MEAN SQUARED RESIDUE BASED
BICLUSTERING ALGORITHMS
FOR THE ANALYSIS OF
GENE EXPRESSION DATA

Thesis submitted by
SHYAMA DAS

In partial fulfilment of the requirements
For the award of the degree of

DOCTOR OF PHILOSOPHY
UNDER THE FACULTY OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY
KOCHI - 682 022
INDIA

July 2011



evlaration

I hereby declare that the work presented in this thesis entitled
“Mean Squared Residue Based Biclustering Algorithms for the

Analysis of Gene Expression Data” is based on the original research
work carried out by me in the Department of Computer Science, Cochin
University of Science and Technology, Kochi — 682022, under the
supervision and guidance of Dr. Sumam Mary Idicula, Professor,
Department of Computer Science, Cochin University of Science and
Technology, Kochi - 682022. The results presented in this thesis or parts
of it have not been presented for the award of any other degree.

Kochi - 682022 SHYAMA DAS
July, 2011 Research Scholar



@erﬁﬁmﬁe

This is to certify that the thesis entitled “Mean Squared Residue
Based Biclustering Algorithms for the Analysis of Gene Expression
Data” is a bonafide record of the research work carried out by
Ms. Shyama Das in the Department of Computer Science, Cochin
University of Science and Technology, Kochi — 682022, under my

supervision and Guidance.

Kochi - 682022 Dr. Sumam Mary Idicula

July, 2011 Supervising Guide, Professor,
Department of Computer Science
Cochin University of Science and
Technology, Kochi-682022, Kerala.



Dedicated Te
My Leord and Savieur
Jesus Christ



cﬂ%@now&dgemem;

The author is deeply grateful to many who provided the support in
carrying out the research work and the preparation of the thesis. The author
offers foremost thanks and supreme glory to the God Almighty for providing the

wisdom and health towards the completion of this research work,

The author expresses her sincere gratitude and appreciation to the
supervising guide Dr.Sumam Mary Idicula, Professor, Department of Computer
Science, Cochin University of Science and Technology, for her constant
encouragement, support and guidance. In many difficult occasions she rendered
the much needed mental support. Her strenuous effort in reviewing the research

papers and the thesis, and her creative suggestions are highly appreciated.

The author expresses her profound feelings of gratitude and respect to Dr.
K. Poulose Jacob, Professor and Head, Department of Computer Science, Cochin
University of Science and Technology, for his constant encouragement and
valuable suggestions. His sincerity, calmness and supportive attitude enabled the

successful completion of this work,

The author is grateful to Dr.S.N.Omkar, Professor, Department of
Aeorospace Engineering, 11Sc, Banglore, for introducing the area of Biologically
Inspired Computing, through a short term course. The author also owes gratitude
to Senthil Kumar, Research Scholar under the supervision of Or.S.N.OmRar for
his technical guidance and help. The author is also thankful to Dr. Mathew



Jacob. T, Professor, Department of Computer Science, 11Sc Banglore, for his
suggestions. The author is also indebted to the Librarian and the students
Pratheeksha, Lokesh, Saraswathy, Gilesh M.P of 11Sc Banglore for their help in

various ways to conduct the literature survey.

The author’s deepest gratitude and respect also goes to her husband Dr. K,
George Joseph for his suggestions, advice and all the mental support. Without his
help the completion of this work would not have been possible. The author is
indebted to her children Jerusha and Jovana, who beared with her in spite of the
lack, of proper attention and care to them during the research work, At this time
the author remembers her dear son Joshua. Inspite of the pain in heart due to his

absence, Lord Jesus Christ strenghned her to complete the research worR,

The author is very grateful to Dr.V.P.Devassia, Dr. Rekha K James, and
Dr. Sheena Mathew for their cooperation, support and suggestions. The author is
also grateful to Sudheer A.P., formerly colleque in the College of Engineering,
Chengannur for his valuable suggestions regarding the research. The author is
deeply indebted to her friends Dr.Sobha Cyrus, Nisha Kuruvilla, Philip Cherian,
Prime Kumar and Renu George for their support and help. The author
acknowledges the contribution of the technical and non-technical staff in the
Department of Computer Science, Cochin University of Science and Technology.
The author owes heartfelt thanks to her parents for their motivation,
encouragement and support. The author is grateful to all who have been helpful

in the completion of this work,

Styama Das



Abstract

Computational Biology is the research area that contributes to the
analysis of biological data through the development of algorithms which
will address significant research problems. The data from molecular
biology includes DNA, RNA, Protein and Gene expression data. Gene
Expression Data provides the expression level of genes under different
conditions. Gene expression is the process of transcribing the DNA
sequences of a gene into mRNA sequences which in turn are later
translated into proteins. The number of copies of MRNA produced is
called the expression level of a gene. Gene expression data is organized in
the form of a matrix. Rows in the matrix represent genes and columns in
the matrix represent experimental conditions. Experimental conditions
can be different tissue types or time points. Entries in the gene expression
matrix are real values. Through the analysis of gene expression data it is
possible to determine the behavioral patterns of genes such as similarity
of their behavior, nature of their interaction, their respective contribution
to the same pathways and so on. Similar expression patterns are exhibited
by the genes participating in the same biological process. These patterns
have immense relevance and application in bioinformatics and clinical
research. These patterns are used in the medical domain for aid in more
accurate diagnosis, prognosis, treatment planning, drug discovery and

protein network analysis.

To identify various patterns from gene expression data, data

mining techniques are essential. Clustering is an important data mining



technique for the analysis of gene expression data. To overcome the
problems associated with clustering, biclustering is introduced.
Biclustering refers to simultaneous clustering of both rows and columns
of a data matrix. Clustering is a global model whereas biclustering is a
local model. Discovering local expression patterns is essential for
identifying many genetic pathways that are not apparent otherwise. It is
therefore necessary to move beyond the clustering paradigm towards
developing approaches which are capable of discovering local patterns in
gene expression data.

A Dicluster is a submatrix of the gene expression data matrix. The
rows and columns in the submatrix need not be contiguous as in the gene
expression data matrix. Biclusters are not disjoint. Computation of
biclusters is costly because one will have to consider all the combinations
of columns and rows in order to find out all the biclusters. The search

2™ where m and n are the number

space for the biclustering problem is
of genes and conditions respectively. Usually m+n is more than 3000. The
biclustering problem is NP-hard. Biclustering is a powerful analytical tool

for the biologist.

The research reported in this thesis addresses the problem of
biclustering. Ten algorithms are developed for the identification of
coherent biclusters from gene expression data. All these algorithms are
making use of a measure called mean squared residue to search for
biclusters. The objective here is to identify the biclusters of maximum
size with the mean squared residue lower than a given threshold. All these



algorithms begin the search from tightly coregulated submatrices called
the seeds. These seeds are generated by K-Means clustering algorithm.

The algorithms developed can be classified as constraint based,
greedy and metaheuristic. Constraint based algorithms uses one or more
of the various constraints namely the MSR threshold and the MSR
difference threshold.The greedy approach makes a locally optimal choice
at each stage with the objective of finding the global optimum. In
metaheuristic approaches Particle Swarm Optimization (PSO) and
variants of Greedy Randomized Adaptive Search Procedure (GRASP) are
used for the identification of biclusters.

These algorithms are implemented on the Yeast and Lymphoma
datasets. Biologically relevant and statistically significant biclusters are
identified by all these algorithms which are validated by Gene Ontology
database. All these algorithms are compared with some other biclustering
algorithms. Algorithms developed in this work overcome some of the
problems associated with the already existing algorithms. With the help of
some of the algorithms which are developed in this work biclusters with
very high row variance, which is higher than the row variance of any
other algorithm using mean squared residue, are identified from both
Yeast and Lymphoma data sets. Such biclusters which make significant

change in the expression level are highly relevant biologically.
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Chapter 1
Introduction

Computational molecular biology deals with different kinds of biological
data. Gene expression data is one among them. Hence some basics of
molecular biology are given in this chapter. Gene expression data is the
basic data used in this thesis. This chapter gives a brief description of
microarray technology by which the gene expression data is measured.
The chapter also describes the motivation for selecting the research
problem, along with the goal, objectives, scope and contribution of the
research work. The chapter also gives an overview of the research work

detailed in this thesis.
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1.1 Computational Molecular Biology

Molecular Biology is the most active field in biology today. An
important part of molecular biology concerns the study of genetic material
such as DNA, RNA, proteins, chromosomes and genes. In this chapter
some basics of molecular biology are introduced for facilitating the
understanding of the gene expression data, the data which underlies this
thesis. Computational molecular biology [84] is an interdisciplinary
subject involving fields as diverse as biology, computer science,

information technology, mathematics, physics, statistics and chemistry.

1.2 Preliminaries from Molecular Biology

Cells are the basic building blocks of every organism. There is a
central core in the cell called nucleus. Inside the nucleus there is an
important molecule known as deoxyribonucleic acid (DNA). All living
organisms contain DNA. All the information required for the
development and functioning of an organism is encoded in the DNA
molecule [3]. DNA molecules store the genetic information of an
organism. These molecules are made of two polynucleotide chains (or
strands) forming the double helix structure (Figure 1.1). The four
nucleotides adenine (A), Cytosine (C), Guanine (G) and Thymine (T) are
the building blocks of a DNA molecule. In the double stranded DNA one
particularity is the complementary base pairing, i.e., a particular base on
one strand binds only to a complementary base on the opposite strand. In
other words, “A” binds only to “T”, and “C” to “G” (Figure 1.1). Inside
the nucleus DNA is packaged in the form of chromosomes [57] or several
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linear DNA molecules called chromosomes, are present in the cell
nucleus. There are 24 distinct chromosomes for human beings [95]. They
are together known as genome. RNA is molecule which is informationally
similar to DNA. RNA is also made up of four nucleotides like DNA. But
in RNA the Thymine (T) is replaced by another molecule called Uracil
(V). Moreover RNA is single stranded where as DNA is double stranded.
The major function of RNA is to selectively copy information from DNA
and also to bring this information out of the nucleus for using it where it
is intended to be [1]. A gene is a segment of DNA, which contains the
formula for the chemical composition of one particular protein [4].
Proteins are the most important working molecules of life. Most of the
biological processes which take place in a cell are carried out by proteins
[40]. Proteins which are the final products of genes are vital to the
functioning of cells. The structural components of the cells are constituted

of proteins and they catalyze biochemical reactions.

Base pairs L <

Adenine Thymine
— ]
SGuanine Cytosine

Sugar phosphate
backbone

Figure 1.1 Example of a double stranded DNA molecule.
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1.2.1 From DNA to Proteins

The process of producing a protein from the information in its
corresponding gene in DNA in two phases such as transcription and
translation is called protein synthesis. Gene expression is the process of
transcribing a gene’s DNA sequence into mRNA sequences, which in turn
are later translated into proteins [105]. Messenger RNA (mRNA) is
generated in a process called transcription. In short gene expression is the
process by which the genetic information contained in the genes is
translated into MRNA molecules and later into proteins. The number of
copies of mMRNA produced in the process of translation is called the
expression level of the gene. The regulation of gene expression level is
important for proper functioning of a cell. If the amount of protein
required by the cell is more, then more copies of the corresponding
mMRNA molecule is produced. In short, the amount of specific mMRNA
copies produced by a gene refers to the activity of the gene. The more
copies of mMRNA produced, the higher the gene is expressed, and the more
proteins will be generated. Genes with high abundance of mRNA copies
are called up-regulated genes. On the other hand, if there are no or only a
few specific MRNA copies are present, then the associated genes are
called down-regulated genes. All the cells in a given multi-cellular
organism carry the same genetic code. But the higher order species
consist of highly specialized cell types, appearing in different locations of
the body with different tasks. But the question arises as to why do the skin
cells, nerve cells and blood cells, which all have the same genetic code,

behave so differently? The answer is that different genes are active, or
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expressed in the different cell types, making them produce their own
specific set of proteins. The expression profile of a cell is the collected

expression levels of all genes in the cell [58].

H RNA
q processin
mRBNA
— .
e a & g; . Protein
> iy B
M’F’P

- + Translation
¥ factors

B} mRNA translation

Figure 1.2 The main stages of gene expression. Step 1 corresponds to the transcription
of DNA to RNA molecules. Step 2 corresponds to the translation of
messenger RNA (mRNA) to protein molecules.

1.2.2 Measuring Gene Expression with Microarrays

Several microarray technologies have been developed to study gene
expression regulation. A very popular microarray technology based on
oligonucleotide chips is produced by the company Affymetrix. The other

widely used microarray technology is cDNA-arrays. In both these
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techniques the quantity of mRNA is measured based on hybridization
[105]. DNA microarray is constituted of thin glass or nylon substrates.
They contain specific DNA gene samples spotted in an array by a robotic
printing device. Fluorescently labelled m-RNA from an experimental
condition is spread onto the DNA gene samples in the array. This m-RNA
hybridizes with some DNA gene samples depending on the double helical
characteristics. Later a laser scans the array and the sensors for detecting
the fluorescence levels using red and green dyes. The red and green dyes
indicate the strength with which the sample expresses each gene. The
logarithmic ratio between the two intensities of each dye is calculated and
used as the gene expression data. The relative abundance of the spotted
DNA sequences in a pair of DNA or RNA samples is measured by
evaluating the differential hybridization of the two samples to the
sequences in the array [21, 44, 95].

1.3 Motivation

Through the analysis of gene expression data it is possible to
determine the behavioural patterns of genes such as similarity of their
behaviour, nature of their interaction, their respective contribution to the
same pathways and so on. Similar expression patterns are exhibited by the
genes participating in the same biological process. These patterns have
immense relevance and application in bioinformatics and clinical
research. These patterns are used in the medical domain for aid in more
accurate diagnosis, prognosis, treatment planning, drug discovery and

protein network analysis. In this context some research questions arise.
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How to identify the co-expressed genes? What are the computational
methods that can be used to identify the co-expressed genes? What are the
constraints to be considered while selecting the computational methods?
How can we validate the results obtained from the computational methods

in association with the biological annotations already available?

In order to identify various patterns from gene expression data, data
mining techniques are essential. Major data mining techniques which can
be applied for the analysis of gene expression data include, clustering,
classification, association rule mining etc. Clustering is an important data
mining technique for the analysis of gene expression data. However
clustering has some disadvantages. To overcome the problems associated
with clustering, biclustering is introduced. Clustering is a global model
where as biclustering is a local model. Discovering such local expression
patterns is essential for identifying many genetic pathways that are not
apparent otherwise. It is therefore necessary to move beyond the
clustering paradigm towards developing approaches which are capable of

discovering local patterns in gene expression data.

1.4 Scope

The vast amount of data emerging from molecular biology,
especially in the form of DNA, RNA, protein sequences and gene
expression data demands the development of algorithms by computational
scientists. In the context of gene expression data, design and
development of algorithms can contribute towards the identification of

biclusters with coherent values. Hence this study deals with the
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development of algorithms for the identification of coherent
biclusters from gene expression data. The degree of coherence is
measured by mean squared residue. There are many algorithms for the
identification of coherent biclusters from gene expression data. The
algorithms developed in this thesis overcome some of the disadvantages

associated with the existing algorithms.

1.5 Research Goal and Objectives

The research goal is to design and develop algorithms for finding
coherent biclusters from gene expression data using different algorithm
design techniques such as constraint based algorithms, greedy algorithm
and metaheuristic algorithms. Hence the study is aimed at designing and

developing biclustering algorithms. The objectives are:

= Compare the performance of these algorithms with the existing
biclustering algorithms
=  Validate the results with the biological annotations already

available

1.6 Contribution

In this thesis ten algorithms are developed for the identification of
coherent biclusters from gene expression data. In all the algorithms,
biclusters are identified in two phases. They are seed finding phase and
seed growing phase. In the seed finding phase seeds are generated. Seed
is a tightly coregulated submatrix of the gene expression data matrix

generated by K-Means clustering algorithm. All the algorithms mentioned



Introduction

in the seed growing phase begin their search from these high quality

seeds. More genes and conditions are added to these seeds in the seed

growing phase. Each seed is grown separately by adding more genes and

conditions. The next element to be selected and added depends on the

algorithm used. The following algorithms were developed as part of the

research work and they were used in the seed growing phase.

1.
2.

10.

Mean Squared Residue Threshold (MSRT) algorithm
Mean Squared Residue Difference Threshold (MSRDT)

algorithm

Iterative Search with incremental MSR Difference Threshold
(ISIMSRDT) algorithm

Seed Growing using separate constraints (SGSC) algorithm
Algorithm based on greedy approach

Algorithm based on Greedy Randomized Adaptive Search
Procedure (GRASP)

Algorithm based on Cardinality based Greedy Randomized
Adaptive Search Procedure (CGRASP)

Algorithm based on Reactive Greedy Randomized Adaptive
Search Procedure (RGRASP)

Algorithm based on Binary Particle Swarm Optimization
(PSO)

Algorithm based on greedy - Binary Particle Swarm

Optimization hybrid
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These algorithms can be classified into three groups:
=  Constraint based
=  Greedy

= Metaheuristic algorithms

These algorithms are applied on both Yeast and Human Lymphoma
datasets. The results obtained by all these algorithms are represented
graphically by using the bicluster plots. The biologically significant
biclusters are identified by all these algorithms. The results are compared
with some of the already developed biclustering algorithms on the basis
of bicluster size and mean squared residue and also the statistical
significance. The statistical significance and biological relevance of the
biclusters are also validated using gene ontology database. In these
methods it is possible to obtain all kinds of biclusters. Some biclusters
were obtained, whose row variance is greater than that of any algorithm
using MSR, from both Yeast and Lymphoma datasets with the help of
algorithms like MSRT and SGSC.

1.7 Layout of the Thesis

The layout of the thesis is as follows:
Chapter 1 is the introduction of the thesis.

Chapter 2 provides a literature review of the various data mining
techniques available for the analysis of gene expression data. A general

description of the algorithms developed for the identification of coherent
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biclusters, validation of the biclustering results using the biological

annotations already available etc are also given in this chapter.

Chapter 3, 4 and 5 explain the algorithms developed as part of the
research work. Chapter 3 describes all the constraint based algorithms
namely MSRT, MSRDT, ISIMSRDT and SGSC. Chapter 4 describes the
Greedy algorithm. Chapter 5 describes the metaheuristic algorithms
namely GRASP, CGRASP, RGRASP, Binary PSO and also the Greedy-
PSO hybrid. The description of algorithms, time complexity, different
biclusters obtained from the datasets, significant biclusters obtained
(biological validation), comparison of the algorithms with other

biclustering algorithms are also given in the respective chapters.

Chapter 6 gives a performance evaluation of the MSR based

algorithms and a consolidation of the research findings.

Chapter 7 contains conclusions and future work.



Chapter 2

Analysis of
(ene Expression Data

This chapter provides a literature review of the existing data mining
techniques for the analysis of gene expression data such as classification,
dimensionality reduction, gene regulatory network analysis, association
rule mining, clustering and biclustering. This chapter also gives a general
description of the algorithms developed for the identification of coherent
biclusters, and describes how their results can be validated using the

already available biological annotations.
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2.1 Gene Expression Data Analysis

Data mining is defined as the nontrivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data
[30, 41, 95]. Data mining techniques can be used for the analysis of Gene
Expression data. Gene expression data has been analyzed in gene
dimension as well as the condition dimension. There are a number of
high-level analysis methods which have the common aim of extracting the
biologically relevant patterns and information from the data. Clustering,
classification, dimensionality reduction and other types of methods are all
frequently applied in gene expression data analysis [3, 40, 46, 58, 89,
105]. This chapter reviews different types of data mining methods that are
adopted to extract different types of information from gene expression
data including biclustering which is the data mining technique used in this
thesis. Moreover, the extracted structure needs validation, for example,
while associating the results to prior knowledge which is often stored in

large databases.

2.2 Classification

Classification is an important supervised data mining method for the
analysis of gene expression data. The application of classification for
microarray data include diagnosing cancer type from the expression
pattern of a tumor sample, or predicting the biological function of genes
based on their expression patterns. The samples are classified based on
gene expression patterns into known categories based on morphology,

known biological features, clinical outcomes, and so on. For
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classification, the classifier is first trained on training samples, and then
tested on test samples. Classification algorithms, explicitly or implicitly,
identify variables, or functions of variables, that are good predictors of a
class. After having been confirmed to have enough correctness, the
classifier can classify samples of unknown class label. Classification
approaches applied on gene expression data include decision tree [80],
KNN [77], SVM [13], and artificial neural network [17]. Artificial neural
networks are used for classification problems with more than two classes
[68], while support vector machines are binary classifiers. For example
they can classify healthy and cancerous tissue [43] or classify genes as
belonging to a known functional group [23] or not. Binary classifiers can
be extended to handle K classes. ANNs and SVMs are capable of
learning non-linear decision functions. In SVMs this is made possible by
a kernel transformation of the data. Classification methods like SVM and
Neural network are effective in classifying test samples. For gene list
based classifiers, the decision function is fixed and predefined. The set of
variables on which it operates is learned from the data. For gene list
based classifiers, since the genes by far outnumber the samples,
introduces some difficulties. For example, the gene list based classifiers
[49] classify genes based on the top discriminatory genes. All these
approaches have some limitations when applied to gene expression data.
A better alternative for gene expression data is the associative
classification [18, 103] which makes the decision based on the most
significant class association rules. Class association rules, are both

informative and easy to understand.
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2.3 Dimensionality Reduction

Dimensionality reduction methods select a subset of objects in such
a way that important properties of the data are optimally conserved and
thus provide a means of representing data in low dimensions.
Dimensionality reduction methods are suitable for explorative data
analysis. One of the main application of dimensionality reduction is for
visualization of patterns in data. In gene expression data analysis, two
dimensional or three-dimensional visualizations may be inspected for
discovering outliers. Dimensionality reduction can also be used as a
means of data quality control. Dimensionality reduction is used as a
compressive preprocessing step prior to clustering or classification. This
helps to filter out the noise and reduce the computational burden of
subsequent methods. Some of the standard methods of dimensionality
reduction used for gene expression data are principal component analysis
and multidimensional scaling [6, 8, 54]. These methods are suitable for
data patterns which are linear, and are not designed for data when the

dependencies between variables are non-linear.

2.3.1 Principal Component Analysis (PCA)

PCA is a mathematical technique to pick out relevant patterns in the
data, while reducing the effective dimensionality of gene-expression
space without considerable loss of information. PCA is one of the
techniques that include factor analysis, which provides a "projection" of
complex datasets onto a reduced, easily visualized space. PCA finds those

views which separate the data into groups. PCA creates a small number of
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summary variables called principal components from a much larger set.
These summary variables are used for visualization or for more complex
statistical modelling. Creation of components and selection of the most
representative (or principal) components are the two aspects of PCA.
Components in the PCA are weighted averages of the original variables,
which are uncorrelated with each other. Components are created by
rotation of the original coordinates. The selection of the most
representative (principal) components is based on the fraction of
variability. An advantage of PCA is that redundant information (e.g.,
genes showing similar expression patterns across samples) can be
represented by a single variable. A disadvantage is that sometimes the
summary variables do not necessarily have a clear biological
interpretation. This technique can be applied for both genes and
conditions as a means of classification. PCAs are sometimes used to
visually identify clusters. This may be successful, but there is, in general
no guarantee that the data will cluster along the dimensions identified by
the principal component. PCA is a powerful technique for the analysis of
gene expression data when combined with other classification technique,
such as k-means clustering [79] or self-organizing maps (SOM), which
require the user to specify the number of clusters. PCA is widely used for

the analysis of gene expression data [7, 50, 82, 108].

2.3.2 Multi-Dimensional Scaling (MDS)

Another technique for dimensionality reduction is Multidimensional
scaling [71]. Multidimensional scaling identifies variables that are as

consistent as possible with the observed distance matrix. This results in a
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graphical representation of the objects as a 2D or 3D figure. User-
specified options have an effect on the resulting representation generated
by MDS. One of the most common methods for MDS is metric MDS or
principal coordinates analysis. MDS finds application in cancer

classification using microarrays [19, 69].

2.4 Gene Regulatory Network Analysis

All cells in an organism have the same genomic data. But the
proteins synthesized in each cell vary according to cell type, time, and
environmental factors. The activity of a cell depends on which genes are
expressed, i.e., which genes are turned on, resulting in the active
production of their respective proteins. By monitoring the expression
levels of all genes within a cell simultaneously, it is possible to find out
which genes are up-regulated, down-regulated, or not expressed under a
specific condition and can also detect any correlations between the levels
of expression of different genes. Using this information, it is possible to
interpret the logic of gene regulation in a cell [33]. Genes interact with
each other in regulatory networks. Therefore the most biologically
authentic representation of the genes is, as a network which describes the
functional relations between genes rather than as a number of clusters, or
as a cloud of points in Euclidean space. The interactions between genes in
the regulatory networks can be modeled in many ways [De Jong, 2002]
[32]. They include simple Boolean Networks [63, 64, 65] to more
complex regulatory networks such as random directed graphs and to

detailed models such as Stochastic Master Equation models [11].
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The study of gene networks is one of the subjects attracting more
attention. The simplest approach for the identification of network is
clustering the data and searching for regulatory control elements in all co-
expressing genes [22, 99]. But the information provided by these approaches
is limited to genes that are co-regulated. This will not identify a gene which
is regulating another gene. In network inference, a model of the interactions
between the genes, is constructed. Different models of gene regulation have
been proposed. The simplest genetic regulatory network is the Boolean
network. Boolean network was introduced by Kauffman in the late 1960s
(Kauffman, 1969) [63]. The network is represented as a directed graph. If
G = (V, F) is the graph then V represents elements of the network, and F
defines a topology of edges between the nodes and a set of Boolean
functions. In the Boolean network each gene is modeled as either ON or
OFF. The state of each gene at the next time step is determined by
Boolean function of its input at the current time step. Even though the
Boolean networks are simple, they are able to provide valuable insights in
the behavior of gene interactions [64, 104]. They are used in the analysis
of real gene expression data for the identification of drug targets for

cancer therapy [55, 96].

Boolean network is useful in gene regulation studies. But the
disadvantage is that the gene expression data is not binary but continuous.
Moreover, the gene expression data is generally noisy and contain a high
level of uncertainty. All these facts led to the proposal of various
modifications on the basic Boolean network, such as the Noisy Boolean

network [2], the Probabilistic Boolean network [87, 88], and the Hybrid
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Boolean network. In the Hybrid Boolean network each gene has a
continuously valued internal state, a Boolean external state [47, 48] or

asynchronously updated logic with intermediate threshold values [101, 102]

2.5 Time Series Analysis

The goal of time series analysis is to find out genes that show similar
trends over time within the same organism or sample type and to discover
samples that are differentiated by such patterns. Time series analyses are
often performed using regression. In this case time is the primary predictor

variable and gene expression is the outcome [35, 92, 110].

2.6 Association Rule Mining

Association rule mining has attracted great interest since a rule
provides a concise and insightful description of knowledge. It has already
been applied for the analysis of biological data [26, 38, 61]. Powerful
computational analysis tools are required to extract the most significant
and reliable correlation between genes from high-dimensional gene
expression data. Class association rule which is one of the most famous
traditional data mining methods is the solution for the above
requirements. Each row in the expression data matrix for finding class
association rule mining corresponds to a sample or a condition, and each
column corresponds to a gene. Conventional association mining methods
[59, 81] use the item-wise searching strategy. Some of the current class
association rule mining methods also use the same strategy [83]. A
substantial amount of research in the field of association rule mining has

demonstrated that accurate and inexpensive diagnosis is possible with
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class association rules because of their informative nature. A class
association rule can be defined as a set of items, or specifically a set of
conjunctive gene expression level intervals (antecedent) with a single
class label(consequent). The general form of a class association rule is:
genel[al,; bl], ...,genen[an; bn] — class, where genei is the name of the
gene and [ai; bi] is its expression interval. For example, X95735 at[-o,
994] —ALL is one rule discovered from the gene expression profiles of

ALL/AML tissues [105].

The unlabelled association rules can help discover the relationship
between different genes and build the gene network [26]. Class
association rules can relate gene expressions to their cellular
environments or categories indicated by the class. Thus they can build
accurate classifiers on gene expression datasets. Some of the association
rule mining algorithms find the complete set of association rules
satisfying user-specified constraints by discovering frequent (closed)

patterns [59, 81].

2.7 Clustering

Clustering is an unsupervised learning technique. Cluster analysis is
a fundamental technique in exploratory data analysis and pattern
discovery. Cluster analysis is an important technique to partition objects
that have many attributes (multi-dimensional data) into meaningful
disjoint sub-groups. Clustering process groups together similar objects
into clusters. The objects in each cluster are more similar to each other in

the values of their attributes, than they are to objects in other groups.
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Unlike classification, in cluster analysis the number of clusters is
unknown. Clustering needs a similarity function to measure how similar
two data points are. Mainly there are two types of clustering, partitional
and hierarchical. Hierarchical techniques provide a series of successively
nested clusters. Non-hierarchical techniques generally find a single
partition, with no nesting. Both are used extensively in microarray
analysis. In gene expression data analysis, clustering discovers groups of

co-regulated genes or groups of samples.

2.7.1 Hierarchical Clustering

Hierarchical clustering is one among the most widely used
technique in the analysis of gene expression data because of its simplicity
and ease of visualization [39]. Hierarchical clustering can be classified as
agglomerative or divisive. In the agglomerative approach initially all
genes are considered as clusters. Then the distance matrix is calculated for
all of the genes to be clustered. Two genes with the lowest distance from
the distance matrix is selected and combined to form a single cluster. This
process in which two selected clusters are merged to produce new clusters
is continued until a single hierarchical tree is formed. There are several
variations on hierarchical clustering which differ in the rules governing
how distances or similarity is measured between clusters as they are
constructed. Similarities between two clusters can be defined in a number
of ways, such as single linkage, complete linkage and average linkage. In
single linkage the largest similarity between any pair of objects in

separate clusters is calculated. In complete linkage the smallest similarity
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between any pair of objects in separate clusters is calculated. In average
linkage, the average similarity between all pairs of objects in separate
clusters is calculated. In hierarchical clustering the clustering is visualized
as a cluster tree called a dendrogram. One problem with hierarchical
clustering is that it is difficult to decide which clustering level in the
dendrogram to choose. Another disadvantage is that different similarity

measures yield very different cluster trees.

2.7.2 K-Means Clustering

K-means clustering [53] is a standard single level clustering algorithm.
In K-means clustering, the goal is to break objects into groups that have low
variance within clusters and large variance across clusters [46]. K-means
clustering is a good alternative to hierarchical methods if there is advanced
knowledge about the number of clusters. The K-means method does not have
many parameters to assign. Tavazoie et al. uses K-means clustering in gene
expression data analysis [99]. K-Means is the simplest clustering algorithm.
It is the best known partitional clustering algorithm. The method is called K-
means since each of the K clusters is represented by the mean of the objects.
It is also called centroid method. Different distance measures like Euclidean,
cosine angle distance etc. can be used in K-Means clustering. The K-Means

method [51] may be described as follows:
1)  Select the number of clusters. Let this number be K.

2)  Pick K seeds as centroids of the Kclusters. The seeds may be
picked randomly unless the user has some insight into the

data.
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3) Compute the distance of each object from each of the

centroids.

4)  Allocate each object to the cluster which is nearest to it based

on the distance computed in the previous step.

5)  Compute the centroids of the clusters by computing the means

of the attribute values of the objects in each cluster.

6) Check if the stopping criterion has been met (e.g. the cluster
membership is unchanged). If yes go to step 7. If not, go to
step3.

7) [optional] One may decide to stop at this stage or to split a
cluster or combine two clusters heuristically until a stopping

criterion is met.

2.8 Biclustering

Biclustering is the data mining technique used in this thesis for the
analysis of gene expression data. Biclustering is simultaneous clustering
of both the rows and columns of a data matrix. Biclustering consists in
simultaneous partitioning of the set of samples and the set of their
attributes (features) into subsets (classes) [93]. A bicluster of a dataset D
is a collection of pairs of gene and condition subsets B = ((G1,C1),
(G2,C2), ..., (Gr,Cr)) such that the collection (G1,G2, . ..,Gr ) forms a
partition of the set of genes, and the collection (C1,C2, . .. ,Cr ) forms a
partition of the set of conditions [93]. In short a bicluster is a submatrix B

of the gene expression data matrix D and if the size of B is IxJ, then I is a



Analysis of Gene Expression Data

subset of rows X of D, and J is a subset of the columns Y of D. The rows
and columns of the bicluster B need not be contiguous as in the
expression matrix D. It is not necessary that the identified submatrices to
be disjoint or to cover the entire matrix. Biclustering is also known as co-
clustering, bi-dimensional clustering and subspace clustering. Biclustering
is a relatively young area, in contrast to its parent discipline, clustering,

that has a very long history [98].

2.8.1 The Advantages of Biclustering over Clustering

Clustering is one of the important data mining techniques. However,
applying clustering to gene expression data has some disadvantages.
Many activation patterns are common to a group of genes only under
specific experimental conditions. As per the general understanding of
cellular process subsets of genes are co-regulated and co-expressed only
under certain experimental conditions, but behave almost independently
under other conditions. Discovering such local expression patterns may
help to uncover many genetic pathways that are not apparent otherwise. It
is therefore highly desirable to develop algorithmic approaches capable of
discovering local patterns in gene expression data. Clustering is applied to
either the rows or the columns of the data matrix, separately. Biclustering
methods, on the other hand, perform clustering in two dimensions
simultaneously. That means clustering methods derive a global model
while biclustering algorithms produce a /ocal model. When clustering is
applied to gene expression data genes as well as conditions can be
clustered. However, each gene in a bicluster is selected using only a

subset of the conditions and each condition in a bicluster is selected using
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only a subset of the genes. Biclustering thus performs simultaneous
clustering of both rows and columns of the gene expression matrix,
instead of clustering these two dimensions separately. In short unlike
clustering algorithms, biclustering algorithms can identify groups of
genes that show similar activity patterns under a specific subset of the
experimental conditions. Biclustering is used when one or more of the
following situations apply [74]:
1. A single gene may participate in multiple pathways that may
or not be co-active under all conditions
2. Only a small set of the genes participates in a cellular process
of interest.
3. An interesting cellular process is active only in a subset of the

conditions.

2.8.2 Bicluster Types

An interesting criterion for evaluating a biclustering algorithm is the
identification of the type of biclusters the algorithm is able to find. There

are four major classes of biclusters:
1)  Biclusters with constant values.
2)  Biclusters with constant values on rows or columns.
3)  Biclusters with coherent values.

4)  Biclusters with coherent evolutions.

The simplest biclustering algorithms can identify biclusters with

constant values. Figure 2.1 (a) gives an example of a constant bicluster.
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Figure 2.1(b) is an example of a bicluster with constant rows. The
bicluster in Figure 2.1(c) is an example of a bicluster with constant columns.
More sophisticated biclustering approaches look for biclusters with coherent
values on both rows and columns. Figure 2.1 (d) and (e) are examples of this
type of bicluster. The last type of biclustering addresses the problem of
finding biclusters with coherent evolutions. In coherent evolutions the
elements of the matrix are considered as symbolic values and try to discover
subsets of rows and subsets of columns with coherent behaviors without
regarding the exact numeric values in the data matrix. Examples of these

types of biclusters are given in Figures 2.1 (f) to (i) [74].

1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
a) Constant Bicluster
1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0
b) Constant rows
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0
1.0 2.0 3.0 4.0

¢) Constant Columns
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1.0 2.0 5.0 1.0
2.0 3.0 6.0 1.0
4.0 5.0 8.0 3.0
5.0 6.0 9.0 4.0

d) Coherent values — additive model

1.0 2.0 0.5 1.5
2.0 4.0 1.0 3.0
4.0 8.0 2.0 6.0
3.0 6.0 1.5 4.5

e) Coherent values — multiplicative model

S1 S1 S1 S1
S1 S1 S1 S1
S1 S1 S1 S1
S1 S1 S1 S1

f)Overall coherent Evolution

S1 S1 S1 S1
S1 S1 S1 S1
S1 S1 S1 S1
S1 S1 S1 S1

g) coherent Evolutions on rows

S1 S2 S3 S4
S1 S2 S3 S4
S1 S2 S3 S4
S1 S2 S3 S4

h) coherent Evolutions on columns
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70 13 19 10
29 40 49 35
40 20 27 15

90 15 20 12

i) Coherent Evolutions on columns

Figure 2.1 Different types of biclusters

2.8.3 Biclusters with Coherent VValues

Biclusters with coherent values are biologically more relevant than
biclusters with constant values. Hence in this work biclusters with
coherent values are identified. In this case the problem of biclustering can
be formulated as follows: given a data matrix D, find a set of submatrices
B1, B2,.. Bn which satisfy some homogeneous characteristics or
coherence. In order to identify the degree of coherence a measure called
mean squared residue score or Hscore was introduced by Cheng and
Church [29]. It is the sum of the squared residue score. The residue score

of an element bij in a submatrix B is defined as

RS(bij)=bij-blj-biJ+bL]

Here I denotes the row set, J denotes the column set, bij denotes the
element in a submatrix, biJ denotes the ith row mean, blj denotes the jth
column mean, and blJ denotes the mean of the whole bicluster. The
residue score of an element bij provides the difference between the actual
value and its expected value predicted from its row mean, column mean
and bicluster mean. The residue of an element reveals its degree of

coherence with the other elements of the bicluster it belongs to. Hence
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from the value of residue score, the quality of the bicluster can be
evaluated by computing the mean squared residue. That is Hscore or

mean squared residue score of bicluster B is
MSR(B) = (Xi £ 1j e J(RS(bij))"2) /I(JI*NJ))

A submatrix Bis called a o bicluster if MSR(B)< 6 for some 8 >0. 6
is the MSR threshold. The value of 6 depends on the dataset. For Yeast
dataset the value of o is 300 and for Lymphoma dataset the value of § is
1200 .The value of & is taken from Cheng and Church [29] and is
calculated from the clustering experiments done by Tavazoie et al. [99].
Low MSR value denotes strong coherence in the bicluster. The volume of
a bicluster or bicluster size is the product of the number of rows and the
number of columns in the bicluster. The biclusters characterized by high
values of row variance contains genes that display significant changes in
their expression values under different conditions. Cheng and Church
used row variance as an accompanying score to find out trivial biclusters.
There is no threshold value for row variance in order to consider a
bicluster as trivial. Row Variance of the bicluster B can be calculated

using the formula
RowVar(B)= (X i€ Ij €] (bij — biJ)"2)/(|I*|J])

The quality of the bicluster is always superior when the volume and
row variance of the bicluster are larger, and when its mean squared

residue is smaller.
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2.8.3.1 Different Types of Biclusters Depending on Coherence and
Row Variance

Fluctuation /
[ ///'\/
high -

A
s e B
\Q’_____________ 4,/--. |
— C /
Coherence
low high

Figure 2.2 Characterization of biclusters based on coherence and row variance

Consider three biclusters A, B and C shown in Figure 2.2. The
coherence of biclusters A and C are very high. But the coherence of
bicluster C is low. The row variance of bicluster A is high since there is
variation in the expression level of the genes. But in C there is no
variation in the expression level. In applications like gene coregulation
analysis, the biclusters in area A is the most interesting because similar
behavior between highly expressed genes is much more important than
that between two poorly expressed genes [45]. On the other hand, the flat
biclusters in are C are important for applications such as the identification
of marker genes. The biclusters in area B are less interesting because they
have a lower level of coherence than those in area A or C [94]. Figure 2.2

is reproduced from [94].
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2.8.4 Related Work

Various algorithm design techniques are used to address the
biclustering problem including Iterative row and column clustering
combination, Divide and Conquer, Greedy iterative search, Evolutionary
or Metaheuristic algorithms. Iterative row and column clustering is a
simpler way to perform biclustering. Here standard clustering methods are
applied on the row and column dimensions separately and the result is
combined to obtain biclusters. In divide and conquer strategy the problem
is divided into small sub-problems, solve the sub-problems separately and
then combine the solutions to get the final result. Divide and conquer
algorithms are very fast. But the drawback of this approach when solving
the biclustering problem is that in divide and conquer strategy as the data
is divided, there is a possibility of splitting good biclusters before they
can be identified. Greedy iterative search methods are based on the idea
of creating biclusters by adding or removing rows or columns from them,
using a criterion that maximizes a local gain [74]. They have the potential
of being very fast. Metaheuristic algorithms are able to find global

optimal solutions.

Computation of biclusters is costly because one will have to
consider all the combinations of columns and rows in order to find out all
the biclusters. The search space for the biclustering problem is 2™ where
m and n are the number of genes and conditions respectively. Usually
m+n is more than 3000. The biclustering problem is NP-hard. In a gene

expression data matrix there are a number of biclusters with different



Analysis of Gene Expression Data

shapes. The biclustering algorithm should be capable of identifying these
biclusters. Biclustering was first introduced by Hartigan who called it
direct clustering [52]. Hartigan identifies two biclusters at a time. Cheng
and Church were the first to apply biclustering to gene expression data
[29]. In the approach taken by Cheng and Church, the rows or columns
were deleted from the gene expression data matrix in order to find a
bicluster. Their algorithm is based on the greedy strategy. Their
algorithms are deterministic in the sense that repeated runs of them will
not discover different biclusters, unless the discovered ones are masked.
So the discovered bicluster is replaced by random values. These random
values will interfere with the future discovery of biclusters, especially
those that have overlap with the discovered ones. This problem is known
as random interference. Yang et al. [106] generalized the model of
bicluster proposed by Cheng and Church for incorporating null values and
for removing random interference. They developed a probabilistic
algorithm FLOC that can discover a set of possibly overlapping biclusters
simultaneously. Zhang et al. presented Deterministic Biclustering with
Frequent pattern mining (DBF) [109]. In DBF a set of good quality
bicluster seeds are generated in the first phase based on frequent pattern
mining. Then these biclusters are enlarged by adding more genes or
conditions. Sequential Evolutionary Biclustering (SEBI) [36] is based on
evolutionary algorithms. The objective of SEBI is to identify biclusters of
maximum size, with MSR lower than a given 0, with relatively high row
variance and with a low level of overlapping among the biclusters.

Biclustering problem is also solved using global optimization techniques
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like simulated annealing [25] in which the objective is to identify the
bicluster with the maximum volume and low MSR. Tanay et al. [97]
developed Statistical-Algorithmic Method for Bicluster analysis
(SAMBA), in which statistically significant biclusters were identified
using graph theoretic and statistical considerations. They defined a
bicluster as a subset of genes that jointly respond across a subset of
conditions, where a gene is termed as responding in some condition if its
expression level changes significantly at that condition with respect to the
normal level. Spectral biclustering approaches use techniques from linear

algebra to identify bicluster structures in the gene expression data [70].

Recently biclustering problems are solved using multi-objective
optimization methods. When searching for biclusters in microarray data,
several objectives like the volume, mean squared residue and row
variance are to be optimized simultaneously. Often these objectives are in
conflict with each other. In multi-objective optimization problem there are
a number of feasible solutions. In the work of Banka and Mitra the Multi
Objective Evolutionary Algorithm (MOEA) is used for solving
biclustering problem [15]. Here only the bicluster volume and MSR are
optimized. Sequential Multi-objective Biclustering (SMOB) [37] also
uses Multi-Objective EA for finding biclusters in gene expression data. In
the work of Junwan Liu, Zhoujun Lia and Feifei Liu [62] multi-objective
PSO is used for the identification of biclusters. Some more well known
biclustering techniques are Random-Walk-based Biclustering (RWB) [9],
SGAB [20], Order Preserving Submatrix algorithm OPSM) [16], iterative
signature algorithm (ISA) [56], BiVisu [100] and Bimax [78]. MOGAB
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was developed by malik et.al. Maulik et.al [75] solved biclustering
problem using Multi-objective Genetic algorithm. Their objective was to
identify coherent and nontrivial biclusters which should have low mean
squared residue and high row variance. The Plaid model developed by
Lazzeroni and Owen for the analysis of gene expression data uses a
statistically inspired modelling approach [72]. Biclustering problem is
also solved using GRASP variants [34, 90, 91] to identify biclusters from
Yeast dataset. The RGRASP [91] uses this technique for the identification

of significant biclusters.

2.8.5 Datasets Used

The algorithms are implemented in Matlab and the datasets used are
Yeast and Lymphoma. The pre-processed datasets are downloaded from
[107]. Experiments are also conducted on datasets by filtering out genes

with small variance across conditions using ‘genevarfilter’ in Matlab.

2.8.5.1 Yeast Dataset

The Yeast dataset is based on Tavazoie et al. [99]. Yeast dataset
consists of 2884 genes and 17 conditions. The values in the expression
dataset are integers in the range 0 to 600. Missing values are represented

by -1. A sample Yeast dataset is given in Appendix 7.

2.8.5.2 Lymphoma Dataset

Human B-cell Lymphoma expression dataset contains 4026 genes
and 96 conditions. The dataset was downloaded from the website for

supplementary information for the article by Alizadeh et al. [5]. The
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values in the dataset are integers in the range -750 to 650. There are
47,639 (12.3%) missing values in the Lymphoma dataset. Missing values
were represented by 999. The datasets are obtained from [107]. In the
Lymphoma dataset missing values are replaced by random numbers

between -800 and 800 as in [29].

2.8.6 Biological Validation of Biclusters

Once high-level analysis methods have suggested some underlying
structure in the data, these results need to be interpreted and validated in
terms of biological significance. Prior biological knowledge can be used
to evaluate the biological significance of biclusters obtained [97]. If the
identified biclusters contain significant proportion of biologically similar
genes, then it proves that the biclustering technique produces biologically
relevant results. The biological significance can be verified using gene
ontology database. In this database gene products are described in terms
of associated biological process, components and molecular functions in a
species-independent manner. To evaluate the statistical significance for
the genes in each bicluster p-values are used. P-values indicate the extent
to which the genes in the bicluster match with the different GO
categories. If the p-value is smaller, then the match will be better. Yeast
genome gene ontology term finder [85] is a database available in the
Internet which can be used to evaluate the biological significance of
biclusters. P-values can be calculated using a cumulative hypergeometric
distribution. The probability p for finding at least k genes, from a
particular GO category (function, process or component) within a cluster

of size n, is calculated as
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where f is the total number of genes within a category and g is the total

number of genes within the genome.

2.8.7 Biological Applications of Biclustering

Biclustering is applied when the data to be analyzed is a real valued
matrix. The analysis of gene expression data plays a major role in our
understanding of biological processes and systems including gene
regulation, development, evolution and disease mechanisms [14].
Biclusters can be used to associate genes with specific clinical classes or
for the classification of genes and samples, among other potentially
interesting applications. The three main applications of biclustering
approaches are identification of coregulated genes, gene functional
annotation and sample classification [74]. Biclustering is also used in a
number of other biomedical applications. In [73] biclustering was applied
to drug activity data to associate common properties of chemical
compounds with common groups of their descriptors. Moreover [72]
presents the application of biclustering to the nutritional data. In this case
each sample is associated with a certain food, while each feature is an
attribute of the food. The goal was to form clusters of foods similar with

respect to a subset of attributes.
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2.9 General Description of all Algorithms Developed in this
Thesis

2.9.1 Encoding of Bicluster

Each bicluster is encoded as a binary string of fixed length [28]. The
length of the string is the sum of the number of rows and the number of
columns of the gene expression data matrix. The first N bits represent
genes and the next M bits represent conditions. A bit is set to one when
the corresponding gene or condition is included in the bicluster.
Otherwise the bit is set to zero. This representation is advantageous for

node addition and node deletion.

2.9.2 Seed Generation Using K-Means Clustering Algorithm

A small tightly co-regulated submatrix of the gene expression data
matrix with a low mean squared residue score is called the seed of the
bicluster. Since the MSR value of the seed is lower than the threshold,
there is a possibility of accommodating more genes and conditions within
the given MSR threshold. The K-Means clustering algorithm is used for
seed finding. The gene expression dataset is partitioned into n gene
clusters and m sample clusters. Gene clusters having more than 10 genes
are further divided according to the cosine angle distance from the cluster
centre. Similarly each sample cluster having more than 5 samples is
further divided into sets of 5 samples according to cosine angle distance
from the cluster centre. The number of gene clusters having maximum 10
close genes is p and the number of sample clusters having maximum 5

conditions is q. The p gene clusters and q sample clusters are combined to
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form p*q submatrices. The MSR value of these submatrices is calculated

and those with MSR value below a certain limit are selected as seeds [27].

2.9.2.1 The Advantages of Using Seeds from K-Means

Using seeds from K-Means has some specific advantages.

1)

2)

3)

4)

S)

Since the biclustering is a combinatorial optimization problem
seed gives a good start and reduces the number of

combinations.

There are different types of biclusters in a gene expression
data. Some of them will be biclusters with very low variance
and large volume. Genes with low variation in expression
level are useful for marker gene identification. Some
biclusters are with small volume and large row variance. In
short there are different types of biclusters based on MSR,
row variance and volume. When seeds from K-Means are

used it is possible to get all types of biclusters.

MSR is biased towards biclusters with low row variance. But
when seeds from K-Means are used, biclusters of large row

variance can be obtained.
The problem of random interference can be avoided.

Some of the seeds will help the identification of the biclusters
which cannot be identified by any other algorithm using MSR.
After doing experiments with all these algorithms especially

the MSRT and SGSC it is found that some conditions are
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getting eliminated not because of the lack of coherence in the
expression level but because of the significant increase in the
expression level. Such conditions will increase the MSR
above the threshold. Hence such conditions will get
eliminated in all MSR based algorithms. With the seeds from
K-Means algorithms such as SGSC or MSRT can identify

such biclusters.

6) Seeds from K-Means help the identification of large number
of biclusters. This eliminates the limitation of number of

biclusters that can be identified by some of the algorithms.

2.9.3 Different Algorithms used in the Seed Growing Phase

More genes and conditions are added to the seed using different
seed growing algorithms which are developed as part of this thesis work.
Ten different algorithms are used for seed growing. Out of this 4
algorithms use different constraints. One uses the greedy approach. Other
methods use metahueristic approaches GRASP and Particle Swarm
Optimization (PSO). The Mean Squared Residue Threshold (MSRT)
algorithm uses the only constraint mean squared residue threshold. Since
biclustering is an optimization problem which is trying to optimize the
MSR, Mean Squared Residue Difference Threshold (MSRDT) algorithm
uses one more constraint namely the MSR difference threshold. In
Iterative Search with Incremental MSR difference threshold (ISIMSRDT)
algorithm, the MSR difference threshold value is incremented iteratively.

While conducting these experiments it is found that the incremental
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increase in genes is low, whereas the incremental increase in conditions
are high. Hence an algorithm called SGSC which uses Separate
Constraints for Genes and Conditions for finding biclusters from gene
expression data is developed. In greedy approach the node with minimum
incremental increase in MSR is selected for enlarging the seeds. Since
greedy approaches have local minima problem metaheuristic methods like
Greedy Randomized Adaptive Search Procedure (GRASP) is also used in
the seed growing phase. The different variants of GRASP like basic
GRASP, cardinality based GRASP and Reactive GRASP are used for
finding biclusters. These three methods differ in the way the restricted
candidate list is implemented. Particle swarm Optimization (PSO) which
is an evolutionary computation based technique is also used for enlarging
the seeds. One more approach which is a hybrid of greedy and PSO is

also used for the identification of biclusters.

2.10 Summary

This chapter provides a literature survey of the various existing data
mining techniques used for the analysis of gene expression data which
includes classification, dimensionality reduction, clustering and
biclustering etc. This thesis is concerned with the development of
algorithms for the identification of coherent biclusters from gene
expression data. A general description of the biclustering algorithms

developed in this thesis is also given in this chapter.
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Constraint Based Algorithms

This chapter describes all the constraint based algorithms
developed in this work for finding biclusters from gene expression data.
A constraint is a condition which must be satisfied by the solution to an
optimization problem. The constraint based algorithms are MSRT,
MSRDT, ISIMSRDT and SGSC. These algorithms are used for enlarging
the seeds obtained by K-Means clustering algorithm. In all these
algorithms node addition follows node deletion if necessary. The
condition in which the added node is deleted depends on the constraints
used by the algorithm. The nodes are added sequentially. The description of
the algorithms, Time complexity, different biclusters obtained from Yeast and
Lymphoma datasets, significant biclusters obtained (biological validation),
and the comparison of the algorithms with other biclustering algorithms
are also given in this chapter. A comparison of all the constraint based
algorithms is also given.
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3.1 MSRT Algorithm

Mean Squared Residue (MSR) is used as the similarity measure to
evaluate the coherence of the biclusters. There is a threshold value for the
mean squared residue denoted by 6. This value depends on the dataset.
The value of § for the Yeast dataset is 300 and for the Lymphoma dataset,
it is 1200. This algorithm is making use of MSR threshold value as the
sole constraint for the identification of biclusters. Hence this algorithm is

named MSRT algorithm.

In the MSRT algorithm genes or conditions can be added to the
given seed one at a time. In this algorithm in order to enlarge the seeds,
the conditions are searched first followed by the genes. Many factors are
observed when a gene or condition is added to a seed for generating the
final bicluster. After adding a gene or condition, the MSR value of the
resulting bicluster reduces or increases. The variation in MSR caused by
some of the genes or conditions will be very high. This algorithm is
developed with the assumption that those genes or conditions having no
coherence with the elements of the bicluster will create a large variation
in MSR value when added to the bicluster which will be greater than the
MSR threshold. Thus after adding one gene or condition the MSR value
of the resulting submatrix is calculated in order to verify whether it
exceeds the given MSR threshold. If it exceeds the given MSR threshold,
it is removed from the bicluster. This process is continued till the last
gene or condition is verified for the inclusion in the bicluster. This

algorithm is deterministic in the sense that for a given threshold value of
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MSR and for a given seed the execution of the algorithm will produce the

same result. A pseudo code description of the algorithm is given below.

Algorithm MSRthreshold(seed, 9)

/I 6 denotes the MSR threshold

bicluster :=seed; j:=1;

While (j <=total no_conditions)

if condition[ j] is not included in the bicluster

Add all elements of condition[j] corresponding to genes already included to
the bicluster

calculate MSR

if (MSR> 9) remove elements of condition[ j] from the bicluster and
restore previous MSR value

endif

endif

j:=j+1 end(while)

i=1;

While (i <=total no_genes)

If gene[i] is not included in the bicluster

Add all elements of gene[i] corresponding to conditions already included to
the bicluster; calculate MSR

if MSR> 6

remove elements of gene[i] from the bicluster restore the previous MSR
value

endif

endif

=1+l

end(while)

return bicluster
end(MSRthreshold)
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3.1.1 Time Complexity of the MSRT Algorithm

The basic operation for the identification of biclusters is the
calculation of mean squared residue of a submatrix. Time complexity for
calculating MSR is O(mn) where m and n are the number of genes and
conditions respectively. In order to include a single gene or condition,
MSR value is calculated once. There are m+n genes and conditions.
Hence this calculation is performed at most m+n times. That means the

worst case time complexity of the algorithm is O((m+n)mn).

MSRT algorithm is very fast compared to evolutionary or
metahueristic algorithms. The main operation for finding bicluster is the
calculation of the MSR value of a submatrix. In this algorithm the number
of submatrices whose MSR is to be calculated is at most m+n where m
and n are the number of genes and conditions respectively. Usually m+n
will be less than 4200 (total number of genes and conditions for the
Lymphoma dataset which is the largest in this case). In the case of
evolutionary algorithms the number of submatrices whose MSR is to be
calculated is p*i where p is the number of populations and i is the
number of iterations. For SEBI [36] and SMOB [37] the value of p*i is
20000.

3.1.2 Experimental Results
3.1.2.1 Bicluster Plots for Yeast Dataset

In Figure 3.1 only twenty seven biclusters with different shapes

found by the algorithm are shown. From the bicluster plots it is clear that
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highly coherent biclusters are obtained using this method. When this
algorithm is used, some of the seeds produce biclusters with row variance
above 2000. In SEBI the attempt was to identify biclusters with high row
variance by adjusting the fitness function. The minimum value of row
variance they obtained for the biclusters in Yeast dataset was 317.23. In
this study, all biclusters obtained are with row variance above 300.
Biclusters with all 17 conditions are obtained using this method even
though only seven such biclusters are given in the Figure 3.1.
Experiments are conducted by setting the value of MSR threshold as 100,
200, and 300. Even though the MSR threshold value for Yeast dataset is
300, biclusters with low value of MSR are assumed to be more coherent.

Hence lower values like 100 and 200 are also used.
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Figure 3.1 Twenty seven biclusters found for the Yeast dataset. Bicluster labels are
(ya2), (yb2), (ye2), (yd2), (ve2), (yf2), (yg2), (yh2), (yi2), (¥i2). (¥k2),
(y12), (ym2), (yn2), (yo2), (yp2), (yq2), (yr2), (ys2), (yt2), (yu2), (yv2),
(yw2), (yx2), (yy2), (yz2) and (yal2) respectively. In the bicluster plots X
axis contains conditions and Y axis contains expression values. The details
about the biclusters can be obtained from Table 3.1 using the bicluster label.
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Table 3.1
Information about Biclusters of Figure 3.1
Bicluster | Number of Numpe_r of Bicluster MSR Rpw

Label Genes Conditions Volume Variance
Ya2 13 17 221 99.41 505.91
Yb2 29 17 493 99.89 625.51
Yc2 114 14 1596 199.52 508.76
Yd2 124 13 1612 198.94 601.00
Ye2 49 16 784 199.46 513.27
Y12 67 13 871 199.05 490.14
Yg2 20 14 280 198.00 1174.10
Yh2 69 15 1035 199.35 578.91
Yi2 67 17 1139 199.95 98.42
Yj2 16 17 272 197.21 115.10
Yk2 20 17 340 199.51 691.37
Y12 31 10 310 292.16 2052.10
Ym2 33 15 495 299.26 2134.30
Yn2 22 11 242 297.63 1816.20
Yo2 137 15 2055 299.89 529.95
Yp2 26 14 364 199.03 611.65
Yq2 18 16 288 197.98 740.61
Yr2 26 13 338 199.13 378.97
Ys2 16 14 224 196.98 958.01
Yt2 11 16 176 194.38 501.86
Yu2 19 16 304 198.24 430.72
Yv2 1615 05 8075 299.71 308.95
Yw2 96 10 960 198.85 367.38
Yx2 20 16 320 197.57 1058.30
Yy2 11 15 165 273.63 958.06
Yz2 75 17 1275 199.95 459.01
yal2 57 17 969 199.09 618.64
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In the above table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and the number of columns (conditions) of the bicluster
respectively. The fourth column reports the volume of the bicluster and
the fifth column contains the mean squared residue of the bicluster. The

last column contains the row variance of the bicluster.

Biclusters (ya2) and (yb2) are having very low value for MSR.
Biclusters (yl2) and (ym2) are with row variance above 2000. In bicluster
(yb2) the expression value of all the genes increases in unison under the
tenth condition. A bicluster similar to (yb2) is obtained in SMOB but the
number of genes and MSR value is 19 and 202.18 respectively. But for
bicluster (yb2) the number of genes and MSR value is 29 and 99.8897
respectively. That means in bicluster (yb2) there are more number of
genes and it is more tightly coregulated compared to the similar bicluster
of SMOB. Shifting and scaling patterns [10] are clearly visible in
biclusters (yd2), (yg2), and (yn2). In bicluster (yh2) the up-regulation and
down- regulation in the genes are very small but frequent. In the
biclusters (yd2) and (ym2) there are 3 and 2 sets of genes respectively.
Biclusters with large number of genes having very few conditions (Yv2)

are also obtained using this method.
3.1.2.2 Bicluster Plots for Human Lymphoma Dataset

In Figure 3.2 twenty eight biclusters found by the algorithm for
the Lymphoma dataset are shown. The genes in the bicluster present a

similar behaviour under a set of conditions. Biclusters like (1a2), (1b2),
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and (Ib12) are having very large volume. Bicluster (id2) contains the
maximum number of conditions obtained in this method i.e. 91. Bicluster
(Iy2) is having row variance above 9000. As Federico Divina and Jesus S.
Aguilar-Ruize have observed [37] there is no shifting and scaling patterns
in the biclusters of Lymphoma dataset. But local shifting patterns are

observed in some biclusters.
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Figure 3.2 Twenty eight biclusters found for the Lymphoma dataset. Bicluster labels
are (la2), (1b2), (Ic2), (1d2), (le2), (1f2), (1g2), (Ih2), (1i2), (1;2), (1k2), (112),
(Im2), (In2) ,(102), (Ip2), (192), (Ir2), (1s2), (1t2), (lu2), (Iv2), (Iw2), (1x2),
(y2), (1z2), (lal12) and (Ib12) respectively. In the bicluster plots X axis
contains conditions and Y axis contains expression values. The details about
biclusters can be obtained from Table 3.2 using bicluster label.

In the Table 3.2 given below, the first column contains the label of
each bicluster. The second and third columns report the number of rows
(genes) and the number of columns (conditions) of the bicluster
respectively. The fourth column reports the volume of the bicluster and
the fifth column contains the mean squared residues of the bicluster. The
last column contains the row variance of the bicluster. Biclusters 1p2, lu2,

1z2 and Ib12 are having very high volume. But the row variance is not
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very high. More biclusters similar to Ip2, lu2, 1z2 and 1b12 are also

obtained from this dataset.

Table 3

2

Information about Biclusters of Figure 3. 2

Bicluster | Number of Numt.)e_r of Bicluster MSR R_ow
Label Genes Conditions Volume Variance
la2 117 47 5499 1194.2 2173.2
1b2 164 49 8036 1188.7 1691.3
Ic2 11 67 737 1186.7 6222.4
1d2 10 91 910 1190.5 5308.5
le2 890 21 18690 1198.6 1229.6
1f2 29 78 2262 1185.5 1557.3
1g2 10 79 790 1158.2 6100.0
1h2 18 64 1152 1191.0 2657.3
1i2 677 22 14894 1199.2 1230.4
1j2 11 77 847 1189.5 4431.0
k2 29 75 2175 1189.1 4043.5
112 120 15 1800 1196.5 2697.5
Im2 50 43 2150 1196.0 3180.3
In2 52 44 2288 1199.5 3179.7
lo2 147 46 6762 1195.8 2097.6
Ip2 702 10 7020 1199.8 1249.8
12 18 73 1314 11974 3907.1
Ir2 10 70 700 1191.6 5122.2
1s2 33 30 990 1200.0 2258.1
1t2 20 9 180 1194.0 4786.2
lu2 614 24 14736 1197.7 1284.3
Iv2 97 30 2910 1196.7 3077.4
w2 338 25 8450 1198.6 1318.6
1x2 18 47 846 1197.2 7061.6
ly2 11 39 429 1199.2 9009.0
122 1311 12 15732 1199.0 1244.7
lal2 779 19 14801 1197.7 1214.3
1b12 1136 20 22720 1194.0 1225.3
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3.1.3 Advantages of MSRT Algorithm

As no other constraint is used for the identification of biclusters
except MSR threshold, different seeds will result in different biclusters
with a few exceptions. It is an advantage that the only one parameter
required by the algorithm is the MSR threshold. It is noticed that some
conditions which make significant change in the expression level is added
to the bicluster, the MSR value will increase. Biclustering algorithms
trying to minimize MSR will not identify such conditions which are
relevant biologically. In this algorithm maximum possible variation is
allowed for MSR. Hence it is possible to identify conditions with
significant change as well as some of the shifting and scaling patterns [10]
which make significant change in MSR. With the help of this algorithm
some biclusters with very high row variance are identified from both

Yeast and Lymphoma datasets (which are given in chapter 6).

3.1.4. Details of Significant Biclusters obtained by MSRT Algorithm

Figure 3.3 Four significant biclusters obtained by the MSRT algorithm on Yeast
dataset. The bicluster labels are s21, s22, s23 and s24. The details about
biclusters can be obtained from Table 3.3 using the bicluster label.
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Table 3.3
Information about Biclusters of Figure 3.3
Bicluster | Number of Number of MSR Row
Label Genes Conditions Variance
S21 61 17 198.9467 469.4058
S22 28 17 299.8488 1937.5000
S23 56 17 199.7856 587.8461
S24 34 10 277.0816 991.0000

Biological relevance of biclusters obtained using MSRT algorithm
is verified using the four biclusters shown in Figure 3.3. GO annotation
database [36] is used to verify the biological significance of biclusters. In
the first bicluster s21 selected for testing the biological significance there

are 61 genes. They are YALOO7C, YALO11W, YAL0O35W, YBL024W, YBL083C,
YCLO031C, YCRO59C, YCRO87W, YDLO08W, YDL150W, YDL153C, YDLI166C,
YDL167C, YDL231C, YDRO17C, YDRO57W, YDR0O60W, YDRO83W, YDR120C,
YDRI21W,YDR170CYDR172W, YDR211W, YDR234W, YDR235W, YDR262W,
YDR289C, YDR299WYDR312W, YDR324C, YDR339C, YDR352W, YDR361C,
YDR365C, YDR392W, YDR444W, YDR478W, YDRS518W, YGL214W, YGR042W,
YGR200C, YGR216CYKRO60W, YLLOOSW, YLRI146C, YLR222C, YMLO066C,
YNLI132W, YNL199C, YNROO3C, YOLO080C, YOL124C, YOL140W, YOR061W,
YORO098C, YOR145C, YOR252W, YOR272W, YPL126W, YPRO53C, YPR112C.

In the second bicluster s22 there are 28 genes. They are YAL023C,

YARO007C, YARO08W, YBLO035C, YBRO88C, YBRO89W, YCRO065W, YDLOO3W,
YDLO18C, YDL164C, YDR097C, YFLOO8W, YGR152C, YHRI154W, YJL181W,
YKL042W, YKL113C, YLL022C, YLR103C, YMLO021C, YML102W, YMRO76C,
YMRO78C, YNL273W, YNL312W, YOL0O90W, YOR074C, YPL208W.

In the third bicluster s23 there are 56 genes. They are YALOO3W,
YALO07C, YALO30W, YALO38W, YARO009C, YBLO030C, YBL072C, YBLO77W,
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YBL092W, YBRO09C, YBR031W, YBRO035C, YBR048W, YBR084C-A, YBR106W,
YBRI11C, YBR118W, YCROI3C, YCRO31C, YDL061C, YDLO75W, YDLOSIC,
YDLO083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, YDL219W,
YDL228C, YDL229W, YDRO12W, YDRO025W, YDRO0O35W, YDRO50C,YDR064W,
YDRI133C, YDR134C, YDR382W, YDR385W, YDR433W, YDR447C, YDR450W,
YDR471W, YDR500C, YEL034W, YER074W, YERI17W, YGL102C, YMRO048W,

YNLO67W, YOL127W, YOR234C,YOR312C, YPL037C, YPR102C.

In the fourth bicluster s24 there are 34 genes namely YBRO38W,
YBRI138C, YCLOI2W, YGRI108W, YHRI151C, YIL106W, YJR092W, YKL129C,
YKRO21W, YKRO56W, YLR190W, YLR353W, YLR453C, YMLO033W, YMLO034W,
YMLI119W, YMROO1C, YMRO032W, YMR291W, YNL171C, YNL172W, YOL130W,
YORI152C, YOR160W, YOR206W, YOR365C, YPL148C, YPL150W, YPLI183C,
YPL242C, YPL248C, YPROO3C, YPROO7C, YPR119W.

The Table 3.4 given below shows the significant GO terms used to
describe genes of the biclusters of Figure 3.3 for the process, function and
component ontologies. The common terms are described with increasing
order of p-values or decreasing order of significance. In Table 3.4 the first
entry of the second column with the title process contains the term ribosome
biogenesis (22, 8.41e-11) which means that 22out of the 61 genes of the
bicluster are involved in the process of ribosome biogenesis and their p-value
is 8.41e -11. Second entry indicates that 22 out of 61 genes are involved in
ribonucleoprotein complex biogenesis. Also from the table it is clear that the
biclusters are distinct along each category. This proves that the bicluster
contains biologically similar genes and the MSRT algorithm used here is
capable of identifying biologically significant biclusters from different GO

categories.
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Table 3.4

Significant Shared GO Terms (Process, Function,
Component) of Biclusters Shown in Figure 3.3

Bicluster Process Function Component

S21 Ribosome biogenesis 27 out of 61 input genes | Nucleolus (19, 2.91e-
(22, 8.41e-11) Ribonucleo- | are directly annotated to | 11) Preribosome (15,
protein complex biogenesis | root term 'molecular 8.40e-10)
(22,1.47¢-09)cellular function unknown': 90spreribosome (12,
component biogenesis at 7.50e-09)
cellular level (23, 1.01e-08) Nucleus (36, 0.00020)
Gene expression (30,
0.00053)

S22 DNA repair (16, 4.82e-13) Double-stranded DNA Chromosome (14,
response to DNA damage binding (5,4. 13e-05) 2.01e-08)
stimulus (16, 5.57e-12) DNA | structure-specific DNA | replication fork (8,
metabolic process (17, binding (5, 0.00103) 1.38e-07)
4.37e-11) nucleobase, DNA secondary chromosomal part (12,
nucleoside, nucleotide and structure binding (3, 1.53¢-06)
nucleic acid metabolic 0.00104) nucleus(22, 9.64¢-06)
process (21, 4.30e-06) guanine/thymine

mispair (2, 0.00335)

S23 Translation (34, 7.82¢-25) Structural constituent of | Cytosolic ribosome
cellular protein metabolic ribosome (28, 9.79¢-24) | (29, 1.55¢-26)
process (36, 3.25e-12) structural molecule cytosolic part (29,
protein metabolic process activity (28, 2.73e-18) 2.95e-24)
(36, 8.24¢-12) cellular translation elongation Ribosome (32, 8.24¢-
macromolecule biosynthetic | factor activity (4, 24) cytosolic large
process (35, 5.82¢-10) 0.00015) ribosomal subunit (18,
metabolic process (45, 2.09e-17) cytoplasmic
0.00045) part (42, 2.50e-06)

S24 Cytokinesis (7, 0.00130) 13 out of 34 input genes | cellular bud ( 10,

positive regulation of spindle
pole body separation (3,
0.00195)

cell cycle process (12,
0.00252) cell cycle (12,
0.00383) regulation of
spindle pole body separation
(3,0.00387)

are directly annotated to
root term 'molecular
function unknown':

3.48e-006) cellular bud
neck(9, 3.81e-06) site
of polarized
growth(10, 1.63¢-05)
cellular bud neck
contractile ring (4,
5.04¢-05)
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Figure 3.4 Sample of genes for the bicluster s23, with corresponding GO terms
and their parents for function ontology

Figure 3.4 shows the significant GO terms for the set of genes in
bicluster s23 along with their p values. It shows the branching of a
generalized molecular function into sub-functions like structural molecule

activity, binding and enzyme regular activity. These activities are
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clustered using genes to produce the final result. Figure 3.4 is obtained
when gene ontology database is searched by entering the names of genes

and by selecting function ontology.

3.1.5 Comparison with other Biclustering Algorithms
3.1.5.1 Comparison based on Statistical and Biological Significance.

To evaluate the statistical significance for the genes in each bicluster p-
values are used. P-values indicate the extent to which the genes in the
bicluster match with the different GO categories. If the p-value is smaller,
then the match will be better. In Table 3.5 the GO terms along with their p-
values and percentage of genes associated with the GO terms in the bicluster
for the MSRT algorithm is compared with that of MOGAB [75], SGAB [20],
CC [29], RWB [9], Bimax [78], OPSM [16], ISA [56] and BiVisu [100].
This table is taken from [75]. From the Table 3.5 it is clear that in terms of
the best p-value obtained by a bicluster which is used to denote statistical
significance, MSRT algorithm is better than RWB, Bimax, OPSM and
Bivisu. The percentage of genes involved in the first GO term is greater than
that of RWB, OPSM and Bivisu. For the second GO term the p-value of
MSRT algorithm is better than that of all the other algorithms except
MOGAB and SGAB. The percentage of genes involved is greater than that
of all the other algorithms. For the third GO term the p-value and the
percentage of genes is greater than that of all the other algorithms except
MOGAB. For the fourth GO term the p-value is better than that of all the
other algorithms except MOGAB. But the percentage of genes involved is
better than all the other methods. For the fifth GO term the p-value and the

percentage of genes involved is better than all the other methods.
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3.1.5.2 Comparison based on Bicluster Size and MSR

The Table 3.6 given below provides a comparative summarization
of the results of Yeast dataset involving the performance of related
algorithms in terms of the average number of genes, conditions and the
MSR value of the bicluster. The performance of MSRT algorithm in
comparison with that of Cheng and Church’s (CC) [29], FLOC by Yang
et al. [106], DBF [109], SEBI [36] and SMOB [37] for the Yeast dataset
are given. In the MSRT algorithm presented here the average mean
squared residue is lower than that of CC, SEBI and SMOB. The average
number of genes is greater than that of all other algorithms except CC,
FLOC and DBF and average number of conditions is better than that of
all other algorithms except SEBI and SMOB. The MSRT algorithm has
highest value in the case of largest bicluster size compared to all other

methods.

Table 3.6

Performance Comparison between MSRT and other Algorithms
for the Yeast Dataset

Algorithm AMR ANG ANC AV LB
MSRT 199.78 94.75 14.75 1422.87 8075
SEBI 205.18 13.61 15.25 209.92 1394
SMOB 206.17 27.28 15.46 453.48 697
CC 204.29 166.71 12.09 1576.98 4485
FLOC 187.54 195.00 12.80 1825.78 2000
DBF 114.70 188.00 11.00 1627.20 4000
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AMR is Average mean squared Residue. ANG is Average Number
of Genes. ANC is Average Number of Conditions. AV is Average
Volume. LB is Largest Bicluster size. As clear from the above table the
average mean squared residue, the average number of genes and
conditions, average volume and largest bicluster size are compared for
various algorithms. For the average mean squared residue field lower

values are better where as higher values are better for all other fields.

Table 3.7 gives performance comparison for Human B-cell
Lymphoma dataset. Value of 9 is set to 1200 for Lymphoma dataset. In
this dataset the average number of genes and average volume of the
biclusters obtained are far better than that of SEBI and SMOB. Average

number of conditions is greater than CC and SEBI.

Table 3.7

Performance Comparison between MSRT and other Algorithms
for Human Lymphoma Dataset

Algorithm AMR ANG ANC AV
MSRT 1192.43 741.10 38.50 14455.30
CC 850.04 269.22 24.50 4595.98
SEBI 1028.84 14.07 43.57 615.84
SMOB 1019.16 11.60 78.47 709.13

AMR is the Average mean squared Residue. ANG is Average
Number of Genes. ANC is the Average Number of Conditions. AV is
Average Volume. As clear from the above table the average mean squared

residue, the average number of genes and conditions and average volume
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and are compared for various algorithms. For Lymphoma dataset AGN

and AV are better than that of all other algorithms.

In multi-objective evolutionary computation [15] the maximum
number of conditions obtained is only 11 in Yeast dataset and 40 in
Human B-cell Lymphoma dataset. But in MSRT algorithm there are
biclusters with all 17 conditions for the Yeast dataset and 91 conditions
for the Lymphoma datasets respectively. For the Yeast dataset the
maximum number of genes obtained for this algorithm in all the 17
conditions is 117 with MSR value 199.9365. The maximum available in
all the literature published so far is in multi-objective PSO [62]. They
obtained 141 genes for 17 conditions with MSR value 203.25. Moreover
as the MSRT algorithm uses simple sequential search rather than
stochastic search the computation time required is very less compared to

all the metahueristic and evolutionary algorithms.

Some of the biclusters are with high row variance (more than 2000
for the Yeast dataset and more than 9000 for Lymphoma dataset) even
though no specific measures are taken to get biclusters of high row
variance. A bicluster with 91 conditions is obtained for Lymphoma
dataset. The row variance of the bicluster is 5308.5. This bicluster is
shown in Figure 3.2 with label (1d2). This method is especially suitable
for Lymphoma dataset for obtaining biclusters with large size. Even
though the method used here is not multiobjective, the results obtained are

better than such algorithms. This is faster than metaheuristic algorithms.
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As no other method is used for reducing the MSR except MSR threshold,

different seeds will result in different biclusters with a few exceptions.

3.2 MSRDT Algorithm

In this section, a novel algorithm for finding biclusters from gene
expression data is described. This algorithm is developed using the newly
introduced concept of MSR difference threshold. MSR difference
threshold denotes the maximum variation that can be allowed for the
MSR value when a gene or condition is added and still the added
condition or gene remains coherent. In this algorithm node addition
follows node deletion if necessary. In MSRT algorithm mentioned in the
previous section the added node (gene or condition) is removed if the
MSR value of the resulting bicluster exceeds the MSR threshold. The
node thus added may not be optimal in terms of MSR value. In the case
of biclustering problem the main objective is to reduce the MSR value of
the bicluster. So the previous algorithm is modified by incorporating one
more constraint i.e. the MSR difference threshold. Moreover when MSR
threshold is used as the only constraint, the variation allowed for the MSR
value goes on changing. But when the MSR difference threshold is
applied as additional constraint, the variation allowed remains fixed. So in
this algorithm before adding a node, the MSR X of the bicluster is
calculated. After adding the node, again the MSR Y is calculated. The
added node is deleted if Y minus X is greater than MSR difference
threshold or if Y is greater than MSR threshold which depends on the

dataset. MSR difference of a gene or condition is the incremental increase
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in MSR after adding the same to the bicluster. It is found that the MSR
difference threshold is different for gene list and condition list and it
depends on the dataset also. Proper values should be identified through
experimentation in order to obtain biclusters of high quality. The results
obtained on Yeast and Lymphoma datasets clearly indicate that this

algorithm is better than many of the existing biclustering algorithms.

It is observed that if MSR difference threshold for condition list is
set to 30 it is possible to get biclusters with all 17 conditions for the Yeast
dataset. For gene list the MSR difference threshold is set to 10. By
properly adjusting the MSR difference threshold biclusters of high quality
can be obtained. While experimenting it is found that reducing the MSR
difference threshold for condition list eliminates the conditions which
make significant change in the expression level from the bicluster, where
as reducing the MSR difference threshold for gene list increases
coherence. Hence difference threshold for conditions should be large and
difference threshold for genes should be small (except for scaling
patterns). In the case of MSRT algorithm, the added node is removed only
when the MSR of the bicluster exceeds 8. But in the case of MSRDT
algorithm an element which causes an incremental increase in MSR above
MSR difference threshold is also removed from the bicluster. Hence this
method can produce better biclusters compared with MSRT in terms of

MSR value. A pseudo code description of the algorithm is given below.
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Algorithm MSRdifferncethreshold(seed, 8, msrdiffgenethresh,
msrdiffcondthresh )

bicluster := seed

previous=MSR(seed)

=1

While (j <=total no_conditions)

If condition[ j] is not included in bicluster
Changed=1;

Add all elements of condition[ j] corresponding to genes already
included to bicluster

present= MSR(bicluster)

if (present> 0) or (present-previous)>msrdiffcondthresh
remove elements of condition[ j] from bicluster
changed=0;

endif

if changed==

previous=present

endif

endif

Ji=7+1

end(while)

1:=1;

prev=MSR (bicluster)

While (i <=total no_ genes)

If gene[i] is not included in bicluster
Changed=1;

Add all elements of gene[i] corresponding to conditions already
included to bicluster
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present= MSR(bicluster)
if (present> §) or (present-previous)>msrdiffgenethresh
remove elements of gene[i] from bicluster
changed=0
endif
if changed==1
previous=present
endif
endif
=1+l
end(while)
return bicluster
end(MSRdifferencethreshold)

3.2.1 Time Complexity of the MSRDT Algorithm

The basic operation for the identification of biclusters is the
calculation of mean squared residue of a submatrix. Time complexity for
calculating MSR is O(mn). In order to include a gene or condition MSR
value is calculated once. There are m+n genes and conditions. Hence this
calculation is performed atmost m+n times. That means the worst case
time complexity of the algorithm is O((m+n)mn) where m and n are the

number of genes and conditions respectively.

3.2.2 Experimental Results

3.2.2.1 Bicluster Plots for Yeast Dataset
Twenty one biclusters obtained by the algorithm on Yeast dataset

are given below. Eight out of the twenty one biclusters contain all 17
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conditions. All biclusters are with MSR less than 300 and row variance
above 300. For Yeast dataset all conditions are obtained when the MSR
difference threshold for condition lists is set to 30. For gene list MSR
difference threshold is set to 10. All the means squared residues are lower
than 300. Only biclusters with different shapes are selected. Biclusters
containing more genes having similar shape as that of biclusters ys3 are

obtained in this method.
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Figure 3.5 Twenty one biclusters found for the Yeast Dataset. Bicluster labels are (ya3),
(yb3), (ye3), (yd3), (ye3), (y13), (yg3), (yh3),(yi3), (yj3), (yk3), (y13), (ym3),
(yn3), (yo3), (yp3), (yq3), (yr3), (ys3) and (yt3), respectively. In the bicluster
plots X axis contains conditions and Y axis contains expression values. The
details about biclusters can be obtained from Table 3.8 using bicluster label.
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Table 3.8

Information about Biclusters of Figure 3.5

Bicluster | Number Numpe_r of | Bicluster MSR Rpw
Label of Genes | Conditions | Volume Variance
(ya3) 65 17 1105 198.8756 619.3479
(yb3) 86 17 1462 198.3953 526.8160
(yc3) 74 17 1258 199.6859 508.7565
(yd3) 1843 05 9215 299.8140 320.4440
(ye3) 81 17 1377 199.9548 551.3923
(yf3) 140 16 2240 199.6735 458.1247
(yg3) 55 17 935 199.4912 534.4627
(yh3) 17 16 272 199.3700 619.2619
(yi3) 119 17 2023 199.5356 518.8431
(vi3) 11 17 187 113.5428 501.8930
(yk3) 22 17 374 77.6240 641.7874
y13) 44 13 572 199.5335 695.5067
(ym3) 62 13 806 199.2022 531.5530
(yn3) 26 16 416 199.3954 455.0572
(yo3) 31 16 496 199.7230 625.6157
(yp3) 51 16 816 199.3443 385.4192
(yq3) 13 15 195 198.1322 959.9774
(yr3) 34 15 510 198.6582 489.9255
(ys3) 578 8 4624 198.5395 255.1215
(yt3) 444 7 3108 199.9317 514.9015
(yt4) 172 15 2580 199.8100 422.5933

In the Table 3.8 the first column contains the label of each bicluster.
The second and third columns report the number of rows (genes) and
number of columns (conditions) of the bicluster respectively. The fourth
column reports the volume of the bicluster and the fifth column contains
the mean squared residue or hscore of the bicluster. The last column

contains the row variance.
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3.2.2.2 Bicluster Plots for Human Lymphoma Dataset

In Figure 3.6 only nine biclusters obtained by the MSRDT

algorithm are shown. The biclusters show similar up-regulation and

down regulation. One bicluster (label 1f3) is obtained with 91

conditions and row variance above 5700.
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Figure 3.6 Nine biclusters found for the Lymphoma Dataset.Bicluster labels are

(1a3), (1b3), (1c3), (1d3), (1e3), (1f3), (1g3) and (1h3) respectively. In
the bicluster plots X axis contains conditions and Y axis contains
expression values. The details about biclusters can be obtained from
Table 3.9 using bicluster label.



Constraint Based Algorithms

But for SEBI the maximum value of row variance for Lymphoma
dataset is only 5691.07 and the maximum number of conditions obtained
is only 72. All the means squared residues are lower than 1200.
Experiments are conducted by setting the difference threshold for the

condition list as 50, 60 etc and for gene list the values are 10, 20 etc.

Table 3.9

Information about Biclusters of Figure 3.6

Bicluster | Number | Number of | Bicluster MSR Row
Label of Genes | Conditions | \/glume Variance
(1a3) 10 77 770 1188.2 5439.2
(1b3) 910 12 10920 1199.0 1419.3
(Ic3) 18 67 1206 1189.2 3430.8
(1d3) 30 73 2190 1197.4 3902.0
(1e3) 64 73 4672 1199.6 1325.5
(1f3) 10 91 910 1183.1 5702.0
(1g3) 135 47 6345 1199.3 1321.1
(1h3) 690 28 19320 1199.7 1232.3
(1i3) 72 35 2520 1183.1 3959.0

In the Table 3.9 the first column contains the label of each bicluster.
The second column reports the number of rows (genes) of the bicluster.
The third column reports the number of columns (conditions) of the
bicluster. The fourth column reports the volume of the bicluster and the
fifth column contains the mean squared residue or hscore of the bicluster.

The last column contains the row variance of the bicluster.
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3.2.3 Advantages of MSRDT Algorithm

This is the first algorithm to treat genes and conditions differently.
This algorithm leads to the following research findings. The difference
threshold created by genes is very small compared to that of conditions
except for scaling patterns. This is one of the reasons by which
metahueristic algorithms trying to minimize MSR will get biclusters with
more genes. SEBI [36] is an exception to this problem because they are
adjusting the fitness function to get more conditions. In this algorithm a
bicluster (label 1f3) with 91conditions is obtained for Lymphoma dataset
and the MSR is less than that of the bicluster obtained by MSRT
algorithm with 91 conditions. In MSRDT algorithm more genes and

conditions can be accommodated compared to MSRT.

In MSRDT algorithm reducing the difference threshold for genes
eliminates the possibility of adding inverted rows or mirror images [29]
into the bicluster. This due to the fact that the genes which form mirror
images will have high values for incremental increase in MSR. In Figure

3.7, two biclusters with inverted images are shown.
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Figure 3.7 Inverted images formed when MSR threshold alone is applied.
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In the bicluster labelled (m1) there are 105 genes and 13 conditions
with MSR value 215.2878. The gene which forms the mirror image is
gene number 2581 and the incremental increase in MSR value when this
gene is added is 16.8646. All other genes result in incremental increase in
MSR less than 2. Similarly in the case of bicluster (m2) there are 73 genes
and 17 conditions and MSR value is 182.74. The 520™ gene which causes
the inverted image when added to the bicluster results in an incremental
increase in MSR of 25.8368. But no other no other gene when added to
the bicluster results in an incremental increase in MSR greater than 2.5.
These biclusters can be obtained by any algorithm which makes use of
MSR threshold alone. Even metaheuristic optimization algorithms with

fitness function for minimizing MSR value will result in such biclusters.
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Figure 3.8 Another example of mirror image

If MSR difference threshold is applied with a difference threshold
of value 10 for the gene list these genes will have to be removed. This

proves that the newly introduced concept of MSR difference threshold
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can eliminate the formation of mirror images in biclusters of gene
expression data. The following figure shows the biclusters with the

inverted images removed.
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Figure 3.9 Inverted images removed when MSR difference threshold is applied.

It is found that decreasing the MSR difference threshold for
condition list eliminates conditions which make significant change in the
expression level from the bicluster whereas decreasing MSR difference

threshold for gene list increases coherence.

3.2.4 Details of Significant Biclusters obtained by the MSRDT
Algorithm

0 2 ¢ 6 8§ 0 v u % B
Condtns

Figure 3.10 Four significant biclusters obtained by the algorithm on Yeast dataset. The
bicluster labels are s31, s32, s33, s34. The details about biclusters can be
obtained from Table 3.10 using bicluster label.
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Table 3.10

Information about Biclusters of Figure 3.10

Bicluster | Number of Number of Row
o MSR ;
label genes conditions Variance
S31 77 16 199.5544 533.1660
S32 64 17 199.3198 654.5732
S33 28 17 286.3438 | 2034.1000
S34 28 10 235.4595 1186.3000

Biological relevance of biclusters obtained using MSRDT algorithm
is verified using the four biclusters shown in Figure 3.10. GO annotation
database is used to verify the biological significance of biclusters. In the
first bicluster S31 selected for testing the biological significance there are

77 genes. They are YCL031C, YCR060W, YCR0O87W, YDLOOSW, YDLI153C,
YDL166C, YDL167C, YDL231C, YDL243C, YDRO17C, YDRO57W, YDROS58C,
YDROSOW, YDR083W, YDR094W, YDR108W, YDR109C, YDR120C, YDR121W,
YDR132C, YDR160W, YDRI170C, YDR171W, YDR172W, YDR173C, YDR183W,
YDRI185C, YDRI198C, YDR206W, YDR211W, YDR214W, YDR234W, YDR235W,
YDR236C, YDR262W, YDR286C, YDR288W, YDR289C,YDR299W, YDR302W,
YDR339C, YDR352W, YDR361C, YDR364C, YDR365C, YDR392W, YDR413C,
YDR419W, YDR457W, YDR469W, YDR478W, YDR518W, YDR541C, YGLO85W,
YGL214W, YGR042W, YGR090W, YGR200C, YGR216C, YHR192W, YKRO60W,
YLR107W, YLR146CYMLO066C, YML096W, YNLI132W, YNL199C, YOLO031C,
YOLO080C, YOLI124C, YOL140W, YORO061W, YOR091W, YORO098C, YOR145C,
YOR272W, YPROS53C.

In the second bicluster S32 there are 64 genes. They are YALOO3W,

YALO38W, YARO009C, YBL030C, YBL072C, YBLO77W, YBL092W, YBRO09C,
YBRO31W, YBR048W, YBR084C-A, YBR106W, YBR118W, YBR181C, YBR189W,
YBRI91W, YCRO12W, YCROI13C, YCRO31C, YDL061C, YDLO75W, YDLOS8IC,
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YDLO083C, YDL130W, YDLI136W, YDLI91W, YDL192W, YDL208W, YDL228C,
YDL229W, YDRO12W, YDR025W, YDR035W, YDR0O50C, YDR064W, YDR133C,
YDR154C,YDR155C, YDR225W, YDR276C, YDR327W, YDR353W,YDR381W,
YDR382W, YDR385W, YDR417C, YDR418W, YDR433W, YDR447C, YDR450W,
YDR471W, YDR500C, YDR529C, YDR545W, YEL034W, YER074W, YERI117W,
YGL102C, YKL152C, YMR202W, YOL127W, YOR234C, YPL037C, YPR102C.

In the third bicluster S33 there are 28 genes. They are YAR007C,

YARO008W, YBLO035C, YBR088C, YBR0O89W, YDLO0O3W, YDLO18C, YDL164C,
YDRO097C, YFLOO8W, YGR152C, YHRI154W, YJL181W, YKL042W, YKL113C,
YLRI103C, YML021C, YML102W, YMR076C, YMRO78C, YNL102W, YNL273W,

YNL303W, YNL312W, YOL090W, YORO074C, YPL208W, YPR120C. In the

fourth bicluster there are 28 genes. They are YBRO038W, YBRI138C,

YCLO012W, YDL039C, YGL021W, YGRO035C, YGR092W, YGR108W, YHR023W,
YHRI151C, YIL106W, YIL162W, YJR092W, YKLI129C, YKR021W, YLR190W,
YLR353W, YMLO034W, YMLII9W, YMROOIC, YMRO32W, YNLO53W,
YNL171C, YOR152C, YPL148C, YPL242C, YPROO7C, YPRI119W.

The Table 3.11 given below shows the significant GO terms used to
describe the set of genes of the biclusters of Figure 3.10 for the process,
function and component ontologies. The common terms are described
with increasing order of p-values or decreasing order of significance. In
Table 3.11 the first entry of the second column with the title ‘Process’
contains the term ribosome biogenesis (18,4.78e-05) which means that 18
out of the 77 genes of the bicluster are involved in the process of
ribosome biogenesis and their p-value is 4.78e-05. This proves that the
bicluster contains biologically similar genes and the MSRDT algorithm

used here is capable of identifying biologically significant biclusters.
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Table 3.11

Significant Shared GO Terms (Process, Function, Component)
of Biclusters shown in Figure 3.10.

Bicluster Process Function Component
S31 Ribosome biogenesis (18, 32 out of 77 input genes | Nucleolus (14, 8.24e-05)
4.78e-05) ribonucleoprotein are directly annotated to | yTp.C complex (3
complex biogenesis 19, root term 'molecular 0.00129) Preribosome (10,

7.68e-05), cellular component | function unknown':

biogenesis at cellular 0.00156) 90S preribosome

level (20, 0.00039) RNA (8,0.00210)
metabolic process (28,
0.00832)

S32 Translation (35, 2.26e-23) Structural constituent of | Cytosolic ribosome (31,
cellular protein metabolic ribosome (30, 2.58e-24) 2.71e-27) cytosolic part
process (38, 2.88e-11) structural molecule (31, 7.66e-25)
protein metabolic process activity (30, 1.79¢-18) ribosome (34, 6.60e-24)
(38,7.49¢-11) translation elongation cytoplasmic part (47,
cellular metabolic process factor activity (4, 1.33¢-06)

(51, 0.00015) 0.00035)

S33 DNA repair (17, 1.43e-14) Double-stranded DNA Replication fork (9,
DNA metabolic process (19, | binding  (5,4.58¢-05) | 3 42¢-09) chromosome

7.23e-14) structure-specific DNA (14, 1.85¢-08) Nuclear

Response to DNA damage binding (5, 0.00115) replication fork

stimulus (17, 1.97e-13) DNA secondary (7, 1.01e-06) nucleus

Nucleobase, nucleoside, structure binding (22, 8.87¢-06)

Nucleotide and nucleic acid (3,0.00116)

metabolic process

(21, 4.32e-06)

S34 Cytokinesis (8, 2.32e-05) 11 out of 28 input genes | Cellular bud neck

Cell cycle process (13, are directly annotated to | (11, 1.06e-09) Cellular

3.91e-05) Cell cycle (13, root term ‘molecular bud (12, 1.12e-09) Site of

6.36e-05) Cell division (8, function unknown polarized growth

0.00014) (12, 7.76¢-09)
Cytoskeletal part (10,
1.63¢-06)
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Figure 3.11 Sample of 98 genes for the bicluster s32 with corresponding GO terms and
their parents for function ontology
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Figure 3.11 shows the significant GO terms for the set of 98 genes
in bicluster s32 along with their p values. It shows the branching of
generalized molecular function into sub-functions like catalytic activity,
and binding. These activities are clustered using genes to produce the
final result. Figure 3.11 is obtained when gene ontology database is
searched by entering the names of genes of S32 and by selecting function

ontology.

3.2.5 Comparison with other Biclustering Algorithms

3.2.5.1 Comparison based on Statistical and Biological Significance

In Table 3.12 the GO terms along with their p-values and
percentage of genes associated with the GO term in the biclusters for the
MSRDT algorithm is compared with that of MOGAB, SGAB, CC, RWB,
Bimax, OPSM, ISA and BiVisu. From the Table it is clear that in terms of
p.value obtained by a bicluster which is used to denote statistical
significance MSRDT is better than RWB, Bimax, OPSM and Bivisu. The
percentage of genes involved in the first GO term is better than that of
RWB, OPSM and Bivisu. For the second and third GO terms the p-value
and the percentage of genes are better than that of all the other algorithms
except MOGAB. For the fourth GO term the p-value is better than all the
other algorithms except MOGAB. Percentage of genes involved is better
than all the other algorithms. For the fifth GO term p-value and

percentage of genes involved is better than all the other algorithms.



Chapter 3

Sl-at’e

%LT01 F0-28'L 027t 90-26'¢ ,
flqwasse | %8791 %hhT 60-1'C %88 crate P | lcale oot
SISAURBOIE | UONEZIEIO0| APAD %I TET ssang %Cs Tl %L 0t %EL8E m;o “
xapdwod JE[[P2 Jou | 99 dnjomdw pnq Je[nia0) aoWso ued | ssaooad ssaooad Hanoy €
maoid SWYSIQRIST jo aseyd Jy - o1 35110 dsoy BLIPUOYD0NA | d1[oqeiow VN | S10qeIdW VN anaajop
Cn.__u._..:CL._HN— , ) .E.:.:Op:.ﬁ
Cl1-9¢T
916"y pO-¢°L o2r 1 90-39°C %C8'8C :
°%8pC] 0 TT %E6'S 60-31°1 KEE0T Aquuasse €1-9¢7 CTar's
Surssooud Sumpuig ssadoud %T61 Surssanord sisauaorg °%Z6'LT %S9y FT209'9 N
VN stjoqeia AWOSOWOIY) {ZM xajduios AWOSOLOY) ssasoud Yal'€s
ANeipAyogqie) waroxd dNjogqeia N Y AOSoq L
_ 03Uy
81-98' SN : 01Tt
900691 %l6'9E L0-1'E 219901 90-95'7 C1-06'] o (r7-28¢°T
%9C81 ssanond %979 %9991 "3TEl WEE'LT vT-opL [$-08°¢ 0469
PT— anayiuisolq UONEI PO J:.c ‘S.E_ aprased Ajquiasse ¥ %St 1Y Ykl'LS AOSOq U ¢
VN an ‘_Q—H__.ﬂoﬁ,_ox.— < .Lﬂ‘wzw SOAVIN m.ﬁmu:ﬂ.mo_m uonesuen uone[suR Joauanmnsuod
Uu_c_._._cgu_.wz b DLLE w:ﬁ__.w_ #mhﬂwuegm
0T-2¢°6 01-26"9 80-98'C 01-0€'] 8026t .
%LL™91 %8€9T %RE6 - 07" —encr S .
Ljquasse ssaooud mmuu:._w Yobb v ,,\.,.wmamm .w\ommm»“.. n\oﬁm.m \ 9 | (7099,
sisauagor 2 . HE( o ¢ %IT9y %9p" €S unqns b8t [
us_czsa_.vm__ o:...:.___w_m_._.“ :c__.”wﬂ_.ﬁ_uwn_c " o__om_:h,.u .U:MLSB: uonesuen DWOS0q L [BwIosoqry
[ AE] 19)0d¢ NH
0221 608 C L1-t6
v Pp-09°¢ %ZT01 -ag" Cp-o7"
2%4€9°07 : o . 60-9£76 SH-oU¥ .
| wLzs apwesio | OO osheg %8€°9 sl srevl Lot
ua104d HEd punoq uorosd Ajquiasse e %1709 %9L°€9 %t 8t I
oajpnuoqry Mjos01f) =aURIquIaW 0n q.w_:c sisauagolg] anjosolfn) B 1050180 e 211050148 AOSOqL
' dg[n[@oanu] I+ qtd WOsoqIy ajosms)
nSIALY y S : =%
VSI WSO _ Xewg amd 20 avos aVDON LAUSIW SuLI I,

v1Rq 1SS A 40J SWYI0B|Y 43410 pue | YSIN Ag paanpoad swaal

09 1wedlIubis payoiug  Ajreuonound aal4 doj syl :1sa] aouedlyiubis feaibojolg Jo 3nsay
creslgel

9\




Constraint Based Algorithms

3.2.5.2 Comparison on the basis of Bicluster Size and MSR

The Table 3.13 given below provides a comparative summarization
of results of Yeast data involving the performance of related algorithms.
The performance of MSRDT algorithm in comparison with that of Cheng
and Church’s (CC) [29], FLOC by Yang et al. [106], DBF [109], SEBI
[36] and SMOB [37] for the Yeast dataset are given. In the MSRDT
algorithm presented here the average mean squared residue is lower than
that of CC, SEBI and SMOB. The average number of genes is greater
than that of all other algorithms and the average number of conditions is
better than that of all other algorithms except SEBI and SMOB. The
MSRDT algorithm has highest value in the case of largest bicluster size

compared to all other methods except CC.

In the case of MSRDT algorithm, MSR value is better than that of
SEBI and CC. Largest bicluster size is better than that of all other
algorithms. Average volume is better than that of all other algorithms. In
multi-objective evolutionary biclustering [15] the maximum number of
conditions obtained is only 11. In this method almost all biclusters are
with 17 conditions. Moreover this algorithm provides better performance
in terms of speed compared to all the metahueristic and evolutionary

algorithms.
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Table 3.13

Comparison between MSRDT and
Other Algorithms for Yeast Dataset

Algorithm AMR ANG ANC AV LB
MSRDT 199.63 170.16 14.83 2264.80 9215
SEBI 205.18 13.61 15.25 209.92 1394
SMOB 206.17 27.28 15.46 453.48 697
CC 204.29 166.71 12.09 1576.98 4485
FLOC 187.54 195.00 12.80 1825.78 2000
DBF 114.70 188.00 11.00 1627.00 4000

AMR is Average mean squared Residue. ANG is Average Gene
Number of genes. ANC is Average Number of Conditions. AV is
Average Volume. LB is Largest Bicluster. As clear from the above table
the average mean squared residue, the average number of genes and
conditions, average volume and largest bicluster size are compared for
various algorithms. For the average mean squared residue field lower

values are better where as higher values are better for all other fields.

Table 3.14 gives performance comparison for Human B-cell
Lymphoma dataset. Value of 9 is set to 1200 for Lymphoma dataset. In
this dataset the average number of genes and average volume of the
biclusters obtained are far better than that of SEBI and SMOB. Average

number of conditions is greater than CC and SEBI.

In the above table the average mean squared residue, the average
number of genes and conditions, average volume and largest bicluster size

are compared for various algorithms. For the average mean squared
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residue field lower values are better where as higher values are better for

all other fields.

Table 3.14

Comparison between MSRDT and other
Algorithms for Human Lymphoma Dataset

Algorithm AMR ANG ANC AV
MSRDT 1194.44 233.37 58.50 5791.63
CcC 850.04 269.22 24.50 4595.98
SEBI 1028.84 14.07 43.57 615.84
SMOB 1019.16 11.60 78.47 709.13

AMR is Average mean squared Residue. ANG is Average Number
Gene. ACN is Average Number of Conditions. AV is Average Volume..
As is clear from the above table the average mean squared residue, the
average number of genes and conditions and average volume and are

compared for various algorithms.

In multi-objective evolutionary computation [15] the maximum
number of conditions obtained is only 40 in Human B-cell Lymphoma
dataset. But in this method there are biclusters with 91 conditions for
Lymphoma dataset. Since the MSRDT algorithm uses simple sequential
search rather than stochastic search the computation time required is very
less compared to all the metahueristic and evolutionary algorithms. Some
of the biclusters obtained are with high row variance (more than 2000 for

the Yeast dataset and more than 7000 for Lymphoma dataset).
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3.3 ISIMSRDT Algorithm

In this section a new algorithm developed using the concept of MSR
difference threshold for finding biclusters from gene expression data is
described. In MSRDT algorithm mentioned in the previous section it is
difficult to find a suitable value for the MSR difference threshold. In the
case of biclustering problem the main objective is to reduce the MSR
value of the bicluster. Keeping this objective in mind the MSR difference
threshold is initialised with a small value and it is incremented in each
iteration until it reaches a final value. The results obtained on Yeast and
Lymphoma datasets clearly indicate that this algorithm is better than
many of the existing biclustering algorithms and also MSRDT, in terms of
both bicluster size and MSR value. In this algorithm more genes and
conditions are added to the seeds obtained from K-Means algorithm.
After adding a gene or a condition if the incremental value of MSR is
greater than MSR difference threshold, or if the MSR of the resulting
bicluster is greater than 6, the added node is removed from the bicluster.
In ISIMSRDT algorithm, MSR difference threshold is initialized with a
small value and incremented after each iteration in fixed steps until it
reaches a final value. So in ISIMSRDT algorithm there are three different
parameters such as the initial value of MSR difference threshold, the
amount by which it is incremented after each iteration and the final value
of MSR difference threshold. These three parameters apply for both the
gene list and condition list. By properly adjusting the MSR difference
threshold parameters, biclusters of high quality can be obtained. A pseudo

code description of the algorithm is given below.
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Algorithm Iterative_MSRdifference (seed, 6, condthreshinitial,
condthreshincrement, condthreshfinal, genethreshinitial,
genethreshincrement, genethreshfinal)

bicluster := seed
previous=MSR(seed)
=1
msrdiffcondthresh=condthreshinitial;
while (msrdiffcondthresh<condthreshfinal)
While (j <=total no_conditions)
If condition][ j] is not included in bicluster
Changed=1;
Add all elements of condition[ j] corresponding to genes
already included to bicluster
present= MSR(bicluster)
if (present> §) or (present-previous)>msrdiffcondthresh
remove elements of condition[ j] from bicluster
changed=0;
endif
if changed==
previous=present
endif
endif
j=j+1
end(while)
msrdiffcondthresh=msrdiffcondthresh+condthreshincrement
end(while)

1:=1;
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prev=MSR (bicluster)
msrdiffgenethresh=genethreshinitial
While(msrdiffgenethresh<=genethreshfinal)
While (i <=total no_ genes)
If gene[i] is not included in bicluster
Changed=1;
Add all elements of gene[i] corresponding to conditions
already included to bicluster
present= MSR(bicluster)
if (present> ) or (present-previous)>msrdiffgenethresh
remove elements of gene[i] from bicluster
changed=0
endif
if changed==
previous=present
endif
endif
=1+l
end(while)
msrdiffgenethresh=msrdiffgenethresh+genethreshincrement
end(while)
return bicluster
end(Iterative MSRdifference)
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3.3.1 Time Complexity of the Algorithm

The basic operation for the identification of biclusters is the
calculation of MSR of a submatrix. Time complexity for calculating MSR
is O(mn). This calculation is performed atmost m+n times for a single
iteration. Hence the worst case time complexity is O(t((m+n)mn)) where
m and n are the number of genes and conditions respectively and t is the

total number of iterations.

3.3.2 Experimental Results
3.3.2.1 Bicluster Plots for Yeast Dataset

In Figure 3.12 nine biclusters obtained using ISIMSRDT algorithm
are shown. Out of the nine biclusters, seven contain all 17 conditions and
they differ in appearance. In short, the algorithm is ideal for identifying
various biclusters with coherent values. All the biclusters are having mean
squared residue less than 300. From the bicluster plots which show
strikingly similar up-regulation and down-regulation it is concluded that
this is an ideal method for identifying biclusters from gene expression
data. For Yeast dataset biclusters are found by setting the initial value of
MSR difference threshold for condition list as 5. It is incremented by 5
after each iteration and the final value of MSR difference threshold is set
to 30. Initial value of MSR difference threshold for gene list is set to 1,
and it is incremented by 1 and the final value is set to 10. All the means
squared residues are lower than 300. Only biclusters with different shapes

are selected.
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Figure 3.12 Nine biclusters found for the Yeast dataset. Bicluster labels are (ya4), (yb4),
(ycd), (yd4), (yed), (yf4), (yg4), (yh4) and (yi4) respectively. In the bicluster
plots X axis contains conditions and Y axis contains expression values. The
details about biclusters can be obtained from Table 3.13 using bicluster label.
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Table 3.15
Information about Biclusters of Figure 3.12
Bicluster | Number Numpe_r of | Bicluster MSR Row
Label | of Genes | Conditions | Volume Variance
(yaS) 98 17 1666 199.9381 591.9217
(yb5) 107 17 1819 199.9826 486.3663
(yc5) 43 17 731 199.8613 550.3640
(yd5) 50 17 850 199.5999 511.3709
(yeS) 127 17 2159 199.9656 471.1995
(yfs) 19 16 304 199.9141 564.4940
(yg5) 99 17 1683 199.9524 419.2172
(yh5) 188 13 2444 199.9713 353.8271
(yi5) 110 17 1870 199.9499 515.1427
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In the above Table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and number of columns (conditions) of the bicluster respectively.
The fourth column reports the volume of the bicluster and the fifth
column contains the mean squared residue or Hscore of the bicluster and

the last column contains the row variance.

3.3.3.2 Bicluster plots for Human Lymphoma Dataset

Expression Values

Expression Values

0 5 1 15 2 25 3 B 0 o 10 2 0 ] 50 E) 0 R

Expression Values
Expression Values

o 5 10 5 20 > El
Condiions

Figure 3.13 Nine biclusters found for the Lymphoma Dataset. The labels of biclusters
are (1a4), (1b4), (Ic4), (1d4), (1e4), (1f4), (Ig4), (1h4) and (1i4) respectively. In
the bicluster plots X axis contains conditions and Y axis contains
expression values. The details about biclusters can be obtained from Table
3.16 using bicluster label.
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Figure 3.13 shows nine biclusters obtained by ISIMSRDT algorithm
on Human Lymphoma dataset. Here for condition list the initial value of
MSR difference threshold is set to 30 and it is incremented by 30 after each
iteration and the final value is set to 90. For the gene list the initial value of
MSR difference threshold is set to 50 and it is incremented by 50 after each
iteration and final value is set to 150. Experiments are conducted using
other values also. All the bicluster plots show strikingly similar up-

regulation and down-regulation. All the MSR are lower than 1200.

Table 3.16
Information about biclusters of Figure 3.13
Bicluster | Number | Number of Bicluster Row
Label | of Genes | Conditions |  Volume MSR Variance
(la4) 280 10 2810 1001.40 2200.1
(Ib4) 10 74 740 1199.00 4208.8
(Ic4) 86 40 3440 999.88 2021.6
(1d4) 155 39 6045 999.92 1102.4
(led) 51 51 2550 999.93 3139.5
(1f4) 172 62 10664 1199.80 1342.3
(1g4) 10 83 840 1194.90 5082.6
(1h4) 10 92 920 1197.40 5760.1
(1i4) 20 29 580 987.80 4318.2

In the above Table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and number of columns (conditions) of the bicluster respectively.
The fourth column reports the volume of the bicluster and the fifth
column contains the mean squared residue or hscore of the bicluster. The

last column contains the row variance.
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3.3.3 Advantages of ISIMSRDT Algorithm

This algorithm has various advantages over the MSRT and MSRDT
algorithms. In the case of MSRT algorithm the added node is removed
only when the MSR of the bicluster exceeds 6 (MSR threshold). But when
MSR difference threshold is applied in ISIMSRDT algorithm there is
more restriction on the incremental value of MSR. This means that the
elements in the biclusters are more tightly packed. This will result in
biclusters of larger size and low MSR score. Hence ISIMSRDT method
can produce better biclusters compared with other algorithms like MSRT.
The ISIMSRDT algorithm gives the possibility of getting more genes and
conditions compared to MSRDT algorithm. In MSRDT there is the
disadvantage of finding a suitable value for MSR difference threshold. If
a small value is assigned bicluster will be of small size. On the other hand
if a big value is assigned the elements of the resulting bicluster will not be
tightly co-regulated. This disadvantage of MSRDT can be overcome by
using ISIMSRDT where MSR difference threshold is initialized with a
small value and incrementing it after each iteration. There is another
advantage of using iterative search in ISIMSRDT algorithm. The
incremental increase in MSR of a gene or condition not included in a
bicluster will vary as the size of the bicluster changes. For example in the
case of bicluster labeled (1h4) in Figure 3.13 the MSR value of the
bicluster when condition 95 is added is 1200.6. Since this is greater than
MSR threshold for Lymphoma dataset (1200) condition 95 is removed
from the bicluster. After adding condition 96, if condition 95 is added the
MSR of the resulting bicluster is only 1191.9. This is less than 2000 and
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hence after adding 96 if 95 is added it is not removed. Since conditions
and genes are searched sequentially in all these algorithms, this is possible
only if there is an iterative search. This is another option in iterative
search for accommodating more genes and conditions. That means apart
from finding a suitable value for MSR difference threshold iterative
search has got another advantage of selecting the (n-k)™ gene or condition
whose incremental increase in MSR value reduces after adding the n™
gene or condition. Moreover in the case of ISIMSRDT algorithm also
inverted rows are eliminated. In Lymphoma dataset a bicluster (label 1h4)

with 92 conditions is obtained.

3.3.4 Details of Significant Biclusters obtained by ISIMSRDT Algorithm

550

500

450

400

Expression Values
N
8
Expression Values

350

300

250

Figure 3.14 Four significant biclusters obtained by the ISIMSRDT algorithm on Yeast
dataset. The bicluster labels are s41, s42, s43, s44. The details about
biclusters can be obtained from Table 3.17 using bicluster label.
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Table 3.17
Information about Biclusters of Figure 3.14
Bicluster | Number of Number of MSR Row
Label Genes Conditions Variance
S41 98 17 199.9677 482.7704
S42 98 17 199.9924 600.9078
S43 33 17 299.2235 1970.1000
S44 33 10 2422713 1125.8000

In the first Dbicluster S41 selected for testing the biological

significance there are 98 genes namely YBLO083C, YBR293W, YCLO16C,
YCLO031C, YCL054W, YCRO72C,YCRO87W, YDLO008W, YDL076C, YDL150W,
YDL153C, YDL166C,YDL167C, YDL231C, YDL243C, YDRO17C, YDRO60W,
YDRO83W, YDRI120C, YDR121W, YDR170C, YDR172W, YDR211W, YDR234W,
YDR235W, YDR262W,YDR289C, YDR299W, YDR311W, YDR312W, YDR339C,
YDR352W, YDR361C, YDR365C, YDR392W, YDR449C, YDR469W, YDR478W,
YDRS518W, YDR542W, YELO15W, YELO55C, YEROO5W, YER099C, YERI107C,
YER171W, YGLO85W, YGL099W, YGL214W, YGR042W, YGR090W, YGRI187C,
YGR200C, YGR216C, YHRO062C, YJLOI1C, YJL069C, YKRO60W, YLLOOSW,
YLLO034C, YLRO88W, YLR146C, YLR222C, YLR401C, YML066C, YMLO0O93W,
YMRO093W, YMR295C, YNL132W, YNL163C, YNL164C, YNL186W, YNLI199C,
YNROO3C, YNRO38W, YOL021C, YOL022C, YOLO80C, YOL124C, YOL140W,
YOL144W, YOR006C, YOR056C, YORO61W, YOR098C, YORI123C, YOR145C,
YOR160W, YOR252W, YOR272W, YOR279C, YPL047W, YPL101W, YPL126W,
YPL140C, YPL183C, YPR0O53C, YPR112C.

In the second bicluster S42 there are 98 genes. They are YAL0OO3W,
YALO38W, YARO009C, YAR020C, YBL027W, YBLO030C, YBL072C, YBLO77W,
YBL092W, YBL113C, YBR0O09C, YBR0O31W, YBR048W, YBR084C-A, YBR106W,
YBR118W, YBRI181C, YBR189W, YCRO13C, YCRO31C, YDLO61C, YDLO75W,
YDLO081C, YDLO083C, YDL130W, YDL136W, YDLI91W, YDL192W, YDL208W,



Chapter 3

YDL228C, YDL229W, YDRO12W, YDR025W, YDRO50C, YDR064W, YDR382W,
YDR385W, YDR433W, YDR447C, YDR450W, YDR471W, YEL034W, YER074W,
YER117W, YGL102C, YGRI118W, YJL188C, YJL190C, YJRO09C, YJR123W,
YKLO056C,YKL060C,YKL096W-A, YKL152C, YKL153W, YKRO57W, YKR094C,
YLRO029C, YLRO75W, YLRO76C, YLRI10C, YLR167W, YLR185W, YLR249W,
YLR325C, YLR340W, YLR406C, YLR441C, YLR467W, YML026C, YMLO39W,
YMLO045W, YML0O63W, YML133C, YMR045C, YMR202W, YNLO30W, YNLO67W,
YNL162W, YNL302C, YNL339C, YOL039W, YOL040C, YOLO083W, YORI167C,
YOR234C, YOR293W, YOR312C, YOR369C, YPLO037C, YPLO81W, YPLO090C,
YPL142C, YPL143W, YPL283C, YPR043W, YPR102C, YPR204W.

In the third bicluster S43 there are 33 genes. They are YAR007C,

YARO00O8W, YBL035C, YBR0O88C, YBRO8OW, YCR0O65W, YDLOO3W, YDLO10W,
YDLO018C, YDL164C, YDRO097C, YDR507C, YER095W, YFLOOSW, YGRI15IC,
YGRI152C, YHRI154W, YIL026C, YJLO074C, YJLI81W, YJL187C, YKLO042W,
YKL113C, YLL022C, YLR103C, YLR236C, YML021C, YML102W, YMRO76C,
YMRO78C, YNL273W, YNL312W, YORO074C.

In the fourth bicluster S44 there are 33 genes namely YBRO38W,

YBRI138C, YCLOI12W, YDLO039C, YGL021W, YGR023W, YGRO035C, YGR092W,
YGR108W, YHRO023W, YHRI51C, YIL106W, YIL162W, YJLO51W, YJR092W,
YKL129C, YKR021W, YLR190W, YLR353W, YML033W, YML034W, YML119W,
YMRO01C, YMRO032W, YMR213W, YMR291W, YNLO53W, YNL171C, YOL130W,
YORI152C, YPL148C, YPL242C, YPR119W

The Table 3.18 given below shows the significant GO terms used to
describe the set of genes of the biclusters of Figure 3.14 for the process,
function and component ontologies. The common terms are described
with increasing order of p-values or decreasing order of significance. In

Table 3.18 the entry of the second column with the title process for the
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bicluster S42 contains the term Translation(62, 2.03e-49) which means that
62 out of the 98 genes of the bicluster are involved in the process of
translation and their p-value is 2.03e-49. Second and third entries indicate
that 65 out of 98 genes are involved in cellular protein metabolic process
and protein metabolic process. This proves that the bicluster contains
biologically similar genes and ISIMSRDT algorithm used here is capable
of identifying biologically significant biclusters.
Table 3.18

Significant Shared GO Terms (Process, Function and Component)
of the Biclusters shown in Figure 3.14

Bicluster Process Function Component
S41 Ribosome biogenesis snoRNA binding (4, | Nucleolus(31, 2.56e-19)
(39, 3.08e-22) 0.00480) Preribosome (23, 4.26e-
ribonucleoprotien 15) nuclear lumen(43,
complex biogenesis 1.59¢-13) Intracellular
(40, 6.25¢-21) cellular (90, 0.00018)
component

biogenesis at cellular
level((41, 1.68e-18)

cellular nitrogen

compound metabolic
process(55, 1.86e-06)

S42 Translation (62, 2.03e- Structural constituent | Cytosolic ribosome
49) cellular protein of ribosome (57, 1.51e-60) Cytosolic
metabolic process (55, 6.05¢-53) part (57, 3.92e-55)
(65, 3.08e-24) Protein | Structural molecule | Ribosome (61, 3.60e-51)
metabolic process activity Cytoplasmic part ( 74,
(65, 1776'23) Cellular (56, 3976'42) 723@'12)
metabolic process i

translation

(77,9.97¢-07) elongation factor

activity(5, 7.16e-05)
RNA binding(15,
0.00208)
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S43 DNA metabolic structure-specific Chromosome (16, 2.01e-
process(18, 1.11e-10) DNA binding (5, 09) chromosomal
DNA repair(15, 3.25e- | 0.00172) double- part(14, 1.03e-07)
10) cell cycle(19, stranded DNA Nuclear chromosome
1.13e-09) nucleobase, | binding (4, (13, 4.50e-07)
nucleoside, nucleotide | 0.00202) replication fork (8, 6.19e-
and nucleic acid 07) nucleus (24, 3.3%-
metabolic process (22, 05)
6.05e-05)

S44 Cytokinesis (8, 7.07¢- 12 out of 33 input Cellular bud(13, 3.90e-

05) cell division (8,
0.00043) cell cycle
cytokinesis (6,
0.00130)

cell cycle process (12,
0.00171)

genes are directly
annotated to root
term 'molecular
function unknown

10)
cellular bud neck
(11, 6.47¢-09)

Site of polarized
growth(12, 5.50e-08)

cellular bud neck
contractile ring

(5, 3.23¢-07)

Figure 3.15 shows the significant GO terms for the set of 98 genes

in bicluster S42 along with their p values. It shows the branching of a

generalized molecular function into sub-functions like structural molecule

activity, binding, protein tag, enzyme regulator activity and catalytic

activity. These activities are clustered using genes to produce the final

result. Figure 3.15 is obtained when gene ontology database is searched

by entering the names of genes in bicluster S42 and by selecting function

ontology.
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Figure 3.15 Sample of 98 genes for the bicluster S42, with corresponding GO terms
and their parents for Function Ontology
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3.3.5 Comparison with other Algorithms
3.3.5.1 Comparison of based on Statistical and Biological Significance

In Table 3.19 the GO terms along with their p-values and
percentage of genes associated with the GO term in the bicluster for the
ISIMSRDT is compared with MOGAB, SGAB, CC, RWB, Bimax,
OPSM, ISA and BiVisu. From the Table it is clear that in terms of p-
value obtained by a bicluster which is used to denote statistical
significance ISIMSRDT is better than all the other algorithms namely
MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu for all the
five GO terms. For the first GO term the percentage of genes involved is
better than that of CC, RWB, OPSM, ISA and BiVisu. For the second,
fourth and fifth GO terms the percentage of genes involved is better than
that of all the other algorithms. For the third GO term the percentage of
genes involved is better than that of all the other algorithms except

MOGAB.
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3.3.5.2 Comparison of Biclusters Produced by MSRT, MSRDT and
ISIMSRDT Algorithms using the Same Seed

A comparison of these three algorithms is given on the basis of
size of biclusters obtained and their MSR value starting with the same
seed and the result is given in Table 3.20. In terms of bicluster size
ISIMSRDT is always better than the other two algorithms. MSRDT is
better than MSRT for all seeds except for seed 3. In the case of
biclustering using MSRDT algorithm there is a single but different MSR
difference threshold value for the gene list and condition list. In this case
the parameters for the MSRDT algorithm for Yeast dataset are condition
difference threshold=30 and gene difference threshold=10. The
parameters for ISIMSRDT are initial value of condition difference
threshold=5, increment=5 and the final value of condition difference
threshold=30. Similarly the parameters for gene list are initial value of
gene difference threshold=1, increment=1 and the final value of gene
difference threshold=10. From Table 3.17 it is clear that ISIMSRDT
produces large size biclusters compared to MSRDT. Hence iterative
search with incremental MSR difference threshold is always better than

assigning a single value for MSR difference threshold.

In the above Table the first column reports the seed number. The
second column reports the size and MSR score of the bicluster generated
by the ISIMSRDT algorithm. The third column reports the size and MSR
score of the bicluster generated by the MSRDT algorithm. The fourth

column reports the size and MSR score of the bicluster generated by the
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MSRT algorithm. Figure 3.16 displays three biclusters obtained by the

three algorithms from the same seed.

Table 3.20

Difference between Biclusters obtained by the Three Algorithms

Starting from the Same Seed

> Bicllt?slt'(\a/ll'SRDT Biclus'lc\:rs o Biclustlt\e/ll‘SRT

No Size WISIR Size . Size .
1| 110517 | 199.95 7816 19996 | 75%17 | 199.95
2 93*17 | 199.79 65417 19888 | 57417 | 199.09
3 99%17 | 199.95 74417 19960 | 92%17 | 19971
4 9617 | 199.69 86*17 19839 | 79%17 | 19896
s | 125417 | 19991 | 119%17 199.54 | 117%17 | 199.94

Figure 3.16: Biclusters from same seed for the three algorithms.

The details about the biclusters shown in Figure 3.16 are given in

Table 3.21. From the bicluster plots it is clear that in this case MSRDT

algorithm gives the best bicluster in terms of row variance in this case.
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Table 3.21
Information about Biclusters given in Figure 3.16.
Bicluster . . Row
Algorithm Size MSR .
Label Variance
(m) MSRT 15*15 198.58 610.64
(n) MSRDT 17*16 199.37 619.26
(0) ISIMSRDT 19*16 199.91 564.49

In the above table the first column reports the label of the bicluster.
The second column reports the algorithm from which the bicluster is
generated. The third column reports the size of the bicluster. The fourth
column reports the MSR and the last column reports the row variance of

the biclusters.

In the case of Lymphoma dataset starting from the same seed
MSRT and MSRDT algorithms produced biclusters with 91 conditions.
Even though both are of size 10*91 the bicluster produced by MSRDT is
better in terms of MSR value (low) and row variance (high). But in the
case of ISIMSRDT it should be noticed that this algorithm produced
bicluster with 92 conditions and higher row variance from the same seed

(Bicluster with label 1h4 of Table 3.16).

3.3.5.3 Comparison based on Bicluster Size and MSR

The Table 3.22 given below provides a comparative summarization
of the results of the performance of related algorithms in Yeast dataset.
All the algorithms listed in Table 3.22 are having MSR value more or less
equal to 200, even though the maximum Ilimit of 6 is 300. The
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performance of ISIMSRDT algorithms in comparison with that of SEBI
[36], Cheng and Church’s algorithm (CC) [29], and the algorithm FLOC
by Yang et al. [106] and DBF [109] for the Yeast dataset are given. For
ISIMSRDT average number of conditions is better than that of all the
other algorithms. In the case of ISIMSRDT algorithm presented here
average number of genes is greater than that of SEBI whereas the average
number of conditions is better than that of all other algorithms. Average
volume is greater than that of SEBI and CC. Average residue is lower
than that of CC and SEBI. The ISIMSRDT algorithm has high value for
the largest bicluster size compared to SEBI and FLOC.

Table 3.22

Performance Comparison between ISIMSRDT and
Other Algorithms for Yeast Dataset

Algorithm AMR ANG ANC AV LB
ISIMSRDT 199.96 123.80 16.20 1954.20 2444
SEBI 205.18 13.61 15.25 209.92 1394
CcC 204.29 166.71 12.09 1576.98 4485
FLOC 187.54 195.00 12.80 1825.78 2000
DBF 114.70 188.00 11.00 1627.00 4000

AMR is Average mean squared Residue. ANG is Average Gene
Number of genes. ANC is Average Number of Conditions. AV is
Average Volume. LB is Largest Bicluster. As clear from the above table
the average mean squared residue, the average number of genes and

conditions, average volume and largest bicluster size are compared for
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various algorithms. For the average mean squared residue field lower

values are better where as higher values are better for all other fields.

Table 3.23 given below provides a performance comparison for
Human B-cell Lymphoma dataset. Value of & is set to 1200 for
Lymphoma dataset. For ISIMSRDT average MSR is better than that of all
the other algorithms except CC. Here the average gene number is greater
than SEBI. Average value of condition is better than all other algorithms.

Average volume is better than that of SEBI.

Table 3.23

Comparison between ISIMSRDT and other
Algorithms for Human Lymphoma Dataset

Algorithm ANG ANC AV AMR
ISIMSRDT 98.00 48.63 3458.62 923.47
SEBI 14.07 43.57 615.84 1028.84
CC 269.22 24.50 4595.98 850.04

AMR is Average mean squared Residue. ANG is Average Gene
Number of genes. ANC is Average Number of Conditions. AV is
Average Volume. As clear from the above table the average mean squared
residue, the average number of genes and conditions and average volume
are compared for various algorithms. For the average mean squared
residue field lower values are better where as higher values are better for

all other fields.
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Usually multi-objective algorithms will produce biclusters of larger
size. But in the case of multi-objective evolutionary computation [15] the
maximum number of conditions obtained is only 11 in the case of Yeast
dataset and 40 in the case of Human B-cell Lymphoma dataset. But in this
method there are biclusters with all 17 and 92 conditions for Yeast and
Lymphoma datasets respectively. For the Yeast dataset the maximum
number of genes obtained for this algorithm in all the 17 conditions is 127
with MSR value 199.9656. The maximum available in all the literature
published so far is in multi-objective PSO [62]. They obtained 141 genes
for 17 conditions with MSR value 203.25. Moreover the ISIMSRDT
algorithm provides better performance in terms of speed compared to all
the metaheuristic and evolutionary algorithms. Hence ISIMSRDT
algorithm has a definite comparative differential advantage over the
previous algorithms. In the multi-objective PSO, the maximum number of
conditions obtained for Lymphoma dataset is 84. But for ISIMSRDT

algorithm a bicluster with 92 conditions is obtained.

3.4 SGSC Algorithm

In this section a new algorithm is developed for biclustering gene
expression data. Seeds obtained from K-Means are enlarged using a
method in which the constraints used for genes and conditions are set
separately to identify biclusters. Results obtained here are better than
some of the metaheuristic and multi-objective evolutionary methods. The
expansion for SGSC is Seed Growing using Separate Constraints for

genes and conditions. In the seed growing phase after adding a gene or
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condition the MSR value reduces or increases. Experiments are conducted
by calculating MSR difference threshold. While experiments are done it is
found that, reducing the difference threshold for conditions removes the
conditions which make significant change in the expression level,
whereas reducing the difference threshold for the genes increases
coherence. A highly coherent gene which shows similar fluctuation will
produce very small change in MSR value when added to the bicluster
except in the case of scaling patterns. A negatively correlated gene will
make a large variation in the MSR value. Moreover, the incremental
increases in MSR caused by adding genes are small compared to that of
conditions. But when a gene is added to the bicluster the pattern will not
change. When a condition is added to the bicluster, the pattern of the
bicluster will change. Conditions which cause a large variation in the
expression level of genes will make a large incremental increase in MSR
value also. The mean squared residue is a popular measure used to
evaluate the quality of a bicluster. One drawback however is that it is
biased towards flat biclusters with low row variance [24]. The row
variance in a bicluster is increased by adding certain conditions in which
the expression level of the gene is very high. Such conditions when added
will increase the mean squared residue also. So optimization problems
which try to add conditions by reducing MSR will rarely find biclusters

with high row variance.

All these observations lead to the conclusion that to include those
conditions which cause a large variation which in turn helps to get

biclusters with high row variance the MSR difference threshold for the
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condition should be large and to increase coherence the MSR difference
threshold for the gene should be small. So the constraint for conditions is
set to the maximum allowable limit that is the MSR threshold and the
allowable incremental increase in genes is set to a very small value.
Hence after adding a condition the MSR value of the resulting submatrix
is calculated in order to verifying whether it exceeds the given MSR
threshold. If it exceeds the given MSR threshold it is removed from the
submatrix. After adding the gene MSR value of the resulting submatrix is
calculated in order to verifying whether it exceeds the MSR difference
threshold or the MSR threshold. If so the gene is removed from the
bicluster. This process is continued till the last gene or condition is
verified for inclusion in the bicluster. MSR difference threshold is set to
very small value. In this study the MSR difference threshold is relevant
for genes only and it is in the range of 0.1 to 10. Usually increasing this
value increases the number of genes and reduces row variance. In this
method some of the seeds will result in biclusters with large row variance.
The results obtained here are superior compared to that of other
algorithms which use multi-objective optimization methods. It is easy to
get biclusters of different shapes since different seeds will result in
different biclusters almost all the time with a few exceptions. This
algorithm is deterministic in the sense that for a given threshold value of
MSR, the MSR difference threshold and for a given seed, the repeated
executions, will produce the same result. A pseudo code description of the

algorithm is given below.
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Algorithm Separateconstraintsgenecond(seed, 6,x)
/I 6 denotes the MSR threshold

//x denotes the MSR difference threshold for genes //which is set to a small
value

bicluster :=seed; j:=1;
While (j <=total no_conditions)
if condition] j] is not included in the bicluster

Add all elements of condition[j] corresponding to genes already included to
the bicluster

Msrbicluster=MSR (bicluster)
if (Msrbicluster> 9) remove elements of condition| j]
from the bicluster and restore previous MSR value
endif
endif
j=j+l1
end(while)
1=1;
While (i <=total no_ genes)
If genel[i] is not included in the bicluster

Add all elements of gene[i] corresponding to conditions already included to
the bicluster

Msrbicluster=MSR (bicluster)
MSRDifference=Incremental Increasein. MSR(bicluster)
if (Msrbicluster > & or MSRDifference>x)

remove elements of gene[i] from the bicluster
restore the previous MSR value

endif

endif

i=i+1; end(while)

return bicluster

end(Separateconstraintsgenecond)
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3.4.1 Time Complexity of the Algorithm

The basic operation for the identification of biclusters is the
calculation of mean squared residue of a submatrix. Time complexity for
calculating MSR is O(mn). In order to include a gene or a condition, the
MSR value is calculated once. There are m+n genes and conditions.
Hence this calculation is performed atmost m+n times. That means the
worst case time complexity of the algorithm is O((m+n)mn) where m and
n are the number of genes and conditions respectively. This algorithm is
very fast compared to evolutionary or metahueristic algorithms. The main
operation for finding bicluster is the calculation of the MSR value of a
submatrix. In this algorithm, the number of submatrices whose MSR is to
be calculated is at most m+n, where m and n are the number of genes and
conditions respectively. Usually m+n will be less than 4200. In the case
of evolutionary algorithms the number of submatrices whose MSR is to
be calculated is P*I where P is the number of populations and I is the

number of iterations. For SEBI and SMOB the value of P*I is 20000.

3.4.2 Experimental Results

Experiments are conducted on the Yeast Saccharomyces cerevisiae
cell cycle expression dataset and Human Lymphoma dataset in order to

evaluate the quality of the proposed algorithm.

3.4.2.1 Bicluster Plots for Yeast Dataset

In Figure 3.17, out of the many biclusters found by the algorithm only
12 biclusters with different shapes are shown. From the bicluster plots it is

clear that highly coherent biclusters are obtained using this method. When
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this algorithm is used some of the seeds produce biclusters with row variance
above 2000. In SEBI the attempt was to identify biclusters with high row
variance by adjusting the fitness function. The minimum value of row
variance they obtained for the biclusters in Yeast dataset was 317.23. In this
study, all biclusters obtained are with row variance above 317.23. Biclusters

with all 17 conditions are obtained using this method.

Figure 3.17 Sixteen biclusters obtained using SGSC algorithm on Yeast dataset. From
left to right and from top to bottom the bicluster labels are (ya5), (yb5),

(ye3), (vd5), (yes), (y15), (yg5), (yhS), (yi5), (vi3), (yk5), (y15) ym)),
(yn5), (yo5) and (ypS5) respectively. The details of the biclusters can be

obtined from Table 3.24 using bicluster label.
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Table 3.24
Information about Biclusters of Figure 3.17
Bicluster | Number of | Number of Bicluster MSR Row

Label Genes Conditions | Volume Variance
Yas 12 17 204 197.66 2211.80
Yb5 29 17 493 95.45 643.59
Yc5 29 11 319 226.03 1301.50
Yd5 37 11 407 259.14 1454.90
Yes 12 17 204 182.31 1092.30
Y15 25 17 425 266.87 1079.50
Yg5 22 17 374 183.04 545.83
Yh5 24 12 288 244 .92 917.74
Yi5 36 17 612 229.25 643.17
Yj5 32 17 544 298.21 1444.70
Yk5 17 17 289 294.08 1253.90
Y15 36 17 612 194.12 592.80
Ym5 125 9 1125 163.35 720.08
Yn5 107 13 1391 166.99 405.97
Yo5 32 13 416 225.69 743.69
Yp5S 87 9 783 189.52 447.71

In the above Table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and of columns (conditions) of the bicluster respectively. The
fourth column reports the volume of the bicluster and the fifth column
contains the mean squared residue of the bicluster and the last column

contains the row variance of the bicluster.
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3.4.2.2 Bicluster Plots for Lymphoma Dataset

In Figure 3.18, out of the many biclusters found by the algorithm,
only 12 biclusters are shown. The genes in the bicluster present a similar
behavior under a set of conditions. Bicluster (la5) contains the maximum
number of conditions obtained in this method i.e. 91. Bicluster (Ie5) is
having row variance above 7000. The MSR value of the bicluster (115) is
only 797.3 but the row variance is above 5000. As Federico Divina and
Jesus S. Aguilar-Ruize has observed [37], even though there are no
shifting and scaling patterns [10] in the biclusters of Lymphoma dataset,

local shifting patterns are obtained in some biclusters.

B 8 8 & .

Figure 3.18 Twelve biclusters obtained using SGSC algorithm on Lymphoma dataset.
From left to right and from top to bottom the bicluster labels are (la5),
(Ib5), (Ic5), (1dS), (1e5), (If5), (1g5), (1h5), (1i5), (1j5S), (Ik5) and (115)
respectively. The details of the biclusters can be obtained from Table 3. 25
using bicluster label
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Table 3.25
Information about Biclusters of Figure 3. 18
Bicluster Number | Number of | Bicluster MSR Row
Label of Genes | Conditions | Volume Variance
la5 10 91 910 1190.5 5308.5
Ib5 68 15 1020 1085.0 3350.6
Ic5 6 62 372 1048.8 2886.7
1d5 11 73 803 1150.9 4234.6
le5 11 34 374 1142.0 7936.9
1f5 26 44 1144 1032.7 3195.6
g5 54 25 1350 894.3 1621.5
1h5 61 10 610 604.1 1307.9
1i5 10 77 770 1140.5 4630.4
1j5 12 30 360 1118.6 3572.9
1k5 48 48 2304 946.8 2168.7
115 11 30 330 797.3 5314.8

3.4.3. Advantages of SGSC Algorithm

This algorithm identifies biclusters with very high coherence. With

the help of bicluster plot it can identify biclusters with very high row

variance and MSR above the threshold. Some of the shifting and scaling

patterns can be identified by this algorithm.

3.4.4 Details of Significant Biclusters obtained by SGSC Algorithm

Figure 3.19 Four significant biclusters obtained by the SGSC algorithm on Yeast

dataset. The bicluster labels are s51, s52, s53, s54. The details about
biclusters can be obtained from Table 3.26 using bicluster label.
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Table 3.26
Information about Biclusters of Figure 3.19
Bicluster | Number of Number of MSR Row
Label Genes Conditions Variance
S51 23 17 131.3915 506.7582
S52 63 17 167.4308 615.9798
S53 31 17 297.1918 2036.0000
S54 33 10 243.6711 1135.7000

The biological relevance of biclusters obtained using

SGSC

algorithm is verified using the four biclusters shown in Figure 3.19. GO

annotation database is used to verify the biological significance of

biclusters.

In the first bicluster S51 selected for testing the biological

significance there are 23 genes. They are YCL031C, YCRO87W, YDLOOSW,
YDL153C, YDL166C, YDL167C, YDRO83W, YDR121W, YDR172W, YDR211W,
YDR289C, YDR339C, YDR352W, YDR365C, YDR392W, YDR469W, YDR478W,
YDR518W, YDR542W, YGR200C, YOL140W, YOR272W, YPRO53C.

In the second bicluster S52 there are 63 genes. They are YAL0OO3W,
YBLO072C, YBL092W, YBR0O09C, YBR031W, YBR048W, YBR084C-A, YBR106W,
YBR118W, YCRO13C, YCRO31C, YDLO061C, YDLO75W, YDLO81C, YDLO&3C,
YDL130W,YDL136W, YDL191W, YDL192W, YDL208W, YDL228C, YDL229W,
YDRO12W, YDRO025W, YDRO50C, YDR064W, YDR382W, YDR385W, YDR433W,

YDR447C,
YLR167W,

YDR450W, YDR471W, YGL102C, YKL152C, YKL153W, YLRO029C,
YLR325C, YLR406C, YLR441C, YML026C, YMR202W, YNLO30W,

YNLO67W, YNL162W, YNL302C, YOLO39W, YOL040C, YOL127W, YORI167C,

YOR234C,

YPL142C, YPL143W, YPL283C, YPR043W,YPR102C, YPR204W.

YOR293W, YOR312C, YOR369C, YPL037C, YPLO81W, YPL090C,
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In the third bicluster S53 there are 31 genes. They are YAR007C,

YARO00O8W, YBLO035C, YBRO88C, YBRO89W, YDLO03W, YDLOI8C, YDL164C
YDRO097C, YDRS507C, YFLOO8W, YGRI52C, YHRI154W, YIL026C, YJLO074C,
YJL181W, YIJL187C, YKLO042W, YKL113C, YLL022C, YLRI103C, YLR383W,
YLR386W, YMLO021C, YML102W, YMR076C, YMRO078C, YMR305C, YNL312W,
YOLO090W, YORO074C.

In the fourth bicluster S54 there are 33 genes. They are YBRO38W,

YBRI38C, YCLOI12W, YDLO039C, YGLO021W, YGR023W, YGRO035C, YGR092W,
YGRI108W, YHRO023W, YHRISIC, YIL106W, YIL162W, YJLO51W, YJRO92W,
YKL129C, YKR021W, YLR190W, YLR353W, YML033W, YMLO034W, YMLI119W,
YMRO001C, YMRO32W, YMR291W, YNLO53W, YNL171C, YOL130W, YOR152C,
YPL148C, YPL242C, YPROO7C, YPR119W.

The Table 3.27 given below shows the significant GO terms used to
describe genes of the biclusters of Figure 3.19 for the process, function
and component ontologies. The common terms are described with
increasing order of p-values or decreasing order of significance. In Table
3.27 the first entry of the second column with the title process contains
the term rRNA processing (7, 0.00144) which means that 7 out of the 23
genes of the bicluster are involved in the process of rRNA processing
and their p-value is 0.00144. Second entry indicates that 8 out of the 23
genes are involved in ncRNA processing. Also from the table it is clear
that the biclusters are distinct along each category. This proves that the
bicluster contains biologically similar genes and the SGSC algorithm used
here is capable of identifying biologically significant biclusters from

different GO categories.
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Table 3.27

Significant Shared GO Terms (Process, Function, Component)

of Biclusters shown in Figure 3.19

Bicluster Process Function Component
S51 rRNA processing 10 out of 23 input | Nucleolus (6, 0.00622)
(7,0.00144) ncRNA genes are directly
processing (8, 0.00171) | annotated to root
RNA metabolic term 'molecular
process(13, 0.00184) function
gene expression ( 14, unknown':
0.00678)
S52 Translation (46,3.12e- Structural Cytosolic ribosome
40) cellular protein constituent of (42, 1.30e-46) cytosolic
metabolic process (49, ribosome (42, part (42, 5.45e-43)
9.61e-24) protein 4.42¢-44) ribosome(45, 6.05¢-41)
metabolic process(49, structural molecule | organelle (54, 0.00081)
3.96¢e-23) cellular activity (42,
metabolic process (55, 3.48e-35)
5.85e-08)
S53 DNA repair (16,4.68e- | Double-stranded Chromosome (15,
12) DNA metabolic DNA binding(5, 8.04¢-09) chromosomal
process (18, 2.50e-11) 8.01e-05) part(13, 5.29¢-07)
response to DNA DNA secondary mitotic cohesin
damage stimulus (16, structure binding complex (4, 5.95e-07)
5.29e-11) nucleobase, (3,0.00162) nucleus (23, 3.19e-05)
nucleoside, nucleotide structure-specific
and nucleic acid DNA binding (5,
metabolic process (21, .00198)
7.56e-05) guanine/thymine
mispair binding
(2, 0.00469)
S54 Cytokinesis (8, 6.87¢- 13 out of 33 input | Cellular bud ( 13, 3.41e-
05) cell cycle process genes are directly 10) cellular bud
(13, 0.00024) cell cycle | annotated to root neck(11, 6.47e-09) site
(13, 0.00039) cell term 'molecular of polarized growth
division (8, 0.00042) function (12, 4.96e-08) cellular
unknown': bud neck contractile
ring (5, 3.23e-07)
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Feb 14, 2041

Figure 3.20 Sample of genes for the bicluster S51, with corresponding GO terms and
their parents for Component Ontology
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Figure 3.20 shows the significant GO terms for the set of genes in
bicluster S51 along with their p values. It shows the branching of cellular
component into sub-components like cell, cell part, membrane-enclosed
lumen etc. These components are clustered using genes to produce the
final result. Figure 3.20 is obtained when gene ontology database is
searched by entering the names of genes of bicluster S51 and by selecting

component ontology.

3.4.5 Comparison with other Algorithms
3.4.5.1 Comparison on the basis of Statistical and Biological Significance

In Table 3.28, the GO terms along with their p-values and
percentage of genes associated with the GO term in the bicluster for the
SGSC algorithm is compared with that of MOGAB, SGAB, CC, RWB,
Bimax, OPSM, ISA and BiVisu. From the table it is clear that in terms of
the best p-value obtained by a bicluster which is used to denote
statistical significance, SGSC algorithm is better than MOGAB, SGAB,
CC, RWB, Bimax, OPSM, ISA and BiVisu for all the first, third, fourth
and fifth GO terms. For the second GO term the p-value obtained is better
than that of all the other algorithms except MOGAB. The percentage of
genes involved is better than that of all the other algorithms for all the five

GO terms.



Constraint Based Algorithms

Sl-ag'e

. PO-28'L S0-27¢ 90-26'¢ J— 11-2¢71 -
0 -2 -3
Aoorssos %ST91 e 60-1'C %8€'8 e "0t s 0r-TI'E
UONEZI[BI0] APAD %I TET EERNIN §52201¢ %€l 8
sisauazolgy B[22 Joju 1122 dnotaw pnq gm0 dnowso Hed jer dnjoqelat ssa001d UONE[SUBL],
xajduios AWYSIqeIS o aseyd 01 asuodsa APUOUIONN . et ¥NA .
urajoxd oajonuoqry | ISHamsa 1 N i VN
90| cls e
A a0 o = S
91-6"p bt %¢6S 60-21'1 e | e | €196 scars 142509
%8t €l ob$ T ssaoo1d %61 0EE0T S %Z6'LT sl %t 1L y
° Surpuiq ! Fuissaooud sisauadorg ssadoxd
Suissasoud wNY L a1j0qelaw ALWOSOWOIL) : N : ALWOSOLLOILY)) aWosoqIy
PREIRN | e VN xajdwod NOqRIAW YN
PAUOGIED urajoxd
oo_m:ccné
=6 T
81-98° Mum%om L0-21°¢ ,w_m.w.w__d 90-25C S1-96'] — pagc crachc
Y9¢°81 ssao0ud %979 mmuuo:_ %8TSI %EE’LT 0uch 1 b1 LS 000799 <
ssaooad JN2YIuASOlq | uonedLjIpow apeased Aquiasse 0 o v
dljoqelau o uone[suel] uone[suel ], Ued
ANOqRIdW VN am sawiAjodorg g AAAIVIN sisauaforg HOSOM)
23] OWOIIB[ S awosoqry ; -
0T2¢'6 01-26'9 80-28'C 80726t Pr-oTh'y
YLL91 %8E°9T %8E6 01-2¢'1 %C8LE 1g-2¢7] Irachyl SH-29°1 %L 99
Alquiasse 29 ssavoud ssasoad Yol b ssasoad 04EL'9€ %I1T O 949 €S HUNQNS | AWOSOqL Jo T
sisauadorg ajogelat uonEIIpoW | LR d1OS0IA)) JljoqeIdw UONB|SUBL], awosoqry [PwIosoqry uAMIsUod
awosoqry IBJINS 121014 VN [EAIRTININ
60-28°C .
g . U 11-2F'6 . . .
0T-211 rr-a9'¢ %CT 0l o/ (v 60-2£°6 ety g -t 9p-20£71
%€9°07 %LTLs | alpuesio N wsysc | wseos | SPORE ey %L'99 |
xajdwos Hed punoq ; Alquiasse e olc ° AWOSOQLL
- uoxd ) e J[0s0IA) | LB 21[0S0IA)
uraroxd oajonuoqry 21[0S0IAD) -auBIQUIAL - sisauaiorg JN[0SOILD) N0S01AD)
BT RRENIT | : awosoqry
nsIAY VSI NSdO Xeulg aMmy 20 avos aVOOIN JSOS SuLR

©1R 1SBaA 40) SWYIIOBY 18410 pue DSOS Ag paonpold swidal

09 1wediIubIs paysriug Ajreuonoun4 aal4 doj syl :1sa] aouedlyiubis [eaibojoig Jo 3nsay

8c¢'€alqelL




Chapter 3

3.4.5.2 Comparison based on Bicluster Size and MSR

The Table 3.29 given below provides comparative summarization of
the results of Yeast data involving the performance of related algorithms.
The performance of the SGSC algorithm, in comparison with the
performance of SEBI [36], SMOB [37], CC [29] and FLOC [106] are
given for the Yeast dataset. In the SGSC algorithm presented here, only
biclusters with row variance above 400 are taken into account, while
calculating the average of mean squared residue, number of genes and
conditions. For SGSC algorithm, the average MSR, average number of
genes and conditions and the average volume, are better than that of SEBI

an SMOB.

Table 3.29

Comparison between SGSC Algorithm and other
Algorithms for Yeast Dataset

Algorithm AMR ANG ANC AV
SGSC 200.77 37.35 15.55 537.75
SEBI 205.18 13.61 15.25 209.92
SMOB 206.17 27.28 15.46 453.48

CcC 204.29 166.71 12.09 1576.98
FLOC 187.54 195.00 12.80 1825.78

AMR is Average mean squared Residue. ANG is Average Gene
Number of Genes. ANC is Average Number of Conditions. AV is
Average Volume. As clear from the above Table the average MSR, the

average number of genes and conditions, average volume are compared
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for various algorithms. For the average MSR field lower values are better

where as higher values are better for all other fields.

Table 3.30

Performance Comparison between SGSC and other
Algorithms for the Human Lymphoma Dataset

Algorithm AMR ANG ANC AV
SGSC 1053.98 27.89 52.26 1169.63
SEBI 1028.84 14.07 43.57 615.84
SMOB 1019.60 11.60 78.47 709.13

CC 850.04 269.22 24.50 4595.98

AMR is Average mean squared Residue. ANG is Average Gene
Number of Genes. ANC is Average Number of Conditions. AV is
Average Volume. As is clear from the above Table the average mean
squared residue, the average number of genes and conditions, average
volume are compared for various algorithms. For the average mean
squared residue field lower values are better where as higher values are

better for all other fields.

Table 3.30 gives performance comparison for Human B-cell
Lymphoma dataset. Value of 8 is set to 1200 for Lymphoma dataset. In
this dataset the average number of genes and average volume of the
biclusters obtained are better than that of SEBI and SMOB. Average

number of conditions is greater than CC and SEBI.

In multi-objective evolutionary computation [4] the maximum

number of conditions obtained is only 11 in Yeast dataset and 40 in
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Human B-cell Lymphoma dataset. But in this method there are biclusters
with all 17 and 91 conditions for Yeast and Lymphoma datasets
respectively. Moreover as the SGSC algorithm uses simple sequential
search rather than stochastic search the computation time required is very

less compared to all the metahueristic and evolutionary algorithms.

This algorithm is capable of detecting some of the shifting and
scaling patterns present in Yeast dataset. Some of the biclusters are with
high row variance (more than 2000 for the Yeast dataset and more than

7000 for Lymphoma dataset.

3.5 Comparison of Constraint based Algorithms

3.5.1 Comparison based on p-value of GO terms for Biclusters
Generated from Same Seeds

To evaluate the statistical significance for the genes in each
bicluster p-values are used. P-values indicate the extent to which the
genes in the bicluster match with the different GO categories. P-value
indicates statistical significance of a bicluster. Four different seeds which
on enlargement result in biologically significant biclusters were selected.
These seeds are enlarged by all the constraint based algorithms and the p-
values of the GO terms of these biclusters are compared for all these

algorithms.
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Table 3.31

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from First Seed and the Corresponding P-value
Obtained for each Algorithm for Process Ontology

p-value and Percentage of Genes
Go Terms
MSRT MSRDT ISIMSRDT SGSC
) ) ) 8.4le-11 4.78e-05 3.08e-22 0.00248
Ribosome biogenesis
36.1% 23.4% 39.8% 34.8%
Ribonucleoprotein 1.47¢-09 7.68¢-05 6.25¢-21 0.00622
complex biogenesis 36.1% 24.7% 40.8% 34.8%
Cellular component 1.08¢-08 0.00039 1.68¢-18
biogenesis at cellular —
level 37.7% 26.0% 41.8%
) 2.95e-08 0.00067 1.86e-15 0.00171
ncRNA processing
31.1% 20.8% 32.7% 34.8%
neRNA metabolic 1.66e-07 0.00247 4.05¢-14 0.00352
process 31.1% 16.9% 32.7% 34.8%
, 5.98¢-07 0.00116 5.80e-15 | 0-00144(
rRNA processing . , , highest)
24.6% 16.9% 27.6% 304%
) 8.40e-07 0.00209 2.74e-12
RNA processmg | | | e
32.8% 23.4% 33.7%
) 1.14¢-06 0.00194 2.06e-14 0.00194
rRNA metabolic process
24.6% 16.9% 27.6% 30.4%
RNA metabolic 2.09e-05 0.00832 3.08¢-14 0.00184
process 45.9% 36.4% 53.1% 56.5%

In this case the order of algorithm based on p-value is ISIMSRDT,
MSRT, MSRDT and SGSC for all GO terms. The percentage of genes
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involved is the highest for the ISIMSRDT algorithm for the first three GO
terms. But the percentage of genes involved for SGSC is better for GO
terms starting from the fourth entry of the Table 3.31, that is, from
ncRNA processing to RNA metabolic process. The p-values obtained for
SGSC is very low. Because the difference threshold value assigned for the
genes is very low, there are only 23 genes in the bicluster. By increasing

this value more genes will be included and this will increase the p-value

of GO terms for SGSC algorithm.

Table 3.32

Comparison of Constraint based Algorithms based on GO Terms for

Biclusters Generated from the First Seed and the Corresponding p-value

Obtained for each Algorithm for the Function Ontology

GO Terms MSRT MSRDT ISIMSRDT SGSC
Number of genes 27 genes 32 genes 0.00480 (p- 10 out of
annotated to the value) snoRNA | 23genes

term molecular

function

unknown

binding

From the table it is clear that, for function ontology a fixed number
of genes are annotated to the term molecular function unknown for all
algorithms except ISIMSRDT. For ISIMSRDT algorithm 4 genes from

the bicluster are annotated to the term snoRNA binding and the p-value is

0.0048.
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Table 3.33

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the First Seed and the Corresponding p-value
Obtained for each Algorithm for the Component Ontology

p-value and Percentage of Genes
GO terms
MSRT MSRDT | ISIMSRDT SGSC
Nucleolus 291e-11 8.24e-05 2.56e-19 0.00622
31.1% 18.2% 31.6% 26.1%
Preribosome 8.40e-10 0.00156 4.26e-15 _
24.6% 13% 23.5%
90S 7.50e-09 0.00210 1.56e-09
Preribosome 19.7% 10.4% 15.3% B
Nuclear part 1.79e-06 _ 2.46e-12 _
P 47.5% 50.0%
Nuclear lumen 3.56e-06 _ 1.59¢-13 _
39.3% 43.9%
Oreanelle lumen 1.04¢-05 6.41e-11
£ Y 42.6% B 44.9% B
Intracellular organelle 1.04e-05 6.41e-11
lumen 42.6% h 44.9% B
Ribonucleoprotein 9.71e-05 4.24e-07
complex 32.8% h 31.6% B
Nucleus 0.00020 _ 1.62e-08 _
59.0% 61.2%
0.00071 2.43e-06
Nucleolar part 11.5% -- 11.2% --
Macromoleular complex 0.00179 - 9.23¢-07 -
5 P 54.1% 56.1%
. 1.80e-05
Smallsubunit processome -- -- 9.2% --
0.00081
Organelle part -- -- 58.2% --
0.00081
Intracellular organelle part -- -- 5829, --

In this case the order of algorithms based on best p-value is
ISIMSRDT, MSRT, MSRDT, and SGSC. Since there are only 23 genes
in the SGSC algorithm there is only one GO term associated with it for
the component ontology. Even though the p-value is less for SGSC, the
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percentage of genes involved is greater than MSRDT for the first GO
term. The percentage of genes involved for the MSRT algorithm is greater
than that of ISIMSRDT for GO the terms preribosome, 90S preribosome,

ribonucleoprotein complex and nucleolar part.

Table 3.34

Comparison of Constraint based algorithms based on GO terms for
biclusters generated from second seed and the corresponding p-value
obtained for each algorithm for the Process Ontology

p-value and the Percentage of Genes
GO terms
MSRT MSRDT | ISIMSRDT SGSC
Translation 7.82¢-25 2.26e-23 2.03¢-49 3.12e-40
60.7% 54.7% 63.3% 73%
Cellularprotein metabolic 3.25e-12 2.88e-11 3.08e-24 9.61e-24
process 64.3% 59.4% 66.3% 17.7%
Protein metabolic br 8.24e-12 7.49e-11 1.77e-23 3.96e-23
Ofelll MetabOlic process 64.3% 59.4% 66.3% 77.8%
Cellular macromolecule 5.82¢-10 1.42¢-08 6.74e-19 8.59¢-18
biosynthetic process 62.5% 56.2% 63.3% 73.0%
Macromolecule biosynthetic | 6.47e-10 1.58e-08 8.19¢-19 1.00e-17
process 62.5% 56.2 63.3 73%
Gene expression 1.09¢-08 5.29¢-08 2.12¢-17 5.78e-17
P 62.5% 57.8% 64.3% 74.6%
Translational eloneation 2.35e-08 2.66e-09 4.60e-17 1.78e-09
& 16.1% 15.6% 16.3% 15.9%
. . 3.41e-07 1.15e-07 1.39e-15
Cellular biosynthetic process 64.3% 62.5% 67.3% --
Biosvnthetic process 6.64¢-07 2.42¢-07 5.05e-15 3.10e-14
Y P 64.3% 62.5% 67.3% 76.2%
Ribosome biogenesis 4.34¢-05 1.26e-06 6.01e-15 1.25¢e-11
g 26.8% 28.1 32.7% 36.5%
RNA processin 0.00010 9.86e-06 5.61e-10 7.25¢-08
P & 21.4% 21.9% 22.4% 25.4%
rRNA metabolic process 02'?02;)7 ! '27178;25 ! '24282;29 1";5564107
Cellular macromolecule 0.00025 0.00024 9.83e-10 2.90e-11
metabolic process 67.9% 65.6% 70.4% 81.0%
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In this case the best p-values are obtained in the order ISIMSRDT,
SGSC, MSRT and MSRDT respectively. But the order of algorithms based
on the percentage of genes for the first GO terms is SGSC, ISIMSRDT,
MSRT and MSRDT. For all GO terms, except cellular protein metabolic

process and translational elongation, the percentage of genes involved in

SGSC algorithm is better than that of all the other algorithms.

Table 3.35

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Second Seed and the Corresponding p-value

Obtained for each Algorithm for the Function Ontology

GO Terms

p-value and Percentage of Genes

MSRT MSRDT | ISIMSRDT SGSC
i ) 9.79e-24 | 2.58e-24 6.05e-53 4.42e-44
Structural constituent of ribosome
50% 46.9% 56.1% 66.7%
.. 2.73e-18 | 1.79¢-18 3.97e-42 3.48e-35
Structural molecule activity
50% 46.9% 57.1% 66.7%
Translation elongation factor 0.00015 | 0.00035 7.16e-05 B
activity 7.1% 6.2% 5.1%
RNA-directed DNA polymerase _ _ _
activity -
RNA binding - - 0.00208 -

Translation elongation factor
activity

DNA-directed DNA polymerase
activity

DNA polymerase activity

In this case the best p-values are obtained in the order ISIMSRDT,
SGSC, MSRDT and MSRT respectively. But the order of algorithms
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based on percentage of genes is SGSC, ISIMSRDT, MSRT, and MSRDT
for the first two GO terms. For the third GO term the order of algorithms
based on the percentage of genes is MSRT, MSRDT and ISIMSRDT.

Table 3.36

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Second Seed and the Corresponding p-value
Obtained for each Algorithm for the Component Ontology

p-value and the Percentage of Genes
GO Terms
MSRT MSRDT ISIMSRDT SGSC
Cviosolic ribosome 1.55e-26 2.71e-27 1.51e-60 1.30e-46
Y 51.8% 48.4% 58.2% 66.7%
Cviosolic part 2.95¢-24 7.66e-25 3.92e-55 5.45e-43
Y P 51.8% 48.4% 58.2% 66.7%
Ribosome 8.24e-24 6.60e-24 3.60e-51 6.05e-41
57.1% 53.1% 62.2% 71.4%
Cviosol 1.36e-20 3.91e-23 1.42¢-48 1.45¢-36
Y 55.4% 54.7% 63.3% 69.8%
Ribonucleoprotein complex 1.11e-18 3.21e-18 3.31e-38 1.04¢-32
P P 60.7% 56.2% 64.3% 74.6%
Cytosolic small ribosomal ) i 9.31e-28 2.44e-19
subunit 27.6% 30.2%
Cytosolic large ribosomal 2.09e-17 3.59¢-16 4.42e-27 1.84e-24
subunit 32.1 28.1% 28.6% 36.5%
Laree ribosomal subunit 7.99¢-15 1.30e-13 1.45¢e-22 6.11e-21
& 32.1 28.1% 28.6% 36.5%
Non-membrane-bounded 1.23e-10 1.50e-10 1.12e-21 1.12e-20
organelle 62.5% 59.4% 65.3% 76.2%
E;ﬁﬁgiaf);ﬁde q 123e-10 | 1.50e-10 | 1.12e-21 1.12e-20
62.5% 59.4% 65.3% 76.2%
organelle

In this case the best p-values are obtained in the order ISIMSRDT,
SGSC, MSRDT and MSRT respectively, for the first five GO terms. But
based on the percentage of genes involved, the order of algorithms are

SGSC, ISIMSRDT, MSRT and MSRDT for the first five GO terms.
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Percentage of genes involved is highest for SGSC for all GO terms. P-
value obtained is the best for ISIMSRDT for all GO terms.

Table 3.37

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Third Seed and the Corresponding p-value
Obtained for each Algorithm for the Process Ontology

p-value and the Percentage of Genes
GO Terms
MSRT MSRDT ISIMSRDT SGSC
DNA repair 4.82e-13 1.43e-14 3.25e-10 4.68e-12
P 57.1% 60.7% 45.5% 51.6%
Response to DNA 5.57e-12 1.97e-13 3.04¢-09 5.29¢-11
damage stimulus 57.1% 60.7% 45.5% 51.6%
1.11e-10
. 4.37e-11 7.23¢-14 . 2.50e-11
DNA metabolic process 60.7% 67.9% (highest) 58.1%
54.5%
Cell evele 8.19¢-07 ) 1.13e-09 4.87¢-08
Y 53.6% 57.6% 54.8%
Cell evele process 5.15e-06 ) 7.20e-09 2.99¢-07
yelep 50% 54.5% 51.6%
Double-strand break 2.91e-07 ) 1.53e-06 8.98¢e-07
repair 32.1% 27.3% 29%
Cellular response to stress 5.99e-10 6.03e-10 2.60e-07 8.51e-08
60.7% 60.7% 48.5% 51.6%
Response to stress 2.28e-08 2.30e-08 6.89¢-06 2.35e-06
60.7 60.7% 48.5% 51.6%
Mitotic sister chromatid ) 3.76e-05 8.67e-08 2.31e-06
cohesion 21.4% 24.2% 22.6%
Cellular response to 2.29e-08 2.31e-08 8.61e-06 2.58e-06
stimulus 64.3% 64.3% 51.5% 54.8%
Cell evele phase 1.66e-05 1.67e-05 1.36e-07 7.11e-06
yeep 42.9% 42.9% 45.5% 41.9%
M phase 0.00021 1.85e-05 1.14e-06 6.26e-06
P 35.7% 39.3% 39.4% 38.7%
Chromosome 0.00018 0.00158 1.68e-06 7.07e-05
organization 39.3% 35.7% 42.4% 38.7%
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In this case, the order of algorithms based on p-value is MSRDT,
MSRT, SGSC, and ISIMSRDT for most of the GO terms. The order of
algorithms based on percentage of genes involved is MSRDT, MSRT,
SGSC and ISIMSRDT for most of the GO terms.

Table 3.38

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Third Seed and the Corresponding p-value
Obtained for each Algorithm for the Function Ontology

p-values and the Percentage of Genes
GO Terms

MSRT MSRDT | ISIMSRDT SGSC
Double-stranded DNA 4.13e-05 4.58e-05 0.00202 8'1061 T;?S
binding 17.9% 17.9% 12.1% e
Structure-specific DNA 0.00103 0.00115 0.00172 0.00198
binding 17.9% 17.9% 15.2% 16.1%
DNA secondary structure 0.00104 0.00116 ) 0.00162
binding 10.7% 10.7% 9.7%
Guanine/thymine mispair 0.00335 0.00372 ) 0.00469
binding 7.1% 7.1% 6.5%
Single base insertion or 0.00335 0.00372 ) 0.00469
deletion binding 7.1% 7.1% 6.5%
Four-way junction DNA 0.00999 ) ) )
binding 7.1%

In this case also the order of algorithms based on p-value is MSRT,
MSRDT, SGSC, and ISIMSRDT for the first GO term. For the second Go
term, the order of algorithms based on p-value is MSRT, MSRDT,
ISIMSRDT and SGSC. The order of algorithms based on the percentage
of genes involved is MSRT, MSRDT, SGSC and ISIMSRDT for the first

two GO terms.
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Table 3.39

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Third Seed and the Corresponding p-value
Obtained for each Algorithm for the Component Ontology

p-value and the Percentage of Genes
GO Terms
MSRT MSRDT ISIMSRDT SGSC
Replication fork 1.38e-07 3.42¢-09 6.19¢-07 9.43e-06
28.6% 32.1% 24.2% 22.6%
2.01e-08 1.856-08 2.01e-09 8.04e-09
Chromosome (highest) ' 50% (highest) (highest)
50.0% 48.5% 48.4%
Chromosomal part 1.53e-06 1.41e-06 4.2e-07 5.29¢-07
42.9% 42.9% 42.4% 41.9%
Nuclear chromosome 6.59¢-06 | 6.07¢-06 4.50e-07 2'31582‘25
39.3% 39.3% 39.4% ’
Nuclear replication fork 3.39¢-05 1.10e-06 0.00010 0.00146
21% 25% 18.2% 16.1%
Nuclear chromosome part | 0.00036 0.00033 2.23e-05 0.00089
32.1% 32.1 33.3% 29%
Condensed nuclear 0.00594 0.00546 3.65e-06 4.34¢-05
chromosome 17.9% 17.9% 24.2% 22.6%
Mitotic cohesin complex - - 7'1829§;27 5'1925;;27
Nuclear mitotic cohesin ) ) 7'129T;/(Z7 5.95e-07
complex ’ 12.9%
Nucleus ) 8.87e-06 3.39¢-05 3.19e-05
78.6% 72.2% 74.2%
Condensed chromosome ) .00925 8.86e-06 5.10e-06
17.9% 24.2% 25.8%
Nuclear cohesin complex - - 3.91e-06 2.95¢-06
12.1% 12.9%
Cohesin complex i i 3.91e-06 2.95e-06
12.1% 12.9%

In this case the order of algorithms based on best p-value is

ISIMSRDT, MSRDT, SGSC and MSRT.
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Table 3.40

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Fourth Seed and the Corresponding p-value
Obtained for each Algorithm for Process Ontology

GO Terms, p-value and Percentage of Genes of GO Terms for each Algorithm

MSRT MSRDT ISIMSRDT SGSC
Cytokinesis Cytokinesis Cytokinesis Cytokinesis
0.00130 2.32e-05 7.07e-05 6.87e-05
20.6% 28.6% 24.2% 24.2%

Positive regulation Cell cycle
of spinc}le pole body process Cell division Cell cycle process
separation 3.916-05 0.00043 0.00024
0.00195 4'6 49, 242 39.4%
8.8% )
Cell cycle process Cell cycle Cell cycle Cell cycle
0.00252 6.36e-05 cytokinesis 0.00130 | 0.00039
35.3% 46.4% 18.2% 39.4%
Cell cycle Cell division Cell cycle process Cell division
0.00383 0.00014 0.00171 0.00042
35.3% 28.6% 36.4% 24.2%
Regulation of Positive regulation
spiidle pole body | Celleycle of spindle §g1e pody | Celleyele
separation cytokinesis separation cytokinesis
0.00058 0.00126
0.00387 21.8% 0.00173 18.2%
8.8% ) 9.1% )
Cell division Protein ' Protein ' Posit'ive regulation
0.00607 phosphorylation | phosphorylation of splnc'lle pole body
20.6% 0.00077 0.00196 separation 0.00168
' 25.0% 21.2% 9.1%
Positive
regulation of Cell cycle
B spindle pole 0.00261 Cytokinetc process |
body separation 3'6 4% 0.0025718.2%

0.00118

10.7%
ineti Regulation of
Cytokinetic Cytokinetic process | spindle pole body
process ‘
- 0.00120 0.00265 separation
21.4% 18.2% 0.00334
- 9.1%
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Regulation of
spindle pole
body separation
0.00235

10.7%

Regulation of
spindle pole body
separation
0.00344

9.1%

Phosphorylation
0.00946
21.2%

Phosphorylatio
- n 0.00422 - -
25%

Spindle pole
body

-- separation 0.00 - -
967
10.7%

In the biclusters obtained by the fourth seed, since the conditions
selected are different for each algorithm, the genes selected are also
different. The GO terms are different for biclusters obtained by each
algorithm. Hence GO terms along with the p-values are given in the order
of p-values. Here the order of algorithms in terms of best p-value and
percentage of genes is MSRDT, SGSC, ISIMSRDT and MSRT for the

first GO term cytokinesis.

Table 3.41

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Fourth Seed and the Corresponding p-value
Obtained for each Algorithm for Function Ontology

GO Terms MSRT MSRDT ISIMSRDT SGSC
“f“lf;zfl‘;fr 130outof34 | 11outof28 | 12outof 33 | 13 outof33
unknown' input genes genes genes genes

From the table it is clear that for function ontology a fixed number
of genes are annotated to the term molecular function unknown for all

algorithms.
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Table 3.42

Comparison of Constraint based Algorithms based on GO Terms for
Biclusters Generated from the Fourth Seed and the Corresponding p-value
Obtained for each Algorithm for Component Ontology

GO Terms, p-value and Percentage of Genes of GO Terms for each Algorithm

MSRT MSRDT ISIMSRDT SGSC
Cellular bud Cellular bud neck Cellular bud Cellular bud
3.48e-06 1.06e-09 3.90e-10 3.41e-10
29.4% 39.3% 39.4% 39.4%

Cellular bud neck | Cellular bud Cellular bud neck | Cellular bud neck
3.81e-06 1.12e-09 6.47¢-09 6.47¢-09

26.5% 42.9% 33.3% 33.3%

Site of polarized Site of polarized Site of polarized | Site of polarized
growth growth growth growth

1.63e-05 7.76e-09 5.50e-08 4.96e-08

29.4% 42.9% 36.4% 36.4%

Cellular bud neck | Cellular bud neck Cellular bud neck | Cellular bud neck
contractile ring contractile ring contractile ring contractile ring
5.04e-05 1.44e-07 3.23e-07 3.23e-07

11.8% 17.9% 15.2% 15.2%
Actomyosin Actomyosin Actomyosin Actomyosin

contractile ring
5.04e-05
11.8%

contractile ring
1.44e-07
17.9%

contractile ring
3.23e-07
15.2%

contractile ring
3.23e-07
15.2%

Contractile ring

Contractile ring

Contractile ring

Contractile ring

5.04e-05 1.44e-07 3.23e-07 3.23e-07

11.8% 17.9% 15.2% 15.2%

Cell division site Cytoskeletal part Cytoskeleton part | Cytoskeleton part
0.00069 1.63e-06 7.71e-06 7.71e-06

11.8% 35.7% 30.3% 30.3%
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Cell division site Cytoskeleton Cytoskeleton Cytoskeleton
part 1.78e-06 8.40e-06 8.40e-06
0.00069 11.8% 35.7% 30.3% 30.3%
Cytoskeleton part | Cell division site Cell division site | Cell division site
0.00126 4.97¢-06 1.10e-05 1.10e-05
23.5% 17.9% 15.2% 15.2%
Cytoskeleton Cell division site Cell division site | Cell division site
0.00135 part part part
23.5% 4.97¢-06 1.10e-05 1.10e-05
17.9% 15.2% 15.2%
Actin cytoskeleton | Actin cytoskeleton Actin Actin
0.00222 3.40e-05 cytoskeleton cytoskeleton
14.7% 21.4% 8.63e-05 8.63e-05
18.2% 18.2%
- Cell cortex part Cell Cell
.00050 Cortex part Cortex part
21.4% .00123 .00099
18.2% 18.2%
- Cell cortex Cell cortex Cell cortex
0.00182 .00444 .00099
21.4% 18.2% 18.2%

In this case the order of algorithms based on best p-value is SGSC,
ISIMSRDT, MSRDT and MSRT.

In short, from these results it is not possible to conclude that a single
algorithm is best in terms of p-value. The order is changing for each bicluster
and in some situation for a particular ontology. But in most cases ISIMSRDT

algorithm is best among the four constraint based algorithms in terms of p-
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value. And in most cases SGSC algorithm is the best among the four

constraint based algorithms in terms of the percentage of the genes involved.

3.5.2 Comparison based on the best five GO terms

Table 3.43

Result of Biological Significance Test: The Top Five Functionally
Enriched Significant GO Terms Produced by Constraint Based
Algorithms for the Yeast Dataset

Terms MSRT MSRDT ISIMSRDT SGSC
Cytosolic Cytosolic Cytosolic Cytosolic
ribosome ribosome ribosome ribosome

1 51.8% 48.4% 58.2% 66.7%
1.55e-26 2.71e-27 1.51e-60 1.30e-46
Structural
Translation Cytosolic Part Cytosolic Part constituent of
2 60.7% 48.4% 58.2% ribosome
7.82e-25 7.66e-25) 3.92e-55 66.7%
4.42e-44
Cytosolic Structural Structural .
constituent of constituent of Cytosolic Part
Part . .
3 51.8% ribosome ribosome 66.7%
5 056.94 46.9% 56.1% 5.45e-43
2.58e-24) 6.05¢-53
Ribosome Ribosome Ribosome Ribosome
4 57.1% 53.1% 62.2% 71.4%
8.24e -24 6.60e-24 3.60e-51 6.05e-41
Structural Structural
constituent Molecule Translation Translation
5 of ribosome | Activity 62% 73%
50% 46.9% 2.03e-49 3.12e-40
9.79¢ -24 2.58¢e-24

Here all the algorithms are compared on the basis of the best 5 p-

values obtained from all four biclusters. In this case the order of
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algorithms based on p-value is ISIMSRDT, SGSC, MSRDT and MSRT
for all GO terms. But the order of algorithms based on the percentage of
genes for the first GO term is SGSC, ISIMSRDT, MSRT and MSRDT.

3.5.3 Comparison based on Size and MSR for Biclusters Generated
from the Same Seed

For this comparison three different seeds are selected. These seeds
are enlarged by all the constraint based algorithms. The size and MSR are

compared for biclusters obtained from all these algorithms.

Analysing the algorithms based on the biclusters obtained from the
same seed it should be noted that among the algorithms SGSC produces
biclusters of low size but coherence is high since MSR value is very low.
ISIMSRDT is the best among the four constraint based algorithms in
terms of bicluster size. Reducing the incrementing factor in ISIMSRDT

can improve the bicluster size further.

For the first seed, the order of algorithms in terms of bicluster size
is ISIMSRDT, MSRDT, MSRT and SGSC. For the second seed the order
of algorithms in terms of bicluster size is ISIMSRDT, MSRDT, SGSC,
MSRT. For the third seed the order is, ISIMSRDT, MSRDT, SGSC,
MSRT. In short ISIMSRDT, MSRDT, MSRT, SGSC are the order of
algorithms in terms of bicluster size. The order of MSRT and SGSC
changes for different biclusters depending on the value selected for the
difference threshold. The row variance of biclusters obtained by MSRDT
is greater than that of MSRT and ISIMSRDT in all the three cases.



Chapter 3

9£0C

61°L6T

Llx1E

1'0L61 TT66T

L1«£€

1'7€0T

€ 98T L18C SLeol $866C L1+8C 3
86L6'S19 SPLOT | L14£9 167009 66661 L1486 | TELSPSY | TEGOL | LI«P9 | 19v8°L8S | 8L66I | LI49 z
T85L'90S 651E1 | LlsECT LLTSP L6661 L1586 | 0991°€€S | PS661 | 9l«LL | 8SOP'697 | <6861 | LIxI9 I
3””_.”__.“., USW azis DuELEA MOY | USI azis 3_“,”_“_.“_., USW azis PHEEL USI a7y
_ _ _ aoy oN'IS
DS9S LAASINISI LOISW LUSI

Swiyl106]y paseq 1urea1suo)d ayl Jo auo yoea Ag spass
JuaJaIq 994y Buibaeju Aq paurelqo s191snjaig 934yl Jo HSIA pue azIS Jo uosiredwo)

vy € slqeL

L 140 -



Constraint Based Algorithms

3.6 Summary

In this chapter, four constraint based algorithms developed for
finding the biclusters from gene expression data for enlarging the seeds,
are described. More genes and conditions are added to the seeds in which
node addition follows node deletion, if necessary. Nodes are searched
sequentially. The algorithms are implemented on both the Yeast
Sacharomyces cerevisiae cell cycle expression dataset and Human
Lymphoma dataset. A comparative assessment of the results is provided
on both the above mentioned benchmark gene expression datasets in order
to demonstrate the effectiveness of the proposed methods. The quality of
biclusters obtained can be inspected visually by using bicluster plots. The
expression values of genes in the bicluster show strikingly similar up-
regulation and down-regulation under a set of experimental conditions.
These algorithms are able to identify interesting biclusters from gene
expression data. In the Yeast dataset MSRT and SGSC algorithms can
identify some biclusters with shifting and scaling patterns; and some of
the biclusters are with high very high row variance. Statistical
significance and biological relevance of the biclusters obtained by each
algorithm are also verified using gene ontology database. In terms of the
best p-value obtained by biclusters, these algorithms are better than
algorithms like SGAB, CC, RWB, Bimax, OPSM, ISA and Bivisu. A
bicluster with the highest number of conditions (92) is obtained for
Lymphoma dataset for ISIMSRDT algorithm. The row variance of this
bicluster is also very high (above 5000). Another major research finding

is in the case of iterative search. Iterative search has got the advantage of
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selecting the (n-k)th gene or condition whose incremental increase in
MSR value got reduced after adding the nth gene or condition.
Comparisons of all the constrained based algorithms with other
algorithms on the basis of statistical significance, size and MSR value of
the biclusters are given in this chapter. Constrained based algorithms are
also compared among themselves based on the quality of the biclusters

obtained from the same seed.



Chapter 4
Greedy Algorithm

Chapter 4 describes the Greedy algorithm. The description of
algorithm, its complexity, different biclusters obtained from Yeast and
Lymphoma datasets, significant biclusters obtained (biological
validation), and the comparison of the algorithm with other algorithms

are given in this chapter.
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4.1 Description of the Algorithm

A greedy algorithm is any algorithm that follows the problem
solving strategy of making the locally optimal choice at each stage [31]
with the hope of finding the global optimum. In general greedy
algorithms are used for optimization problems. Biclustering is an
optimization problem in which the objective is to maximize the volume
and minimize the MSR. The seeds obtained from K-Means clustering
algorithm are thus enlarged using greedy approach. In the seed
growing phase a separate list is maintained for conditions and genes
not included in the bicluster. Each seed is enlarged separately by
adding more genes and conditions. Initially conditions are added
followed by genes. In greedy search algorithm, the best element is
selected from the gene list or condition list and added to the bicluster.
The quality of the element is determined by the Hscore or MSR value
of the bicluster after including the element in the bicluster. The
element which results in minimum MSR value when added to the
bicluster is considered as the best element. It cannot be specified as an
element with smallest incremental cost of Hscore because adding some
elements reduces the Hscore value. Seed growing starts from condition
list followed by gene list until the MSR value reaches the given
threshold. This is a greedy method since our aim is to select the next
element which produces bicluster with minimum Hscore value. A

pseudo-code description of the greedy search algorithm is given below.
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Algorithm greedysearch(seed, o)
bicluster := seed
Calculate Column_List the list of conditions not included in the bicluster
While (MSR(bicluster) <= 9)
No_elem_Col=size(Column_List)
for i:=1: No_elem Col
bicluster=bicluster+ Column_List [i]
Column_List_msr[i]= MSR(bicluster)
Remove Column_List[i] from bicluster
end(for)
find minimum value in Column_List msr and corresponding index K
bicluster=bicluster+ Column_List [K]
delete Column_List [K] from Column_List
end(while)

Calculate Row_List the list of genes not included in the bicluster
While (MSR(bicluster) <= 9)

No_elem_ Row=size(Row_List)

for i:=1: No_elem Row
bicluster=bicluster+ Row_List [i]
Row_List msr[i]J= MSR(bicluster)
Remove Row_List[i] from bicluster
end(for)
find minimum value in Row_List msr and corresponding index J
bicluster=bicluster+ Row_List [J]
delete Row_List [J] from Row_List
end(while)
end(greedysearch)
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4.2 Time Complexity

The basic operation for the identification of biclusters is the
calculation of mean squared residue of a submatrix. Time complexity for
calculating MSR is O(mn). In this algorithm conditions are added first
followed by genes. In order to include a condition MSR value of all
submatrices that result from adding a single condition is to be calculated
for all conditions. This number decreases by one, after each iteration. That
means the complexity can be calculated by the formula (n+(n-1)+(n-2)+
...1). This is equal to n(n+1)/2 which is equivalent to O(n?). Hence for
adding conditions the worst case complexity is O(mn)(n®). Similarly for
adding genes the worst case complexity is O(mn)(m?). Hence the worst
case complexity for adding genes and conditions is O(mn)(m*+n”) where

m and n are the number of genes and conditions respectively.

4.3 Experimental Results
4.3.1 Bicluster Plots for Yeast Dataset

In Figure 4.1, nine biclusters identified by the greedy algorithm on
the Yeast dataset are shown. From the bicluster plots it can be noticed that
genes present a similar behaviour under a set of conditions. Many of the
biclusters found on the Yeast dataset contain all 17 conditions. Out of the
nine biclusters shown in Figure 4.1, seven contain all 17 conditions and
they differ in appearance. In short, greedy algorithm is ideal for
identifying various biclusters with coherent values. Information about
these biclusters is given in Table 4.1. All the biclusters are having mean

squared residue less than 300.
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Figure 4.1 Nine biclusters obtained from the Yeast dataset using greedy algorithm.
Bicluster labels are (ya6), (yb6), (yc6), (ydo6), (ye6), (yf6), (ygob), (yh6) and
(yi6) respectively. In the bicluster plots X axis contains conditions and Y
axis contains expression values. The details about the biclusters can be
obtained from Table 4.1 using bicluster label. Here only biclusters with
different shapes are selected.
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Table 4.1
Information about Biclusters of Figure 4.1
Bicluster | Number | Number of | Bicluster MSR Row
Label of Genes | Conditions | Volume Variance
(ya6) 10 17 170 66.4403 522.23
(yb6) 17 17 289 99.3497 407.47
(yc6) 108 17 1836 194.5204 472.34
(yd6) 14 17 238 97.8389 507.63
(yeb6) 147 17 2499 200.2474 396.04
(yfo) 33 17 561 99.9639 506.14
(yg6) 31 17 527 979121 613.89
(yho) 1405 9 12645 299.8968 348.07
(yi6) 79 11 869 241.3371 760.91

In the above table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and number of columns (conditions) of the bicluster respectively.
The fourth column reports the volume of the bicluster and the fifth
column contains the mean squared residues of the biclusters. The last

column contains the row variance of the biclusters.

4.3.2 Bicluster Plots for Lymphoma Dataset

Eight biclusters obtained from Human Lymphoma dataset are
shown in Figure 4.2. All the biclusters show strikingly similar up-
regulation and down-regulation. All the means squared residues are lower
than 1200. The first bicluster in Figure 4.2 contains 94 conditions.
Number of genes in this bicluster is 11. The row variance of the bicluster

is also very high (5317.5).
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Figure 4.2 Eight biclusters found for the Lymphoma Dataset using greedy algorithm.
Bicluster labels are (la6), (1b6), (Ic6), (1d6), (1e6), (1f6), (1g6) and (1h6)
respectively. In the bicluster plots X axis contains conditions and Y axis
contains expression values. The details about biclusters can be obtained
from Table 4.2 using bicluster label.

Table 4.2
Information about Biclusters of Figure 4.2
Bicluster | Number | Number of | Bicluster MSR Row
Label of Genes | Conditions | Volume Variance
(1a6) 11 94 1034 1194.40 5317.5
(1b6) 40 66 2640 918.25 1156.4
(1c6) 30 80 2400 1175.90 3466.3
(1d6) 21 9 189 476.12 6183.5
(le6) 26 81 2106 1196.80 3906.0
(1f6) 10 83 830 1182.10 5070.1
(1g6) 53 35 1855 723.41 788.7
(1h6) 292 9 2628 1196.90 3359.1
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4.4 Advantages of Greedy Algorithm

The advantage of this Greedy approach over the previous greedy
approach of Cheng and Church [29] is that it avoids random interference.
In the greedy method of Cheng and Church the program starts with the
entire gene expression data matrix and deletes those rows or columns
whose removal creates the greatest variation in MSR. This method is
deterministic. So in order to identify different biclusters, the identified
ones are replaced by random values. These random values will interfere
with the discovery of future biclusters. This problem is known as random
interference. This has the obvious effect of precluding the identification
of biclusters with significant overlaps. Moreover mean squared residue is
biased towards biclusters of low row variance [24]. Since seeds from K-
Means are used, it can identify biclusters with high row variance without
using row variance as a measure for optimization. Biclustering is a
combinatorial optimization problem. Seeds from K-Means reduce the

number of combinations.

4.5 Details of Significant Biclusters obtained by Greedy
Algorithm

PN
XN/

Conditons. Condions Condtns. Consions

Figure 4.3 Four significant biclusters obtained by the greedy algorithm on Yeast
dataset. The bicluster labels are s61, s62, s63, and s64. The details about
biclusters can be obtained from Table 4.3 using bicluster label.
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Table 4.3

Information about Biclusters of Figure 4.3

Bicluster | Number of Numt_)e_r of MSR Rpw
Label Genes Conditions Variance
S61 121 17 199.9395 483.2784
S62 107 17 199.4776 568.0833
S63 36 17 297.6071 1806.9000
S64 224 11 209. 6618 455.5141

In the first bicluster s61 there are 121 genes. They are YBLO14C,

YBLO083C, YBLO084C, YBR293W, YCLO016C, YCLO031C, YCLO053C, YCLO054W,
YCRO072C, YCRO87W, YDL0O08W, YDLO30W, YDL076C, YDL150W, YDL153C,
YDL166C, YDL167C, YDL189W, YDL215C, YDL231C, YDRO17C, YDRO020C,
YDRO038C, YDR057W, YDR0O60W, YDRO80W, YDRO83W, YDR108W, YDR120C,
YDRI121W, YDR170C, YDR172W, YDR211W, YDR234W, YDR262W, YDR289C,
YDR299W, YDR312W, YDR321W, YDR339C, YDR352W, YDR361C, YDR365C,
YDR392W, YDR416W, YDR449C, YDR469W, YDR477W, YDR478W, YDR518W,
YDRS524C, YDR542W, YELOI5W, YELO55C, YERO05W, YERO075C, YERO099C,
YER107C, YER166W, YER168C, YER171W, YFLOOIW, YGLO85W, YGLO099W,
YGL214W, YGR042W, YGR090OW, YGR187C, YGR200C, YGR216C, YHR062C,
YJLO11C, YJL069C, YJRO17C, YJRO66W, YKRO56W, YKRO60W, YLLOOSW,
YLL034C, YLRO51C, YLRO88W, YLR107W, YLR146C, YLR215C, YLR222C,
YLR227C, YLR401C, YML066C, YMLO80W, YML093W, YMRO093W, YMR211W,
YMR235C, YNLO41C, YNLI132W, YNLI163C, YNL164C, YNL199C, YNL227C,
YNL299W, YNROO3C, YNRO38W, YOLO021C, YOL022C, YOL036W, YOLO080C,
YOL124C, YOL140W, YOL144W, YOR006C, YOR056C, YOR061W, YORO098C,
YOR145C, YOR160W, YOR252W, YOR272W, YPL126W, YPL268W, YPRO53C,
YPR112C.
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In bicluster s62 there are 107 genes namely YALOO3W, YALO38W,

YAR020C, YBLO30C, YBL072C, YBL092W, YBRO09C, YBRO31W, YBRO048W,
YBRO084C-A,YBR106W, YBR118W, YCRO13C, YCRO31C, YDL061C, YDLO75W,
YDLO81C, YDLO083C, YDL130W, YDL136W, YDLI91W, YDL192W, YDL208W,
YDL221W, YDL228C, YDL229W, YDRO12W, YDR025W, YDRO50C, YDR064W,
YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W, YDR447C,
YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YER117W, YGL102C,
YGR118W, YHRI41C, YJL136C, YJL188C, YIJL189W, YJL190C, YJRO09C,
YJR094W-A, YJR123W, YKL056C, YKL0O60C, YKL0O96W-A, YKL152C, YKL153W,
YKLI180W, YKRO57W, YKR094C, YLL066C, YLLO067C, YLR029C, YLRO048W,
YLRO062C, YLRO75W, YLRO76C, YLR110C, YLR167W, YLRI85W, YLR249W,
YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, YLR467W,
YMLO024W, YML026C, YMLO39W, YML045W, YML063W, YML133C, YMR045C,
YMR202W, YNLO30W, YNLO67W, YNL162W, YNL302C, YNL339C, YOL0O39W,
YOL040C, YOLI127W, YOR167C, YOR234C, YOR293W, YOR312C, YOR369C,
YPLO37C, YPLOS1W,YPL0O90C,YPL143W, YPL283C, YPR102C,YPR204W.

In the third bicluster s63 there are 36 genes. They are YAR007C,

YARO00O8W, YBL035C, YBR073W, YBRO88C, YBRO8OW, YCR065W, YDLOO3W,
YDLO10W, YDLO18C, YDL164C, YDR097C, YDR507C, YER095W, YFLOOSW,
YGRI151C, YGRI52C, YHRI154W, YIL026C, YJL181W, YJL187C, YKLO042W,
YKL113C, YLL022C, YLR103C, YLR386W, YMLO021C, YML102W, YMRO76C,
YMRO78C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C

In the fourth bicluster s64 only 224 genes are selected. They are

YALO41W, YALOS9W, YAROI5W, YAR061W, YBL004W, YBLOO5SW, YBLO14C,
YBLO18C, YBL024W, YBL026W, YBL042C, YBL049W, YBLO083C, YBLO084C,
YBR021W, YBRO032W, YBRO038W, YBRO50C,YBR0O76W,YBR084W, YBRI123C,
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YBR133C, YBRI138C, YBRI155W, YBR228W, YBR257W, YBR267W, YBR293W,
YCLO012W, YCLO16C, YCL031C, YCL054W, YCR036W, YCRO043C, YCRO51W,
YCRO062W, YCRO63W, YCRO72C,YCRO81W, YCRX16C, YDL030W, YDLO043C,
YDLO076C, YDLI113C, YDL150W, YDL160C, YDL167C, YDL215C,YDL247W,
YDRO11W, YDRO17C, YDRO38C, YDR060W, YDROSOW, YDR091C, YDR108W,
YDRI120C, YDRI150W, YDRI51C, YDR170C, YDRI184C, YDRI198C, YDR207C,
YDR214W, YDR234W, YDR272W, YDR275W, YDR282C, YDR299W, YDR311W,
YDR324C, YDR361C, YDR363W, YDR364C, YDR449C, YELO15W, YEL043W,
YELO053C, YELO55C, YELO057C, YERO05W, YER034W, YER064C, YERO099C,
YER107C,YER128W, YERI137C, YER171W, YFLO036W, YFLO58W, YGLO021W,
YGLO85W, YGL099W, YGL128C, YGL155W, YGL166W, YGL214W, YGL234W,
YGL248W, YGR023W, YGR108W, YGR129W, YGR187C, YGR216C, YHR023W,
YHRO062C, YHRIS5IC, YILOO7C, YILO11W, YILO97W, YIL106W,
YIL117CYIL158W, YIL171W, YJLO11C, YJLO5S1IW, YJLO53W, YJR002W,
YJR092W, YJRI27C, YKLO057C, YKLI129C, YKL143W,YKLI173W, YKL205W,
YKL222C, YKRO31C, YKRO56W, YKR0O60W, YKR097W, YLLOOSW, YLLOISC,
YLL043W, YLRO14C, YLRO023C, YLRO51C, YLRO68W, YLRO86W, YLRO8SW,
YLR107W, YLRI131C, YLR146C, YLRI9OW, YLR215C, YLR222C, YLR227C,
YLR277C, YLR353W, YLR420W, YLR430W, YLR434C, YLR438W, YLR453C,
YMLO33W, YMLO034W, YMLOSOW, YMLO82W, YMLO093W, YML094W,
YML096W, YML103C, YML104C, YML130C, YMRO001C, YMRO021C, YMRO032W,
YMRO33W, YMRO034C, YMRO59W, YMR093W, YMR112C, YMR131C, YMR132C,
YMRI185W, YMR211W, YMR212C, YMR265C, YMR281W, YMR291W, YNLO53W,
YNL124W, YNL132W, YNLI163C, YNLI71C, YNLI93W, YNLI199C, YNL227C,
YNL299W, YNRO02C, YNROO3C, YNRO38W, YNRO39C, YOLO021C, YOL022C,
YOLO031C, YOLO060C, YOLO080C, YOL113W, YOL124C, YOLI30W,YOL144W,
YORO006C, YOR056C, YORO058C, YOR061W, YOR098C, YORI145C, YOR160W,
YOR272W, YOR364W, YPL126W, YPL148C, YPL150W, YPLI183C, YPL192C,
YPL231W, YPL242C, YPL248C,YPR026W,YPR046W, YPRO79W, YPRO84W,
YPR112C, YPR119W.
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The Table 4.4 given below shows the significant GO terms used to
describe genes of the biclusters for the process, function and component
ontologies. The common terms are described with increasing order of p-
values or decreasing order of significance. In Table 4.4 the first entry of
the second column with the title process contains the term ribosome
biogenesis (44, 3.45e-22) which means that 44 out of the 121 genes of the
bicluster are involved in the process of ribosome biogenesis and their p-
value is 3.45e-22. Second entry indicates that 46 out of 121 genes are
involved in ribonucleoprotein complex biogenesis. Also from the table it
is clear that the biclusters are distinct along each category. This proves
that the bicluster contains biologically similar genes and the method used
here is capable of identifying biologically significant biclusters from

different GO categories.
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Table 4.4

Significant Shared GO Terms (Process, Function, Component)

of Biclusters shown in Figure 4.3

Bicluster Process Function Component
S61 Ribosome Biogenesis 44 genes annotated to | Nucleolus (35, 8.74e-
(44, 1.45e-23) the term molecular | 21) preribosome (23,
ribonucleoprotein complex function unknown. 5.33e-13) nuclear

biogenesis(46, 6.13e-23)
cellular component
biogenesis at cellular level
(47,6.18¢-20) ncRNA
processing (39, 3.68e-19)
nitrogen compound metabolic
process (64, 4.38e-006)

part (53, 1.28e-10)
cell part (112, 0.00189)

S62 Translation (69, 1.52e-56) Structural constituent | cytosolic ribosome
cellular protein metabolic of ribosome(62, (64, 1.42¢-70)
process (72, 1.13e-27) 5.81e-62) structural cytosolic part
protein metabolic process (72, | molecule activity (64, 3.93e-64)
8.11e-27) metabolic process | (63, 4.33e-49) ribosome (68, 1.10e-58)
(84, 9.28e-07) translation elongation | intracellular organelle
factor activity (5, (86, 0.00076 )
0.00011) RNA
binding (15, 0.00603
S63 DNA metabolic process Structure-specific Chromosome (15,1.21e-
(19, 5.44e-11) DNA repair DNA binding 07) replication fork (8,
(16, 9.53e-11) cell cycle (20, | (5,0.00315) 1.40e-06) Chromosomal
8.42e-10) nucleobase, double-stranded DNA | part(13,4.93e-06 )
nucleoside, nucleotide and binding(4,0.00134) Nucleus (26, 1.52¢-05)
nucleic acid (23, 0.00011)
S64 Ribonucleoprotein complex Endonuclease Nucleolus (36, 3.68e-

biogenesis (51, 1.55e-14)
ribosome biogenesis (45,
9.55e-13) cellular component
biogenesis at cellular
level(52, 3.72e-11)
nucleobase, nucleoside,
nucleotide and nucleic acid
metabolic process (86,
0.00060)

activity(9, 0.00591)

12) nucleus(110, 8.02e-
08) preribosome (24,
8.27e-08) nuclear part
(72,7.92¢-07) 90s
preribosome (16, 3.88 e-
05)
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Figure 4.4: Sample of genes for bicluster s61, with corresponding GO terms and their
parents for Component Ontology
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Figure 4.4 shows the significant GO terms for the set of 121 genes in
bicluster s61 along with their p-values. It shows the branching of cellular
component into sub-components. These subcomponents are clustered
using genes to produce the final result. Figure 4.4 is obtained when gene
ontology database is searched by entering the names of genes and by
selecting component ontology. Only four genes namely YDLI153C,

YDR339C, YDR449C, YGR090OW are searched to reduce the size of the Figure.

4.6 Comparison with Other Algorithms

4.6.1 Comparison based on Statistical and Biological Significance

In Table 4.5 the GO terms along with their p-values and percentage
of genes associated with the GO term in the bicluster for the greedy is
compared with MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and
BiVisu. From the table it is clear that in terms of p-value obtained by a
bicluster which is used to denote statistical significance greedy is better
than all the other algorithms namely MOGAB, SGAB, CC, RWB, Bimax,
OPSM, ISA and BiVisu for all the five GO terms. The percentage of
genes involved in the first GO term is better than that of all the other
algorithms except MOGAB, SGAB, CC and Bimax. The percentage of
genes involved in the second, third, fourth and fifth GO terms are better

than that of all the other algorithms.
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4.6.2 Comparison with other Algorithms based on Bicluster Size and MSR

A comparative summarization of results of Yeast data involving the
performance of related algorithms are given in Table 4.6. The
performance of greedy algorithm in comparison with that of SEBI [36],
Cheng and Church’s algorithm (CC) [29], and the algorithm FLOC by
Yang et al. [106] and DBF [109] for the Yeast dataset are given. For the
greedy algorithm presented here the average number of conditions is
better than that of CC, FLOC and DBF. Average number of genes,
average volume and the largest bicluster size is greater than that of all
other algorithms. Average mean squared residue score is better than that

of all other algorithms listed in the Table 4.6, except DBF.

In multi-objective evolutionary computation [15] the maximum
number of conditions obtained is only 11 for the Yeast dataset. But, in this
method there are biclusters with all 17 conditions. For the Yeast dataset the
maximum number of genes obtained for this algorithm in all the 17
conditions is 147 with MSR value 200.2474. The maximum available in all
the literature published so far is in the case of multi-objective PSO [62]. They
obtained 141 genes for 17 conditions with MSR value 203.25.
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Table 4.6

Performance Comparison between Greedy and other
Algorithms for Yeast Dataset

Algorithm AMR ANG ANC AV LB
Greedy 185.88 515.21 13.36 4684.29 12645
CcC 204.29 166.71 12.09 1576.98 4485
SEBI 205.18 13.61 15.25 209.92 1394
FLOC 187.54 195.00 12.80 1825.78 2000
DBF 114.70 188.00 11.00 1627.20 4000

AMR is average mean squared residue. ANG is average number of
genes. ANC is the average number of conditions. AV is average volume.
LB is largest bicluster. As clear from the above table the average mean
squared residue, the average number of genes and conditions, average
volume and largest bicluster size are compared for various algorithms.
For the average mean squared residue field lower values are better where

as higher values are better for all other fields.

Table 4.7 gives a performance comparison for Human B-cell
Lymphoma dataset. Value of 8 is set to 1200 for Lymphoma dataset. Here
the average number of genes is greater than SEBI. Average number of
conditions is better than all other algorithms. Average volume is better
than SEBI. Average MSR is lower than SEBI. Usually multi-objective
algorithms will produce biclusters of larger size compared to greedy
algorithms. But in the case of multi-objective evolutionary computation
[15] the maximum number of conditions obtained is only 40 in the case of
Human B-cell Lymphoma dataset. Here biclusters with 94 conditions is

obtained where as maximum obtained in the case of multi-objective PSO
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is 84 [62]. In the case of SEBI the maximum number of conditions
obtained is 72 and the number of genes for this bicluster is only 3. But for
greedy algorithm the bicluster with 94 conditions contains 11 genes. The

row variance of this bicluster is also above 5000.

Table 4.7

Performance Comparison between Greedy Algorithm and
other Algorithms for Human Lymphoma Dataset

Algorithm AMR ANG ANC AV
Greedy 1007.99 60.38 57.13 1710.25
SEBI 1028.84 14.07 43.57 615.84
CC 850.04 269.22 24.50 4595.98

AMR is average mean squared residue. ANG is average number of
genes. ANC is the average number of conditions. AV is average volume.
LB is largest bicluster. In the above table the average mean squared
residue, the average number of genes and conditions and average volume
and are compared for various algorithms. For the average mean squared
residue field lower values are better where as higher values are better for

all other fields.

4.7 Summary

In this chapter a new algorithm is developed for identifying
biclusters from the gene expression data. This greedy algorithm is
implemented on both benchmark datasets. In the first step K-Means

clustering algorithm is used to produce bicluster seeds. Then these seeds
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are enlarged by greedy method in which the node with minimum
incremental increase in MSR score is selected and added to the bicluster
in each iteration. Hence it is possible to get bicluster having more genes
and conditions with high coherence. Some of the biclusters have very
high row variance also. The statistical significance and biological
relevance of biclusters obtained in this method are verified using gene
ontology database. In this study the maximum number of genes (147) is
obtained in all the 17 conditions with the minimum MSR value
(200.2474) for the Yeast dataset. A bicluster with the maximum number
of conditions (94) is obtained for the Lymphoma dataset. The biclusters
obtained here show similar up-regulation and down-regulation under a set
of conditions. In terms of size and MSR value the biclusters obtained in
this method are far better than the biclusters obtained in many of the
metaheuristic algorithms. This algorithm has the best p-value compared to

that of MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu.
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Metaheuristic Algorithms

Chapter 5 describes the metaheuristic algorithms namely basic
GRASP, CGRASP, RGRASP, PSO and Greedy-PSO hybrid. For finding
biclusters from gene expression data, the seeds obtained from K-Means
clustering are enlarged using these algorithms. The description of the
algorithms, their time complexity, different biclusters obtained from Yeast
and Lymphoma datasets, significant biclusters obtained (biological
validation), comparison of the algorithms with other algorithms are also
given in this chapter. The greedy and metaheuristic algorithms are

compared based on the quality of bicluster.
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5.1 Greedy Randomized Adaptive Search Procedure

GRASP was developed by Feo and Resende in 1995 [42]. GRASP
incorporates randomization in order to eliminate local minima problem
existing in greedy approaches. GRASP is an iterative randomized
sampling method in which each iteration consists of two phases:
construction and local search. The construction phase generates a
feasible solution, whose neighbourhood is investigated until a local
minimum is identified during the process of local search phase. The
best overall solution is reserved as the result. In this work biclusters
were identified using three variants of Greedy Randomized Adaptive
Search Procedure (GRASP) namely basic GRASP, Cardinality based
GRASP and Reactive GRASP. In this work the objective is to identify
biclusters with maximum size and low MSR. Biclusters with more
genes and conditions and low MSR are obtained in this work.
Moreover in this study GRASP variants are applied for the first time to
Lymphoma dataset.

5.1.1 Review of Grasp Metaheuristics
5.1.1.1 Construction Phase

GRASP is a multi-start metaheuristics for solving combinatorial
optimization problems. Metaheuristics is a computational method which
optimizes a problem iteratively by improving a solution with regard to a
particular measure of quality. In the construction phase a feasible solution
is generated by adding one element at a time. In the local search phase the

neighborhood of the feasible solution is investigated until a local
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minimum is found. The best overall solution is retained as the result.
During each iteration of the construction phase a set of candidate
elements are formed by all the elements that can be incorporated to the
partial solution under construction without eliminating feasibility. The
selection of the next element for incorporation is resolved by the
evaluation of all candidate elements in accordance with a greedy

evaluation function [42].

This greedy function stands for the incremental increase in the cost
function because of the incorporation of this element into the solution
under construction. The evaluation of the elements by this function
results in the creation of a restricted candidate list (RCL) produced by
the best elements. That is, those elements whose incorporation to the
current partial solution results in the smallest incremental costs. This is
the greedy aspect of the algorithm. The element which is to be
incorporated into the partial solution is randomly chosen from those in
the RCL. This is the probabilistic aspect of the heuristic algorithm.
Once the chosen element is included in the partial solution, the
candidate list is restructured and the incremental costs are recalculated.
This is the adaptive aspect of the heuristic algorithm. The restricted
candidate list RCL is constituted of elements with the best (i.e., the
smallest) incremental costs. This list can be limited by different factors.
That is, either by the number of elements (cardinality-based) or by their
quality (value-based) [42].
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5.1.1.2 Local Search Phase

The solutions produced by the greedy randomized construction are
not always optimal even with respect to simple neighbourhoods. The local
search phase makes the constructed solution better. A local search
algorithm functions in an iterative manner by consecutively replacing the
current solution by an enhanced solution in the neighbourhood of the
existing solution. It finishes when no better solution is identified in the
neighbourhood. Local search can be implemented by using the first
improving or best improving strategy. In the case of best improving
strategy all neighbours are investigated and the current solution is
replaced by the best neighbour. In the case of a first improving strategy
the current solution moves to the first neighbour whose cost function
value is smaller than that of the current solution. In the first improving

strategy the search stops as soon as a better solution is found [76].

5.1.2 Three variants of GRASP — Basic GRASP, Cardinality based
GRASP (CGRASP) and Reactive GRASP (RGRASP)

The restricted candidate list RCL is made up of elements with the
best incremental costs. This list can be limited by the number of elements
(cardinality) or by their quality (value based or Basic GRASP). In the first
case it is made up of the P elements with the best incremental cost where
P is a parameter. In the second case all the elements less than RCL
threshold will form the RCL. Hence this list will be variable in each

iteration.



Metaheuristic Algorithms

In the calculation of RCL threshold a parameter a is used. In basic
GRASP a is assigned a single value for all iterations. The value of a can
range from 0 to 1. The amount of greediness and randomness are
controlled by the parameter a. The algorithm is purely greedy when a=0.
But when a=1 it is equivalent to random construction. But in reactive
GRASP at each iteration the value of a is chosen from a discrete set of
values {al, a2, a3, ... an} depending on the probability Pi associated
with each ai. Initially all ai will have the same probability and each one
is selected once. Depending on the quality of solution the probability is
updated. Then after each iteration the ai with highest probability is
selected. The probability is updated depending on the quality of solution
obtained when ai is used so as to favour values that produce good
solution. In this algorithm the quality of solution obtained is evaluated
based on the size of the bicluster as well as the MSR value. If ai is the
value of a selected in a particular iteration then after obtaining the result
the difference between the solutions obtained in the previous iteration
and present iteration D; is calculated. Assume Avi as the average
obtained for all D;s with ai as the probability. Then for updating the
probability Pi after an iteration with ai the following formula can be

used.

L

Pi= ——— where mi= Avi for i=1...n.

Larger values for probability is obtained for ai with better solutions when

this formula is used.
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5.1.3 Grasp Algorithms for Seed Growing Phase

5.1.3.1 Algorithm for the Construction Phase

Algorithm Greedy_Randomized Construct (Seed)

bicluster«—seed;

While solution construction not done
cand«—construct _candidatelist (bicluster, 9)
RCL<«—BuildRCL(bicluster,cand)
Select an element S from RCL at random
bicluster=bicluster U{S}
Update Genelist or Conditionlist

End(while)

End(Greedy Randomized Construct)

5.1.3.2 Algorithm for Constructing Candidate list

Algorithm construct candidatelist (bicluster, )

Bicluster1<«bicluster;
notinlist«— the list of Genes or Conditions not included in the bicluster
notinlistcount<— noofelements(notinlist)
For i=1:notinlistcount
msrlist[i]=MSR(Bicluster] U notinlist[i])
End(for)
Candidatelist={}

For i=1:notinlistcount

If msrlist[i]<d

Candidatelist=candidatelist U Notinlist[i]
End(for)
end(construct_candidatelist)
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5.1.3.3 Algorithm for Building RCL from Candidate list

Algorithm BuildRCL(bicluster,CAND)

/I CAND is the candidate list
SminMSR = inf
SmaxMSR = -inf
nocan=noofelements(CAND)
for I=1:nocan do
calculate H[i]«— MSR{ bicluster U CANDJ[i]}
if H[1 [<SminMSR
SminMSR=H]i]
Endif
if H[i ]>SmaxMSR
SmaxMSR=H[i]

Endif
Endfor
RCLthresh=SminMSR+a*(SmaxMSR-
SminMSR
RCL={}

For i=1:nocan
If H[i]J<RCLthresh
RCL=RCL U{CANDIJi]}
Endif
end(for)
end BuildRCL

5.1.3.4 Algorithm for the Local Search phase

Algorithm Local Search(bicluster)

//local search
While there exists s € genelist or conditionlist
If MSR(biclusterU s)<MSR(bicluster)
bicluster={bicluster U s}
endif
end(while)
end(Local Search)
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5.1.4 Time Complexity of the Algorithm

The basic operation for the identification of biclusters is the
calculation of MSR of a submatrix. Time complexity for calculating MSR
is O(mn). In this algorithm conditions are added first followed by genes.
There is construction phase and local search phase for both genes and
conditions. In both these phases, for including a condition, the MSR value
of all submatrices which result from adding a single condition, is to be
calculated for all conditions. This number decreases by one after each
iteration. That means the complexity can be calculated by the formula (n
+ (n-1) + (n-2) + ...1). This is equal to n(n+1)/2 which is equivalent to
O(n®). Hence for adding conditions the worst case complexity is
O(mn)(n?).  Similarly for adding genes the worst case complexity is
O(mn)(m?). Hence the worst case complexity for adding genes and
conditions is O(mn)(m*+n?) where m and n are the number of genes and

conditions respectively.

5.1.5 Biclusters obtained Using GRASP (Basic GRASP)

In seed growing phase more conditions and genes are added to the
seed. For this purpose list of conditions and genes not included in the
bicluster is maintained. Thus a separate gene list and condition list is
formed. From this list the candidate gene list and candidate condition list
is formed by those elements whose incorporation into the seed will not
exceed the MSR value above the MSR threshold. From this candidate list
RCL list is formed by selecting the best elements. The best elements will
have an MSR value less than RCL threshold where RCL threshold=
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MSRmin+ o (MSRmax-MSRmin). The maximum of the MSR value
obtained when a single gene or condition is added from the candidate list
is MSRmax. The minimum value of MSR when a gene or condition is
added from the candidate list for a given iteration is MSRmin. The value
of a can range from 0 to 1. The amounts of greediness and randomness
are controlled by the parameter a. The RCL list thus obtained is called
value based. The number of elements in the RCL list will vary in each
iteration. In seed growing phase, the next element to be added to the
bicluster is selected randomly from the RCL. After adding the node the
candidate list and RCL are updated. The process of adding the node is
continued till the MSR value of the bicluster reaches the given MSR
threshold.

5.1.5.1 Bicluster Plots for Yeast Dataset

In Figure 5.1 the eight biclusters obtained using GRASP are shown.
Biclusters with all 17 conditions are obtained using this method. From the
bicluster plots which show strikingly similar up-regulation and down-
regulation we can conclude that GRASP is an ideal method for
identifying coherent biclusters from gene expression data. All the means

squared residues are lower than 215.
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Figure 5.1 Eight biclusters found for the Yeast Dataset by GRASP. Bicluster labels
are (yva7), (yvb7), (yvc7), (yvd7), (yve7), (yvf7), (yvg7) and (yvh7)
respectively. In the bicluster plots X axis contains conditions and Y axis
contains expression values. The details about biclusters can be obtained
from Table 5.1 using bicluster label.

Table 5.1
Information about Biclusters of Figure 5.1
Bicluster Number | Number of | Bicluster
Label of Genes | Conditions Volume MSR
(yva7) 783 8 6264 215.0790
(yvb7) 42 17 714 121.6900
(yveT) 12 17 204 69.9591
(yvd7) 208 13 2704 193.6400
(yve7) 108 17 1836 200.7372
(yvt7) 140 17 2380 200.0088
(yvg?) 47 17 799 145.3612
(yvh7) 44 17 748 163.9544
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In the above table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and the number of columns (conditions) of the bicluster
respectively. The fourth column reports the volume of the bicluster and
the last column contains the mean squared residue or hscore of the

bicluster.

5.1.5.2 Bicluster Plots for Human Lymphoma Dataset

In Figure 5.2 eight biclusters obtained using GRASP are shown. A
biclusters with maximum 89 conditions is obtained using this method.
From the bicluster plots it is clear that biclusters show strikingly similar
up-regulation and down-regulation. All the means squared residues of the

biclusters are lower than 1200.

5

Figure 5.2 Eight biclusters found for the Lymphoma Dataset by GRASP. Bicluster
labels are (lva7), (Ivb7), (Ivc7), (Ivd7), (lve7), (Ivf7), (lvg7) and (lvh7)
respectively. In the bicluster plots X axis contains conditions and Y axis
contains expression values. The details about biclusters can be obtained
from Table 5.2 using bicluster label.
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Table 5.2

Information about Biclusters of Figure 5.2

Bicluster | Number of Number of Bicluster MSR
Label Genes Conditions Volume
(Iva7) 16 89 1424 1196.9
(Ivb7) 38 74 2812 1189.8
(Ive7) 175 50 8750 1075.2
(Ivd7) 10 83 830 1182.1
(Ive7) 62 82 5084 1197.3
(Ivf7) 34 74 2516 1019.5
(lvg7) 24 73 1752 1197.9
(Ivh7) 132 32 4224 751.9

In the Table given above the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and of columns (conditions) of the bicluster respectively. The
fourth column reports the volume of the bicluster and the last column

contains the mean squared residue or hscore of the bicluster.

5.1.5.3 Details of Significant Biclusters obtained by GRASP

‘‘‘‘‘‘‘ ons. Condions Contir Consios

Figure 5.3 Four significant biclusters obtained by the GRASP algorithm on Yeast
dataset. The bicluster labels are sv71, sv72, sv73 and sv74. The details about
the biclusters can be obtained from Table 5.3 using bicluster label.
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Table 5.3
Information about Biclusters of Figure 5.3
“Label | Genes | Conditions | MSR | RowVariance
Sv71 121 17 199.9395 483.2784
Sv72 107 17 199.4776 568.0833
Sv73 36 17 297.6071 1806.9000
Sv74 224 9 228.1477 403.6127

Biological relevance of biclusters obtained using GRASP algorithm
is verified using the four biclusters shown in Figure 5.3. GO annotation
database is used to verify the biological significance of biclusters. In the

bicluster Sv71 there are 121 genes. They are YBL014C, YBL083C, YBL084C,
YBR293W, YCLO16C, YCLO31C, YCL053C, YCL054W, YCRO072C, YCRO87W,
YDLO008W, YDL030W, YDL076C, YDL150W, YDLI153C, YDL166C, YDLI167C,
YDLI189W, YDL215C, YDL231C, YDRO17C, YDR020C, YDRO38C, YDRO57W,
YDRO060W, YDR0O80W, YDRO83W, YDR108W, YDR120C, YDR121W, YDR170C,
YDR172W, YDR211W, YDR234W, YDR262W, YDR289C, YDR299W, YDR312W,
YDR321W, YDR339C, YDR352W, YDR361C, YDR365C, YDR392W, YDR416W,
YDR449C, YDR469W, YDR477W, YDR478W, YDR518W, YDR524C, YDR542W,
YELO15W, YELO55C, YERO0O5W, YERO75C, YER099C, YER107C, YER166W,
YER168C, YER171W, YFLOOIW, YGLO85W, YGLO99W, YGL214W, YGR042W,
YGRO90OW, YGRI187C, YGR200C, YGR216C, YHRO062C, YJLO11C, YJLO069C,
YJRO17C, YJR066W, YKRO056W, YKRO60W, YLLOOSW, YLLO034C, YLRO51C,
YLRO88W, YLR107W, YLR146C, YLR215C, YLR222C, YLR227C, YLR401C,
YMLO066C, YMLOSOW, YML093W, YMR093W, YMR211W, YMR235C, YNL041C,
YNL132W, YNLI163C, YNL164C, YNLI199C, YNL227C, YNL299W, YNROO3C,
YNRO38W, YOL021C, YOLO022C, YOL036W, YOLO80OC, YOL124C, YOL140W,
YOL144W, YOR006C, YOR056C, YOR0O61W, YOR098C, YORI145C, YOR160W,
YOR252W, YOR272W, YPL126W, YPL268W, YPRO53C, YPR112C.
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In bicluster sv72 there are 107 genes namely YALOO3W, YALO38W,
YARO020C, YBL030C, YBL072C, YBL092W, YBRO09C, YBR031W, YBRO048W,
YBRO084C-A,YBR106W, YBR118W, YCR013C, YCRO031C, YDL061C, YDLO75W,
YDLO81C, YDLO083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W,
YDL221W, YDL228C, YDL229W, YDRO12W, YDR025W, YDRO50C, YDR064W,
YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W, YDR447C,
YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YERI117W, YGL102C,
YGRI118W, YHRI141C, YJL136C, YJL188C, YJL189W, YJL190C, YJRO09C,
YJR094W-A, YJR123W, YKL056C, YKL060C, YKL096W-A, YKL152C, YKL153W,
YKL180W, YKRO57W, YKR094C, YLLO066C, YLLO67C, YLR029C, YLRO048W,
YLR062C, YLRO75W, YLRO76C, YLR110C, YLR167W, YLRI185W, YLR249W,
YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, YLR467W,
YMLO024W, YML026C, YMLO039W, YML045W, YML063W, YML133C, YMRO045C,
YMR202W, YNLO30W, YNLO67W, YNL162W, YNL302C, YNL339C, YOLO39W,
YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C, YOR369C,
YPLO37C, YPLOS1W,YPLO90C,YPL143W, YPL283C, YPR102C,YPR204W.

In the bicluster Sv73 there are 36 genes. They are YAR007C,

YARO08W, YBLO035C, YBR073W, YBROS8C, YBRO8OW, YCRO65W, YDLOO3W,
YDLO10W, YDLOI8C, YDL164C, YDR097C, YDR507C, YER095W, YFLOO8W,
YGRI151C, YGRI152C, YHRI154W, YIL026C, YJL181W, YIJLI87C, YKLO042W,
YKL113C, YLLO022C, YLR103C, YLR386W, YMLO021C, YML102W, YMRO76C,

YMRO78C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C. The
fourth seed results in a bicluster with more than 400 genes. Since there are
a large number of genes, there is no search result. Hence the algorithm is

executed in such a way to get only 224 genes. These genes are YAL028W,

YALO35W, YAL041W, YALO59W, YBL004W, YBLO014C, YBL024W, YBL026W,
YBLO032W, YBLO037W, YBL042C, YBL049W, YBLO052C, YBLO56W, YBLO68W,
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YBLO75C, YBLO83C, YBLO88C, YBR021W, YBRO038W, YBRO60C, YBRO75W,
YBRO79C, YBR094W, YBRI123C, YBRI133C, YBRI38C, YBR140C, YBRI55W,
YBR257W, YBR270C, YBR295W, YCLO12W, YCLO31C, YCLO054W, YCLO059C,
YCRO14C, YCR024C, YCRO036W, YCR043C, YCR060W, YCRO062W, YCRO63W,
YDLO0OSW, YDLO030W, YDL043C, YDLO058W, YDL069C, YDL076C, YDLO079C,
YDL142C, YDL150W, YDL153C, YDL166C, YDL167C, YDL189W, YDL202W,
YDL215C, YDL230W, YDL231C, YDL243C, YDRO11W, YDRO020C, YDRO038C,
YDRO57W, YDR0O60W, YDRO80W, YDRO83W, YDR108W, YDR109C, YDRI120C,
YDR150W, YDRI170C, YDR172W, YDRI85C, YDR197W, YDRI198C, YDR211W,
YDR214W, YDR235W, YDR236C, YDR262W, YDR272W, YDR282C, YDR286C,
YDR288W, YDR312W, YDR313C, YDR324C, YDR352W, YDR363W, YDR375C,
YDR391C, YDR392W, YDR419W, YDR456W, YDR466W, YDR524C, YEL043W,
YELO053C, YELO55C, YERO005W, YERO034W, YER064C,YERI07C, YFLOO6W,
YFLO36W, YGLO2IW, YGL248W, YGL255W, YGRO35C, YGR092W, YGRI108W,
YGR129W, YGRI187C, YGR200C, YGR216C, YHRO023W, YHRO062C, YHRO73W,
YHRI151C, YIL0OO7C, YILO97W, YIL106W, YIL117C, YIL158W, YIL162W, YJL0O96W,
YJL192C, YJRO02W, YJR092W, YKLO057C, YKLI118W, YKLI29C, YKLI43W,
YKL173W, YKL205W, YKR021W, YKRO31C, YKR060W, YKRO79C, YLLOOSW,
YLROI4C, YLROS51C, YLRO68W, YLR107W, YLRI31C, YLR190W, YLR2I15C,
YLR222C, YLR227C, YLR277C, YLR320W, YLR353W, YLR420W, YLR434C,
YLR438W, YMLO033W, YML034W, YMLO052W, YML064C, YMLO82W,YML093W,
YML094W, YML103C, YML119W, YML130C, YMRO01C, YMRO025W, YMRO32W,
YMRO33W, YMRO59W, YMRO072W, YMR093W, YMR132C, YMR156C, YMR211W,
YMR212C, YMR225C, YMR278W, YMR291W, YNLO041C, YNLO51W, YNLO53W,
YNL132W, YNL163C, YNL171C, YNL172W, YNLI196C, YNL201C, YNL223W,
YNL227C, YNL299W, YNROO3C, YOLO02IC, YOL022C, YOLO042W, YOLO060C,
YOLO070C, YOLOSOC, YOLI113W, YORO006C, YORO049C, YORO061W, YORO098C,
YORI104W, YORI27W, YORI145C, YOR152C, YOR160W, YOR205C, YPL029W,
YPL150W, YPL173W, YPL183C, YPL198W, YPL205C, YPL242C, YPROO3C,
YPR026W, YPRO79W, YPR112C, YPR119W.
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The Table 5.4 given below shows the significant GO terms used to
describe the genes of the biclusters of Figure 5.3 for the process, function
and component ontologies. The common terms are described with
increasing order of p-values or decreasing order of significance. In Table
5.3 the first entry of the second column with the title process contains the
term ribosome biogenesis (44, 1.46e-23) which means that 44 out of the
121 genes of the bicluster are involved in the process of ribosome
biogenesis and their p-value is 1.46e-23. Second entry indicates that 46
out of 121 genes are involved in ribonucleoprotein complex biogenesis.
Also from the table it is clear that the biclusters are distinct along each
category. This proves that the bicluster contains biologically similar genes
and the GRASP method used here is capable of identifying biologically

significant biclusters from different GO categories.

Table 5.4

Significant Shared GO Terms (Process, Function, Component) of
Biclusters shown in Figure 5.3

Bicluster Process Function Component
Sv71 Ribosome 44 out of 121 genes | Nucleolus (35,8.74e-
Biogenesis (44, are directly 21) Preribosome
1.46e-23) annotated to the (23,5.33e-13)
Ribonucleoprotien term molecular Nuclear part (53,
complex biogenesis | function unknown 1.17e-10) cell part
(46, 6.18e-23) (112,0.00189)

Cellular component
biogenesis at celluar
Level (47, 6.22¢-20)
Nitrogen compound
metabolic process
(64, 4.18e-06)
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Sv72 Translation(69, Structural Cytosolic ribosome
1.52e-56) cellular Constituent of | (55, 3.68e-55)
protein metabolic ribosome (62, 5.81e- | cytosolic part
process (72, 1.13e- | 62) structural | (55, 4.85¢-50)
27) protein molecule activity Ribosome (59, 3.190e-
metabolic process (63, 4.33¢-49) 46) cytoplasm (74,
(72, 8.1 16'27) translation 0.00569
metabolic process elongation factor
(84, 9.28¢-07) activity (5, 0.00011)

RNA binding (15,
0.00603

Sv73 DNA metabolic Structure-specific Chromosome(15,1.21e
process( 19, 5.44e- DNA binding -07) replication fork (8,
11) DNA repair (16, | (5,0.00315) 1.40e-06)
9.53e-11) cell double-stranded Chromosomal part
cycle(20, 8.42¢-10) | DNA binding (13,4.93¢-06)
nucleobase, (4,0.00134) Nucleus (26, 1.52¢-05)
nucleoside,
nucleotide and
nucleic acid (23,
0.00011)

Sv74 RNA processing 84 genes are Nucleolus(32, 4.08e-
(42,1.63e-06) annotated to the 09) Preribosome (19,
Ribosome term molecular 0.00034)

biogenesis (35,
3.86e-06) ncRNA
processing
(34,6.13¢-06)
ribonucleoprotien
complex biogenesis
(37,1.50e-05)
ncRNA metabolic
process(35, 2.40 e-
05) Cellular
component
organization or
biogenesis(100,
0.00291)

function unknown.

Intracellular organelle
(168, 0.00039)
Organelle (168,
0.00041)
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Figure 5.4 Sample of Genes for the bicluster sv71, with corresponding GO terms

and their parents for Component ontology
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Figure 5.4 shows the significant GO terms for the set of genes in
bicluster sv71 along with their p-values. It shows the branching of cellular
component into sub-components like cell and membrane-enclosed lumen.
These components are clustered using genes to produce the final result.
Figure 5.4 is obtained when gene ontology database is searched by
entering the names of genes of bicluster sv71 and by selecting component
ontology. Only 4 genes (YDL153C, YDR339C, YDR449C, YJL069C) are

searched to reduce the size of the Figure.

5.1.6 Biclusters obtained Using CGRASP

In seed growing phase more conditions and genes are added to the
seed. A separate list is maintained for genes and conditions not included
in the bicluster. From this list, the candidate gene list and candidate
condition list are formed by those elements whose incorporation into the
seed will not exceed the MSR score above the MSR threshold. From this
candidate list, RCL is formed by selecting the best elements. The best
elements will have an MSR value less than RCL threshold where RCL
threshold= MSRmin+ a (MSRmax-MSRmin). When this formula is used
the RCL is called value based. For cardinality based GRASP P best
elements are selected from the RCL. So the number elements which can

be considered for inclusion in the bicluster will be fixed for each iteration.

5.1.6.1 Bicluster Plots for Yeast Dataset

In Figure 5.5 nine biclusters obtained using CGRASP are shown.
Biclusters with all 17 conditions are obtained using this method. From the

bicluster plots which show strikingly similar upregulation and down
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regulation we can conclude that CGRASP is an ideal method for
identifying coherent biclusters from gene expression data. All the means

squared residues are lower than 215.

Expression Values

Expression Values

Expression values
&

Expression Values
Expression Values
Expression Valus

8 8 8

g
-]

100

Expression Values

Expression Values

4
Condtions Conditons Condiions.

Figure 5.5 Nine biclusters found for the Yeast Dataset by CGRASP. Bicluster labels are
(yac7), (ybc7), (yec7), (yde7), (yec7), (yfc7), (yge7), (yhe7) and (yic7)
respectively. In the bicluster plots X axis contains conditions and Y axis
contains expression values. The details about biclusters can be obtained from
Table 5.5 using bicluster label.
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Table 5.5

Information about Biclusters of Figure 5.5

Bicluster label N“&':; of 2:::1];;235 ]i;zll‘l’lsl:: MSR
(yac7) 107 17 1819 199.1857
(ybe7) 63 17 1071 148.1866
(yecT) 64 16 1024 149.6244
(yde7) 324 12 3888 193.7751
(yecT) 256 13 3328 199.7194
(yfe7) 164 16 2624 199.7293
(yge?) 24 17 408 104.5418
(yhe?) 21 17 357 94.4589
(yic7) 146 9 1314 250.1285

In the above table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and of columns (conditions) of the bicluster respectively. The
fourth column reports the volume of the bicluster and the last column

contains the mean squared residue or hscore of the bicluster.
5.1.6.2. Bicluster Plots for Lymphoma Dataset

This is the first time CGRASP metaheuristics is applied to find
biclusters from Lymphoma dataset. Eight biclusters obtained by applying
CGRASP to lymphoma dataset are shown in Figure 5.6.
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Figure 5.6 Eight biclusters found for the Lymphoma Dataset by CGRASP. The
bicluster labels are (lac7), (Ibc7), (Icc7), (1dc7), (lec7), (1fc7), (1gc7) and
(Ihc7) respectively. The details of the biclusters can be obtained from Table
5.6 using bicluster label.

Table 5.6
Information about Biclusters of Figure 5.6
Bicluster Number of Number of Bicluster MSR

Label Genes Conditions Volume

(lac7) 26 26 676 883.6869
(Ibc7) 30 19 570 441.5052
(Icc7) 52 10 520 307.5545
(1dc7) 18 10 180 368.0541
(lec7) 14 21 294 409.6572
(1fc7) 24 16 384 542.8357
(Igc7) 10 26 260 388.4876
(Ihc7) 112 12 1344 492.4187

In the Table given above the first column contains the label of each

bicluster. The second and third columns report the number of rows
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(genes) and of columns (conditions) of the bicluster respectively. The
fourth column reports the volume of the bicluster and the last column

contains the mean squared residue or hscore of the bicluster.

5.1.6.3 Details of Significant Biclusters obtained by CGRASP

Figure 5.7 Four significant biclusters obtained by the CGRASP algorithm on Yeast
dataset. The bicluster labels are sc71, sc72, sc73 and sc74. The details about
the biclusters can be obtained from Table 5.7 using bicluster label.

Table 5.7

Information about Biclusters of Figure 5.7

Bicluster Number of Number of MSR Row
Label Genes Conditions Variance
Sc71 121 17 199.9395 483.2784
Sc72 107 17 199.4776 568.0833
Sc73 36 17 297.6071 1806.9000
Sc74 224 9 228.4546 403.1319

In the first bicluster sc71 there are 121 genes. They are YBL014C,
YBLO083C, YBLO084C, YBR293W, YCLO16C, YCLO31C, YCLO53C, YCLO54W,
YCRO072C, YCRO87W, YDLO08W, YDL0O30W, YDL076C, YDL150W, YDL153C,
YDL166C, YDL167C, YDL189W, YDL215C, YDL231C, YDRO17C, YDRO020C,
YDRO038C, YDRO57W, YDR0O60W, YDRO80W, YDR083W, YDR108W, YDR120C,
YDR121W, YDRI170C, YDR172W, YDR211W, YDR234W, YDR262W, YDR289C,
YDR299W, YDR312W, YDR321W, YDR339C, YDR352W, YDR361C, YDR365C,
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YDR392W, YDR416W, YDR449C, YDR469W, YDR477W, YDR478W, YDRS518W,
YDRS524C, YDR542W, YELOI5W, YELO055C, YEROO5W, YERO075C, YERO099C,
YER107C, YER166W, YER168C, YER171W, YFLOOIW, YGLO85W, YGLO099W,
YGL214W, YGR042W, YGR090OW, YGR187C, YGR200C, YGR216C, YHR062C,
YJLO11C, YJL069C, YJRO17C, YJR0O66W, YKRO56W, YKRO60W, YLLOOSW,
YLL034C, YLRO5IC, YLRO88W, YLR107W, YLR146C, YLR215C, YLR222C,
YLR227C, YLR401C, YML066C, YMLO80W, YML093W, YMRO093W, YMR211W,
YMR235C, YNLO41C, YNLI132W, YNLI163C, YNL164C, YNL199C, YNL227C,
YNL299W, YNROO3C, YNRO38W, YOLO021C, YOL022C, YOL036W, YOLO0SOC,
YOLI124C, YOL140W, YOL144W, YORO006C, YOR056C, YOR061W, YORO09SC,
YOR145C, YOR160W, YOR252W, YOR272W, YPL126W, YPL268W, YPRO53C,
YPR112C.

In the second bicluster sc72, there are 107 genes namely YALOO3W,

YALO38W, YARO020C, YBLO030C, YBL072C, YBL092W, YBRO09C, YBRO31W,
YBR048W, YBR084C-A,YBR106W, YBR118W, YCRO13C, YCRO31C, YDLO6IC,
YDLO075W, YDLO81C, YDLO083C, YDL130W, YDLI136W, YDLI91W, YDLI192W,
YDL208W, YDL221W, YDL228C, YDL229W, YDRO12W, YDR025W, YDRO050C,
YDR064W, YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W,
YDR447C, YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YERI117W,
YGL102C, YGRI118W, YHRI141C, YJL136C, YJL188C, YIJL189W, YJL190C,
YJRO09C, YJR094W-A, YJR123W, YKL056C, YKLO60C, YKL096W-A, YKL152C,
YKLI153W, YKLI180W, YKRO57W, YKRO094C, YLL066C, YLL0O67C, YLRO029C,
YLRO048W, YLRO62C, YLRO75W, YLRO76C, YLR110C, YLR167W, YLRI85W,
YLR249W, YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR44IC,
YLR467W, YML024W, YML026C, YMLO039W, YML045W, YML063W, YML133C,
YMRO045C, YMR202W, YNLO30W, YNLO67W, YNL162W, YNL302C, YNL339C,
YOLO039W, YOL040C, YOLI127W, YORI167C, YOR234C, YOR293W, YOR312C,
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YOR369C, YPLO37C, YPLO81W, YPL090C, YPL143W, YPL283C, YPR102C,
YPR204W.

In the third bicluster sc73, there are 36 genes. They are YAR007C,

YARO00O8W, YBL035C, YBR073W, YBRO88C, YBRO8OW, YCR065W, YDLOO3W,
YDLO010W, YDLO18C, YDL164C, YDR097C, YDR507C, YER095W, YFLOO8W,
YGRI151C, YGRI52C, YHRI154W, YIL026C, YJL181W, YJL187C, YKLO042W,
YKLI113C, YLL022C, YLR103C, YLR386W, YMLO021C, YML102W, YMRO76C,
YMRO78C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C

The fourth seed results in a bicluster with more than 400 genes.
Since there are a large number of genes, there is no search result. Hence
the algorithm is executed in such a way to get only 224 genes. These

genes are YALO028W, YALO35W, YALO41W, YALO59W, YBL004W, YBLO014C,

YBL024W, YBL026W, YBL032W,YBL037W, YBL042C, YBL049W, YBLO052C,
YBLO056W, YBL068W, YBLO075C, YBLO083C, YBLO088C, YBRO021W, YBRO38W,
YBR060C, YBRO75W, YBRO79C, YBR094W, YBRI23C, YBRI33C, YBRI138C,
YBR140C, YBRI155W, YBR257W, YBR270C, YBR295W, YCLO12W, YCLO031C,
YCLO054W, YCLO059C, YCRO14C, YCRO024C, YCRO036W, YCRO043C, YCRO60W,
YCRO62W, YCRO063W, YDLO008W, YDLO030W, YDLO043C, YDLO058W, YDLO069C,
YDL076C, YDLO079C, YDL142C, YDL150W, YDLI153C, YDL166C, YDL167C,
YDL189W, YDL202W, YDL215C, YDL230W, YDL231C, YDL243C, YDROI1W,
YDRO020C, YDRO038C, YDRO57W, YDRO060W, YDRO80W, YDRO83W, YDRI108W,
YDR109C, YDRI120C, YDRI50W, YDRI170C, YDRI172W, YDRI85C, YDRI197W,
YDR198C, YDR211W, YDR214W, YDR235W, YDR236C, YDR262W, YDR272W,
YDR282C, YDR286C, YDR288W, YDR312W, YDR313C, YDR324C, YDR352W,
YDR363W, YDR375C, YDR391C, YDR392W, YDR419W, YDR456W, YDR466W,
YDR477W, YDR524C, YEL043W, YELO53C, YELO55C, YEROO5W, YERO034W,
YER064C, YERI107C, YFLO06W, YFLO036W, YGLO021W, YGL248W, YGL255W,
YGRO35C, YGRO092W, YGRI108W, YGRI129W, YGRI87C, YGR200C, YGR216C,
YHRO023W, YHR062C, YHR073W, YHRI151C, YILOO7C, YILO97W, YIL106W, YIL117C,



Chapter 5

YIL158W, YIL162W, YJL096W, YJL192C, YJR002W, YJR092W, YKLO057C, YKL118W,
YKLI129C, YKL143W, YKL173W, YKL205W, YKRO021W, YKRO031C,YKRO60W,
YKRO79C, YLLOO8W, YLRO14C, YLRO51C, YLRO068W, YLR107W, YLRI13IC,
YLRI9OW, YLR215C, YLR222C, YLR227C, YLR277C, YLR320W, YLR353W,
YLR420W, YLR434C, YLR438W, YMLO033W, YMLO034W, YMLO052W, YMLO064C,
YMLO82W, YMLO093W, YML094W, YML103C, YML119W, YML130C, YMROOIC,
YMRO25W, YMRO032W, YMRO33W, YMRO59W, YMRO72W, YMRO093W, YMR132C,
YMRI156C, YMR211W, YMR212C, YMR225C, YMR278W, YMR291W, YNLO41C,
YNLO51W, YNLO53W, YNLI132W, YNL163C, YNL171C, YNL172W, YNLI96C,
YNL201C, YNL223W, YNL227C, YNL299W, YNRO03C, YOLO021C, YOLO022C,
YOL042W, YOL060C, YOLO070C, YOLO80OC, YOLI113W, YORO006C, YORO049C,
YORO61W, YORO098C, YOR104W, YORI127W, YOR145C, YOR152C,
YOR160W,YOR205C, YPL029W, YPLI50W, YPL173W, YPLI183C, YPLI98W,
YPL205C, YPL242C, YPR0OO3C, YPR026W, YPRO79W, YPR112C,YPR119W,

The Table 5.8 given below shows the significant GO terms used to
describe the genes of the biclusters of Figure 5.7 for the process, function
and component ontologies. The common terms are described with
increasing order of p-values or decreasing order of significance. In Table
5.8 the first entry of the second column with the title ‘process’ contains
the term ribosome biogenesis (44, 1.46e-23) which means that 44 out of
the 121 genes of the bicluster are involved in the process of ribosome
biogenesis and their p-value is 1.46e-23. Second entry indicates that 46
out of 121 genes are involved in ribonucleoprotein complex biogenesis.
Also from the table it is clear that the biclusters are distinct along each
category. This proves that the bicluster contains biologically similar genes
and the CGRASP method used here is capable of identifying biologically

significant biclusters from different GO categories.
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Table 5.8

Significant Shared GO Terms (Process, Function, Component) of
Biclusters shown in Figure 5.7

Bicluster Process Function Component

SC71 Ribosome Biogenesis 44 out of 121 genes Nucleolus (35,8.74e-
(4'4, 1.46e-23) ‘ are directly annotated 21) Preribosome
Ribonucleoprotien (23,5.33e-13)
complex biogenesis to the term molecular Nuclear part(53,

(46, 6.18e-23) function unknown 1.17e-10) cell part
Cellular component (112, 0.00189)
biogenesis at celluar

Level(47, 6.22e-20)

Nitrogen compound

metabolic process

(64, 4.18e-06)

SC72 Translation(69, 1.52e-56) | Structural constituent | Cytosolic ribosome
cellular protein metabolic | of ribosome(62, (55, 3.68e-55)
process (72, 1.13e-27) 5.81e-62) structural cytosolic part
protein metabolic molecule activity (55, 4.85¢-50)
process(72, 8.11e-27) (63, 4.33e-49) Ribosome (59,
metabolic process (84, translation elongation | 3.190e-46) cytoplasm
9.28e-07) factor activity (5, | (74, 0.00569

0.00011) RNA
binding (15, 0.00603

SC73 DNA metabolic process Structure-specific Chromosome(15,1.21
(19,5.44¢-11) DNA DNA binding e-07) replication fork
repair (16, 9.53e-11) (5,0.00315) (8, 1.40e-06)
cell cycle(20, 8.42e-10) double-stranded DNA | Chromosomal
nucleobase, nucleoside, binding(4,0.00134) part(13,4.93e-06 )
nucleotide and nucleic Nucleus (26, 1.52¢-
acid (23, 0.00011) 05)

SC74 RNA processing (42, 84out of 224input Nucleolus
1.92¢-06) ribosome genes are directly (32,4.65¢-09)

. . annotated to root term | Intracellular
biogenesis (33, 4.45¢-06) 'molecular function Organelle
ncRNA processing (34, | unknown' (169,0.00031)
7.03e-06 ) cellular Organelle
Component Organization (169,0.00033)

or biogenesis
(101,0.00194)

Intracellular(189,0.00
105)
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Figure 5.8: Sample of Genes for the Bicluster sc73, with corresponding GO terms and

their parents for Function Ontology
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Figure 5.8 shows the significant GO terms for the set of genes in
bicluster SC73 along with their p-values. It shows the branching of
molecular function into sub-functions binding and catalytic activity.
These fuctions are subdivided further and clustered using genes to
produce the final result. Figure 5.8 is obtained when gene ontology
database is searched by entering the names of genes in bicluster sc73 and

by selecting the function ontology.
5.1.7 Biclusters obtained Using RGRASP

In seed growing phase more conditions and genes are added to the
seed from the Restricted Controlled List (RCL). RCL is formed by
selecting best elements from candidate list. Candidate list is formed by
those elements which can be added to the bicluster without incrementing
the MSR value above the MSR threshold. From the candidate list RCL
list is formed by selecting the best elements. The best elements will have
an MSR value less than RCL threshold where RCL threshold= MSRmin+
o (MSRmax-MSRmin). For value based GRASP, the value of a is fixed.
For reactive GRASP the value of a is selected from a discrete set of
possible values. Initially all these values are given equal probability. Then
the probability of ai is updated based on the quality of solution obtained.
This updation will be such that, the ai with good solution will have higher
probability of being selected. In this study the set of values assigned for o
for condition list is {0.01, 0.02, 0.03, 0.04, 0.05, 0.06} and the set of
values assigned for a for gene list is {0.0001, 0.0002, 0.0003, 0.0004,
0.0005, 0.0006}.



Chapter 5

5.1.7.1. Bicluster Plots for Yeast Dataset

In Figure 5.9 eight biclusters obtained using RGRASP are shown.
Biclusters with all 17 conditions are obtained using this method. From the
bicluster plots which show strikingly similar up-regulation and down-
regulation it is concluded that RGRASP is an ideal method for identifying
coherent biclusters from gene expression data. All the means squared

residues are lower than 205.

VRN
7%
v

Figure 5.9 Eight biclusters found for the Yeast Dataset by RGRASP. Bicluster labels

are (yar7), (ybr7), (ycr7), (ydr7), (yer7), (yfr7), (ygr7) and (yhr7)
respectively. In the bicluster plots X axis contains conditions and Y axis
contains expression values. The details about biclusters can be obtained
from Table 5.9 using bicluster label.
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Table 5.9

Information about Biclusters of Figure 5.9

miuser Labt | Mgt of [ Rumberof | vt | i
(yar7) 17 17 289 75.2721
(ybr7) 145 17 2465 202.0707
(yer7) 107 17 1819 199.1857
(ydr7) 336 13 4368 199.8158
(yer7) 169 15 2535 199.7847
(yft7) 10 17 170 115.9704
(yer7) 55 17 935 199.3416
(yhr7) 16 17 272 104.2135

In the above table the first column contains the label of each
bicluster. The second and third columns report the number of rows
(genes) and the number of columns (conditions) of the bicluster
respectively. The fourth column reports the volume of the bicluster and
the fifth column contains the mean squared residue or hscore of the

bicluster.
5.1.7.2 Bicluster Plots for Lymphoma Dataset

This is the first time RGRASP metaheuristics is applied to find
biclusters from Lymphoma dataset. Eight biclusters obtained by applying
RGRASP to Lymphoma dataset are shown in Figure 5.10. Biclusters
(1dr7) and (1hr7) are having very large volume.
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Figure 5.10: Eight biclusters found for the Lymphoma Dataset by RGRASP. The
bicluster labels are (lar7), (Ibr7), (lcr7), (1dr7), (ler7), (Ifr7), (Igr7) and

4 5 8 10 L ¥ 5 B A
Condiions

(Ihr7) respectively. The details of the biclusters are given in Table 5.10

Information about Biclusters of Figure 5.10

Table 5.10

Bicluster Number of | Number of Bicluster MSR
Label Genes Conditions Volume
(lar7) 10 83 830 1182.10
(Ibr7) 11 70 770 1106.70
(ler7) 20 54 1080 874.59
(1dr7) 261 45 11745 1197.70
(ler7) 11 68 748 1117.30
(1f17) 18 56 1008 904.40
(1gr7) 15 58 870 952.83
(1hr7) 220 19 4180 961.05

In the table given above the first column contains the label of each

bicluster. The second and third columns report the number of rows (genes)
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and the number of columns (conditions) of the bicluster respectively. The
fourth column reports the volume of the bicluster and the last column

contains the mean squared residue or hscore of the bicluster.

5.1.7.3 Details of Significant Biclusters obtained by RGRASP

g 7 4 5 8 Wm0 1 u

nnnnnnnnn contions Cordions

Figure 5.11 Four significant biclusters obtained by the
dataset. The bicluster labels are sr71, sr72, sr73 and sr74. The details about
the biclusters can be obtained from Table 5.11 using the bicluster label.

Table 5.11

Information about Biclusters of Figure 5.11

Bicluster Number of | Number of MSR Row
Label Genes Conditions Variance
Sr71 121 17 199.9395 483.2784
Sr72 107 17 199.4776 568.0833
Sr73 36 17 297.6071 1806.9000
Sr74 224 10 204.2154 500.7598

In the first bicluster Sr71 there are 121 genes. They are YBLO14C,
YBLO083C, YBLO084C, YBR293W, YCLO16C, YCLO031C, YCLO053C, YCLO054W,
YCRO72C, YCRO87W, YDLO08W, YDLO030W, YDLO76C, YDL150W, YDLI153C,
YDL166C, YDL167C, YDL189W, YDL215C, YDL231C, YDRO17C, YDRO020C,
YDRO38C, YDRO57W, YDRO60W, YDRO8OW, YDRO83W, YDR108W, YDR120C,
YDRI121W, YDR170C, YDRI172W, YDR211W, YDR234W, YDR262W, YDR289C,
YDR299W, YDR312W, YDR321W, YDR339C, YDR352W, YDR361C, YDR365C,
YDR392W, YDR416W, YDR449C, YDR469W, YDR477W, YDR478W, YDR518W,
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YDRS524C, YDRS542W, YELO15W, YELO055C, YERO005W, YERO075C, YERO099C,
YER107C, YERI166W, YER168C, YER171W, YFLOOIW, YGLO85W, YGLO99W,
YGL214W, YGRO042W, YGRO90OW, YGRI87C, YGR200C, YGR216C, YHRO062C,
YJLO11C, YJLO69C, YJRO17C, YJRO66W, YKRO56W, YKRO60W, YLLOOSW,
YLLO034C, YLROSIC, YLRO88W, YLRIO7W, YLRI146C, YLR215C, YLR222C,
YLR227C, YLR401C, YMLO066C, YMLO80OW, YMLO093W, YMRO093W, YMR211W,
YMR235C, YNL041C, YNLI132W, YNLI163C, YNL164C, YNLI199C, YNL227C,
YNL299W, YNROO3C, YNRO38W, YOLO021C, YOL022C, YOLO036W, YOLO0S0C,
YOL124C, YOL140W, YOLI144W, YORO006C, YORO056C, YORO061W, YORO098C,
YORI145C, YOR160W, YOR252W, YOR272W, YPL126W, YPL268W, YPRO53C,
YPR112C.

In the second bicluster sr72 there are 107 genes namely YALOO3W,

YALO38W, YARO020C, YBLO030C, YBLO072C, YBL092W, YBRO09C, YBRO31W,
YBR048W, YBRO84C-A,YBR106W, YBR118W, YCROI3C, YCRO31C, YDLO061C,
YDL075W, YDLO81C, YDLO083C, YDLI130W, YDL136W, YDLI91W, YDL192W,
YDL208W, YDL221W, YDL228C, YDL229W, YDRO12W, YDRO025W, YDRO50C,
YDR064W, YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W,
YDR447C, YDR450W, YDR471W, YDRS500C, YEL034W, YER074W, YERI117W,
YGL102C, YGR118W, YHR141C, YJL136C, YJL188C, YJL189W, YJL190C, YJR0O09C,
YJR094W-A, YJR123W, YKLO056C, YKL0O60C, YKL0O96W-A, YKL152C, YKL153W,
YKL180W, YKRO57W, YKRO094C, YLLO066C, YLL067C, YLRO029C, YLRO48W,
YLRO062C, YLRO75W, YLRO76C, YLRI10C, YLRI67W, YLRI85W, YLR249W,
YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, YLR467W,
YML024W, YMLO026C, YML0O39W, YML045W, YMLO063W, YML133C, YMRO045C,
YMR202W, YNLO30W, YNLO67W, YNL162W, YNL302C, YNL339C, YOLO39W,
YOL040C, YOLI127W, YORI167C, YOR234C, YOR293W, YOR312C, YOR369C,
YPLO037C, YPLO81W,YPL0O90C,YPL143W, YPL283C, YPR102C, YPR204W.
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In the third bicluster sr73 there are 36 genes. They are YAR007C,

YARO008W, YBLO035C, YBRO73W, YBRO88C, YBRO8OW, YCRO65W, YDLOO3W,
YDLO10W, YDLO018C, YDL164C, YDR097C, YDR507C, YER095W, YFLOO8W,
YGRIS51IC, YGR152C, YHR154W, YIL026C, YJL181W, YIJL187C, YKLO042W,
YKL113C, YLL022C, YLR103C, YLR386W, YML021C, YML102W, YMRO76C,
YMRO78C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C.

The fourth seed results in a bicluster with more than 400 genes. Since
there are a large number of genes, there is no search result. Hence the

algorithm is executed in such a way to get only 224 genes. These genes are

YALO35W, YALO59W, YARO15W, YBLO004W, YBLOO5W, YBLO14C, YBLOISC,
YBL024W,  YBL026W, YBLO37W,  YBL049W,  YBL054W, YBLO083C,
YBLO084C,YBLO8SC, YBR002C, YBRO21W, YBRO032W, YBRO038W, YBRO060C,
YBRO75W, YBRO76W, YBRO084W, YBR094W, YBR123C, YBRI33C, YBRI38C,
YBRI55W, YBR228W, YBR257W, YBR266C, YBR267W, YBR270C, YBR293W,
YBR295W, YCLO12W, YCLO16C, YCLO054W, YCRO036W, YCRO043C, YCRO51W,
YCRO62W, YCRO63W, YCRO072C, YCRX16C, YDLO030W, YDLO043C, YDLO58W,
YDL063C, YDLO76C, YDLI150W, YDLI153C, YDL160C, YDLI167C, YDL215C,
YDL231C, YDL247W,YDRO11W, YDRO020C, YDRO038C, YDRO060W, YDROZ0OW,
YDRO9IC, YDRI108W, YDRI20C, YDRI150W, YDRI151C, YDRI70C, YDRI198C,
YDR213W, YDR234W, YDR249C, YDR275W, YDR282C, YDR299W, YDR311W,
YDR324C, YDR361C, YDR363W, YDR364C, YDR374C, YDR449C, YELO15W,
YELO043W, YELO53C, YELO55C, YELO057C, YEROO5W, YERO034W, YERO064C,
YERO81W, YERI107C, YERI28W, YER137C, YER171W, YFLO36W, YFLO58W,
YGLO021W, YGLO099W, YGL128C, YGLI155W, YGL214W, YGL234W, YGRO023W,
YGRI108W, YGRI29W, YGRI169C, YGRI87C, YGR200C, YGR216C, YHRO023W,
YHRO062C, YHRI151C, YIL0O07C, YILO97W, YIL106W, YIL158W, YIL171W, YIL172C,
YJLO11C, YJLO39C, YJLOS1IW, YJLO53W, YJR002W, YJR092W, YIRI27C,
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YKLO057C,YKL129C, YKL173W, YKL205W, YKL222C, YKRO56W, YKRO60W,
YLLOO8W, YLRO14C, YLRO023C, YLRO68W, YLRI07W, YLRI31C, YLRI146C,
YLRIOOW, YLR215C, YLR222C, YLR227C, YLR277C, YLR353W, YLR430W,
YLR453C, YMLO33W, YMLO034W, YMLOSOW, YMLO82W, YML093W, YMLI103C,
YMRO01C, YMRO21C, YMRO032W, YMRO033W, YMR093W, YMR132C, YMR211W,
YMR235C, YMR265C, YMR278W, YMR281W, YMR291W, YNL041C, YNLO049C,
YNLO53W, YNLI124W, YNLI32W, YNLI163C, YNL164C, YNL171C, YNLI72W,
YNL196C, YNL227C, YNL299W, YNRO002C, YNROO03C, YNRO38W, YNRO39C,
YOLO021C, YOLO028C, YOLO041C, YOL042W, YOLO060C, YOLO080C, YOLO81W,
YOL113W, YOL124C, YOL130W, YOL144W, YORO006C, YORO012W, YORO061W,
YORO098C, YORI45C, YORI52C, YOR160W, YOR205C, YOR206W, YOR272W,
YOR315W, YOR318C, YOR364W, YPL002C, YPLI126W, YPL148C, YPLI150W,
YPL174C, YPL183C, YPL192C, YPL205C, YPL242C, YPL248C, YPR026W, YPR0O40W,
YPR046W, YPRO79W, YPR084W, YPR112C, YPR119W, YPR129W

The Table 5.12 given below shows the significant GO terms used to
describe the genes of the biclusters of Figure 5.11 for the process, function
and component ontologies. The common terms are described with increasing
order of p-values or decreasing order of significance. In Table 5.12 the first
entry of the second column with the title process contains the term ribosome
biogenesis (44, 1.46e-23) which means that 44 out of the 121 genes of the
bicluster are involved in the process of ribosome biogenesis and their p-value
is 1.46e-23. Second entry indicates that 46 out of 121 genes are involved in
ribonucleoprotein complex biogenesis. Also from the table it is clear that the
biclusters are distinct along each category. This proves that the bicluster

contains biologically similar genes and the RGRASP method used here is
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capable of identifying biologically significant biclusters from different GO

categories.
Table 5.12
Significant Shared GO Terms (Process, Function,
Component) of Biclusters shown in Figure 5.11
Bicluster Process Function Component
Sr71 Ribosome Biogenesis (44, 44 out of 121 genes are | Nucleolus

1.46e-23) Ribonucleoprotien directly annotated to the | (35,8.74e-21)
complex biogenesis term molecular function | Preribosome
(46, 6.18¢-23) Cellular unknown (23,5.33e-13)
component biogenesis at Nuclear part(53,

celluar Level (47, 6.22¢-20)
Nitrogen compound metabolic
process (64, 4.18e-06)

1.17e-10) cell
part(112, 0.00189)

Sr72 Translation(69, 1.52¢-56) Structural constituent of | Cytosolic ribosome
cellular protein metabolic ribosome(62, 5.81e-62) | (64, 1.42¢-70)
process (72, 1.13e-27) protein | structural molecule | cytosolic part
metabolic process(72, 8.11e- activity (63, 4.33e-49) (64, 3.93¢-64)

27) metabolic process (84, translation elongation ribosome (68,
9.28e-07) factor activity (5, 1.10e-58)
0.00011) RNA binding | intracellular
(15, 0.00603 organelle (86,
0.00076 )

Sr73 DNA metabolic process( 19, Structure-specific DNA | Chromosome
5.44e-11) DNA repair (16, binding (5,0.00315) (15,1.21e-07)
9.53e-11) cell cycle (20, 8.42e- | double-stranded DNA replication fork (8,
10) nucleobase, nucleoside, binding(4,0.00134) 1.40e-06)
nucleotide and nucleic acid (23, Chromosomal
0.00011) part(13,4.93e-06 )

Nucleus (26, 1.52¢-
05)
Sr74 Ribonucleoprotein complex 85 out of 224 input Nucleolus (36,

biogenesis(52, 4.56e-15)
ribosome biogenesis (45,
1.63e-12) cellular component
biogenesis at cellular level (53,
9.69¢-12) nucleobase,
ucleoside, nucleotide and
nucleic acid metabolic process
(86, 0.00032)

genes are directly
annotated to root term
'molecular function
unknown':

3.34e-12) nucleus
(110, 5.96¢-08)
preribosome (24,
7.91e-08) nuclear
part (69, 8.88e-006)
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Figure 5.12 Sample of Genes for Bicluster sr74, with corresponding GO terms and their
parents for the Fuction Ontology.
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Figure 5.12 shows the significant GO terms for the set of genes in
bicluster sr74 along with their p-values. Only 36 out of 224genes are used
to search the gene ontology database to reduce the size of the Figure. It
shows the branching of molecular function into sub-fuctions like catalytic
activity which are further divided are divided into sub-fuctionss and
clustered using genes to produce the final result. Figure 5.12 is obtained
when gene ontology database is searched by entering the names of genes

in bicluster sr74and by selecting function ontology.

5.1.8 Comparison with other Algorithms
5.1.8.1 Comparison on the basis of Statistical and Biological Significance
To evaluate the statistical significance for the genes in each bicluster p-
values are used. P-values indicate the extent to which the genes in the
bicluster match with the different GO categories. If the p-value is smaller,
then the match will be better. In Table 5.11 the GO terms along with their p-
values and percentage of genes associated with the GO term in the bicluster
for the GRASP, CGRASP and RGRASP algorithms are compared with that
of MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu. From the
table it is clear that in terms of best p-value obtained by a bicluster which is
used to denote statistical significance, GRASP, CGRASP and RGRASP
algorithms are better than all the other algorithms namely MOGAB, SGAB,
CC, RWB, Bimax, OPSM, ISA and BiVisu for all the five GO terms. The
percentage of genes involved in the first GO term for GRASP variants is
better than that of all the other algorithms except MOGAB, SGAB and
Bimax. The percentage of genes involved in the second, third, fourth and

fifth GO terms are better than that of all the other algorithms.
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5.1.8.2 Comparison in Terms of Bicluster Size and MSR

The performance of GRASP algorithms in comparison with that of
SEBI [36], Cheng and Church’s algorithm (CC) [29], and the algorithm
FLOC by Yang et al. [106] and DBF [109] are given in Table 5.14. With
regard to the GRASP algorithm presented in this study, all the fields in it
are better than that of SEBI, CC, FLOC and DBF. But DBF is having a
lower value for the average residue score and for SEBI the average
number of conditions is better than that of GRASP. In terms of average
number of conditions the RGRASP in this study is better than all other
algorithms listed in Table 5.12. For CC the average number of genes is
better than RGRASP and CGRASP in this study. But this is due to the
fact that the average number of conditions in RGRASP and CGRASP are
greater than that of CC.

In this study there are biclusters with all 17 conditions for Yeast
dataset. But in metaheuristic methods like multi-objective evolutionary
computation [15] the maximum number of conditions obtained is only 11
in Yeast dataset. For the Yeast dataset the maximum number of genes
obtained by RGRASP in this study in all the 17 conditions is 145 with
MSR value 202.0707 (label of bicluster is (ybr7) in Table 5.9). The result
in this study is superior because the maximum number of genes obtained
so far in a bicluster with all 17 conditions is only 141 genes for multi-
objective PSO [62]. Moreover the MSR value of the bicluster (ybr7) is
better (202.0707) than that of the bicluster obtained by multi-objective
PSO (203.25).
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Table 5.14

Performance Comparison between GRASP Variants and
other Algorithms for the Yeast Dataset

Algorithm ANG ANC AV AMR LB
GRASP 215.50 14.83 2350.33 166.85 6264
CGRASP 163.00 15.17 2292.33 181.70 3888
RGRASP 106.88 16.25 1606.63 161.96 4368
SEBI 13.61 15.25 209.92 205.18 1394
CcC 166.71 12.09 1576.98 204.29 4485
FLOC 195.00 12.80 1825.78 187.54 1200
DBF 188.00 11.00 1627.20 114.70 4000

ANG is average number of genes. ANC is the average number of
conditions. AV is average volume. AMR is average mean squared
residue. LB is largest bicluster. As clear from the above table the average
mean squared residue, the average number of genes and conditions,
average volume and largest bicluster size are compared for various
algorithms. For the average mean squared residue field lower values are

better where as higher values are better for all other fields.

The Table 5.15 given below provides a summary of results obtained
by related algorithms on Lymphoma dataset. GRASP variants is not
applied for finding biclusters from Lymphoma data so far. Only SEBI and
CC are used for comparison in the Lymphoma dataset. Here RGRASP is
better than all other algorithms in terms of average number of genes
except CC. This is due to the fact that in CC average number of
conditions is very low compared to RGRASP. In GRASP average number
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of conditions is greater than all other algorithms. Average volume is better
for CC than all other algorithms. This is due to the fact that reducing the
MSR by removing one condition can result in the addition of more than 20
genes. Average MSR is better for CGRASP than all other algorithms. In
metaheuristic methods like multi-objective evolutionary computation [15]
the maximum number of conditions obtained is only 40 in Lymphoma
dataset. In this study, using GRASP a bicluster with 89 conditions is
obtained (label Iva7 Table 5.2). Maximum value of conditions obtained in

multi-objective PSO is only 84 for Lymphoma dataset

Table 5.15

Performance Comparison between GRASP Variants and
other Algorithms for Human Lymphoma Dataset

Algorithm ANG ANC AV AMR
GRASP 61.38 69.63 3424.00 1101.35
CGRASP 35.75 17.50 528.50 479.27
RGRASP 70.75 56.25 2653.87 1037.08
SEBI 14.07 43.57 615.84 1028.84
cc 269.22 24.50 4595.98 850.04

ANG is average number of genes. ANC is the average number of
conditions. AV is average volume. AMR is average mean squared residue.
As clear from the above table the average mean squared residue, the average
number of genes and conditions and average volume are compared for
various algorithms. For the average mean squared residue field lower values

are better where as higher values are better for all other fields.
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5.2 Particle Swarm Optimization (PSO)

Particle swarm optimization is a biologically inspired computing
technique. In this section a PSO based algorithm developed for
biclustering gene expression data is described. This algorithm has three
steps. In the first step high quality bicluster seeds are generated using K-
Means clustering algorithm. From these seeds biclusters are generated
using particle swarm optimization. In the third stage an iterative search
is performed to check the possibility of adding more genes and
conditions within the given threshold value of mean squared residue
score. Experimental results on real datasets show that our approach can

effectively find high quality biclusters.

5.2.1 Initial Population for PSO

PSO 1is a population based optimization technique like genetic
algorithm. Usually PSO is initialized with a population of random
solutions. Here the seeds obtained from K-Means are used to initialize
PSO. The advantage of initializing with seeds is that of faster
convergence compared to random initialization. Another advantage of it is

that it maintains diversity in the population.

5.2.2 PSO based Biclustering

The particle swarm optimization proposed by Kennedy and
Eberhart [66] is a heuristics based optimization approach simulating the
movements of a bird flock trying to find food. Particle swarm
optimization (PSO) is a population based evolutionary computation

method and the members of the whole population are maintained
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throughout the search procedure. It is different from all other
evolutionary-type methods in that it does not use the filtering operation
such as crossover or mutation. What makes PSO extremely suitable for
solving the optimization problems is its convergence speed and relative
simplicity. Biclustering is an optimization problem with an objective to
search for biclusters with low mean squared residue and high volume.
Hence PSO is extremely suitable for solving it. Each potential solution of
PSO is named as particle and is initialized with random velocity. Each

particle is flown to the optimal solution in the solution space.

In the solution space of PSO each particle keeps track of its best
position achieved hitherto. This is denoted by pbest (personal best). The
optimal solution attained by the entire swarm is gBest (global best). PSO
iteratively converts the velocity of each particle towards its pBest and
gBest positions efficiently. For finding an optimal or near-optimal
solution to the problem, PSO keeps updating the current generation of
particles. Each particle is a candidate for the solution of the problem. The
whole function is accomplished by using the information about the best
solution obtained by each particle and the entire population. Each particle
has got a set of attributes such as current velocity, current position, the
best position discovered by the particle so far and, the best position
discovered by the particle and its neighbours so far. Each particle begins
with an initial velocity and position. Thereafter the n™ component of the
new velocity and the new position for the it particle are updated in

accordance with the following equations:
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Vin(t+1)=w*Vin(t)+c1*r1[Gi(t)-Xi,n(t)[+c2*r2[Gi(t)-Li,n(t)] ........... (D

Xi,n(t+1)=XA,0(t) FVEN(EFL) oo (2)

In equation (1), w is the inertia weight; r1 and r2 are random
numbers, Gi is the best particle found so far within the neighbors and Li,n
is the best position discovered so far by the corresponding particle [30].
Vin(t+1) is the new velocity and Xi,n(t+1) is the new position of the it
particle. In binary PSO [67], Vi,n that is velocity of the it particle is a
probability, and it must be constrained to the interval [0, 1]. A logistic
transformation S(Vi,n) can be used to attain this modification. The
consequent change in the position is defined by the rule: If (rand() <
S(vi,n)) then Xi,n = I;else Xi,n = 0 where the function S(v) is a sigmoid
limiting transformation and rand() is a random number selected from a

uniform distribution in [0,1].

5.2.3 Fitness Function

As an optimization problem the main objective here is to search
for biclusters with low mean squared residue and maximum size.
(Given the value of 0 (6>0), the following fitness function can be used
to assess the quality of each bicluster B [12]. G(B)= [I].|J] if MSR(B)
less than or equal to ¢ otherwise G(B) =6/MSR(B). Here size of the

bicluster B is IxJ.
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Algorithm PSObiclustering(seeds, 8, noofpar,maxiter)

For i=1 to noofpar

Initialize particle i using seed i generated by K Means

Initialize velocity of particle i

END (for)

While iterno<=maxiter

For each particle do

Calculate fitness value

If the fitness value is better than the best fitness value (pBest) in history set
current value as the new pBest

End (for)

Choose the particle with the best fitness value of all the particles as the
gBest

For each particle do

Calculate particle velocity according equation (1)

Update particle position according equation (2)

End (for)

End (while)

5.2.4 Time Complexity

The basic operation for the identification of biclusters is the
calculation of mean squared residue of a submatrix. Time complexity for
calculating MSR is O(mn). In order to include a gene or condition MSR
value is calculated once. Hence this calculation is performed atmost P*I

times where P is the number of particles and I is the number of iterations.




Chapter 5

That means the worst case time complexity of the algorithm is
O(P*I*(mn)) where m and n are the number of genes and conditions

respectively.

5.2.5 Biclusters obtained Using PSO
5.2.5.1 Bicluster Plots for Yeast Dataset

Figure 5.13 shows eight biclusters obtained by Binary PSO
algorithm on Yeast dataset. Some of the biclusters contain all 17
conditions. All the biclusters show strikingly similar up-regulation and

down-regulation.

Figure 5.13 Eight biclusters found for the Yeast dataset by binary PSO. Bicluster

labels are (ya8), (yb8), (yc8), (yd8), (ye8), (vf8), (vg8) and (yh8)
respectively. The details about the biclusters can be obtained from Table

5.16 using bicluster label.



Metaheuristic Algorithms

Table 5.16

Information about Biclusters of Figure 5.13

Bicluster Number of Number of Bicluster MSR

Label Genes Conditions Volume

(ya8) 32 10 320 63.0642
(yb8) 75 17 1275 199.5888
(yc8) 80 10 800 190.3379
(yd8) 100 10 1000 298.6600
(ye8) 136 17 2312 297.9888
(yf8) 323 16 5168 286.1017
(yg8) 1030 10 1030 299.9427
(yh8) 150 10 1500 298.8481
(yi8) 882 11 9702 299.7275
(vj8) 1399 8 11192 299.9149
(yk8) 656 12 7872 299.8829
(y18) 848 11 9328 299.8653
(ym8) 145 17 2465 299.6139
(yn8) 318 16 5088 281.5787

In Table 5.16 given above the first column reports the label of each

bicluster, the second column contains the number of rows (genes), third

column contains the number of columns (conditions), fourth column

contains the volume or size of the bicluster and the last column reports the

mean squared residue score. Table 5.16 contains the details of some more

biclusters which are not shown in Figure 5.13. The labels of these

biclusters are (yi8), (yj8), (yk8), (yI8), (ym8) and (yn8).

5.2.5.2 Bicluster Plots for Human Lymphoma Dataset

In Figure 5.14 eight biclusters obtained from Human Lymphoma

dataset using Binary PSO algorithm are shown. The algorithm is better for
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identifying more genes than conditions where as some other metaheuristic
methods like GRASP can identify more number of conditions. The
maximum number of conditions obtained here is only 27. The maximum

number of genes obtained is 1180.

pressi
g8 88 8 o

labels are (1a8), (Ib8), (1c8), (1d8), (1e8), (1f8), (Ig8) and (1h8) respectively.
The details about the biclusters can be obtained from Table 5.17 using

bicluster label.
Table 5.17
Information about Biclusters of Figure 5.14

Bicluster Number of Number of Bicluster MSR
Label Genes Conditions Volume
(1a8) 1180 15 17700 1198.8
(Ib&) 1060 16 16960 1192.2
(1c8) 747 20 14940 1198.0
(1d8) 974 20 19480 1199.7
(1e8) 505 23 11615 1199.9
(1£8) 339 27 9153 1199.4
(I1g8) 967 15 14505 1197.7
(Ih8) 836 17 14212 1199.0
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5.2.6 Advantages of PSO based Biclustering

The method identifies biclusters with large number of genes from
both Yeast and Lymphoma datasets. Number of iterations required for
convergence is less than 100. In this method biclusters with best p-value
is obtained which is better than some of the algorithms like MOGAB,
SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu.

5.2.7 Details of Significant Biclusters obtained by PSO

Expression Values

,,,,,,,,,,,,,

dataset. The bicluster labels are s81, s82 and s83. The details about
biclusters can be obtained from Table 5.18 using bicluster label.

Table 5.18
Information about Biclusters of Figure 5.15
e | N | Somreoar | MR | Row ariane
S81 136 17 297.9888 587.8266
S82 145 17 299.6139 585.0625
S83 92 10 198.7709 450.1407

These biclutsters are overlapping in the sense that some genes are
common. As a population based technique it is more difficult to obtain
biclusters of distinct category compared to seed growing methods because

in PSO all particles are flying towards the global best.
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In the bicluster s81 there are 136 genes. They are YALOOIC,
YALOO2W, YALOO3W, YAL004W, YALOO7C, YALOO9W, YALOI1W, YALO30W,
YALO38W, YARO009C, YAR020C, YBLO030C, YBL072C, YBL092W, YBRO009C,
YBRO31W, YBR048W, YBR084C-A, YBR106W, YBRI111C, YBR118W, YBRI1S81C,
YBR189W, YCRO13C, YCRO31C, YDLO061C, YDLO75W, YDLO81C, YDLO83C,
YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, YDL221W, YDL228C,
YDL229W, YDRO12W, YDRO025W, YDRO50C, YDR064W,YDR133C, YDR154C,
YDR353W, YDR382W, YDR385W, YDR418W, YDR433W, YDR447C, YDR450W,
YDR471W, YDRS500C, YEL034W, YER074W, YER102W, YER117W, YER138C,
YER160C, YGLI102C, YGRI118W, YHR141C, YJL136C, YJL158C, YIL177W,
YJL188C,YJL189W, YIJL190C, YIJL225C, YJRO09C, YJR094W-A, YIJRI123W,
YJR145C, YKL0O06W, YKLO056C, YKLO60C,YKL0O96W-A, YKL152C, YKL153W,
YKL180W, YKRO57W, YKR094C, YLLO045C, YLL066C, YLL067C, YLRO029C,
YLR048W, YLR062C, YLRO75W, YLRO76C, YLR110C, YLR167W, YLR184W,
YLR185W, YLR249W, YLR325C, YLR333C, YLR340W, YLR388W, YLR406C,
YLR441C, YLR467W, YMLO0O08C, YML024W, YML026C, YMLO39W, YML045W,
YML063W, YML133C, YMROO7W, YMRO045C, YMRO050C, YMRO074C, YMR202W,
YMR230W, YNLO30W, YNLO67W, YNL162W, YNL209W, YNL302C, YNL339C,
YOLO039W, YOLO040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C,
YOR369C, YPLO037C, YPLO81W, YPL090C, YPL143W, YPL283C, YPRO43W,
YPR102C, YPR204W.

Similarly in bicluster S82 there are 145 genes. They are: YAL001C,
YALOO2W, YALOO3W, YALOO7C, YALOOOW,YALO11W, YALO30W, YALO38W,
YARO009C, YARO020C, YBLO030C, YBL072C, YBLO77W, YBL092W, YBROO09C,
YBRO10W, YBRO31W, YBR048W, YBR0O78W, YBR084C-A, YBR106W, YBR118W,
YBRI8IC, YBR206W, YCLO18W, YCLX11W, YBRI189W, YCROI3C,
YCRO31C,YDL061C, YDL075W, YDLO081C, YDLOS3C, YDLI130W, YDLI136W,
YDL191W,YDL192W, YDL208W, YDL221W, YDL228C, YDL229W, YDRO12W,
YDRO025W,YDRO035W, YDRO50C, YDR064W, YDRI33C, YDRI134C, YDRI154C,
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YDRI158W,YDR225W, YDR276C, YDR353W, YDR382W, YDR385W, YDR417C,
YDR418W, YDR433W, YDR447C, YDR450W, YDR471W, YDR500C, YEL034W,
YER074W, YER102W, YER117W, YERI38C, YER160C, YGL102C, YGR118W,
YHR141C, YJL136C,YJL158C, YJL177W, YJL188C, YJL189W, YJL190C, YJL225C,
YJRO09C, YJR094W-A, YIR123W, YJR145C, YKL0O06W, YKLO056C, YKLO060C,
YKLO096W-A, YKL152C, YKL153W, YKLI180W, YKRO57W, YKR094C, YLL045C,
YLLO66C,YLLO67C, YLRO029C, YLRO048W, YLR062C, YLRO75W, YLRO76C,
YLR110C, YLR167W, YLRI185W, YLR249W, YLR294C, YLR325C, YLR333C,
YLR340W,YLR388W, YLR406C, YLR441C, YLR467W, YMLO0OSC, YMLO024W,
YMLO026C, YMLO39W, YML045W, YML063W, YML133C, YMRO0O7W, YMR045C,
YMRO50C, YMR202W, YMR230W, YNLO30W, YNLO67W, YNL162W, YNL209W,
YNL302C, YNL339C, YOLO039W, YOL040C, YOLI127W,YOR167C, YOR234C,
YOR293W, YOR312C, YOR369C, YPLO037C, YPLO8IW, YPL0O90C, YPL143W,
YPL283C, YPR043W, YPR102C, YPR204W.

In the third bicluster s83 there are 92 genes namely YALOO3W,
YALO038W, YBL072C,YBL092W, YBRO09C, YBRO10W, YBRO31W, YBRO048W,
YBRO78W, YBR084C-A, YBR106W, YBR118W, YBR181C, YBR189W, YCLO18W,
YCLX11W,YCRO13C, YCRO031C, YDLO61C, YDL0O75W, YDLO81C, YDLO083C,
YDL130W, YDLI136W, YDL191W, YDL192W, YDL208W, YDL228C, YDL229W,
YDRO12W, YDRO025W, YDRO35W, YDRO50C, YDR064W, YDR133C, YDR134C,
YDR158W, YDR225W, YDR276C, YDR382W, YDR385W, YDR418W,
YDR433W,YDR447C, YDR450W, YDR471W, YDRS500C, YGL102C, YJL136C,
YJL158C, YJL177W,YJL189W, YJL190C, YKLO06W, YKLO60C, YKL096W-A,
YKL152C, YKL153W, YKL180W, YKRO57W, YLR029C, YLR048W, YLRO75W,
YLR110C, YLRI167W, YLRI185W, YLR249W, YLR325C, YLR406C, YML024W,
YMLO39W, YML063W, YNLO30W, YNLO67W, YNL162W, YNL209W, YNL302C,
YNL339C,YOL039W, YOLO040C, YOL127W, YOR167C, YOR234C, YOR293W,
YOR312C,YPL0O37C, YPLO81W, YPLO090C, YPL143W, YPL283C, YPRO043W,
YPR102C.
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The Table 5.19 given below shows the significant GO terms used to
describe the genes of the biclusters of Figure 5.15 for the process,
function and component ontologies. The common terms are described
with increasing order of p-values or decreasing order of significance. In
Table 5.19, the first entry of the second column with the title process
contains the term translation (80, 0.99e-62) which means that 80 out of
the 136 genes of the bicluster are involved in the process of
translation and their p-value is 0.99e-62. Second entry indicates that 83
out of 136 genes are involved in cellular protein metabolic process. This
proves that the biclusters contain biologically similar genes and the binary

PSO method used here is capable of identifying biologically significant

biclusters.
Table 5.19
Significant Shared GO Terms (Process, Function,
Component) of Biclusters shown in Figure 5.15
Bicluster Process Function Component
S81 Translation (80, Structural Cytosolic ribosome
.99e-62) cellular constituent of (74, 1.01e-79) cytosolic
protein metabolic ribosome (72, part (74, 1.37e-71)
Process (83, 1.29- 7.00e-70) structural | yibosome (78, 2.59¢-63)
27) protein molecule activity
metabolic process (74, 3.27e-55) cytosol (30, 1.09¢-60)
(83, 1.18e-26) RNA-directed
cellular DNA polymerase
macromolecule activity (7, 2.21e-
biosynthetic process | 05) RNA binding
(81, 7.36e-23) (20, 0.00023)
macromolecule
biosynthetic process
(81, 9.52e-23)
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S82 Gene expression(84, | RNA-directed Ribonucleoprotein complex
1.36e-19) DNA polymerase (81, 1.59¢-43)
Biosynthetic process | Activity (7, 3.47e- | Cytosolic small ribosomal
(92, 3.52¢-19) 05) translation subunit (35, 3.99¢-36)
ribosome biogenesis | elongation factor cytosolic large ribosomal
(40, 3.21e-16) activity (5, subunit (37, 5.49e-36)
translational 0.00055) DNA- small ribosomal subunit(35,
elongation (17, directed DNA 6.82e-31)
7.81e-16) polymerase

activity (7,
0.00324) DNA
polymerase activity
(7,0.00438)

S83 Macromolecule Structural Macromolecular complex
metabolic process constituent of (67, 2.33e-17) cytoplasmic
(69,7.47e-12) ribosome(55, part (70, 7.06e-12)
primary metabolic 1.25e-55) structural | organelle part (62, 3.52e-
process (76, 4.37¢- molecule 08) intracellular organelle
11) ribosomal small | activity (57,2.47e- | part (62, 3.52¢-08)
subunit 46) translation cytoplasm(72, 1.75e-05)
biogenesis (19, elongation factor
6.89¢-11) cellular activity (4,
component 0.00148)
biogenesis at cellular
level (31, 1.03e-10)

S84 Translation (52, Structural Cell (140, 5.65¢-05)

1.24e-23) ribosome
biogenesis(44,
3.56e-19)
ribonucleoprotien
complex biogenesis
(44, 1..38¢-16)
ncRNA metabolic
process (29, 2.25e-
06) rRNA transport
(10, 9.55e-06)

constituent of
ribosome (45,
4..48e-27)
structural molecule
activity (52, 6.13 e-
25)

90S preribosome (12,
0.0004) Cytoplasmic part
(84, 0.00126)

Nucleolus (17, 0.00691)
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Figure 5.16 Sample of genes for the bicluster s81, with corresponding GO terms and
their parents for Function Ontology
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Figure 5.16 shows the significant GO terms for the set of genes in
bicluster s81 along with their p-values. It shows the branching of molecular
function into sub-components like structural molecule activity, binding,
enzyme regulator activity and catalytic activity. These sub-functions are
further divided into and are clustered using genes to produce the final result.
Figure 5.16 is generated when gene ontology database is searched by
entering the names of genes in bicluster s81 and by selecting function

ontology. Only 17 genes (YALOO3W, YBRIISW, YBRI8OW, YDLO75W,
YDLO8IC,  YDLI30W, YDL229W, YDR382W,YDR385W, YEL034W, YGRI118W,
YJR123W, YLR249W, YLR340W, YLR406C, YNL209W, YOL039W) out of 136

genes are selected to search the GO database to reduce the size of the Figure.

5.2.8 Comparison with other Algorithms
5.2.8.1 Comparison on the basis of Statistical Significance

In Table 5.20 the GO terms along with their p-values and percentage
of genes associated with the GO term in the bicluster for the binary PSO
algorithm is compared with that of MOGAB, SGAB, CC, RWB, Bimax,
OPSM, ISA and BiVisu. From the Table 5.20 it is clear that in terms of the
p-value obtained by a bicluster which is used to denote statistical
significance, PSO algorithm is better than MOGAB, SGAB, CC, RWB,
Bimax, OPSM, ISA and BiVisu for all GO terms. The percentage of genes
involved for the first GO term is better than that of RWB, OPSM and
BiVisu. The percentage of genes involved for the second, third and fifth
GO terms are better than that of all the other algorithms mentioned in the
Table 5.20. The percentage of genes involved for the third GO term is
better than that of all the other algorithms except MOGAB.
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5.2.8.2 Comparison in terms of Bicluster Size and MSR

The performance of Binary PSO is compared with that of SEBI
[36], Cheng and Church’s algorithm (CC), and the algorithm FLOC by
Yang et al. [106], DBF [109] and single objective GA [20] for the Yeast
dataset are given in Table 5.21. Single objective GA (SGAB) [20] has
been used with local search to generate overlapped biclusters. In terms of
average number of genes, average volume and largest bicluster size
Binary PSO is better than all other algorithms listed in Table 5.21. The
MSR value is relatively high for Binary PSO. But for the Yeast dataset it

can be within the maximum limit of 300.

Table 5.21

Performance Comparison between Binary PSO and
other Algorithms for Yeast dataset

Algorithm ANG ANC AMR AV LB
Bin. PSO 581.70 12.80 285.49 6422.70 11192
DBF 188.00 11.00 114.70 1627.20 4000
SEBI 13.61 15.25 205.18 209.92 1394
CC 166.71 12.09 204.29 1576.98 4485
FLOC 195.00 12.80 187.54 1825.78 2000
SGA 191.12 5.13 52.87 570.86 1408

ANG is average number of genes. ANC is the average number of
conditions. AMR is average mean squared residue. AV is average
volume. LB is the largest bicluster size. As clear from the above table the
average mean squared residue, the average number of genes and

conditions and average volume are compared for various algorithms. For
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the average mean squared residue field lower values are better where as

higher values are better for all other fields.

The Table 5.22 given below lists the performance comparison of
different algorithms for Human Lymphoma dataset. SEBI and CC
algorithms are compared with Binary PSO. It is observed that the method
is good in identifying large number of genes compared to the number of
conditions. In Lymphoma dataset the biclusters obtained by Binary PSO
is better than that of CC and SEBI in terms of average number of genes

and average volume.

Table 5.22

Performance Comparison between Binary PSO and
other Algorithms for Lymphoma Dataset

Algorithm ANG ANC AMR AV
Bin.PSO 826.00 19.13 1198.09 14820.63
SEBI 14.07 43.57 1028.84 615.84
CC 269.22 24.50 850.04 4595.98

ANG is average number of genes. ANC is the average number of
conditions. AMR is average mean squared residue. AV is average
volume. In the table given above the average number of genes and
conditions, average volume and average mean squared residue are
compared for various algorithms. For the average mean squared residue
field lower values are better where as higher values are better for all other

fields.
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5.3 Greedy Search-Binary PSO Hybrid
5.3.1 Initial Population for PSO

PSO is a population based evolutionary optimization algorithm.
Usually PSO is initialized with a population of random solutions. In this
algorithm the results obtained from greedy search algorithm mentioned in
chapter 4 is used to initialize PSO. This will result in faster convergence
compared to random initialization. Maintaining diversity in the population
is another advantage of initializing with biclusters from greedy search
method. Moreover greedy methods suffer from local minima problem

which can be eliminated by methods like PSO.

5.3.2 PSO based Biclustering

Each particle of PSO explores a possible solution. It adjusts its
flight according to its own and its companions flying experience. The
personal best position is the best solution found by the particle during the
course of flight. This is denoted by pbest (personal best). The optimal
solution attained by the entire swarm is gBest (global best). PSO
iteratively updates the velocity of each particle towards its pBest and
gBest positions efficiently. For finding an optimal or near-optimal
solution to the problem, PSO keeps updating the current generation of
particles. Each particle is a candidate for the solution of the problem. The
whole function is accomplished by using the information about the best
solution obtained by each particle and the entire population. Each particle
has got a set of attributes such as current velocity, current position, the
best position discovered by the particle so far and, the best position

discovered by the entire particle so far. Each particle begins with an initial
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velocity and position. Thereafter a swarm particle-i will update its own

speed in accordance with the following equations:
V (i+1)=w*Vit+ {Cp*r1*(pBesti — Xi)} +{Cg*r2*(gBest-Xi)} ---------- 3)

X(i+1)=Xi +V(i+1) 4)

In equation (1), w is the inertia weight; rl and r2 are random
numbers within the range {0,1}. Cp is the Cognitive learning rate and Cg
is the Social learning rate. gBest is the best particle found so far and

pBesti is the best position discovered so far by the corresponding particle.

In binary PSO, Vi is a probability, and it must be constrained to the
interval {0, 1}. A logistic transformation S(Vi) is used to convert the
value to this range. The consequent change in the position is defined by
the following rule: If (rand() < S(Vi)) then Xi = 1l;else Xi = 0. The
function S(v) is a sigmoid limiting transformation and rand() is a random

number selected from a uniform distribution in {0,1}.

5.3.3 Fitness Function

The main objective is to find maximal biclusters with low mean
squared residue. Algorithm is used to maximize the objective function.
Given the value of 0 (6>0), the following fitness function can be used to

assess the quality of bicluster [12].

G(BJ) = [1].]J] if MSR(L,J) less than or equal to o
= 0/MSR(i,j) otherwise
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5.3.4 Biclusters obtained Using Greedy-PSO Hybrid
5.3.4.1 Bicluster Plots for Yeast Dataset

Figure 5.17 Eight biclusters obtained from the Yeast dataset by greedy-PSO. Bicluster
labels are (yag), (ybg8), (ycg8), (ydgs), (yeg8), (yfg8), (veg8) and (yhg8)
respectively. In the bicluster plots X axis contains conditions and Y axis
contains expression values. The details about the biclusters can be
obtained from Table 5.23 using bicluster label.

Table 5.23

Information of Biclusters of Figure 5.17

Bicluster Number of Number of Bicluster

Label Genes Conditions Volume MSR

(yag8) 25 17 425 195.9666
(ybg8) 21 17 357 178.1294
(ycg8) 28 17 476 189.1636
(ydgR) 36 17 612 195.7957
(yeg8) 22 17 374 146.7061
(yfg8) 54 11 594 192.1012
(ygel) 500 8 4000 199.4028
(yhg8) 23 17 391 150.2494
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5.3.5 Details of Significant Bicluster obtained by Greedy-PSO Algorithm
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Figure 5.18 A significant bicluster obtained by the greedy-PSO algorithm on Yeast
dataset. The bicluster label is sgp81. The size, MSR and row variance of
the bicluster is (36*17, 195. 7957, 606.0198)

In the bicluster selected there are 36 genes namely YALOO3W,

YBLO072C, YBL092W, YBRO09C, YBR031W, YBR048W, YBR084C-A, YBR118W,
YCRO31C, YDLO61C, YDLO75W, YDLO81C, YDLO83C, YDLI130W, YDLI136W,
YDLI91W, YDL192W, YDL208W, YDL228C, YDL229W, YDRO12W, YDR025W,
YDRO50C, YDRO60W, YDR064W, YDR369C, YDR382W, YDR385W, YDR447C,
YDR450W, YDR471W, YJL177W, YKL180W, YOL127W, YPL037C, YPR102C.

The Table 5.24 given below shows the significant GO terms used to
describe the genes of the bicluster of Figure 5.18 for the process, function
and component ontologies. The common terms are described with increasing
order of p-values or decreasing order of significance. In Table 5.24 the first
entry of the second column with the title ‘process’ contains the term
translation (28, 5.00e-25) which means that 28 out of the 36 genes of the
bicluster are involved in the process of translation and their p-value is 5.00e-

25. Second entry indicates that 30 out of 36 genes are involved in cellular
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protein metabolic Process. This proves that the biclusters contains
biologically similar genes and the greedy search-binary PSO method used

here is capable of identifying biologically significant biclusters.

Table 5.24

Significant Shared GO Terms (Process, Function,
Component) of Bicluster shown in Figure 5.18

Bicluster Process Function component
Sgp8l Translation (28, Structural Cytosolic ribosome (24,
5.00e-25) cellular constituent of 1.49¢-25) ribosome (27,
protein metabolic ribosome (24, 7.35e-25) cytosolic
process (30, 2.84¢- 1.73e-24) part (24, 1.09e-23)
15) protein structural molecule | cytosol (25, 4.68e-20)
metabolic process activity (24, 8.97¢-
(30, 6.56e-15) 20) translation
cellular elongation factor
macromolecule activity (.00149)

biosynthetic process
(28, 1.22e-11)
macromolecule
biosynthetic process
(28, 1.34e-11)

5.3.6 Comparison with other Algorithms
5.3.6.1 Comparison on the basis of Statistical and Biological Significance

In Table 5.25 the GO terms along with their p-values and
percentage of genes associated with the GO term in the bicluster for the
Greedy-Binary PSO hybrid algorithm is compared with that of MOGAB,
SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu. From the Table it is

clear that in terms of the p-value obtained by a bicluster which is used to
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denote statistical significance, Greedy-PSO algorithm is better than RWB,
Bimax, OPSM and BiVisu for the first GO term. In terms of p-value
Greedy-PSO is better than all other algorithms mentioned in Table 5.25
except MOGAB and SGAB for the second GO term. In terms of p-value
Greedy-PSO is better than all other algorithms mentioned in Table 5.25
except MOGAB for the third and fourth GO terms. It is better than all the
other algorithms for the p-value obtained for the fifth GO term. In terms
of percentage of genes involved in a GO term greedy-PSO algorithm is

better than that of all the other algorithms for all the five GO terms.
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5.3.6.2 Comparison based on MSR and Bicluster Size

Table 5.26 lists a comparison of results of various algorithms on
Yeast data. Performance of Greedy Search- Binary PSO hybrid with that
of SEBI [36], Cheng and Church’s algorithm (CC) [29], and the algorithm
FLOC by Yang et al. [106] and DBF [109] are given. Here biclusters with
MSR less than 100, obtained from greedy search, is used as initial
population of PSO. Computation time required is very less compared to
greedy search running completely to attain the desired MSR. The average
value of MSR for greedy binary PSO hybrid is better than all other
algorithms except DBF. Average number of conditions is better than all
other algorithms except SEBI. Average number of genes is better than
SEBI. The largest Bicluster size is the same as DBF, and better than
FLOC and SEBI.

Table 5.26

Performance Comparison between Greedy Search Binary
PSO Hybrid and other Algorithms for the Yeast Dataset

Algorithm ANG ANC AMR AV LB
GS Binary PSO 88.62 15.13 180.94 903.63 4000
DBF 188.00 11.00 114.70 1627.20 4000
SEBI 13.61 15.25 205.18 209.92 1394
Cheng-Church 166.71 12.09 204.29 1576.98 4485
FLOC 195.00 12.80 187.54 1825.78 2000
Greedy 515.57 13.36 185.86 4690.36 12645
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ANG is average number of genes. ANC is the average number of
conditions. AMR is average mean squared residue. AV is average
volume. LB is the largest bicluster size. In the table given above the
average number of genes and conditions, average volume, average mean
squared residue and largest bicluster size are compared for various
algorithms. For the average mean squared residue field lower values are

better where as higher values are better for all other fields.

5.4 Comparison of Greedy and Metaheuristic Algorithms
5.4.1 Comparison on the basis of Statistical Significance

To evaluate the statistical significance for the genes in each
bicluster p-values are used. P-values indicate the extent to which the
genes in the bicluster match with the different GO categories. Four
different seeds, which on enlargement result in biologically significant
biclusters, were selected. These seeds are enlarged by the greedy and
GRASP variants and the p-values of the GO terms of these biclusters are
compared for all these algorithms. Since PSO is a population based
technique a significant bicluster similar to the enlargement of seed 2 is
obtained for Binary-PSO and Greedy-PSO. Hence only in bicluster 2 such

comparisons are given for these two algorithms.
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5.4.1.1 Comparison based on p-values of GO Terms for Four Different Seeds

Table 5.27

Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters Generated from First Seed and the Corresponding p-value
obtained for each Algorithm for Process Ontology

p-value and Percentage of Genes
GO Terms
GREEDY | GRASP | CGRASP | RGRASP
Ribosome biogenesis 1.45¢-23 | 1.46e-23 | 1.46e-23 1.46e-23
36.7% 36.7% 36.7% 36.7%
Ribonucleoprotein complex 6.13e-23 | 6.18e-23 | 6.18e-23 6.18e-23
biogenesis 38.3% 38.3% 38.3% 38.3%
Cellular component biogenesis 6.18e-20 | 6.22e-20 | 6.22e-20 6.22e-20
at cellular level 39.2% 39.2% 39.2% 39.2%
ncRNA processing 3.68e-19 | 3.71e-19 | 3.71e-19 3.71e-19
32.5% 32.5% 32.5% 32.5%
ncRNA metabolic process ! ;;O;;) 811 3831;,/10 81 1 '3831.;;) 8 ! '3831.;;) 8
FRNA processing 1.93e-15 | 1.94e-15 | 1.94e-15 1.94e-15
25% 25% 25% 25%
RNA processing 8.59¢-17 | 8.65e-17 | 8.65e-17 8.65e-17
35% 35% 35% 35%
A meabatieprocess | %" | ST Sen | e
RNA meabolic proces s | oo | ioms | oo

In this case similar p-values and percentage of genes are obtained

for greedy, GRASP CGRASP and RGRASP.

Table 5.28

Comparison of Greedy and GRASP Variants based on GO Terms
for Biclusters Generated from the First Seed and the Corresponding
P-value obtained for each Algorithm for the Function Ontology

GO Terms GREEDY | VGRASP |CGRASP| RGRASP
Number of genes annotated to the term
molecular function unknown 44 genes 44 genes | 44 genes | 44 genes
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From the above Table it is clear that for function ontology a fixed

number of genes are annotated to the term ‘molecular function unknown’

for all the algorithms.

Table 5.29

Comparison of Greedy and GRASP Variants based on GO Terms
for Biclusters Generated from the First Seed and the Corresponding
P-value obtained for each Algorithm for the Component Ontology

p-vales and percentage of genes for each GO Term

GO terms
GREEDY GRASP CGRASP | RGRASP
Nucleolus 8.74e-21 8.74e-21 8.74e-21 8.74e-21
29.2% 29.2% 29.2% 29.2%
Preribosome 5.33e-13 5.33e-13 5.33e-13 5.33e-13
19.2% 19.2% 19.2% 19.2%
908 preribosome 3.22e-08 3.22e-08 3.22e-08 3.22e-08
12.5% 12.5% 12.5% 12.5%
Nuclear part 1.28e-10 1.17e-10 1.17e-10 1.17e-10
44.2% 44.2% 44.2% 44.2%
Nuclear lumen 1.74e-10 1.57e-10 1.57e-10 1.57e-10
36.7% 36.7% 36.7% 36.7%
Organelle lumen 4.12¢-09 3.47¢-09 3.47¢-09 3.47e-09
39.2% 39.2% 39.2% 39.2%
Intracellular organelle lumen 4.12¢-09 3.47¢-09 3.47¢-09 3.47e-09
39.2% 39.2% 39.2% 39.2%
Ribonucleoprotein complex 2.32e-05 2.32e-05 2.32e-05 2.32e-05
26.7% 26.7% 26.7% 26.7%
8.71e-10 8.71e-10 8.71e-10 8.71e-10
Nucleus 60% 60% 60% 60%
Nucleolar part 1.89¢-06 1.89¢-06 1.89¢-06 1.89¢-06
10% 10% 10% 10%
Macromoleular complex 2.04¢-05 2.04e-05 2.04e-05 2.04¢-05
50.8% 50.8% 50.8% 50.8%
Smallsubunit processome 0.00011 0.00011 0.00011 0.00011
7.5% 7.5% 7.5% 7.5%
Organelle part 0.00016 0.00015 0.00015 0.00015
57.5% 57.5% 57.5% 57.5%
Intracellular organelle part 0.00016 0.00015 0.00015 0.00015
57.5% 57.5% 57.5% 57.5%
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In this case similar p-values and percentage of genes are obtained

for greedy, GRASP, CGRASP and RGRASP.

Table 5.30

Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters Generated from the Second Seed and the Corresponding p-value
obtained for each Algorithm for the Process Ontology

P-value and percentage of genes of GO Terms

GO terms GREEDY | GRASP | CGRASP | RGRASP | Pso | CREEDY
Translation 1.52e-56 | 1.52e-56 | 1.52e-56 1.52e-56 | 3.99¢-62 | 5.00e-25
64.5% 64.5% 64.5% 64.5% 58.8% 77.8%
Cellularprotein metabolic 1.13e-27 | 1.13e-27 | 1.13e-27 1.13e-27 | 1.29e-27 | 2.84e-15
process 67.3% 67.3% 67.3% 67.3% 61% 83.3%
Protein metabolic process 8.11e-27 | 8.11e-27 | 8.11e-27 8.11e-27 | 3.96e-23 | 6.56e-15
67.3% 67.3% 67.3% 67.3% 61% 83.3%
Cellular macromolecule 6.21e-22 | 6.21e-22 | 6.21e-22 6.21e-22 | 7.36e-23 | 1.22e¢-11
biosynthetic process 64.5% 64.5% 64.5% 64.5% 59.6% 77.8%
Macromolecule 7.76e-22 | 7.76e-22 | 7.76e-22 | 7.76e-22 |9.52e-23 | 1.34e-11
biosynthetic process 64.5% 64.5% 64.5% 64.5% 59.6% 77.8%
Gene expression 3.70e-20 |3.70e-20| 3.70e-20 | 3.70e-20 | 1.90e-20 | 1.34e-11
64.5% 64.5% 64.5% 64.5% 60.3% 80.6%
Translational 1.32e-14 | 1.32e-14| 1.32e-14 | 1.32e-14 |2.54e-16| 1.41e-08
elongation 14% 14% 14% 14% 12.5% 22.2
Cellular biosynthetic 7.02¢-18 | 7.02e-18| 7.02¢-18 | 7.02e-18 |9.12e-19| 1.55¢-08
process 68.2% 68.2% 68.2% 68.2% 64% 77.8%
Biosynthetic process 2.96e-17 |2.96e-17| 2.96e-17 | 2.96e-17 |3.99¢e-18| 2.58e-08
68.2% 68.2% 68.2% 68.2% 64% 77.8%
Ribosome biogenesis 1.49¢-15 | 1.49e-15| 1.49¢-15 | 1.49e-15 |2.85e-17| 3.01e-08
31.8% 31.8% 31.8% 31.8% 29.4% 41.7%
/RNA processing 4.00e-09 |4.00e-09| 4.00e-09 | 4.00e-09 |2.81e-10| 4.40e-06
20.6% 20.6% 20.6% 20.6% 19.1% 30.6%
rRNA metabolic 1.04e-08 | 1.04e-08 | 1.04e-08 | 1.04e-08 |8.79¢-10| 7.11e-06
process 20.6% 20.6% 20.6% 20.6% 19.1% 30.6%
Cellular macromolecule | 3.82e-11 |3.82e-11| 3.82e-11 | 3.82e-11 |2.03e-09 | 9.46¢-09
metabolic process 71.0% 71.0% 71.0% 71.0% 64.7% 88.9%
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In this case the best p-values are obtained in the order PSO, Greedy,
GRASP, CGRASP, RGRASP and Greedy-PSO respectively. Similar p-
values are obtained for greedy, GRASP, CGRASP and RGRASP. The

order of algorithms based on the percentage of genes for the first GO term

is Greedy-PSO, Greedy and GRASP Variants and PSO.

Table 5.31

Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters Generated from the Second Seed and the corresponding
p-value obtained for each Algorithm for the Function Ontology

p-values and percentage of genes for GO Terms

GO Terms 3
GREEDY | GRASP | CGRASP | RGRASP | pso | SREEDY
Structural 5.8le-62 | 58le-62 | 58le-62 | 5.8le-62 | 7.00e-70 | 1.73e-24
constituent of
ribosome 57.9% 57.9% 57.9% 57.9% 52.9% 66.7%
Structural molecule | 4.33¢-49 | 4.33¢-49 | 4.33e-49 4.33e-49 3.27e-55 8.97e-20
activity 58.9% 58.9% 58.9% 58.9% 54.4% 66.7%
Translation 0.00011 | 0.00011 | 0.00011 0.00011 0.00039 0.00149
elongation factor . . . . . \
activity 4.7% 4.7% 4.7% 4.7% 3.7% 8.3%
RNA-directed DNA ) i i i 2.21e-05 )
polymerase activity 5.1%
. 0.00603 0.00023
RNA binding - - - -
14% 14.7%
Transla_tion 0.00039
elongation factor - - - - . -
activity 3.7%
DNA-directed 000211
DNA polymerase - - - - . -
activity 5.1%
DNA polymerase ) i i i 0.00287 )
activity 5.1%
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In this case the p-values are obtained in the order PSO, Greedy

GRASP, CGRASP, RGRASP, and Greedy-PSO for the first two GO

terms. The order of algorithms based on the percentage of genes is

Greedy-PSO, Greedy, GRASP, CGRASP, RGRASP, and PSO for the

first two GO terms. Similar p-values and percentage of genes are obtained

for greedy, GRASP, CGRASP and RGRASP.

Table 5.32

Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters Generated from the Second Seed and the corresponding p-value
obtained for each Algorithm for the Component Ontology

p-values and Percentage of Genes for GO Terms

GOT
erm GREEDY| GRASP | CGRASP | RGRASP | PSO Gl_‘g;;”
Cvtosolic ribosome 1.42e-70 | 1.42e-70 | 1.42e-70 | 1.42e-70 1.01e-79 | 1.49e-25
y 59.8% 59.8% 59.8% 59.8% 54.4% 66.7%
Cvtosolic part 3.93e-64 | 3.93e-64 | 3.93e-64 | 3.93e-64 1.37e-71 1.09¢e-23
y p 59.8% | 59.8% | 59.8% 59.8% 54.4% | 66.7%
Ribosome 1.10e-58 | 1.10e-58 | 1.10e-58 | 1.10e-58 | 2.59e-63 | 7.35e-25
63.6% 63.6% 63.6% 63.6% 57.4% 75%
Cytosol 4.32e-57 | 4.32e-57 | 4.32e-57 | 4.32e-57 1.09¢e-60 | 4.68e-20
65.4% 65.4% 65.4% 65.4% 58.8% 69.4%
Ribonucleoprotein | 1.36e-43 | 1.36e-43 | 1.36e-43 | 1.36e-43 | 3.0le-46 | 4.34e-23
complex 65.4% 65.4% 65.4% 65.4% 59.6% 83.3%
Cytosolic small 7.82e-32 | 7.82e-32 | 7.82e-32 | 7.82e-32 | 3.95e-37 | 9.12e-08
ribosomal subunit 28% 28% 28% 28% 25.7% 25%
Cytosolic large 1.63e-32 | 1.63e-32 | 1.63e-32 | 1.63e-32 | 4.73e-37 | 2.21e-16
ribosomal subunit 29.9% 29.9% 29.9% 29.9% 27.2% 41.7%
Large 5.06e-27 | 5.06e-27 | 5.06e-27 | 5.06e-27 | 3.54e-30 | 2.86e-14
ribosomal subunit 29.9% 29.9% 29.9% 29.9% 27.2% 41.7%
Non-membrane- 7.56e-25 | 7.56e-25 | 7.56e-25 7.56e-25 2.09e-25 | 1.13e-14
bounded organelle 66.4% 66.4% 66.4% 66.4% 61% 83.3%
ﬁ;ﬁiﬁgﬁff o0t 7 56625 | 7.56e-25 | 7.56e-25 | 7.56e-25 | 2.09e-25 | 1.13e-14
66.4% 66.4% 66.4% 66.4% 61% 83.3%
bounded organelle
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In this case the p-values are obtained in the order PSO, Greedy
GRASP, CGRASP, RGRASP, and Greedy-PSO for all the GO terms. The
order of algorithms based on the percentage of genes is Greedy-PSO,
Greedy, GRASP, CGRASP, RGRASP, and PSO for all GO terms, except
for the sixth GO term. Similar p-values and percentage of genes are

obtained for greedy, GRASP, CGRASP and RGRASP for all GO terms.

Table 5.33

Comparison of greedy and GRASP variants on GO terms for biclusters
generated from the third seed and the corresponding P-value obtained
for each algorithm for the Process ontology

-value and percentage of genes for GO terms

EO IR GleEDY pGRASP : gCGRASP RGRASP

DNA repair 9.53e-11 9.53e-11 9.53e-11 9.53e-11
44.4% 44.4% 44.4% 44.4%

Response to DNA damage 1.03e-09 1.03e-09 1.03e-09 1.03e-09
stimulus 44.4% 44.4% 44.4% 44.4%
5.44e- 5.44e- 5.44e- 5.44e-

DNA metabolic process 11(high) 11(high) 11(high) 11(high)
52.8% 52.8% 52.8% 52.8%

Cell cycle 8.42e-10 8.42e-10 8.42e-10 8.42e-10
55.6% 55.6% 55.6% 55.6%

cell cycle process 4.80e-09 4.80e-09 4.80e-09 4.80e-09
52.8% 52.8% 52.8% 52.8%

double-strand break repair ! 2876;2 7 ! ’2876'2(;()) 7 ! 2876202 7 ! ’2876'2(;()) 7

cellular response to stress 1.44e-07 1.44e-07 1.44¢-07 1.44e-07
p 47.2% 47.2% 47.2% 47.2%

response o stress 4.62¢-06 4.62¢-06 4.62e-06 4.62¢-06
47.2% 47.2% 47.2% 47.2%

mitotic sister chromatid 7.19¢-06 7.19¢e-06 7.19¢-06 7.19¢e-06
cohesion 19.4% 19.4% 19.4% 19.4%

cellular response to 6.59¢-06 6.59¢-06 6.59¢-06 6.59¢-06

stimulus 50% 50% 50% 50%

cell cycle phase 5.98e-08 5.98e-08 5.98e-08 5.98e-08
44.4% 44.4% 44.4% 44.4%

M phase 3.89¢-07 3.89¢-07 3.89¢-07 3.89¢-07
38.9% 38.9% 38.9% 38.9%

chromosome organization 3.89¢-07 7.15e-06 7.15e-06 7.15e-06
38.9% 38.9% 38.9% 38.9%
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In this case similar p-values and percentage of genes are obtained

for Greedy, GRASP, CGRASP and RGRASP for all GO terms.
Table 5.34
Comparison of Greedy and GRASP Variants based on GO Terms for

Biclusters Generated from the Third Seed and the Corresponding p-value
obtained for each Algorithm for the Function Ontology

p-value and Percentage of Genes for GO Terms

GO Terms
GREEDY GRASP | CGRASP | RGRASP
Double-stranded DNA 0.00341 0.00341 0.00341 0.00341
binding 11.1% 11.1% 11.1% 11.1%
structure-specific DNA 0.00315 0.00315 0.00315 0.00315
binding 13.9% 13.9% 13.9% 13.9%

In this case similar p-values and percentage of genes are obtained

for Greedy, GRASP, CGRASP and RGRASP for all GO terms.
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Table 5.35

Comparison of greedy and GRASP variants based on GO terms for
biclusters generated from the third seed and the corresponding P-value
obtained for each algorithm for the Component ontology

p-value and percentage of genes for GO Terms
GO Terms
GREEDY GRASP CGRASP RGRASP
Replication fork 1.40e-06 1.40e-06 1.40e-06 1.40e-06
p 22.2% 22.2% 22.2% 22.2%
1.21e-
1.21e-07 1.21e-07 : 1.21e-07
Chromosome 44.7% 44.7% gz(gj/gh“t) 44.7%
. (1)
Chromosomal bart 4.93e-06 4.93e-06 4.93e-06 4.93¢-06
P 36.1% 36.1% 36.1% 36.1%
Nuclear chromosome 1.53e-05 1.53e-05 1.53e-05 1.53e-05
33.3% 33.3% 33.3% 33.3%
Nuclear replication fork 0.00019 0.00019 0.00019 0.00019
P 16.7% 16.7% 16.7% 16.7%
Nuclear chromosome part 0.00050 0.00050 0.00050 0.00050
27.8% 27.8% 27.8% 27.8%
Condensed nuclear 0.00014 0.00014 0.00014 0.00014
chromosome 19.4% 19.4% 19.4% 19.4%
Mitotic cohesin complex 0.00042 0.00042 0.00042 0.00042
8.3% 8.3% 8.3% 8.3%
Nuclear mitotic cohesin 0.00042 0.00042 0.00042 0.00042
complex 8.3% 8.3% 8.3% 8.3%
Nucleus 1.52e-05 1.52e-05 1.52e-05 1.52¢-05
72.2% 72.2% 72.2% 72.2%
0.00030 0.00030 0.00030
Condensed chromosome 19.4% 19.4% 19.4% 0.00030
. 0.00104 0.00104 0.00104 0.00104
Nuclear cohesin complex 8.39% 8 3% 8.3% 8.3%
Cohesin complex 0.00104 0.00104 0.00104 0.00104
P 8.3% 8.3% 8.3% 8.3%

In this case similar p-values and percentage of genes are obtained

for Greedy, GRASP, CGRASP and RGRASP for all GO terms.
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Table 5.36

Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters Generated from the Fourth Seed and the Corresponding p-value
Obtained for each Algorithm for Process Ontology

GREEDY GRASP CGRASP RGRASP
Ribonucleoprotein | RNA processing RNA processing Ribonucleoprotein
complex biogenesis | | 3006 1.92 ¢-06 complex biogenesis
1.55e-14 18.9% 18.8% 4.56e-15
22.9% 23.4%

Ribosome Ribosome Ribosome Ribosome
biogenesis biogenesis biogenesis biogenesis
9.55e-13 3.86e-06 4.45e-06 1.63e-12
20.2% 15.8% 15.7% 20.3%
Cellular component | ncRNA ncRNA Cellular component
biogenesis at processing processing biogenesis at cellular
cellular level 6.13e-06 7.03e-06 level
23.3% 23.9%
RNA processing Ribonucleoprotei Ribonucleoprotei | RNA processing
8.10¢-09 n complex n complex 3.04¢-08
biogenesis biogenesis
20.6% 20.3%
1.50e-05 1.74e-05
16.7% 16.6%
ncRNA processing | ncRNA metabolic | ncRNA metabolic | ncRNA processing
2.31e-08 process process 8.36e-08
17.0% 2.40e-05 2.76e-05 16.7%
15.8% 15.7%

In the biclusters obtained by the fourth seed, there are more than

400 genes. Hence the algorithms are executed to get only 224 genes and

only these genes are used to search for GO terms of process, function and
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component ontologies. Since the conditions in the biclusters are different
for each algorithm, the genes selected are different, and hence the order of
the GO terms is also different. Hence in Table 5.36, the GO term, p-value
and percentage of genes are included in each entry. Here the order of
algorithms in terms of p-value for the first and third GO terms is
RGRASP, Greedy, GRASP and CGRASP. But for the second, fourth and
fifth GO terms, the order of algorithms based on p-value is Greedy,
RGRASP, GRASP and CGRASP. The variation in p-value for GRASP
and CGRASP is very less.

Table 5.37

Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters generated from the Fourth Seed and the corresponding p-value
obtained for each Algorithm for Function Ontology

GO TERM GREEDY GRASP CGRASP RGRASP
Endonucleas
'Molecular function o
e activity 84 genes 84 genes 85 genes
unknown'
(9, 0.00591)

From the Table 5.37 it is clear that for function ontology a fixed
number of genes are annotated to the term ‘molecular function unknown’

for all algorithms except for the greedy approach.
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Table 5.38
Comparison of Greedy and GRASP Variants based on GO Terms for
Biclusters generated from the Fourth Seed and the corresponding p-value
obtained for each Algorithm for Component Ontology

GREEDY GRASP CGRASP RGRASP
Nucleolus Nucleolus Nucleolus Nucleolus
3.68e-12 4.08e-09 4.65e-09 3.34e-12
16.1% 14.4% 14.3% 16.2%
Nucleus Preribosome glrtrz(;fjllll; lar Nucleus
8.02e-08 0.00034 0 0%031 5.96e-08

0, 0, * o,

49.3% 8.6% 75.8% 49.5%
Preribosome glrtrz;cr:ﬂllll; far Organelle Preribosome
8.27¢-08 0 0%039 0.00033 7.91e-08
10.8% 7'5 7% 75.8% 10.8%
Nuclear part Organelle Preribosome Nuclear part
7.92e-07 0.00041 0.00037 8.88e-06
32.3% 75.7% 8.5% 31.1%

90s 90s

. Intracellular Part Intracellular Part .
Preribosome 0.00066 0.00055 preribosome
3.88e-05 8;1 79 8;1 R0, 3.83e-05
7.2% e o 7.2%
Nucleolar part Intracellular lg/ie:;berlalt:e bounded nucleolar part
5.49¢-05 0.00123 o §01 05 5.46e-05
6.3% 84.7% 6é 6% 6.3%
Nuclear Membrane ﬁgﬁ;ﬁ;ﬁ?;o nded Nuclear
Lumen bounded organelle oreanclle . Lumen
7.74 e-05 0.00134 0 8"’0105 .00035
23.8% 68.5% 6'8.6% 23.0%

In this case the order of algorithms based on p-value is RGRASP,
GREEDY, GRASP and CGRASP in most of the GO terms. But for the
fourth and seventh GO terms, the p-vale of Greedy is better than
RGRASP. For the first three seeds, these methods results in the same
bicluster. For the fourth seed Greedy and RGRASP are better than
CGRASP and GRASP. RGRASP is better than Greedy for some GO

terms. There are also GO terms for which Greedy is better than RGRASP.
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5.4.1.2 Comparison based on best Five GO Terms

Here in Table 5.39 all the algorithms are compared on the basis of
the best 5 p-values obtained from all the four biclusters. In this case the
order of algorithms based on p-value is PSO, RGRASP, GREEDY,
CGRASP, GRASP and GREEDY-PSO for all GO terms. The p-value is
the same for GREEDY, GRASP, CGRASP and RGRASP for all GO
terms. In terms of percentage of genes involved Greedy-PSO is better

than all the other methods for all the five GO terms.
5.4.2 Comparison of Algorithms based on Size and MSR

Three different seeds are selected. These seeds are enlarged by
Greedy and GRASP variants. The bicluster size and MSR are compared
for biclusters obtained from all these algorithms. From Table 5.40 it is
clear that for the three seeds, same bicluster is obtained by greedy,
RGRASP, GRASP and CGRASP. But due to randomization in GRASP, if
the conditions selected are different, these algorithms result in different
biclusters. Analysing the algorithms based on the biclusters obtained from
the same seed, it should be noted that among the algorithms Greedy,
GRASP, CGRASP and RGRASP result in different biclusters, only if the
conditions selected are different. These algorithms then differ in the order
in which the genes are added. The local search phase also results in the

addition of similar genes.
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Chapter 5

5.5 Summary

In this chapter algorithms based on the metaheuristic methods
GRASP and its variants, PSO and greedy-PSO hybrid are used for finding
biclusters in gene expression data. The algorithms are implemented on the
Yeast dataset and also the Human Lymphoma dataset. This is the first
time that GRASP metaheuristics and its variants are applied for
identifying biclusters from Human Lymphoma dataset. The biologically
significant biclusters obtained from these algorithms are compared with
other algorithms. In terms of the best p-value obtained GRASP,
CGRASP, RGRASP and PSO algorithms are better than that of MOGAB,
SGAB, CC, RWB, OPSM, Bimax, ISA and Bivisu. The metaheuristic
algorithms and Greedy approach are compared based on p-value, bicluster
size and MSR. It is found that when the conditions selected are different

these algorithms result in different biclusters.
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Performance Evaluation of
MSR Based Algorithms

In this chapter the performance of all MSR based algorithms are
evaluated based on the quality of biclusters obtained. High row variance
is an important quality of the bicluster. MSR has a problem in the
detection of biclusters with highly significant change in the expression
level. This problem is clearly illustrated in this chapter. Constraint based
algorithms SGSC and MSRT solve this problem to a certain extent
compared to all other algorithms which are trying to minimize MSR,
including the metaheuristic and greedy approach developed in this study.
The performance of all these algorithms are also evaluated and compared
based on the other qualities of bicluster namely bicluster size, MSR and
p-values obtained for different GO terms.
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6.1 A Critical Problem of MSR in the ldentification of
Biclusters with High Row Variance

The mean squared residue introduced by Cheng and Church has
become one of the most popular measures to identify biclusters in most of
the biclustering algorithms. In this section a critical problem with MSR in
detecting highly significant biclusters is discussed by giving examples
from both Yeast and Lymphoma datasets. These biclusters are highly
significant because the row variance of some of these biclusters is far
greater than the row variance of all the biclusters detected so far by any
other algorithm using MSR. These biclusters are also coherent even
though their MSR value exceeds the predefined MSR threshold. Cheng
and Church [29] defined a bicluster as a uniform submatrix having low
Mean Squared Residue (MSR). MSR is used to compute the coherence
among the group of genes. There is a threshold value denoted by o for
MSR which depends on the dataset. Many biclustering algorithms were
developed using MSR.

6.1.1 Relationship between Row Variance and MSR

Algorithms using mean squared residue uses row variance as an
accompanying score to eliminate trivial biclusters. Biclusters with high
row variance are more interesting because they make significant changes
in the expression level of the genes. Hence they are biologically more
relevant. According to the general notion it is assumed that the biclusters
should have low MSR and high row variance. Now the question is how

MSR and row variance are related. The MSR is used for measuring the
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variance of the set of all elements in the bicluster, plus the mean row
variance plus the mean column variance [10]. From this statement it is
clear that row variance forms an incremental factor in the calculation of
MSR. It is observed that genes having low row variance fills the MSR
value by small amounts so that such biclusters can accommodate more
genes whereas biclusters with high row variance fill the MSR value by
larger amounts, so that only few genes can be accommodated within the
given MSR threshold. MSR depends on row variance, column variance
and the variance of the set of all elements in the bicluster. Hence it is
found that when one more condition in which the genes are expressing
similarly is added to a bicluster and the row variance is making only a
slight variation, then sometimes both MSR and row variance are
increasing and sometimes one is increasing and the other is decreasing,
and in some other situations both are decreasing. The problematic
situation is when both are increasing because biclustering algorithms are
trying to maximize row variance and minimize the MSR. MSR is
minimized thinking that the increase in the value is due to the lack of
coherence. This may not be true always because some of the conditions
which make a significant increase in the row variance will make a
significant increase in the MSR value also. So in the optimization
methods which are trying to minimize MSR, there is least chance of
identifying such biclusters. Sometimes this increase in MSR will be
above the predefined MSR threshold value of the dataset so that the
biclustering algorithm using the MSR will never identify such biclusters

with highly significant variation in the expression level. These facts are
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established by giving example biclusters from Yeast and Lymphoma

datasets.

6.1.2 Biclusters from Yeast dataset

Some biclusters which can clearly illustrate the problem of MSR are
given in Figure 6.1. From one of these biclusters (yc9) it can be noticed
that how the MSR increases above the predefined MSR threshold and

how row variance increases abruptly just by adding a single condition.

Expression Values

Expression Values

1 15 2 25 3 35 4 45 5 55 6 1 12 14 16 18 2 22 24 26 28 3
Conditions Conditions



Performance Evaluation of MSR based Algorithms

Expression Values

Figure 6.1Ten biclusters from the Yeast dataset. From left to right and top to bottom the
bicluster labels are: ya9, yb9, yc9, yd9 ye9, yf yg9, yh9, yi9 and yj9
respectively. The details about the biclusters can be obtained from Table 6.1
using bicluster label.

Table 6.1
Information about Biclusters shown in Figure 6.1
ya9 20 17 598.59 2930.10
yb9 20 2 88.17 271.77
yc9 20 3 608.22 4771.60
yd9 20 5 555.58 3528.90
ye9 20 6 658.84 5401.50
yf9 12 3 477.11 6509.40
yg9 8 14 510.67 2263.60
yh9 24 13 322.83 1782.00
yi9 21 14 416.47 2609.20
yi9 27 8 458.39 3085.80
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The set of genes and conditions shown with the label ya9 is
obtained by expanding a seed from K-Means clustering algorithm
under 17 conditions without imposing any constraints on conditions.
The set of 20 genes in all 17 conditions are shown to clarify how
significantly the expression level changes from its normal level in two
conditions. In ya9 genes are not expressing similarly under all 17

conditions.

6.1.3 MSR and Row Variance Increase Significantly by the Addition
of a Single Condition

A bicluster is shown with label yb9 which contains the same 20
genes in the bicluster plot labelled ya9. In the bicluster labelled yb9
there are two conditions. The genes in yb9 present similar behaviour
under these two conditions. When one more condition with a
significant change in the expression level is included to the bicluster
yb9, then the bicluster yc9 is obtained. The row variance of yc9 is
4771.60 whereas the row variance of yb9 is only 271.77. Similarly the
MSR value of yc9 is 608.22 where as for yb9 the MSR is only 88.17.
Thus the addition of a single condition increases the MSR above the
predefined MSR threshold and row variance increases from 271.77 to
4771.60. This high variation in MSR is not due to the lack of
coherence but because of the significant change made in the expression
level of the genes which is denoted by row variance. Biclusters with
labels yd9 and ye9 are also obtained from the same set of genes and

has high row variance and MSR.
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6.1.4 Row Variance and MSR are very high even for Genes Converging
to a Single Point

From the bicluster labeled yc9 it is clear that the 20 genes in this
bicluster are divided into four groups depending on the point to which the
expression value reaches. In one of the 20 genes, the expression value
changes from 264 to 139. Two of them reach the value 110. Five of them
reach the value 69. Twelve of them reach the value 0. In order to see the
effect of genes converging to a single point, only such genes are selected
from bicluster yc9 whose expression level reaches 0. The bicluster with
such genes are shown as bicluster labeled yf9. Even though the genes are
converging to the same point, the MSR value is above the threshold
which is 477.11 and row variance is 6509.40. When the condition which
makes the significant change is removed from this bicluster the MSR

value is only 93.30 and the row variance is only 393.75.

6.1.5 A Bicluster with the Highest Row Variance Identified

Biclusters with labels yg9 to yj9 contain another set of genes with
high row variance and MSR above the threshold. The maximum row
variance among different biclustering algorithms for the Yeast Dataset is
obtained by Cheng and Church [29] and the value they obtained is 4162.
But in this study the row variance is above 6000 for bicluster yf9. For the
Yeast dataset MSR threshold is only 300. Hence no algorithm using MSR
can identify biclusters from yc9 to yj9. From the bicluster plots it is clear
that the genes present a similar behavior in the biclusters from yc9 to yj9
even though their MSR value is above the threshold. The row variance of

these biclusters is also very high.



Chapter 6

6.1.6 Biclusters from Human Lymphoma Dataset

Some biclusters from Human Lymphoma dataset which can

illustrate the problem of MSR are shown in Figure 6.2.

Expression Values
Expression Values

Expression Values

Expression Values.

Figure 6.2 Eight Biclusters from the Lymphoma Dataset. From left to right and top to
bottom Bicluster labels are 1a9, 1b9, 1c9, 1d9, 1e9, 1f9, 1g9 and 1h9
respectively. The details about the biclusters can be obtained from Table 6.
2 using bicluster label. Biclusters 1b9, 1d9, 1f9 and 1h9 are obtained from
129, 1c9, 1e9 and Ig9 respectively.
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Their row variance is very high showing that there is significant
change in the expression level. They are coherent even though their MSR

value is above the predefined MSR threshold.

Table 6.2

Information about Biclusters of Figure 6.2

129 11 34 1142.0 7936.9
169 11 84 3927.8 27674.0
1c9 10 77 1187.7 5428.8
1d9 10 94 1562 .0 8313 .4
19 10 77 1140.5 4630.4
19 10 9 2092.5 19160.0
1g9 10 39 11733 8691.7
19 10 9 4522.8 25431.0

Biclusters 1a9, 1c9, le9 and 1g9 are identified by enlarging seeds
from K-Means by adding more conditions. The seed bicluster will contain
some conditions. All other conditions are verified for inclusion in the
bicluster. An added condition is removed if the MSR value of the
resulting bicluster exceeds the MSR threshold as in SGSC and MSRT
algorithms. Bicluster 1b9 is obtained from 1a9 by adding more conditions
and by checking visually using bicluster plot whether the increase in MSR
above the threshold value is due to the lack of coherence or significant
change. In the same way Biclusters 1d9, 1f9 and 1h9 are obtained from

1c9, 1e9 and 1g9 respectively. In the bicluster plot 1a9 which is obtained by
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enforcing MSR threshold, the Y axis varies from -200 to 400. But in 1b9
which is obtained from la9, Y axis varies from -600 to 600. Similar
difference in the range of Y axis can be observed in biclusters 1c9 and 1d9,
le9 and 119, 1g9 and 1h9 respectively. This clearly indicates that the
conditions which make significant variations are eliminated by enforcing
MSR threshold. The row variance of bicluster 1b9 is 27674. This is far
above the row variance obtained so far by algorithms using MSR. The
previous instance of maximum value of row variance for Lymphoma data
is obtained by ISA [56] and the value is only 14682.47 [75]. The
significant changes in the expression levels of the genes which result in

high row variance can be verified from the bicluster plots in Figure 6.2.

The MSR threshold value for the Lymphoma dataset is 1200. This
threshold value prevents the identification of highly coherent biclusters such
as 1b9, 1d9, 1Y and 1h9 shown above. It is difficult for other biclustering
algorithms to identify even the biclusters 1a9, 1c9, 1e9 and 1g9 even though
their value is less than the MSR threshold. This is because these biclusters
are having significant variation in the expression level denoted by their row
variance. These biclusters were identified by algorithms MSRT and SGSC
which allowed maximum possible variation for MSR. In these algorithms an
added condition is removed if it exceeds the MSR threshold. Hence it allows
maximum variation for MSR. The objective of other biclustering algorithms
is to minimize MSR. When the objective is to minimize MSR, conditions
which do not make significant change will get more preference than the
conditions which make significant change. It is because in the latter case

incremental increase in the MSR will be greater than the former.



Performance Evaluation of MSR based Algorithms

When the MSR exceeds the predefined threshold it prevents the
inclusion of other conditions and genes which are coherent. For
biclustering algorithms which enlarge seeds by adding more genes and
conditions, incremental increase in MSR above the MSR threshold could
be a situation in the intermediate stage due to the addition of some
conditions with significant change. In such cases the conditions will have
to be removed. If those conditions are retained, even though the MSR of
the bicluster is greater than the threshold, after adding more genes to the
bicluster the MSR value will get reduced. For example, in the case of
bicluster shown in Figure 6.1 with label yh9, MSR value is 322.83 and
row variance is 1782. There are 24 genes in this bicluster. But when there
were only 10 genes in the bicluster, the MSR value was 367.5 and the row
variance was 2040.5. This means that both MSR and row variance got
reduced after adding more genes. Sometimes such additions will reduce

the MSR below the threshold.

In short, some conditions which make significant changes in the
expression level are not included in the bicluster due to the value of MSR
threshold. So the knowledge discovered by the algorithm is that the genes
are exhibiting similar expression levels only under X conditions. In fact
the genes are coherent under Y conditions. Here Y is greater than X. In
this context SGSC and MSRT algorithms are better than all other
algorithms mentioned in this study because in these algorithms maximum

possible variation is allowed for MSR.
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6.2 Comparison of Biclusters Generated from Four
Different Seeds by MSR based Algorithms

To evaluate the statistical significance for the genes in each bicluster
p-values are used. P-values indicate the extent to which the genes in the
bicluster match with the different GO categories. P-value indicates the
statistical significance of a bicluster. Four different seeds, which in the
event of enlargement results in biologically significant biclusters, were
selected. These seeds are enlarged by all the eight algorithms and the p-
values of the GO terms of these biclusters are compared for all these
algorithms. Since PSO is a population based technique a significant
bicluster similar to the enlargement of seed 2 is obtained for Binary-PSO
and Greedy-PSO. Hence only in bicluster 2 such comparisons are given for
these two algorithms. All the eight seed growing algorithms are also
compared based on bicluster size and MSR by enlarging the three different

seeds. These comparisons are given in this chapter.

6.2.1 Comparison based on p-values obtained for GO Terms

The first seed was enlarged by all the algorithms developed. The
names of the genes in each bicluster are found out. Then the names of the
genes are entered into the gene ontology database and GO terms for
process, function and component ontology are searched. Terms for each
ontology, the corresponding p-value and the percentage of genes involved
in a particular ontology are given in the following tables. The findings
derived from each Table are given after the Table and the final conclusion

is summarized at the end of the chapter.
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From Table 6.3 it is clear that similar p-values are obtained for
greedy, RGRASP, GRASP AND CGRASP. The order of algorithms
based on p-value is greedy, RGRASP, GRASP, CGRASP, ISIMSRDT,
MSRT, MSRDT and SGSC respectively based on the first GO term. The
p-values obtained for SGSC is very low. The reason is that since the
difference threshold value assigned for genes is very low, there are only
23 genes in the bicluster. By increasing this value more genes will be
included, and this will increase the p-value of GO terms for SGSC
algorithm. The p-value and the percentage of genes involved for greedy
and GRASP variants are the same for all the GO terms. For all GO terms
the p-value obtained by greedy and GRASP variants are better than all the
other algorithms except for the last GO term. For the last GO term, the p-
value obtained by ISIMSRDT is the best. The order of algorithms based
on the percentage of genes involved for the first GO term is ISIMSRDT,
greedy, GRASP variants, MSRT, SGSC and MSRDT. For the first three
GO terms, the percentage of genes involved is the highest for ISIMSRDT
algorithm. For all other GO terms except the third and the seventh, the
percentage of genes involved in SGSC is the highest.
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Table 6.4

Comparison of MSR based Algorithms based on GO Terms for Biclusters
Generated from First Seed and the Corresponding p-value obtained for
each Algorithm for the Function Ontology

p-value
- = 5 Z & & &
GO Terms o a x 2 o < < <
Z 7 s ) w o o o
> S = & @ o 0] U]
) G > O &
Number of
genes 27 32
annotated genes genes
to the term | OQut of | Out Of ) 12(; Oel;lrtleosf ::es ::es ::es :r?es
molecular 61 77 & g g g &
function genes genes
unknown
snoRNA ; - | 0.00480 - - - - -
binding

From the Table 6.4 it is clear that for function ontology a fixed
number of genes are annotated to the term ‘molecular function unknown’
for all the algorithms except ISIMSRDT. For ISIMSRDT algorithm, 4
genes from the bicluster are annotated to the term snoRNA binding and its

p-value is 0.0048.
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Chapter 6

From Table 6.5 it is clear that the order of algorithms based on p-
value for the first GO term is greedy, GRASP, CGRASP, RGRASP,
ISIMSRDT, MSRT, MSRDT, and SGSC for the first GO term. Similar p-
values are obtained for greedy, GRASP, CGRASP and RGRASP for all
GO terms. Since there are only 23 genes in the bicluster obtained by the
SGSC algorithm there is only one GO term associated with it for the
component ontology. The best value for the percentage of genes involved
is obtained by ISIMSRDT algorithm for all GO terms. Out of the 14 GO
terms, the best p-value is obtained by ISIMSRDT algorithm for all GO
terms except in the case of GO terms 1, 9, 10, 13 and 14.

From Table 6.6, it is clear that the p-values are obtained in the order
PSO, Greedy, RGRASP, CGRASP, GRASP, ISIMSRDT, SGSC, greedy-
PSO, MSRT and MSRDT respectively for the first GO term. Out of the
13 GO terms, p-value obtained by binary PSO is better than all other
algorithms, except for the GO terms 2, 3, 7 and 13. For GO terms 2 and 3,
the greedy and GRASP variants obtained the best p-value. For the seventh
GO term, the best p-value is obtained by ISIMSRDT and for the 13" GO
term the best p-value is obtained by SGSC. In terms of percentage of
genes involved the greedy-PSO hybrid is better than all the other
algorithms for all the GO terms.
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From Table 6.7, it is clear that in terms of p-value the order of
algorithms are PSO, Greedy, RGRASP, CGRASP, GRASP, ISIMSRDT,
SGSC, greedy-PSO, MSRDT and MSRT respectively for the first and
second GO terms. Similar p-values and percentage of genes are obtained
for greedy, GRASP, CGRASP and RGRASP for all GO terms. The
percentage of genes involved is the highest for greedy-PSO for the first
three GO terms. More GO terms are obtained for PSO compared to that of

all the other algorithms.

From Table 6.8, it is clear that the best p-values are obtained in the
order PSO, Greedy, RGRASP, CGRASP, GRASP, ISIMSRDT, SGSC,
MSRDT, MSRT and greedy-PSO for all the GO terms. The order of
MSRDT and MSRT is changing for a few GO terms. The percentage of
genes involved is the highest for greedy-PSO in all cases except for the

GO term cytosolic small ribosomal subunit.
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Performance Evaluation of MSR based Algorithms

From Table 6.9, it is clear that for most of the GO terms the order
of algorithms based on p-values are MSRDT, MSRT, SGSC, Greedy,
GRASP, CGRASP, RGRASP and ISIMSRDT. The percentage of genes
involved is the highest for MSRDT in most of the GO terms. Similar p-
values and percentage of genes are obtained for Greedy, GRASP,
CGRASP and RGRASP for all the GO terms.

From Table 6.10, the order of algorithms based on p-value and
percentage of genes involved is MSRT, MSRDT, SGSC, ISIMSRDT,
Greedy, GRASP, CGRASP and RGRASP for the first GO term. Similar
p-values and percentage of genes are obtained for Greedy, GRASP,
CGRASP and RGRASP for all the GO terms. Only two GO terms are
obtained for all algorithms except MSRT, MSRDT and SGSC.
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Chapter 6

From Table 6.11, the order of algorithms based on p-value is
ISIMSRDT, SGSC, MSRDT, MSRT, Greedy, GRASP, CGRASP and
RGRASP for the first and third GO terms. Similar p-values and
percentage of genes are obtained for Greedy, GRASP, CGRASP and
RGRASP for all the GO terms. In this case constraint based algorithms
are better than Greedy and GRASP variants. For the second GO term, the
order of algorithms based on p-value is MSRDT, ISIMSRDT, MSRT,
Greedy, GRASP variants and SGSC. The percentage of genes involved is
the best for the MSRDT algorithm for the first, second and third GO

terms.

In the significant biclusters obtained from the fourth seed, since the
conditions selected are different for each algorithm, the genes selected are
also different. Hence the GO terms are different for biclusters obtained by
each algorithm. Hence GO terms along with the p-values are given in the
order of p-values. From Table 6.12 the order of algorithms based on p-
value is RGRASP, Greedy, GRASP, CGRASP, MSRDT, SGSC,
ISIMSRDT and MSRT for the first and third GO terms. For the second,
fourth and fifth GO terms, the order of algorithms based on p-value is
Greedy, RGRASP, GRASP, CGRASP, MSRDT, SGSC, ISIMSRDT and
MSRT. The percentage of genes involved in a GO term, is the highest for
MSRDT algorithm in the case of the first, second, third and fifth GO
terms. For the fourth GO term, the percentage of genes involved is the

highest for MSRT.
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Chapter 6

Table 6.13

Comparison of MSR based Algorithms based on GO Terms for Biclusters
generated from Fourth Seed and the Corresponding P-value
obtained for each Algorithm for Function Ontology

p-value
|—
GO Terms| K~ '5 @ O E & 2 2
o o ] 7] w < < <
) 0) ®) o
, 13 out 13 out 84genes | 84 genes
molegular of 34 11 out 120ut of Endon_uc_lease g g 85 genes
function input of 28 33 genes 33 activity Outof | Outof Out of 224
' ut o
unknown genes genes genes (9, 0.00591) 224 224

From the Table 6.13, it is clear that for function ontology a fixed

number of genes are annotated to the term ‘molecular function unknown’

for all algorithms except for the Greedy algorithm. For Greedy algorithm,

9 out of the 224 genes are annotated to the term Endonuclease activity

and the corresponding p-value is 0.00591.
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Chapter 6

From Table 6.14, it is clear that the order of algorithms based on p-
value is RGRASP, Greedy, SGSC, ISIMSRDT, MSRDT, GRASP
CGRASP and MSRT for the first GO term. The order of algorithms
based on p-value is MSRDT, SGSC, ISIMSRDT, Greedy, RGRASP,
MSRT, CGRASP and GRASP and for the second GO term. The order of
algorithms based on p-value is MSRDT, SGSC, ISIMSRDT, RGRASP,
Greedy, MSRT, CGRASP and GRASP for the third GO term. For the first
GO term the percentage of genes involved is the best for SGSC and
ISIMSRDT. In short, from these results we cannot conclude that a single
algorithm is best in terms of p-value. The order is changing for each

bicluster and in some situation for a particular ontology.

6.2.2 Comparison based on best 5 p-values obtained for the MSR
based Algorithms

In Table 6.15 all the MSR based algorithms are compared on the
basis of the best 5 p-values obtained from all the four biclusters. In this
case, the order of the algorithms is PSO, RGRASP, Greedy, CGRASP,
GRASP, ISIMSRDT, SGSC, MSRDT, MSRT and Greedy-PSO for the
first GO term. PSO is the best in terms of p-value for all GO terms. The
percentage of genes involved is the best for SGSC and Greedy-PSO for
the first GO term. The p-value obtained by Greedy, GRASP, CGRASP
and RGRASP are the same for all GO terms.
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6.2.3 Comparison of Algorithms based on Bicluster Size and MSR

Three different seeds are selected. These seeds are enlarged by all

the MSR based algorithms. The bicluster size and MSR are compared for

biclusters obtained from all these algorithms.

Table 6.16.a

Comparison of Size and MSR of 3 Biclusters by Enlarging Three
Different seeds by each one of the MSR based Algorithms

” MSRT MSRDT ISIMSRDT
g 3 3 3
s |& |& |88 |& |& |38 |& |g |3&
m | ® = x s @ S iy~ @ p iy~
> > >
1 6117 | 198.95 | 469.4058 | 77%16 | 199.54 | 533.1660 | 98*17 | 199.97 | 482.8
2 56*17 | 199.78 | 587.8461 | 64%17 | 199.32 | 6545732 | 98*17 | 199.99 | 600.9
3 28*17 299.85 1937.5000 | 28*17 286.34 | 2034.1000 33*17 299.22 | 1970.1
Table 6.16.b
Comparison of Size and MSR of 3 Biclusters by Enlarging 3
Different seeds by each one of the MSR based Algorithms
SGSC Greedy
Size MSR Row Variance Size MSR Row Variance
23*17 | 131.39 506.7582 121*17 199.94 483.2784
63*17 | 167.43 615.9798 107*17 199.48 568.0833
31*¥17 | 297.19 2036.0000 36*17 297.61 1806.9000
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Table 6.16.c

Comparison of Size and MSR of Three Biclusters by Enlarging Three
Different seeds by each one of the MSR based Algorithms

- GRASP RGRASP CGRASP

1S

g 3 3 8

= ® o = c @ o = c @ o = c

[ N n o © N n o © N n S .©

m n > o = n > o = n > o =
> > >

1 121*17 199.94 483.278 121*17 | 199.94 483.278 121*%17 | 199.94 | 483.278

2 107*17 199.48 568.083 107*17 | 199.48 568.083 107*17 | 199.48 568.083

3 36*17 297.61 1806.900 36*17 297.61 1806.900 | 36*17 | 297.61 | 1806.900

Analysing the algorithms based on the biclusters obtained from the
same seed, it is noted that among the algorithms SGSC produced
biclusters of low size but coherence is high since the MSR value is very
low. ISIMSRDT is the best among the four constraint based algorithms in
terms of bicluster size. Reducing the increment factor in ISIMSRDT can
improve the bicluster size further. But Greedy and GRASP algorithms
identify better biclusters than the four constraint based algorithms in
terms of bicluster size and MSR. CGRASP, RGRASP and GRASP
algorithms result in different biclusters only if the conditions selected are
different. These algorithms differ in the order in which the genes are

added. The local search phase also results in the addition of similar genes.

From Tables 6.16 (a), 6.16 (b) and 6.16 (c), it is clear that for the
first seed, same bicluster is obtained by Greedy, RGRASP, GRASP and
CGRASP. This is the largest in terms of bicluster size. The second highest
is in the order ISIMSRDT, MSRDT, MSRT and SGSC. For the second
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seed the order of algorithms in terms of bicluster size is Greedy,
RGRASP, CGRASP, GRASP, ISIMSRDT, MSRDT, SGSC, and MSRT.
For the third seed the order is Greedy, RGRASP, CGRASP, GRASP,
ISIMSRDT, MSRDT, SGSC, and MSRT. In short Greedy, RGASP,
CGRASP, GRASP, ISIMSRDT, MSRDT, MSRT and SGSC are the order
of algorithms in terms of bicluster size. The order of MSRT and SGSC
changes for different biclusters depending on the value selected for the

difference threshold.

6.3 Summary

Mean Squared Residue (MSR) is used as a measure of coherence in
many of the biclustering algorithms developed so far. In this chapter a
problem with the MSR in the identification of biclusters with large row
variance 1s presented. The problem is that most often the large
incremental increase in MSR may be due to the lack of coherence. But
sometimes it may be due to the significant change in the expression level
of the genes indicated by the high value of the row variance. When the
row variance increases significantly, the MSR value also increases. But
sometimes this increase in MSR will be above the predefined MSR
threshold. The visual inspection of the bicluster plot can help towards
differentiating between lack of coherence and significant change. Genes
with such highly significant change in the expression level are of great
biological significance. In this context SGSC and MSRT algorithms are
better than all other algorithms mentioned in this study, because in these

algorithms maximum possible variation is allowed for MSR. In all other
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algorithms which are trying to minimize MSR, it is difficult to identify
biclusters from Yeast and Lymphoma datasets with high row variance and
coherence (even though the MSR value exceeds the predefined threshold)

as shown in Figure 6.1 and 6.2.

In terms of bicluster size (high) and MSR (low) Greedy and GRASP
variants are better than the constraint based algorithms. In terms of p-
value Greedy and GRASP variants are better than the constraint based
algorithms for the biclusters from first two seeds. But in the case of the
constraint based algorithms, the p-value is better than Greedy and GRASP
variants for the bicluster generated from the third seed. For the fourth
seed it is difficult to make a final conclusion. In terms of time complexity
the constraint based algorithms are better than Greedy and metaheuristic

approaches.

Biclustering problem is NP-Hard [29, 36]. Heuristic based search
methods are used to solve the biclustering problem in polynomial time
[27, 91]. Similar problem solving methods are used in this study for the

identification of biclusters.
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Conclusion and Future Work

Different types of algorithms namely constraint based, greedy and
metaheuristic algorithms are developed in this work for the identification
of coherent biclusters from high dimensional gene expression data. Some
of the constraint based algorithms are able to identify biclusters with
significant change in the expression level of the genes. The row variance
of some of such biclusters is higher than that of any other algorithm using
MSR. In terms of the best p-value obtained these algorithms are better
than some of the well known biclustering algorithms namely MOGAB,
SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu. The algorithms
developed in this work overcome some of the disadvantages associated
with the already existing biclustering algorithms. The results obtained
and the performance analysis, show that these algorithms are suitable for
the identification of coherent biclusters. Suggestions for the further work

in this area of research are also given.
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7.1 Conclusion

In recent years large amounts of high-dimensional data in gene
expression profiles are generated. Analyzing such high-dimensional gene
expression data have become an issue of significant research interest.
Elucidating the patterns hidden in high-dimensional gene expression data

is a highly relevant and challenging research endeavour.

Biclustering identifies local patterns from high dimensional data.
Biclustering is simultaneous clustering of both the rows and columns of a
data matrix. In this thesis algorithms are developed for the identification
of coherent biclusters from gene expression data using different algorithm
design techniques. All these algorithms are using a measure called mean
squared residue to search for biclusters. Biclustering is an optimization
problem with the objective of maximizing the volume and minimizing the
mean squared residue of the bicluster. All these algorithms are enlarging

the seeds obtained from K-Means clustering algorithm.

Different types of algorithms, namely constraint based, greedy and
metaheuristic algorithms are developed in this work for the identification
of coherent biclusters from high dimensional gene expression data. There
are four constraint based algorithms, one greedy approach, four
metaheuristic algorithms and the last one is a combination of greedy and

metahueristic approach. The different algorithms are:

1)  Mean Squared Residue Threshold (MSRT) algorithm
2)  Mean Squared Residue Difference Threshold (MSRDT) algorithm
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3)

4)
5)

6)

7)

8)

9)

10)

Iterative Search with Incremental MSR Difference Threshold
(ISIMSRDT) algorithm

Seed Growing using Separate Constraints (SGSC) algorithm
Algorithm based on Greedy approach

Algorithm based on Greedy Randomized Adaptive Search
Procedure (GRASP)

Algorithm based on Cardinality based Greedy Randomized
Adaptive Search Procedure (CGRASP)

Algorithm based on Reactive Greedy Randomized Adaptive
Search Procedure (RGRASP)

Algorithm based on Binary Particle Swarm Optimization (PSO)

Algorithm based on Greedy - Binary Particle Swarm Optimization
hybrid

In all the constraint based algorithms node (gene or condition)

addition follows node deletion if necessary. The added node is deleted

depending on the constraints used by the algorithm. The MSRT

algorithm uses the only constraint namely the MSR threshold. This

method allows maximum variation possible for MSR. It is advantageous

for including conditions which make significant change in the bicluster.

But the disadvantage is that the added node may not be optimal in terms

of MSR value. Hence one more constraint called the MSR Difference
Threshold (MSRDT) is introduced with the objective of minimizing

MSR. This constraint resulted in different research findings in connection
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with the gene expression data. It is found that this threshold value is
different for genes and conditions. Reducing the difference threshold
value for genes increases coherence and reducing the threshold value for
conditions eliminates conditions which make significant change in the
expression level. It is also found that the difference threshold for the
negatively correlated genes is higher than that of other genes. It is
difficult to find a suitable value of difference threshold for each bicluster.
Hence in ISIMSRDT algorithm, the MSR difference threshold is
initialized with a small value and it is incremented after each iteration.
Iterative search has the advantage of including the n™ condition whose
MSR value got reduced after adding the (n-k)" condition. After
experimenting with MSRDT algorithm it is found that reducing the MSR
difference threshold for genes increases coherence and reducing the MSR
difference threshold for conditions eliminates conditions which make
significant change in the expression level. Thus it is concluded that
separate constraints should be used for genes and conditions. Hence the
algorithm Seed Growing using Separate Constraints (SGSC) for genes
and conditions is developed. Highly coherent biclusters can be identified
with this algorithm. Moreover, with the help of bicluster plot this
algorithm can identify some biclusters with very high row variance from
both Yeast and Lymphoma datasets. These biclusters are coherent even
though there MSR value is above the predefined MSR threshold.

As optimization problem the main objective of biclustering is to
identify highly coherent biclusters. With this objective in mind a Greedy

approach is used to enlarge the seeds obtained by K-Means clustering
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algorithm. The greedy approach used by Cheng and Church has random
interference problem. When seeds from K-Means are used this problem
can be eliminated. Moreover MSR is biased towards the flat biclusters.
Seeds from K-Means help the identification of biclusters with high row

variance.

Greedy approach usually suffers from local minima problem.
Metahueristic methods like Greedy Randomized Adaptive Search
procedure incorporate randomization for eliminating the local minima
problem. Three variants of GRASP namely (basic) GRASP,
Cardinality based GRASP (CGRASP) and Reactive GRASP
(RGRASP) are used for the identification of biclusters. The GRASP
variants implemented in this approach is able to find biclusters with more
size and low MSR. Moreover, in this study GRASP variants are applied
for the first time to Lymphoma dataset. Another metahueristic method
which can eliminate local minima problem namely the Particle Swarm
Optimization (PSO) is used for the identification of coherent biclusters.
This is the only technique which is population based, whereas all other
methods are enlarging a single seed at a time. One more approach which
is a combination of Greedy and Binary PSO is used for the
identification of biclusters in which the biclusters obtained by the greedy

approach is used as initial population for PSO.

These algorithms identified biclusters from both Yeast and Human
Lymphoma datasets. These algorithms are compared with other

biclustering algorithms based on bicluster size and MSR. Biologically
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relevant and statistically significant biclusters are identified by all these
algorithms. The algorithms are also compared based on p-value which
denotes the statistical significance. All the algorithms developed in this
work are better than some of the well known biclustering algorithms
namely RWB, Bimax, OPSM and Bivisu, in terms of the best p-value
obtained. The best p-value obtained by binary-PSO, Greedy, GRASP
variants, SGSC and ISIMSRDT, which are developed in this work, are
even better than that of MOGAB, SGAB, CC and ISA.

In short the following limitations of already developed
biclustering algorithms can be overcome by using one or more of the

algorithms, which are developed in this work.

1) The maximum limit for the number of conditions that can be
identified for a bicluster. For example the multi-objective
evolutionary approach the maximum number of conditions
obtained for the Yeast dataset is only 11 and Human
Lymphoma dataset is only 40 [15].

2) The maximum limit for the number of genes that can be
identified for a bicluster. For example in SEBI [36] the
maximum number of genes obtained for the Yeast dataset is
only 82.

3) The difficulty in identifying biclusters with different shapes.

4) Random interference problem in the Greedy approach of
Cheng and Church.



Conclusion and Future Work,

5)

6)

7)

Difficulty in finding genes with overlap. For example in the
Greedy approach of Cheng and Church, for identifying
different biclusters, the identified biclusters are replaced with
random values. This affects the identification of genes with

overlap.

Inability to identify biclusters with very low row variance. The
genes in such biclusters are useful for marker gene
identification. Since row variance is not given as a measure for
optimization, biclusters with low row variance as well as high
row variance will be obtained in the methods developed in this
work. In this work biclusters obtained from unfiltered data will
contain biclusters of low row variance compared to that of
filtered data.

Inability to identify biclusters with very high row variance and

mean squared residue above the predefined threshold.

Finally the MSR based algorithms are compared based on the
quality of biclusters. In terms of best p-value and bicluster size, the binary
PSO, Greedy and GRASP variants are better than constraint based
algorithms. But for some biclusters, the p-value obtained by constraint
based algorithms is better than Greedy and Metaheuristic algorithms.
Some biclusters with very high row variance are identified from both
Yeast and Lymphoma datasets with the help of constraint based
algorithms SGSC and MSRT. In terms of time complexity, the constraint
based algorithms are better than Greedy and Metaheuristic algorithms.
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Biclustering is a multi-objective optimization problem and some of
the objectives of biclustering like low MSR and high row variance are
conflicting. Hence no single algorithm can be considered as the best in
terms of different parameters. Based on the experiments and the analysis
of the results of all the algorithms in this study, the following
recommendations can be made. The recommendations are presented in

the Table 7.1 given below.

Table 7.1

Recommendations for the Selection of an Algorithm
Based on different Bicluster Qualities

Bicluster Quality Recommendations

Greedy and Metaheuristic approaches are better than

Bicluster Size Constraint based algorithms.

Conflicting nature of MSRT, SGSC algorithms are better than Greedy and

MS.R and ROW Metaheuristic algorithms
variance

Greedy and Metaheuristic approaches obtained best p-
p-value value, but for biclusters of some category the Constraint

based algorithms are better than Greedy and Metaheuristic
approaches.

Percentage of genes | g Greedy-Binary PSO hybrid

involved
Biclusters with Seed growing approaches are better than population based
different shape techniques like PSO.

Constraint based algorithms are better than Greedy and

Time Complexity Metaheuristic approaches.
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7.2 Suggestions for Future Work

1)

2)

There are many metaheuristic approaches available. But only
some of these methods are applied for the identification of
biclusters from gene expression data so far. The remaining

methods can also be used for the identification of biclusters.

Mean squared residue is used as a measure of coherence in
many of the biclustering algorithms developed so far. There is
a problem with the mean squared residue in the identification
of biclusters with large row variance. The problem is that
most often the large incremental increase in MSR may be due
to the lack of coherence. But sometimes it may be due to the
significant changes in the expression levels indicated by the
high value of the row variance. When the row variance
increases significantly the MSR value also increases. But
sometimes this increase in MSR will be above the predefined
MSR threshold. At present only visual inspection of the
bicluster plot can help towards differentiating between lack of
coherence and significant change. Further research can be
directed towards developing new measures and methods to

solve this problem.
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Appendix

Appendix I: Some more Biclusters obtained from the MSR based
Algorithms for Yeast Dataset. The Bicluster Labels are from Apl to
Ap76, from left to right and top to bottom. The details of the
Biclusters can be obtained from the Table in Appendix 2 using
Bicluster Label.




Appendix

o
o o
w o o
g 1 =0 B
2 2 I
280] w 150} N 150}
= N )
210f £ 7\ 0t

o 18 o 2 : a 6 8 12 W 1 o 2 a 6 8 W o2 W B 18

P o
= ol
ﬂm 8
H E
EpR H
i
§ =0 H
S 2 250
o 3
o
"
i =
s e b w % u % R S R R N P TR
§ ol o
=
= 0
e
e . ol o
H H ]
) L EM e
] ] ]
200 g 2 gzm gm
“ w150t “ 1sof
o o
) o
™
o = s0f
T s s e s w6 s T e s b w w w m %




Appendix




Appendix

Appendix I1: Details of the Biclusters of the MSR based Algorithms
shown in Appendix 1

Bicluster Number | Number of .
Label of Genes | Conditions bR O ELTEE
Apl 229 17 289.0000 412.2021
Ap2 68 17 199.2974 496.7250
Ap3 10 17 255.2242 792.5869
Apd 12 17 186.9630 663.1355
Ap5 10 15 294.6495 1538.9000
Apb 14 17 130.1876 501.2056
Ap7 10 17 261.8143 695.2803
Ap8 10 17 258.5586 568.9377
Ap9 21 17 198.4656 465.4810
Apl0 10 17 215.9523 833.7370
Apll 10 15 299.4252 943.3236
Apl2 23 17 198.3296 556.8663
Apl3 29 17 168.4380 701.6955
Apl4 12 17 113.1148 505.9383
Apl5 10 17 237.8181 467.6422
Apl6 10 17 266.2193 1763.5000
Apl7 10 17 212.1967 703.9460
Apl8 32 17 212.6103 492.3886
Apl9 10 17 148.6853 409.3723
Ap20 23 17 202.9663 607.4846
Ap21 33 17 138.7529 479.2220
Ap22 19 17 107.2792 482.5351
Ap23 13 17 133.5914 921.8440
Ap24 18 17 165.9538 756.5682
Ap25 10 17 185.6726 705.5066
Ap26 11 17 265.9692 1074.0000
Ap27 10 17 271.2748 1091.5000
Ap28 12 11 187.3307 1160.1000
Ap29 11 17 110.2305 519.7502
Ap30 29 17 147.6002 433.5421
Ap3l 10 17 213.4028 961.9329
Ap32 358 10 299.9277 458.4218
Ap33 158 12 299.8289 736.6941
Ap34 23 17 133.9864 449.2968
Ap35 49 17 184.8044 487.7615
Ap36 20 17 187.6572 429.4796
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Ap37 10 17 409.3723 148.6853
Ap38 21 17 151.8050 603.8359
Ap39 7 17 297.8726 1538.7000
Ap40 13 17 299.2638 1835.8000
Ap4l 172 17 299.9067 507.5788
AP42 3 17 184.2414 1952.5000
AP43 229 17 299.5817 402.5612
AP44 12 17 195.3356 725.5283
AP45 11 17 198.4083 642.3693
AP46 25 17 205.2872 532.9982
APA7 38 17 274.4020 1043.1000
AP48 93 17 629.6392 244.5466
Ap49 26 17 221.4451 781.5637
AP50 18 17 293.4744 1215.2000
AP51 13 17 267.3184 1664.2000
AP52 10 17 255.2242 792.5869
AP53 21 17 199.7015 687.8534
AP54 10 15 299.4252 943.3236
AP55 80 17 243.7829 538.3563
AP56 108 17 217.3164 521.2705
AP57 44 15 177.3988 547.1125
AP58 35 15 234.9981 855.1088
AP59 27 17 266.6634 975.0855
APG60 181 9 144.6135 240.0470
APG61 26 16 241.6395 765.3514
APG2 36 17 194.1223 592.8078
APG3 25 17 251.0314 1086.1000
AP64 12 17 207.8144 926.1125
APGB5 54 11 186.1359 532.1206
APG6 12 15 288.9307 1094.4000
APG7 16 17 226.4725 939.5225
APG8 13 17 222.4583 1369.9000
APGB9 17 17 294.0819 1253.9000
AP70 149 17 255.2447 479.9828
APT1 17 17 255.9226 970.2308
AP72 12 17 185.0830 528.7670
AP73 19 7 199.1124 882.3008
APT4 49 17 270.3296 606.0990
APT75 23 17 214.2337 1045.1000
AP76 12 17 207.8144 926.1125
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Appendix I1l: More Biclusters obtained by MSR based algorithms
from Human Lymphoma Dataset. The Bicluster Labels are from
APL1 to APL57, from left to right and top to bottom. The details of
the Biclusters can be obtained from the Table in Appendix 4 using
Bicluster Label.
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Appendix 1V: Details of the Biclusters of the MSR based Algorithms
shown in Appendix 3.

Biclusters Number | Number of MSR Row Variance
Label of Genes | Conditions
APL1 16 73 1198.1 3378.7
APL2 30 68 1199.6 2699.2
APL3 16 62 1195.7 2863.3
APL4 22 59 1198.5 2314.2
APL5 105 20 774.5 1248.6
APL5 37 18 2714.4 953.0
APL6 368 25 1198.7 1272.9
APL7 537 30 11995 1239.4
APL8 663 22 1199.3 1230.9
APL9 2 31 364.9 7713.3
APL10 26 44 1032.7 3195.6
APL11 54 25 894.2 1621.5
APL12 73 17 738.5 1248.5
APL13 13 72 1099.8 3486.8
APL14 2 78 1091.5 6163.2
APL15 13 73 1098.9 3497.0
APL16 2 36 1164.1 5508.8
APL17 12 30 1118.6 3572.9
APL18 48 48 946.8 2168.7
APL19 4 23 742.6 3293.1
APL20 215 9 375.5 476.9
APL21 34 15 737.1 1944.2
APL22 96 9 415.6 639.8
APL23 11 39 738.1 1862.4
APL24 30 18 978.8 2674.0
APL25 26 27 1003.5 2283.3
APL26 13 71 1159.7 2843.6
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APL27 10 43 1172.9 6865.4
APL28 3 72 1149.8 2853.8
APL29 13 75 1070.6 2311.6
APL30 2 78 1090.3 5797.3
APL31 14 47 1096.4 6839.7
APL32 18 50 1071.3 4628.7
APL33 896 16 1199.1 1239.4
APL34 33 73 1197.4 3822.9
APL35 997 17 1198.6 1213.4
APL36 3 57 962.5 7029.5
APL37 140 18 1198.3 2301.2
APL38 11 33 1138.2 3650.6
APL39 2 59 1155.0 9515.6
APLA40 40 49 973.1 2285.4
APLA41 2 67 1073.5 5975.9
APLA42 2 51 1193.0 7497.1
APLA43 31 28 984.2 1721.2
APL44 22 46 1057.5 4062.9
APLA45 6 70 999.8 2733.4
APLA46 36 37 956.1 1540.3
APLA4T 126 48 1200.0 23175
APLA48 10 70 1190.5 5308.5
APLA49 35 50 1195.8 4365.1
APL50 18 61 1195.2 4842.6
APL51 582 26 1197.5 1250.6
APL52 285 32 1199.3 1241.9
APL53 468 25 1198.9 1237.6
APL54 358 22 1199.3 1240.6
APL55 936 15 1198.9 1221.7
APL56 440 30 1200.0 1252.0
APL57 997 17 1198.6 1213.4
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Appendix V: Some more Biclusters with High Row Variance & MSR
above the Pre-defined Threshold obtained from Yeast Dataset. The
Bicluster Labels are from APL1 to APL57, from left to right and top
to bottom. The details of the Biclusters can be obtained from the
Table in Appendix 4 using Bicluster Label.

Expression Valves
5 B 8 B 8 8 &
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Appendix VI: Details about the Biclusters with High Row Variance
& MSR above Pre-defined Threshold shown above in Appendix 5

Bicluster Number | Number of MSR Row variance
Label of Genes | Conditions
APR1 13 17 340.7195 2150.9
APR2 18 17 350.0203 1732.5
APR3 72 17 359.5201 969.2
APR4 34 17 318.1225 1002.0
APR5 10 17 383.3512 1178.8
APRG6 10 17 680.2878 2086.2
APR7 89 17 414.1173 979.9
APRS 10 17 440.5057 1303.2
APR9 10 17 322.1075 1133.8
APR10 10 9 515.0200 2323.8
APR11 178 9 306.4028 916.7
APR12 22 17 426.8087 2117.8
APR13 10 17 365.2835 2375.0
APR14 13 17 494.7380 1590.2
APR15 56 17 300.5922 1002.0
APR16 21 17 463.2928 1366.4
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Appendix VII: Sample Yeast Dataset (Only 31 rows out of 2884 rows
are displayed here).

161 110 139 139 161 139 110 161 161 110 161 195 220 139 139 139 161
208 139 69110 139110139 161 161 110 139 139 179 139 161 139 110
425 429 451 423 465 395 472 448 416 507 466 464 432 463 494 458 484
289 248 220 161 161 110 179 139 139 110 110 161 161 139 161 139 179
366 364 340 256 283 208 240 208 195 208 179 208 208 195 220 208 264
271 300 347 300 304 294 337 294 277 309 300 326 314 309 322 277 283
179 69 139 110 161 110 161 161 161 110 139 179 179 139 139 110 161
240 179 139 161 179 139 195 208 195 139 161 179 195 161 179 179 179
179 161 139 139 208 161 208 208 179 179 161 179 179 195 179 161 179
337 326 322 330 397 326 376 358 322 333 314 333 343 337 353 314 337
195 220 179 161 264 179 248 264 230 220 220 220 230 220 208 179 230
294 289 264 230 264 248 283 283 264 256 240 256 277 240 264 248 256
271 300 300 462 300 300 340 309 289 294 289 300 304 304 314 277 277
264 110 110139 208 161 179 179 161 161 208 220 230 179 161 139 195
139 69 69 69 0O O 69 69 69 0 69 0 69 69 0 69 O
264 248 264 230 264 230 271 264 240 208 230 240 240 195 208 179 220
179110 139 110 110 69110110 69 69 69110110110 69 69110
277 264 277 264 283 248 300 277 283 248 271 289 294 256 277 248 248
264 256 277 240 230 248 340 343 343 304 304 294 283 294 330 330 340
304 333 369 347 340 322 353 330 314 318 330 347 347 326 340 304 294
277 353 353 309 340 330 381 347 314 294 294 309 322 326 322 277 322
161 161 161 378 179 179 220 179 195 179 161 179 208 179 179 161 161
240 161 179 179 195 161 220 208 195 139 179 195 195 179 195 179 195
161 0 O 69110 69110 69 69 0 69 69 69 69 69 0O 69
350 353 314 318 361 330 376 369 350 330 356 361 350 343 353 350 350
358 300 294 289 322 283 347 314 309 347 326 333 322 326 350 322 309
220139161179 195161 195179 179 179 179 179 208 179 195 195 179
271 283 300 283 289 256 314 304 283 240 248 271 271 264 294 248 289
110139 195 161 161 139 161 110 69110 139179179 110110 69 69

0110110 69110 69110 69 69 69 69110110 69 69 O 69
264 326 347 300 314 314 350 326 314 318 300 309 322 304 326 277 304





