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ABSTRACT 

Timely detection of sudden change in dynamics that adversely affect the 

performance of systems and quality of products has great scientific relevance. This 

work focuses on effective detection of dynamical changes of real time 3ignals 

from mechanical as well as biological systems using a fast and robust technique of 

permutation entropy (PE). The results are used in detecting chatter onset in 

machine turning and identifying vocal disorders from speech signal. 

Permutation Entropy is a nonlinear complexity measure which can efficiently 

distinguish regular and complex nature of any signal and extract information about 

the change in dynamics of the process by indicating sudden change in its value. 

Here we propose the use of permutation entropy (PE), to detect the dynamical 

changes in two non linear processes, turning under mechanical system and speech 

under biological system. 

Effectiveness of PE in detecting the change in dynamics in turning process from 

the time series generated with samples of audio and current signals is studied. 

Experiments are carried out on a lathe machine for sudden increase in depth of cut 

and continuous increase in depth of cut on mild steel work pieces keeping the 
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speed and feed rate constant. The results are applied to detect chatter onset in 

machining. These results are verified using frequency spectra of the signals and 

the non linear measure, normalized coarse-grained information rate (NCIR). 

PE analysis is carried out to investigate the variation in surface texture caused by 

chatter on the machined work piece. Statistical parameter from the optical grey 

level intensity histogram of laser speckle pattern recorded using a charge coupled 

device (CCD) camera is used to generate the time series required for PE analysis. 

Standard optical roughness parameter is used to confirm the results. 

Application of PE in identifying the vocal disorders is studied from speech signal 

recorded using microphone. Here analysis is carried out using speech signals of 

subjects with different pathological conditions and normal subjects, and the results 

are used for identifying vocal disorders. Standard linear technique of FFT is used 

to substantiate thc results. 

The results of PE analysis in all three cases clearly indicate that this complexity 

measure is sensitive to change in regularity of a signal and hence can suitably be 

used for detection of dynamical changes in real world systems. This work 

establishes the application of the simple, inexpensive and fast algorithm of PE for 

the benefit of advanced manufacturing process as well as clinical diagnosis in 

vocal disorders. 
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CHAPTER I-INTRODUCTION 

Physical systems are inherently nonlinear and exhibit aperiodic, strange and 

irregular behaviour. Linear models of these processes do not capture several 

critical and strange behaviours encountered in real time basis. Characterisation of 

irregular broad band signal of nonlinear dynamical systems and the extraction of 

useful information provide significant insight in to the type of behaviour shown by 

the system. Some sudden and dramatic change in nonlinear systems may give rise 

to the complex behavior called chaos. Under certain conditions their behaviour 

becomes aperiodic with random like appearance. With the emergence of nonlinear 

dynamical analysis many researchers have striven to find out the nonlinear 

behaviour of various systems with practical applications. During the last few 

decades several investigations have been carried out in the manufacturing and 

medical field from the nonlinear point of view. Analysis of real world phenomena 

using methods from nonlincar dynamics is based on the state space to describe the 

state and behavior of a system. The phase space is built from dynamical variables 

necessary to determine the state of a nonlinear system. The dynamics of a system 

with many degrees of freedom can be investigated using time series of a single 

scalar observable output state. The complex behaviour can be interpreted as 



manifestations of strange attractors in state space. Various invariant measures that 

show the nonlinear behavior of systems are developed during the past few years. 

Two areas in which the nonlinear approach with fast and robust technique of 

characterization, monitoring and control is essential are machining process under 

mechanical systems and biological signals in medical science. 

Machining is the fundamental manufacturing process in production industry. Ultra 

precision machining and high speed machining are the two major challenges with 

great scientific relevance in this field. One of the most important factors that 

decide the performance and efficiency of the machining process, quality and 

dimensional accuracy of the product is the chatter phenomenon resulting from the 

excessive vibration between the tool and work piece. Recent developments in 

advanced manufacturing and automation in processing industry demands very fast 

chatter detection and avoidance mechanisms. Linear methods of chatter 

identification and control depend on the assumption that the system dynamics is 

time invariant. However, it is well established that cutting dynamics is non linear 

and exhibits low dimensional chaos. This enhances the need for nonlinear 

approach towards the identification and control of chatter for improving the 

machining efficiency and better quality of the product. 

Chaos based measures are formulated under the assumption that the signal is 

stationary and originates from low dimensional non linear system. The 
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effectiveness of applying the existing methods to time varymg and nOIse 

contaminated signal has limitations in producing reliable results. Moreover most 

of these methods are computationally expensive and hence efficient algorithms 

must be used to speed up calculation for on line analysis of real time signals. 

With recent advances in nonlinear studies, its application in biological signals has 

sparked grcat interest among researchers. Motivated by the evidences of 

nonlinearity in speech signal, various attempts are made towards more detailed 

characterization of complexity and strangeness in phoneme attractors. But due to 

the nonstationary nature of the speech signal the application of any tool derived 

from the concept of deterministic chaos appears to be meaningless. Furthermore 

when dealing with vocal pathologies the situation becomes more complex as it is 

not obvious how one could quantify the entity of the disease. Different linear as 

well as nonlinear methods of characterization and mode ling are based on the quasi 

deterministic nature of the voice signal. However the success of all methods 

depends upon the presence of noise content in the signal. Ordinary noise reduction 

technique based on decomposition of contaminated signal into original signal and 
, 

random fluctuations fail in the cases of abnormalities in speech signal. This is 

because the undesirable part of the signal is also highly correlated to the clean part 

of the signal and cannot be treated as pure noise. In such cases separation into 

signal and noise fails for most part of the frequency domain. To deal with such 

situations it is essential to have fast and robust techniques capable of producing 
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reliable results from real time signals. The new concept of permutation entropy 

addresses these problems to a great extent. 

Permutation entropy provides useful information about the change in dynamics of 

regular, noisy or chaotic data. As this measure is robust against dynamical as well 

as observational noise it is considered as an effective tool in real time chatter 

detection in industrial environment. This work, therefore, employs PE 

methodology for the analysis of sensor signals and investigates the effectiveness 

of PE in the detection of chatter onset in turning process and identification of 

vocal disorder in speech signal. 

1.1 MOTIVATION 

Most of the real time processes deal with signals with huge data sets contaminated 

with dynamical and observational noise. There are situations which demand 

almost instantaneous analysis of such signals so as to implement corrective 

measures in time hefore thc system gets damaged. Therefore the applicability of 

any real world data analysis method depends highly on the data processing time. 

Most of the existing methods of signal analysis give significant results when the 

time series is simulated from low dimensional dynamical systems and fails or 

misleads in the presence of noise. Hence real world time series analysis of the data 

requires preprocessing for noise elimination. Furthermore embedding dimension 

and time delay are critical parameters in reconstruction of state space and 
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computation is time consuming which restricts its application on real time basis. 

Hence it is essential to have a very fast algorithm which can process the data at the 

same rate at which it is acquired. 

1.2 AIM OF THE THESIS 

In order to explore the important and valuable information hidden in the nonlinear 

dynamical system from noise contaminated sensor signals, the present nonlinear 

approach becomes insufficient as the results are sensitive to signai to noise ratio. 

Also, attention is to be paid when dealing with nonstationary signals of various 

practical importances. 

Our goal is primarily to detect dynamical changes using a fast, robust and low 

cost technique from large real world data sets where there is no time for 

preprocessing and fine tuning of data. Here we aim to make use of the versatile 

and invariant properties of permutation entropy for this purpose by establishing a 

link with the conventional state space approach. The practical application of PE 

methodology is its usefulness in detecting dynamical changes in turning process 

and thereby effective in indicating the onset of chatter. We also aim to study the 

effectiveness of PE in extracting the change in dynamics caused by abnormalities 

in the vocal tract. This may be of great advantage in preliminary clinical diagnosis 
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In identifying the vocal disorders before proceeding for further expensive 

treatment strategy. More precisely, the aim of the thesis are 

• To study the nonlinear characteristics of turning in a lathe machine 

• To study the non linear properties of normal and abnormal speech 

processes 

• To investigate the effectiveness of permutation entropy in detecting 

change in dynamics in the above processes from different sensor signals 

acquired 

• To investigate the applicability of PE In detecting onset of chatter in 

turning and vocal disorder in speech process 

• To study the effectiveness of PE in indicating the variation of surface 

finish before and after the occurrence of chatter 

• To verify the results using existing methods. 

1.3 THESIS OUTLINE 

Chapter I Introduces the problem and defines the aim of the thesis 

Chapter 2 Contains review of background literature on nonlinear signal 

processing techniques with special emphasis given to chatter detection 

in turning, surface texture analysis and vocal disorders. 
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Chapter 3 Contains the research methodology adopted in this thesis and explains 

the technique of Permutation entropy, its advantages compared to 

conventional methods applied to nonlinear time series analysis. 

Chapter 4 Presents experimental setup and data acquisition system used in the 

experiments. 

Chapter 5 Discusses the results of the analysis of experiments on turning process. 

Chapter 6 Discusses the results of the analysis of vocal disorders. 

Chapter 7 Contains summary, conclusions and scope for future work. 
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CHAPTER 2-BACKGROUND LITERATURE REVIEW 

This chapter gives an overview of the linear as well as nonl inear signal processing 

techniques with emphasis on the role of entropy in this field. Thrust is given to 

various developments in the field of nonlinear time series analysis leading to 

detection of dynamical changes in two nonlinear processes (a) chatter in metal 

cutting (b) vocal disorder in speech process. Brief review of techniques for surface 

texture analysis in metal cutting is also carried out in this chapter. 

2.1 CHATTER IN METAL CUTTING 

Metal cutting is a complex nonlinear dynamical process. The machine, the cutting 

tool and the work piece form a complex system which has infinite number of 

degrees of freedom. The cutting process under dynamic conditions can behave in 

different ways for different modes of vibration [1-3]. The dynamics of cutting 

process is influenced by many physical phenomena such as material flaw, 

deformation and fracture, friction, tool wear, vibration of machine tool etc. 

Instability of cutting process causes self excited large amplitude vibrations of the 

tool relative to the work piece and is characterized by a dominant nonlinear 

feedback mechanism connecting the tool displacement and the exciting force [4-
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6]. This phenomenon known as chatter adversely affects the performance and 

efficiency of the cutting process and produces high level of noise. This has 

negative influence on surface finish and dimensional accuracy of the work piece, 

tool life and even machine life. Hence it is important to detect the occurrence of 

chatter at an early stage so that corrective measures can be adopted by changing 

the cutting conditions. Various factors leading to chatter onset are increase in 

depth of cut, variation in cutting speed and variation in feed rate [3]. In general 

chatter can be classified as regenerative and non-regenerative. Regenerative 

chatter occurs due to the undulations on the earlier cut surface and non­

regenerative is due to the mode coupling among the existing oscillations [7, 8]. 

Studies aiming at deeper understanding of the dynamics of metal cutting and 

chatter were initiated in the 1940-s and 1950s, even though significant research 

was done by Taylor as early as 1907. Arnold [9], Hahn [10] and Doi and Kato 

[11] were the first to describe the dynamics of chatter. Tobias and Fishwick [12], 

Tlusty and Polacek [13], Tobias [2] have explained the chatter mechanism Jsing a 

comprehensive mathematical analysis. With the advent of high speed machining, 

the importance of understanding the dynamics of chatter as well as significance of 

control mechanism gained more relevance Tlusty [14, 15]. Earlier studies on 

metal cutting and chatter dynamics were based on linear analysis methods Merrit 

[16], Kegg [17, 18]. Cutting process has been identified as strictly nonlinear in 

later years [I].Various nonlinear effects on cutting dynamics include tool 
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structure nonlinearities, friction at the tool chip interface, loss of tool -work piece 

contact, influence of machine drive unit on the cutting flow velocity [19] etc. 

Mechanical models with nonlinear cutting forces were developed by Grabec [20], 

Lin and Weng [21], Wiercigroch [22, 23]. Nonlinear approach towards 

understanding the cutting dynamics established the low dimensional chaotic 

nature of cutting processes Moon [24], Bukkapatnam [25, 26J, Wiercigroch and 

Cheng [27], Step an and Kalmer-Nagy [28] ,Minis and Berger [29]. 

Studies of nonlinear phenomena m machine tool operations involved three 

different approaches. 

(1) Measurement of nonlinear force- displacement behavior of cutting or forming 

tools. 

(2) Model based studies of bifurcation using parameter variation. 

(3) Time series analysis of dynamic data for system identification. 

Fundamental ongms of nonlinear dynamics in material processmg involve 

nonlinear relations between stress and strain, or stress and temperature, or 

chemical kinetics and solid state reactions in material. Other sources involve 

nonlincar geometry such as contact forces and tool work-piece separation. Many 

of the fundamental studies of chatter dynamics are based on the assumption of a 

steady process. Thus in cutting force measurements, the speed and depth of cut 

are fixed and the average force is measured as a function of steady machine speed 
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and cutting depth. This method however demands the details of real dynamics of 

the process as to what happens when the cutting depth decreases instantaneously. 

A verage force measurements often filter out the dynamic nature of the process. 

Earlier models of dynamics considered force measurements as single valued 

functions of chip thickness and material flow velocity. Moon proposed a 

hysteretic force model which is not single valued [30]. 

Bifurcation methodology looks for dramatic changes In the topology of the 

dynamic orbits at critical values of control parameters. This method introduced 

new tools like the Poincare maps which help in identifying the different 

dynamical regimes present in the cutting dynamics. Thus one can connect 

experimental results with the corresponding dynamical regimes which further 

helps in designing suitable control strategies [31,32]. However this approach 

utilizes very simple models and is not based on fundamental physics. This 

method looses effectiveness in systems with higher dimension [30]. 

The time series analysis methods have become popular in recent years to analyse 

many dynamic physical phenomena from ocean waves, heart beats, lasers and 

machine tool cutting [33]. These methods are based on the use of a series of 

digitally sampled data from which an orbit in a pseudo-M-dimensional phase 

space is generated. One of the fundamental objectives of this method is to place a 

bound on the dimension of the underlying phase space from where the dynamic 
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data were sampled. This can be done with several statistical methods, including 

f1-acta] dimcnsion, false nearest neighbours (FNN), Lyapunov exponents, wavelets 

and several others. However if model based analysis can be criticized for its 

simplistic models, then nonlinear time senes analysis can be criticized for its 

assumed generality. Although it can be used for a wide variety of applications, it 

contains no physics. It is dependent on the data alone. Thus the results may be 

sensitive to signal to noise ratio of the source measurement, signal filtering, time 

delay of sampling, the number of data points in the sampling and whether the 

sensor captures the essential dynamics of the process. 

Parallel studies in a different line of approach claimed that the vibrations are 

random noise. One of the fundamental questions regarding the physics of cutting 

solid materials is the nature and origin of low level vibrations in so called normal 

or good machining. This is cutting below the chatter threshold. Below this 

threshold, linear models predict no self excited motion. Yet when cutting tools 

are instrumented, one can see random-like bursts of oscillations with centre 

frequency near the too! natural frequency. Work by 10hnson l3l] has carefully 

shown that these vibrations are significantly above any noise in a lathe - turning 

operation. Those observations have been done by several laboratories, and the 

time series methodology has been used to diagnose the data to determine whether 

the signals are random or deterministic chaos [6, 24 -26,31-41]. This controversy 

about the dynamical nature being random or deterministic is still under debate. 
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Given the evolution of anyone of the physical variables of a system, the nonlinear 

time series analysis technique can provide with deep understanding of the 

dynamical nature of the system. Thus this method assumes great importance. 

The special task of non linear theory in cutting research include 

(i) predicting steady chatter amplitude 

(ii) providing understanding of subcritical chatter 

(iii) explaining pre-chatter low level chaotic vibrations 

(iv) predicting dynamic chip morphology 

(v) providing new diagnostic for tool wear 

(vi) determining control model for chatter suppreSSIOn, providing clues to 

better surface precision and quality 

Certainly many or all of these goals were basis of traditional research 

methodology in machining. But the use of nonlinear theory acknowledges the 

essential dynamic character of material removal processes that in more classical 

theories were filtered out. However there is a need to integrate the different 

methods of research, such as bifurcation theory, cutting force characterisation, and 

time series analysis before nonlinear dynamic mode ling can be useful in practice. 

An equally important consideration is the selection of sensors in acquiring the 

signal suitable for analysis of the process. 
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2.2 SENSORS AND SIGNALS 

Extensive research using different sensor signals and various signal processing 

techniques has been performed on chatter detection. Monitoring of machining 

process depends heavily on the processing techniques employed. Signals acquired 

from force sensors [41, 42], accelerometers [43], spindle drive current from 

current sensors (44), audible sound signal from microphone [45, 46), and acoustic 

emission [47] are used for study and analysis of cutting dynamics. Factors that 

decide the sensor selection are bandwidth, sensitivity, signal to noise ratio and 

sensor placement. Regarding chatter detection, Delio et al. compared different 

sensors and concluded that monitoring the audio signal using microphone is the 

ideal compromise among these sensors [48]. 

(i) Force Sensor 

It is known that thc cutting force is an important variable for chatter detection [49, 

50]. Various kinds of cutting force sensors such as Kistler dynamometers have 

been developed to measure the cutting force. Though these dynamometers 

provide accurate measurement of cutting force, it can lead to reduction in stiffness 

of machine tools resulting in chatter, dimensional error, and lack of over load 

protection l49-5 I]. The use of force sensors for shop-floor applications is limited 

also due to its high cost. Bukkapatnam et at. established the chaotic behaviour of 

cutting dynamics using force sensors [25] and Grabec et a1. used it effectively for 

characterising and detection of chatter [4,6,35-37]. 
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(ii) Accelerometer 

Signals from accelerometers are proposed by Bailey at al. [52] for the purpose of 

chatter detection. An accelerometer mounted close to the cutting region provides 

for the calculation of ratio called variance ratio to indicate the presence of chatter. 

These sensors are subject to alteration of signal due to sensitivity to displacement. 

It is also very difficult to put accelerometer on rotating parts. 

(Hi) Current Sensor 

Electrical current signals are another option for studies of machining process. 

Current sensors are a good choice as they meet the necessary requirements such as 

reliability, durability and low cost. As the sensor is placed away from the cutting 

zone it is not affected by harsh cutting conditions. Spindle drive current of 

vertical milling machine are used for detection of chatter [44]. Both simulations 

and experimental studies were conducted to assess the sensitivity of current signal 

to slight process instability using the statistical indicator -R value. The results 

revealed the sensitivity of current signal to variation in machine dynamics. Wu et 

al. [53J developed a new method for tool condition monitoring that used a 

combination of wavelet transform and binary time series to analyse the spindle 

motor current signal. Li and Du [54] proposed a two layer artificial neural network 

for machining error compensation in which both spindle motor current and feed 

motor current are used. For linear motors, the feed force is directly related to the 

motor current because of the lack of gearing mechanisms, which is beneficial in 

calculating the cutting forces from motor current [55-57]. 

15 



(iv) Acoustic Emission 

AE signals are influenced by the tool vibration especially during chatter. Signals 

are also used effectively for chatter detection in grinding [58]. Experimental 

studies based on the calculation of coarse grained information rate (CIR) from 

normal grinding force and RMS acoustic emission signals reveal the sensitivity of 

these signals to chatter vibrations. Acoustic emission signals from turning process 

are effectively used for analysis of chatter dynamics [59]. 

(v) Microphone 

Microphone can effectively be used for chatter detection as the acoustic pressure 

during machining is proportional to the displacement of the tool [60]. Under stable 

cutting conditions dominant frequencies are spindle speed and tooth passing 

frequency. When instability is reached some other frequencies appear [61]. 

Presence of frequencies other than spindle speed or tooth passing frequency is a 

method to detect chatter. Unlike other sensors, the use of microphone is simple 

and does not involve any positioning problem. Audio signals are already in use 

with commercial software like Harmonizer [62]. As it covers a wide range of 

frequency, environmental noise can distort the signaL However it does not offer 

linear response below 100Hz and hence it is not possible to detect frequencies 

below this value. 
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2.3 CURRENT TECHNIQUES IN NONLINEAR TIME SERIES 
ANALYSIS 

A set of values that vary randomly with time is the time series of a system, the 

analysis of which gives an understanding of the underlying dynamics. Traditional 

methods of time series analysis based on statistical characterisations are 

extensively used in financial markets, population explosion and meteorological 

observations. 

Most conventional linear time series analysis methods [63, 64] implicitly assume 

that the data come from a linear dynamical system, perhaps with many degrees of 

freedom and some added noise. Thus the variation is assumed to be a 

superposition of sine waves or exponentials that grow or decay in time. Most 

commonly used linear methods to characterise the system dynamics are 

autocorrelations, Fourier analysis and power spectrum representation. For 

stationary data with inherent periodicities, Fourier analysis [65] turned out to be 

extremely useful and this lead to the development of signal processing era in all 

experimental datas. Signal processing continued to gain importance with the 

growth of electronic industry and became extremely useful with the invention of 

Fast Fourier Transform computer program [66]. Spectral analysis saw another 

fantastic leap with the introduction of wavelets in the mid 1980s [67]. With the 

invention of information theory by Shanon and Weaver [68] time series could be 

understood in terms of symbolic dynamics. 
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In short linear methods interpret all regular structure in a data set as a dominant 

frequency, as linear correlations. This means that the intrinsic dynamics of the 

system are governed by the linear paradigm that small causes lead to small effects. 

Since linear equations can only lead to exponentially growing or periodically 

oscillating solutions, all irregular behaviour of the system has to be attributed to 

some random external input to the system. [69]. 

Signal processmg technique can prove to be effective in time senes analysis. 

Nonlinear time series analysis aims at understanding the dynamics of a system 

using the time series of a single available variable. Chaos theory says that random 

inputs are not the only source for irregular output of a system: nonlinear chaotic 

systems with purely deterministic equations of motion can produce very irregular 

data. Extensive research conducted on nonlinear dynamical systems over recent 

years have proved that conventional time domain and frequency domain 

approaches to real world systems are far from optimal. Time series analysis has 

become a popular approach to the investigation of dynamical behaviour of systems 

in experiments and field measurements. Traditional signal processing techniques 

in the form of power spectral analysis [70] are applied to chaotic time series. 

Delay coordin ate em bedding [71, 72] introduced to chaotic time series has become 

the turning point in the development of time series analysis method. Methods 

which are usually called non linear refer to reconstruction and exploitation of 

structure in state space. The basis of delay reconstruction is the conversion of a 
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scalar time senes in to vectors of the state space with appropriate embedding 

dimension [73-77]. The evolution of these vectors will represent the state space 

trajectory of the dynamical system which may be attracted to a subspace called the 

attractor. Most nonlinear techniques depend on analysis and characterization of 

the attractor properties to study the underlying dynamics of the system. Several 

algorithms have been proposed for the computation of characteristic invariant 

measures of the attractor [69, 73-82]. The correlation dimension D2 [83] is a 

measure of complexity which yields a lower boundary for the degree of freedom 

of a signal possesses, and in this sense might be regarded as a measure of 

complexity of dynamical system. The Lyapunov exponents estimate the mean 

exponential divergence or convergence of nearby trajectories in state spare [84]. 

For a chaotic system the largest Lyapunov exponent (LE) is positive expressing 

the sensitiveness of the dynamics to initial conditions. Largest LE gives an 

estimation of chaos level in the dynamical system. The Kolmogrov entropy [85], 

which is equal to the sum of all LEs describes the average rate at which the 

information about the state of a dynamical system is lost with time. Reccurrance 

plot is a distance plot [86] from the symmetric matrix based on the distance 

between two adjacent points in state space. Recurrence quantification analysis [87-

89] is the complexity measure which gives the statistical description of the parallel 

line distribution of the recurrence plot. These methods have limitations in 

producing reliable results from real world data with issues of limited data set size, 

noise and nonstationarity of the signal. 
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Complexity measures are a class of statistics to characterize time series generated 

from dynamical processes. The concept of entropy has widespread-applications in 

fields like physics, mathematics, statistics, economics, computer science, 

literature, earth sciences, biology and others. The meaning of entropy in a 

particular field corresponds to the interpretation and application requirement of 

that field. Based in part on French physicist Sadi Carnotts ground work of the 

1820s, the German physicist Rudolph Clausius introduced entropy in 1865 in his 

work on heat producing engines. The general idea is that it is impossible to direct 

all of a system's energy into useful work, because some of that energy is not 

available. Entropy in this original thermodynamic (heat movement) sense is a 

measure of inaccessible energy. High entropy means that much of a system's 

energy cannot be used for work. In other words only a small part is available for 

work. Low entropy means that only a small proportion of the system's energy is 

unobtainable. A key development in the evolution of the concept of entropy is the 

introduction of a statistical probability measure for the entropy by the Australian 

physicist Boltzmann. Later in 1870s, a new way of understanding the concept of 

entropy sprang up wherein it is identified as a measure of information. 

The entropy measures quantify the rate of information generation in a system and 

arc found to have application in charaterising real world data. Entropy hac; many 

meanings and interpretations. They include proportion of energy available for 

doing work, disorder, probability of an event, randomness, surprise and 
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information. The fundamental concept of thermal entropy as the amcunt of 

disorder in the system can be generalized to characterise the amount of 

information stored in more general probability distributions. Probabilities or 

relative frequencies are the basic data used in calculating entropy or information: 

high probability implies small information, and vice versa. Shanon defines entropy 

[68] in terms of discrete random variables X with possible states or outcomes 

n 

xl ,x2, ..... ,XI1 as H(x) =-LP(x,)log2 p(x,) where p(xi) is the probability of 
,~l 

the ith outcome of X. When all states are equally probable, entropy is maximum 

which implies that the dynamics is totally unpredictable. In contrast for periodic 

dynamics corresponding to less number of possible states, the predictability is very 

high leading to very low entropy. For deterministic dynamics systems entropy 

value lies between these two extremes. 

To identify chaos we need entropy rate at the limiting conditions of time 

increasing towards infinity and box size (phase space compartments) diminishing 

towards zero. This special case of entropy is called Kolmogorov-Sinai (K-S) 

entropy. K-S entropy quantifies how chaotic a system is. It is zero for 

deterministic system that is not chaotic, positive constant for chaotic system and 

infinite for random process and minimum for uniformly distributed data [85]. It 

aims at investigating the dynamics of the generating system and eventually 

confirms its chaotic nature. However it assumes infinite values for processes with 
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superimposed stochastic noise and the limiting length of the available time series 

introduces approximations to its calculation. These factors make it unable to 

distinguish processes that differ in complexity. Detailed comparison between 

linear and nonlinear signal processing is given in Table 2.1. 

Table 2.1 Comparison of Linear and Nonlinear signal Processing Techniques 

Linear signal processing 

Finding the signal 

Separate broad band noise from narrow 
band signal using spectral characteristics. 
Method: Matched filter in rrequency domain. 

Finding the space 

Use Fourier space methods to turn difference 
equations in to algebraic forms 

x (t) is observed 

X(f) = ~ x(t) e ,h f 
L. is used 

Classify the signal 

• Sharp spectral peaks 

• Resonant rrequencies of the system 

Making models, predict: 

x{l+l)= La k x(t-k) 

Find parameters a k consistent with invariant 

classifiers- location of spectral peaks 

N onlinear signal processing 

Finding the signal 

Separate broad band signal from broad band noise 
using deterministic nature of the signal 
Method: Mainfold decomposition or statistics on the 
attract or . 

Finding the space 

Time lagged variables from coordinates for a 
reconstructed state space in m dimensions. 
X(t) = [x(t), x(t + r), x(t + 2r), ..... x(t + Cm -1),)] 

where , and m are determined by false nearest 
neighbours and average mutual information. 

Classify the signal 

• Lyapunov Exponents 

• Fractal Dimension measures 

• Unstable fixed points 

• Recurrence quantification 

• Statistical distribution of the attractor 

Making models, predict: 

X(t) ~ X(t + I) 

X(t + I) = F[X(t), a p a2 •••• (1 p] 

Find parameters a, consistent with invariant 

classifier - Lyapunov Exponents,fractal 
Dimension 
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2.4 METHODS OF CHATTER DETECTION 

Apart from different sensors used, a large variety of different signal processing 

techniques has been reported. Linear signal processing techniques used for chatter 

detection arc power spectral analysis, wavelets analysis and statistical 

characterization. Smith and Delio [48J, Liao and Young [90], Liang et al. [91], 

Gradisek et al. [58] used the Fast F ourier Transform (FFT) of the measured signal 

to find the highest peak for detecting chatter in machining. Application of wavelet 

analysis is implemented by Choi and Shin [43], Sen et al. [92] whereas Li et al. 

[93] used the coherence in the resulting spectrum of two orthogonal accelerations 

as indicator for chatter. Onset of chatter is always accompanied by development of 

synchronized oscillations which results in increased regularity or drop in entropy 

rate [58, 94]. Therefore quantitative measure for detection of dynamical changes 

can be effectively used for detection of chatter onset. Grabec et al. [37J suggested 

the method of Coarse-grained entropy rate (CER) suitable for characterization of 

short noisy time series calculated from the fluctuations of normal grinding force. 

F or the characterization of regularity of the process he used the concept of mutual 

information and described the average amount of information of the mth variable 

from the combination of other (m-I) variables using marginal redundancy. 

Increase in regularity is indicated by drop in CER. The accuracy of this measure 

depends on signal- to- noise ratio and when it is low the results are unreliable. As 

an extension of this work Gradisek [58) presented the method of coarse-grained 

23 



information rate (CIR) and entropy from power spectrum [58] of nonnal grinding 

force for automatic chatter detection. CIR is the average amount of common 

information contained in the time series and its delayed values quantified using 

mutual information. Increase in CIR values indicates regular behaviour of the 

system dynamics. This method is faster compared to CER and is suitable for short 

data sets. Other important and effective techniques to detect dynamical changes in 

real world systems are recurrence quantification analysis [87-89), cross correlation 

sum analysis [95) and nonlinear prediction analysis [96). These nonlinear methods 

are based on phase space reconstruction by quantifying distance between nearest 

neighbors in phase space. The phase space reconstruction of the time series data is 

computationally expensive as it requires calculation of two parameters -time delay 

and embedding dimension. Furthermore, these methods give reliable results only 

when the data is preprocessed and fine tuned. 

2.5 Surface Texture Analysis 

The surface roughness evaluation finds its mam application in the quality 

inspection of manufacturing processes. In industry the inspection and assessment 

of surface finish is either performed offline using a stylus type measurement 

instrument by an operator or on line by machine and computer vision. Offline 

measurement usually requires the removal of the part from the machine, cleaning 

and testing on an offline surface finish measuring instrument. Inspection requires 
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interruption of the processmg and if necessary cleaning of the part prior to 

inspection. If the part meets the required specification, it is accepted and if not the 

part or the entire batch may be scraped or reworked. Such methods are slow and 

obviously not acceptable for real time process control. Current trends show an 

increased interest in online inspection using non-contact measurement systems. 

Non-contact measurement is performed using optical sensors. In this approach 

light interference, light scattering and speckle pattern are used for surface 

roughness. Luk et.al.[97] have utilized statistical parameter derived from the gray 

level intensity histograms such as the range and the mean value of the distribution 

and have observed that they correlate well the surface roughness parameter -Ra 

value obtained using the stylus method. AL-Kindi [98] have implemented a 

technique utilizing a roughness parameter based on the spacing between gray level 

peaks and the number of gray level peaks per unit length of a scanned line in the 

gray level intensity image to estimate the surface roughness. Jason et al. [99] 

captured the light intensity scattering pattern from the surface and used it to 

compute the finish of the rough surfaces. Du-Ming Tsai et al. [100] have 

employed a two dimensional F ourier transfonn using both the gray level image 

and binary image to estimate the surface roughness of castings. Ramamoorthy et 

a!. [101] have also used stereometry techniques to get the three dimensional 

profiles of such surfaces and successfully estimated the surface area and volume of 

components. Ramamoorthy et al. [102) estimated optical roughness value -Ga 

based on the digital images initially magnified using cubic convolution technique 
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and then processed further using the linear edge crispening algorithm. It was 

reported that the Ga values correlated well with stylus instrument surface 

roughness value (Ra) measured for the components manufactured using the 

machining process such as shaping, milling and grinding. Lee et al. [1 03J have 

used a self organizing adaptive learning tool called polynomial network to 

estimate the surface roughness of a component manufactured using conventional 

processes. Younis [1 04J has analysed the pattern of scattered light from a surface 

to derive an optical roughness parameter for different materials. The comparison 

of optical roughness parameter and the average roughness obtained using a stylus 

instrument for different materials was found to correlate well and to be highly 

consistent. Khalifa et.al [105J have calculated Ga index and edge enhancement 

magnification for study and analysis of surface roughness and concluded that Ga 

index for chatter rich region is higher than chatter free region. Ramamoorthy et 

al.[ 1 06J have used the group method of data handling to predict the surface 

roughness using parameters calculated from the images viz. major peak frequency, 

principal component magnitude squared value and standard deviation. This 

predicted or estimated value showed concurrence with the values obtained using 

stylus instrument. 

2.5.1 Surface Texture and Non linear Dynamics in Machine 

One of the ways in which surface texture is useful is in acting as a fingerprint of 

the manufacturing process and machine tool behavior. The geometrical profile of a 
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surface gives roughness, wavmess and form error information. Roughness is a 

measure of metal air boundary while form error is the deviation from a perfect 

Euc1idean shape as are the measurements of the deviations from straightness. 

flatness and roundness. It is reported that the patterns formed on the surface by 

waviness can be varied and the presence of waviness is detectable visually as a 

pattern of marks spread more or less periodically along the surface [104]. 

Modulation effects in waviness usually caused by the tool vibrating radially 

relative to the component or axially which is mainly due to the self excited chatter 

between the tool and the work piece. 

2.5.2 Speckle Pattern and Surface Roughness 

When coherent light gets reflected from a surface with variations in the surface 

height in the order of wavelength of incident light, speckle pattern is formed due 

to the interference of reflected wave fronts with random phase and amplitude. 

Speckle pattern is coded with the information of surface roughness. But it is a 

random phenomenon due to the randomness in the surface texture. So the 

information regarding the surface roughness can be extracted only through some 

statistical parameters. There have been various reported works in which surface 

roughness is related to statistical parameters of the intensity distribution of speckle 

pattern. The contrast ratio of the speckle pattern is strongly related to the surface 

roughness. It is reported that the contrast ratio decreases as the surface roughness 
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In the micrometer scale increases [97, 99]. It is observed that the statistical 

parameters of optical F ourier transform [107] of the scattered light from a rough 

surface have got a strong relationship with the roughness of the surface. St~tistical 

parameters derived from the gray level intensity histogram are used to characterize 

surface texture [97, 105]. Due to chatter vibrations the surface texture of the work 

piece changes and these variations are generally in millimeter scale. As the depth 

of cut increases the surface finish is expected to deteriorate, mainly due to the 

onset of chatter vibrations. 

2.6 SPEECH PROCESS AND ANALYSIS 

Speech can bc broken down in to small segments called phonemes, each of which 

is unambiguously distinguishable and can be represented by any of a number of 

different phonetic alphabets. The actual mechanism by which we create a 

phoneme can be split into two main categories, voiced and unvoiced that can be 

further split in to vowels, frictives or plosives. Voiced speech or phonation is 

produced by oscillating the fleshy membranes inside the larynx which are known 

as the vocal folds. The oscillation is set up by forcing the vocal folds closed which 

causes pressure to build up below the folds, gradually forcing them to open again 

allowing the air to flow from the sub glottal region in to the mouth. This rapid air 

flow creates a Bernoulli force which coupled with the muscular action of the vocal 

muscles produces the sound. Human speech system behaves like a complicated 
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oscillator that exhibits parameter jumps corresponding to different dynamic 

regimes (phonemes). Many sources of nonlinearity are involved in the airflow 

production and laryngeal vibration processes [108]. Although normal phonation 

and voice disorders can be distinguished very easily, quantification and data 

distribution are highly desirable from the clinical point of view. The presence of 

vocal fold pathology can cause significant changes in the normal vibratory 

patterns of the vocal fold, which in turn can affect the quality of speech 

production. A mechanical model of speech process is shown in Fig. 2.1. Vocal 

tract act as the filter to the input given as vocal cord excitation and produces the 

output as speech signal. 

\ 
. ~ 

Input 
-------+<~: F i Iter 

Vocal Cord 
Excitation Vocal Tract 

Output 

Speech Signal 

Fig. 2. 1 Mechanical model of speech signal 
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Speech sounds are produced either by quasi periodic vibrations of vocal cords or 

by turbulence at some constriction point on the vocal tract [109]. A speech signal 

can be considered as a time series resulting from complex nonlinear process in the 

dynamics of larynx. 

Evaluation of vOice quality IS the fundamental approach for diagnosis and 

treatment of vocal disorders. Various cases of acoustic analysis of normal and 

pathological voices are reported [110-1131. Acoustic methods have the potential to 

provide quantitative techniques for clinical assessment of laryngeal and vocal tract 

function. Though several methods like laryngoscopy, glottography, 

electromyography, stroboscopy and acoustic analysis[114) currently exists for 

laryngeal and vocal tract research, acoustic analysis have added advantage over 

other methods because of its non intrusive nature. Diagnosis of voice pathologies is 

mainly done using either subjective technique like evaluation of voice quality by 

the clinician or invasive methods like I aryngeoscopica1 techniques. Several 

quantitative measures of voice quality assessment [115-118] are proposed in the 

recent years which help in the documentation of evolution of the pathological 

condition. Such measures can prove to be useful for application in fields like 

preventive medicine and telemedicine. F or these reasons mode ling of speech 

process and methods for better understanding of vocal features from voice data has 

attracted the attention of scientists and technologists for the past few decades. 

Traditional approach of speech modeling has been linear where the true non linear 
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physics of speech production are approximated via the standard assumption of 

linear acoustics and 1-D plane wave propagation of the sound in vocal tract. A 

linear model is often easier to estimate and adapt for time-varying systems [119-

122]. These approximations lead to the well known linear prediction model for the 

vocal tract. Despite the limited technological success of the linear model in several 

applications, such as speech coding, synthesis and recognition, there is strong 

theoretical and experimental evidence [109,123-128] for the existence of 

important non linear aerodynamic phenomena during the speech productiun that 

cannot be accounted for by the linear model. Various factors contributing to 

nonlinearities in speech production are (i) turbulent air flow through vocal tract, 

(ii) coupling produced between different parts of vocal tract (iii) neuro muscular 

response to stimuli [109]. 

The investigation of speech nonlinearities can proceed in at least two directions: 

(i) numerical simulation of the nonlinear differential equations governing the 3-D 

dynamics of the speech air flow in the vocal tract [124,126]. (ii) development of 

nonlinear signal processing systems suitable to detect such phenomenon and 

extract related information[128-131]. The phonetory system is time varying and 

consequently the speech signal is nonstationary. This can be clearly understood if 

one closely observes the amplitude of the speech samples. 

Normal phonation corresponds to an essentially synchronized motion of all 

vibratory modes. A change of parameters such as muscle tension or localized 
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vocal fold lesions may lead to the desynchronisation of certain modes resulting in 

bifurcation and chaos [130,132]. The transitions to qualitatively new oscil1atory 

behaviour indicate the suitability of the methods from nonlinear dynamics. Large 

tension imbalance of left and right vocal fold induces bifurcation to chaos [132]. 

Harzel et al. [133] have shown that Hopfbifurcations can be found in pathological 

voices, as well as sudden jump from one limit cycle to another one with dIfferent 

period and amplitude. Different attractors may coexist in non linear systems and 

therefore even extremely tiny changes of parameters like muscle tension may lead 

to abrupt jumps to other regimes Instabilities due to paralysis, polyps, cancer, 

papilloma etc produce similar effect and causes abrupt change to irregular regimes 

from the normal state [134,135J. Quantitative information of these abrupt changes 

to irregular regimes is still within limited scope. The occurrence of such sudden 

jumps should be reflected in quantities like entropy and fractal dimension of the 

attractor. Parameters that characterise the vocal disorders are spectral factor, 

pseudo entropy, pseudo correlation dimension, first zero crossing of 

autocorrelation function, first Iyapunov exponent, prediction error, jitter, shimmer 

[136] and peak in the phoneme transition. 

(i) Spectral Factor: It is the averaged ratio between the amplitude of 

frequencies under 1KHz and frequencies between 4 and 6 KHz; it is 

motivated by the effort the sick subjects have to face when they want to 
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talk; this induces instabilities that are reflected by the power spectrum. 

sick subjects present a smaller value of spectral factor. 

(ii) Pseudo- Entropy: Entropy averaged for partition radius £ values of 

5% to 10% of the variance of the data for embedding dimensions 

ranging between 2 and 8 [137]. Sick subjects should present larger value 

compared to healthy people. To overcome the numerical problems 

encountered in the estimation of the entropy from real data, namely the 

finite length of the time series and the presence of noise pseudo entropy 

is introduced. 

(iii) Pseudo- Correlation Dimension: Correlation Dimension averaged for 

neighbourhood radius £ values of 5% to 10% of the variance of the data 

for embedding dimensions ranging between 2 and 8 [137] .Sick 

subjects should present bigger value compared to healthy people. 

(iv) First Zero Crossing of the Auto Correlation Function: This parameter 

IS related to the ability of a subject to correctly pronouncing a word. In 

particular dysphonic patients are not able to isolate every vowel an the 

resulting time series is more correlated than for healthy subjects. 

Estimation method is as given in [137]. The first zero crossing for 

healthy subjects have value between 0.2ms and 0.4 ms while it is 

greater than 1.2ms for sick subjects. 
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(v) First Lyapunov Exponent: This is a convenient indicator of the 

sensitivity to small orbit perturbations of characteristic of chaotic 

attractors, as it gives the average exponential rate of divergence of 

infinitesimally nearby initial conditions. Some sickness can induce 

sudden jump trom the limit cycle (to which zero maximum Lyapunov 

exponent is associated) to another one with different amplitude and 

period (but again with zero maximum Lyapunov exponent); if the jump 

is due to a bifurcation one can see a positive value. Estimating this 

quantity, one has to be careful because the Lyapunov exponents for 

speech data is inconsistent. 

(vi) Prediction Error: When a well defined attracter is present then the 

prediction error is small [138]. Normal phonations are indeed to lie with 

a good approximation on a limit cycle, while sick people commonly 

produce more disordered time series. 

(vii) Jitter: This takes in to account the short term (cyclc to cycle) variation 

in the fundamental frequency [132]. Commonly for the healthy voices, 

the j itter is lower than 1 %, while higher values characterise disphonic 

phonation. 

(viii) Shimmer: This takes in to account the short tenn (cycle to cycle) 

variation in the amplitude of the signal[132]. As in jitter larger values 

indicate great effort in speaking 
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(ix) Peak in the Phoneme Transition: The transition between one phoneme 

and the following shows a much longer transient for sick people. Every 

phoneme contains a pitch that is repeated a number of time variable between 

10 and 20 [139,140]. One has then to identify the time length of such a pitch 

and to compare the distance between this pattern and one of the same length 

coming from the same phoneme [136]. Sick subjects present bigger values than 

healthy people. 

Using the above measures a feature space is defined where the healthy and sick 

cases forms clusters in different regions [136]. For quantifying the vocal 

disorders a healthy index is defined based on the above measures as the distance of 

a voice sample from the centre of mass of both healthy and sick clusters in the 

feature space[136]. Alnoso et al. [141] proposed a classification system to 

distinguish healthy from pathologic voices using a Neuronal Network (NN). In 

the feature extraction phase, diverse measures based on the High Order Statistics 

(HOS) were used in addition to selection of classical voice quality measurements 

[140]. Various automatic pathology detection methods with different success rates 

and data bases are also reported [142-144]. These measurements of the voice 

quality achieve good results, but in exchange for a high computational cost. 

The fundamental aim of studying a dynamical system using methods of linear or 

nonlinear technique is getting a deeper understanding of the dynamical behaviour 
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and the far end aim is charaterising and modeling the dynamical system. Apart 

from this, another important aspect of such studies is developing new 

methodologies for technological! industrial application. This work focuses on the 

potential application of the simple and robust technique of Permutation Entropy 

(PE) in characterising system dynamics in varied fields of applications: both 

mechanical and biological systems. PE is effectively used for detection of epilepsy 

in noisy EEG signals [145] and for tool flute breakage in end milling [146] from 

motor current signals. 

2.7 SUMMARY 

A study of various linear as well as non linear techniques in signal processing for 

the detection of change in dynamics as well as complexity analysis is carried out. 

Nonlinear time series analysis based on time delay embedding is the conventional 

method of extracting complexity measures to understand the dynamics of a 

system. 

In the following chapter, the concept of a fast and robust technique suitable for 

detection of change in dynamics from real world data sets where preprocessing as 

well as tine tuning becomes expensive in terms of time, quality and money is 

explained. 
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CHAPTER 3 - RESEARCH METHODOLOGY 

This chapter explains the research methodology adopted for the work presented in 

the thesis. Here we focuses on the use of a new simple technique based on ordinal 

patterns in a time series. The quantitative measure proposed by Bandt and Pompe 

based on the relative frequency of ordinal patterns is termed as Permutation 

entropy (PE). It is fundamentally a complexity measure for time series. A brief 

overview of interpretations of entropy and entropy measures are also discus~ed. 
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Study and characterization of nonlinear dynamics has been done using various 

methods. Statistical characterization of the dynamics usmg the time series of 

available variable assumes much importance dues to its effectiveness In 

characterization of different dynamical regimes. One of the statistical concepts of 

the nonlinear dynamics of complex systems is information entropy. As a 

complexity measure, the entropy can be generalized to characterise the amount of 

information stored in the system. 

3.1 ENTROPIES IN NONLINEAR SIGNAL PROCESSING 

With the aim of charaterising the complexity of dynamical systems, several 

entropy measures have been defined. Popular among these are approximate 

entropy (ApEn) [147], sample entropy (SampEn) (148), multiscale entropy (MSE) 

[149J, coarse grained entropy rate [37, 94], coarse grained information rate [58] 

and permutation entropy (PE) [150]. In general, entropy measures exploit a 

symbolic representation of a time series. Despite the severe reduction of 

information these measures are able to enhance the relevant features of a signal. 

Thus, even tough they do not precisely characterize the generating system they can 

very well track qualitative changes in time series patterns. 
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3.1.1. Information and Entropy: Interpretations 

Information is one of the many interpretations of entropy. Chronologically it was 

relatively a very late interpretation. The concept of entropy was conceived and its 

application to dynamical interpretations was introduced in Clausius's theory of 

thermodynamics. In this theory, entropy is defined as the measure of unavailable 

energy which arises due to heat loss as well as other actions such as chemical 

reactions, mixing, change from solid to liquid to gas. These processes involve not 

only an increase in entropy but also an accompanying decrease in the orderly 

arrangement of constituent atoms implying an increase in disorder. For example, 

atoms and molecules are ordered in a solid thus having low entropy whereas in the 

case of liquids the entropy will be higher with less ordering of atoms or molecules. 

Therefore the measurement of entropy became regarded as the measurement of 

degree of disorder or disorganization of a system. 

Still another interpretation is in terms of probability. Just as entropy is maximum 

for disordered conditions, it is also maximum for equally probable events i.e. 

when all possible outcomes are equally likely, the probability of anyone outcome 

is low and entropy is high. In contrast, when a biased dice is thrown, the outcome 

will not be equally probable for all possible outcomes. In such cases, the entropy 

is lowest. So there is an inverse relation between entropy and probability. 

Another interpretation based on the probability notion is that of uniformity of the 

distribution of data. If the data is uniformly distributed among a certain number of 
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compartments, the probability of getting each compartment m a single trial is 

equal. In that sense, a uniform distribution is a high entropy condition. 

Conversely, a very non-uniform distribution means low entropy, because one bin 

has a probability of one and other bins have a probability of zero. 

Yet another notion of entropy is uncertainty. The uncertainty can be pertained to 

the outcome of an experiment about to be run, or it can pertain to the state of a 

dynamical system. When the outcome of an event is absolutely certain then 

uncertainty is zero indicating zero entropy. For eg: absolute certainty means 

probability P=l, for which case the entropy will be zero. 

Another idea is related to randomly distributed observations versus reliable 

predictability. When there is disorder, and great uncertainty, predictions cannot be 

based on any known structure or pattern and can only be done probabilistically. In 

such cases where predictability is low, entropy will be high. In contrast, 

something well organized or nearly certain is usually very much predictable 

resulting in low entropy. The idea of many possible outcomes suggests diversity. 

Another idea of interpreting entropy is related to the information content of an 

event. In a given probability distribution there is an information value of so many 

bits. Furthermore, a relatively large number of bits means a relatively large 

number of information and vice versa. Hence entropy is the average amount of 

new information gained from a measurement. Table. 2 shows the different cases 

where low and high entropies occur with respect to the above discussed 

interpretations. 
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Table 3.1 Different cases where low and high entropies occur 

High Entropy Low Entropy 

1. Large proportion of energy Large proportion of energy available 

unavailable for doing work for doing work 

2. Disorder, disorganization, Order, high degree of organization 

thorough mix 

3. Equally probable events ,low Preordained outcomes, high probability 

probability of a selected event of a selected event 

4. Uniform distribution Highly uneven distribution 

5. Great uncertainty Near certainty, high reliability 

6. Randomness ,unpredictability Non randomness, accurate forecasts 

7. Much information Little information 

3.1.2 Entropy Measures for Complexity Analysis 

Approximate entropy charaterises the regularity of a signal by measunng the 

presence of similar patterns in a time series. Consider a time series of length N, 

From this time series short sequences or patterns XIII (i) of length m are constructed 

and the quantity e,m with tolerance r defined as 
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is computed for each XIII (i) 

This quantity measures the regularity of the patterns by comparing them to a given 

pattern. Here m is the detail level at which the signal is analysed and r is the 

threshold which filters out irregularities. The regularity parameter ApEn is 

defined as 

ApEn(m,r) :::: lim l ~ 111 ( r ) - ~ III (r ) J 
iv-">G 

(2) 

where 

N-m+1 

~ "' (r) :::: ( N - m + \) -I I In elm (r) (3) 
J~I 

This gives the relative frequency of finding a vector Xm (j) similar to vector 

Xm (i) within a tolerance of r and provides a quantitative measure of entropy of 

the time series. 

ApEn statistic gives good results and provides general information about the 

regularity and persistence of a signal. However, in the above evaluation method, 

vectors or pattern x"' (i) are allowed to self match and therefore results in biased 

statistics [147,151,152]. To overcome this drawback, a modification of ApEn 

algorithm named Sample entropy (SampEn) is developed [] 48] which avuid this 

self matching_ SampEn shows a relative consistency compared to ApEn [148]. 

42 



However, this measure strongly depends on length of the series and also gives 

biased results in the case of irregular signals 

As in the case of Komogorov-Sinai entropy, both sample and approximate 

entropy, provide a measure for the information mcrease over one step of 

dimension from m to m+ 1. To be able to resolve complexity on scales larger than 

this smallest scale, multi scale entropy is introduced [149, 153]. The efficiency of 

ApEn and SampEn are enhanced by estimating these measures at different time 

scales. These measures are widely used for charaterising biological signals in 

clinical application [154,155]. 

Coarse-Grained entropy rate (CER) [94] is another measure of regularity 

calculated based on the mutual information approximated in terms of marginal 

redundancy for a time series. This is a suitable measure for characterization of 

time series from experimental data. Accuracy of this measure depends on the 

signal to noise ratio of the measured data and when it is low it produces unreliable 

results. 

R'(m, fa) - [[R'(m)[[ 
CER(m) = [[ [I R'(m) 

(4) 

where R'(m, fo) is the marginal redundancy with dimension m and time lag fo 

and I[R'(m)[[ is the norm of marginal redundancy. 

Coarse-grained information rate (CIR) [58] is a coarse grained estimate of the 

mutual information of a time series with its delayed values. For a time series x(t) 
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and its time delayed senes x(t + r), CrR IS defined as the norm of mutual 

information and is given by the equation 

1 rm,n. 

erR = Ir(x(t);x(t + r))[ = - I I(x(t);x(t + T)) ~T (5) 
r mHx r~t.r 

The maximal time delay rmax is chosen such that I(x(t);x(t + r)) ::::; 0 for T Z Tmax' 

ClR values are bounded between 0 and log (Q), where Q represents the number of 

bins used for probability estimation. For convenience, erR is normalized using 

10g(Q) to define the normalized coarse grained entropy rate (NCIR). For highly 

regular and thereby predictable systems, NCIR is close to I whereas for irregular 

systems it is close to O. 

Though the above methods give reliable results, their applicability to real world 

signal analysis is limited due to the sensitivity to noise and computation cost. 

Therefore, a fast and efficient algorithm which is also robust to noise 

contamination is very essential for online applications. PE is one such measure 

suitable for analysis of real world data. 

3.2 Permutation Entropy 

Permutation Entropy [150]] is a complexity measure which has aspects of both 

dynamical systems and entropy measures. PE calculation relies on the order 

relations between neighboring values of a time series. It estimates complexity as 

the entropy of the distribution of permutations of groups of time samples. PE can 
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can efficiently detect the regular and complex nature of any signal and extract 

useful information about the dynamics. Thus the variation of PE as a function of 

time can effectively indicate dynamical change in any real world data. As this 

method does not require direct calculations of embedding dimension and time 

delay, this gives faster output and makes it suitable for online application of real 

time processes. It is robust against dynamical as well as observational noise [150]. 

With the onset of chatter, strongly synchronized vibrations buildup and these 

chatter vibrations presents itself in the dynamics as a lowering of dimensionality 

of the system and thereby an increase in the predictability of the system dynamics 

[94]. According to the properties of PE and chatter dynamics, PE is expected to 

show relatively small change during chatter free cutting. As the chatter vibrations 

develop during cutting process, due to the increased predictability of the system 

dynamics PE values are expected to decrease. 

In case of vocal disorders, complexities anse due to the intrinsic nonlinear 

dynamics of the vocal fold movements. These dynamical behaviours can be 

characterized using nonlinear parameters like entropy and fractal dimension [136]. 

Due to the increase in irregularity of the system dynamics PE is expected to 

increase in such cases. 
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3.2.1 Calculation of Permutation Entropy 

Computation of PE is based on comparison of neighbouring values in the time 

series of any dynamical variable of a system. It has been shown that any 

continuous time series representing a dynamical system can be mapped on to a 

symbolic sequence [145,150,156]. According to the embedding theorem, any 

arbitrary time series X = {Xl' X2 , ...... Xl'} can be mapped on to an In' dimensional 

dimension and r IS the delay time for embedding calculated using appropriate 

methods like false nearest neighbour calculation and first mInImUm of 

autocorrelation function [137]. For any arbitrary vector X , the components are n 

number of real values of the time series {xl'x1+r ,XI+2T ......... x'+(n_I)T} from time 

instant 't' to ' t + (n - J)r'. Assuming r = J [58], each point in the n dimensional 

space represented by its corresponding vector will therefore be equivalent to a 

short sequence of the time series consisting of n number of real values as 

(XI' XI,J' X I+2 ........ x l+(II_l)}· If the components of each vector are arranged In 

ascending order, it will represent a pattern of evolution. Thus each of the vectors 

can be considered as a symbolic sequence which will be one of the n! possible 

permutations of ' n ' distinct symbols. The probability distribution of each pattern 

Jr can be represented as 
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where 7r represents a pattern and # represents the number of occurrences. 

Permutation entropy of order n ~ 2 is defined as the Shannon entropy of the n! 

patterns or symbolic sequences and can be written as 

(7) 

where the sum runs over all n! permutations or sequences. H(n) lies between 0 

and log(n!). For increasing or decreasing sequence of values, H(n) = 0, whereas 

for random series where all n! possible permutations appear with same 

probability, H(n) = log(n!). For a time series representing some dynamics, 

H(n) < log(n!). Therefore, normalised PE per symbol of order' n' is given by 

H(n) Ilog(n!). Thus PE characterizes the system dynamics, with low values 

indicating regular behaviour. Any increase in PE value will thus represent an 

increase in irregularity in the dynamics. For detection of dynamical changes from 

time series it is first partitioned into non-overlapping windows of suitable length 

T. PE for each window is calculated using Eq.(6) and Eq.(7). Any change in the 

dynamics of the system will be reflected in the variation of PE with respect to 

moving window. for a reliable estimation of PE, the window length T should be 

greater than n1 [150]. The order of PE should not be too small as this will not give 

enough number of distinct states. Too large values of order' n' will demand large 

values of window size which will not effectively detect dynamical changes and 

also will create memory restrictions. Optimum values of order of PE are reported 
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to be around 3 to 8 [150,145]. In our analysis PE of order 6 is used for a window 

size of 1024 samples for the time series of the audio signal. 

As the patterns can be calculated in a very fast and easy way, calculation time of 

PE is negligibly less compared to other classical non linear methods. In this, only 

two pairs of values are compared at a time. PE based method is 100 times faster 

than Lyapunov exponent based method [156] due to the fact that neighbourhood 

searching is not needed. Also we deal with order relations between values instead 

of values themselves, the permutation entropy is robust with respect to noise 

corrupting the data. 

Permutation entropy has a practically invariance property. If YI = f (XI) where f 

is an arbitrary strictly increasing (or decreasing) real function, then H(n) is same 

for XI and Y I. Such nonlinear function f occurs, for example, when measuring 

physiological data with different equipments. Addition of observational noise 

causes only a small increase in the value of entropy [150] where as there is 

hardly any effect on the entropy due to dynamical noise. However in the presence 

of high noise the ability of PE to distinguish the change in dynamics decreases. 

3.2.2 Standard Data Test on PE 

Effectiveness of PE is verified on regular chaotic and random data sets. For this, 

normalised PE for a regular sine wave of amplitude (peak to peak) O. 2 and a 
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random signal of amplitude 0.2 with 5000 data points each are calculated. Fig 3.1 

(a) and (b) shows a sine wave and random signal respectively and their 

corresponding PE are shown in Fig 3.1 (c) and (d). Permutation entropy for 

regular sine wave is 0.114 and it is 0.9387 for random signal. Hence it is 

confirmed that PE values corresponding to regular signal is low whereas for 

random variation it shows high values. 
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When regular sine wave is connected with random signal as given in Fig 3.2(a) the 

PE value suddenly jumps from 0.114 to 0.9387 as indicated in Fig 3.1(b). This 

clearly shows that the PE is sensitive to change in regularity. The sudden variation 

from regular to random state is clearly indicated by the abrupt change in PE 

values. 

To get the feeling of the variations of entropy, results are also verified on chaotic 

signals with change in dynamics for different parameter values. Bifurcation 
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diagram of logistic map x/+1 = rx/ (1 - x,) is used to study the variation in PE in 

chaotic signal. Fig. 3.3(a) shows the bifurcation diagram of logistic map for 5000 

parameter values corresponding to variation of 'r' from 3.5 to 4. For control 

parameter r less than 3.57 the logistic map exhibits period doubling phenomenon, 

and a chaotic dynamics is observed at 3.57. For 3.57 ~ r ~ 4 the dynamics is more 

complicated and- intricate. This interval of 'r' is not fully occupied by chaotic 

orbits alone, but many changes take place at different critical values of 'r'. We can 

clearly see many changes of dynamics as a function of control parameter at 

3.5748,3.5925. 3.6785 and 3.828. At these points the chaotic nature is lost and the 

behavior is regular or quasi periodic. 

PE of order 6 is calculated for non overlapping windows of 1024 samples. Fig 3.3 

(b) shows the variation of PE for the same values of 'r' varying from 3.5 to 4. The 

variation in PE clearly indicates the change in dynamics corresponding to different 

'r values'. Corresponding to r values where there is a change in chaotic state PE 

drops indicating more regularity. This confirms the sensitiveness of PE to change 

in dynamics of any type of signal. 
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3.3 Summary 

Various entropies are used for quantifying the complexity of a dynamical system. 

Each one has its own advantages and disadvantages. Calculation of pennutation 

entropy is based on the comparison of neighbouring values in the time series. 

Tests on different types of data shows that PE is a fast and robust technique 

suitable for online application of detection of change in dynamics. Details of 

experimental setup and data acquisition are explained in the coming chapters. 
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CHAPTER 4: EXPERIMENTAL SETUP AND DATA 

ACQUISITIONS 

In this chapter, the experimental set up and the data acquisition systems used in 

this work are explained. Section 1 deals with the work piece description and data 

acquisition using microphone and current sensor in turning process. Section 2 

describes the experimental set up of speckle photographic method used for surface 

texture analysis. Section 3 focuses on data acquisition for speech signal. 
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4.1 EXPERIMENTAL SETUP OF TURNING PROCESS 

The experimental setup for turning process consists of the heavy duty lathe, work 

pieces, two sensors viz, unidirectional microphone and current sensor with two 

PCs. Experiments are conducted for acquiring data for sudden increase in depth of 

cut and continuous increase in depth of cut on the selected work piece. 

4.1.1 Description of Machine and Work Piece 

Single point turning experiments are performed on a 3 phase, 3.7kW, 1400 rpm 

PSG heavy duty lathe using CNMG 120408 PM carbide inserts with standard tool 

holder. The work pieces are cylindrical and conical and are made of mild steel. 

The work pieces are held firmly between centers; a four jaw chuck and a revolving 

centre. The cutting factors, speed and feed rate are maintained constant at 560 rpm 

and 0.06mm/rev for all sets of experiment while the depth of cut is varied as 

designed in the particular set. No coolants or lubricants are used in the experiment. 

The experiments are carried out in two different cutting conditions 

(a) A 356mm long cylindrical work piece with 50mm diameter is machined with 

0.1 mm depth of cut for a length of 110mm. The depth of cut is suddenly changed 

to 2.6mm and is maintained for the next 246mm. Figure 4.1 (a) shows the work 

piece geometry for this sudden increase in depth of cut from 0.1 mm to 2.6mm. 
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(b) A conical work piece of 149.8 mm length and initial diameter of 50mm is 

machined with continuous increase in depth of cut from O.lmm to 0.8mm. Figure 

4.1 Cb) shows the work piece geometry for continuous increase in depth of cut 

from 0.1 mm to 0.8mm. 

--~-tj--------------t----------------------------~~ 
LlO=.I. '''_ .I 

(a) 

-1"~-----;149.8mm----"-1 

-~-1-1-------------------1-~--i 
(b) 

Fig .4.1 Workpiece Geometry (a) sudden increase in depth of cut from 
O.lmm to 2.6mm (b) for continuous increase in depth of cut 
from O.lmm to O.8mm 
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4.1.2 Description of Data Acquisition System 

A unidirectional microphone for the measurement of audio signal and a current 

sensor to measure the line current drawn by the lathe drive motor are employed for 

data acquisition. Measurements of audio and current signals are made 

simultaneously from these sensors for the same cuning conditions. 

(i) Audible sound signal from Microphone 

Fig. 4.2 shows the schematic of experimental set up for acquiring audio signal in 

turning. The audio signals are captured using unidirectional microphone CSM-

990. AHUJA, with frequency response 20- 18000 Hz. This signal is recorded in a 

standard PC using a soundcard with data pee processing of low pass antialiasing. 

These signals are sampled at 11 KHz to generate the time series. 15 records are 

acquired for each cutting process and the corresponding time series are used for 

PE analysis. 

workpiece 

microphone 

Fig. 4.2 Schematic of Experimental set up for data acquisition using 
microphone 
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(ii) Spindle Drive current from current sensor 

Data acquisition system for spindle drive motor current uses a 3 phase line current 

sensor to measure the current drawn by the lathe drive motor. The sensor consists 

of three current trasnsformers (eT) having an output range of ± 5volts. Flow 

diagram for the sensor set up is given in Fig. 4.3. 

3ph supply from 
mains 

Current sensor 

NI shielded cable, 
SHC68-68-EPM 

NI connector block 
SC868 

NI DAQ,PCI 6221 

PC for data 
orocessina 

3ph supply input 
to drive motor 

Fig 4.3 Data acquisition flow diagram for the current sensor 
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The analog voltage signal from the output of the CT is sent to DAQ NI PCI 6221

through NI SHC68-68-EPM and SCB68 for converting into digital domain. The

samp ling rate is fixed at 1 KHz to cover the entire frequency range of the signal.

The digitized data is recorded in the PC using NI LabVIEW
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Fig 4.4 Block schematic of the voltage and current measurement setup

The voltages and currents in each phase is measured using three potential and

current transformers with an output range of ± 5 volts. Figure 4.4 shows the

connection diagram for this measurement.
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4.2 EXPERIMENTAL SETUP OF SPECKLE PHOTOGRAPHIC 

METHOD 

The experimental setup for speckle photographic method consists of laser source, 

spatial filter, objective lens, micortranslator, focusing lens, CCD camera and a PC. 

4.2.1 Laser Speckle from Machined Work piece 

The machined work pieces are subjected to surface texture analysis to study the 

effectiveness of PE in indicating the variation of surface texture. The speckle 

pattern obtained by a diode laser, which gives a maximum output power of 5m W 

at 633 nm is used to illuminate the curved surface of the work piece. The output of 

the laser diode is non-uniform and hence is made to pass through a spatial filter. 

The lens of the spatial filter is of focal length lOmm and the pinhole used has the 

diameter of 251lm. The output of the spatial filter is then collimated using an 

objective lens of focal length 5cm. This filtered, collimated laser beam is made to 

fall on the sample for the roughness detection. The light is incident on the sample 

at an angle of 48.7°. The collimated incident light scatters off the rough surface of 

the sample. This scattered light is focused using a focusing lens of focal length 

10cm and the resulting subjective speckle pattern is recorded using a CCD array. 

Thc CCD which is used for recording is a VGA type 113 inch Sony CCD, with 

8bit mono recording and with 7 micrometer pixel size. The exposure and the gain 

of the CCD are adjusted so as to ensure that the recorded intensity lies well below 
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the saturation value. Figure 4.5 shows the schematic of the experimental setup for 

data acquisition using laser speckle photographic method. 

Micro '1"" ...... 1&10.. 

Swnp lc: 

" p 

I .""", -
4.5 Scbematics of Experimental set up for dat~ acquisition using laser. 

The speckle pattern is recorded at an angle of 90° from the incident beam. The 

position of the focusing lens and CCD array is adjusted in such a way as to get the 

maximum contrast speckle pattern. The light distribution on the eCD is viewed 

through an IBM compatible computer. The sample is scanned along its length over 

a few centimeters using a micro-translator. These speckle images are stored in the 

computer and are used for surface texture analysis. Fig 4.6 shows the photograph 

of the experimental set up used for acquiring speckle patterns from speckle 

photographic method. 
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Fig 4.6 Photograph of the experimental setup for recording speckle pallem. 
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4.3 DATA ACQUISITION SYSTEM FOR SPEECH SIGNAL 

The data acquisition system for speech signals consists of a unidirectional 

microphone and a Pc. The vocal sound signals are recorded from the subjects in a 

sound proof room. 

4.3.1 Audio Signal from Speech Process 

To study the change in dynamics due to vocal pathology and its reflection in 

permutation entropy, speech signal from different normal and pathological cases 

are recorded. 

Audio signals of human speech process are acquired usmg unidirectional 

microphone CSM-990, AHUJA, with frequency response 20-18000 Hz. Audio 

signals corresponding to three Malayalam alphabets "A","E", "U" are used for 

analysis. These phonemes correspond to different patterns of vibrations of the 

vocal fold. Speech signal from 3 normal male, 3 normal female and 3 abnormal 

(2male and one female) subjects are recorded using unidirectional microphone in a 

sound proof room. These signals are sampled at 11 KHz and recorded in a 

standard PC using sound card. The amplitude time series of these signals are used 

for PE analysis. 
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4.4 SUMMARY 

Audible sound signals and spindle drive current signals are recorded 

simultaneously in two cases of cutting (i) for sudden increase in depth of cut and 

(ii) continuous increase in depth of cut. Unidirectional microphone and current 

sensors are used for acquiring audio and current signals respectively. Speckle 

photographic method is used to capture laser speckle pattern in a CCD camera 

from the surface of the machined work piece. The different signals are stored in 

PC to generate the time series for further analysis. Speech signals from normal as 

well as abnormal subjects are recorded using unidirectional microphone for 

evaluating the underlying dynamics. Results of these experiments are explained in 

the next two chapters. 
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CHAPTER 5 - RESULTS AND DISCUSSIONS ON TURNING 
PROCESS 

In this chapter, results of PE analysis using audio signals and current signals in 

two different cutting conditions are discussed. These results are verified using 

standard linear and nonlinear techniques. The results of surface texture analysis 

using PE are established with the help of standard optical roughness indicator. 

Here the results are discussed in three sections. First section explains the audio 

signal analysis for sudden and continuous change in depth of cut. Results based on 

the current signal analysis are detailed under second section. Third section deals 

with the PE based analysis of surface texture. Surrogate data test is carried out on 

the acquired signals for confirming the nonlinearity of the signals. 
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Audio and current signals are widely used for characterising the system dynamics. 

The use of microphone and current sensor is relatively ideal for detection of 

vibration during the machining process as they have the best features to detect 

chatter. 

Experiments are conducted on a 3 phase, 3.7kW,1400 rpm PSG heavy duty lathe 

using CNMG 120408 PM carbide inserts with standard tool holder. Samples of 

work pieces are made of mild steel. Feed rate of O.06mm per rev and speed of 560 

rpm are maintained through out the experiment. Audio and current signals are 

acquired for different cutting conditions. Sampling rate of 11 KHz and 1 KHz are 

used for audio signal and current signal respectively. PE analysis is carried out on 

the following data sets 

(i) Audio signal analysis of sudden change in depth of cut 

(ii) Audio signal analysis of continuous change in depth of cut 

(iii) Current sgnal analysis of sudden change in depth of cut 

(iv) Current signal analysis of continuous change in depth of cut 

5.1 AUDIO SIGNAL ANALYSIS 

PE analysis is carried out on audio signals captured from sudden change in depth 

of cut as well as continuous increase in depth of cut. 
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5.1.1 PE Analysis of Sudden Change in Depth of Cut 

In this experiment a constant depth of cut of 0.1 mm is maintained up to a length of 

1 10 mm of the work piece and suddenly changed to 2.6mm at this point. Above 

this point constant depth of cut of 2.6mm is maintained up to a length of 246mm. 

Audio signal acquired using unidirectional microphone is used for the analysis. 

The signal is sampled at 11 KHz to generate the time series. 

For permutation entropy based analysis, the time series is first partitioned into non 

overlapping windows of 1024 samples acquired within a time span of 9::>.1 ms. 

Normalised PE value is calculated for every window. Variation of PE with respect 

to moving windows is used for detection of onset of chatter. Permutation entropy 

for order 5, 6 and 7 with different window sizes of 1024 and 2048 gives consistent 

results. Here we present the results of PE of order 6 for a window size of 1024 

samples of the time series of the audio signals. These values are found to be the 

ideal choice for getting optimum speed of calculation with minimum memory 

restrictions. 

Fig. 5.1 shows the variation of PE with respect to length of the work piece for 

sudden change in depth of cut from 0.1 mm to 2.6 mm. For a length of work piece 

below 11 Omm corresponding to 0.1 mm depth of cut, it can be observed that there 

is no significant change in dynamics as indicated by PE values. Between 
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110.11 mm and 113. 7mm length of the work piece, a sharp decrease in PE value is 

observed. This drop in PE indicates increase in regularity of the dynamics thereby 

indicating the onset of chatter. Above 113.7 mm PE value fluctuates within a large 

scale compared to the chatter free region. The time required for the detection of 

this change can be calculated from the data acquisition time and calculation time 

of PE. With the sampling rate of 11 KHz, the data acquisition time of one data 

point is 91 microsecond. The time required for estimating PE values of one 

window is of the order of nanoseconds and can be neglected compared to the time 

required for acquiring the corresponding data points. The sharp decrease in PE 

value is observed between window 213 and 220. These seven windows 

correspond to 7168 samples. Therefore the change in dynamics can be detected 

within 652ms. This is comparable to the response time of conventional 

manufacturing machines to external control signals. It is clear from the results that 

the PE values are available at the same instant at which the data points are 

acquired. 
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Fig. 5.1 Variation of PE for sudden change in depth of cut 
from O.lmm to 2.6 mm 

To verify the results obtained using PE, conventional linear technique of Fast 

Fourier Transform is used. Waviness of a signal profile is easier to assess from the 

amplitude spectrum calculated by the Fourier transform. In this example, the 

amplitude spectra of the profile are flat with no dominant spectral peak indicates 

chatter free region or low amplitUde random like behaviour. 

The frequency spectrum of data with respect to length of the work piece is shown 

in Fig. 5.2. The spectra for a length 112.9 mm of the work piece do not contain 

any dominant peaks. Above this point the spectra contains more number of 

dominant peaks. The development of harmonic peaks is indicative of more regular 

behaviour which in turn represents the presence of chatter vibrations. 

68 



.10' 

" 
" • i 

: 1 
• 
I 

, 
0 

Fig. 5.2 FFT of audio signal for sudden cbange in deptb of cut 
from O.lmm to 2.6 mm 

The above results are also verified using normalized coarse-grained information 

rate (NClR) using Eq.5 of chapter 3. This is a coarse grained estimate of the 

mutual information of a time series with its delayed values. For a time series x(t) 

and its time delayed series x(t+ r), CIR is defined as the norm of mutual 

information. 

The software migram from CRP toolbox [157J is used to calculate l(x(t);x(1 u)) 

of Eq. 5 of chapter 3 for CIR. Maximal time delay of 50 and embedding 

dimension of 2 are used for NClR calculation [37J . Fig. 5.3 shows the variation of 

NCIR with respect to length of the work piece. For the initial range of cutting 

below the length of II O.9mm of the work piece the NCIR values remains at low 

values. The depth of cut is maintained at O.lmm in this range. At a length of 

110.9 mm, there is a steady increase in the NCIR values for a small region up to a 
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length of 115.1 mm. Above this point the NCIR values remain in the higher range 

with larger fluctuations. Increase in NCIR values confirms the presence of chatter 

vibrations as indicated by change in PE values. 
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Fig. 5.3 NCIR of audio signal for sudden cbange in depth of cui 
from O.lmm 10 2.6 mm 

5.1.2 PE Analysis of Continuous Increase in Depth of Cut 

In this experiment the depth of cut is continuously varied from 0.1 to O.8mm over 

a 149.8 mm long work piece thereby slow and smooth increase in depth of cut is 

maintained throughout the cutting process. The acquired audio signal is converted 

to a time series of length 4772633 samples corresponding to 149.8mm length. 

Fig.504(a) and (b) shows the variation in PE with respect to deplh of CUi from 0.1 

to Oo4mm and from Oo4mm to 0.8 mm respectively. It can be observed from 

Fig.504(a) that Ihe PE values do not undergo any drastic varialion along this range 

of depth of cut. It is evident from this figure that there is no significant change in 
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the system dynamics. In Fig. 5.4(b), a sudden drop in PE value can be observed at 

0.46 mm depth of cut. This change in PE value indicates a sudden change in 

dynamics to more regular nature and thereby onset of chatter. Above this point PE 

values increases and reaches almost equal to previous levels. This behaviour is not 

sustained for long and is soon followed by sharp jumps indicating bursts of chatter 

up to 0.49mm. Again there is a slow increase in PE to values comparable to or 

even slightly higher than that of the chatter free region. Thus the dynamics is 

regained slowly after short bursts of chatter. The time required for the detection of 

this change can be calculated from the data acquisition time and calculation time 

of PE. With the sampling rate of 11 KHz, the data acquisition time of one data 

point is 91 microsecond. The time required for estimating PE values of one 

window is of the order of nanoseconds and can be neglected compared to the time 

for acquiring the corresponding data points. 
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Fig. 5.4 Variation of PE for continuous increase in depth of cut 
from (a) O.lmm to O.4mm and (b) 0.4 mm to 0.8mm. 

The sudden drop in PE value occurs within an interval of time required for 

acquiring 5120 samples which corresponds to 466ms. The chatter detection speed 

of PE at this sampling rate is more than sufficient for use with an online setup. 

Fig. 5.5 (a) shows the frequency spectra with respect to depth of cut varying from 

o to O.4mm Fig. S.5(b) that of O.4mm to O.Smm. The spectra in Fig. 5.5 (a) do not 

contain any strong peaks which is typical of chatter-free dynamics. It is clear from 

Fig. 5.S(b) that around 0.46mm depth of cut, the harmonic contents in the signal 

are more pronounced than in the other regions. This strong peak is veiY well 

indicative of chatter regime as in Fig. 5.4(b). 
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Fig. 5.6 (a) shows the variation of NCIR for the above signal for depth of cut 

from 0 to 0.4 mm and Fig. 5. 6 Cb) shows the variation of NCIR for depth of cut 

from OAmm to 0.8mm. It can be inferred from the figure that NCIR values show 

an increase at OA6mm depth of cut. This gives an indication of the incr~ase in 

information and thereby an increase in the predictability which in turn shows the 

increased regularity in the dynamics. The increase of NCIR values in Fig. 5 .6 Cb) 

confirms the change in dynamics indicated by the drop in PE in Fig. 5A (b) 

5.2 CURRENT SIGNAL ANALYSIS 

Spindle drive current signal is also acquired along with audio signal for the same 

cutting conditions and work pieces. Sampling rate for current signal is selected as 

1000 Hz. PE of order 6 for moving window of 1024 samples is used for analysis. 

5.2.1 PE Analysis of sudden Increase in Depth of Cut 

fig 5.7 shows the variation of PE of spindle drive current with respect to length of 

the work piece for sudden increase in depth of cut. It is observed that PE 

corresponding to a length of III mm drops abruptly showing increase in regularity 

of the dynamics thereby indicating the onset of chatter. This result concurs with 

that obtained from PE of audio signal in Fig 5.1. The drop in PE is obtained within 

one window corresponding to 1024 sample points. With the sampling rate of 1 
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KHz, the data acquisition time for 1024 samples is 1 s. As the calculation time for 

PE is negligible compared to data acquisition time, the detection time using 

current signals turns out to be 1 s. 
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Fig. 5.7 Variation of PE of spindle drive current for sudden change 
in depth of cut from O.lmm to 2.6 mm 

5.2.2 Current Signal Analysis of continuous increase in depth of cut 

Fig 5.8 shows the variation of PE of spindle drive current with respect to depth of 

cut for taper cut. The drop in PE at 0.46 mm depth of cut corresponds to the 

change in dynamics as indicated by the PE of audio signal in Fig. 5 .4 (b). Small 

variations of PE values in the chatter free region as indicated in FigS. 7 and Fig. 5.8 

can be due to the influence of high starting current drawn by the motor. The 

sudden drop in PE value occurs within an interval of time required for acquiring 

4096 samples which corresponds to 4s. The chatter detection speed of PE from 

current at this sampling rate is low when compared with that of audio signal. 
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5.3 SURFACE TEXTURE ANALYSIS 

Speckle images of light reflected from the work piece machined on a lathe for 

increasing depth of cut from 0.1 mm to O.8mm are recorded as explained in section 

4.2. Each speckle image is digitized and converted to matrices of size 480X640 

elements of which falls in the range of 0-255 gray levels. The mean gray level 

intensity of this speckle pattern is calculated to generate the corresponding time 

series data for increasing depth of cut. The mean grey level of the histogram is 

defined as 

255 

I FrX r 

!1 
r~O (8 ) 

255 

I Fr 

r~O 
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where F, is the number of pixels having XI gray levels. Change in surface texture 

is detected using the complexity measure PE of this time series. PE of order 4 

with window size of 64 is selected for speckle analysis. 

Fig.5.9 (a) and 5.9 (b) shows the variation in PE with respect to depth of cut from 

0.1 to O.4mm and from O.4mm to 0.8 mm respectively. It can be inferred from this 

figure that PE obtained from mean gray level intensity remains almost a constant 

with only slight variation in its value up to 0.4 mm depth of cut indicating 

regularity in the reflected light which is indicative of a smooth surface. Between 

O.4mm and 0.45mm, there is a sudden increase in PE value which indicates a 

change in the dynamics of the system. The sudden increase of PE indicates an 

increase in irregularity thereby indicating an increase in roughness. Variation of 

PE in the chatter region is much larger compared to the chatter free region. This 

transition in dynamics is verified from the variation in waviness of the surface. 

The mean and standard deviation of the PE values of chatter and chatter free 

regions are calculated for a further confirmation of the results. For chatter free 

region the mean value of PE is 0.7 with a standard deviation of 0.03 whereas the 

mean and standard deviation of chatter free region lies at 0.61 and 0.06. This 

substantiates the inference that in chatter region the PE values are lower than that 

of chatter free regions with larger variations. The larger variation in PE values in 

the chatter region further indicates the variations in ordinal patterns in the reflected 

light intensity which further indicates the waviness of surface texture. 
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Fig. 5.9 Variation of PE with respect to depth of cut (a) for chatter free 

region (b) for chatter region 

To confirm the results of PE analysis, surface roughness of the workpiece 

corresponding to depth of cut from O.3mm to O.6mm is analysed using surface 

roughness parameter R. The information regarding the surface roughness can be 

extracted through statistical parameter R [97,105]. From the gray level histogram 

of the speckle pattern optical roughness parameter R is calculated using the 

equation [97] 

R:= SD 
RMS 

(9) 

where SD is the standard deviation of the distribution and RMS is the root mean 

square height of the distribution given as follows 
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SD = (-I-f F,(X, _ XY )/2 (l0) 
N -I ,~O 

RMS (11 ) 

I '\< 

where X = -! F X . 
N ,= 0 ' , 

255 

and N = L F, 
,~O 

Fig. 5.10 shows the variation of R with respect to continuous increase in depth of 

cut from 0.3 to 0.6 mm. The lower values of R in the initial region of the graph 

shows relatively smooth surface texture. At 0.45mm depth of cut, R shows an 

increasing tendency indicating decrease in surface finish. The value of R reaches a 

maximum at 0.49 mm depth of cut indicating poor surface finish. Above this point 

R again drops to lower values indicating an increase in surface finish. The 

lowering of surface finish as indicated by increase in R between 0.45mm and 

0.49mm depth of cut corresponds to the chatter region in Fig. 5.4. The 

repeatability of the experiment was ensured by repeating the experiment for 

different samples. Similar characteristics were observed for various samples. 
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depth of cut from O.3mm to O.6mm 

5.4 SURROGATE DATA TEST 

Before attempting any sophisticated nonlinear analysis of data from real world 

systems, one must ensure that the signal is truly nonlinear and not generated from 

any processes which are random uncorrelated or linearly correlated processes. 

One is expected to explicitly prove the nonlinear origin of the signal and thereby 

justify the use of non linear tools and models. The method of surrogate data testing 

[1581 is proposed for this purpose and is widely used in several nonlinear time 

series analysis applications. The surrogate data technique is based on a hypothesis 

testing approach. To test the null hypothesis that there is no nonlinear structure in 

the data beyond the linearly correlated noise, a surrogate data set is generated 
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which preserves the autocorrelation of the original time series and thus mimics 

only the linearly properties of the signal. This is done by F ourier transforming the 

original time series, randomly shuffling the phase of the transform with amplitudes 

left unchanged and then applying the inverse Fourier transform. If preservation of 

the amplitude distribution is also required, the amplitudes of the surrogate data can 

be rescaled to match the distribution of the original data or the histogram of the 

original data can be transformed to Gaussian prior to the fourier transform. The 

surrogate data set is compared with the original data using a discriminating 

statistic which is usually chosen to be one of the non linear measures from chaos 

theory. 

Fig.S.11 (a) and (b) shows the original and the surrogate data obtained after 

randomization of the audio signal and Fig.S.12 (a) and (b) shows the original and 

the surrogate data for the current signal from machining process where the depth 

of cut is suddenly increased at a particular length of the work piece. Fig. 5.13 

shows the evolution of PE for audio signal (a) original data (b) surrogate data of 

5.11 (a) and (b). Fig. 5.14 shows the evolution of PE for spindle drive current 

signal ( a) original data (b) surrogate data of 5.12 ( a) and (b). The surrogate data is 

prepared using TrSEAN [159]. 
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The PE values of surrogate data are entirely different from that of original data 

indicating that the original dynamics is destroyed in the surrogate. This suggests 

that the data set is the outcome of a true nonlinear process and contains a certain 

degree of deterministic component. 

5.5 SUMMARY 

PE analysis is carried out on audio and current signals acquired from turning 

process. Time series generated from the signals is divided in to non overlapping 

widows of 1024 samples and PE for every window is calculated. Variation of PE 

with respect to moving window is used for analysis. Results of the study reveal the 

sensitivity of PE to the dynamical changes in the system behaviour. The drop in 

PE from audio and current signals corresponds to the length at which the depth of 

cut is suddenly changed. This shows the effectiveness of PE in identifying the 

sudden change in dynamics of the system. Results of continuous increase in depth 

of cut from audio signal also concur with that of current signal. The calculation 

time for PE is less than nano seconds and is negligible in comparison with the data 

acquisition time. Hence the results are available at the same instant at which the 

data is acquired. This makes the system suitable for on line application. The results 

are verified using existing measures of FFT and NCIR. It is observed that the time 

required to identify the change in dynamics is faster from audio signal than from 

current signal. 
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PE calculated from the mean gray level intensity histogram of the speckle pattern 

clearly shows the variation in surface texture due to increase in depth of Cllt. The 

results of PE analysis in this case are reinforced using the standard optical 

roughness parameter R. The nonlinear characteristic of the signals are established 

using surrogate data test. Results of speech signal analysis is discussed in the next 

chapter. 
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CHAPTER 6-RESULTS AND DISCUSSION ON SPEECH 

DYNAMICS 

In this chapter PE analysis is carried out using speech signals in different normal 

and pathological conditions. Vocal sound signals corresponding to Malayalam 

alphabets from normal as well as abnormal subjects with vocal disord~rs are 

analysed. The results clearly distinguish the difference in dynamics between the 

two cases and the sensitiveness of PE to vocal disorders is established. The results 

are verified using standard FFT techniques. Maximal Lyapunov exponents are 

calculated to substantiate the results. 
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A range of invariant measures that show clearly the low dimensional nC111inear 

behaviour of individual vowel sounds are introduced in the recent years. The 

extracted feature from these signals is useful for study and investigation of vocal 

pathologies. Vocal sound signals are recorded from normal as well as abnormal 

subjects for diflerent phonemes for PE analysis with an aim of charaterising 

normal and abnormal vocal sound signals. 

6.1 SPEECH SIGNAL ANALYSIS 

Effectiveness of PE to identifY the vocal pathologies is verified on clinically 

characterized vocal sound data from patients suffering from three different cases. 

Vocal sound signals are recorded from 3 normal male subjects, 3 normal female 

subjects and 2 male and 1 female subjects with vocal disorder. The three cases of 

vocal disorders are of cancer, pollips and laryngitis. The audio signals are 

converted to digital time series by sampling it at a rate of 11 KHz. These signals 

are then further analysed using PE for detailed study of qualitative difference in 

dynamics between normal speech signals and speech signals with disorder. 

Voiced speech signals of Malayalam viz. HA", HE", "U ", are recorded froill each 

subject and the corresponding time series are SUbjected to PE analysis. The vocal 

cord vibrations corresponding to these phonemes are different while pronouncing 

it. PE of order 4 is calculated for moving non overlapping windows of 64 samples 

for each signal. 
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Fig.6.1 (a), 6.1(b) and 6.I(c) represents the variation of PE for letters "A","E","U" 

respectively. Normal female subjects are represented by green, normal male 

subjects are represented by blue, abnormal male represented by black and 

abnormal female represented by red. Results of the analysis clearly indicllie that 

PE values of normal subjects are lower than that of abnormal cases. The results of 

the analysis indicate that irrespective of the gender as well as pathological 

condition PE values are higher for abnormal cases. This property of increased 

irregularity is identical for all the three sound signals. The higher values of PE of 

pathological subjects indicate that with abnormalities in voice signals, 

irregularities in speech signals increases. This reinforces the concept of presence 

of bifurcations leading to chaos in signals of vocal disorders. 

From these results it is clear that PE is effective in charaterising the amount of 

disorder in the vocal pathologies. This characteristic of PE can be made useful in 

the preliminary investigation of vocal disorders in clinical applications. This can 

be used as a tool by the clinicians during follow ups for identifying and eva luating 

the effect of any treatment given to the patients. At every level of treatment the 

PE data can be stored in the data bank of the patients and can be compared to the 

PE data before starting the treatment. This may also give first hand information 

in diagnosis about the level of disorder in pre and post treatment conditions. 

Hence it can be concluded that PE can be used as an indicator in deciding the final 

strategy of treatment in vocal pathological cases. 
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To confirm the results of PE in speech signals, FFT corresponding to three letters 

"A":' E'" and "u" of pathological case as well as normal subject are calculated. 

Fig 6.2 (a), (b) and (c) show the Fourier transform of the signals of a pathological 

case corresponding to pollips and Fig 6.3 (a), (b) and (c) show the Fourier 

transform of the signals of a normal subject. The FFT indicates that in the case of 

subjects with vocal disorder, the vocal signals are highly irregular with large 

number of dominant peaks. In contrast, the FFT of normal subject shown in Fig 

6.3 contains fewer prominent peaks. This nature of the FFT shows the regularity 

in the dynamics of vocal signals of normal subjects. These results reinforce the 

concept of permutation entropy, having comparatively lower values for dynamics 

with regular behavior. Increase in irregularity as indicated by rise in PE is 

confirmed by the presence of frequency components in Fig. 6.2(a), (b) and (c). In 

order to verify the results maximal Lyapunov Exponents for the signals are 

calculated using the software tool TISEAN [159]. The Lyapunov exponents 

corresponding to abnormal speech signal gives positive values which again 

confirm the irregularity due to vocal pathology. 

6.2 SUMMARY 

PE based analysis is carried out in speech signal to study the change in dynamics 

due to vocal disorders. Results show that PE for normal subjects are low compared 
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to that of pathological cases where the dynamical behaviour is irregular. These 

results are verified using the standard linear method of FFT. Positive Lyapunov 

exponents corresponding to phonemes of abnormal subjects indicate chaotic 

behaviour. 
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CHAPTER 7- SUMMARY, CONCLUSIONS AND FUTURE 

DIRECTIONS 

This thesis investigates the applicability of fast and robust technique of 

permutation entropy in detecting change in dynamics from real world systems: 

mechanical as well as biological. Turning process under mechanical systems and 

speech process under biological systems are considered for study and analysis. 

The work focuses on the effectiveness of PE in chatter detection in metal cutting 

and vocal disorder in speech signal. Traditional nonlinear methods fail to produce 

reliable results when the real world data is nonstationary and contaminated with 

noise. In an industrial set up it is necessary to detect the onset of chatter in such an 

early stage so that no chatter marks are made on the work piece and it does not get 

damaged. This requires a a fast detection algorithm which gives a clear 

measurement signal that includes features of chatter. Permutation entropy based 

methodology addresses the above issues and gives reliable results from 

experimental data. This is due to the fact that the machining process is nonlinear 

and PE algorithm is efficient in characterising the underlying dynamics from the 

time series of a suitable system variable. 
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PE analysis is carried out on audible sound signal and spindle drive current in 

turning processes on a lathe machine for sudden change in depth of cut and 

continuous increase in depth of cut on mild steel work pIeces. During the 

machining process audio signal is captured using a unidirectional microphone and 

spindle drive current is acquired using current sensor. Microphone can effectively 

be used for chatter detection as the acoustic pressure during machining is 

proportional to the displacement of the tool. As the cutting force is related to the 

motor current, the current sensors are also effective in exploring the underlying 

dynamics of machining process. 

Variation in surface texture from chatter free to chatter regime of the machined 

workpiece is analysed using PE of the speckle pattern acquired using speckle 

photographic method. The laser speckle pattern is recorded using Charge Coupled 

Device (CCD) camera and the gray level intensity histogram derived from it is 

used for further analysis of surface texture. PE of the mean calculated from the 

intensity histogram is found to be effective in revealing the change in surface 

texture produced by chatter vibrations. 

Nonlinear methods of detection of voice disorder uses conventional methods based 

on state space reconstruction. This requires calculation of appropriate time lag and 

embedding dimension which restricts its application on real time basis. From the 
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clinical point of view it is essential to have first hand information regarding the 

vocal disorder which will help in the choice of treatment strategy. Real time 

analysis of speech signal using PE can prove to be useful in this direction. 

The results of PE analysis are confirmed usmg frequency spectrum and 

normalized coarse grained information rate. A direct consequence of chatter 

vibrations on dynamics is deterioration of surface finish of the work piece. This 

property of chatter dynamics is utilized to verify the chatter detection results. The 

change in surface texture in the chatter regime is confirmed by statistical 

parameter R. 

PE analysis of audible sound signal and current signal is a fairly low cost, non­

contact and non-destructive technique which enhances its suitability for online 

detection of chatter without disturbing the machining process. This method of 

chatter detection can be applied on real time turning process with the help of 

suitable control mechanism. PE is effective in detecting the vocal disorders which 

establishes its suitability in the real time application of clinical diagnosis in this 

area. 

7.1 THESIS SUMMARY 

I) This work establishes that permutation entropy can be effectively used for the 

detection of change in dynamics in turning process using audio and current 

signals. The results are useful in detecting onset of chatter in turning. 
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2) The results reveal that the audio and current signals include features of 

chatter in turning process which in turn can effectively be extracted using the 

technique of permutation entropy. 

3) The transition from chatter free to chatter regime is indicated by a sharp drop 

in PE value. PE values in the pre and post chatter regions are in the higher 

range compared to that around the chatter regime. 

4) The chatter detection speed of PE from current signal with lower sampling 

rate is less compared with that of audio signal. As PE value is calculated for 

every 1024 samples, higher sampling rate results in faster detection of change 

in dynamics. 

5) The results clearly indicate the change in surface texture due to onset of 

chatter. PE obtained from mean gray level intensity remains almost a 

constant with only slight variation in its value indicating regularity in the 

reflected light which in turn is indicative of a smooth surface for chatter free 

region. 

6) The sudden increase of PE indicates an increase m irregularity thereby 

indicating an increase in surface roughness. 
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7) Variation of PE in the chatter region is much more compared to the chatter 

free region. This transition in dynamics is verified from the variation in 

waviness of the surface. 

8) In case of vocal disorder, the increase in irregularity is reflected in PE values. 

The results of the analysis indicate that irrespective of the gender as well as 

pathological condition PE values are higher for abnormal cases. 

9) The property of increased irregularity is identical for all the three abnormal 

sound signals. The higher values of PE of pathological subj ects indicate that 

with abnormalities in voice signals, irregularities in speech signals increases. 

7.2 CONCLUSIONS 

1) PE algorithm is conceptually simple and computationalIy very fast and it 

gives reliable results from regular chaotic and real world data. It is robust 

against observational and dynamical noise, and non-stationarity in the signaL 

This makes PE an effective measure for experimental data sets where the 

signals are non-stationarity and contaminated with noise. 

2) Time to calculate one PE value is less than a nanosecond. This time is 

negligible when compared with the data acquisition time. Hence PE values 

are available at the same instant at which the data is acquired. This feature 

makes it suitable for on line application with suitable control mechanisms. 
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3) This technique is efficient in producing reliable results from small as well as 

large data sets. This feature is beneficial in cases where simultaneous data 

acquisition using different sensors are employed. 

4) Microphone and current sensor are very easy to use and they are also very 

cheap in comparison to other sensors. They do not involve any positioning 

problem in the set up and are not affected by the geometry of cut. These 

factors are considerable in shop-floor applications. 

7.3 CONTRIBUTIONS 

I) Fast and efficient method of detection of onset of chatter in turning process 
from real time signals without preprocessing and fine tuning of data. 

2) Easier method for detection of surface texture variation with onset of chatter. 

3) Fast and robust technique for clinical diagnosis of vocal disorders. 

7.4 FUTURE DIRECTIONS 

I) Similar studies dealing with the effectiveness of PE for 

• different sensors and signals 

• different cutting processes 

• different cutting conditions 

• different work piece materials and 
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• high speed CNC machine 

will help in extracting valuable information useful for practical applications. 

2) Studies based on PE methodology can be carried out on different biological 

signals to understand the change in dynamics for various physical and mental 

states. 

3) Surface texture analysis for different material under various cutting 

conditions can be evaluated. 

4) Such studies can open avenues to possible application of PE analysis in 

online chatter control mechanisms. 

Calculation of PE algorithm is conceptually simple and computationally very fast 

and it gives reliable results even in the presence of noise. Unlike conventional 

nonlincar techniques for detection of dynamical changes, PE analysis does not 

demand any preprocessing of data. This makes PE an effective measure for large 

data sets where there is no time for preprocessing and fine tuning of the data. The 

results of PE analysis are confirmed using frequency spectrum and normalized 

coarse grained information rate. The change in surface texture in the chatter 

regime is confirmed by statistical parameter R. PE analysis of audible sound signal 

is a fairly low cost, non-contact and non-destructive technique which enhances its 

suitability for online detection of chatter without disturbing the machining process. 
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This method of chatter detection can be applied on real time turning process with 

the help of suitable control mechanism [160]. PE is effective in detecting the vocal 

disorders which establishes its suitability in the real time application of clinical 

diagnosis in this area. 
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