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CLIQUE IRREDUCIBILITY AND CLIQUE VERTEX

IRREDUCIBILITY OF GRAPHS

Aparna Lakshmanan S., A. Vijayakumar

A graphs G is clique irreducible if every clique in G of size at least two, has
an edge which does not lie in any other clique of G and is clique reducible if it
is not clique irreducible. A graph G is clique vertex irreducible if every clique
in G has a vertex which does not lie in any other clique of G and clique vertex
reducible if it is not clique vertex irreducible. The clique vertex irreducibility
and clique irreducibility of graphs which are non-complete extended p-sums
(NEPS) of two graphs are studied. We prove that if Gc has at least two
non-trivial components then G is clique vertex reducible and if it has at least
three non-trivial components then G is clique reducible. The cographs and
the distance hereditary graphs which are clique vertex irreducible and clique
irreducible are also recursively characterized.

1. INTRODUCTION

We consider only finite, simple graphs G = (V, E) with |V | = n and |E| = m.

A clique of a graph G is a maximal complete subgraph of G. The vast
literature on cliques of a graph is very well summarized in [11]. A graph G is
clique irreducible if every clique in G of size at least two, has an edge which does
not lie in any other clique of G and is clique reducible if it is not clique irreducible
[10]. A graph G is clique vertex irreducible if every clique in G has a vertex which
does not lie in any other clique of G and is clique vertex reducible if it is not clique
vertex irreducible [1]. The clique vertex irreducibility implies clique irreducibility,
whereas the converse is not true.

In [10], it is proved that the interval graphs are clique irreducible. Wallis

and Zhang [12] generalized this result and attempted to characterize clique irre-
ducible graphs. In [1], the line graphs and its iterations, the Gallai graphs, the
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anti-Gallai graphs and its iterations which are clique irreducible and which are
clique vertex irreducible are obtained.

The complement of a graph G is denoted by Gc. A graph whose edge set is
empty is called a trivial graph. A vertex of degree one is called a pendant vertex.
The graph induced by the vertices in N(v) is denoted by

〈

N(v)
〉

. The join (sum)
of two graphs G and H , denoted by G ∨ H is defined as the graph with

V (G ∨ H) = V (G) ∪ V (H)

and

E(G ∨ H) = E(G) ∪ E(H) ∪ {uv, where u ∈ V (G) and v ∈ V (H)}

. A graph G is H-free, if G does not contain H as an induced subgraph. For all
graph theoretic notations and preliminaries, we follow [2]

In this paper, the clique vertex irreducibility and clique irreducibility of
graphs which are non-complete extended p-sums (NEPS) of two graphs are stud-
ied. We prove that if Gc has at least two non-trivial components then G is clique
vertex reducible and if it has at least three non-trivial components then G is clique
reducible. The cographs and the distance hereditary graphs which are clique vertex
irreducible and clique irreducible are also recursively characterized.

2. NEPS OF TWO GRAPHS

The non-complete extended p-sum of graphs (NEPS) were first introduced in
[6] in the context of studying eigen values of graphs. Let B be a non-empty subset
of the collection of all binary n-tuples which does not include (0, 0, . . . , 0). The
non-complete extended p-sum of graphs G1, G2, . . . , Gp with basis B denoted by
NEPS(G1, G2, . . . , Gp;B), is the graph with vertex set V (G1)×V (G2)×· · ·×V (Gp),
in which two vertices (u1, u2, . . . , up) and (v1, v2, . . . , vp) are adjacent if and only
if there exists (β1, β2, . . . , βp) ∈ B such that ui is adjacent to vi in Gi whenever
βi = 1 and ui = vi whenever βi = 0. The graphs G1, G2, . . . , Gp are called the
factors of the NEPS [6]. Most of the well known graph products are special cases
of the NEPS.

There are seven possible ways of choosing the basis B when p = 2.

B1 = {(0, 1)}

B2 = {(1, 0)}

B3 = {(1, 1)}

B4 = {(0, 1), (1, 0)}

B5 = {(0, 1), (1, 1)}

B6 = {(1, 0), (1, 1)}

B7 = {(0, 1), (1, 0), (1, 1)}

Let G1 = (V1, E1) and G2 = (V2, E2) be two connected graphs with |Vi| = ni

and |Ei| = mi for i = 1, 2.
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The NEPS(G1, G2;B1) is G2 repeated n1 times and NEPS(G1, G2;B2) =
NEPS(G2, G1;B1).

In the NEPS(G1, G2;Bj) two vertices (u1, v1) and (u2, v2) are adjacent if and
only if

(1) j = 3 : u1 is adjacent to u2 in G1 and v1 is adjacent to v2 in G2. This is
same as the tensor product [8] of G1 and G2.

(2) j = 4 : u1 = u2 and v1 is adjacent to v2 in G2 or u1 is adjacent to u2 in G1

and v1 = v2. This is same as the cartesian product [8] of G1 and G2.

(3) j = 5 : Either u1 = u2 or u1 is adjacent to u2 in G1 and v1 is adjacent to v2

in G2.

(4) j = 6 : This is same as NEPS(G2, G1;B5).

(5) j = 7 : Either u1 = u2 and v1 is adjacent to v2 in G2 or u1 is adjacent to u2

in G1 and v1 = v2 or u1 is adjacent to u2 in G1 and v1 is adjacent to v2 in
G2. This is same as the strong product [8] of G1 and G2.

Theorem 2.1. The NEPS(G1, G2;B3) is clique vertex reducible except for G1 =
K1,n and G2 = K2.

Proof.

Case 1. Both G1 and G2 contains K3 as a subgraph.

Let
〈

u1, u2, . . . , uk

〉

and
〈

v1, v2, . . . , vl

〉

be cliques in G1 and G2 respectively,

where k and ` are both greater than or equal to three. Then
〈

(u1, v1),(u2, v2), . . . ,

(ui, vi)
〉

, where i = min{k, `} is a clique in NEPS(G1, G2;B3), all of whose vertices

are present in at least one of the cliques
〈

(u1, v1), (u2, v3), (u3, v2), (u4, v4), . . . ,

(ui, vi)
〉

,
〈

(u1, v2), (u2, v1), (u3, v3), (u4, v4), . . . , (ui, vi)
〉

and
〈

(u1, v3), (u2, v2),

(u3, v1), (u4, v4), . . . , (ui, vi)
〉

.

Case 2. At least one among G1 and G2 does not contain K3 as a subgraph.

In this case, NEPS(G1, G2;B3) also does not contain K3 as a subgraph. The
K3-free graphs which are clique vertex irreducible are of the form

⋃

K1,n. If both G1

and G2 has P3 as an induced subgraph, then NEPS(G1, G2;B3) contains K1,4 ∪C4

as an induced subgraph which is a contradiction. Therefore, one of them, say G2,
must be K2. But, then NEPS(G1, G2;B3) is

⋃

K1,n only if G1 = K1,n. �

Theorem 2.2. The NEPS(G1, G2;B3) is clique irreducible if and only if one of

the following holds.

(1) G1 or G2 is K3-free.

(2) G1 and G2 are clique irreducible K4-free graphs.

Proof.

Case 1. G1 or G2 is K3-free.

In this case, NEPS(G1, G2;B3) is also K3-free and hence is clique irreducible.

Case 2. G1 and G2 contains K4 as an induced subgraph.
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Let
〈

u1, u2, . . . , uk

〉

and
〈

v1, v2, . . . , vl

〉

be cliques of size greater than or equal

to four in G1 and G2 respectively. All the edges of the clique
〈

(u1, v1), (u2, v2),

(u3, v3), (u4, v4), (ui, vi), for i = 5, 6, . . . , min{k, l}
〉

in NEPS(G1, G2;B3) will be
present in at least one of the cliques

〈

(u1, v2), (u2, v1), (u3, v3), (u4, v4), (ui, vi), for i = 5, 6, . . . , min{k, `}
〉

,
〈

(u1, v3), (u2, v2), (u3, v1), (u4, v4), (ui, vi), for i = 5, 6, . . . , min{k, l}
〉

,
〈

(u1, v4), (u2, v2), (u3, v3), (u4, v1), (ui, vi), for i = 5, 6, . . . , min{k, `}
〉

,
〈

(u1, v1), (u2, v3), (u3, v2), (u4, v4), (ui, vi), for i = 5, 6, . . . , min{k, `}
〉

,
〈

(u1, v1), (u2, v4), (u3, v3), (u4, v2), (ui, vi), for i = 5, 6, . . . , min{k, `}
〉

and
〈

(u1, v1), (u2, v2), (u3, v4), (u4, v3), (ui, vi), for i = 5, 6, . . . , min{k, `}
〉

in NEPS(G1, G2;B3). Therefore, NEPS(G1, G2;B3) is clique reducible.

Case 3. G1 contains K3 but not K4 and G2 contains K4 as a subgraph.

Let
〈

u1, u2, u3

〉

be a clique in G1 and let
〈

v1, v2, . . . , v`

〉

be a clique in G2,

where ` ≥ 4. Then all the edges of the clique
〈

(u1, v1), (u2, v2), (u3, v3)
〉

will be

present in at least one of the cliques
〈

(u1, v4), (u2, v2), (u3, v3)
〉

,
〈

(u1, v1), (u2, v4),

(u3, v3)
〉

and
〈

(u1, v1), (u2, v2), (u3, v4)
〉

in NEPS(G1, G2;B3).

Therefore, NEPS(G1, G2;B3) is clique reducible.

Case 4. Both G1 and G2 contains a K3, but are K4-free.

Since G1 and G2 are K4-free, NEPS(G1, G2;B3) is also K4-free. The cliques
of size two always has an edge which does not lie in any other clique. Let C =
〈

(u1, v1), (u2, v2), (u3, v3)
〉

be a clique in NEPS(G1, G2;B3). Therefore,
〈

u1, u2, u3

〉

and
〈

v1, v2, v3

〉

are cliques in G1 and G2 respectively. If both G1 and G2 are clique
irreducible then there exist edges u1u2 and v1v2 in G1 and G2 respectively, which
are not present in any other cliques of G1 and G2. Therefore, (u1, v1)(u2, v2) is an
edge in C which is not present in any other clique of NEPS(G1, G2;B3). Therefore,
NEPS(G1, G2;B3) is clique irreducible. If G1 or G2 is not clique irreducible, using
a similar argument, we can prove that there exists a clique C in NEPS(G1, G2;B3)
all of whose edges are present in some other clique of NEPS(G1, G2;B3). �

Theorem 2.3. The NEPS(G1, G2;B4) is

(1) Clique vertex irreducible if and only if G1 is trivial and G2 is clique vertex

irreducible or viceversa.

(2) Clique irreducible if and only if both G1 and G2 are clique irreducible.

Proof. The cliques of NEPS(G1, G2;B4) are of the form (H1, v2) or (v1, H2) where
vi ∈ V (Gi) and Hi is a clique in Gi for i = 1, 2. Therefore, every vertex (v1, v2)
in NEPS(G1, G2;B4), where v1 and v2 are not isolated in G1 and G2 respectively,
will be present in at least two cliques.

Also, the cliques of NEPS(G1, G2;B4) has an edge of its own if and only if
each Hi has an edge of its own. Hence, the theorem. �
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Theorem 2.4. The NEPS(G1, G2;B5) is

(1) Clique vertex irreducible if and only if G1 is trivial and G2 is clique vertex

irreducible.

(2) Clique irreducible if and only if either G1 is trivial and G2 is clique irreducible

or G2 is K3-free.

Proof. Let u1 ∈ V (G1) be such that u2 ∈ N(u1). Let C =
〈

v1, v2, . . . , vl

〉

be a cli-

que in G2. Every vertex of the clique
〈

(u1, vj) : j = 1, 2, . . . , `
〉

in NEPS(G1, G2;B5)

will be present in at least one of the cliques
〈

(u2, v1), (u1, vj), for j = 2, 3, . . . , `
〉

and
〈

(u1, vj), for j = 1, 2, . . . `− 1, (u2, vl)
〉

. Therefore, NEPS(G1, G2;B5) is clique
vertex reducible. If G1 is trivial, then NEPS(G1, G2;B5) is n1 copies of G2 which
is clique vertex irreducible if and only if G2 is clique vertex irreducible.

If ` ≥ 3, then again
〈

(u1, vj) : j = 1, 2, . . . , `
〉

is a clique in NEPS(G1, G2;B5)

all of whose edges are present in at least one of the cliques
〈

(u2, v1), (u1, vj), ∀vj ∈

C, j 6= 1
〉

,
〈

(u2, v2), (u1, vj), ∀vj ∈ C, j 6= 2
〉

and
〈

(u2, v3), (u1, vj), ∀vj ∈ C, j 6= 3
〉

.
Therefore, NEPS(G1, G2;B5) is clique reducible. Conversely, if G2 is K3-free, then
NEPS(G1, G2;B5) is also K3-free and hence is clique irreducible. Again, if G1 is
trivial, then NEPS(G1, G2;B5) is n1 copies of G2 which is clique irreducible if and
only if G2 is clique irreducible. �

Theorem 2.5. The NEPS(G1, G2;B7) is clique vertex irreducible (clique irreducible)
if and only if both G1 and G2 are clique vertex irreducible (clique irreducible).

3. COMPLEMENT OF CLIQUE IRREDUCIBLE AND CLIQUE

VERTEX IRREDUCIBLE GRAPHS

Theorem 3.1. If Gc has at least three non-trivial components then G is clique

reducible.

Proof, Let G be a graph such that Gc has at least three non trivial components.
Let H1, H2, . . . , Hp be the components of Gc. Let Gi = Hc

i for i = 1, 2, . . . , p.
Then, G = G1 ∨ G2 ∨ · · · ∨ Gp. Also, any clique of G is the join of the cliques of
Gi s for i = 1, 2, . . . , p. At least three of the Hi s are non-trivial and hence at least
three of the Gi s have more than one clique. Let Cij for j = 1, 2 be any two of the
cliques of Gi for i = 1, 2, 3. Let Si be a clique of Gi for i = 4, 5, . . . , p. Consider the
clique C11 ∨C21 ∨C31 ∨S4 ∨· · ·∨Sp. Every edge of this clique is present in at least
one of the cliques C11 ∨ C21 ∨ C32 ∨ S4 ∨ · · · ∨ Sp, C11 ∨ C22 ∨ C31 ∨ S4 ∨ · · · ∨ Sp,
C12 ∨ C21 ∨ C31 ∨ S4 ∨ · · · ∨ Sp. Therefore, G is clique reducible. �

Theorem 3.2. If Gc has at least two non-trivial components then G is clique

vertex reducible.

Proof. Let G be a graph whose complement has at least two non trivial com-
ponents. Let Hi, Gi, Cij for i = 1, 2, . . . p and j = 1, 2 and Si for i = 3, 4, . . . , p
be defined as in the proof of Theorem 3.1 and consider the clique C11 ∨ C21 ∨
S3 ∨ · · · ∨ Sp. Every vertex of this clique is present in at least one of the cliques
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C11 ∨ C22 ∨ S3 ∨ · · · ∨ Sp, C12 ∨ C21 ∨ S3 ∨ · · · ∨ Sp. Therefore, G is clique vertex
reducible. �

Note. If G is clique irreducible then Gc is either connected or has exactly two non trivial

components and if G is clique vertex irreducible then Gc is either connected or has exactly

one non-trivial component.

4. COGRAPHS AND DISTANCE HEREDITARY GRAPHS

A graph G is complement reducible (cograph) if it can be reduced to edge
less graphs by taking complements with in components [5]. Cographs can also be
recursively defined as,

(1) K1 is a cograph

(2) If G is a cograph, so is Gc and

(3) If G and H are cographs, so is G ∨ H .

It is also known [9] that, G is a cograph if and only if G does not contain
P4-the path on four vertices, as an induced subgraph.

A graph G is distance hereditary, if dG(u, v) = dH(u, v) for every connected
induced subgraph H of G, where u, v ∈ V (H) [7]. The distance hereditary graphs
can also be obtained from K1 by recursively,

(1) Attaching pendant vertices

(2) Attaching true twins and

(3) Attaching false twins

where a true twin of a vertex u is a vertex v which is adjacent only to u and all
its neighbors and a false twin of a vertex u′ is a vertex v′ which is adjacent only to
the neighbors of u′ [3].

The forbidden subgraphs of a distance
hereditary graph are house, hole, domino
and gem; where hole is an odd cycle of
length greater than or equal to 5 and oth-
ers are as given in the following figure [3].

c c

c c

c

%%

c c

c c

c c

House Domino

c

c c

c

c

Gem

As indicated from the forbidden subgraph characterizations, the cographs
form a subclass of the distance hereditary graphs.

Lemma 4.1. The clique veterx reducible graphs and the clique reducible graphs are

closed for the operations of union and join.

Proof. If G1 and G2 are clique vertex reducible (clique reducible) graphs, then
their union is also clique vertex reducible (clique reducible), since the cliques of
G1 ∪ G2 are precisely the cliques of G1 and the cliques of G2.
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If every vertex (edge) of the clique H1 in G1 is present in some other cliques
of G1, then every vertex (edge) of the clique H1 ∨H2 will be present in some other
clique of G, where H2 is a clique in G2. Hence, the lemma. �

Theorem 4.1. A cograph G is clique vertex irreducible if and only if it can be

reduced to a trivial graph by recursively deleting vertices of full degree in each of

the components.

Proof. The proof is by induction on |V | = n. For n = 1 the theorem is trivially
true. Assume that the theorem is true for any cograph with less than n vertices.

Let G be a graph with n vertices. A disconnected graph is clique vertex irre-
ducible if and only if each of its components is clique vertex irreducible. Therefore,
we may assume that, G is a connected cograph with n vertices. Then G = G1∨G2.
If both Gis are not complete, then Gc will have at least two non trivial components
which by Theorem 3.2 is a contradiction. Therefore, let G1 be complete. Every
vertex of G1 is a universal vertex of G. Deleting these vertices we get a cograph G2

with less than n vertices. Any clique C of G2 corresponds to a clique G1 ∨ C of G
and hence has a vertex which does not lie in any other clique of G2. Therefore, G2

is a clique irreducible cograph with less than n vertices and hence by the induction
hypothesis G2 can be reduced to trivial graph by deleting universal vertices. Hence,
the theorem. �

Theorem 4.2. A connected non-trivial cograph G is clique irreducible if and only

if G = G1 ∨ G2 ∨ Kp where G1 and G2 are clique vertex irreducible cographs such

that Gc
i is connected for i = 1, 2 and p ≥ 0.

Proof. Let G = G1 ∨ G2 ∨ Kp where G1 and G2 are connected clique vertex
irreducible cographs and p ≥ 0. Any clique of G is of the form H = H1 ∨H2 ∨Kp,
where H1 and H2 are cliques of G1 and G2 respectively. Since, G1 and G2 are
clique vertex irreducible, there exist vertices v1 ∈ H1 and v2 ∈ H2 such that they
do not lie in any other clique of G. Therefore, the edge v1v2 of H does not lie in
any other clique of G and hence G is clique irreducible.

Conversely, assume that G is clique irreducible. Since G is a cograph Gc

must be disconnected. Therefore by Theorem 3.1, Gc has exactly two non trivial
components. So, G = G1 ∨ G2 ∨ Kp, where Gc

1 and Gc
2 are both connected. Let

H11 and H12 be any two cliques of G1 and H21 and H22 be any two cliques of G2.
H = H11∨H21∨Kp is a clique of G. Every edge in H11, every edge which joins H11

to a vertex of Kp and every edge in Kp will be present in the clique H11∨H22∨Kp.
Again, every edge in H21, every edge which joins H21 to a vertex of Kp and every
edge in Kp will be present in the clique H12 ∨H21 ∨Kp. But, H has an edge which
does not lie in any other clique of G. Therefore, that edge must be an edge which
joins a vertex of H11 to a vertex of H21. Let that edge be u1u2. But, then u1 and
u2 cannot be present in any other clique of G1 and G2 respectively. Therefore, G1

and G2 are clique vertex irreducible. �

Lemma 4.2. The clique vertex reducible (clique reducible) graphs are closed under

the operations of attaching a pendant vertex, a true twin and a false twin.
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Proof. Let G be a clique vertex reducible (clique reducible) graph and C be a
clique in G, all of whose vertices (edges) are present in some other clique in G.

The cliques of the graph obtained by attaching a pendant vertex u to a vertex
v of G are the cliques of G together with the clique uv. Therefore C is a clique in
this new graph and all of its vertices (edges) are present in some other clique.

The cliques of the graph obtained by attaching a true twin u to the vertex
v of G are the cliques of G which does not contain the vertex v and the cliques of
G which contains v together with the vertex u. If v /∈ C, then C is a clique in the
new graph and all its vertices (edges) are present in some other clique. If v ∈ C,
then all the vertices (edges) in C other than u (the edges with one end vertex u)
are already present in some other clique. Since v is (the edges with one end vertex
v are) present in some other clique, u (the edges with one end vertex u) also must
be present in some other clique.

The cliques of the graph obtained by attaching a false twin u to the vertex v
of G are the cliques of G and the cliques of the form (S ∪ {u})− {v}, where S is a
clique in G which contains the vertex v. Therefore, C is a clique in this new graph
and all of its vertices (edges) are present in some other clique. �

Notation. Let G1 be the class of graphs recursively obtained as follows.

(1) K1 ∈ G1.

(2) G1 is closed for attaching pendant vertices to a vertex v if either N(v) is not
complete or there exists w ∈ N(v) such that N(w) = N(v).

(3) G1 is closed for attaching true twins.

(4) G1 is closed for attaching false twins to a vertex v if <
〈

(v)
〉

is complete.

Theorem 4.3. A distance hereditary graph G is clique vertex irreducible if and
only if G ∈ G1.

Proof. The graph K1 is clique vertex irreducible. Let G be a clique vertex ir-
reducible graph. Let G′ be the graph obtained by attaching a pendant vertex u
to a vertex v ∈ V (G), such that G′ ∈ G1. The cliques of G′ are precisely, the
cliques of G and the edge uv. The clique uv contains the vertex u which does not
belong to any other clique of G′. Every clique of G′ which does not contain v also
has a vertex which does not lie in any other clique of G′, since G is clique vertex
irreducible. Let C be a clique of G which contains the vertex v. If N(v) is not
complete then C contains a vertex v′ 6= v which is not present in any other clique
of G and hence of G′. If N(v) is complete, then C contains a vertex which does
not belong to any other clique of G′ if and only if there exist a vertex w ∈ V (C)
which does not belong to any other clique of G. i.e; if and only if N(w) = N(v).

Let G be a clique vertex irreducible graph. Let G′ be the graph obtained
by attaching a true twin u to a vertex v of G. The cliques of G′ are precisely,
the cliques of G which does not contain v and the cliques of G which contains v
together with the vertex u. Each such clique contains a vertex which does not lie
in any other clique of G′, since G is clique vertex irreducible and hence G′ is also
clique vertex irreducible.
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Let G′ be the graph obtained by attaching a false twin u to a vertex v of
G. The cliques of G′ are the cliques of G together with the cliques of the form
(C ∪{u})−{v} where C is a clique of G which contains v. The cliques of G′ which
does not contain v will continue to have a vertex which does not lie in any other
clique. Let C be a clique of G which contains the vertex v. Every vertex of the
clique C other than v will be present in the clique (C ∪ {u})−{v} also. Therefore,
C contains a vertex which does not lie in any other clique of G′ if and only if v
does not belong to any other clique of G, which happens if and only if

〈

N(v)
〉

is
complete.

Therefore, if G ∈ G1 then G is clique vertex irreducible.

Since, any distance hereditary graph G can be obtained from K1 by the
operations of attaching a pendant vertex, introducing true twin and introducing
false twin and by Lemma 4.2, G is clique vertex irreducible if and only if G ∈ G1.�

Notation. Let G2 be the class of graphs recursively obtained as follows.

(1) K2 ∈ G2.

(2) G2 is closed for attaching pendant vertices.

(3) G2 is closed for attaching true twins.

(4) G2 is closed for attaching false twins to a vertex v if
〈

N(v)
〉

is clique vertex
irreducible.

Theorem 4.4. A distance hereditary graph G is clique irreducible if and only if

G ∈ G2.

Proof. K2 is clique irreducible. Let G be a clique irreducible graph. Let G′ be the
graph obtained by attaching a pendant vertex u to a vertex v of G. The cliques of
G′ are precisely, the cliques of G and the edge uv. Every clique contains an edge
which does not lie in any other clique of G′ and hence G′ is clique irreducible.

Let G be a clique irreducible graph. Let G′ be the graph obtained by attaching
a true twin u to a vertex v of G. The cliques of G′ are precisely, the cliques of G
which does not contain v and the cliques of G which contains v together with the
vertex u. Every such clique contains an edge which does not lie in any other clique,
since G is clique irreducible and hence G′ is also clique irreducible.

Let G′ be the graph obtained by attaching a false twin u to a vertex v of
G. The cliques of G′ are the cliques of G together with the cliques of the form
(C ∪{u})−{v} where C is a clique of G which contains v. The cliques of G′ which
does not contain v will continue to have an edge which does not lie in any other
clique. Let C be a clique of G which contains the vertex v. Every edge of C which
does not contain v will be present in the clique (C ∪ {u})−{v} also. Therefore, C
contains an edge which does not lie in any other clique of G′ if and only if there
exists an edge vv′ which does not lie in any other clique of G. Therefore, the vertex
v′ is not present in any clique of

〉

(v)
〈

other than C − {v}. So,
〈

{v}
〉

is clique
vertex irreducible.

Therefore, if G ∈ G2 then G is clique irreducible.

Since, any distance hereditary graph G other than the trivial graphs can be



146 Aparna Lakshmanan S., A. Vijayakumar

obtained from K2 by the operations of attaching a pendant vertex, introducing true
twin and introducing false twin and by Lemma 4.2, G is clique irreducible if and
only if G ∈ G2. �
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