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Chapter 1

Chapter 1. Introduction

The contents of this thesis are on various aspects of modeling and analysis of finite mean

time series with symmetric stable distributed innovations. Classical time series analysis,

generally known as Box and Jenkins time series approach, includes model identification,

parameter estimation, diagnostic checking and forecasting (for details see Box et al.

(1994) and Brockwell and Davis (1987)). Mathematical theory of classical time series

analysis is based on the assumption that the error variances are finite. In recent years

there is a great deal of attention in modeling non-Gaussian time series which includes

time series with heavy tailed innovations. Symmetric stable distributions are widely used

to model heavy tailed variables as stated by Adler et al. (1998), Gallagher (2001), Shao

and Nikias (1993). In many practical instances, communication ( Stuck and Kleiner

(1974)), economics and finance (Fama (1965)), network traffic (Willinger et al. (1998)),

tele traffic (Resnick (1997)), data shows sharp spikes or occasional bursts of outlying

observations. Heavy tailed distributions can be used to model such series and stable

distribution is a good candidate in the family of heavy tailed distributions. Stable

distributions are widely used in signal processing especially modeling impulsive signal (see

Shao and Nikias (1993)). A broad and increasingly important class of non Gaussian

phenomenon encountered in practice can be characterized by its impulsive nature. Signals

and noise in this class are more likely to exhibit sharp spike or occasionally bursts of

2
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outlying observations than one would expect from normally distributed signals. As a

result, their density functions decay in the tail less rapidly than the Gaussian density

function. Underwater acoustic signals, low frequency atmospheric noise and man-made

noise have all been found to belonging to this class, (Nikias and Shao (1995)). It is for

this type of signals that stable distribution provides a useful theoretical tool. The stable

law is a direct generalization of the Gaussian distribution and in fact includes Gaussian as

a special case. The tail of stable density is heavier than that of Gaussian density. Stable

distribution is characterized by four parameters: α ∈ (0, 2], measuring the tail thickness

(thicker tails for smaller values of the parameter), θ ∈ [−1, 1] determining the degree and

the sign of asymmetry, γ > 0 (scale) and β ∈ R (location). To denote stable distribution

with parameters α, θ, γ and β we will use the notation Sα(β, θ, γ). In addition stable

distribution is very flexible as a modeling tool in that its parameter α (0 < α ≤ 2), that

controls the heaviness of its tails. A smaller positive value of α indicates several

impulsiveness, while a value of α close to 2 indicates a more Gaussian type of behavior.

We can find a lot of applications of symmetric stable distributions in time series

modeling, (see Adler et al. (1998), Nikias and Shao (1995), Gordon et al. (2003)) eg:

intensity and duration of rainfalls analyzed in environmetrics, activity time of CPUs and

network traffic or noise in degraded audio samples in engineering, impulsive signal and

noise modeling etc. Now we will discuss some motivating examples to illustrate the

applications of stable distributions in modeling some real data.

Economics and Finance:

(i) Nolan (1999) used stable distributions to model daily exchange rate data for 15

different currencies which were recorded (in U.K. pounds) over a 16 year period (2

January 1980 to 21 May 1996). The data was transformed by yt = ln(xt+1/xt) giving

n = 4, 274 data values.

(ii) McCulloch (1997) analyzed forty years (January 1952-December 1992) of monthly

stock price data from the Center for Research in Security Prices (CRSP). The data

set consists of 480 values of the CRSP value weighted stock index, including
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dividends, and adjusted for inflation. The data was analyzed using stable

distribution.

(iii) Buckle (1995) fitted a stable distribution for a return series on Abbey National

Shares.

(iv) Qiou and Ravisankar (1998) fitted a second order autoregressive model with stable

innovations to study the real data set which consists of 394 observations on daily

stock prices of a retail store.

Radar Noise:

(i) Nolan (1999) fitted a stable distribution for the in phase components of sea clutter

radar noise. This is a very large data set with n = 320, 000 pairs of data points.

(ii) Lagha and Bensebti (2007) used stable distributions to model the weather

precipitation echoes detected by a weather pulse Doppler radar.

Environmetrics:

(i) Pierce (1997) proposed positive alpha stable distributions to model inherently

positive quantities such as energy or power. One example he uses is the power in

ocean waves (hourly wave data obtained from National Oceanographic and

Atmospheric Administration (NOAA) web site) which is proportional to the square

of the wave height.

(ii) Gallagher (2001) fits stable auto-regressive model to global sea surface temperature

(SST) data.

Signal processing:

(i) Kidmose (2000) shows that class of stable distributions provides a better model for

audio signals, than the Gaussian distributed model.
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(ii) Kidmose (2000) shows that class of stable distributions provides a better model for

audio signals, than the Gaussian distributed model.Tsakalides and Nikias (1998)

studied the direction of arrival (DOA) estimation based on stable assumption.

Image Processing:

(i) Tsakalides et al. (2001) considered symmetric alpha stable distributions for

modeling the wavelet transform coefficients of sub band images.

(ii) Achim et al. (2001) employed stable distribution for the removal of speckle noise in

synthetic aperture radar (SAR) images.

Aerospace Applications:

(i) Gordon et al. (2003) used stable innovations models and Kalman- Levy filter for

tracking manoeuvering targets.

Model identification in Gaussian time series analysis is generally carried out using

autocorrelation and partial autocorrelation functions. Autocorrelation and partial

autocorrelation cannot be defined in stable processes due to the non-existence of second

order moments. This also prevents us from defining power spectral density, which is a

classical tool for frequency domain analysis of time series. Mathematical theory of

Gaussian time series is matured but the corresponding theory in the heavy tailed time

series is in its infant stage. In order to develop a theory for stable processes we have to

utilize some other dependency measures which can be well defined in this context. We

have to explore the applicability of these alternative measures to handle the problems of

model identification, parameter estimation and forecasting.

Time series models are widely used in various applications in science and engineering. In

many applications the observed time series is considered as a signal plus noise model or

observed time series is an actual time series plus a measurement noise. Another important

objective of classical time series analysis is to extract signal and noise component from a

signal plus noise model. Wiener Kolmogorov filtering and Kalman filtering are the
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popular classical methods used for this purpose. But both these methods require finite

second order moments. So we need some parallel filtering techniques for infinite variance

models. These limitations motivated us to develop a generalized signal extraction filter

for heavy tailed processes. Signal extraction filters entail the knowledge of signal and

noise parameters. Estimation of signal and noise parameters from an observed signal

under heavy tailed assumption is another important problem in this context.

1.1 Outline of the thesis

In Chapter 2 we provide a theoretical background for our proposed study. Here we

describe the time series analysis in both finite variance and infinite variance set up. In

finite variance case we assume the time series models with Gaussian innovation

distribution and in infinite variance case we assume stable innovation distribution. In the

present chapter we surveyed the theoretical developments for time series analysis based

on stable assumptions and organized them parallel to the developments in classical set

up. We can see the limitations of classical time series methods under stable assumptions.

Alpha stable distributions and time series models with symmetric stable distributed

innovations are discussed in this chapter. Here we introduce another concept known as

the tail covariance (for details see Sornette and Ide (2001), Bouchaud et al. (1998)),

which is a generalized measure of covariance in multivariate stable distributions with

heavy tailed index, α < 2. Linear prediction theory for infinite variance processes are also

discussed in this chapter. Another important tool for analyzing stable time series data is

the auto-covariation function. In this chapter we explore the application of

auto-covariation function and sample auto-covariation function in time series analysis.

Generalized Yule-Walker equations based on auto-covariation function are also discussed

in this chapter.

Chapter 3 is devoted to study the properties of signal extraction models under the

assumption that signal/noise are generated by symmetric stable processes. The optimum
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filter is obtained by the method of minimum dispersion discussed by Cline and Brockwell

(1985). The problem can be stated as below.

The observed data process Yt is often depicted as a combination of signal Xt and noise Nt

as follows:

Yt = Xt +Nt, t = 1, 2, ... . (1.1)

The signal Xt and noise Nt are assumed to follow stationary autoregressive moving

average of order (p, q)(ARMA(p, q)) models with symmetric stable innovation

distributions. Further Xt and Nt are assumed to be independent of each other. The

objective here is to use the data on Yt to estimate the unobserved component series Xt

and Nt . Signal and noise can be estimated by applying a linear filter W (B) to the

observed signal Yt as follows

X̂t =W (B)Yt ,

N̂t = Yt − X̂t = (1−W (B))Yt,
(1.2)

where W (B) =
∑

j wjB
j and B is the back-shift operator.

Signal extraction error, ζt can be defined as,

ζt = Xt − X̂t = (1−W (B))Xt −W (B)Nt.

Signal extraction procedure consists of finding an optimal filter which minimizes the

signal extraction error. In finite variance case optimal filter is the one which minimizes

the mean square error, where as in the case of symmetric stable process we propose

minimum dispersion criteria. For a finite mean process, the optimal filter weights, wj

which minimizes the error dispersion is the solution of the system of equations,

∂Disp(ζt)

∂wk
= 0, k = 0, 1, 2, ..., . (1.3)

The proposed filter has been generalized to doubly infinite and asymmetric filters studied
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in the literature for finite variance processes. We introduce a finite length filtering

algorithm based on Kalman-Levy filtering discussed by Sornette and Ide (2001). This can

be considered as an improvement over the infinite length minimum dispersion filter

discussed above. Kalman-Levy filter and predictor can be expressed as a finite linear

function of observed sequence as follows

X̂k = w0 +
∑k

j=1
wjYj. (1.4)

The performance of new filter is compared with their Gaussian counterparts by

simulation. The main results of this chapter are published in a paper by Balakrishna and

Hareesh (2009).

In Chapter 4 we study the parameter estimation of a stable autoregressive signal observed

in a symmetric stable noisy environment. Autoregressive parameters of this model are

estimated using a modified version of extended Yule-Walker method (see Davila (1998))

based on sample auto-covariation function. To minimize the bias of extended Yule-Walker

estimates, it is suggested that a large number of extended Yule-Walker equations to be

included for estimation. Auto-covariation functions in the extended Yule-Walker

equations are replaced by their respective estimates. This replacement introduces some

estimation error in this model. We represent these equations in the form of linear

regression model. The proposed estimate ϕ̂ for the autoregressive parameter is obtained

using ordinary least square regression model, and is given by

ϕ̂ = (∆̂′
p′,p∆̂p′,p)

−1∆̂′
p′,pT̂p′ , (1.5)

where ∆̂′
p,p′ = [λ̂(i− j + p)], i = 1, ..., p′, j = 1, .., p, T̂p′ = [λ̂(i)]p+p

′

i=p+1 and λ̂(.) is the

estimates of auto-covariation function. The scale parameters of innovation and noise

sequences are estimated using method of moments.

One limitation of the covariation based estimation is that the covariation matrix is not

necessarily non-singular. The present study highlights this problem and proposes a
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generalized solution to this problem using Moore-Penrose pseudo inverse. Singular value

decomposition helps to identify and eliminate the singular values νi, of the

auto-covariation matrix ∆̂m, which are close to zero. This will introduce the matrix ∆̂p of

rank, p ≤ m. Based on this matrix we can propose a modified version of the generalized

Yule-Walker estimate defined by,

ϕ̂∗ = (∆̂p)
+ T̂m, (1.6)

where,

(∆̂p)
+ = V

 Λ̂−1 0

0 0

UT

denotes the Moore-Penrose pseudo inverse of ∆̂p (see Stewart (1973), Rao (1973)).

Asymptotic results of the proposed Yule-Walker estimates are studied. The proposed

methods are illustrated through the data simulated from autoregressive signals with

symmetric stable innovations. The new technique is applied to analyze the time series of

sea surface temperature anomaly. Part of the results in this chapter is reported in

Balakrishna and Hareesh (2010a, 2010b).

In Chapter 5 we introduce the concept of partial auto-covariation function (PcovF) for

stable autoregressive time series model, a measure similar to PACF in the finite variance

time series. We generalize the Durbin-Levinson algorithm in stable autoregressive models

in terms of partial auto-covariation and use it for model identification. We propose a new

information criteria for consistent order selection similar to Akaike Information Criteria.

Concept of Partial auto-covariation is based on the linear prediction theory of stable

processes by Cline and Brockwell (1985). We consider the vectors Φ′
k = (ϕ′

1, ϕ
′
2, ..., ϕ

′
k),

where ϕ′
i = ϕi for i ≤ m and ϕ′

i = 0 when i > m. The lag k partial auto-covariation, ϕkk is

defined as the kth component of the vector

Φ′
k = ∆−1

k Tk, (1.7)
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where, ∆k = [λ(i− j)]ki,j=1 is an k × k matrix of auto-covariation function λ(.) with

λ(0) = 1 and Tk = (λ(1), ..., λ(k))′.

The well known Durbin-Levinson algorithm has been generalized to fit stable

autoregressive model consecutively increasing order to the observed time series data.

Based on this we can estimate autoregressive parameters and partial auto-covariation

function recursively. We can also derive an expression for mean absolute deviation of the

prediction error in terms of the proposed partial auto-covariation function.

In this chapter we introduce a new Information Criterion, similar to Akaike Information

Criterion (AIC) for order selection of autoregressive models, which can be defined as,

IC(k) = N2/β ln(γ̂u(k)) + 2k, forsome, β >
α

α− 1
, (1.8)

where, γ̂u(k) is the mean absolute deviation of prediction error and α is the heavy tailed

index. The order estimate m̂ is,

m̂ = arg min
1<k≤K(N)

IC(k). (1.9)

Under some condition we have shown that for large samples the proposed order selection

is consistent. That is,

m̂
p→ m as N → ∞.

Simulation results show that the proposed information criteria perform better than AIC

in both Gaussian and stable auto-regressive models in terms of model identification. Part

of the results in this chapter is reported in Balakrishna and Hareesh (2010a, 2010b).

Chapter 6 discusses the frequency estimation of sinusoidal signal observed in symmetric

stable noises using the modified version of generalized Yule-Walker estimate. Yule-Walker

based spectrum estimation is widely used in Gaussian signal processing. Though the

classical power spectral density does not exist in the stable signal environment, we can



CHAPTER 1. CHAPTER 1. INTRODUCTION 11

still define power transfer function corresponding to the power spectral density (see

Kluppelberg and Mikosch (1993)). In the present study we focus on the estimation of

power transfer function using the proposed Generalized Yule-Walker method. Frequency

estimators are obtained from the pole of the estimated power transfer function. The

power transfer function estimate can be written as,

Ŝ(ω) =
1

ϕ̂(ω)ϕ̂∗(ω)
(1.10)

where, ϕ̂∗ is the complex conjugate of ϕ̂.

ϕ̂(ω) = 1 +
m∑
k=1

ϕ̂k exp(−ikω),

and noting, ẑk = r̂k exp(−iω̂), as an estimate of pole of power transfer function Ŝ(ω), we

can estimate frequency component ω̂ from this estimated pole.

Another important problem discussed in this chapter is that of identifying the number of

frequency components in an observed signal. Number of frequency components depends

on the order of autoregressive model. So we can modify the order estimation criteria using

the decomposition method (see Castanie (2006)). The information criteria depends on the

singular values of the auto-covariation matrix. Proposed modified Information Criteria is,

IC(k) = N2/β(m− k) ln

(
(
∏m

t=k+1 ν̂t)
1

m−k

1
m−k

∑m
t=k+1 ν̂t

)
+ k(2m− k), (1.11)

where, k = 1, 2, ...,m− 1 and p < m < N . We can also define these criteria using the

eigen values βt of the auto-covariation matrix by replacing ν̂t by β̂t in equation (1.11).

Part of the results in this chapter is reported in Balakrishna and Hareesh (2010b).



Chapter 2

Basic Concepts

2.1 Introduction

Classical time series approach includes the modeling and analysis of finite variance linear

time series models (Box et al. (1994) and Brockwell and Davis (1987)). This approach is

generally known as Box and Jenkins time series analysis. Mathematical theory of classical

time series analysis is based on the assumption that the error variances are finite. Time

series analysis may be carried out either in time domain or in frequency domain. The

time domain theory is generally motivated by the presumption that correlation between

adjacent points in time is best explained in terms of the dependence of the current value

on the past values. The time domain approach focuses on modeling some future value

of a time series as a parametric function of the current and past values. Autocorrelation

function (ACF) and partial autocorrelation function (PACF) are major tools used for ana-

lyzing the serial dependency of time series data. On the other hand, the frequency domain

approach assumes that the primary characteristics of interest in time series analysis relate

to periodic or systematic sinusoidal variations found naturally in most data. Frequency

domain properties of time series can be well explained using spectral density function. One

main objective of time series analysis is to predict the future behavior of the time series

based on its past values. Minimum mean square prediction is the most popular method in

12
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this direction. Before going for prediction we have to identify a proper stochastic model

to the time series and then estimate its parameters. Estimation and forecasting are two

important problems in time series analysis. Autocorrelation and partial autocorrelation

function (PACF) plots are graphical approaches for model identification. Another popular

tool for model identification is the Akaike information criteria (AIC). Yule-Walker method

is a well accepted estimation procedure in classical time series model.

In recent years there has been a great deal of attention on modeling non-Gaussian time

series which includes time series with heavy tailed innovations. Symmetric stable distri-

butions are widely used to model heavy tailed variables as stated by Adler et al. (1998),

Gallagher (2001), Shao and Nikias (1993). Most of the analysis techniques of classical time

series models entails the knowledge of ACF. Autocorrelation function cannot be defined

in time series based on symmetric stable distributions. Many authors used sample auto-

correlation for stable time series due to its limiting properties (Adler et al. (1998), Davis

and Resnick (1985)). Another important tool for stable time series is auto-covariation func-

tion (AcovF), which can be mathematically defined in stable processes (Gallagher (2001),

Shao and Nikias (1993)). These functions are used for model identification and parameter

estimation of some stable time series models, which will be discussed in this chapter.

Mathematical theory and methods of classical time series analysis will be discussed in

the second section of this chapter. We discuss the classical time series models and some

tools and techniques used for its analysis. Symmetric stable distributions and processes

are defined in the third section. We surveyed the theoretical developments for time series

analysis based on stable assumptions and organized them parallel to the developments in

classical set up in Section 2.4. Linear prediction theory of some stable processes is addressed

in Section 2.5. Last section covers some limit theorems used in our study.
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2.2 Box and Jenkins time series approach

In this section we briefly discuss the linear stationary time series models with finite variance

used in the classical set up and its analysis based on Box and Jenkins approach. Time series

analysis starts with selection of a suitable mathematical model (or class of models) for the

data. To allow for the possibly unpredictable nature of future observations, it is natural

to suppose that each observation xt is a realization of certain random variable Xt. The

time series {xt, t ∈ T0} is then a realization of the family of random variables {Xt, t ∈ T0}.

These considerations suggest modeling the data as a realization (or part of a realization)

of a stochastic process {Xt, t ∈ T} where T ⊇ T0. Now we need to define stochastic process

and its realization to get more clarity to the previous discussion.

Definition 2.2.1. A stochastic process is a family of random variables {Xt, t ∈ T}

defined on a probability space (Ω,F , P ). The set T is an index set, of time points, such

as {0,±1, ...}, {0, 1, ...}, [0, ∞), (−∞, ∞).

In the present study, t will typically be discrete and vary over the integers t = 0, 1, 2, ...,

or some subset of the integers. From the definition of random variable we note that for

each fixed t ∈ T, Xt is a function Xt(.) on the set Ω. On the other hand, for each fixed

ω ∈ Ω, X.(ω) is a function on T.

Definition 2.2.2. The functions {X.(ω), ω ∈ Ω} on T are known as the realizations or

sample-paths of the process {Xt, t ∈ T}.

Remark 2.2.3. We shall use the term time series to mean both the data and the process

of which it is a realization.

Definition 2.2.4. Let F be the set of all vectors {t = (t1, ..., tn) ∈ T n : t1 < t2 < ... <

tn, n = 1, 2, ...}. Then the finite dimensional distribution functions of {Xt, t ∈ T}

are the functions {Ft(.), t ∈ F} defined for t = (t1, ..., tn) by

Ft(x) = P (Xt1 < x1, ..., Xtn < xn), x = (x1, ..., xn) ∈ Rn.
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Before going for the model description we start with some definitions and the basic

tools for time series analysis such as autocorrelation, partial autocorrelation and spectrum.

Most of the definitions in this section are taken from Brockwell and Davis (1987), Box et

al. (1994) and Shumway and Stoffer (2006).

Definition 2.2.5. If {Xt, t ∈ T} is a process such that V (Xt) < ∞ for each t ∈ T, then

the auto-covariance function γx(., .) of {Xt} is defined by

γx(r, s) = cov(Xr, Xs) = E[(Xr − E(Xr))(Xs − E(Xs))], r, s ∈ T. (2.1)

Definition 2.2.6. The time series {Xt, t ∈ Z}, with index set Z = {0,±1,±2, ...}, is said

to be covariance stationary or weak stationary if

(i) E|Xt|2 <∞, t ∈ Z,

(ii) E(Xt) = µ, t ∈ Z,

and

(iii) γ(r, s) = γ(r + t, s+ t), r, s, t ∈ Z is a function of |r − s| only.

If {Xt, t ∈ Z}, is covariance stationary then γx(r, s) = γx(r − s, 0) for all r, s ∈ Z. So

the auto-covariance function of a covariance stationarity process can be redefined as the

function of just one variable (lag),

γ(k) = γ(k, 0) = cov(Xt, Xt+k) = E[(Xt − µ)(Xt+k − µ)], (2.2)

where µ = E(Xt). The function γ(.) will be referred to as the auto-covariance function of

{Xt} and γ(k) as its value at lag k. Now we can state some elementary properties of the

auto-covariance function defined in (2.2).

Property 2.2.7. If γ(.) is the auto-covariance function of a covariance stationary process

{Xt, t ∈ Z}, then,

(i) γ(0) ≥ 0,
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(ii) |γ(h)| ≤ γ(0), h ∈ Z,

and

(iii) γ(h) = γ(−h), h ∈ Z.

Property 2.2.8. A real-valued even function defined on the set Z of all integers is non-

negative definite if and only if it is the auto-covariance function of a stationary time series.

Definition 2.2.9. Autocorrelation function at lag k is defined by

ρ(k) =
E[(Xt − µ)(Xt+k − µ)]√
E(Xt − µ)2 E(Xt+k − µ)2

For a covariance stationary process, the formula becomes ρ(k) = γ(k)
γ(0)

, where γ(0) = σ2
x =

E(Xt − µ)2.

Definition 2.2.10. The process {Xt}, is said to be Gaussian if the finite dimensional

distribution functions of {Xt} are all multivariate normal.

Definition 2.2.11. The time series {Xt, t ∈ Z}, is said to be strictly stationary if

the joint distributions of (Xt1 , ..., Xtm) and (Xt1+k, ..., Xtm+k) are the same for all positive

integer m and for all t1, ..., tm, k ∈ Z.

Remark 2.2.12. A strictly stationary process with finite second order moment is covari-

ance stationary. The converse of this statement is not true in general (Brockwell and

Davis (1987), page 13). However a Gaussian process is stationary in strict as well as weak

stationary.

A matrix associated with a stationary process is defined as the covariance matrix of for

random variables (X1, X2, ..., Xn) made at n successive times and is given by,
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Γn =


γ(0) γ(1) . . . γ(n− 2) γ(n− 1)

γ(1) γ(0) . . . γ(n− 3) γ(n− 2)
...

...
. . .

...
...

γ(n− 1) γ(n− 2) . . . γ(1) γ(0)



The matrix can also be expressed in terms of auto-correlation function. That is, Γn =

σ2
x Rn, where Rn is obtained by replacing γ(.) in Γn by ρ(.). It can be shown that both

these matrices are positive definite for any stationary process (Brockwell and Davis (1987),

Box et al. (1994)).

In practice we have a finite time series X1, X2, ..., XN of N observations, from which we

can only obtain estimates of the mean µ and autocorrelations. One of the most satisfactory

estimates of these functions have been discussed by Box et al. (1994) and is defined as

follows:

Definition 2.2.13. An estimate of the k−th lag autocorrelation ρ(k) is

ρ̂(k) =
γ̂(k)

γ̂(0)
, (2.3)

where,

γ̂(k) =
N−k∑
t=1

(Xt −X)(Xt+k −X), k = 0, 1, 2, ..., K, (2.4)

is the estimate of the auto-covariance γ(k), and X is the sample mean of the time series.

The function ρ̂(k) defined in (2.3) may be called the sample autocorrelation function.

So far we have discussed time series in the time domain. Now we will discuss it in

the frequency domain. The idea that a time series is composed of periodic components,

appearing in proportion to their underlying variances, is fundamental in the spectral repre-

sentation of stationary processes. In other words, any stationary time series may be thought
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of, approximately, as the random superposition of sines and cosines oscillating at various

frequencies. Spectral density function is a mathematical tool for analyzing the periodic

behavior of stationary time series. We will define it using some spectral representation

theorems (for details see Shumway and Stoffer (2006)).

Theorem 2.2.14. A function γ(k), for k = 0,±1,±2, ... is Hermitian non-negative definite

if and only if it can be represented as

γ(k) =

∫ 1/2

−1/2

e2πiωkdF (ω), (2.5)

where, F (ω) is a monotone non-decreasing function which is right continuous, bounded in

[−1/2, 1/2], and uniquely determined by the conditions F (−1/2) = 0, F (1/2) = γ(0).

Proof. See Shumway and Stoffer (2006), page 534-535.

Theorem 2.2.14 states that in particular, if {Xt} is stationary with auto-covariance γ(k),

then there exist a unique monotonically increasing function F (ω), called the spectral

distribution function, that is bounded, with F (−∞) = F (−1/2) = 0, and F (∞) =

F (1/2) = γ(0) such that (2.5) is true.

Theorem 2.2.15. If γ(k), is the auto-covariance function of a stationary process, {Xt},

with

∞∑
k=−∞

|γ(k)| <∞,

then the spectral density of {Xt} is given by,

f(ω) =
∞∑

k=−∞

γ(k) e−2πiωk. (2.6)

Proof. See Shumway and Stoffer (2006), page 537.
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A more important situation we use repeatedly is the one covered by Theorem 2.2.15,

where it is shown that, subject to absolute summability of the auto-covariance, the spectral

distribution function is absolutely continuous with dF (ω) = f(ω)dω, and the representation

(2.6) becomes a motivation for the property given below.

Property 2.2.16. If the auto-covariance function, γ(k), of a stationary process satisfies

∞∑
k=−∞

|γ(k)| <∞,

then it has the representation,

γ(k) =

∫ 1/2

−1/2

e2πiωkf(ω)dω, k = 0,±1,±2, ..., (2.7)

as the inverse transform of the spectral density, which has the representation as shown in

(2.6).

Auto-covariance function γ(k) and the spectral density function f(ω) contain the same

information about the underlying process. The auto-covariance function expresses infor-

mation in terms of lags, whereas the spectral density expresses the same information in

frequencies. So γ(k) is a classical tool for analyzing time series in time domain where as

f(ω) entails the same in frequency domain. More properties of this function, its estimation

and applications are extensively discussed in Shumway and Stoffer (2006), Brockwell and

Davis (1987), Box et al. (1994). Now we describe some standard linear time series models

and their properties.

Definition 2.2.17. White noise process is a sequence {at} of uncorrelated random

variable with mean zero and constant variance σ2
a. A particularly useful white noise series

is Gaussian white noise, wherein the at are independent normal random variables, with

mean zero and variance σ2
a or more briefly, at ∼ iidN(0, σ2

a).

It is well known that a stochastic processes {Xt} can be represented as the output from
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a linear filter, whose input is white noise {at}. That is

Xt − µ = at + ψ1at−1 + ψ2at−2 + ...

=
∑∞

j=1 ψjat−j,
(2.8)

where, µ is the common mean of Xt and ψj’s are suitable constants. We assume the

process {Xt} is a zero mean process unless it specified. For {Xt} defined by (2.8) to a

weakly stationary process, it is necessary for the coefficients ψj to be absolutely summable,

that is, for
∑∞

j=1 |ψj| < ∞. The model (2.8) implies that, under suitable conditions Xt is

also a weighted sum of past values of X ′
ts plus a white noise at, that is

Xt = π1Xt−1 + π2Xt−2 + ...+ at

=
∑∞

j=1 πjXt−j + at.
(2.9)

If we define ψ(B) =
∑∞

j=0 ψjB
j and π(B) =

∑∞
j=0 πjB

j, then we can show that, π(B) =

ψ−1(B), and B is the shift operator defined as BkXn = Xn−k, ψ0 = π0 = 1.

Definition 2.2.18. Consider a special case of (2.9), in which only first p of the weights

are non zero. The model is known as autoregressive model of order p (AR(p)), which

may be written as,

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + at. (2.10)

Model (2.10) can be represented as ϕ(B)Xt = at, where the polynomial ϕ(B) = 1− ϕ1B −

ϕ2B
2−...−ϕpBp. An AR(p) process {Xt} is stationary, if the roots of the equation ϕ(z) = 0

lie outside the unit circle.

Definition 2.2.19. Consider a special case of (2.8), in which only first of the q weights

are non zero. The model is known as moving average model of order q (MA(q)), which

may be written as,

Xt = at + θ1at−1 + θ2at−2 + ...+ θqat−q. (2.11)

Model (2.11) can be represented as Xt = θ(B)at, where the polynomial θ(B) = 1 + θ1B +
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θ2B
2 + ...+ θqB

q. Moving average process is always stationary.

Definition 2.2.20. Autoregressive Moving Average (ARMA(p, q)) model is the combina-

tion of autoregressive and moving average models which may be defined as

ϕ(B)Xt = θ(B)at, (2.12)

where, the polynomials ϕ(B) = 1− ϕ1B− ϕ2B
2 − ...− ϕpB

p and θ(B) = 1+ θ1B + θ2B
2 +

...+θqB
q. An ARMA(p, q) process {Xt} is stationary, if the roots of the equation ϕ(z) = 0

lie outside the unit circle.

Definition 2.2.21. An ARMA(p, q) model, ϕ(B)Xt = θ(B)at, is said to be causal, if the

time series {Xt; t = 0,±1,±2, ...} can be written as a one-sided linear process:

Xt =
∞∑
j=0

ψjat−j = ψ(B)at,

where, ψ(B) =
∑∞

j=0 ψjB
j, and

∑∞
j=0 |ψj| <∞; we set ψ0 = 1.

Property 2.2.22. An ARMA(p, q) model is causal if and only if ϕ(z) ̸= 0 for |z| ≤ 1.

The coefficients of ψ(B) can be determined by solving

ψ(z) =
∞∑
j=0

ψjz
j =

θ(z)

ϕ(z)
, |z| ≤ 1.

Another way to phrase this property is that an ARMA process is causal only when the

roots of ϕ(z) lie outside the unit circle; that is, ϕ(z) = 0 only when |z| > 1.

Definition 2.2.23. An ARMA(p, q) model, ϕ(B)Xt = θ(B)at, is said to be invertible, if

the time series {Xt; t = 0,±1,±2, ...} can be written as

π(B)Xt =
∞∑
j=0

πjXt−j = at,

where, π(B) =
∑∞

j=0 πjB
j, and

∑∞
j=0 |πj| <∞; we set π0 = 1.
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Property 2.2.24. An ARMA(p, q) model is invertible if and only if θ(z) ̸= 0 for |z| ≤ 1.

The coefficients of π(B) can be determined by solving

π(z) =
∞∑
j=0

πjz
j =

ϕ(z)

θ(z)
, |B| ≤ 1.

Another way to phrase this property is that an ARMA process is invertible only when

the roots of θ(z) lie outside the unit circle.

From the definition we can see that, ARMA(p, q) model reduces to AR(p) model when

q = 0 and similarly it reduces to MA(q) model when p = 0.

Property 2.2.25. Autocorrelation function, ρ(.) of a stationary AR(p) process with finite

second order moments, follows the Yule-Walker equations specified by,

ρ(k) =

p∑
i=1

ϕiρ(k − i), k ≥ 1. (2.13)

These equations can be used to estimate the AR parameters ϕ1, ..., ϕp by replacing the

ρ(k) by the sample ACF. The resulting estimates referred to as the Yule-Walker estimates.

Property 2.2.26. The MA(q) process is stationary with mean zero and auto-correlation

function

ρ(k) =


q−k∑
j=0

θjθj+k, 0 ≤ k ≤ q

0 k > q.

The cutting of ρ(k) after q lags is the signature of the MA(q) model. So the auto-

correlation function (ACF) provides a considerable amount of information about the order

of dependence when the process is a moving average process. If the process, however, is

ARMA or AR, the ACF alone tells us little about the orders of dependence. Hence, it is

worthwhile pursuing a function that will behave like the ACF of MA models, but for AR

models, namely, the partial autocorrelation function (PACF) is more useful. To formally

define the PACF, we need linear prediction theory of stationary process. We will discuss

this in next section.
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Time series prediction: In prediction, the goal is to forecast the future values of

a time series, Xn+m,m = 1, 2, ..., based on the data collected up to the present, X =

(Xn, Xn−1, ..., X1). Throughout this section, we will assume {Xt} is stationary and the

model parameters are known. The problem of model parameter estimation will be discussed

later. The theory of minimum mean square error (MMSE) forecast for linear time series

(process) provides us the result that the m−step ahead forecast X̂n+m is the conditional

expectation given by

X̂n+m = E(Xn+m|Xn, Xn−1, ..., X1).

When we are dealing with linear time series the predictor will be a linear function of the

past observations and may be represented as,

X̂n+m = l0 +
n∑
j=1

ljXn+m−j, (2.14)

where l0, l1, ..., ln are real numbers. Linear predictors of the form (2.14) that minimize the

mean square prediction error are called best linear predictors (BLPs). If the process is

Gaussian, minimum mean square error predictors and best linear predictors are the same

(Shumway and Stoffer (2006), page 111).

Property 2.2.27. Best Linear Prediction (BLP) for Stationary Processes: Given

data (X1, X2, ..., Xn), the best linear predictor, X̂n+m = l0+
∑n

j=1 ljXj, of Xn+m, form ≥ 1,

is found by solving

E[(X̂n+m −Xn+m)Xk] = 0, k = 0, 1, ..., n, (2.15)

where X0 = 1.

The equations specified in (2.15) are called the prediction equations, which can be used

to solve for the coefficients (l0, l1, ..., ln).

For mean-zero stationary time series, let X̂k denote the regression ofXk on (Xk−1, Xk−2, ..., X1),

which we write as

X̂k = l1Xk−1 + l2Xk−2+, ...,+lk−1X1. (2.16)
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No intercept term is needed in (2.16) because the mean of Xk is zero. In addition, let X̂0

denote the regression of X0 on X1, X2, ..., Xk−1, then

X̂0 = l1X1 + l2X2 + ...+ lk−1Xk−1. (2.17)

The coefficients, l1, l2..., lk−1 in (2.17) are the same as those in (2.16). Based on these

equations, partial autocorrelations can be defined as follows:

Definition 2.2.28. The partial autocorrelation function (PACF) of a stationary

process, {Xk}, denoted ϕk,k, for k = 1, 2, ... , is defined by

ϕ1,1 = corr(X1, X0) = ρ(1), (2.18)

and

ϕk,k = corr(Xk − X̂k, X0 − X̂0), k ≥ 2. (2.19)

Both (Xk − X̂k) and (X0 − X̂0) are uncorrelated with {X1, X2, ..., Xk−1}. By stationarity,

the PACF, ϕk,k, is the correlation between Xt and Xt−k obtained by fixing the effect of

Xt−1, Xt−2, ..., Xt−(k−1).

Consider, first, one-step-ahead prediction. That is, given (X1, X2, ..., Xn), we wish to

forecast the value of the time series at the next time point, Xn+1 by assuming an AR(n)

model for Xn+1. The BLP of Xn+1 is

X̂n+1 = ϕn,1Xn + ϕn,2Xn−1 + ...+ ϕn,nX1. (2.20)

Using the best linear prediction for stationary process, prediction equations (2.15) assure

that the coefficients ϕn,1, ϕn,2, ..., ϕn,n satisfy the Yule-Walker equations,

n∑
j=1

ϕn,jγ(k − j) = γ(k), k = 1, 2, ..., n. (2.21)
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The Yule-Walker equations (2.21) can be written using matrix notation as

ΓnΦn = γn, (2.22)

where, Φn = (ϕn,1, ϕn,2, ..., ϕn,n)
′, Γn = [γ(i − j)]ni,j=1 is an n × n matrix and γn =

(γ(1), ..., γ(n))′.

If Γn is nonsingular, Φn is unique, and is given by

Φn = Γ−1
n γn. (2.23)

It is sometimes convenient to write the one-step-ahead forecast in vector notation

X̂n+1 = ΦnX, (2.24)

where X = (Xn, Xn−1, ..., X1). The mean square error is

Pn+1 = E(X̂n+1 −Xn+1)
2 = γ(0)− γ′nΓ

−1
n γn. (2.25)

For ARMA models in general, the prediction equations will not be as simple as in the pure

AR case (see Shumway and Stoffer (2006), page 113). In addition, for n large, the use of

(2.23) is prohibitive because it requires the inversion of a large matrix. There are, however,

iterative solutions that do not require any matrix inversion. In particular, we mention the

recursive solution due to Levinson (1947) and Durbin (1960). A detailed description of this

algorithm is given in Shumway and Stoffer (2006), Page 113.

Definition 2.2.29. Durbin Levinson Algorithm: Equations (2.23) and (2.25) can be

solved iteratively as follows:

ϕ0,1 = 0,

P̂0 = γ(0).
(2.26)
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For, n ≥ 1

ϕn,n =
ρ(n)−

∑n−1
j=1 ϕn−1,kρ(n−k)

1−
∑n−1

j=1 ϕn−1,kρ(k)
,

Pn+1 = Pn(1− ϕ2
n,n),

(2.27)

where, for n ≥ 2,

ϕn,k = ϕn−1,k − ϕn,nϕn−1,n−k, k = 1, 2, ..., n− 1. (2.28)

Durbin Levinson Algorithm is an efficient algorithm in modern time series analysis. This

recursive algorithm can be used to estimate partial autocorrelations, Yule-Walker estimates

of autoregressive parameters, forecast, forecast error etc.

Model identification: The primary tools for model identification are the plots of

autocorrelation and the partial autocorrelation. The sample autocorrelation plot and the

sample partial autocorrelation plot are compared to the theoretical behavior of these plots

when the order is known. Autocorrelation function of an autoregressive process of order

p tail off, its partial autocorrelation function has a cut off after lag p. On the other hand

the autocorrelation function of moving average process cuts off after lag q, while its partial

autocorrelation tails off after lag q. If both autocorrelation and partial autocorrelation tail

off, a mixed process is suggested. Furthermore, the autocorrelation function for a mixed

process, contains a p-th order AR component and q-th order moving average component,

and is a mixture of exponential and damped sine waves after the first q−p lags. The PACF

for a mixed process is dominated by a mixture of exponential and damped sine waves after

the first q − p lags.

Specifically, for an AR(1) process, the sample autocorrelation function should have

an exponentially decreasing behavior. However,the sample auto-correlation function for

higher-order AR processes are often a mixture of exponentially decreasing and damped si-

nusoidal components. For higher-order autoregressive processes, the sample autocorrelation

needs to be supplemented with a partial autocorrelation plot. The partial autocorrelation

of an AR(p) process becomes zero at lag p + 1 and greater, so we examine the sample
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partial autocorrelation function to see if there is evidence of a departure from zero. This

is usually determined by placing a sample partial autocorrelation plot and corresponding

(1− α)100% confidence level of white noise process, for a given α.

The autocorrelation function of aMA(q) process becomes zero at lag q+1 and greater,

so we examine the sample autocorrelation function to see where it essentially becomes zero.

We do this by placing the (1− α)100% confidence interval for the sample autocorrelation

function on the sample autocorrelation plot.

Prediction error variance decrease when the order increases. When the theoretical order

is reached, this variance remains constant. Most of the order selection criteria follow this

concept. However, in practice we have to use estimate of the prediction error variance for

model identification. When the order is over estimated the bias of the estimated prediction

error variance increases. Model selection criteria should take both these aspects in to

account. One of the first criteria integrate these two aspects, proposed by Akaike (1970)

was the Final Prediction Error (FPE): the estimated error which minimizes:

FPE(k) =
N + k

N − k
σ̂2(k), (2.29)

where σ̂2(k) is the estimated prediction error variance of autoregressive models with order k.

The autoregressive parameters and corresponding prediction error variances are estimated

using Durbin-Levinson algorithm. Bias of the estimated prediction error variance of AR(k)

model for large is N given by σ2( k
N
) and which can be used to correct the identification

criteria.

One of the most well known criteria proposed by Akaike (1974) is Akaike Information

Criteria (AIC) which included the bias correction and may be defined as

AIC(k) = N ln(σ̂2(k)) + 2k, (2.30)

where, σ̂2(k) is the estimated prediction error variance of autoregressive models of order k.

Roughly speaking, the first term on the right hand side of AIC is a measure of goodness



CHAPTER 2. BASIC CONCEPTS 28

of fit of the model to the data and the second term is a penalty function, which penalizes

higher dimensional models. Given a set of candidate models, the selection is typically made

by choosing the model that minimizes the adopted criterion function among all candidate

models. The autoregressive parameters and corresponding prediction error variances are

estimated using Durbin-Levinson algorithm. Best choice of the order is the one which

minimizes the AIC(k). Order estimate is not consistent in finite variance case. There are

some other order selection criteria such as Bias corrected AIC (AICc), Bayesian Information

Criteria (BIC) etc, for details one can refer Shumway and Stoffer (2006), page 54. A more

general description of these methods for model identification of ARMA models can be seen

in Brockwell and Davis (1987), page 293.

Parameter estimation: Throughout this section, we assume we have N observations,

X1, ..., XN , from an ARMA(p, q) process in which, initially, the order parameters, p and

q, are known. Our goal is to estimate the parameters, ϕ1, ..., ϕp, θ1, ..., θq, and σa. We have

already discussed the problem of order selection in the pervious section. We begin with

the method of moments to estimate the parameters. We immediately see that, if Xt, is not

centered, E(Xt) = µ then the method of moments estimator of µ is the sample average, X.

Thus, while discussing method of moments, we will assume µ = 0 . Although the method of

moments can produce good estimators, they can sometimes lead to suboptimal estimators.

We limited our study to the case in which the method leads to optimal (efficient) estimators,

that is, AR(p) models. This is because, given initial conditions, AR(p) models are linear

models, and the Yule-Walker estimators are essentially least squares estimators.

For a stationary AR(p) process, {Xt} defined by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ...+ ϕpXt−p + at, (2.31)

the auto-covariance function follows the Yule-Walker equations specified by,

γ(k) =
∑p

i=1 ϕiγ(k − i), k = 1, 2, ..., p,

σa = γ(0)−
∑p

i=1 ϕiγ(i).
(2.32)
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The prediction equations (2.32) can be written in matrix notation as

ΓpΦp = γp,

σ2
a = γ(0)− Φ′γp,

(2.33)

where, Φp = (ϕ1, ϕ2, ..., ϕp)
′, Γp = [γ(i−j)]pi,j=1 is an p×p matrix and γp = (γ(1), ..., γ(p))′.

Using the method of moments, we replace γ(k) in (2.33) by γ̂(k), and solve for

Φ̂p = Γ̂−1
p γ̂p,

σ̂2
a = γ̂(0)− Φ̂′γ̂p.

(2.34)

These are called the Yule-Walker estimators. For calculation purposes, it is sometimes

more convenient to work with the sample autocorrelation function. By factoring γ̂(0) in

(2.34), we can write the Yule-Walker estimates as

Φ̂p = R̂−1
p ρ̂p,

σ̂2
a = ρ̂(0)− Φ̂′ρ̂p,

(2.35)

where, Rp = [ρ̂(i− j)]pi,j=1 is an p×p matrix and ρ̂p = (ρ̂(1), ..., ρ̂(p))′. For AR(p) models, if

the sample size is large, the Yule-Walker estimators are approximately normally distributed,

and σ̂2
a is close to the true value of σ2

a.

Large Sample Results for Yule-Walker Estimators: The asymptotic (N → ∞)

behavior of the Yule-Walker estimators in the case of causal AR(p) processes is as follows:

(for a proof see Shumway and Stoffer (2006), page 530). As N → ∞,

√
N(Φ̂p − Φp)

L→ N(0, σ2
aΓ

−1
p ),

and σ̂2
a

p→ σ2
a.

(2.36)

The Durbin-Levinson algorithm, (2.26)-(2.28), can be used to calculate Φ̂p without inverting

Γp or Rp, by replacing ρ(k) by ρ̂(k) in the algorithm. In running the algorithm, we will

iteratively calculate the k × 1 vector, Φ̂k = (ϕ̂k,1, ϕ̂k,2, ..., ϕ̂k,k)
′, for k = 1, 2, ... . Thus, in
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addition to obtaining the desired forecasts, the Durbin-Levinson algorithm yields ϕ̂k,k, the

sample PACF. Using (2.36), we can get the following result.

Large Sample Distribution of the PACF: For a causal AR(p) process, as N → ∞,

√
Nϕ̂k,k

L→ N(0, 1), fork > p. (2.37)

If we use the method of moments for MA or ARMA models, we will not get optimal

estimators because in such processes moment equations are nonlinear in the parameters

(Shumway and Stoffer (2006), page 124). Maximum likelihood and least square estimation

procedures are another popular method in linear time series estimation (For details one

can refer Shumway and Stoffer (2006), Brockwell and Davis (1987), Box et al. (1994)).

2.3 Alpha Stable Distributions and Processes

Stable distributions are recommended to model the data when it shows a tendency to

follow heavy tailed distributions. Theoretical justifications for using stable distribution

as a basic statistical modeling tool come from the Generalized Central Limit Theorem

(GCLT) discussed by Shao and Nikias (1993), just like the central limit theorem in Gaussian

distribution. The theorem stated below shows that if the finite variance assumption is

dropped, the only possible resulting limit distributions are stable.

Theorem 2.3.1. A random variable η is said to be stable, or to have a stable distribution,

if for every positive integer n there exist constants an > 0 and bn, such that the sum

η1 + η2 + ... + ηn has the distribution as that of anη + bn for n → ∞ and all iid random

variables η1, η2, ..., ηn , with the same distribution as η.

Proof. See Breiman (1968), page 199.

If an observed signal or noise can be thought of as the sum or a result of large number

of independent and identically distributed effects, then the generalized central limit the-

orem suggests that a stable model may be appropriate. This characteristic of the stable
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distribution is one of the main reasons why the stable distribution is suitable for modeling

signals and noise of impulsive nature. Definition and properties of alpha stable distribu-

tions and processes are discussed in detail by, Zolotarev (1986), Samorodnitsky and Taqqu

(1994), Brockwell and Davis (1987). The stable distribution is specified by its characteristic

function, Φ(t) = E(exp(itη)) and is given by,

Φ(t) =

 exp(itβ − γ|t|α(1− iθ t
|t| tan(

πα
2
))), if α ̸= 1

exp(itβ − γ|t|α(1− 2iθ t
π|t| ln(|t|))), if α = 1

(2.38)

which depends on four parameters: α ∈ (0, 2], measuring the tail thickness (thicker

tails for smaller values of the parameter), θ ∈ [−1, 1] determining the degree and sign

of asymmetry, γ > 0 (scale) and β ∈ R (location). To denote stable distribution with

parameters α, θ, γ and β we will use the notation Sα(β, θ, γ).

As in the Gaussian case, a random variable X with Sα(β, θ, γ) distribution can be

standardized to produce

Z =
X − β

γ
∼ Sα(0, θ, 1). (2.39)

Stable family of distributions have a closed form density function in a very few cases:

α = 2, corresponding to the normal distribution, α = 1 and β = 0, yielding the Cauchy

distribution, and α = 1/2 and β = 0, for the Levy distribution. Another difficulty in this

class of distributions is that moments of order greater than α do not exist, except when

α = 2. Standard estimation procedures will fail due to the above mentioned limitations of

these classes of distributions. When α = 2, the normal distribution has well understood

asymptotic tail properties. The tail probabilities in the non Gaussian stable case are

asymptotically known.

Definition 2.3.2. Tail approximation: Let X ∼ Sα(β, θ, γ) with 0 <α< 2, −1 <θ < 1,

then as x→ ∞
P (X > x) ∼ γαC(1 + θ)x−α

f(x|α, β, θ, γ) ∼ αγαC(1 + θ)x−(α+1)
(2.40)

The parameter α is the heavy tailed index and C is the scale factor. The statement
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h(x) ∼ g(x) as x→ a means that lim
x→a

h(x)
g(x)

= 1.

Pareto distributions are a class of probability laws with upper tail probabilities given

exactly by the right hand side of (2.40). The term stable Paretian laws is used to distinguish

between the fast decay of the Gaussian law and the Pareto-like tail behavior in the α < 2

case. A general distribution is said to be heavy tailed if its tails are heavier than exponential

distributions. Heavy tails refer to a slow, power-like decay of a tail of a distribution function.

When β = 0 and θ = 0 the distribution is referred to as a symmetric stable distribution

and is defined below.

Definition 2.3.3. A random variable η is said to have a symmetric stable distribution

and we denote it by η ∼ Sα(γ) if its characteristic function is of the form

φη(v) = exp(−γ|v|α),

where, α ∈ (0, 2], measuring the tail thickness, γ > 0 the scale (dispersion) parameter.

Note that E|η|k < ∞, if k < α. We assume that E|η| < ∞. In other words, we restrict

α to be in the interval (1, 2]. In the present study our main focus is limited to the finite

mean symmetric stable random variable.

Multivariate stable distributions is achieved by constructing a linear sum of p inde-

pendent stable random variables. A p−dimensional alpha stable random vector ε, can be

written as a linear sum of p independent stable random variables:

ε = Gζ, (2.41)

where ζ is the vector representation of p independent alpha stable variables and G ∈ Rp×p

represents the linear relation between ε and ζ. Then, ε is characterized by the heavy tailed

parameter and tail covariance matrix, which is a generalized measure of covariance in stable

distributions with α < 2 (Sornette and Ide (2001), Bouchaud et al. (1998)). We can define

the Tail Covariance as follows:
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Definition 2.3.4. Let ζi be the i-th component of the random vector ζ defined in equa-

tion (2.41), then the Tail covariance B is defined as the matrix of scale factors of the

distribution of all products ζiζj. The matrix B can be represented as

B = G[α/2] C GT [α/2], (2.42)

where, C is a diagonal matrix containing the scale factors of the p independent random

variables ζ and the operator {.}[β] is defined as,

G
[β]
ij = |Gij|β sign(Gij), (2.43)

where,

sign(x) =


1, for x > 0

−1, x < 0

0, x = 0.

Given a tail-covariance matrix, B, G and C can be obtained directly via diagonalization.

Brockwell and Davis (1987) discussed stable ARMA model and its properties, and

various statistical problems associated with an ARMA processes. The stable ARMA(p, q)

process can be described through some propositions given by Brockwell and Davis (1987).

Proposition 2.3.5. Let {at} be an iid sequence of symmetric stable random variables

specified in Definition 2.3.3. If {ψj} is a sequence of constants such that

∞∑
j=−∞

|ψj|δ <∞, δ ∈ (0, 1]

then the infinite series,
∞∑

j=−∞

ψjaj,

converges absolutely with probability one.
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Proof. See Brockwell and Davis (1987), page 480.

The process defined by

Xt =
∞∑

j=−∞

ψjat−j, (2.44)

where {ψj} and {at} satisfy the assumptions of Proposition 2.3.5, exists with probability

one and is strictly stationary. In particular if the coefficients ψj are chosen so that ψj = 0

for j < 0 and
∞∑

j=−∞

ψjz
j =

θ(z)

ϕ(z)
, |z| < 1, (2.45)

where θ(z) = 1 + θ1z + ... + θqz
q and ϕ(z) = 1 + ϕ1z + ... + ϕpz

q ̸= 0 for |z| ≤ 1,

then we can show that {Xt} as defined by equation (2.44) satisfies the ARMA equations

ϕ(B)Xt = θ(B)at. This results can be stated as a proposition.

Proposition 2.3.6. Let {at} be an iid sequence of symmetric stable random variables

specified in Definition 2.3.3. Then if θ(.) and ϕ(.) are polynomials such that ϕ(z) ̸= 0 for

|z| < 1, the difference equations

ϕ(B)Xt = θ(B)at, (2.46)

have the unique strictly stationary solution,

Xt =
∞∑

j=−∞

ψjat−j,

where the coefficients {ψj} are determined by the relation (2.45). If in addition ϕ(z) and

θ(z) have no common zeros, then the process (2.46) is invertible if and only if θ(z) ̸= 0 for

|z| ≤ 1.

Proof. See Brockwell and Davis (1987), page 481.

Remark 2.3.7. The ARMA process expressed in (2.46) is known as stable autoregres-

sive moving average (ARMA(p, q)) model and it reduces to stable autoregressive
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(AR(p)) model when θ(B) = 1 or q = 0 and similarly it reduces to stable moving

average (MA(q)) model when ϕ(B) = 1 or p = 0.

2.4 Analysis of Stable Time Series Models

In this section we surveyed the existing tools and techniques for analyzing stable time series

models. Autocorrelation function cannot be defined for stable time series due to the lack

of finite second order moments. But many researchers have used sample auto-correlation

functions for time series analysis of stable models (see Adler et al. (1998) and reference

there for). The main motivation of these studies is based on a limit Theorem of sample

auto-covariation function of stable moving average process by Davis and Resnick (1986).

The Theorem can be stated as follows:

Theorem 2.4.1. Let {at} be an iid symmetric sequence of α-stable random variables and

let {Xt} be the strictly stationary process defined by,

Xt =
∞∑

j=−∞

ψjat−j,

where,
∞∑

j=−∞
|j||ψj|δ <∞ for some δ ∈ (0, α) ∩ [0, 1]. It then follows immediately that the

sample correlation function

ρ̂(l) =
n−l∑
t=1

XtXt+l/
n∑
t=1

X2
t , l > 0

converges in probability to the analogue of the correlation function defined by

ρ(l) =
∞∑

j=−∞

ψjψj+l/
∞∑

j=−∞

ψ2
j .

That is for δ > α,

n1/δ(ρ̂(l)− ρ(l))
p→ 0.
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Also

(n/ ln(n))1/α(ρ̂(l)− ρ(l))
L→ Yl

where

Yl =

(
∞∑
j=1

|ρ(l + j) + ρ(l − j)− 2ρ(j)ρ(l)|α
)1/α

U

V
.

Here U and V are independent stable random variable with V is positive with V ∼ Sα(0, 1, C
−2/α
α/2 )

and U ∼ Sα(0, 0, C
1/α
α ), where

Cα =


1−α

Γ(2−α) cos(πα
2
)
, if α ̸= 1

2
π

if α = 1.

Proof. See Davis and Resnick (1986).

Adler et al. (1998) discussed the importance of this result in the analysis of stable

time series models. Model identification and parameter estimation of stable autoregressive

model has been studied parallel to the classical Box and Jenkins setup using sample auto-

correlation function. Simulation results discussed in Adler et al. (1998) indicate that the

sample ACF is a satisfactory tool for stable time series analysis.

From Theorem 2.4.1 we can show that the Yule-Walker estimates defined in (2.35) in

terms of sample autocorrelation function of a stable AR(p) model follows the distribution,

(n/ ln(n))1/α(ϕ̂− ϕ)
L→ D(Y1, ..., Yp), (2.47)

where, D is a p × p matrix of partial derivative of vector function ψ(z) = Rp(z)
−1z. Here

Rp(z) = [z|i−j|]
p
i,j=1, z0 = 1 and ϕ = ψ(ρ).

The limiting distribution of the sample PACF is now given by (2.47), which is in general

complicated. However, when p = 0, the right hand side of (2.47) reduces to U/V, which is

the same limit as for the sample ACF of white noise. This result can be used to identify the

order of autoregressive model from the sample PACF plot and corresponding confidence
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level of white noise process. In practice distribution of U/V cannot be computed theoreti-

cally, simulation or numerical methods are the only solution. This is one of the limitations

of this method compared to the classical setup.

Bhansali (1988) and Knight (1989) used Akaike information criterion (AIC) for order

selection of stable autoregressive models. AIC is defined by

AIC(k) = N ln(σ̂2(k)) + 2k, (2.48)

where N is the sample size, and σ̂2(k) is the estimate of the innovation variance obtained

from the Yule-Walker estimates for k−th order autoregressive sequence. The order estimate

p̂ is,

p̂ = arg min
1<k≤K(N)

AIC(k), (2.49)

where K(N) is an acceptance upper bound for p, is the corresponding estimate of the order

p. In classical setup AIC is not a consistent order selection criteria, but Knight (1989)

shows that this criteria is consistent for heavy tailed situation.

Auto-covariation is an alternative measure employed in the place of autocorrelation

(Gallagher (2001)) which requires only the finite absolute mean. In other words, we restrict

α to be in the interval (1, 2] . Now we can see the definition and properties of this function.

Definition 2.4.2. For a zero mean stationary process, with finite absolute moment, the

auto-covariation function of lag k is defined as

λαx(k) = Acov(Xn, Xn−k) =
E(XnXn−k

[β−1])

E(X
[β]
n−k)

, forsome β < α (2.50)

where, {}[β], is same as defined in (2.43). For the sake of simplicity in our study, we consider

β = 1, so the auto-covariation function becomes,

λx(k) = Acov(Xn, Xn−k) =
E(Xnsign(Xn−k)

E|Xn−k|
. (2.51)
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Covariation function is not symmetric in k , that is, λx(k) ̸= λx(−k). Some authors use

the term covariation to define the numerator of equation (2.50). That is

[Xn, Xn−k]α = E(XnXn−k
[β−1]). (2.52)

Proposition 2.4.3. Let (X, Y1, Y2) be jointly alpha stable, α > 1, with Y1 and Y2 inde-

pendent. Then

[X,Y1 + Y2]α = [X, Y1]α + [X, Y1]α.

Proof. See Samorodnitsky and Taqqu (1994), page 93.

Gallagher (2001) studied the limiting behavior of sample auto-covariation function. This

study leads us to utilize sample auto-covariation as a tool in time series analysis of stable

processes and is defined as

λ̂x(k) =

∑r
n=sXnsign(Xn−k)∑N

n=1 |Xn|
, (2.53)

where N is the sample size, s = max(1, 1 + k) and r = min(N,N + k). Then following

Theorems by Gallagher (2000) gives the asymptotic behavior of sample auto-covariation

function.

Theorem 2.4.4. If Xn is a stationary sequence with E|Xn| <∞, then as N → ∞,

λ̂(l)
as→ λ(l).

Proof. See Gallagher (2000).

Theorem 2.4.5. Let {Xn} be a strictly stationary stable ARMA process with infinite order

moving average representation,

Xn =
∞∑
j=0

ψjan−j;
∞∑
j=0

j|ψj|δ <∞
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and for any l let λl = (λ(−l), ..., λ(l)) and λ̂l = (λ̂(−l), ..., λ̂(l)).

(i) If E|an|2 <∞ then,

N1/2(λ̂l − λl)
L→ (E|X1|)−1X,

where, X is a multivariate normal random vector.

(ii) If a1 ∼ Sα(γ) with α > 1,

N1−1/α(λ̂l − λl)
L→ (E|X1|)−1S,

where, S has a multivariate stable distribution.

Proof. See Gallagher (2000).

Remark 2.4.6. The limiting vector S can be represented as S = W [S1, ..., S2l]
′, where

S1, ..., S2l are iid skewed stable random variables and the matrix W is given by W =

(E|X1|)2AV A′.

The matrix A is defined as, A =

 Il c1 0

0 c2 Il

 , where Il is the l× l identity matrix, 0 is

a matrix with all zero entries, c1 = (−λ(l), ...,−λ(1))′ and c2 = (−λ(−1), ...,−λ(−l))′ and

V = E

(
Y0Y

′
0 +

(
N∑
t=1

Yt

)
Y ′
0 + Y0

(
N∑
t=1

Yt

)′)
,

where Yt = (sign(Xt)Xt+l − E(sign(Xt)Xt+l), ..., sign(Xt)Xt−l − E(sign(Xt)Xt−l))
′

Theorem 2.4.7. If Xn is given as in Theorem 2.4.5 with at ∼ Sα(γ) then

N1−1/α(λ̂(l)− λ(l)) ⇒ σS,
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where S has a univariate stable distribution,

λ(l) =

∞∑
j=l

ψj|ψj−l|α−1sign(ψj−l)

∞∑
j=0

|ψj|α
,

and

σ = (
∞∑
j=0

|ψj|α)−1/α.

Proof. See Gallagher (2000).

From (2.13) we have seen that the autocorrelation function of a finite variance autore-

gressive process follows Yule-Walker equation. Parallel to this property, Kanter and Steiger

(1974) and Nikias and Shao (1995) defined a Generalized Yule-Walker (GYW) equation

based on auto-covariation function. For an AR(p) model GYW equations can be written

as,

λx(k) =

p∑
i=1

ϕiλx(k − i), k ≥ 1. (2.54)

Solution of this equation provides the generalized Yule-Walker estimates of autoregressive

parameter ϕi , i = 1, ..., p in terms of the sample auto-covariation function. Gallagher

(2000) used this function for model identification of moving average models. Similar to

autocorrelation function, we can extend the scope of this function and some of its properties

for model identification of autoregressive models. In chapter 5 we discuss this issue by

introducing partial auto-covariation function and generalized Durbin-Levinson algorithm.

We have proposed new information criteria parallel to AIC based on this study.

2.5 Linear prediction problems in stable processes

We will start with some definitions before going to the detailed description. Most of the

definitions in this section is taken from Bobrowski (2005), Kreyszig (1989).
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Definition 2.5.1. Let X be a set; its elements will be denoted x, y, z, etc. A triplet (X,+, .),

where + is a map + : X×X → X, (x, y) → x+y and . is a map . : R×X → X, (α, x) → αx,

is called a (real) linear space if the following conditions are satisfied:

(a1) (x+ y) + z = x+ (y + z), for all x, y, z ∈ X,

(a2) there exists Θ ∈ X such that x+Θ = x, for all x ∈ X,

(a3) for all x ∈ X there exists an x′ ∈ X such that x+ x′ = Θ,

(a4) x+ y = y + x, for all x, y ∈ X,

(m1) α(βx) = (αβ)x, for all α, β ∈ R, x ∈ X,

(m2) 1x = x, for all x ∈ X,

(d) α(x+ y) = αx+ αy, and (α+ β)x = αx+ βx for all α, β ∈ R and x, y ∈ X.

Definition 2.5.2. Let X be a linear space. A function ||.|| : X → R, x → ||x|| is called a

norm, if for all x, y ∈ X and α ∈ R

(n1) ||x|| ≥ 0,

(n2) ||x|| = 0, iff x = Θ,

(n3) ||αx|| = |α|||x||,

(n4) ||x+ y|| < ||x||+ ||y||.

A pair (X, ||.||), where X is a linear space and ||.|| is a norm in X called a normed linear

space, and for simplicity we say that X itself is a normed linear space (or just normed

space).

Note that if ||.|| is a norm, then d(x, y) = ||x− y|| is a metric. This means that (X, d)

is a metric space.

A subspace (Y, d̃) of (X, d) is obtained if we take a subset Y ⊂ X and restrict d to

Y × Y.

Definition 2.5.3. A sequence (xn), n ≥ 1 of elements of a normed linear space X is said

to be Cauchy sequence if for all ϵ > 0 there exists an n0 = n0(ϵ) such that d(xn, xm) =

||xn − xm|| < ϵ, for all n,m ≥ n0.
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We can prove that every convergent sequence is Cauchy. A metric space is termed

complete if every Cauchy sequence of its elements is convergent.

Definition 2.5.4. If every Cauchy sequence in a normed linear space X is convergent, X

is called a Banach space. We may say that a Banach space is a complete normed linear

space.

Now let us define linear space of stable processes and covariation norm.

Definition 2.5.5. LetX = {Xt, t ∈ T} be a stochastic process with underlying probability

space (Ω,F , P ) such that {Xt ∈ Lp(Ω,F , P )}, for all t ∈ T, where 1 < p < ∞, and let

l(X) be the space of all finite linear combination of {Xt, t ∈ T}. Then we call X a p-th

order process and define a norm of l(X) by

∥X∥p = (E|X|p)1/p, X ∈ l(Xt).

The linear space L(X) of the process X is the completion of l(X) with respect to this norm.

That is, in Lp(Ω,F , P ).

When α > 1, covariation introduces a norm on a linear space of alpha stable random

variables, which is known as covariation norm (Samorodnitsky and Taqqu (1995), page 95),

and is defined by

∥X∥α = (E|X|α)1/α.

From the definition we can show that the covariation norm is equal to the scale parameter

of alpha stable distributions (Samorodnitsky and Taqqu (1995), page 95).

Property 2.5.6. If X ∼ Sα(γ) with α > 1, then ∥X∥α = γ.

Linear prediction problem in stable process is complex due to the fact that the linear

space of stable processes is Banach space when 1 < α < 2, (Bobrowski, 2005, page 51).

When 1 < α < 2 and p < α, the p-th order moment exists and similar to covariance in the
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Gaussian case, we can use covariation defined in (2.52), and it reduces to covariance when

α = 2 (Cambanis and Miller (1981), Samorodnitsky and Taqqu (1995)). Cambanis and

Miller (1981) studied the linear estimation problems of stable processes. Some observations

and theorems are stated below.

Consider {θ,Xt , t ∈ T} with unknown parameter θ as a symmetric stable process,

1 < α < 2 and L(Xt, t ∈ T ) the linear space of symmetric stable process X = {Xt, t ∈ T}.

The regression estimate of θ based on Xt is given by θ̂ = E(θ|Xt) is not in general linear and

except for Gaussian case it necessarily does not belong to L(Xt, t ∈ T ). When T consists

of one point, or T is a finite set and random variables Xt are independent then E(θ|Xt) is

linear (Cambanis and Miller (1981)). Regression estimates are linear in some other cases,

that is discussed below.

Minimum Dispersion Criteria: Under the minimum dispersion criterion, the best

estimate of a alpha stable random variable in the linear space of observations is the one

that minimizes the dispersion of the estimation error. Recall that the dispersion (scale

parameter) of a stable random variable plays an analogous role of the variance. For exam-

ple, the larger the dispersion of a stable random variable is, the more it spreads around

the median. Thus, by minimizing the dispersion we minimize the average magnitude of

estimation errors.

The generic linear estimation problem of stable processes based on minimum dispersion

criteria can be formulated as follows. This result is analogous to the projection theorem

in Banach space (Singer (1970), Hill (2003)). Before going to the details we need to define

two concepts, James orthogonality and metric projection.

Definition 2.5.7. Let (x, y) be any arbitrary random variables of some Banach space B.

The random variable y is James orthogonal to x, whenever

∥y + λx∥ > ∥y∥

for every real scalar λ ∈ R, and is denoted by y ⊥J x.
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Banach space norms ∥.∥ may be supported by arbitrarily many semi-inner products [, ].

However, (x, y) ∈ B, if y is orthogonal to x there exists one inner-product that supports

[y, x] = 0.

Consider arbitrary subspaces, that is, U, V ⊆ B, σ(V ) ⊂ σ(U), where σ(V ) denotes the

sigma algebra induced by the elements of V . For some element u ∈ U, we say v ∈ V is the

“best predictor” of u with respect to V if and only if

∥u− v∥ ≤ ∥u− w∥

for every element w ∈ V. Since B is a Banach space, the predictor v exists and is unique.

Definition 2.5.8. Metric projection operator is a maps P : U → V such as P (u|V ) = v.

The projection P (u|V ) is identically the best predictor of u.

Orthogonality conditions:

(i) The element v ∈ V satisfies P (u|V ) = v if and only if (u− v) ⊥J V.

(ii) For every w ∈ V, and for a unique [, ], (u− v) ⊥J V if and only if [u− v, w] = 0.

The linear estimate of θ based on Xt under minimum dispersion criterion is defined

as the best approximation to θ in L(X). The problem is to find a random variable θ̂ in

L(Xt, t ∈ T ) with minimum distance from θ. That is,

∥θ − θ̂∥α = inf
Z∈L(Xt,t∈T )

∥θ − Z∥α (2.55)

or equivalently

E|θ − θ̂|p = inf
X∈L(Xt,t∈T )

E|θ −X|p, for0 < p < α. (2.56)

The estimate θ̂ is denoted by l(θ|X). Since L(Xt) is a Banach space, θ̂ exist and is

unique for 1 < α < 2. The linear estimate θ̂ is obtained by a metric projection of θ onto

the Banach space L(Xt, t ∈ T ) (see Singer (1970), Shao and Nikias (1993), Hill (2003)).

For 1 < α < 2, θ̂ is also uniquely determined by either of the following equations based on

orthogonality conditions (Cambanis and Miller (1981))
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[ξ, θ̂ − θ]α = 0, for all ξ ∈ L(X)

[Xt, θ̂ − θ]α = 0, for all t ∈ T.
(2.57)

This is analogous to the orthogonality principle used extensively in the linear estimation

problem of second-order processes (see Hill (2003)). When α = 2, the equations in (2.57)

are linear and thus closed-form solutions exist for θ. For α < 2, it is highly nonlinear

and hard to solve for θ. Cambanis and Miller (1981), Samorodnitsky and Taqqu (1994)

and Cline and Brockwell (1985) studied the linear estimation problems of stable processes

using the minimum dispersion criteria. Some observations and theorems are stated below.

Samorodnitsky and Taqqu (1994) state one of the regression properties of the stable random

variables which is stated in the following theorem. This result is analogous to the result

stated in (2.57).

Theorem 2.5.9. If X0, X1, ..., Xn are jointly alpha stable distributed random variables with

1 < α ≤ 2 then,

E(Xn+1|X1, X2, ..., Xn) = ϕ1X1 + ...+ ϕnXn, (2.58)

if and only if
n∑
i=1

ϕiλ(j − i) = λ(j), j = 1, ..., n. (2.59)

Proof. See Samorodnitsky and Taqqu (1994), page 176-177.

Cline and Brockwell (1985) defined a linear predictor with infinite past of stableARMA(p, q)

process using minimum dispersion criteria. The problem is to find an optimal predictor for

Xn+k, k ≥ 1, of the form
∞∑
j=1

αjXn−j+1, which is a linear predictor based on an infinite past.

If {Xn} is a pure autoregressive (AR(p)) and n > p, the truncated predictor
n∑
j=1

αjXn−j+1

will in fact be optimal.

Thus if a′ts are iid symmetric stable random variables with index α and if
∑∞

j=−∞ |ψj|α <∞,
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then Y =
∞∑

j=−∞
ψjaj is also symmetric stable with

disp(Y ) =
∑∞

j=−∞
|ψj|α. (2.60)

We have already seen that the the stable ARMA process {Xn} can be expressed as the

moving average Xn =
∞∑

j=−∞
ψn−jaj with ψj = 0, j < 0.

Hence disp(Xt) =
∑∞

j=−∞ |ψj|α. If Y =
∞∑

j=−∞
ψjaj then we define the minimum error

dispersion linear predictor of Y (based on X1, ..., Xn,) to be the linear combination Ŷ =

b1X1 + ...+ bnXn = b′X, which minimizes

disp(Y − Ŷ ) =
∑∞

j=−∞
|ψj − (b1ψn−j + ...+ bnψ1−j)|α.

In the k-step ahead forecasting case we take Y = Xn+k, and minimize

disp(Xn+k − X̂n+k) =
∑k−1

j=0
|ψj|α +

∑∞

j=k
|ψj − (b1ψn−j + ...+ bnψ1−j)|α.

For a linear process driven by symmetric stable noise, the prediction error for any linear

predictor also has symmetric stable distribution. The minimum dispersion prediction error

has the distribution with the smallest scale and hence is optimal. The procedure is easily

extended to more general linear processes, since it requires only the knowledge of coefficients

of the process and of the tail index α of the noise distribution. Following theorem by Cline

and Brockwell (1985) indicates that the prediction error dispersion is roughly proportional

to the probability of a large prediction error. A corollary of this is that among linear

predictors, the minimum dispersion predictor is optimal in the sense that it minimizes the

probability of large prediction errors.

Theorem 2.5.10. Suppose {aj} are independent and identically distributed symmetric sta-

ble random variables and Y =
∞∑

j=−∞
ψjaj where

∑∞
j=−∞ |ψj|δ <∞, for some δ < min(1, α).



CHAPTER 2. BASIC CONCEPTS 47

Then Y exists almost surely (is absolutely convergent) and

lim
t→∞

P [|Y | > t]

P [|a1| > t]
= disp(Y ) =

∑∞

j=−∞
|ψj|α. (2.61)

Proof. See Cline and Brockwell (1985).

The following results of Cline and Brockwell (1985) will be seen to be identical to the

corresponding results for least square prediction of the finite variance process.

Lemma 2.5.11. Fix δ < min(1, α) and let {Xt} be the stable ARMA(p, q) process defined

by (2.46). Let {vj}, {ρj} are sequences of constants and S∗ be the class of random variables

of the form
∞∑

j=n+1

ρjaj +
∞∑
j=1

vjan+1−j, where,

∞∑
j=n+1

|ρj|δ <∞ and

∞∑
j=n+1

|vj|δ <∞.

Then for each Y ∈ S∗, the set

P∞Y =

{
∞∑
j=1

βjXn+1−j : disp(Y −
∞∑
j=1

vjXn+1−j) isminimum

}

consist of exactly one element. For

Y =
∞∑

j=n+1

ρja1 +
∞∑
j=1

vjXn+1−j,

this element is Y ∗ =
∞∑
j=1

vjXn+1−j. Further more the mapping Y → Y ∗ is linear on S∗.

Proof. See Cline and Brockwell (1985).

Remark: For symmetric stable process with α > 1 , we have

Y ∗ = E(Y |Xn, Xn−1, ...).
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(Cambanis and Miller 1981).

Theorem 2.5.12. For the stable ARMA process there exists a unique minimum dispersion

linear predictor X∗
n+k for Xn+k , k ≥ 1 , based on the infinite past Xn, Xn−1, ... .This

predictor satisfies the recursive relation

X∗
n+k =

k−1∑
j=1

ψjX
∗
n+k−j+

∞∑
j=k

ψjXn+k−j. (2.62)

Proof. See Cline and Brockwell (1985).

In practical situations we have only finite number of data points X1, X2, ..., Xn. For

any Y ∈ S∗ one can use the truncated predictor Y ∗(n) =
n∑
j=1

vjXn+1−j, where vj is defined

as in Lemma 2.5.11. The truncated predictor is in fact optimal when the process is purely

autoregressive and n is large enough, that is when Xn satisfy

Xn = ϕ1Xn−1 − ...− ϕpXn−p + an (2.63)

and n ≥ p.

Lemma 2.5.13. Let S∗ be the class of random variables of the form Y = Z + ν
′
Xn for

some ν ∈ Rn and Z =
∞∑

j=n+1

ρjuj such that Z exists. Then for each Y ∈ S∗, the set

PnY = {β′Xn : disp(Y − a′Xn) is minimum}

consists of exactly one variable. For Y = Z + ν
′
Xn this unique variable is Ŷ = ν

′
Xn.

Furthermore, the mapping Y → Ŷ is linear in S∗.

Proof. See Cline and Brockwell (1985).

Corollary 2.5.14. For the process (2.63), provided n ≥ p, there exist a unique minimum

dispersion linear predictor X̂n+k for Xn+k, k ≥ 1 in terms of X1, X2, ..., Xn. This predictor



CHAPTER 2. BASIC CONCEPTS 49

satisfy the recursive relationship

X̂n+k = ϕ1X̂n+k−1 + ϕ2X̂n+k−2 + ...+ ϕ1X̂n+k−p (2.64)

with initial conditions X̂j = Xj for 1 ≤ j ≤ n.

Proof. See Cline and Brockwell (1985).

From Corollary 2.5.14 and for α > 1 we can say that,

X̂n+k = E(Xn+k|Xn+k−1, ..., Xn+k−p),

which is the minimum dispersion predictor of Xn+k given Xn+k−1, ..., Xn+k−p .

2.6 Some theoretical results

Definitions and theorems stated in this section are taken from Brockwell and Davis (1987).

Definition 2.6.1. We say that Xn converges in probability to X, written Xn−X = op(1)

or (Xn
p→ X), if for every ϵ > 0,

P (|Xn −X| > ϵ) → 0 as n→ ∞.

Definition 2.6.2. We say that the sequenceXn is bounded in probability (or tight), written

Xn = Op(1) , if for every ϵ > 0, there exist δ(ϵ) ∈ (0,∞) such that,

P (|Xn| > δ(ϵ)) < ϵ for all n.

Definition 2.6.3. Converges in probability and order in probability: IfXn = {Xni}

is a sequence of k−diamentional random vectors then,

(i) Xn = op(an)if and only if a−1
n Xni = op(1).
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(ii) Xn = Op(an)if and only if a−1
n Xni = Op(1).

Proposition 2.6.4. If {Xn} and {Yn} are two sequences of random k−vectors such that

Xn − Yn = op(1) and Xn
L→ X, then Yn

L→ X.

Proof. See Brockwell and Davis (1987), page 198.

Proposition 2.6.5. If {Xn} is a sequence of k−diamentional random vectors such that

Xn
p→ X and if g : Rk → Rm is a continuous mapping, then g(Xn)

p→ g(X).

Proof. See Brockwell and Davis (1987), page 193.

Proposition 2.6.6. If {Xn} is a sequence of random k × 1 vectors such that

Xn − a = Op(rn),

where a ∈ Rk and rn → 0 as n → ∞. If g is a function from Rk into R such that the

derivatives ∂g
∂xi

are continuous in a neighborhood N(a) of a, then,

g(Xn) = g(a) +
k∑
i=1

∂g

∂xi
(a)(Xni − ai) + op(rn).

Proof. See Brockwell and Davis (1987), page 195.

The results described in this chapter are used to establish the statistical properties of

the estimators and forecasts in the forth coming chapters.



Chapter 3

Statistical Signal Extraction using

Stable Processes

3.1 Introduction

Statistical signal extraction has attracted the attention of researchers in areas as diverse

as engineering, medicine, economics, finance and climatology, to name but a few. A lot of

techniques are available, including Wiener Kolmogorov filtering, Kalman filtering, principle

component analysis and wavelet analysis (see Pollock (2005)) for statistical signal extrac-

tion. Most of the theoretical developments in statistical signal extractions assume that the

signal and/or noise follow certain auto-regressive moving average (ARMA) models with

Gaussian or other exponential family of innovation distributions with finite second and

higher order moments. Then the signals are expressed as linear filters of the observations,

where the optimum filter weights are obtained using the method of minimum mean square

error (MMSE) (see Bell and Martin (2004) for details).

Signal extraction problem can be stated as below. The observed data process {Yt} is

often depicted as a combination of signal {Xt} and noise {Nt} as follows:

Yt = Xt +Nt. (3.1)

51
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Here we assume that the signal {Xt} and noise {Nt} are independent. The objective is to

use the data on {Yt} to estimate the unobserved components {Xt} and {Nt}.

The modern theory of statistical signal extraction was formulated independently by

Wiener (1949) and Kolmogorov (1941). The two proponent of the theory established it in

different ways. Wiener worked primarily in the frequency domain, whereas Kolmogorov

took a time domain approach to the problem. The unification of two approaches has been

provided by Whittle (1983). Another important theory of signal extraction was introduced

by Kalman (1960) and Kalman and Bucy (1961), which dealt with the filtering and fore-

casting of time varying linear stochastic systems. This approach proposes a state space

model for the system. The formulation of Kalman and Bucy was sufficiently general to

subsume the theory of Wiener and Kolmogorov. Econometricians commonly cite the paper

of Burridge and Wallis (1988) in the context of signal extraction. The latter shows how, in

the case of a stationary ARMA process, the Kalman filter converges asymptotically to the

backward looking Wiener Kolmogorov filter applied to a semi-infinite data series. There

has recently been a great deal of interest in estimating components from time series using

signal extraction procedure. Signal extracting results for optimal (MMSE) linear estimators

of the components were given in the stationary case by Wiener Kolmogorov Filter. Hannan

(1967) extended the procedure to the case of non stationary signal and stationary noise.

Bell (1984a) gave a more general treatment that covered the case were both signal and

noise are non stationary. Bell and Martin (2004) studied the asymmetric signal extraction

filter and mean square error of non stationary signal and noise model. These studies dealt

with estimation of signal and noise from an infinite realization of the observed data.

In the previous discussion we have seen that the standard models for statistical signal

extraction assume that the signal and noise are generated by linear Gaussian processes or

other exponential family of innovation distributions with finite second and higher order

moments. These models may not be suitable to model when the data show sharp spikes or

occasional bursts of outlying observations discussed in the previous chapters. Heavy tailed

distribution such as stable distribution can be considered as a good candidate. Now let us
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discuss some of the works carried out in this direction. Stuck and Kleiner (1974) general-

ized Kalman filter in the case of state space models with stable distributed noise. Cline

and Brockwell (1985) introduced a prediction theory for stable ARMA models. Breton

and Musiela (1993) proposed the generalization of Kalman filter to models with infinite

variance. They studied the problem of optimal linear estimation for continuous time pro-

cesses. The optimal filter is given by recursive equations which reduce to the classical

Kalman-Bucy equations when the system is driven by independent white noises. Shao

and Nikias (1993) discussed the issues of signal extraction problems in stable processes

and proposed an adaptive Wiener filter for stable processes. Bidarkota and McCulloch

(1998) developed a univariate state space model with symmetric stable shocks for monthly

inflation in the United States . The non-Gaussian state space model is estimated by the

Sorenson-Alspach filtering algorithm. McCulloch and Bidarkota (2003) discussed various

signal extraction problems for processes with stable distributed innovations. Sornette and

Ide (2001) introduced Kalman-Levy filter which is a generalization of Kalman filter for

heavy tailed processes. Gordon et al. (2003) used stable innovations models and Kalman-

Levy filter for tracking manoeuvering targets. These works motivated us to generalize the

signal extraction problem in the case of heavy tailed innovations.

In the present chapter our main objective is to discuss the properties of the signal ex-

traction model specified by a signal plus noise model when the signal and noise are assumed

to follow stationary ARMA models with symmetric stable innovations. The estimated sig-

nals are expressed as linear filters of the observations, where the optimum filter weights are

obtained using the method of minimum dispersion criteria. Signal extraction filter based

on minimum dispersion criteria, which minimize dispersion of signal extraction error. For

the sake of simplicity we start with a semi infinite filter and then extend the scope of this

filter to the case of doubly infinite filter and asymmetric filter discussed in the literature.

Infinite length filters have limited applications in many situations so we derived a finite

length filter using Kalman-Levy filter and identified the pattern of the filter weights. This

has been achieved using a state space representation of the signal plus noise model. Per-
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formance of the proposed filters are compared with Wiener Kolmogorov filter and Kalman

filter through simulation.

The chapter is split in to six sections : In the second section we discuss the statistical

models for signal extraction and classical signal extraction procedures. Section 3.3 intro-

duces the mathematical representation of signal and noise processes based on symmetric

stable assumption. Section 3.4 includes the minimum dispersion signal extraction criteria

and we discuss how symmetric stable distribution can be embedded in to this frame work.

Section 3.5 consists of finite length signal extraction filtering based on Kalamn-Levy filter.

Last section contains some simulation results.

3.2 Statistical Models for Signal Extraction

Suppose that the observations are generated by the model (3.1). In the next subsection

we briefly discuss the signal extraction problem of stationary signal and noise processes in

both time and frequency domain.

3.2.1 Wiener Kolmogorov filtering theory

Classical time series methods consist of estimating the signal Xt as a linear combination of

an observed signal Yt, specified by,

X̂t =
∑∞

k=−∞
wkYt−k =W (B)Yt, (3.2)

where, W (B) =
∑

j wjB
j, is a polynomial in lag B. The optimal linear filter coefficients

wk are obtained using minimum mean square error criteria. That is, in general we seek a

set of filter coefficients wk which minimizes the mean squared error of the estimator, say,

MSE = E[(X̂t −
∑∞

k=−∞
wkYt−k)

2]. (3.3)
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This problem was originally solved by Kolmogorov (1941) in time domain and by Wiener

(1949) in frequency domain. From minimum mean square error method, we can write,

E[(X̂t −
∑∞

k=−∞
wkYt−k)Yt−r] = 0,

for r = 0,±1,±2, ..., which leads to

∑∞

k=−∞
wkγyy(r − k) = γxy(r), (3.4)

to be solved for the filter coefficients. Equation (3.4) can be represented as

W (B)γyy(B) = γxy(B), (3.5)

where, γyy(B) =
∑

k γyy(k)B
k and γxy(B) =

∑
k γxy(k)B

k. Substituting the spectral rep-

resentations discussed in Theorem 2.2.15 for the auto-covariance functions into the above

equation (3.4) and identifying the spectral densities through the uniqueness of the Fourier

transform produces the following relation,

W (ω)fyy(ω) = fxy(ω), (3.6)

where, W (ω) =
∑
wke

i ωk and wk are Fourier transform pairs. Since signal and noise

components are independent, we can show that fxy(ω) = fxx(ω) and fyy(ω) = fxx(ω) +

fnn(ω). Hence the optimum filter would be the Fourier transform of

W (ω) =
1

1 + fnn(ω)
fxx(ω)

, (3.7)

where the second term in the denominator is just the inverse of the signal to noise ratio,

say,

SNR(ω) =
fxx(ω)

fnn(ω)
.
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Signal-to-noise ratio (often abbreviated SNR or S/N) is a measure used to quantify how

much a signal has been corrupted by noise. It is defined as the ratio of signal power to the

noise power corrupting the signal. signal-to-noise ratio compares the level of a desired signal

to the level of background noise. The higher the ratio, the less obtrusive the background

noise is.

The result shows the optimum filters can be computed for this model if the signal and

noise spectra are both known or if we can assume knowledge of the signal-to-noise ratio

SNR(ω) as function of frequency. If the signal-to-noise ratio is known, the optimal filter

can be computed by the inverse transform of the function W (ω) (for details see Shumway

and Stoffer (2005), page 252).

From these discussions we have seen that the signal extraction filters are functions of

spectral density or auto-covariance function of {Yt}, {Xt}, and {Nt}. Filter weights wj or

frequency response function, W (ω) can be computed from equation (3.4) and (3.6). Now

we will assume that the signal and/or noise follow auto-regressive moving average (ARMA)

models defined in equation (2.12) with independent white noise Gaussian innovation pro-

cesses {at} and {bt} having respective variances σ2
a and σ2

b . They are described in terms of

the models as:

ϕx(B)Xt = θx(B)at,

ϕn(B)Nt = θn(B)bt.
(3.8)

From (3.1) and (3.8) we can represent Yt as,

ϕ(B)Yt = θ(B)et. (3.9)

Here we assume that {Xt}, {Nt} are zero mean processes, so the mean of {Yt} is also zero.

The series {et} is a white noise sequence with variance σ2
e . From above two equations we

can see that,

ϕ(B) = ϕx(B)ϕn(B).



CHAPTER 3. SIGNAL EXTRACTION 57

From equation (3.5), the optimum signal extraction filter W (B) can be derived as

W (B) =
σ2
a

σ2
e

θx(B)θx(B
−1)ϕn(B)ϕn(B

−1)

θ(B)θ(B−1)
. (3.10)

The optimum filter in the frequency domain W (ω) can be obtained as,

W (ω) =
σ2
a

σ2
e

|θx(ω)|2|ϕn(ω)|2

|θ(ω)|2
. (3.11)

Example: To illustrate the signal extraction problem, let us assume that Yt = Xt+ bt and

the signal Xt follows an AR(1) model

Xt = ϕXt−1 + at,

where, {at} and {bt} are mutually independent zero mean white Gaussian noise process

with respective variances σ2
a and σ2

b . From the model (3.9) we can show that

Yt − ϕYt−1 = at + bt − ϕbt−1. (3.12)

Right hand side of (3.12) has variance σ2
a+(1+ϕ2)σ2

b and lag-1 auto-covariance −ϕσ2
b , and

the covariances of higher lag are zero. It is thus an MA(1) model and the observed process

{Yt} follows an ARMA(1, 1) model,

Yt − ϕYt−1 = et + θet−1. (3.13)

From the above two equations we can show that,

σ2
a + (1 + ϕ2)σ2

b = (1 + θ2)σ2
e ,

and − ϕσ2
b = θσ2

e .
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Now we can calculate,

σ2
a

σ2
e

=
θ2ϕ+ (1 + ϕ2)θ + ϕ

ϕ
.

Using these results in equations (3.10) and (3.11) we get,

W (B) = w0

∑∞
k=0 θ

kBk,

W (ω) = w0

∑∞
k=0 θ

keikω,
(3.14)

where, w0 =
θ2ϕ+(1+ϕ2)θ+ϕ

ϕ(1−θ2) . From the above example it is seen that the obtained filter has

infinite length.

Signal extraction problem of non-stationary signal and stationary noise was discussed

by Hannan (1970), Sobel (1967) and Cleveland and Tiao (1976). Bell (1984a) gave a

general treatment to the case when both signal and noise are non-stationary. Most of these

methods provide estimates of signal and noise based on an infinite realization of an observed

signal {Yt}, a case that applies approximately when the observed series is sufficiently long.

Linear MMSE estimators based on finite sample of observed series has been studied by

Ansley and Kohn (1985), Kohn and Ansley (1987) and Bell and Hillmer (1988). Bell and

Martin (2004) studied the asymmetric signal extraction problem of ARIMA component

models. Another important signal extraction procedure is the well-known Kalman filtering

and it is based on state space models. This method solves the difficulties associated with

the infinite length filters. Next we will discuss the details of Kalman filtering for finite

length signal extraction.

3.2.2 State space representation and Kalman filtering

Kalman filter is widely used for studying the linear dynamic systems in almost all areas

of science and technology. A very general model that seems to subsume a whole class of

special cases of interest in much the same way that linear regression does is the state-

space model or the dynamic linear model, which was introduced in Kalman (1960) and
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Kalman and Bucy (1961). Although the model was originally introduced as a method

primarily for uses in aerospace-related research, it has been applied to modeling data from

economics, medicine and the soil sciences (Shumway and Stoffer (2006), page 330). An

excellent modern treatment of time series analysis based on the state space model is the

text by Durbin and Koopman (2001). A paper by Meinhold and Singapurwalla (1983)

made this topic easily understandable by statistician through Bayesian inference. The

formulation of Kalman and Bucy was sufficiently general to subsume the theory of Wiener

and Kolmogorov. This had been clearly apparent from the beginning. However, it has

taken a while for these two approaches to statistical signal extraction to be unified, and

each continues to have its separate adherents. Nevertheless, it is now widely recognized

that they stand on a common ground. There have been numerous offerings that have

demonstrated the connection. Kalman filtering have had a profound impact in time series

analysis and its application areas (Box et al. (1994), page 164, Brockwell and Davis(1987),

page 447 , Shumway and Stoffer (2006), page 330, Koopman and Harvey(2003)).

The state-space model or dynamic linear model (DLM), in its basic form, employs an

order one, vector auto-regression as the state equation,

Xt+1 = ZtXt +Htηt, (3.15)

where the state equation determines the rule for the generation of the p×1 state vector Xt

from the past p×1 state Xt−1, for time points t = 1, ..., n. The matrix Zt is known as state

transition matrix and Ht is a non-random matrix and both are assumed to be known. We

assume the ηt are p× 1 independent and identically distributed, zero-mean normal vectors

with covariance matrix Qt. In the DLM, we assume the process starts with a normal vector

X0 that has mean µ0 and p× p covariance matrix Σ0.

The DLM, however, adds an additional component to the model in assuming that we

do not observe the state vector Xt directly, but only a linear transformed version of it with

noise added, say

Yt = TtXt +Gtεt, (3.16)
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where Tt is a q× p measurement or observation matrix and the matrix Gt is assumed to be

known; equation (3.16) is called the observation equation. The additive observation noise

εt is assumed to be white and Gaussian with q × p covariance matrix Rt. In addition, we

usually assume, for simplicity, ηt and εt are uncorrelated.

Example: Assume that an observed series Yt follows model (3.1) with a stationary

AR(p) model ϕ(B)Xt = at and a white noise sequence Nt. Now we can study state space

representation of this model as follows.

If we define,

Z =



ϕ1 ϕ2 . . . ϕp−1 ϕp

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


and define Xt = [Xt, Xt−1, ..., Xt−p+1]

T , H = [1, 0....., 0]T , T = [1, 0, ..., 0], then we can

write

Xt = ZXt−1 +Hat,

Yt = TXt +Nt.
(3.17)

Similarly causal invertible ARMA(p, q) process with observational noise can be represented

as a state space model (see Brockwell and Davis (1987), page 453). Primary aim of the

analysis involving state space model would be to produce estimates of the unobserved state

variable Xt based on the observed sequence Yk = {y1, y2, ..., yk}, to time k. When k < t

the problem is called prediction or forecasting. When k = t, the problem is called filtering,

and when k > t, the problem is called smoothing. The solution to these problems is

accomplished via the Kalman filter and predictor.

Kalman filtering is a recursive method which includes mainly two steps: (i) estimate
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the future state through prediction step and (ii) current state estimation through filtering

(update) step. These two estimation steps are accomplished through some set of recursive

equations. A predictive estimator is an estimator of the state vector at time t based

on observation up to and including time t − 1. Kalman filter computes the predictive

estimator X̂t, the MMSE estimator of the state variable Xt conditional on the observations

Yt = {y1, y2, ..., yt−1}. In prediction step we also calculate the covariance matrix of the

estimation error, P̂t|t−1. From this we can write, X̂t|t−1 = E(Xt|y1, y2, ..., yt−1) and P̂t|t−1 =

E((Xt|t−1−X̂t|t−1)
′(Xt|t−1−X̂t|t−1)). Similarly the current state estimate and corresponding

error covariance matrix can be obtained through filtering step. Current state estimates are

defined as X̂t|t = E(Xt|y1, y2, ..., yt) and P̂t|t = E((Xt|t − X̂t|t)
′(Xt|t − X̂t|t)). It is known

that, starting from some appropriate initial values X̂0|0 and P̂0|0, the optimal state estimates

are given through the following recursive relations:

X̂t|t−1 = ZtX̂t−1|t−1,

P̂t|t−1 = ZtP̂t−1|t−1Z
′
t +HtQtH

′
t,

(3.18)

with,

X̂t|t = X̂t|t−1 +Kt(Yt − TtX̂t|t−1),

P̂t|t = P̂t|t−1 −KtTtP̂t|t−1,
(3.19)

where,

Kt = P̂t|t−1T
′
t(TtP̂t|t−1T

′
t +GtRtG

′
t)

−1. (3.20)

The matrix Kt is known as Kalman gain. A paper by Meinhold and Singapurwalla

(1983) familiarize this concept in terms of sequential Bayesian approach and derived these

equations in terms of sequential Bayes estimate. Box et al. (1994) discussed the state

space representation of ARIMA model and proposed an exact forecasting using Kalman

filter. This representation can be used for model specification and maximum likelihood

estimation. In the up coming section we will focus on the signal extraction problem while

assuming that the signal and noise processes follow certain stable time series models.
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3.3 Stable time series models and signal extraction

Our objective in this section is to discuss the properties of the signal extraction model speci-

fied by (3.1) when the signal and noise are assumed to follow stationary ARMA(p, q) models

with symmetric stable innovation distributions defined in Proposition 2.3.6. We have seen

that the signal extraction filters are functions of spectral density or auto-covariance function

in classical set up. But these functions are ill-defined in infinite variance processes. Clas-

sical MMSE technique cannot be used due to the non-existence of second order moments

of the symmetric stable distribution. We use the method of minimum dispersion to obtain

the optimal filter for the signal, since the dispersion is well defined in stable distribution.

Linear prediction theory of stable processes has been utilized for this purpose. Our main

motivation in this chapter is to discuss the problems associated with signal extraction using

stable processes and development of minimum dispersion signal extraction filter parallel to

the classical methods. Detailed description of the signal extraction model is given below:

We assume that the observed process {Yt} follows the model (3.1) and signal {Xt}

and noise {Nt} follow stable ARMA (p, q) processes. The model structure is similar to

(3.8) with {at} and {bt} are mutually independent symmetric stable noise processes with

scale parameters λa and λb respectively. This in turn implies that {Xt} and {Nt} are

independent. As we discussed earlier our main objective is to obtain an estimate X̂t and

N̂t of Xt and Nt by filtering {Yt} as

X̂t =W (B)Yt ,

N̂t = Yt − X̂t = (1−W (B))Yt,
(3.21)

where W (B) =
∑

j wjB
j. Signal extraction error, ζt can be defined as,

ζt = Xt − X̂t = (1−W (B))Xt −W (B)Nt.

We summarize the above discussion in the following proposition.



CHAPTER 3. SIGNAL EXTRACTION 63

Proposition 3.3.1. For an estimate X̂t of the form (3.21) for Xt, the estimation error is

given by

ζt = (1−W (B))Xt −W (B)Nt. (3.22)

The two components of ζt are mutually independent if and only if the components of Yt are

mutually independent.

Proof. The two components of ζt in the representation (3.22) are linear function of Xt and

Nt. Thus the independence of Xt and Nt is equivalent to that of components of ζt.

Now we an define the dispersion of signal extraction error and minimum dispersion

criteria for optimum filter weights wj.

3.4 Signal extraction filters using Minimum disper-

sion criteria

Signal extraction procedure consists of finding an optimal filter which minimizes the signal

extraction error. In finite variance case optimal filter is the one which minimizes the MSE

where as in symmetric stable process we propose minimum dispersion criteria. When signal

extraction error process has a symmetric stable distribution, the minimization of error

dispersion is equivalent to minimization of the scale parameter of the error distribution

(see Brockwell and Davis, 1987, page 486). From Proposition 2.3.6, we have seen that

stable ARMA process can be written as an infinite order moving average process. So the

moving average representation for the signal and noise respectively written as

Xt =
∞∑
j=0

ψxj at−j, Nt =
∞∑
j=0

ψnj bt−j, (3.23)
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where ψxj and ψnj are the weights obtained for Xt and Nt respectively. Thus by (3.22), the

error process may be derived as

ζt =
∞∑
j=0

wjYt−j −Xt

=
∞∑
j=0

wj(Xt−j +Nt−j)−Xt

=
∞∑
j=0

wj(
∞∑
k=0

ψxkat−j−k+
∞∑
k=0

ψnk bt−j−k)−
∞∑
k=0

ψxkat−k.

That is,

ζt =
∞∑
j=0

(

j∑
k=0

wkψ
x
j−k − ψxj )at−j +

∞∑
j=0

j∑
k=0

wkψ
n
j−kbt−j. (3.24)

Using (3.24) and the distributional properties of at and bt stated in Theorem 2.5.10 we can

show that the dispersion of the error process is

Disp(ζt) =
∞∑
j=0

|
j∑

k=0

wkψ
x
j−k − ψxj |αλa+

∞∑
j=0

|
j∑

k=0

wkψ
n
j−k|αλb. (3.25)

Finding optimal filter is equivalent to finding the weights wk in W (B) which minimizes

(3.25). In general the solution does not have a closed form, but it gives some satisfactory

results for some special cases. For this, however, we need the following results.

Lemma 3.4.1. If a, b > 0 and α > 0 , the function g(x) = a|x|α+b|x−c|α has its minimum

value at x0, where

x0 =


c, if, α ≤ 1, a

b
≤ 1,

0, if, α ≤ 1, a
b
> 1,

c

1+(a
b
)1/α−1 , if, α > 1,

and x0 is unique if a
b
̸= 1 or α > 1 . The minimum value of g is

g(x0) =

 |c|αmin(1, a
b
), if, α ≤ 1,

a|c|α(1 + (a
b
)1/α−1)1−αif, α > 1.
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Proof. Define, h(x) = g(x)
b
, since b > 0, the optimum solution will be unaltered by minimiz-

ing h(x). This function is similar to the objective function defined by Cline and Brockwell

(1985) in their Lemma 3.1 and hence the proof follows with similar steps. Now we have,

h(x) = a′|x|α + |x− c|α,

h′(x) = α[a′[x]α−1 + [x− c]α−1], h′′(x) = α(α− 1)[a′|x|α−2 + |x− c|α−2],

where, a′ = a
b
. We also define [x]α = |x|αsgn(x). Suppose c > 0 and x ̸= 0, x ̸= c, then we

can show that for x < 0, h′(x) < 0 and for x > c, h′(x) > 0. Also the derivative do not exist

at x = 0 and x = c. Thus h is minimized on [0, c].

If α ≤ 1, h′′(x) ≤ 0, so the minimum must be either 0 or at c. We can show that

h(c) ≤ h(0) if and only if a′ ≤ 1.

If α > 1, then h′ is continuous on [0, c] and h′′ is non-negative. Thus h′(x0) = 0 gives

the point of minimum. We can easily show that the point of minimum, x0 = c

1+(a′)1/α−1 .

and the proof is similar if c < 0.

Theorem 3.4.2. For 1 < α ≤ 2 , the optimal filter weights,wj which minimizes (3.25), is

the solution of the system of equations,

∂Disp(ζt)

∂wk
= 0, k = 0, 1, 2, ..., . (3.26)

When α ≤ 1 , general expressions do not exist.

Proof. From the proof of Lemma 3.4.1 we can see that, if 1 < α ≤ 2, then the function

∂Disp(ζt)
∂wk

is continuous on [0, ψxj ] and
∂2Disp(ζt)
∂2wk

is non-negative. Thus, ∂Disp(ζt)
∂wk

= 0 gives the

point of minimum.

From the above discussion it is clear that, we have to adopt some numerical methods

for getting optimum filter weights and the signal estimate. For a moving average process

the dispersion function defined in (3.25) reduces to a finite sum. Optimum filter weights
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defined in equation (3.26) limited to the solution of some finite set of equations. We address

this problem in our simulation studies.

Now we can consider the case, when α = 2, that is equivalent to the Gaussian case. If

we assume that at and bt are zero mean processes, then from (3.25) we can show that the

dispersion of ζt reduces to variance of ζt. In this case signal extraction filter defined in (3.26)

reduces to minimum mean squared error filter. When α = 2, the proposed filter reduces

to the semi-infinite Wiener Kolmogorov filter defined in (3.10). So Minimum dispersion

criteria can be considered as a generalization of MMSE.

Asymmetric Filter and Doubly Infinite Filter

The semi-infinite filter discussed so far in this section may be generalized to doubly

infinite and asymmetric filters studied in the literature. The former uses future as well as

the past of {Yt} for estimating Xt but the latter filter estimates Xt based on given data up

through u = t−m, for finite m. In order to apply this method we can modify our filter as:

W (B) =
∑∞

−m
wjB

j.

Similar to (3.25) dispersion of signal extraction error process may be written as,

Disp(ζt) =
∞∑

j=−m

|
j∑

k=−m

wkψ
x
j−k − ψxj |α λa+

∞∑
j=−m

|
j∑

k=−m

wkψ
n
j−k|α λb. (3.27)

From Theorem 3.4.2, the optimum filter, which minimizes Disp(ζt) can be obtained as,

∂Disp(ζt)

∂wk
= 0, k = −m,−m+ 1, ..., . (3.28)

Doubly infinite filter is a symmetric filter, which can be obtained by letting m → ∞ and

it reduces to semi-infinite filter when, m = 0. When α = 2 the error dispersion in (3.27)

reduces to the mean square error and the optimal filter reduces to the asymmetric Wiener
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Kolmogorov filter (see Bell and Martin (2004)),

W (B) = Fmσ
2
bϕx(B)ϕn(B)

σ2θ(B)
[
|θx(B)|2ϕn(F )
θ(F )ϕx(B)

Bm]+, (3.29)

where, F = B−1 and the notation [ ]+ indicates only terms with non-negative powers of B

are retained and those with positive powers of F = B−1 are dropped.

So the proposed signal extraction filter using minimum dispersion criteria generalize the

classical Wiener Kolmogorov class of filters for linear stationary time series models with

infinite variance innovations. Infinite length filters derived out of these criteria are not

feasible in many practical problems. So we would like to derive a finite length filter using

Kalman Leavy filtering. We address this problem in the next section.

3.5 Signal extraction using Kalman-Levy filter

So far we have discussed the infinite length filter, but in practice we have only finite

length of observations. In this section we introduce a finite length filtering algorithm based

on state space representation and Kalman-Levy filtering. This can be considered as an

improvement over the infinite length minimum dispersion filter defined in the previous

section. The classical approach of Kalman filtering assumes that the underlying models

are linear and the innovations are Gaussian. Kalman-Levy filter is a generalized version

of Kalman filter for heavy tailed processes (Stuck and Kleiner(1974), Sornette and Ide

(2001)). In the present section we discuss the finite length signal extraction filter for such

processes with symmetric stable noise. A linear dynamic system of state variable Xk can

be represented as

Xk+1 = ZkXk + ηk+1, k = 0, 1, 2, ... , (3.30)

here the state equation determines the rule for the generation of the p×1 state vector Xk+1

from the past p× 1 state Xk , for time points k = 0, ..., n. The matrix Zk is known as state

transition matrix assumed to be known. We further assume the ηt are p × 1 independent
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and identically distributed, zero-mean symmetric stable sequence with scale factor matrix

Bη. The observations Yk follow the equation:

Yk = TkXk + εk, (3.31)

where Tk is a q × p measurement or observation matrix and assumed to be known. The

additive observation noise εk is assumed serially independent symmetric stable random

sequence with q× p scale factor matrix Bε. In addition, we assume, ηk and εk are mutually

independent.

For 1 < α ≤ 2, the predictor of state variable is defined as Xk|k−1 = E(Xk|Yk−1) and

filter isXk|k = E(Xk|Yk). The Kalman-Levy filtering algorithm by Sornette and Ide (2001)

provides a sequential procedure for estimating the unobserved state variable Xk and the

solution is obtained by sequential prediction and filtering. The prediction equation is given

as

Xk|k−1 = Zk−1Xk−1|k−1. (3.32)

The error associated with prediction can be written as an auto-regressive process,

Xk|k−1 −Xk = Zk−1(Xk−1|k−1 −Xk−1)− ηk; (3.33)

this is a linear combination of multivariate alpha stable random variables and from equation

(2.41) we can write,

Xk−1|k−1 −Xk−1 = Gk−1|k−1ζk−1|k−1,

ηk = Gη
kζ

η
k ,

(3.34)

with associated scale factor matrices Ck−1|k−1 and C
η
k . The tail covariance of the prediction

error can thus be written as,

Bk|k−1 = (Zk−1Gk−1|k−1)
[α/2] Ck−1|k−1 (Zk−1Gk−1|k−1)

T [α/2] +

(Gη
k)

[α/2] Cη
k (Gη

k)
T [α/2].

(3.35)
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The Kalman update (filter) equation is given as

Xk|k = Xk|k−1 +Kk(Yk −TkXk|k−1), (3.36)

where Kk is the Kalman Levy gain. The error associated with filtering can be written as,

Xk|k −Xk = (I −KkTk)(Xk|k−1 −Xk) +Kkεk. (3.37)

In the case of filtering, we can write,

Xk|k−1 −Xk = Gk|k−1ζk|k−1,

εk = Gε
kζ

ε
k,

(3.38)

with associated scale factor matrices Ck|k−1 and Cε
k. The tail covariance of the filtering

error can thus be written as,

Bk|k = (Gk|k−1 −KkTkGk|k−1)
[α/2] Ck|k−1 (Gk|k−1 −KkTkGk|k−1)

T [α/2] +

(KkG
ε
k)

[α/2] Ck
ε (KkG

ε
k)
T [α/2].

(3.39)

Diagonal elements of the tail covariance matrix consist of the scale factor of the error pro-

cess. Minimizing the trace of the tail covariance matrix is equivalent to minimizing the

scale factor of the filtering error process. So it corresponds to the minimum dispersion cri-

teria. The Kalman-Levy gain Kk is obtained by minimizing the trace of the tail covariance

matrix Bk|k. That is, Kk is the solution of a set of N non-linear simultaneous equations,

∑L
q=1(

∑L
m=1KimG

ε
mq)

[α−1]Gε
jqC

ε
q

−
∑N

p=1(Gip −
∑L

m=1KimTmp)
[α−1]TjpCp = 0,

(3.40)

for each i, j where, G = Gk|k−1, C = Ck|k−1 and T = TkGk|k−1. Here N and L are the

dimensions of the state vector and measurement vector respectively and the subscripts refer

to matrix elements.
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For the sake of illustration we consider a univariate case. For example, if we consider

Zk = ϕ and Tk = 1 the above model reduces to a stable-AR(1) signal plus symmetric

stable noise model described in McCulloch (1998). The prediction equations become,

xk|k−1 = Zk−1xk−1|k−1,

Bk|k−1 = |Zk−1|αBk−1|k−1 + λη.
(3.41)

In this set of equations xk|k−1 determines the forecast of xk from a given initial condition

x0|0, Bk+1|k determines the prediction error dispersion with an initial error dispersion B0|0

and λη is the scale factor of η.

This forecast is then used to find new filter xk|k and filtering error dispersion Bk|k which

will be mixed with the observed information yk and given by

xk|k = xk|k−1 +Kk(yk −Tkxk|k−1),

Bk|k = |1−KkTk|αBk|k−1 + |Kk|αλϵ,
(3.42)

where, λϵ is the scale factor of ϵ. The term, Kk is called Kalman-Levy gain and can be

obtained by minimizing the scale factor of the filtering error process and is given by

Kk = Tk/(1 + (∆k)
α

α−1 ),

with modified relative error ratio,

∆k =
(λεk)

1/α

Tk(λk|k−1)
1/α

.

Now we can study the finite length filtering algorithms based on (3.32) and (3.36). From

the models (3.30) and (3.31) the finite length filter may be defined as

X̂k = w0 +
∑k

j=1
wjYj, (3.43)

where wj, j = 0, 1, 2...k are the filter weights whose expressions are to be obtained using
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Kalman-Levy filter. In this case the signal extraction problem can be divided into that of

prediction and filtering. Under the prediction problem we estimate the future state of the

signal from a given initial value and the observed signal. The Kalman-Levy predictor and

filter defined in (3.32) and (3.36) for the models (3.30) and (3.31) may be represented in a

finite length filter form. The results are stated in the following propositions.

Proposition 3.5.1. The Kalman-Levy predictor for the models (3.30) and (3.31) is given

by (3.32) and may be expressed as,

Xk+1|k =
k∑
j=1

LjK̃jYj + L0X1|0, (3.44)

where, K̃j = ZjKj, Lk = I, Lj = NkNk−1...Nj+1, j = 0, 1, 2, ..., k − 1 with Nj = Zj−K̃jTj.

Comparing (3.43) and (3.44) we get, wj = LjK̃j for j = 1, 2..., k and w0 = L0X1|0.

Proof. From (3.32) and (3.36), we can write,

Xk+1|k = K̃kYk +NkXk|k−1,

where, Nk = Zk − K̃kTk. By simple recursion it follows that,

Xk|k−1 = K̃k−1Yk−1 +NkNk−1K̃k−2Yk−2 +NkNk−1Nk−2K̃k−3Yk−3 + ...+

NkNk−1Nk−2...N2K̃1y1 +NkNk−1Nk−2...N1x1|0.

If we choose, Lk = I, Lj = NkNk−1...Nj+1, we get the required result.

The filtering problem deals with the estimation of the present state of the signal from

a given initial condition and the observed signal at that time.

Proposition 3.5.2. The Kalman-Levy filter (update) for the model (3.30) and (3.31) is
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given by (3.36) may be written as

Xk|k =
k∑
j=1

LjK̃jYj + L0X1|0, (3.45)

where, K̃j = ZjKj, with Zk = I, Lk = I, Lk−1 = I−KkTk and Lj = Lk−1Nk−1...Nj+1, j =

0, 1, 2, ..., k − 2 , Nj = Zj − K̃jTj , then comparing (3.43) and (3.46) we get wj = LjK̃j

for j = 1, 2..., k and w0 = L0X1|0.

Proof. From (3.36), we can write,

Xk|k = KkYk + (I −KkTk)Xk|k−1.

From the proof of Proposition 3.5.1, we have,

Xk|k−1 = K̃k−1Yk−1 +NkNk−1K̃k−2Yk−2 +NkNk−1Nk−2K̃k−3Yk−3 + ...+

NkNk−1Nk−2...N2K̃1Y1 +NkNk−1Nk−2...N1X1|0.

If we choose, Zk = I, Lk = I, Lk−1 = I − KkTk, Lj = Lk−1Nk−1...Nj+1, j =

0, 1, 2, ..., k − 2 , Nj = Zj − K̃jTj, and w0 = L0X1|0, we get the required result.

3.6 Simulation

Before going to the details of the simulation study and analysis, let us start with the simu-

lation of stable random variable. For this we need the following results by Samorodnitsky

and Taqqu (1994), page 42.

Proposition 3.6.1. Let γ be uniform on (−π/2, π/2) and let W be exponential with mean

1. Assume γ and W independent. Then

X =
sin(α γ)

cos(γ)(1/α)

[
cos((1− α)γ)

W

](1−α)/α
(3.46)



CHAPTER 3. SIGNAL EXTRACTION 73

is distributed like Sα(1).

If X is generated by (3.46) then λa X, provides Sα(λa) random variable.

Now we can move on to the simulation study. Suppose that an observed time series

Yt evolves according to equation (3.1) and the unobserved signal Xt, is a moving average

process order q defined by

Xt = at + θ1at−1 + ...+ θqat−q. (3.47)

Also assume that at ∼ Sα(λa) and Nt ∼ Sα(λϵ) where, λa and λϵ are respectively the

dispersion parameter of at and Nt. Our main objective is to extract the signal Xt from the

given observed signal Yt . This problem can be solved by applying the methods discussed in

Section 3.4. We simulate the data from the above model by taking q = 4, and θ1 = 0.7, θ2 =

0.4, θ3 = 0.2, θ4 = 0.1 ,α = 1.5, λa = 5, λe = 3. The symmetric stable innovation sequences

{at} and {Nt} are generated using the method described in Proposition 3.6.1. The system of

non-linear equations solved using the Levenberg-Marquardt algorithm discussed by Kelley

(1999).

Performance of minimum dispersion filters are compared with the MMSE Filter in terms

of their error sum of squares and dispersion which are summarized in Table 3.1 for different

sample sizes. The results show the improvement of signal extraction of stable models under

minimum dispersion criteria. Error sum of square and error dispersion of these filters show

the improvement of minimum dispersion filter against minimum mean squared error filter.

Figures. 3.1, 3.2 and 3.3 give the plots correspond to actual signal (simulated using model

(3.47)) , observed signal under symmetric stable noise (simulated using model (3.1) ),

estimated signal obtained through minimum dispersion filter and MMSE filter. Figure 3.4

shows the plot of the signal extraction error derived out of these filters. Figures 3.5 and

3.6 give the plot for the finite length filtering signals and error plot respectively. Here we

assume that the signal Xt follows an AR (1) model with ρ = 0.7 , innovation sequences

at ∼ Sα(λa) and noise Nt ∼ Sα(λϵ). The filtering is done using Kalmn-Levy filter and
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Kalman filter.

Sample Size Filter Dispersion Error Sum of Squares

50 MMSE 116.0728 223.0761

Minimum Dispersion 113.0230 212.4247

100 MMSE 225.3723 282.0869

Minimum Dispersion 218.7023 258.6477

Table 3.1: Comparison of error sum of squares and the dispersion

Figure 3.1: Time series Plot of actual signal, observed signal, estimated signal using mini-
mum dispersion filter and MMSE filter

Simulation studies result that minimum dispersion filter introduced in this chapter per-

forms well in signal extraction problems, when signal and noise processes assumed to follows

some stable time series models. Time series plots indicate that the proposed procedures

are competent enough to handle signal extraction of heavy tailed processes. In the present

chapter we assumed the parameters of signal and noise models are known. Next chapter

we address the estimation of signal and noise parameters based on an observed signal.
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Figure 3.2: Time series Plot of actual signal and estimated signal using minimum dispersion
criteria

Figure 3.3: Time series Plot of actual signal and estimated signal using MMSE criteria
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Figure 3.4: Error Plots corresponds to minimum dispersion and MMSE criteria

Figure 3.5: Actual signal and finite length filter using Kalman-Levy filter and Kalman filter
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Figure 3.6: Error Plot corresponds to Kalman-Levy filter and Kalman filter



Chapter 4

Stable Autoregressive Models and

Signal Estimation

4.1 Introduction

Time series models are popular tools in statistical signal processing, where the signal and

noise are assumed to be generated by certain autoregressive moving average models. In

the present chapter we study the parameter estimation of the signals generated by autore-

gressive models with symmetric stable innovations. Adler et al. (1998) studied time series

analysis of stable processes using sample ACF and PACF. Samorodnitsky and Taqqu (1994)

discussed covariation function to study the dependency structure of sequence of stable ran-

dom variates. Gallagher (2001) shows that confidence intervals coming from the sample

covariation have better coverage probabilities than those coming from the sample correla-

tions. If the process is symmetric stable, the sample covariation has a stable distribution,

while the sample correlation appears to converge very slowly to its asymptotic distribution

(See Gallagher et al. (2003)). Gallagher (2001) introduced a method for fitting stable

autoregressive models using the auto-covariation function, where he uses it in the place of

ACF for classical time series. Estimation of autoregressive parameters from a signal plus

Gaussian noise has been extensively studied by Gingras (1982) and Chan and Langford

78
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(1980) using a system of extended Yule-Walker (EYW) equations. Nikias and Shao (1995)

introduced generalized Yule-Walker (GYW) equations based on auto-covariation function.

These two studies motivated us to estimate the parameters of a stable autoregressive signal

observed in a symmetric stable noise environment using a modified version of the EYW

equations in terms of sample auto-covariation function. In order to minimize the bias in

the signal estimation, we use a large number of generalized Yule-Walker equations. Rate

of convergence of the estimates are better than the Yule-Walker estimates based on sample

auto-correlation function when the process is in the domain of normal attraction. An initial

estimate of the noise parameter and innovation parameter is estimated using method of

moments. These initial estimates have been used to extract signal and noise from the ob-

served signal by applying Kalman-Levy filter discussed in chapter 3. We can again estimate

the signal and noise parameters from the extracted signal and noise sequences. One of the

limitations of the covariation based estimation is that the covariation matrix is not neces-

sarily non-singular. The present study highlights this problem and proposes a generalized

solution to this problem using Moore-Penrose pseudo inverse.

The chapter is organized as follows: In second section we address the definition and

properties of stable autoregressive signals. Section 4.3 deals with the estimation of autore-

gressive parameters and innovation parameters from a signal plus noise model. Section

4.4 consists of the modification of generalized Yule-Walker estimate using singular value

decomposition. Section 4.5 contains simulation studies. In the Last section the methods

are used to analyze the sea surface temperature data.

4.2 Stable Autoregressive Signals

In this section we present stable autoregressive signal plus symmetric stable noise model

and its properties. Let {Yn} be the noisy measurement of a stable AR(p) signal {Xn}
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defined in (2.63) observed at time n, then the models may be written as,

Xn = ϕ1Xn−1 + ϕ2Xn−2 + ...+ ϕpXn−p + ηn,

Yn = Xn + εn.
(4.1)

The measurement error εn ∼ Sα(γε), are assumed to be serially independent and also inde-

pendent of {Xn} at all time points. So we also have εn and {ηn} are mutually independent

at all time points. We also assume that both {εn} and {ηn} are zero mean processes. A

detailed discussion on the applications of such models in the context of signal estimation

may be found in McCulloch (1998).

From equation (4.1) we can see that the generalized Yule-Walker estimates derived from

(2.54) based on Yn will be biased due to the presence of measurement noise. A range of

approaches have been introduced in finite variance case to solve this problem (see Davila

(1998) and the references there of). Here we focus on to generalize the extended Yule-

Walker estimation in terms of auto-covariation function. This leads to the estimation of

the stable autoregressive signal parameters based on the EYW equations using sample

auto-covariation function (AcovF).

From (4.1) we can write,

Yn + ϕ1Yn−1 + ϕ2Yn−2 + ...+ ϕpYn−p = ηn − εn − ϕ1εn−1 − ...− ϕpεn−p. (4.2)

Multiplying through out the equation (4.2) by sign(Yn−p−k) to obtain,

Ynsign(Yn−p−k) + ϕ1Yn−1sign(Yn−p−k) + ...+ ϕpYn−psign(Yn−p−k) =

ηnsign(Yn−p−k)− εnsign(Yn−p−k)− ϕ1εn−1sign(Yn−p−k)− ...− ϕpεn−psign(Yn−p−k).

(4.3)

On taking expectation in equation (4.3) and divided by E|Yn| we obtain the equation,

λy(p+ k) =

p∑
j=1

ϕj λy(p+ k − j), k = 1, ..., p, (4.4)
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where, λy(.) is the auto-covariation function of Yn defined by (2.51). Note that, the expected

value of right hand side of equation (4.3) vanishes when k > 0, since yn−k−1 can only involve

the innovations ηj and εj up to time n − k − 1, which are independent of ηn and εn. We

know that the autoregressive parameter vector ϕ = (ϕ1, ϕ2, ..., ϕp) is a function of λ(k) and

this relation can be used to find ϕ̂ based on λ̂(k) , for k = 0, 1, 2, ..., N −1. To minimize the

bias of EYW estimates, it is suggested that a large number of EYW equations be included

for estimation. So we have to choose an optimum number p′ of equations, such that p′ is

probably large compared to p but small compared to sample size. When the noise dispersion

is small, an AR model of order p′ = 2p might be appropriate but as the noise dispersion

increases, a higher p is required for satisfactory approximation. A method for choosing

such best p′ has been discussed by Politis (2009). One can choose p′ = max(p, [cN ]), where

c ∈ (0, 1). Reasonable choice of c should lie in the interval [0.1 0.2] for practical sample

size of order 100 to 1000. The Extended Yule-Walker equations can be modified as,

λy(k) =

p∑
j=1

ϕj λy(p+ k − j), k = 1, ..., p′, (4.5)

for some p ≤ p′ < N. In practice λy(k) and p are unknown. Estimation of p is a problem

of order identification. We address this problem in Chapter 5. In the next section we

discuss the estimation of λy(k) and subsequently the estimation of the AR parameters

ϕi , i = 1, ..., p.

4.3 Signal Estimation

This section discusses the parameter estimation of autoregressive signals observed in a

stable noise environment through the models described in equation (4.1). The observed

signal Yn can be represented as an ARMAmodel and the parameters can be estimated using

generalized Yule-Walker equations, by Nikias and Shao (1995). We look at the problem in

a different angle as mentioned in the previous section. The system of equations (4.5) can
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be expressed as

∆p′,p ϕ = Tp′ , (4.6)

where,

∆p′,p =


λy(p) · · · λy(1)

...
. . .

...

λy(p+ p′ − 1) · · · λy(p
′)

 , ϕ =


ϕ1

...

ϕp


and,

Tp′ =


λy(p+ 1)
...

λy(p+ p′)

 .

But in practice ∆p′,p , Tp′ and p are unknown. Order p of the autoregressive term, can be

chosen according to the order of observed signal Yn, which will be discussed in the next

chapter. Estimate of λy(.) is obtained by its sample version, λ̂y(.) defined as in (2.53)(see

Gallagher 2000). From, Equation (4.6), we may write

T̂p′ = ∆̂p′,p ϕ+ Z. (4.7)

The terms, ∆̂p′,p and T̂p′ are obtained by replacing the λy(.) values by its estimate λ̂y(.) in

equation (4.6) where as Z is the corresponding error. From Theorem 2.4.5, we have, λ̂(k) =

λ(k) +OP (N
1
α
−1) for any k ≤ p′. This in turn gives, Z = OP (N

1
α
−1). Hannan and Kanter

(1977) used least square estimation to estimate the parameters of stable autoregressive

models. Cline (1989)studied the consistency for least squares regression estimators with

infinite variance data. These studies motivate us to propose an estimate ϕ̂ for the vector of

autoregressive parameters using ordinary least square regression method in equation (4.7),

and is given by

ϕ̂ = (∆̂′
p′,p∆̂p′,p)

−1∆̂′
p′,pT̂p′ , (4.8)

if the matrix ∆̂′
p′,p∆̂p′,p is non-singular. If the matrix is singular we can handle the problem

in terms of Moore-Penrose pseudo inverse. The details are discussed in the next section.
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In the present study we assume the covariation matrix is non-singular unless it specified.

Note: When, p′ = p the estimate ϕ̂ reduces to that obtained from the Extended Yule-

Walker Equations.

Theorem 4.3.1. Define a function

g(w) = (∆̂′
p′,p(w)∆p′,p(w))

−1∆̂′
p′,p(w)w,

and assume that g(w) is continuously differentiable. Then, as N → ∞,

(i) ϕ̂
p→ ϕ, and,

(ii) ϕ̂ = ϕ+Op(N
1
α
−1).

Proof. (i) From the Theorem 2.4.4, we may write λ̂(k) = λ(k) + op(1), and from the

definition of g we have ϕ = g(λ) and ϕ̂ = g(λ̂). Now the proof of ϕ̂
p→ ϕ follows by the

continuous mapping theorem stated in Proposition 2.6.5.

(ii) Applying Theorem 2.4.5 we can show that, λ̂(k) = λ(k)+OP (N
1
α
−1) for any k ≤ p′.

It is enough to show that, N1− 1
α (ϕ̂− ϕ) = Op(1)

That is,

P{N1− 1
α |ϕ̂− ϕ| > δ(ϵ)} < ϵ.

Take, N1− 1
α = an and consider

P{an|ϕ̂− ϕ| > δ(ϵ)}

= P{an|g(λ̂)− g(λ)| > δ(ϵ)},

≤ P{an|g(λ̂)− g(λ)| > δ(ϵ), an|λ| ≤ K, an|λ̂| ≤ K} +

P{(an|λ̂| > K) ∪ (an|λ| > K)}.

Since the function g is uniformly continuous on {λ : an|λ| ≤ K}, there exist γ(ϵ) > 0, such
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that for all N,

{an|g(λ̂)− g(λ)| > δ(ϵ), an|λ̂| ≤ K, an|λ| ≤ K} ⊆ {an|λ̂− λ| > γ(ϵ)}.

Hence,

P{an|ϕ̂− ϕ| > δ(ϵ)}

≤ P{an|λ̂− λ| > γ(ϵ)}+ P{(an|λ| > K)}+

P{(an|λ̂| > K/2)}+ P{(an|λ̂− λ| > K/2)}

Now given any δ > 0, we can choose K to make each of the second and third terms less

than δ/4. Then since an(λ̂−λ) = Op(1), each of the first and fourth terms is also bounded

by δ/4 for large N. Consequently, g(λ̂) = g(λ) +Op(N
1
α
−1).

Theorem 4.3.2. If g is defined as in Theorem 4.3.1 and F is the p× (p+ p′ − 1) matrix

of partial derivatives of the vector function g, with respect to λ at λ̂, then as N → ∞,

N1− 1
α (ϕ̂− ϕ)

L→ FS,

where S = [S1 S2 ...Sp+p′−1]
′, defined as in 2.4.5.

Proof. From the Theorem 2.4.5 we can show that, λ̂(k) = λ(k)+OP (N
1
α
−1). Take, N

1
α
−1 =

an.

Now applying Proposition 2.6.6, we can write,

g(λ̂) = g(λ) +

p+p′−1∑
i=1

∂g(λ)

∂λi
(λ̂i − λi) + op(an).

or equivalently,

g(λ̂)− g(λ) = F (λ̂− λ) + op(an).
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Multiplying both side by an
−1 we obtain,

an
−1(g(λ̂)− g(λ)) = an

−1F (λ̂− λ) + op(1).

From Theorem 2.4.5 and 2.4.7 we have, an
−1F (λ̂−λ) ⇒ FS. Hence from Proposition 2.6.4

it follows that of an
−1(g(λ̂)− g(λ)) ⇒ FS.

The following procedure suggests a method of estimating scale parameters and heavy

tail index of the innovation and noise sequence in model (4.1). Estimation procedure entails

two steps; we propose an initial estimate of the scale parameter obtained by the method of

moment and heavy tail index using Hill estimation method in the first step.

For symmetric stable random variable with scale γ,

E|X| = π γ

2 Γ(1− 1/α)
. (4.9)

For the sake of simplicity we can illustrate this procedure by assuming that Xn follows

AR(1) model in (4.1). From (4.1) we can show that,

Yn − ϕ1 Yn−1 = Un + εn − ϕ1 εn−1 = ηn. (4.10)

From the assumption of independence of Un and εn, we can show that, scale parameter γη

of ηn, as,

γη = γu + (1 + |ϕ1|α)γε,

That is,
E|ηt|2 Γ(1− 1/α)

π
= γu + (1 + |ϕ1|α)γε. (4.11)

From proposition 2.4.3 we can show that the auto-covariation between ηn and ηn−1 as,

[ηn, ηn−1]α = −ϕ1E|εn|, = −ϕ1
π γε

2 Γ(1− 1/α)
. (4.12)
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Define γ(0) = E|ηn| and γ(1) = [ηn, ηn−1]α = E(ηnsign(ηn−1)), then we can write (4.11)

and (4.12) respectively as,

γ(0)2 Γ(1− 1/α)

π
= γu + (1 + |ϕ1|α)γε, (4.13)

and

γ(1) = −ϕ1
π γε

2 Γ(1− 1/α)
. (4.14)

Let α be known and ϕ̂1 be the estimate of ϕ1 obtained from (4.8). If we define γ̂(0) =

1
N

N∑
n=1

|ηn| and γ̂(1) = 1
N

N∑
n=1

ηnsign(ηn−1), then the moment estimates of γu and γε are

obtained by solving the equations (4.13) and (4.14).

If α is unknown we can still estimate it by Hill estimate proposed by Pictel et al. (1998)

and replace α by its estimate in equations (4.13) and (4.14).

In the second step we apply Kalman-Levy filter discussed in the previous chapter to

extract signal (Xn) and noise (εn) sequences from the observed signal (Yn). This step entails

the knowledge of the parameters γu, γε and α values. These values can be replaced by the

estimated values obtained from the first step. An estimate of the innovation sequence {Un}

and noise sequence {εn} can be obtained from the extracted signal sequence X̂n as,

Ûn = X̂n − ϕ̂1 X̂n−1, (4.15)

and

ε̂n = Yn − X̂n.

Scale parameter of the extracted sequence Ûn and ε̂n is estimated using method of moments

discussed above.

Heavy tailed index can be estimated by the following estimate given by Gallagher (2001),
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that is,

α̂ =
log(1− ϕ̂1λ̂−1)

log(
N∑
n=1

Ûn/
N∑
n=1

|X̂n|)
.

Note: For an AR(p) model expressions similar to (4.11) and (4.12) can be obtained as,

γ(0)2 Γ(1− 1/α)

π
= γu + (1 + |ϕ1|α + ...+ |ϕp|α)γε, (4.16)

and

γ(k) = −ϕk
π γε

2 Γ(1− 1/α)
, k = 1, ..., p. (4.17)

The moment equations defined in (4.16)and (4.17) are nonlinear in its parameters. So the

estimation may be computationally expensive and inaccurate. For better performance we

recommend this estimate as an initial estimate for the Kalman-Levy filtering in the second

step.

4.4 Modified generalized Yule-Walker estimation

The covariation matrix discussed earlier is not nonsingular in general. This makes the

estimation problem difficult, and introduces error in the estimation. Further, it poses

problems for studying the asymptotic properties of the estimate λ̂. A method for sorting

out this problem is discussed below. Before going to details let us define Moore-Penrose

pseudo inverse ( see Stewart (1973), Rao (1973))

Definition 4.4.1. Moore-Penrose pseudo inverse defined a generalized inverse as a matrix

A+ satisfying the properties

(i) AA+A = A,

(ii) A+AA+ = A+,

(iii) (AA+)∗ = AA+,
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(iv) (A+A)∗ = A+A.

such an inverse exist and is unique.

Let ∆̂m be an estimate of the covariation matrix obtained by replacing the λy(.) by its

sample version, λ̂y(.) . We can apply the singular value decomposition method of Stewart

(1973) to the auto-covariation matrix, and is given by ,

∆̂m = UΛV T . (4.18)

In (4.18) U and V are orthogonal matrices of size m×m , and

Λ = diag(ν1, ν2, ..., νm), ν1 ≥ ν2 ≥, ... ≥, νm, (4.19)

where ν1, ν2, ..., νm are singular values of ∆̂m. Singular value decomposition helps to identify

and eliminate the singular values νi, which are close to zero. After eliminating singular

values the resulting matrix will have rank p ≤ m and given by

∆̂p = UDV T (4.20)

where,

D =

 Λ̂ 0

0 0


with, Λ̂ = diag(ν1, ν2, ..., νp). The estimate ∆̂p is likely to be, in general, a better estimate

than ∆̂m of ∆m . Now the generalized Yule-Walker equation can be modified in terms of

∆̂p and T̂m , the equality holds only approximately.

∆̂p ϕ∗ ≈ T̂m (4.21)

The generalized Yule-Walker estimate can be obtained as,
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ϕ̂∗ = (∆̂p)
+ T̂m (4.22)

where,

(∆̂p)
+ = V

 Λ̂−1 0

0 0

UT

denotes the Moore-Penrose pseudo inverse of ∆̂p.

Theorem 4.4.2. Define a function g(w) = (∆m(w))
+ w , and assume that g(w) is contin-

uously differentiable. Then from (4.22), as N −→ ∞ , ϕ̂∗
p→ ϕ∗ and, N1− 1

α (ϕ̂∗ − ϕ∗)
L→

FS, where S = [S1, ..., S2p−1] and F is the m×2p−1 matrix of partial derivatives of vector

function g , with respect to λ at λ̂.

Proof. From Theorem 2.4.5, we may write ,

λ̂(k) = λ(k) + op(1)

and we also have ϕ∗ = g(λ) and ϕ̂∗ = g(λ̂). Proof of ϕ̂∗
p→ ϕ∗ is directly for the continuous

mapping theorem stated in Proposition 2.6.5. By using the mean value theorem we can

write

ϕ̂∗ − ϕ∗ = F (λ̂− λ) + on(λ̂− λ)

where, F is the matrix specified in the statement of the theorem. Applying the steps similar

to those of the proof of Theorem 4.3.1 we get the required result.

Note:

1. When p = m, we get
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∆̂
+

p = ∆̂+
m = ∆̂−1

m

and the corresponding estimator reduces to the generalized Yule-Walker estimator.

2. The estimate defined in equation (4.22) is an extended version of generalized Yule-

Walker estimate. Since the Moore-Penrose pseudo inverse is unique, the estimate also has

the same property.

4.5 Simulation

To study the signal parameter estimation problem we generate 10000 realizations of AR(1)

signal Xt with sample sizes, 100, 1000, 5000 and parameters ϕ = 0.6, γη = 5, and α = 1.7

using the first model in (4.1). The observed signal Yn is obtained using the second model

(4.1) with measurement noise parameters γε = 2. That is

Xn = ϕXn−1 + ηn,

Yn = Xn + εn.
(4.23)

where, εn ∼ Sα(γε) and ηn ∼ Sα(γη). The symmetric stable sequences are generated using

the algorithm discussed in Section 3.6.

We carried out the estimation procedure in four steps.

(i) First step we estimate the autoregressive parameters based on the estimate proposed

in equation (4.8) with p′ = 4.

(ii) An initial estimate of γu and γε are obtained using equation (4.13) and (4.14) in the

second step.

(iii) We consider an initial value of α in this step. Based on these values the signal and

noise components are extracted using the Kalman-Levy filter in the third step.
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(iv) Signal and noise parameters are modified using the extracted components in the last

step.

Step (iii) and (iv) are continued until the estimates get converged. These procedures

repeated for all 10000 realizations and the Mean and the Mean Absolute Deviation (MAD)

of the estimated parameters are obtained out of this simulation.The results are given in

Table 4.1.

From the Table 4.1, we can see that the mean absolute deviation of the estimate reduces

when the sample size increases. Simulation results show that the proposed estimation

method is a satisfactory tool for signal estimation. In the next section we validate our

method based on a real data set.

Sample Size Parameters True Values Estimated Values MAD

100 α 1.7 1.9900 1.8815

γη 5 4.9797 1.1275

γε 2.0 2.0224 0.3941

ϕ 0.6 0.6800 0.1661

1000 α 1.7 1.9800 0.6385

γη 5 5.1040 0.6197

γε 2 1.9773 0.2274

ϕ 0.6 0.7215 0.1344

5000 α 1.7 1.7800 0.3860

γη 5 5.1030 0.3980

γε 2 1.9686 0.1474

ϕ 0.6 0.7248 0.1292

Table 4.1: Mean and Mean Absolute Deviations (MAD) for the signal and noise parameters
estimated based on the methods discussed in section 4.

4.6 Analysis of Global Sea Surface Temperature Time

Series Data

We analyze a data set consists of global average Sea Surface Temperature (SST) anomaly

in the month of November from 1845 to 2006. The data was downloaded from http :
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//jisao.washington.edu/data/global sstanomts. The anomaly is the difference between

observed data and its global average. The data set is multiplied by 100 (C ∗ 100). Figure

4.1 shows the time series plot of the anomaly data.

Figure 4.1: Time series plot of Sea Surface Temperature Data

Figure 4.2: Time series plot of first order difference Data

Time series plot indicates that the data shows some increasing trend so it cannot be

assumed to be a realization of stationary stochastic process. The differenced data plot in

Figure 4.2 shows stationarity but the time series show some sharp spikes, which may be

an indication of heavy tails. We plot the auto-covariation and partial auto-covariation of

the differenced data and observe that the auto-covariation function tails off and the partial
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Figure 4.3: Stable density and estimated density of the estimated innovations from stable
model

Figure 4.4: Normal density and estimated density of the estimated innovations from normal
model

auto-covariation function cuts off after three lags. Higher order observed AR signals can be

written as a lower order AR signal plus noise model. Based on this, we fit a stable AR (1)

signal plus noise model (4.23) to this data. The autoregressive parameters are estimated
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by the proposed method using sample AcovF and ACF. Estimated AR parameter, ϕ̂ =

−0.4750. We estimate the innovation sequence and noise sequence based on the method

discussed in Section 4.3. For an iid sequence, the AcovF and PcovF are zero for all k ̸= 0.

Since λ̂(k) → λ(k) as N → ∞, the sample versions of AcovF and PcovF should be close

to zero. It is observed that the AcovF and PcovF of the estimated sequences are close to

zero.

Parameters MLE SCF QE MME
α 1.8 1.78 1.69 1.85
γη 102 100 98 88.4
γε 3.6 3.5 3.18 2.99

Table 4.2: Estimated parameters of the noise and innovation sequence.

Figure 4.5: Stable density and estimated density of the estimated noise from stable model

Parameters of the innovation sequence are estimated using Gaussian and stable assump-

tions. Here we use four well known methods to estimate the stable parameters which are

Maximum Likelihood Estimation (MLE), Sample Characteristic Function (SCF), Quantile

Estimation (QE) and our proposed Method of Moment Estimation (MME)). Estimation

under the first three methods have been carried out using the program stable.exe of Nolan
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Figure 4.6: Stable density and estimated density of the estimated noise from normal model

(2005); the results are listed in Table 4.2. For Gaussian model, ση = 132, and σε = 3.5

are the estimated standard deviation of the innovation sequence and noise sequence respec-

tively. Figures 4.3, 4.4, 4.5 and 4.6 show the plots of stable and normal density functions

with the estimated parameter, respectively along with a smoothed density estimate from

the estimated innovation and noise sequences. Figure 4.3 and 4.5 are respectively the den-

sity plot of estimated innovation and noise sequences under stable assumption. Figure 4.4

and 4.6 are respectively the density plot of estimated innovation and noise sequences under

normal assumption. The stable density fit and density plot are obtained using the program

stable.exe of Nolan (2005). The density estimate under the assumption of stable models

provides a better fit. The computation and simulation studies have been carried out using

MATLAB software.



Chapter 5

Model Identification techniques for

Stable Autoregressive Models

5.1 Introduction

The twin problems of model identification and estimation of Gaussian time series models

are extensively studied by Box and Jenkins (1976), Brockwell and Davis (1987). Model

identification problems can be generally classified in to graphical approach and information

approach. Graphical model identification approach of Gaussian time series is generally

carried out using autocorrelation and partial autocorrelation plot. In the present chapter

we study the model identification techniques for stable time series models. Theoretical

properties of autocorrelation and partial autocorrelation cannot be studied in this set up

due to the lack of second order moments. Theorem 2.4.1 of Chapter 2 gives the limiting

behavior of sample auto-correlation function in stable set up. Keeping these results in

mind Adler et al. (1998) explored the application of sample auto-correlation and partial

auto-correlation plot for model identification of stable auto-regressive models. Gallagher

(2001) used sample auto-covariation function to identify moving average models based

on its limiting behavior. In the present work we introduce the concept of partial auto-

covariation function (PcovF) for time series with heavy tailed marginals, a measure similar

96
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to PACF in the Gaussian time series. To introduce the concept of PcovF, we use the

ideas from the linear prediction theory discussed in Chapter 2. In this chapter our focus

is to study the time series analysis of infinite variance autoregressive processes using auto-

covariation and partial auto-covariation functions. We generalize the Durbin-Levinson

algorithm in stable autoregressive models in terms of partial auto-covariation and use it

for model identification. Simulation studies show that sample PcovF performs better than

sample ACF for model identification in autoregressive process in the domain of attraction of

normal laws. The problem of over fitting can be avoided by imposing a cost for increasing

the number of parameters in the fitted models. One way of doing this for pure auto-

regressive model is to minimize the final prediction error (FPE) of Akaike (1970). Akaike

information criteria (AIC) is one of the popular methods in model identification (see Akaike

(1974), Brockwell and Davis (1987), Shibata (1976)). This method minimizes the prediction

error variance and it can be written as a function of partial auto-correlation function. This

approach is widely used for model identification of infinite variance time series even though

the variance is ill defined in this case (see Bhansali (1988), Knight (1989), Adler et al.

(1998), Burridge and Hristova (2007)). In this chapter we propose a new information

criteria based on the minimization of prediction error dispersion, which can be defined

mathematically for infinite variance processes. This criterion can be expressed as a function

of partial auto-covariation function. Theoretical studies show that the proposed method is

consistent in model identification under certain conditions. Simulation results substantiate

the consistency properties in model identification techniques and it performs better than

AIC in both Gaussian and stable auto-regressive models.

The chapter is organized as follows: In Section 5.2 we discuss the definition and prop-

erties of Partial auto-covariation function (PcovF). Generalization of Durbin-Levinson al-

gorithm for fitting stable auto-regressive model is mentioned in Section 5.3. We propose a

new model identification criterion and its theoretical performance in Section 5.4 . Section

5. 5 contains simulation studies.
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5.2 Partial Auto-covariation Function for AR Models

Cambanis and Miller (1981) studied the linear estimation problems of alpha stable pro-

cesses. Cline and Brockwell (1985) defined a finite linear prediction for a stable autoregres-

sive process. The results are observed to be identica to the corresponding results for least

squares prediction of the process, with finite variance.

In this chapter we consider an autoregressive process of order m and is defined as,

Xn = ϕ1Xn−1 + ϕ2Xn−2 + ...+ ϕmXn−m + ηn. (5.1)

From Lemma 2.5.11 we can shows that, for symmetric stable processes with α > 1, the

minimum dispersion predictor of Xn+k is given by

X̂n+k = E(Xn+k|Xn+k−1, Xn+k−2, ...). (5.2)

The Corollary 2.5.14 shows that, for an AR(m) process, with m ≤ n, there exists a unique

minimum dispersion linear predictor X̂n+k forXn+k(k ≥ 1) in terms ofXn+k−1, Xn+k−2, ..., Xn+k−m

and it follows the recursive relationship

X̂n+k = ϕ1X̂n+k−1 + ϕ2X̂n+k−2 + ...+ ϕmX̂n+k−m, (5.3)

with initial conditions X̂j = Xj for 1 ≤ j ≤ n. From (5.2) and (5.3), for 1 < α ≤ 2,

X̂n+k = E(Xn+k|Xn+k−1, ..., Xn+k−m),

which is the minimum dispersion predictor of Xn+k based on (Xn+k−1, ..., Xn+k−m). Now

let us define partial auto-covariation function (PcovF) as follows.

Definition 5.2.1. Let Xn be a zero mean stationary alpha stable process with auto-

covariation function λ(k) such that λ(k) → 0, as k → ∞ and suppose that ϕnj, j =
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1, ..., n, n = 1, 2, ... are the coefficients in the representation:

E(Xn+1|X1, X2, ..., Xn) =
n∑
j=1

ϕnjXn−j+1.

Then from Theorem 2.5.9, we get
λ(0) . . . λ(1− n)
...

. . .
...

λ(n− 1) . . . λ(0)



ϕn1
...

ϕnn

 =


λ(1)
...

λ(n)

 (5.4)

and the partial auto-covariation τ(n) of {Xn} at lag n is defined as

τ(n) = ϕnn, n ≥ 1.

If λ(.) matrix on the LHS of (5.4) is non-singular then, ϕnn can be determined by this

equation.

Remark 5.2.2. If {Xn} is either an AR(1) process or an AR(2) process, then the estimates

of AR parameter are unique and strongly consistent. In either case λ(.) matrix on the LHS

of (5.4) is non-singular. In both cases the estimates of this matrix are almost surely

nonsingular if P (Xn = 0) = 0. If Xt is an AR(1) process LHS matrix becomes λ(0) = 1. If

Xt is an AR(2) process, λ(.) matrix is nonsingular unless λ(1) = λ(−1) = ±1.

The following is an example to illustrate the existence of a non-singular λ(.) matrix

in the case of a stationary AR(3) model. Let ηn be an iid sequence of symmetric stable

random variables and define

Xn = 0.7126Xn−1 + 0.1868Xn−2 − 0.0007Xn−3 + ηn. (5.5)

The associated λ(.) matrix in (5.4) becomes
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∆ =


1 0.6274 0.5158

0.8294 1 0.6274

0.7774 0.8294 1

 .
Clearly the matrix is non-singular as |∆| = 0.2191.

If λ(.) matrix in (5.4) is singular then the estimation problem can be handled in terms

of Moore-Penrose pseudo inverse discussed in Section 4.4.

Now, we discuss the problem of estimating partial auto-covariation function based on

sample values and study the asymptotic properties of the estimates. We have seen the

limiting behavior of sample autocorrelation function of moving average processes with sym-

metric stable innovations in Theorem 2.4.1. This result provides the theoretical support to

make use of sample correlation as a tool in time series analysis of alpha stable processes,

especially model identification (see Adler et al. (1998)). Important aspect of the covari-

ation function is that we can define it in stable process environment, where correlation is

ill defined. Theorems 2.4.4, 2.4.5 and 2.4.7 illustrate the limiting behavior of sample auto-

covariation function in a moving average process with alpha stable innovations. We use the

application of these theorems to study the limiting distribution of partial auto-covariation

function.

In order to study the partial auto-covariation function (PcovF) in the autoregressive

case, we consider the vectors Φ′
k = (ϕ′

1, ϕ
′
2, ..., ϕ

′
k), where ϕ

′
i = ϕi for i ≤ m and ϕ′

i = 0

when i > m. The partial auto-covariation at lag k , ϕkk is defined as the k−th component

of the vector

Φ′
k = ∆−1

k Tk, (5.6)

where, ∆k = [λ(i− j)]ki,j=1 is an k × k matrix with λ(0) = 1 and Tk = (λ(1), ..., λ(k))′.

Sample PcovF at lag k, ϕ̂kk is defined as the k−th component of the vector

Φ̂′
k = ∆̂−1

k T̂k, (5.7)
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where, ∆̂k and T̂k are respectively ∆k and Tk, whose elements are replaced by the corre-

sponding sample quantities. Simulation results show that these measures perform well in

model identification and estimation of autoregressive models with heavy tailed innovations.

Theorem 5.2.3. With Φ̂′
k defined by (5.7), as N → ∞

Φ̂′
k

p→ Φ′
k

and

N1− 1
α (Φ̂′

k − Φ′
k)

L→ FS, (5.8)

where S = [S1, S2, ..., S2k−1]
′ has stable distribution defined in 2.4.5 for α ∈ (1, 2] and F is

the k × 2k − 1 matrix of partial derivatives of a continuously differenciable vector function

g(w) = ∆−1
k (w) w.

Proof. From the equation (5.6), we can identify a function g(.) as

Φk = g(λ).

Then by the mean value theorem

Φ̂k − Φk = F (λ̂− λ) + on(λ̂− λ),

where, F is the matrix specified in the statement of the theorem. If we define ∆k(w) =

[wi−j]
k
i,j=1, w0 ≡ 1, the proof follows similar to the proof of Theorems 4.3.1 and 4.3.2.

Theorem 5.2.3 gives the limiting distribution of sample partial auto-covariation function.

Now we can switch over to solve the model identification problem using PcovF. Gallagher

(2001) used auto-covariation function to identify moving average models. We can easily

show that PcovF is zero after lag m, in AR(m) models which is similar to that of PACF in

the Gaussian setup, (see Brockwell and Davis (1987)). This result can be used to identify

the order of autoregressive models. Auto-covariation function of white noise process is zero.
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When m = 0, right hand side of (5.8) reduces to the marginal distribution of S, this is

the same limit as that of the auto-covariation function of white noise process. The model

identification problem reduces to that of testing null hypothesis that, which of the ϕn,n are

zero (see Gallagher (2006)).

5.3 Durbin-Levinson algorithm for fitting stable au-

toregressive model

Durbin-Levinson recursion method of estimation is widely used in finite variance time series

set up in terms of autocorrelation function (see Brockwell and Davis (1987)). In this section

we extend this method for the infinite variance model such as autoregressive model with

stable innovation using partial auto-covariation function. From the definition of partial

auto-covariation we can write the predictor X̂n+1 of Xn+1 as a linear function of its past

values.

X̂n+1 = ϕn,1Xn + ϕn,2Xn−1 + ...+ ϕn,nX1. (5.9)

The absolute mean of prediction error can be denoted by γu(n). Thus,

γu(n) = E(|Xn+1 − X̂n+1|). (5.10)

clearly γu(0) = γ(0) = E|Xn − E(Xn)|.

If γ(0) > 0 and ∆1,∆2, ...,∆n are nonsingular, one can generalize Durbin-Levinson

algorithm, which is a recursive scheme for computing ϕn,1, ϕn,2, ... and γu(1), γu(2), ... for

n = 1, 2, ... . The algorithm can be stated as a proposition and a corollary as follows:

Proposition 5.3.1. (Generalized Durbin-Levinson Algorithm) If {Xt} is a zero

mean stationary process with γ(0) > 0 and λ(h) → 0 as h→ ∞, then ϕn,j defined in (5.9),
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satisfy ϕ1,1 = λ1, ϕ1,−1 = λ−1,

ϕs,s =
λ(s)− ϕs−1,1λ(s− 1)− ϕs−1,2λ(s− 2)− ...− ϕs−1,s−1λ(1)

1− ϕs−1,1λ(−1)− ϕs−1,2λ(−2)− ...− ϕs−1,s−1λ(1− s)
, (5.11)

ϕs,−s =
λ(−s)− ϕs−1,−1λ(1− s)− ϕs−1,−2λ(2− s)− ...− ϕs−1,1−sλ(−1)

1− ϕs−1,−1λ(1)− ϕs−1,−2λ(2)− ...− ϕs−1,1−sλ(s− 1)
,

ϕs,r = ϕs−1,r − ϕs,sϕs−1,r−s, s = 1, 2, ..., N,

ϕs,−r = ϕs−1,−r − ϕs,−sϕs−1,s−r, s = 1, 2, ..., N.

Proof. From equation (5.4) we can write,

∆n ϕn = Tn (5.12)

The basic idea of the recursion is to find the solution ϕn+1 for the (n+1)st order case from

the solution Φn for the nth order case. Unfortunately the ∆n is not symmetric compared

to the correlation matrix but diagonal elements are equal.

To begin the proof, consider the case n = 1. Equation (5.12) becomes

∆1 Φ1 = T1,

λ(0) ϕ1,1 = λ(1),

ϕ1,1 = λ(1),

since λ(0) = 1.
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The recursion will now be developed by evaluating Equation (5.12) for order n+ 1:



λ(0) λ(−1) . . . λ(−n+ 1) λ(−n)

λ(1) λ(0) . . . λ(−n+ 2) λ(−n+ 1)
...

. . .
...

λ(n− 1) λ(n− 2) . . . λ(0) λ(−1)

λ(n) λ(n− 1) . . . λ(1) λ(0)





ϕn,1

ϕn,2
...

ϕn,n−1

ϕn,n


=



λ(1)

λ(2)
...

λ(n)

λ(n+ 1)


.

The matrices ∆n+1 and ∆n are related by the relation

∆n+1 =


∆n


λ(−n)

λ(−n+ 1)
...

λ(−1)


[
λ(n) λ(n− 1) · · · λ(1)

]
[λ(0)]


and the vector Tn+1 related to Tn by

Tn+1 =

 Tn

λ(n+ 1)


Now let us define some vectors,

ϕn =


ϕ1,1

ϕ1,2

...

ϕ1,n

 , Nm =


λ(−1)

λ(−2)
...

λ(−n)

 , λ+n =


λ(n)

λ(n− 1)
...

λ(1)

 , λ−n =


λ(−n)

λ(−n+ 1)
...

λ(−1)


and also we have,
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Tn =


λ(1)

λ(2)
...

λ(n)


So, the matrix ∆n+1 may be written as,

∆n+1 =

 ∆n λ−n

(λ+n )
T λ(0)

 .
Lets now represent the (n + 1)st-order parameter vector ϕn+1 in terms of the nth order

vector ϕn, a correction term kn+1 and a correction vector εn as

ϕn+1 =

 ϕn

0

+

 εn

kn+1

 . (5.13)

Equation (5.13) for order n+ 1 is therefore represented in terms of the nth order equation

as  ∆n λ−n

(λ+n )
T

λ(0)


 ϕn

0

+

 εn

kn+1

 =

 Tn

λ(n+ 1)


which, sorting the equations out, implies

∆nϕn +∆nεn + λ−n kn+1 = Tn, (5.14)

and

(λ+n )
Tϕn + (λ+n )

T εn + λ(0)kn+1 = λ(n+ 1). (5.15)
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Now let’s define two more vectors,

βn =


ϕ1,−n

ϕ1,−n+1

...

ϕ1,−1

 , αn =


ϕ1,−1

ϕ1,−2

...

ϕ1,−n


and let

∆n βn = λ−n . (5.16)

From (5.12) and (5.14) we can show that,

∆nεn + λ−n kn+1 = 0. (5.17)

Substituting (5.16) into (5.17) we get,

εn = −kn+1βn. (5.18)

We will now use this and Equation (5.15) to find kn+1 and thus have all the components

needed to complete the recursion.

Pre-multiplying both sides of Equation (5.18) by (λ+n )
T
gives the scalar relation

(λ+n )
T
εn = −(λ+n )

T
βnkn+1 (5.19)

(λ+n )
T
βn = T Tn γn = T Tn (∆

T
n )

−1Nn,

and

ϕn
TNn = T Tn γn = T Tn (∆

−1
n Tn)

TNn = T Tn (∆
T
n )

−1Nn.
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That is,

(λ+n )
T
βn = ϕn

TNn.

Substituting this in (5.19) we get

(λ+n )
T
εn = −ϕnTNnkn+1. (5.20)

So equation (5.15) becomes,

(λ(0)− ϕTnNn)kn+1 = λ(n+ 1)− λ+nϕn

From this we get the expression for kn+1 as,

kn+1 =
λ(n+ 1)− λ+nϕn
λ(0)− ϕTnNn

. (5.21)

Equations (5.13), (5.18), and (5.21) therefore define a recursion formula for finding the n+

1st-order model parameters ϕk,n+1 in terms of the previously-obtained nth order solution.

We get a starting point to the recursion from n = 1 case discussed above.

Now let us derive an expression for absolute mean for the prediction error as a corollary

to this result. For that we need the following result by Gallagher (2001).

Proposition 5.3.2. For a causal stable AR(m) process, {Xn, } the following equation holds

[E|ηn|/E|Xn|]α = 1− ϕ1λ(−1)− ...− ϕmλ(−m). (5.22)

Proof. see Gallagher (2001).

From (5.3) we have seen that for an AR(m) model, the best linear predictor satisfy the

recursion relation

X̂n+1 = ϕ1X̂n + ϕ2X̂n−1 + ...+ ϕmX̂n−m+1.
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Comparing this with model (5.9) we have

ϕnj = ϕj for j = 1, 2, ...,m and

ϕnj = 0 for j > m.

From the definition of AR(m) model the prediction error un+1can be seen as,

un+1 = Xn+1 − X̂n+1 = ηn+1

Xn+1 = X̂n+1 + un+1.

From Proposition 5.3.2 we have

[E|un|/E|Xn|]α = 1− ϕn1λ(−1)− ...− ϕnmλ(−m). (5.23)

Corollary 5.3.3. If γ(0) > 0 for a stable autoregressive models for m = 1, 2, ..., N − 1,

and, ϕk,k, ϕk,−k are defined as in Proposition 5.3.1 then,

γu(1) = γ(0)(1− ϕ1,1ϕ1,−1)
1/α

and,

γu(m) = γ(0)(
m∏
k=1

(1− ϕk,kϕk,−k))
1/α. (5.24)

Proof. The result can be proved by induction. To begin with consider the case of n = 1.

From equation (5.22), we have

[γu(1)/γ(0)]
α = 1− ϕ1,1λ(−1),

= 1− ϕ1,1ϕ1,−1.

Assume that the result hold for n = m.
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That is,

[γu(m)/γ(0)]α =
m∏
k=1

(1− ϕk,kϕk,−k).

Now we need to prove the result for n = m+ 1, let us write

[γu(m+ 1)/γ(0)]α = 1− ϕm+1,1λ(−1)− ...− ϕm+1,m+1λ(−m− 1)

Using the equation (5.11) we can write,

1− ϕm+1,1λ(−1)− ...− ϕm+1,m+1λ(−m− 1)

= 1− (ϕm,1 − ϕm+1,m+1ϕm,−m)λ(−1)− (ϕm,2 − ϕm+1,m+1ϕm,−m+1)λ(−2)−

...− (ϕm,m − ϕm+1,m+1ϕm,−1)λ(−m)− ϕm+1,m+1λ(−m).

Since,

(λ+n )
T
βn = ϕn

TNn,

we can write,

[γu(m+ 1)/γ(0)]α = 1− ϕm1λ(−1)− ...− ϕmmλ(−m)(1− ϕm+1,m+1ϕm+1,−m−1)

= [γu(m)/γ(0)](1− ϕm+1,m+1ϕm+1,−m−1)

= (
m∏
k=1

(1− ϕk,kϕk,−k))(1− ϕm+1,m+1ϕm+1,−m−1).

There fore,

[γu(m+ 1)/γ(0)]α = (
m+1∏
k=1

(1− ϕk,kϕk,−k))
1/α

This completes the proof.

If γ̂(0) > 0 we can fit a stable autoregressive signals of order (n < N) by means of
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generalized Yule-Walker equations. The fitted AR(m) process is

Xn = ϕ̂1Xn−1 + ϕ̂2Xn−2 + ...+ ϕ̂mXn−m + ηn, ηn ∼ Sα(
2Γ(1− 1/α)

π
γ̂u(m)).

Durbin-Levinson recursion can be used to fit stable autoregressive models of succes-

sively increasing order to the observed time series data. This will provide an estimate of

autoregressive parameters and innovation dispersion. So the recursive equations derived in

proposition 5.3.1 can be restated in terms of the estimates ϕ̂m, γ̂u, and the algorithm is

described in the following proposition.

Proposition 5.3.4. (Generalized Durbin-Levinson Algorithm for fitting stable autoregres-

sive model): If γ̂(0) > 0 then the fitted stable autoregressive models for m = 1, 2, ..., N − 1,

can be determined recursively from the relations, ϕ̂1,1 = λ̂1, ϕ̂1,−1 = λ̂−1, γ̂u(1) = ̂̂γ(0)(1 −
ϕ̂1,1ϕ̂1,−1)

1/α

ϕ̂m,m =
λ̂(m)− ϕ̂m−1,1λ̂(m− 1)− ϕ̂m−1,2λ̂(m− 2)− ...− ϕ̂m−1,m−1λ̂(1)

1− ϕ̂m−1,1λ̂(−1)− ϕ̂m−1,2λ̂(−2)− ...− ϕ̂m−1,m−1λ̂(1−m)
, (5.25)

ϕ̂m,−m =
λ̂(−m)− ϕ̂m−1,−1λ̂(1−m)− ϕ̂m−1,−2λ̂(2−m)− ...− ϕ̂m−1,1−mλ̂(−1)

1− ϕ̂s−1,−1λ̂(1)− ϕ̂m−1,−2λ̂(2)− ...− ϕ̂m−1,1−mλ̂(m− 1)
,

ϕ̂m,r = ϕ̂m−1,r − ϕ̂m,mϕ̂m−1,r−m, r = 1, 2, ..,m− 1,

ϕ̂m,−r = ϕ̂m−1,−r − ϕ̂m,−mϕ̂m−1,m−r, r = 1, 2, ..,m− 1.

and,

γ̂u(m) = γ̂(0)(
m∏
k=1

(1− ϕ̂k,kϕ̂k,−k))
1/α. (5.26)
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5.4 A new model identification criteria

Prediction error variance decreases when the order increases. When the theoretical order

is reached, this variance remains constant. Most of the order selection criteria follow this

concept (see Brockwell and Davis (1987)). The most well known criteria proposed by

Akaike (1974) is Akaike Information Criteria (AIC) which includes a bias correction term

and is defined as

AIC(k) = N ln(σ̂2(k)) + 2k, (5.27)

where, σ̂2(k) is the estimated prediction error variance of autoregressive models of order k.

The autoregressive parameters and corresponding prediction error variances are estimated

using Durbin-Levinson algorithm. Best choice of the order is the one which minimizes

the AIC(k) . Order estimator is not consistent in finite variance case. For stationary

autoregressive models with infinite variance, consistency of the autoregressive order selected

by minimizing a version of the AIC, expressed as a function of the Yule-Walker (Y W)

estimate for the “innovation variance”, is established by Knight (1989). Estimation of

innovation variance is meaningless in infinite variance model though the performance is

good. In the present work we explore the prediction error dispersion to study the model

identification problem. The autoregressive parameters and corresponding prediction error

dispersion are estimated using the modified version of Durbin-Levinson algorithm (5.11).

An Information Criterion, similar to AIC, can be defined as,

IC(k) = N2/β ln(γ̂u(k)) + 2k, for some, β >
α

α− 1
. (5.28)

The order estimate m̂ is,

m̂ = arg min
1<k≤K(N)

IC(k). (5.29)

Simulation results show that the proposed information criterion performs well in the iden-

tification of stable autoregressive models. Next we study the consistency of the order

selection criteria.
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Lemma 5.4.1. For an AR(m) process defined by (5.1), and from Theorem 5.2.3, we have

as N → ∞

N2/β(ϕ̂k,kϕ̂k,−k)
p→ 0.

for some, m < k ≤ K(N).

Proof. It is enough to prove that

ϕ̂k,k − ϕk,k = op(N
1
β ).

From Theorem 5.2.3 we have,

N1− 1
α (ϕ̂k,k − ϕk,k) = Op(1).

That is, for a given ϵ > 0, there exists a δ′ and N0 such that

P{|N1− 1
α (ϕ̂k,k − ϕk,k)| > δ′(ε)} < ε ∀N > N0.

That is,

ε > P{|N1− 1
α
− 1

β
+ 1

β (ϕ̂k,k − ϕk,k)| > δ′(ε)},

= P{|N
1
β (ϕ̂k,k − ϕk,k)| > δ′(ε)

N
1− 1

α− 1
β
}.

Take, δ = δ′

N
1− 1

α− 1
β
and

1− 1

α
− 1

β
> 0, i.e, β >

α

α− 1
.

Then,

P{|N
1
β (ϕ̂k,k − ϕk,k)| > δ} < ε , β >

α

α− 1
∀N > N0.

That is,

N1/β(ϕ̂k,k − ϕk,k) = op(1).
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Similarly we can show that

N1/β(ϕ̂k,−k − ϕk,−k) = op(1).

We also have ϕk,k = 0 for k > m. This completes the proof.

Theorem 5.4.2. Let {Xn} be a stationary AR(m),m ≥ 1, process defined by (5.1), with

1 < α ≤ 2, the upper bound K(N) > m, and m̂ be defined by (5.29). If

(a)lim infN→∞N2/βϕm,mϕm,−m > 2m and

(b)N2/βϕ̂k,kϕ̂k,−k = op(1) for k > m

then,

m̂
p→ m as N → ∞.

Proof. Since m̂ is an integer valued, m̂
p→ m is equivalent to P (m̂ = m) → 1 as N → ∞.

We have

γ̂u(k) = γ̂(0)

(
k∏
j=1

(1− ϕ̂j,jϕ̂j,−j)

)1/α

,

where γ̂(0) = 1
N

∑N
n=1 |Xn|.

P (m̂ < m) ≤ P{ min
0≤k<m

IC(k) ≤ IC(m)},

and since,

min
0≤k<m

IC(k) ≥ N2/β
∑m−1

l=1

1

α
ln(1− ϕ̂l,lϕ̂l,−l) +N2/β ln (γ̂(0)),

P (m̂ < m) ≤ P{ln(1− ϕ̂m,mϕ̂m,−m) ≥ −2mα
N2/β }

= P{(1− ϕ̂m,mϕ̂m,−m) ≥ e
−2mα

N2/β }

≤ P{ 1
α
N2/βϕ̂m,mϕ̂m,−m ≤ 2m}
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But,

N2/βϕ̂m,mϕ̂m,−m = (N1/βϕm,m + op(1))(N
1/βϕm,−m + op(1)).

So,

lim sup
N→∞

P{N2/βϕ̂m,mϕ̂m,−m ≤ 2m} = 0,

since,

lim inf
N→∞

N2/βϕ̂m,mϕ̂m,−m > 2m.

Thus, P (m̂ < m) → 0. We can show that,

P (m̂ > m) ≤ P{IC(k) ≤ IC(k − 1) for some m < k ≤ K(N)}

≤ P{N2/β min
m<k≤K(N)

ln(1− ϕk,kϕk,−k) < −2}.

From Lemma 5.4.1, and assumption of the theorem we have,

N2/β max
m<k≤K(N)

ϕk,kϕk,−k
p→ 0

so,

N2/β min
m<k≤K(N)

ln(1− ϕk,kϕk,−k)
p→ 0.

Therefore,

P (m̂ > m) → 0.

This concludes the proof.
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5.5 Simulation

We simulate time series data using two different autoregressive models

Xn = 0.9Xn−1 + Un, (5.30)

and

Xn = 0.5Xn−1 + 0.3Xn−2 + Un. (5.31)

The symmetric stable innovation sequences Un are generated using the algorithm dis-

cussed in Section 3.6. For both models we simulate 1000 time series each having size

N=1000 for 9 different values of α ∈ (1, 2] and follow the steps given below:

1. Plot sample partial covariation (τ̂(k) ) at 10 lags and compare with 0.025 and 0.975

quantiles of N
1
α
−1S. The comparison criteria obtained under the null hypothesis τ(k) = 0.

(quantiles for stable distributions can be found in Samorodnitsky and Taqqu (1994)).

2. Plot ρ̃(k) = (N/ logN)(1/α)ρ̂(k) at 10 lags and compare with 0.025 and 0.975 quantiles

of the distribution of U/V given in Adler et al. (1998).

Order of autoregressive models correctly identified has been counted at each strategy.

The results corresponds to AR(1) and AR(2) models are respectively shown in Table 5.1

and 5.2.

From the simulation results we observe that, τ̂(k) perform consistently well in AR(1)

case. When α close to 2, the partial auto covariation based identification perform well in

both AR(1) and AR(2) case. At the same time its performance is not satisfactory when α

approaches to 1 in an AR(2)case. From these studies we can conclude that sample PcovF

is an acceptable tool for model identification in stable autoregressive processes. Figure 5.1

is the plot of partial auto-covariation function of simulated AR(1) series.

In this section we also study the performance of the proposed information criteria in

model identification problem. In order to study the performance of model identification
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criteria, we simulate time series data using three different autoregressive models

Xn = 0.7Xn−1 + Un, (5.32)

Xn = 0.5Xn−1 − 0.4Xn−2 + Un, (5.33)

and

Xn = 0.5Xn−1 + 0.4Xn−2 − 0.35Xn−2 + Un. (5.34)

The symmetric stable innovation sequences Un are generated with dispersion parameters

γu = 1 and two different heavy tailed indices α = 1.5 and α = 1.7. We estimate the partial

auto-covariation function and the proposed information criteria using the Durbin-Levinson

algorithm. Under each model assumption we count the number of correct identification out

of 1000 time series each having size N=500, 1000,2000 and 5000.

We compare the performance of the new information criteria with the well-known Akaike

Information Criteria (AIC). Results shows that the proposed information criteria outper-

form over AIC in most of the cases. The results are shown in Table 5.3 and 5.4. We also

study the performance of the proposed criteria in Gaussian autoregressive models and the

results in Table 5.5 show that our new criteria performs much better than the Akaike Infor-

mation criteria. Figure 5.2 is the plot of IC(k) as a function of order k for autoregressive

models fitted to the simulated AR(3) series.

So far we have discussed the model identification and parameter estimation of stable

autoregressive models. Now we can explore some of its applications in signal processing.

Next chapter we will discuss some challenging signal processing problems based on our

present studies.
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Figure 5.1: Partial auto-covariation plot of simulated AR(1) series

Figure 5.2: Proposed model selection criteria IC (k) as a function of order k for autore-
gressive models fitted to the simulated AR(3) series
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Sample Size alpha Based on PACF Based on PcovF

500 1.1 94.1 97.1

1.2 92.9 97.3

1.3 92.8 96.3

1.4 91.5 95.5

1.5 89.1 91.0

1.6 83.1 82.5

1.7 74.0 72.8

1.8 3.8 65.1

1.9 3.8 57.6

1000 1.1 92.6 98.1

1.2 91.2 97.2

1.3 90.5 97.0

1.4 89.6 95.1

1.5 85.1 90.3

1.6 83.0 80.5

1.7 78.2 68.4

1.8 5.8 58.9

1.9 7.4 54.0

5000 1.1 85.5 98.8

1.2 85.9 97.7

1.3 88.3 96.9

1.4 85.9 94.2

1.5 85.1 90.2

1.6 85.1 81.8

1.7 80.5 60.2

1.8 8.0 40.7

1.9 13.4 34.3

Table 5.1: Percentage of simulated series out of 1000 that were correctly identified as
coming from AR(1) process using above steps 1 and 2.
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Sample Size alpha Based on PACF Based on PcovF

500 1.1 95.7 0.3

1.2 96.6 0.01

1.3 96.8 3.4

1.4 94.7 23.9

1.5 92.3 66.7

1.6 86.7 79.8

1.7 78.2 76.9

1.8 4.2 70.9

1.9 4.4 65.9

1000 1.1 99.3 0.8

1.2 94.2 1.1

1.3 94.0 8.0

1.4 92.2 61.9

1.5 90.7 87.2

1.6 86.9 86.4

1.7 82.4 76.4

1.8 5.2 65.9

1.9 6.7 59.4

5000 1.1 91.1 1.6

1.2 91.8 5.0

1.3 91.1 80.0

1.4 88.4 95.4

1.5 87.7 92.9

1.6 85.2 86.9

1.7 87.9 69.7

1.8 8.9 50.5

1.9 13.2 43.5

Table 5.2: Percentage of simulated series out of 1000 that were correctly identified as
coming from AR(2) process using above steps 1 and 2.
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Model Sample Size Based on IC Based on AIC
AR(1) 500 99.6 81.6

1000 99.9 82.7
2000 99.8 84.9
5000 99.8 86.2

AR(2) 500 48.6 83.7
1000 80.3 83.3
2000 93.9 84.2
5000 98.2 85.0

AR(3) 500 70.2 81.9
1000 91.0 84.6
2000 94.8 84.3
5000 95.0 86.2

Table 5.3: Percentage of correct identification out of 1000 stable time series with α = 1.5.

Model Sample Size Based on IC Based on AIC
AR(1) 500 98.8 82.3

1000 99.2 86.9
2000 99.6 85.9
5000 99.6 87.8

AR(2) 500 72.2 83.0
1000 90.7 85.5
2000 95.4 85.1
5000 97.4 91.1

AR(3) 500 82.7 83.0
1000 85.8 85.6
2000 81.4 86.3
5000 76.9 89.6

Table 5.4: Percentage of correct identification out of 1000 stable time series with α = 1.7.

Model Sample Size Based on IC Based on AIC
AR(1) 500 99.7 70.7

1000 99.8 69.7
2000 100.0 71.3
5000 100.0 71.7

AR(2) 500 98.6 68.2
1000 99.7 70.1
2000 99.8 71.0
5000 100.0 71.3

AR(3) 500 99.2 74.2
1000 100.0 71.5
2000 100.0 71.6
5000 100.0 72.6

Table 5.5: Percentage of correct identification out of 1000 Gaussian time series



Chapter 6

Application of stable time series

models in statistical signal processing

6.1 Introduction

Time series methods and models are widely used in modeling and analysis of signal and

noise processes. Most of these studies assume that the measurement noise is driven by

Gaussian model. Spectral density function is the basic tool for analyzing the periodic be-

havior of the signal. Estimating spectral density from an observed signal is an important

problem in statistical signal processing and in general time series analysis. Periodogram

is generally used as a non-parametric estimate of spectral density function but it is not

an unbiased and consistent estimator. Parametric spectrum analysis techniques assume

some time series models to the signals and estimate their theoretical spectral density func-

tion. Frequency estimate of the signals can be obtained from the estimated spectrum.

Frequency estimation of multiple sinusoids from noisy measurements has been extensively

studied in statistical signal processing (see Castanie (2006), Stoica et al. (1989)). When

the signal is observed in impulsive noise environment, performance of the models under

Gaussian assumption is poor. As we discussed in the previous chapters stable distributions

are recommended in this situations even though spectral density function cannot be defined

121
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mathematically. Kluppelberg and Mikosch (1993) discussed the power transfer function for

infinite variance case which is similar to classical spectral density in finite variance case.

This function determines the model completely and hence it can be considered as an im-

portant tool for analyzing stable processes. Kluppelberg and Mikosch (1993) show that

normalized periodogram can be used to construct a consistent estimate of power transfer

function in infinite variance case. Mikosch et al. (1995) used it for the parameter estima-

tion of stable ARMA process with infinite variance. Frequency estimation of symmetric

stable signals have been studied by Altinkaya et al. (2002) and Nandi et al. (2002) using

subspace and periodogram method respectively. Some other works in this area include

Tsakalides and Nikias (1998) where they discussed frequency estimation based on the noise

subspace method using auto-covariation function. Liu and Mendel (2001) investigated the

same problem for those signals that consist of circular signals in symmetric stable noise

by using the fractional lower order moments (FLOMs). In the present study we focus

on the parametric spectrum estimation of multiple sinusoids from symmetric stable noisy

measurements. The model description is parallel to that of Altinkaya et al. (2002), but we

use parametric spectral methods for estimation. The problem reduces to the estimation

of the power transfer function of stable autoregressive model. Here we discuss the statis-

tical properties of the generalized Yule-Walker estimates in the spectrum and frequency

estimation problem.

Another important problem in statistical signal processing is to identify the number

of frequency components in an observed signal. A signal model consists of q sinusoidal

frequency component and which follows an autoregressive model of order 2q. So the identi-

fication of number of components reduces to the model identification of AR model. Usually

AR models of higher orders are widely used in this context. So in the present study we

modify the proposed information criteria for order selection of higher order AR models

using singular values and eigen values of the sample auto-covariation matrix.

The rest of this chapter is divided in to two parts: In the first part we describe the

frequency estimation of sinusoidal signal observed in a symmetric stable noisy environment.
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In the second part we study the identification of number of frequency component in an

observed signal.

6.2 Multiple sinusoidal signal plus symmetric stable

noise model

Consider a signal model involving of q sinusoids,

xn =

q∑
k=1

Ak sin(ωkn+ θk) (6.1)

observed in additive symmetric stable noise

yk = xk + uk, k = 1, 2..., N (6.2)

where Ak, k = 1, ..., q and ωk, k = 1, ..., q are the unknown real constants, which are respec-

tively amplitude and angular frequency, whereas θk, k = 1, ..., q are phase of the sinusoids

assumed to be realizations of random variables, distributed uniformly and independently

over (0, 2π] . The observed signal {yn} and noise {un} are realizations of the observa-

tion sequence {Yn} and the independent and identically distributed symmetric stable noise

sequence {Un} , respectively and N is the sample size. The signal process {xn} follows

autoregressive equation given below (see Altinkaya et al. (2002)).

ϕ(B)xn = 0, (6.3)

where ϕ(B) is a polynomial of degree 2q given by

ϕ(B) = 1− ϕ1B − ϕ2B
2 − ...− ϕ2qB

2q =

q∏
k=1

(1− 2cosωkB +B2). (6.4)
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From (6.2) and (6.3), we have

ϕ(B)yn = ϕ(B)un. (6.5)

Observed process, yn in (6.5) follows ARMA (2q, 2q) model.

Model (6.5) can be approximated by a stable autoregressive model of order m ≥ 2q,

Yn = ϕ1Yn−1 + ϕ2Yn−2 + ...+ ϕmYn−m + Un. (6.6)

Choice of m depends upon the noise dispersion, m = 2q might be an appropriate order for

a small noise dispersion. Some order selection methods will be discussed in Section 6.4.

Autoregressive parameters in model (6.5) play an important role in the spectrum analysis

and frequency estimation problem (Stoica et al. (1989), Castanie (2006)). Basic idea is

first to estimate the autoregressive parameters of ARMA process {yn} and then to deter-

mine the frequency {ωk}, by computing poles of the estimated AR spectrum or zeros of

the estimated AR polynomial. Now we look at the problems associated with the estima-

tion of AR parameters. In finite variance case we have various AR spectrum estimation

techniques, popular one is Yule-Walker technique. Stoica et al. (1989) introduced many

advanced versions of this technique which includes over-determined Yule-Walker estimator,

under-determined Yule-Walker estimator and higher-order Yule-Walker estimator. The ba-

sic fact behind all these studies is that the estimation accuracy may increase considerably

with increased number of Yule-Walker equations. This is parallel to our estimation study

discussed in Chapter 4 based on generalized Yule-Walker equation. In the present study

we discuss the estimation of autoregressive parameters in model (6.5) by increasing the

number of generalized Yule-Walker equations.

6.3 Spectrum Analysis for Stable Processes

Classical spectrum analysis is classified in to parametric and non-parametric methods.

In Parametric spectral methods, we derive the spectrum of an autoregressive series and
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then estimate the unknown parameters involved in it. No assumption is made about the

parametric form of the spectral density in non-parametric set up.

6.3.1 periodogram based spectrum analysis

Kluppelberg and Mikosch (1993,1994) studied the asymptotic behavior of periodogram.

The results obtained indicate that the self-normalized periodogram behave like a peri-

odogram in infinite variance linear processes. Let us consider the linear process defined by

(2.44), that is

Yt =
∞∑

j=−∞

ψjut−j, (6.7)

where {ut} is an innovation sequence of iid symmetric stable random variables for α ∈ (0, 2].

Self-normalized periodogram may be defined as follows,

ĨY (ω) =
IY (ω)

γY
, ω ∈ [−π, π] (6.8)

where, IY (ω) is the periodogram defined as,

IY (ω) = N−2/α

∣∣∣∣∣
N∑
t=1

Yte
−iωt

∣∣∣∣∣
2

,

and

γY = N−2/α

N∑
t=1

Y 2
t .

Theorem 3.1 of Kluppelberg and Mikosch (1994) states that, under some assumptions on

the weight function and for α ∈ (0, 2], smoothed version of ĨY (ω) converges in probability

to |ψ(ω)|2
ψ2 where

|ψ(ω)|2 = |
∞∑

j=−∞

ψje
−ijω|2, ω ∈ [−π, π], (6.9)
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denotes the power transfer function of the linear filter (ψj) and

ψ2 =
∞∑

j=−∞

ψ2
j .

In infinite variance case the so-called power transfer function |ψ(ω)|2 corresponds to

the classical spectral density and it determines the model completely (Kluppelberg and

Mikosch (1993)).

6.3.2 Parametric spectrum analysis

In classical time series set up Un is considered to be a Gaussian noise and we assume that the

observed sequence {Yn} follows an autoregressive process. Spectrum of an autoregressive

process of order m is defined as (Box et al. (1994), Brockwell and Davis(1987), Shumway

and Stoffer (2006)),

S(ω) =
σ2
u

ϕ(ω)ϕ∗(ω)
(6.10)

where

ϕ(ω) = 1 +
m∑
k=1

ϕk exp(−ikω)

and ϕ∗(.) is the complex conjugate of ϕ(.). In practical situations we have to estimate this

spectrum from an observed signal. From the definition of autoregressive spectrum we can

see that the problem of estimating spectrum reduces to that of identification of order of

autoregressive model, estimation of AR parameters and innovation variance. In Chapter

2 we addressed the order identification and parameter estimation of autoregressive models

under classical time series set up. Akaike information criteria and minimum description

length (MDL) are widely used to identify the order of autoregressive model. Parameters of

the autoregressive model can be estimated using some higher order Yule-Walker equations

(for details see Stoica et al. (1989), Castanie (2006)).

In the present chapter our emphasis is on stable autoregressive model and its spectral
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properties. If we consider the model (6.6) as a stable autoregressive model of order m then

we cannot define spectral density to this model. However we can define power transfer

function, which plays the same role as that of power spectral density in stable time series

models. Properties of the stable ARMA model discussed in Chapter 2 can be used to define

the power transfer function in infinite variance stable process. From Proposition 2.3.6 and

equations (2.44), (2.45) the power transfer function of a stable autoregressive process of

order m may be defined as,

S(ω) =
1

ϕ(ω)ϕ∗(ω)
(6.11)

where

ϕ(ω) = 1 +
m∑
k=1

ϕk exp(−ikω).

The estimates of autoregressive parameters can be obtained by the Yule-Walker method

discussed in previous chapters using sample autocorrelation function or auto-covariation

function with proper modification. As we mentioned in Chapter 4 the generalized Yule-

Walker estimates derived from (2.54) based on Yn will be biased due to the presence of

measurement noise. To minimize the bias of EYW estimates, we suggested that a large

number of EYW equations to be included for estimation. So we have to choose an optimum

number m′ of equations, such that m′ is probably large compared to m but small compared

to the sample size. Castanie (2006), page 156 recommended the value of m′ should be

at most of the order N
2
when the unbiased estimate of the correlation is used. We have

employed the same approach in terms of covariation in Chapter 4. An estimate ϕ̂ for

the autoregressive parameter vector is obtained using ordinary least square regression of

generalized Yule-Walker equations given in (4.8) and is written as,

ϕ̂a = (∆̂′
m′,m∆̂m′,m)

−1∆̂′
m′,mT̂m′ . (6.12)

We can apply the singular value decomposition to the auto-covariation matrix because

it proves a greater numerical stability. This will also provide flexibility while using auto-
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covariation matrix. This will go parallel to the method discussed in Section 4.4 of Chapter

4. Proposed estimate can be considered as a modified version of the ordinary least square

generalized Yule-Walker (MLSGYW) estimates.

Here we apply singular value decomposition to the matrix ∆̂p′,p, that is,

∆̂m′,m = UΛV T . (6.13)

In (6.13) U and V are orthogonal matrices of respective orders m′ ×m′ and m×m. Here

Λ is a matrix of size m′ ×m, which can be written as,

Λ =

 Λm, m

0m′−m, m

 ,
where Λm, m is a diagonal matrix.

Now let us define a matrix Λ̂m,m, based on singular values ν, of ∆̂m′,m as follows:

Λ̂m,m = diag(ν1, ν2, ..., νm), ν1 ≥ ν2 ≥, ...,≥ νm. (6.14)

∆̂m′,m = U Λ̂V T . (6.15)

where,

Λ̂ =

 Λ̂m,m

0

 .
Now we can modify the estimate of ϕ as,

ϕ̂b = (Λ̂)+T̂m′ (6.16)

where,
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(Λ̂)+ = V

 Λ̂−1
m,m

0

UT

denotes the Moore-Penrose pseudo inverse of Λ̂.

An estimate of the power transfer function can be written as,

Ŝ(ω) =
1

ϕ̂(ω)ϕ̂∗(ω)
(6.17)

where,

ϕ̂(ω) = 1 +
m∑
k=1

ϕ̂bk exp(−ikω).

This estimate is known as the parametric estimate of power transfer function. In finite

variance set up parametric spectrum estimation of this type is known as maximum entropy

spectrum estimation.

6.4 Frequency Estimation

Nandi et al. (2002) studied the estimation of frequencies in the presence of heavy tailed

errors, namely errors with symmetric stable distribution. They proposed an approximate

least square estimate(ALSE) of the frequency component by maximizing the periodogram

function

IY (ω) =
2

N

∣∣∣∣∣
N∑
t=1

Yte
−iωt

∣∣∣∣∣
2

,

with respect to ω. If ω̃ maximizes IY (ω), then ω̃ is called the ALSE of ω. They have

also shown that the proposed estimator is strongly consistent under certain conditions.

Periodogram based spectral estimates are not of high resolution estimates in general and

it is one of the crude methods in frequency estimation. So the parametric methods are
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recommended in many applications.

In this section we explore the application of parametric spectral analysis and frequency

estimation in infinite variance set up. Now we can study the estimation of parameters of an

autoregressive model and the frequency estimates are derived by the poles of the estimated

power transfer function.

Substituting these estimates in equation (6.17) we get the power transfer function esti-

mate Ŝ(ω). Now we can study the estimation of frequencies of poles of the model. When

2q < m, we can estimate only q frequencies. From equation (6.4), we have,

ϕ(z) =

2q∑
k=0

ϕkz
−k =

2q∏
k=1

(1− zkz
−1) (6.18)

that is, ϕ(z) =

q∏
k=1

(1− rk exp(iω)z
−1)(1− rk exp(−iω)z−1). (6.19)

We will note, ẑk = r̂k exp(−iω̂), k = 1, 2, ..., q as the estimates of the poles obtained

from
∑2q

k=0 ϕ̂kz
−k. We can find out the asymptotic distribution of the frequency estimate

N1− 1
α (ω − ω̂),where ω̂ = (ω̂1, ω̂2, ..., ω̂q) and ω = (ω1, ω2, ..., ωq), from that of the statistics

N1− 1
α (ϕ − ϕ̂) . The frequency estimate ω̂ is observed as a function of ϕ̂ , that is, ω̂ =

ξ(ϕ̂), and the function is continuously differentiable, so that the asymptotic distribution of

N1− 1
α (ω − ω̂), can be obtained using the results of Theorem 6.4.1.

Theorem 6.4.1. Assume that ω̂k obtained by the zeros of ϕ(z) which corresponds to the

ϕ̂b give by (6.16). Then,

ω̂
p→ ω

and,

N1− 1
α (ω̂ − ω)

L→ PHFS (6.20)
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where,

P =


γ1

γ21+δ
2
1

. . . 0
...

. . .
...

0 · · · γq
γ2l +δ

2
l

|

|

|

|

−γ1
γ21+δ

2
1

. . . 0
...

. . .
...

0 · · · −γq
γ2l +δ

2
l



H = (h1, . . . , hq, g1, . . . , gq)
′ and, for k = 1, ..., q

γk = [r−2
k sin(ωk), . . . ,mr

−m−1
k sin(mωk)] ϕ

δk = [r−2
k cos(ωk), . . . ,mr

−m−1
k cos(mωk)] ϕ

gk = [r−2
k sin(ωk), . . . , r

−m−1
k sin(mωk)]

hk = [r−2
k cos(ωk), . . . , r

−m−1
k cos(mωk)]

Proof. Let

r̂k exp(±ω̂k), k = 1, 2, . . . q,

denote the q smallest modulus roots of ϕ̂(z). Similar to Theorem 4.4.2 we can show that

ϕ̂b
p→ ϕ. Since the frequency estimate ω̂ = ξ(ϕ̂) and the function ξ is continuous, the

proof of, ω̂
p→ ω follows by the continuous mapping theorem.

Using Taylor’s series expansion we can show that

0 = Re(ϕ̂(r̂ke
iω̂k)) = Re(ϕ̂(rke

iωk)) + ∂Re{ϕ̂(reiω)}
∂r

| r=rk
ω=ωk

(r̂k − rk) +

∂Re{ϕ̂(reiω)}
∂ω

| r=rk
ω=ωk

(ω̂k − ωk) +O(N
1
α
−1).

(6.21)

Similarly,
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0 = Im(ϕ̂(r̂ke
iω̂k)) = Im(ϕ̂(rke

iωk)) + ∂Im{ϕ̂(reiω)}
∂r

| r=rk
ω=ωk

(r̂k − rk) +

∂Im{ϕ̂(reiω)}
∂ω

| r=rk
ω=ωk

(ω̂k − ωk) +O(N
1
α
−1).

(6.22)

∂Re{ϕ̂(reiω)}
∂r

| r=rk
ω=ωk

= [r−2
k cos(ωk), . . . ,mr

−m−1
k cos(mωk)] ϕ̂

∂Re{ϕ̂(reiω)}
∂ω

| r=rk
ω=ωk

= −[r−2
k sin(ωk), . . . ,mr

−m−1
k sin(mωk)] ϕ̂

∂Im{ϕ̂(reiω)}
∂r

| r=rk
ω=ωk

= [r−2
k sin(ωk), . . . ,mr

−m−1
k sin(mωk)] ϕ̂

∂Im{ϕ̂(reiω)}
∂ω

| r=rk
ω=ωk

= [r−2
k cos(ωk), . . . ,mr

−m−1
k cos(mωk)] ϕ̂.

(6.23)

Since (ϕ̂− ϕ) = O(N
1
α
−1) dominant term in (6.21) and (6.22) is not affected if we replace

ϕ̂ by ϕ in (6.23). Thus we get,

0 = Re(ϕ̂(eiωk)) + δk(r̂k − rk)− γk(ω̂k − ωk) +O(N
1
α
−1), (6.24)

and

0 = Im(ϕ̂(eiωk)) + γk(r̂k − rk) + δk(ω̂k − ωk) +O(N
1
α
−1). (6.25)

On solving (6.24) and (6.25) (recall ϕ(rke
iωk) = 0) we can write,

ω̂k − ωk =
γkhk − δkgk
δ2k + γ2k

(ϕ̂− ϕ) +O(N
1
α
−1), k = 1, ..., q. (6.26)

Since ϕ(rke
iωk) = 0, we can show that hkϕ = 0 and gkϕ = 0. We can write (6.26) in more

compact form,

ω̂ − ω = PH(ϕ̂− ϕ) +O(N
1
α
−1).

Similar to the second part of Theorem 4.4.2 we can show that

N1− 1
α (ω̂ − ω)

L→ PHFS.

Note:
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1. One can also use sample autocorrelation based Yule-Walker method to estimate the

autoregressive parameters and the corresponding power transfer function (see Adler et al.

(1997)). Similar to the above theorems, we can show that the resulting estimates also have

the asymptotic properties,

(
N

log(N)
)

1
α (ω̂ − ω)

L→ PHDS, (6.27)

where D is defined as in equation (2.47).

6.5 Number of frequency components in an observed

signal

Estimating the number of frequency components is an important problem in Signal Pro-

cessing. Estimation of q of the model (6.1) has been considered by several authors in

the Signal Processing and Time Series literature for few years (Kundu (2002), Kundu and

Nandi (2005), Quinn (1989), Wang (1993), Quinn and Thomson (1991), Sakai (1990, 1993)

). Kundu (2002) developed a method using the penalty function technique. Kundu and

Nandi (2005) studied the estimation of number of components of the fundamental frequency

model when all the adjacent harmonics are present. They proposed a consistent penalty

function based information criteria. In the present section we explore the scope of the

information criteria proposed in Chapter 5 for order estimation using the decomposition

method by Castanie (2006), page 165.

In Section 6.2 we have seen the relation between number of frequency components of an

observed signal and the order of autoregressive model. If number of frequency components

of an observed signal is q, then the order of auto-regressive polynomial is p = 2q. So the

problem reduces to the estimation of the order of auto-regressive model. This is a very

popular method in signal processing literature. The information criteria depend on the

singular values of the auto-covariation matrix. The proposed Information criteria is,
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IC(k) = N2/β(m− k) ln

(
(
∏m

t=k+1 ν̂t)
1

m−k

1
m−k

∑m
t=k+1 ν̂t

)
+ k(2m− k), (6.28)

where, k = 1, 2, ...,m − 1 and p < m < N . Simulation studies show that the modified

IC(k) performs well in order identification.

We can also define these criteria according to the eigen values τt of the auto-covariation

matrix by replacing ν̂t by τ̂t in equation (6.28) to get

IC(k) = N2/β(m− k) ln

(
(
∏m

t=k+1 τ̂t)
1

m−k

1
m−k

∑m
t=k+1 τ̂t

)
+ k(2m− k), (6.29)

where, k = 1, 2, ...,m − 1 and p < m < N . Theoretical performance of this proposed

criterion can be considered as a future problem. We can also extend the scope of this

function parallel to minimum description length (MDL) criteria and Bayesian information

criteria (BIC) along with proper penalty functions.

6.6 Simulation

Suppose that an observed time series {yt} evolves according to the equation (6.2) and the

unobserved signal {xt}, is a sinusoidal signal which can be represented as follows:

xt = A1 sin(ω1t+ ϕ1) + A2 sin(ω2t+ ϕ2), t = 1, 2, ... (6.30)

Also assume that measurement noise ut in (6.2) follows ∼ Sα(λu), where λu is the disper-

sion parameter of ut. Our main objective is to estimate the frequency component of the

signal {xt} from the given observed signal {yt}. This problem can be solved by applying

the methods discussed in Section 6.4. We simulate the above model by taking 100 time

series each having size n=50, 100, 200 for 3 different set of frequencies (0.1315,0.4025),

(0.1215,0.3525), (0.2123,0.4321) and α = 1.5. The symmetric stable innovation sequences

ut are generated using the algorithm discussed in Section 3.6. Mean value and the mean
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square error of the estimates are computed. Simulation result show that the estimates

obtained using the proposed method performs well and consistent. The simulation results

are displayed in Table 6.1.

Number of frequencies Percentage of correct identification (sample size)
1 83.6(50)
2 83.3(50)
3 63.7(50)
1 92.0(100)
2 85.6(100)
3 90.8(100)

Table 6.1: Percentage of sinusoidal frequencies were correctly identified out of 100 trial.

Sample size Actual Frequencies Estimated Frequencies Mean squared Errors
f1 f2 f1 f2 f1 f2

50 0.1315 0.4025 0.1315 0.3877 0.00059 0.00062
100 0.1319 0.3841 0.00016 0.00089
200 0.1345 0.3827 0.00027 0.0006
50 0.1215 0.3525 0.1247 0.3927 0.00082 0.0012
100 0.1214 0.3926 0.00043 0.0019
200 0.1234 0.3912 0.00012 0.0016
50 0.2123 0.4321 0.2144 0.4437 0.0011 0.0086
100 0.2134 0.4672 0.00079 0.0069
200 0.2146 0.4801 0.00079 0.0006

Table 6.2: Mean and Mean Square error of the estimated frequencies

The estimated power spectral density obtained through the proposed method is dis-

played in Figure 6.1.
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Figure 6.1: Estimated Power Transfer Function based on the frequencies (0.1315, 0.4025)



Chapter 7

Conclusions and Further Research

The thesis has covered various aspects of modeling and analysis of finite mean time series

with symmetric stable distributed innovations. Time series analysis based on Box and

Jenkins methods are the most popular approaches where the models are linear and errors

are Gaussian. We highlighted the limitations of classical time series analysis tools and

explored some generalized tools and organized the approach parallel to the classical set up.

In the present thesis we mainly studied the estimation and prediction of signal plus noise

model. Here we assumed the signal and noise follow some models with symmetric stable

innovations.

We start the thesis with some motivating examples and application areas of alpha stable

time series models. Classical time series analysis and corresponding theories based on finite

variance models are extensively discussed in second chapter. We also surveyed the existing

theories and methods correspond to infinite variance models in the same chapter.

We present a linear filtering method for computing the filter weights assigned to the ob-

servation for estimating unobserved signal under general noisy environment in third chapter.

Here we consider both the signal and the noise as stationary processes with infinite variance

innovations. We derived semi infinite, double infinite and asymmetric signal extraction fil-

ters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy

filters are developed and identified the pattern of the filter weights. Simulation studies

137
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show that the proposed methods are competent enough in signal extraction for processes

with infinite variance.

Parameter estimation of autoregressive signals observed in a symmetric stable noise

environment is discussed in fourth chapter. Here we used higher order Yule-Walker type

estimation using auto-covariation function and exemplify the methods by simulation and

application to Sea surface temperature data. We increased the number of Yule-Walker

equations and proposed a ordinary least square estimate to the autoregressive parameters.

Singularity problem of the auto-covariation matrix is addressed and derived a modified

version of the Generalized Yule-Walker method using singular value decomposition.

In fifth chapter of the thesis we introduced partial covariation function as a tool for stable

time series analysis where covariance or partial covariance is ill defined. Asymptotic results

of the partial auto-covariation is studied and its application in model identification of stable

auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to

include infinite variance models in terms of partial auto-covariation function and introduce

a new information criteria for consistent order estimation of stable autoregressive model.

In chapter six we explore the application of the techniques discussed in the previous

chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmet-

ric stable noisy environment is discussed in this context. Here we introduced a parametric

spectrum analysis and frequency estimate using power transfer function. Estimate of the

power transfer function is obtained using the modified generalized Yule-Walker approach.

Another important problem in statistical signal processing is to identify the number of

sinusoidal components in an observed signal. We used a modified version of the proposed

information criteria for this purpose.

Nonlinear filtering such as particle filtering and sequential Bayesian filtering are some

alternative to the classical signal extraction methods. Tanizaki (2001) discussed maximum

likelihood estimation of non-linear non-Gaussian state space models. He used monte carlo

optimization procedure for maximization of the likelihood function. This procedure simul-

taneously estimates signal, noise process and corresponding parameters in the model. Qiou
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and Ravisankar (1998) proposed a likelihood function for stable ARMA process. Both these

papers motivate us to propose a generalized non linear signal extraction procedure. This

can be considered as a future work in this direction.

In previous chapters we have seen some difficulties associated with the covariation based

estimation. One major reason is that the covariation function is not symmetric. This

makes expensive computation in the generalized Durbin-Levinson algorithm. Reduction in

the complexity of generalized Durbin-Levinson using some decomposition method can also

be considered as a future work.

There is a great deal of interest in the spectrum analysis and frequency estimation using

pseudo spectral techniques. Multiple signal classification (MUSIC) and covariation-based

multiple signal classification (ROC-MUSIC) (Tsakalides and Nikias (1998)) are some of

the existing techniques in this direction. Statistical properties of these estimates are not

well studied in literature. We can also extend the scope of the model identification crite-

ria proposed in this chapter to minimum description length (MDL) criteria and Bayesian

information criteria (BIC) with proper penalty function. Further research in this direction

is in progress.
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