memory bank associated

with each code in the instruction stream. Unsound techniques may identify some

inaccurate warnings unless proper care is taken for suppression of false warnings.

The suppression of false warning is done by considering the transparent nodes

Conclusions

Cochin University of Science and Technology 157

which is a node without any bank switching instructions and also by considering

the union of the active memory bank associated with the incoming edges of a

subprogram for interprocedural analysis.

Though the technique described is general, the implementation is

architecture oriented, and hence the feasibility study is conducted on PIC16F87X

microcontrollers. This method scales well into large number of memory blocks as

well as other architectures, once appropriate information is available. The

proposed technique can be treated as an extension of conventional debuggers and

can be incorporated as part of the Integrated Development Environments resulting

in improved software quality and reduced debugging time. Automatic analysis of

the machine code with rules proposed here can eliminate many of the iterations like

edit, compile, assemble, link and download needed for debugging.

Instructions managing the program memory pages of processors in an

application program also can be optimized with a similar technique. The evaluation

of compiler optimization in banked memory architecture can be made by switching

on and off the optimization of the compiler and counting the number of elimination

done with this analysis. Using this tool the optimizing performance of different

compilers for partitioned memory architecture can be evaluated. High performance

compilers can integrate this technique for better performance and reduced code

size. With this post pass optimizer the compiler/programmer is deprived of the

complicated analysis for minimal placement of bank selection instructions.

Instruction reordering without affecting the program within the basic blocks

can further improve the bank selection optimization. The execution frequency of a

node (instruction) is not considered, nor is the run time optimizing attempted. The

error location and identification are automatic while error repair needs human

intervention.

Chapter 6

Department of Computer Science158

6.4 New Research Directions

Integrating bug-finding tools into the development process by making them

part of Integrated Development Environments is an important direction for future

research. Methods for identification and suppression of false warnings can be

developed. Improving the scalability of the analysis is another direction for future

research. This work can also be extended as a debugging tool suitable for

SoC/FPGA system development incorporating embedded processors. Improving

the Precision of the analyses by employing both static and run-time checks can be

explored.

Elimination of redundant bank switching instructions can be used for a

processor core based system to select the number of data memory banks and the

size of each bank resulting in the optimized design instead of using a single

scratchpad RAM. Incorporating execution profile for the estimation of run time

optimization offers further scope for research.

6.5 Summary

This thesis proposes a static analyzer for embedded system software, which

is close to a target level testing tool that is portable. Primary goal is to develop

techniques that can be implemented in tools that are useful for embedded software

developers for the early validation and optimization of their code by conducting a

static analysis on the machine code. The focus of this work is to develop methods

that automatically localize faults and thus enhance the debugging process as well as

reduce human interaction time without software or runtime overhead. Analysis is

Conclusions

Cochin University of Science and Technology 159

done on machine code rather than source code because this eliminates the

requirement of knowledge of the semantics of high level language/assembly

language; it is also independent of the compiler, developers get the freedom to

change compilers or compiler versions.

Introduction

A1

APPENDIX- A

QUANTITATIVE ANALYSIS

This thesis concentrates on validation of the embedded system codes by way

of detection and localization of errors if any and identification of the cause of the

error, by conducting a static analysis on machine codes thereby helping the

developer to optimize the system performance.

The work suggests a systematic and structured approach for the formation

of a rule based code validation, error detection and localization scheme; a system

has been developed and realized for a popular microcontroller series PIC16F87X.

As a case study more than one hundred rules have been formulated by detailed

study/analysis and experimenting with the system. Method/scheme for

incorporating more rules for improving the performance and even extending to

other processors and families has also been described in sections 4.1.5, 4.4.1 and

5.2. In addition to this a plausible situation which drastically increases the code size

has been identified and to solve this problem, an algorithm has been realized to

improve/optimize the code by considering the same series of processors as a case

Appendix-A

Department of Computer ScienceA2

study. Table 5.3 shows the analysis summary of the optimization done for sixteen

different programs developed using various compilers.

Efficiency of the proposed system depends on how many rules are applied

to validate the code, the way in which the rules are formulated and codified and

whether the soundness of the rules are checked in all possible execution paths of

the program considered. The total number of rules that can be formulated for a

given family of processors tends to be dynamic. As the processor architecture as

well as the instructions are examined deeper and deeper and by considering the

various ways in which a programmer might use the instructions in a program, more

and more rules are likely to be formulated. Most of the rules formulated in this

work have been codified and tested. Our intent was to demonstrate the feasibility as

well as the efficacy of the proposed mechanisms. The analysis time for a few

hundred program words is typically below one second.

Unlike in code optimization, validation is done based on rules which restrict

the analysis to perform as a qualifier, indicating whether the rule tested is passed or

failed which leads to error detection. If the rules are applied exhaustively the error

detection is 100 percent. Due to the discreteness in the results the accuracy is

implied. The table A.1 shows the results of the analysis using programs developed

for various embedded systems. The tool validated all the working programs but

when stuffed with errors and tested, it pin pointed the errors giving the cause of

each error irrespective of the compiler adopted. Improvement in the quality of the

code has been achieved by optimization. When extended to other family of

microcontrollers, the algorithm remains valid, only the code sequence to be tested

varies.

Quantitative Analysis

Cochin University of Science and Technology A3

Table A.1 Evaluation of programs developed using different compilers/assemblers

Filename Compiler/
assembler
used

Code size
(program
words)

Errors detected,
localized and
identified

bank
switching
codes present

redundant
bank switching
codes

DAS_ok HI-TECH C 84 nil 18 8
DAS _err HI-TECH C 89 5 18 8
DAS_ok mikroC 56 nil 10 2
DAS _err mikroC 56 4 10 2
DAS_ok WIZ-C 136 nil 11 1
DAS _err WIZ-C 136 5 11 1
DAS_ok MPASM 81 nil 9 1
DAS _err MPASM 79 2 9 1
Traffic_ok HI-TECH C 79 nil 12 6
Traffic _err HI-TECH C 74 2 12 6
Traffic_ok mikroC 72 nil 10 2
Traffic _err mikroC 72 2 8 2
Traffic_ok WIZ-C 128 nil 11 1
Traffic _err WIZ-C 134 2 11 1
Traffic_ok MPASM 43 nil 14 6
Traffic _err MPASM 41 2 14 6

Section 2.2.2.5 of the thesis describes the techniques proposed to find bugs

in embedded software with static analysis. The types of bugs detected in the work

presented by Regehr [23, 24] and Venkitaraman [30] are not comparable with the

bugs detected in this work. Bastian Schlich in his thesis [29] describes a new

approach for model checking software for microcontrollers [mc]square, which uses

assembly code as input. The aim is to verify the correctness of the program under

consideration by model checking it with respect to a specification given by a

temporal formula. The errors detected include compiler errors, reentrance

problems, stack overflows, and unintended use of microcontroller features. His

approach needed a special simulator to build the state space whereas the work

presented in this thesis doesn’t require a simulator. It requires tracking a large state

space, which limits the analysis to certain code sizes. But in the proposed

validation tool the program states are identified mainly with machine code patterns

Appendix-A

Department of Computer ScienceA4

which drastically reduce the state space creation contributing to an improved state-

of-the-art model checking.

The analysis done by Fehnker et al. given in [188] checks properties that are

specific for microcontroller programs such as use of reserved registers, interrupt

behavior and timer usage using a source code static analysis tool and a symbolic

model checker as the underlying engine. Finding appropriate CTL formula and

extending the parser to accept a specific ANSI dialect of C are the main challenges

and the work doesn’t present any quantitative analysis. Coding the rules in

propositional logic is easier in the proposed work and can identify more types of

processor specific errors as the compliance checking of each rule results in the

detection of one or more errors. To the best of author’s knowledge no other

architecture oriented approach has been reported for the validation of embedded

software; a comparative performance evaluation in the strict sense therefore

remains out of bounds of this work. Nevertheless salient features of the proposed

tools have been compared in sections 4.5, 5.1 and 6.3.

Introduction

161

REFERENCES
[1] Knight J. C., “Issues of Software Reliability in Medical Systems”,

Proceedings of third annual IEEE Symposium on Computer-Based
Medical Systems, Chapel Hill, USA, IEEE CS Press, New York, pp. 153-
160, 1990.

[2] Kenneth Kennedy, “An Exploration of the Issues Affecting the
Development of Software-Based Safety-Critical Systems”,
http://www.clicktoconvert.com/, 2005.

[3] Gergely Pinter, Model Based Program Synthesis and Runtime Error
Detection for Dependable Embedded Systems, Ph.D Thesis, Budapest
University of Technology and Economics, 2007.

[4] Wilmshurst T. ‘An Introduction to the Design of Small-Scale Embedded
Systems’, Palgrave, ISBN 0-333-92994-2, 2001.

[5] David. E. Simon, ‘An Embedded Software Primer’, Addison Wesley
Longman Inc., USA, 1999.

[6] Arnold S. Berger, ‘Embedded Systems Design: An Introduction to
Processes, Tools, and Techniques’, CMP Books, USA, 2002.

[7] Jean Labrosse et al., ‘Embedded Software: Know It All’, Elsevier Inc., 2008.
[8] P. Riachi, “HI-TECH OCG Compiler Support for Microchip’s PIC10/12/16”,

Embedded Systems Conference, San Jose, California, April 15, 2008.
[9] Sudheendra Hangal and Monica S. Lam, “Tracking down Software Bugs

Using Automatic Anomaly Detection”, International conference on
software Engineering, pp. 291-301, May 2002.

[10] A. Avizienis and J.C. Laprie, "Dependable computing: From concepts to
design diversity," Proe. IEEE, Vol. 74, pp 629-638, May 1986.

http://www.clicktoconvert.com/

References

Department of Computer Science162

[11] Murugesan S., “Dependable Software through Fault Tolerance”, In
Proceedings of the IEEE TENCON, pp. 391-399, 1989.

[12] Mark Weiser, “Programmers Use Slices When Debugging”,
Communications of the ACM, 25(7), pp. 446-452, July 1982.

[13] Cifuentes C. and Fraboulet A., “Intraprocedural Static Slicing of Binary
Executables”, In Int.Conf. on Softw. Maint., pages 188–195, 1997.

[14] Kiss A., Judit J., Lehotai G. and Tibor, G., “Interprocedural Static Slicing
of Binary Executables”, Proceedings of the third IEEE international
workshop on Source Code Analysis and Manipulation, pp. 118-127,
September 2003.

[15] Balakrishnan G. and Reps T., “Analyzing Memory Accesses in x86
Executables”, In ‘Comp.Construct’., Lec. Notes in Comp. Sci., pp. 5–23.
Springer-Verlag, 2004.

[16] Zhang X. and Guptha R., “Whole Execution Traces and Their
Applications”, ACM Transactions on Architecture and Code Optimization,
Vol. 2No. 3, September, pp. 301-334, 2005.

[17] B. Scholz, B. Burgstaller, and J. Xue, “Minimal Placement of Bank
Selection Instructions for Partitioned Memory Architectures,” ACM Trans.
on Embedded Computing Systems (TECS), vol. 7, Issue 2, pp.1-32,
February 2008.

[18] Application notes, AN586, Macros for Page and Bank Switching,
Microchip Technology Inc, http:// www.microchip.com, 1997.

[19] P. Cuenot, B. Tavernier and J.M. Talbot, White Paper: “Embedded
Software Validation and Verification using Virtual Platforms for
Powertrain Applications”, ACES 09.

[20] D. Lioupis , A. Papagiannis , D. Psihogiou, “A systematic approach to
software peripherals for embedded systems”, Proceedings of the ninth
international symposium on Hardware/software codesign, Copenhagen,
Denmark, pp.140-145, April 2001.

[21] Tankut Akgul, Pramote Kuacharoen, Vincent J. Mooney and Vijay K.
Madisetti, “A Debugger RTOS for Embedded Systems”, 27th Euromicro
Conference 2001, A Net Odyssey (euromicro'01), Warsaw, Poland,
September 04 – 06, 2001.

[22] Tom Erkkinen, “Production Code Generation for Safety-Critical
Systems”, SAE world congress International, 2004.

www.microchip.com

References

Cochin University of Science and Technology 163

[23] John Regehr and Alastair Reid, “HOIST: A System for Automatically
Deriving Static Analyzers for Embedded Systems”, Proceedings of the 11th
international conference on Architectural support for programming
languages and operating systems, Boston, MA, USA, October 07-13, 2004.

[24] Regehr J., Reid A. and Webb K., “Eliminating Stack Overflow by
Abstract Interpretation”, ACM Transactions on Embedded Computing
Systems (TECS), Volume 4, No. 4, pages 751-778, November 2005.

[25] NASA report “Independent Verification and Validation Of Embedded
Software”, Marshall Space Flightcenter, Practice No. PD-ED-1228,
NASA, Feb. 1999.

[26] Sterling N., “WARLOCK — a static data race analysis tool”. In Proc.
USENIX Annual Technical Conf., winter, pp. 97–106, 1993.

[27] Ball T., Rajamani S. K., “The SLAM project: Debugging system software via
static analysis”, In Proc. 29th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, pp. 1–3, January 2002.

[28] Flanagan C., Leino K. R. M, Lillibridge M., Nelson G., Saxe J. B., and
Stata R., “Extended static checking for Java”, In Proc. ACM SIGPLAN
Conf. on Programming Language Design and Implementation, Berlin,
Germany, pp. 234–245, June 2002.

[29] Schlich B., Model Checking of Software for Microcontrollers, Dissertation
thesis, RWTH Aachen University, 2008.

[30] Venkitaraman R. and Gupta G., “Static program analysis of embedded
executable assembly code”, in proceedings of the international conference
on Compilers, Architecture and Synthesis for Embedded Systems archive,
pp. 157 – 166, 2004.

[31] Y. Mengting, W. Guoqing, and Y. Chao, “Optimizing Bank Selection
Instructions by Using Shared Memory”, Proceedings of the International
Conference on Embedded Software Systems (ICESS), pp. 447-45, 2008.

[32] M. Li, C. J. Xue, T. Liu and Y. Zhao, “Analysis and Approximation for
Bank Selection Instruction Minimization on Partitioned Memory
Architecture”, ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems (LCTES'10), Stockholm,
Sweden, pp. 1-8, April 13–15, 2010.

[33] Q. Li, Y. He, Y. Chen, W. Wu and W. Xu, “A Heuristic Algorithm for
Optimizing Page Selection Instructions”, Proceedings of the IEEE 2nd
International Conference on Software Technology and Engineering(ICSTE),
pp. v2-143 to v2-148, 2010.

References

Department of Computer Science164

[34] L. Tiantian, M. Li, and C. J. Xue, “Joint Variable Partitioning and Bank
Selection Instruction Optimization on Embedded Systems with Multiple
Memory Banks”, Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC 2010), pp. 113-118, 2010.

[35] Tim Wilmshurst, ‘Designing Embedded Systems with PIC Microcontrollers-
Principles and applications’, Newnes, Elsevier, London, UK, 2007.

[36] R. Kamal, ‘Embedded Systems-Architecture, Programming and Design’,
McGraw-Hill, New Delhi, 2008.

[37] Harry Koehnemann and Timothy Lindquist. “Towards Target-Level
Testing and Debugging Tools for Embedded Software”, In Conference
Proceedings on TRI-Ada, pages 288 - 298. ACM, September 1993.

[38] Rainer Leupers, ‘Code Optimization Techniques for embedded processors-
Methods, Algorithms and Tools’, Kluwer Academic Publishers, 2000.

[39] Aho A.V. and Ullman J.D., ‘Principles of Compiler Design’, Addison-
Wesley/Narosa, New Delhi, 1985.

[40] S. S. Muchnick, ‘Advanced Compiler Design Implementation’. Morgan
Kaufman Publishers, San Francisco, CA, 1997.

[41] A. Sudarsanam and S. Malik, “Memory Bank and Register Allocation in
Software Synthesis for ASIPs”, Int. Conf. on Computer-AidedDesign
(ICCAD), 1995.

[42] M. Saghir, P. Chow and C. Lee, “Exploiting Dual Data-Memory Banks in
DigitalSignal Processors”, 7th International Conference on Architectural
Support forProgramming Languages and Operating Systems, 1996.

[43] David Hovemeyer, William Pugh, “Finding bugs is easy”, ACM
SIGPLAN Notices, volume 39, Issue 12, pp. 92 - 106, December 2004.

[44] William H., Mangione-Smith, Brad Hutchings, David Andrews, André
DeHon, Carl Ebeling, Reiner,et. al., “Seeking Solutions in Configurable
Computing”, IEEE Computer, pp. 38-43, December 1997.

[45] Zainalabedin Navabi, ‘Digital Design and Implementation with Field
Programmable Devices’, Kluwer Academic Publishers, Boston, 2005

[46] Christophe Bobda, ‘Introduction to Reconfigurable Computing-
Architectures, Algorithms, and Applications’, Springer, Netherlands, 2007.

[47] Ville-Veikko Helppi and Colin Walls, “Prevention is Better Than the
Cure:Compiler Run-Time Error Checking” Embedded Systems White
Paper, www.mentor.com/embedded, June 2009.

[48] B. G. Kolkhorst, A. J. Macina, “Developing Error-Free Software”, IEEE
AES Magazine, pp. 25-31, November 1988.

www.mentor.com/embedded

References

Cochin University of Science and Technology 165

[49] Lerie Kane, “Creating High Performance Embedded Applications Through
Compiler Optimizations”, Technology@Intel Magazine, March 2005.

[50] Elliot J. Chikofsky and Burt L. Rubenstein, “CASE: Reliability Engineering
for Information Systems”, IEEE Software, pp. 11-15, March 1988.

[51] Peter S. Gilmour, “How to Select Tools for Microcontroller Software”,
IEEE Spectrum, February 1991.

[52] B. Hailpern and P. Santhanam, “Software Debugging, Testing, and
Verification”, IBM Systems journal, special issue- Software Testing and
Verification, Volume 41, Number 1, 2002.

[53] Kapur S., Sriprasad C., “Software development tools for embedded systems”,
Digital Avionics Systems Conference, 14th DASC Volume, Issue, 5-9
Page(s):331 – 335, Nov 1995.

[54] Jens Palsberg and Mayur Naik, “ILP-Based Resource-Aware
Compilation”, In Ahmed Jerraya and Wayne Wolf, editors,
‘Multiprocessor Systems-on-Chips’, Morgan Kaufmann, 2004.

[55] Zoltan Somogyi, Fergus J. Henderson, and Thomas Conway, “Mercury:
an efficient purely declarative logic programming language”, In
Proceedings of the Australian Computer Science Conference, Glenelg,
Australia, pages 499-512, February 1995.

[56] Chirs Inacio, “Software Fault Tolerance”, 18-849b Dependable Embedded
Systems, Spring 1998,
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/

[57] Stefan Gossens and Mario Dal Cin,” Structural Analysis of Explicit Fault-
Tolerant Programs”, Proceedings of the Eighth IEEE International
Symposium on High Assurance Systems Engineering (HASE’04), 2004.

[58] Zaipeng Xie, Hongyu Sun, Kewal Saluja “A Survey of Software Fault
Tolerance Techniques”; found at http://homepages.cae.wisc.edu/
~ece753/INFO.html, 2008.

[59] A. Avizeinis, "The N-Version Approach to Fault-Tolerant Software",
IEEE Transactions of Software Engineering, Vol. SE-11, No. 12, pp.
1491-1501, December 1985.

[60] D. J. Holding, “Software Fault Tolerance”, IEE Colloquium on Fault
Tolerant Techniques, pp: 6/1-6/9, 11 May 1990.

[61] J. Gray and D. P. Siewiorek, "High-Availability Computer Systems,"
IEEE Computer, 24(9):39-48, September 1991.

[62] http://msdn.microsoft.com/en-us/vstudio/default.aspx, 2009.

mailto:Technology@Intel
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/
http://homepages.cae.wisc.edu/

References

Department of Computer Science166

[63] R. Abreu, Spectrum-based Fault Localization in Embedded Software, Ph
D. thesis, Delft University of Technology, October 2009.

[64] Ehud Y. Shapiro, Algorithmic Program Debugging, PhD thesis, Yale
University, New Haven, Connecticut, 1982.

[65] Scott Renner, “Location of Logical Errors on Pascal Programs with an
Appendix on Implementation Problems in Waterloo PROLOG/C”,
Technical Report UIUCDCS-F-82-896, April 1982.

[66] Peter Fritzson, Tibor Gyimothy, Mariam Kamkar, and Nahid Shahmehri,
“Generalized algorithmic debugging and testing”, In Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and
Implementation, Toronto, Canada, pp. 317–326, June 26–28 1991.

[67] Mireille Ducasse and Anna-Maria Emde, “A Review of Automated
Debugging Systems: Knowledge, Strategies, and Techniques”, In
Proceedings of the 10th International Conference on Software
Engineering, Singapore, pp. 162–171, April 1988.

[68] Rudolph E. Seviora, “Knowledge–based Program Debugging Systems”,
IEEE Software, 4(3):20–32, May 1987.

[69] Mark Weiser, “Program Slicing”, IEEE Transactions on Software
Engineering, SE-10(4), pp. 352-357, July 1984.

[70] Mark Weiser and Jim Lyle, “Experiments on slicing–based debugging
aids”, In Elliot Soloway and Sitharama Iyengar, editors, ‘Empirical
Studies of Programmers’, pages 187–197, Ablex Publishing Corp.,
Norwood, New Jersey, 1986.

[71] James R. Lyle and Mark Weiser, “Automatic program bug location by
program slicing”, In Proceedings of the 2nd International Conference on
Computers and Applications, Beijing, PRC, pp. 877–883, June 1987.

[72] H. Agrawal and J. R. Horgan, “Dynamic program slicing”, In Proceedings
of the ACM SIGPLAN ’90 Conference on Programming Language Design
and Implementation, pages 246–256, White Plains, New York, June 1990.

[73] Bogdan Korel and Janusz Laski, “Dynamic slicing of computer programs”,
Journal of Systems and Software, 13(3):187-195, November 1990.

[74] H. Agrawal, “On Slicing Programs with Jump Statements”, Proceedings
of the ACM SIGPLAN 1994 conference on Programming language design
and implementation, pp. 302–312, 1994.

[75] Leon Osterweil, “Integrating the testing, analysis, and debugging of
programs”, In H. L. Hausen, editor, ‘Software Validation’, pp. 73–102.
Elsevier Science Publishers B. V., North–Holland, 1984.

http://msdn.microsoft.com/en-us/vstudio/default.aspx

References

Cochin University of Science and Technology 167

[76] Lori A. Clarke and Debra J. Richardson, “The application of error–
sensitive testing strategies to debugging” In Proceedings of the
ACMSIGSOFT/SIGPLAN Software Engineering Symposium on High-
Level Debugging, Pacific Grove, California, pp. 45–52, March 1983.

[77] B. Korel and J. Laski’ “STAD - A system for Testing and Debugging:
User Perspective”, In Proceedings of the Second Workshop on Software
Testing, Verification and Analysis, Alberta, Canada, pp. 13-20, July 1988.

[78] Bogdan Korel, “PELAS – program error-locating assistant system”, IEEE
Transactions on Software Engineering, SE-14(9):1253–1260, September
1988.

[79] Bogdan Korel and Janusz Laski, “Algorithmic software fault localization”, In
Proceedings of the Twenty-Fourth Annual Hawaii InternationalConference
on System Sciences, Hawaii, pp. 246–252, January 1991.

[80] James S. Collofello and Larry Cousins, “Towards automatic software fault
location through decision–to–decision path analysis”, In AFIPS
Proceedings of 1987 National Computer Conference, Chicago, Illinois,
pp. 539–544, June 1987.

[81] Pan H. and E. H. Spafford, “Heuristics for Automatic Localization of
Software Faults”, in Proceedings of the 10th Pacific Northwest Software
Quality Conference, pp. 192—209, Oct 1992.

[82] Mayer W., Static and Hybrid Analysis in Model-based Debugging, Ph.D
thesis, School of Computer and Information Science, University of South
Australia, 2007.

[83] P. Zoeteweij, J. Pietersma, R. Abreu, A. Feldman, and A.J.C. van
Gemund, “Automated Fault Diagnosis in Embedded Systems”, In
Proceedings of the 2nd IEEE International Conference on Secure Systems
and Reliability Improvement (SSIRI'08), Yokohama, Japan, pp. 103-110,
July 2008.

[84] Jones J. A., Harrold M. J. and Stasko J. T., “Visualization of test
information to assist fault localization”, In Proceedings of the 22rd
International Conference on Software Engineering (ICSE’02), Orlando,
Florida, USA, ACM Press, pp. 467–477, 2002.

[85] Dallmeier V., Lindig C., and Zeller A., “Lightweight defect localization
for java”, In Proceedings of the 19th European Conference on Object-
Oriented Programming (ECOOP’05), 2005.

[86] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Efficient Debugging
With Slicing and Backtracking”, Software Practice & Experience, 23(6),
pp. 589-616, June 1993.

References

Department of Computer Science168

[87] http://www.ghs.com/products/MULTI_debugger.html, 2009.
[88] S. Horowitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using

Dependence Graphs,” ACM Transactions on Programming Languages
and Systems 12, No. 1, 26–60, January 1990.

[89] Binkley, D. & K. Gallagher, “Program slicing”, Advances in Computers,
Vol. 43, pp. 1-10, 1996.

[90] Karl J. Ottenstein and Linda M. Ottenstein, “The Program Dependence
Graph in Software Development Environments”, SIGPLAN Notices, 19(5),
pp. 177-184, May 1984.

[91] Viravan C., Enhancing Debugging Technology, Ph.D dissertation, Purdue
University, March 1994.

[92] Livadas, P. E. and S. Croll, “Program slicing”, Technical Report SERC-
TR-61-F, Software Engineering Research Centre, October 1992.

[93] Hiralal Agrawal, Towards Automatic Debugging of Computer Programs,
Ph.D thesis, Purdue University, West Lafayette, 1991.

[94] Tip F., “A survey of program slicing techniques”, Journal of Programming
Languages, Volume 3, Issue 3, pp. 121–189, September 1995.

[95] Bogdan Korel and Janusz Laski, “Dynamic program slicing”, Information
Processing Letters, 29, 3, 155-163, 1988.

[96] J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, Y. Lavoie, and N.
Tawbi, “Static Detection of Malicious Code in Executable Programs”, Int.
J. of Req. Eng., 2001.

[97] P. Cousot: Integrating physical systems in the static analysis of embedded
control software. K. Yi (Ed.) : Third Asian Symposium on Programming
Languages and Systems (APLAS), Lecture Notes in Computer Science
(LNCS 3780), pages 135–138, Springer-Verlag, 2005.

[98] S. Johnson Lint, “A C Program Checker”, In UNIX Programmer’s
Supplementary Documents Volume 1 (PS1), April 1986.

[99] D. L. Detlefs, R. M. Leino, G. Nelson and J. B. Saxe, “Extended Static
Checking”, SRC Research Reports SRC-159, Compaq SRC, December
1998.

[100] W. R. Bush, J. D. Pincus and D. J. Sielaff, “A Static Analyzer for Finding
Dynamic Programming Errors”, Software Practice and Experience, Vol.
30, No. 7, pp. 775- 802, 2000.

http://www.ghs.com/products/MULTI_debugger.html

References

Cochin University of Science and Technology 169

[101] D. Engler, B. Chelf, A. Chou and S. Hallem, “Checking System Rules
Using System-Specific, Programmer- Written Compiler Extensions”, In
Proceedings of the Fourth Symposium on Operating System Design and
Implementation, October 2000.

[102] P. Cousot, “Integrating Physical Systems in the Static Analysis of
Embedded Control Software”. K. Yi (Ed.): Third Asian Symposium on
Programming Languages and Systems (APLAS), Lecture Notes in
Computer Science (LNCS 3780), pp. 135–138, Springer-Verlag, 2005.

[103] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min´e, D. Monniaux, and
X. Rival, “The Astr’ee Analyser”, In M. Sagiv, editor, Proc. 14th
ESOP’2005, Edinburg, UK, volume 3444 of LNCS, Springer, pages 21–
30, Apr. 2-10, 2005.

[104] P. Baudin, A. Pacalet, J. Raguideau, D. Schoen and N. Williams, “Caveat:
A Tool for Software Validation”, Proceedings of the International
Conference on Dependable Systems and Networks, DSN, 2002.

[105] N. Rutar, C. Almazan, and J. S. Foster, “A Comparison of Bug Finding
Tools for Java”, In Proceedings of the 15th IEEE International Symposium
on Software Reliability Engineering, Saint-Malo, France, November 2004.

[106] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns”, In Proceedings of the 12th USENIX Security
Symposium, Washington DC, USA, pp. 169-186, August 4-8, 2003.

[107] G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum,
“Codesurfer/x86-A Platform for Analyzing X86 Executables” In R. Bodík,
editor, CC, volume 3443 of Lecture Notes in Computer Science, Springer,
pp. 250—254, 2005.

[108] Intel 64 and IA-32 Architectures Software Developer’s Manuals, vol. 2B,
2006.

[109] C. Cifuentes and K. Gough, “Decompilation of Binary Programs”,
Software Practice & Experience, 25(7), pp. 811-829, July 1995.

[110] C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly To High-Level
Language Translation”, In Int. Conf. on Softw. Maint., pp. 228–237, 1998.

[111] W.C. Hsieh, D. Engler, and G. Back, “Reverse-Engineering Instruction
Encodings”, In Proceedings of the USENIX Annual Technical Conference,
Boston, Mass, pp. 133-146, June 2001.

[112] J.T. Giffin, S. Jha, and B.P. Miller, “Detecting manipulated remote call
streams”, In Proceedings of 11th USENIX Security Symposium, 2002.

References

Department of Computer Science170

[113] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly”, In Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS),
Washington, DC, pp. 290-299, October 2003.

[114] Christopher Kruegel, William Robertson, Fredrik Valeur and Giovanni
Vigna, “Static Disassembly of Obfuscated Binaries”, In Proc. of the 13th

USENIX Security Symposium, 2004.
[115] R. Wang, Flash In The Pan? Virus Bulletin, Virus Analysis Library, July

1998.
[116] Goloubeva O. Rebaudengo M.S., Reorda M.S., and Violante M., “Improved

Software-based Processor Control-flow Errors Detection Technique”, In
Reliability and maintainability symposium, pp. 583–589, January 2005.

[117] N. Leveson and C.S.Turner, “An Investigation of the Therac−25
Accidents”, IEEE Computer, Vol. 25, No. 7, July 1993.

[118] J. R. Larus, “Whole Program Paths”, In ACM SIGPLAN Conference on
Programming Language Design and Implementation, Atlanta, GA. New
York, NY: ACM Press, pp. 259–269, 1999.

[119] T. M. Chilimbi, “Efficient Representations and Abstractions for Quantifying
and Exploiting Data Reference Locality”, In ACM SIGPLAN Conference on
Programming Language Design and Implementation, Snowbird, UT. New
York, NY: ACM Press, pp. 191–202, 2001.

[120] M. Burtscher and M. Jeeradit, “Compressing Extended Programtraces Using
Value Predictors”, In International Conference on Parallel Architectures and
Compilation Techniques, Washington, DC, IEEE Computer Society, pp.
159–69, 2003.

[121] X. Zhang and R.Gupta, “Cost Effective Dynamic Program Slicing’, In
ACMSIGPLAN Conference on Programming Language Design and
Implementation, Washington, DC. New York, NY: ACM Press, pp. 94–
106, 2004.

[122] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-Based Next Trace
Prediction”, In IEEE/ACM International Symposium on Microarchitecture,
Washington, DC, IEEE Computer Society, pp. 14–23,1997.

[123] R. Gupta, D. Berson, and J. Z. Fang, Path profile guided partial redundancy
elimination using speculation”, In IEEE International Conference on
Computer Languages, Chicago, IL, Washington, DC, IEEE Computer
Society, pp. 230–39, 1998.

References

Cochin University of Science and Technology 171

[124] B. Calder, P. Feller, and A. Eustace, “Value Profiling”, In IEEE/ACM
International Symposium on Microarchitecture, Washington, DC, IEEE
Computer Society, pp. 259–69.1997.

[125] J. Yang and R. Gupta, “Frequent Value Locality and Its Applications”,
ACM Transactions on Embedded Computing Systems, New York, NY:
ACM Press, 1(1):79–105. 2002.

[126] T. M. Chilimbi and M. Hirzel, “Dynamic hot data stream prefetching for
general-purpose programs”, In ACM SIGPLAN Conference on
Programming Language Design and Implementation, New York, NY:
ACM Press, pp. 199–209. 2002.

[127] C. B. Zilles and G. Sohi, “Understanding The Backward Slices Of
Performance Degrading Instructions”, In ACM/IEEE 27th International
Symposium on Computer Architecture, New York, NY: ACM Press, pp.
172–81, 2000.

[128] Y. Sazeides, “Instruction-Isomorphism In Program Execution”, Journal of
Instruction Level Parallelism, 5:1–22, 2003.

[129] Glenford J. Myers, ‘The Art of Software Testing’, John Wiley & Sons Inc.,
1979.

[130] Child Jeffrey, “32-bit Emulators Struggle with Processor Complexities”,
Computer Design, May 1,1991.

[131] Ted Bapty, “Embedded System Validation for Polymorphous Computing
Architectures”, white paper, Institute for Software Integrated Systems,
Vanderbilt University, 2001.

[132] Colin Walls, “Debugging Embedded Systems with a Real-Time Operating
System”, ECE Magazine, pp 35-38, June 2007, http://www.embedded-
control-europe.com/ece_magazine.

[133] Christine Peng, “On-Chip System Protection Basics for HCS08
Microcontrollers”, Freescale Semiconductor, Application Note AN3305, 2007.

[134] DF6811CPU, 8-bit FAST Microcontrollers Family ver 2.17, Digital Core
Design, http://www.DigitalCoreDesign.com, 2009.

[135] Leontie, E., Bloom, G., Gelbart, O., Narahari, B. and Simha, R., “A
Compiler-Hardware Technique for Protecting Against Buffer Overflow
Attacks”, Journal of Information Assurance and Security, Vol.5, pp. 001-
008, 2010.

[136] Joint Test Action Group (JTAG) web page, http://www.jtag.com/.
[137] Steve Furber, ‘ARM system-on-chip architecture’, Addison-Wesley,

March 2000.

http://www.embedded-
http://www.DigitalCoreDesign.com
http://www.jtag.com/

References

Department of Computer Science172

[138] E. Miller and W.E. Howden, “Software Testing and Validation
Techniques”, IEEE Computer Society Press, 1981.

[139] Tom Erkkinen, “Safety-Critical Software Development Using Automatic
Production Code Generation”, The MathWorks, Inc., 2007.

[140] Brett Murphy, Amory Wakefield, and Jon Friedman, “Best Practices for
Verification, Validation, and Test in Model-Based Design”, 2008-01-
1469, Technical notes, The MathWorks, Inc., 2008.

[141] A. Pnueli, M. Siegel, O. Shtrichman, “The Code Validation Tool (CVT)--
Automatic Verification of Code Generated from Synchronous Languages”,
in: B. Steffen (Ed.), Proc. of the Software Tools for Technology Transfer
(STTT'98), 1998.

[142] IAR visualSTATE-State Machine Design Automation for Embedded
Systems, www.phaedsys.org/principals/iar/iardata/visualstatre.pdf., 2009.

[143] István Majzik, “Concurrent Error Detection Using Watchdog Processors”,
Fault tolerant computing systems, volume 283, informatik, 1996.

[144] Ragel Roshan G. and Parameswaran S. “ Hardware Assisted Pre-emptive
Control Flow Checking for Embedded Processors to Improve Reliability”,
Proceedings of the 4th IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, (CODES+ISSS '06),
Seoul, Digital Object Identifier: 10.1145/1176254.1176280, pp. 100-105,
22-25 October 2006.

[145] S. S. Yau and F. Chen, “An approach to concurrent control flow
checking”, IEEE Trans. Software Eng., 6(2), pp.126–137, 1980.

[146] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, “Soft-
Error Detection Using Control Flow Assertions”, Proc. Defect and Fault
Tolerance in VLSI Systems, pp. 581 – 588, 2003.

[147] A.Mahmood and E. J.McCluskey, “Concurrent error detection using
watchdog processors-a survey”, IEEE Trans. Computers, 37(2):160–174,
February 1988.

[148] N.R. Saxena, E.J. McCluskey, “Control Flow Checking Using Watchdog
Assists and Extended-Precision Checksums”, IEEE Transactions on
Computers, Vol. 39, No. 4, pp. 554-559Apr. 1990.

[149] J.P. Shen and M.A. Schuette, “On-line Self-Monitoring Using Signatured
Instruction Streams”, Proc. ITC’83, pp. 275-282, 1983.

[150] Michael A. Schuette and John Paul Shen, “Processor control flow
monitoring using signature instruction streams”, IEEE Trans.on
Computers, vol. C-36, No 3, March 1987, pp.264-275.

www.phaedsys.org/principals/iar/iardata/visualstatre.pdf

References

Cochin University of Science and Technology 173

[151] Janusz Sosnowski, “Detection of control flow errors using signature and
checking instructions”, IEEE International Test Conference, pp. 81–88,
1988.

[152] N. Oh, P.P. Shirvani, E.J. McCluskey, “Control-Flow Checking by
Software Signatures”, IEEE Transactions on Reliability, Vol. 51, No. 2,
pp. 111-122, March 2002.

[153] R. van Engelen, D. Whalley, and X. Yuan, “Automatic validation of code-
improving transformations on lowlevel program representations”, Science
of Computer Programming, 52:257–280, Aug. 2004

[154] Heiko Falk; Jens Wagner; Andre Schaefer, “Use of a Bit-true Data Flow
Analysis for Processor-Specific Source Code Optimization”, Proceedings
of the IEEE/ACM/IFIP Workshop on Embedded Systems for Real Time
Multimedia, Digital Object Identifier 10.1109/ ESTMED. 2006. 321286,
pp. 133 – 138, Oct. 2006.

[155] S. Steinke, L.Wehmeyer, B.-S. Lee, and P. Marwedel, “Assigning
Program and Data Objects to Scratchpad for Energy Reduction”, Design,
Automation and Test in Europe (DATE), pp. 409–417, 2002.

[156] L. Wehmeyer, U. Helmig and P. Marwedel, “Compiler-optimized usage of
partitioned memories”, In Proceedings of the 3rd workshop on Memory
performance issues: in conjunction with the 31st international symposium
on computer architecture, Munich, Germany, pp. 114-120, June 2004,
DOI=10.1145/1054943.1054959.

[157] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh, “Dynamic Management of Scratch-Pad Memory Space”, In
Proceedings of the 2001 ACM Design Automation Conference(DAC), June
2001.

[158] O. Avissar and R. Barua. “An Optimal Memory Allocation Scheme for
Scratch-Pad-Based Embedded Systems”, ACM Transactions on
Embedded Computing Systems, Vol.1(1), pp. 6–26, November 2002.

[159] J. Cho, Y. Paek, and D. Whalley, “Fast Memory Bank Assignment for
Fixed-Point Digital Signal Processors”, ACM Transactions on Design
Automation of Electronic Systems, vol.9(1), pp.52-74, 2004.

[160] M. A. R. Saghir, P. Chow, and C. G. Lee, “ Exploiting DualData-Memory
Banks in Digital Signal Processors”, In Proceedings of the SIGPLAN’96
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 234-243, 1996.

References

Department of Computer Science174

[161] Q. Zhuge, B. Xiao, and E. H. M. Sha “Exploring Variable Partitioning for
Dual Data-memory Bank Processors”, In Proceedings of the 34th
International Symposium on Microarchitecture, pp. 42–55, 2001.

[162] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of Scratch-
pad memory in embedded processor applications”, In European Design
and Test Conference, March 1997.

[163] Darren Lee Buttle, Verification of Compiled Code, thesis, University of
York, January 2001.

[164] Robert van Engelen, David Whalley, and Xin Yuan, “ Validation of code-
improving transformations for embedded systems”, In proceedings of the
8th ACM Symposium on Applied Computing SAC 2003, Melbourne
Florida, pp. 684–691, March 2003.

[165] Microchip Technology Inc. “PICmicro mid-range MCU family reference
manual,” 1997.

[166] Microchip Technology Inc. Data sheet, PIC16F87X,
http://www.microchip.com.,1999.

[167] T. Sridhar and S.M. Thatte, “Concurrent checking of program flow in
VLSI processors,” Proceedings of the 12th Int. Test Conf., pp. 191-199,
November 1982.

[168] M.S. Hecht. ‘Flow Analysis of Computer Programs’. Elsevier Computer
Science Library: Programming Language Series. North-Holland
Publishing Co., 1977.

[169] J. P. Tremblay and R. Manohar, ‘Discrete Mathematical Structures with
Applications to Computer Science’, McGraw-Hill, Singapore, 1987.

[170] Noel Jerke, ‘Visual Basic 6: the complete Reference’, Tata McGraw-Hill,
New Delhi, India, 2000.

[171] Mariamma Chacko, K. Paulose Jacob, C.S. Sridhar, K.G. Balakrishnan,
“A Novel Clustering Approach to Support Software Fault Tolerance”, An
International Journal of Information Science and Technology, vol.3, No.4,
July 1994.

[172] Flunn M.J., “Very High Speed Computing Systems”, Proc. IEEE, Vol. 54,
pp. 1901-1909, 1966.

[173] MCS-80/85 family user’s manual, Intel corporation, Santaclara, CA-
95051, 1986.

[174] Willam R. Simpson and John W. Shepherd, “System Complexity and
Integrated Diagnostics”, IEEE Design and Test of Computers, pp. 16-30,
Sept. 1991.

http://www.microchip.com

References

Cochin University of Science and Technology 175

[175] Clarke E. M. and Emerson E. A., “Design and synthesis of
synchronization skeletons using branching time temporal logic”, In ‘Logic
of Programs’, volume 131 of Lecture Notes in Computer Science,
Springer, 1982.

[176] Ball T., Larus J.R., “Efficient path profiling”, In Proc. IEEE/ACM Int.
Symposium on Microarchitecture, Paris, pp. 46-57, 1996.

[177] David M. Alter, “Online Stack Overflow Detection on the TMS320C28x
DSP”, Texas Instruments, Application Report, May 2003.

[178] Edited by Y.N. Srikant and Priti Shankar, ‘The Compiler Design Handbook-
Optimization and Machine code Generation’, CRC Press, 2008.

[179] Freescale. http://www.freescale.com.
[180] Nazhandali L., Minuth M., Zhai B., Olson J., Austin T., and Blaauw D., “A

second generation sensor network processor with application-driven
memory optimizations and out-of order execution”, In Proceedings of the
international Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES’05), ACM Press, New York, pp. 249–256,
2005.

[181] Hempstead M., Wei G., and Brooks D., “Architecture and circuit
techniques for low throughput, energy-constrained systems across
technology generations”, In Proceedings of the International Conference
on Compilers, Architectures and Synthesis for Embedded Systems
(CASES’06). ACM Press, New York, pp. 368–378, 2006.

[182] Data Sheet, PIC18F2455/2550/4455/4550, Microchip Technology Inc.,
2004.

[183] http://www.microchip.com.
[184] Ryser H. J., "Combinatorial Properties of Matrices of Zeros and Ones."

Canad. J. Math, vol.9, pp. 371-377., 1957.
[185] Ryser H.J., Traces of matrices of zeros and ones, Canad. J. Math. vol.12,

pp. 463–476, 1960.
[186] Alexander Barvinok, “On The Number Of Matrices and a Random Matrix

With Prescribed Row and Column Sums and 0-1 Entries, Journal of
Advances in Mathematics - ADVAN MATH , vol. 224, no. 1, pp. 316-
339, 2010.

[187] S. E. Wright, “Integer matrices with constraints on leading partial row and
column sums”, Elsevier journal of Discrete Applied Mathematics, Vol.
158, pp. 1838-1847, 2010, doi:10.1016/j.dam.2010.06.010.

http://www.freescale.com
http://www.microchip.com

References

Department of Computer Science176

[188] Fehnker A., Huuck R., Schlich B. and Tapp M. “Automatic Bug Detection
in Microcontroller Software by Static Program Analysis”, SOFSEM 2009,
Proceedings of the 35th Conference on Current Trends in Theory and
Practice of Computer Science, Czech Republic, January 2009, pp. 267-
278.

Introduction

177

LIST OF PUBLICATIONS
1. Mariamma Chacko and K. Poulose Jacob, “Validation of Microcontroller

Codes: An Architecture Oriented Approach”, accepted for publication in
Emerald International Journal of Intelligent Computing and Cybernetics,
ISSN: 1756-378X, 2011.

2. Mariamma Chacko and K. Poulose Jacob, “A Compiler Integrated
Assistance for Optimum Data Allocation in Banked Memory Embedded
Processors”, accepted for publication in SERSC International Journal
of Software Engineering and Its Applications, ISSN: 1738-9984, 2011.

3. Mariamma Chacko and K. Poulose Jacob, “Optimization of Bank Switching
Instructions in Microcontrollers having Partitioned Memory Architectures”,
CiiT International journal of Software Engineering and Technology, Vol.1,
No.3, pp. 120-126, June 2009.

4. Mariamma Chacko and Poulose Jacob, “Validation of Embedded Software
through Static Analysis of Machine Codes”, in Proc. of IEEE International
Advance Computing Conference, Patiala, India, , pp. 488-493, March 2009.

5. Mariamma Chacko and Poulose Jacob , “Optimization of Bank Switching
Instructions in Embedded Systems through Static Analysis of Machine
Codes”, in Proc. of IEEE International Advance Computing Conference,
Patiala, India, pp.548-552, March 2009.

6. Mariamma Chacko, James Kurian , P.R.S. Pillai and Poulose Jacob K, “An
On Board Operation Support Information System and Data Logger for Sea
Going Vessels with an Ethernet Interface”, Journal of Shipstechnic, Vol
XVIII, pp. 85-94, 2002.

List of Publications

Department of Computer Science178

7. Mariamma Chacko, James Kurian and Paulose Jacob K., “Design and
Implementation of a Microcontroller Based Onboard Cockpit Display and
Data Logger for Sea Going Small Crafts”, Proceedings of the International
Conference on Ship and Marine Technology, p123-130, December 2000.

8. Mariamma Chacko, K. Paulose Jacob, C.S. Sridhar and K.G. Balakrishnan,
“A Novel Clustering Approach to Support Software Fault Tolerance”,
International Journal of Information Science and Technology, vol.3, No.4,
July 1994.

9. K.G. Menon, Mariamma Chacko, Babu P. Anto and C.S. Sridhar , “A
Microprocessor based position controller for a Laser optical grating”,
TENCON’89 4th IEEE region 10, International Conference, 1989.

10. Leena Thomas, Mariamma Chacko, Babu P. Anto and C.S. Sridhar,
“Hardware Implementation of FFT-8086 based system”, TENCON’89 4th

IEEE region 10, International Conference, 1989.
11. Rajkumar K., Jayakrishnan V., Lorance K.M., Mariamma Chacko, Babu P.

Anto and C.S. Sridhar, “A Universal Fully Programmable 16-Channel data
acquisition system”, National symposium on Instrumentation(NSI-13),
1988.

Index

179

Index

Abstract interpretation 40
A-Cluster 82, 83, 85, 86
active memory bank 14, 98, 101, 123,

127, 135, 136, 139, 152, 153, 156
ADC 18, 94, 95, 100, 102, 107, 108,

109, 114, 118, 121, 139, 140, 148,
150

Address profiles 49
addressing modes 87
algorithm 13, 14, 31, 32, 36, 67, 75,

76, 82, 86, 87, 99, 116, 119, 122,
123, 125, 131, 132, 133, 135, 139,
140, 142, 143, 150, 152, 153, 154,
156

antecedent 74, 91, 95, 108
architecture 2, 10, 14, 22, 25, 47, 53,

56, 57, 66, 68, 71, 77, 80, 89, 97,
110, 118, 120, 122, 127, 128, 143,
151, 152, 155, 156, 157

Artificial intelligence 29
ASIC 13
assembler6, 26, 27, 35, 53, 61, 68, 75,

80, 82, 89, 91, 93, 96, 107, 109,
111, 115, 136, 139, 140, 155

assembly language 2, 5, 11, 15, 21,
25, 26, 43, 47, 67, 94, 112, 123,
159

bank selection 4, 14, 67, 101, 122,
123, 124, 125, 126, 127, 128, 132,
135, 154, 156, 157

Bank switching 4, 129
banked memories 4, 67, 124
B-Clusters 83
bidirectional ports 101, 114
binary executables 38, 45, 69
bugs 3, 5, 18, 31, 33, 35, 37, 39, 40,

41, 42, 47, 48, 57, 96, 99, 109, 118,
153, 155

CASE 22
C-Clusters 84
CFG14, 59, 67, 71, 72, 73, 74, 75, 76,

78, 82, 87, 89, 90, 93, 94, 95, 96,
120, 123, 132, 133, 134, 135, 136,
137, 145, 148, 150, 153

CISC 45, 87
clustering 81, 82
code optimization 2, 3, 6, 11, 62, 63,

68, 81, 122, 127, 132, 152
code portability 25, 26
code redundancy 3, 80, 147
code sequence 14, 73, 74, 75, 80, 82,

90, 93, 95, 106, 109, 112, 116, 120,
129, 131, 132, 148, 153, 156

code validation 2, 5, 13, 14, 80, 81,
88, 90, 94, 99, 110, 111, 117, 118,
120, 151, 152, 153, 154

Codification 71, 73, 79, 80, 90, 153
compilation 11, 12, 23, 36, 53, 61, 68,

69, 125
compiler 2, 4, 7, 11, 15, 22, 26, 27,

37, 39, 40, 44, 48, 57, 60, 62, 63,
64, 65, 66, 68, 75, 80, 81, 87, 89,
96, 98, 116, 119, 121, 122, 125,
131, 139, 141, 143, 146, 148, 154,
155, 157, 159

compliance 74, 80, 90, 95, 152
consequence 53, 95
constant folding 11, 63
Constraints 1, 5, 17, 18
control flow13, 26, 36, 39, 43, 44, 45,

49, 58, 59, 60, 69, 71, 72, 73, 80,
87, 88, 89, 93, 117, 133, 148, 150,
155

conversion time 118
CPU 12, 14, 18, 53, 77, 81, 82, 101,

122, 127, 153

Index

Department of Computer Science180

cross compiler 6, 20, 27, 53, 81
data allocation76, 122, 143, 144, 145,

146, 147, 150
data diversity 28, 29
dataflow analysis 5, 48
deadlock 73, 109, 116, 117
debugging 2, 3, 6, 10, 12, 13, 15, 20,

23, 24, 26, 30, 31, 32, 33, 34, 35,
36, 37, 38, 50, 51, 52, 54, 55, 56,
58, 69, 75, 79, 82, 86, 99, 107, 118,
120, 151, 152, 153, 154, 155, 157,
158

decompilation 44
dependence profile 49
design diversity 28, 29
desktop systems 2
destination register 82, 101, 112
disassembler 38, 43, 44, 45, 46, 80,

93, 118, 120, 156
discrepancy 81, 106, 109, 110, 118,

153
discrete function 129
Dynamic techniques 155
efficient code 11, 63, 144, 148
elimination 9, 11, 14, 63, 66, 90, 119,

122, 157
embedded processor 2, 11, 25, 27, 63,

68, 95, 125, 158
embedded software 1, 5, 6, 9, 10, 13,

14, 15, 18, 20, 21, 23, 34, 41, 47,
48, 50, 51, 69, 79, 80, 122, 132,
153, 158

embedded systems 1, 2, 5, 11, 12, 13,
17, 18, 25, 26, 27, 58, 59, 69, 79,
80, 97, 121, 122, 139, 148, 152

entry nodes 150
error localization 151
exception handling 52
executables 3, 13, 38, 42, 43, 47, 90,

148

fault avoidance 58
fault correction. 99
fault diagnosis 31, 99, 109, 120
fault localization 13, 14, 30, 32, 34,

50, 99, 120
fault removal 58
fault tolerance 3, 28, 58
feasibility 55, 71, 97, 120, 126, 153,

154, 157
flag 81, 83, 84, 85, 86, 101, 111, 112,

148
FLASH program memory 97
flow array 90, 150
FPGA 12, 158
Function inlining 11, 62
functional diversity 28
governing rules 78, 100, 101, 109,

117, 152, 153
hex code 80, 92, 107, 114, 129
high level language 3, 5, 15, 21, 26,

38, 47, 107, 159
HI-TECH C 107, 115, 139
host 2, 7, 20, 22, 27, 30, 52, 53, 54,

55, 56, 80, 152
IDE 7, 31
illegal opcodes 52, 81, 110
in circuit debuggers 5
in-circuit emulator 6, 20, 51, 54, 55
indirect addressing 43, 101, 113, 155
initial node 89, 95, 134
instruction set 30, 61, 64, 73, 81, 83,

87, 90, 98, 100, 116, 126, 153
instruction stream 14, 59, 74, 82, 87,

98, 99, 100, 102, 109, 120, 151,
152, 154, 156

integrated peripheral 73, 81, 97, 120,
153

Intel hex file 14, 72, 89, 90, 96, 107,
120, 132, 143

Introduction

Cochin University of Science and Technology 181

interprocedural routines 14, 123, 135,
150, 152, 154, 156

interrupt vector 97
intraprocedural routines 76, 134, 136
invalid sequence 93
JTAG 13, 30, 51, 55, 56
knowledge base 82, 85, 99
leaf nodes 88, 135, 138, 150
linear scan 43, 76, 106, 134, 148
load-store architecture 87
logic analyzer 13, 54, 55
logic errors 12
loop unrolling 11, 62
loops 14, 123, 135, 148, 150, 152,

154, 156
malfunctioning 69, 71, 81, 155
malicious code 43, 44, 45, 47, 48
memory bank 11, 14, 67, 73, 75, 76,

98, 111, 122, 123, 124, 126, 127,
128, 129, 130, 131, 132, 134, 135,
141, 142, 143, 144, 146, 150, 152,
154, 156, 158

merge node 72, 74, 76, 88, 89, 90, 93,
94, 95, 132, 134, 148, 150

Microchip Technology 94, 97, 139
mikroC 107, 115, 139, 140
model checking 5, 119, 152, 155
Opcodes 109, 110
optimization 2, 4, 5, 8, 9, 11, 13, 14,

15, 21, 27, 37, 49, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 71, 76, 78,
87, 121, 122, 123, 126, 128, 139,
141, 143, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158

optimum data allocation 15, 76, 143,
144, 146, 152, 154

orthogonal 98
oscilloscope 53
partitioned memory architecture 11,

13, 122, 150, 154, 156, 157

path quantifier 92
permutation 76, 143, 144
precedes 86, 91, 93, 105
premises 74, 91, 92
Previously Activated Memory Bank

75, 127, 129, 130
program analysis 5, 24, 40, 42
program counter 97
program dependence graph 36, 87
program graph 72, 88, 89, 90, 93, 94,

107, 132, 136, 149
Program slicing 31, 36, 43
programming languages 18, 28, 40,

64, 76
propositional logic 74, 80, 82, 91, 95
PROTEUS VSM 77, 139, 141
prototype 6, 14, 31, 33, 44, 47, 74, 82,

99, 120, 150
real-time 9, 10, 11, 21, 22, 41, 54
reasoning 33, 34, 50, 82, 100
recovery blocks 28
redundant codes 4, 15, 119, 122, 125,

135, 136, 139, 141, 144, 145, 146,
148, 149, 150

registers11, 51, 53, 56, 60, 63, 64, 73,
75, 87, 95, 97, 98, 99, 101, 102,
109, 110, 111, 124, 127, 128, 143,
144, 146, 147, 148

relation matrix 14, 75, 78, 122, 126,
129, 131, 132, 139, 148, 150, 152,
153, 156

reset vector 97
reverse-engineering 44
RISC 2, 13, 14, 45, 71, 79, 87, 97,

110, 116, 119, 120, 128, 143, 151,
153

rules of inferences74, 80, 81, 90, 119,
153, 155

run time 80, 81, 119, 141, 156, 157,
158

Index

Department of Computer Science182

screenshot 136
semantic errors 81
simulators 6, 8, 23, 27, 110
sleep 100, 102, 103, 105, 106, 107,

108
snapshot 31, 99
software development 3, 10, 13, 17,

20, 21, 23, 24, 25, 26, 34, 47, 51,
80, 81, 121, 122, 155

Software fault tolerance 28
software testing 10, 13, 20, 53, 69
Soundness 74, 92
source code 3, 6, 11, 15, 34, 35, 39,

42, 44, 47, 60, 61, 64, 66, 68, 72,
80, 81, 87, 98, 146, 159

source node address 107, 136
Source-level Debugger 23
Special Function Registers 97, 127,

128
STAD 32
state space 93, 98, 119, 152, 155
static analysis 3, 6, 9, 13, 15, 38, 39,

40, 41, 42, 43, 45, 47, 48, 69, 75,
78, 80, 118, 122, 125, 127, 132,
148, 149, 151, 152, 153, 154, 155,
156, 158

static slicing 39, 90
status flags 83
status register 97, 111, 127, 128
stipulated 15, 74, 90, 91, 95
subprogram 36, 73, 76, 88, 89, 90, 93,

95, 132, 134, 135, 136, 137, 138,
157

succeeds 91, 93
symbolic debugger 31, 35
System Dependence Graph 36
system integration 52, 57
System on Chip 1, 12
target processor 4, 19, 27, 51, 53, 55,

61, 71, 72, 73, 74, 80, 82, 90, 91,

94, 97, 98, 106, 119, 120, 126, 131,
141, 144, 153, 154, 155

temporal logic 92, 110
Testing and debugging 1, 34, 79
time critical task 2
tool chain 96
transparent nodes 76, 135, 156
tree 31, 46, 67, 73, 88, 132
universal set 91
validation9, 10, 14, 15, 23, 24, 47, 57,

58, 68, 71, 74, 75, 76, 78, 79, 80,
87, 93, 96, 100, 107, 109, 116, 119,
120, 151, 152, 153, 155, 156, 158

Value profile 49
Variable Partitioning 121, 141
verification 3, 21, 23, 24, 28, 33, 44,

46, 57, 58, 81, 119
vertices 82, 87
VHDL 12
VHSIC 12
Visual Basic 14, 75, 76, 107, 116,

136, 149
warnings 76, 93, 107, 111, 117, 123,

134, 135, 137, 139, 156, 158

Introduction

161

	TITLE
	CERTIFICATE
	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	APPENDIX-A
	REFERENCES
	PUBLICATIONS
	INDEX

