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Chapter 1

Introduction

Process is a phenomenon that takes place in time. In many practical

situations, the result of a process at any time may not be certain. Such

a process is called a stochastic process. As uncertainties lead to random

variables, stochastic process requires a probabilistic setting. So many real

world phenomena can be modelled and analysed by using the theory of

stochastic processes where deterministic laws fail. This is called stochastic

modelling. One of the most important part in stochastic modelling is the

field of Queueing Thoery.

1.1 Stochastic process

A stochastic process is a family of random variables and each random vari-

able is a function of a parameter say time t. It is denoted by {X(t), t ∈ T}

1



2 Chapter 1. Introduction

where T is an index set. The set of possible values of the random variable

X(t) is called its state space and a value of the random variable X(t) is

called a state. According to the nature of the state space and index set,

a stochastic process is classified in to four categories. (i) discrete time -

discrete state space (ii) discrete time - continuous state space. (iii) con-

tinuous time - discrete state space (iv) continuous time - continuous state

space. If the state space is discrete, then the Stochastic process may be

called as a chain , otherwise or in general we use the word process.

1.1.1 Poisson process

A continuous time stochastic process {X(t) : t ∈ T, T = [0,∞)} is called

a Poisson process with parameter λ if and only if it satisfies the following

conditions. (i) X(0) = 0 (ii) the increments X(si + ti) − X(si), over an

arbitrary finite set of disjoint intervals (si, si+ ti) are independent random

variables. (iii)for each s > 0, t > 0, X(t) = X(s + t)−X(s) = n has the

Poisson distribution e−λt(λt)n

n!
with mean λt.

1.1.2 Markov process

A stochastic process is said to be Markov if P (a < Xt 6 b|Xt1 = x1, ...., Xtn

= xn) = P (a < Xt 6 b|Xtn = xn) whenever t1 < t2 < ...... < tn < t. That

is, it is a process with the property that given the value of Xt, the values

of Xs, s > t do not depend on the values of Xu, u < t. That is the prob-

ability of any particular future behaviour of the process, when its present

state is known exactly, is not altered by additional knowledge concerning
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its past behaviour. A Markov process having a finite or denumerable state

space is called a Markov chain. If the time is discrete, the MC is called

discrete time Markov chain(DTMC) and if the time is continuous, it is

called continuous time Markov chain(CTMC).

1.2 Queueing Theory

Queue is a waiting line. The imperfect matching between the customers

and service facilities creates queues. Queueing theory originated as a very

practical subject. It has many applications in telecommunications. The

earliest works studied the telephone traffic congestion. The first work

related to this is “The Theory of Probabilities and Telephone Conversa-

tions” which was published by A.K.Erlang in 1909. The thoery of queues

is applied in many other practical situations of traffic, internet, facility

designs like banks, amusement parks, fastfood restaurents, hospitals and

post offices.

1.2.1 Queueing system

A system having arrivals, service facilities, and departures is called a

queueing system. A diagrammatic representation of the queueing system

is given in Figure 1.1 . For a complete description of a queueing system,

we consider the following characteristics.

1. Arrival pattern of customers
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Fig 1.1: Queueing system

In a queueing system, time between two successive customer arrival is

called inter arrival time. Practically it is stochastic. So it is necessary to

know its probability distribution. Also customers may arrive in batch or

bulk. So the size of a batch is another random variable and it is necessary

to identify its probability distribution. Customer behaviour is another

important one. A customer may decide not to enter the queue by seeing

the queue too long. Then the customer is said to have balked. Some

customers after joining the queue, wait for some time, and leave the service

system due to intolerable delay. In this case the customer is said to have

reneged. In case of parallel waiting lines, customers may move from one

queue to another hoping to receive service more quickly. This is called

jockeying. An arrival pattern that does not change with time is called

a stationary arrival pattern. One that is not time independent is called
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nonstationary.

2. Service pattern

Just like Arrival pattern, a probability distribution function is needed

to describe service times. Service may be in single or in batch. Service

process which depend on the number of customers waiting is called state

dependent service. Like arrivals, service can be stationary or nonstationary

with respect to time. If the system has no customers, then the server

becomes idle. Then the server may leave the system for vacation with a

random period of time. These vacations may be used by the server for

doing other jobs. Server vacation period may be limited by some control

policies like N , D, and T . An idle server starts service only when N are

present in the queue and once he starts serving, goes on serving till the

system size become zero. This is called N-policy. Under T -policy, the

service facility is turned off for a fixed period of time T , from the instant

of each service completion leaving the system empty. According to D-

policy, the service facility re-opens as soon as the total workload exceeds

a critical level D.

Also interruption may take place while a service is going on, for reasons

like server breakdown or the arrival of a high priority customer. On com-

pletion of interruption, the interrupted work may be resumed or repeated.

Also working vacations and vacation interruptions are recent concepts in

service pattern. In working vacation, a customer is served at a lower rate

rather than completely stoping the service during a vacation. But in va-

cation interruption policy, the server will come back from the vacation

without completing it.
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3. Queue discipline

Queue discipline refers to the manner in which customers are selected

for service when a queue has formed. The most common Queue disci-

pline is first in-first out (FIFO) [or first come - first served(FCFS)]. Some

others in common usage are last in-first out (LIFO) [or last come-first

served(LCFS)], service in random order(SIRO), Service in priority(SIP).

There are two general situations in priority disciplines: preemptive priority

and non-preemptive priority. When the high priority customer enters the

system, the low priority customer in service is preempted. This is called

preemptive priority. But in non-preemptive priority, the high priority cus-

tomer goes to the head of the queue but cannot get in to the service until

the customer presently in service is served completely, even though this

customer has low priority.

4. System capacity

Physical space of the waiting room is called system capacity. It may

be finite or infinite. In the case of finite system capacity, customers may

be forced to balk if the capacity is full. In such situations, work may be

postponed. In this thesis, it is discussed in great detail.

5. Number of servers

There are queueing systems with number of parallel service stations,

which can serve customers simultaneously. So the number of servers is

essential to describe a queueing system.

6. Stages of service
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There may be only one stage of service or may have several stages. In

the case of several stages, a customer may not pass through all stages.

1.2.2 Notation of a queueing system

In the development of a queueing system, a notation has evolved to de-

scribe its essential characteristics, called Kendall-Lee notation. Here we

notate a queueing system by a/b/c/d/e where a denotes the arrival pat-

tern, b the service pattern, c the number of servers, d the system capacity,

e the queue discipline. If the queueing system is represented by a/b/c,

then it is understood that the system capacity is infinite and the queue

discipline is FCFS. However this notation is not sufficient to describe the

whole characteristics of modern queueing systems.

1.2.3 Analysis of queueing models

Queueing models can be classified in to Markovian and non-Markovian

models. If the inter arrival time of customers and service times are expo-

nentially distributed, then the queueing model is called Markovian queue-

ing model. Queueing models with inter arrival times and/or service times

which are not exponential distributions are called non-Markovian queue-

ing models. Matrix geometric method developed by Neuts is useful for

analysing complicated queueing models in steady state.

M/M/1 queue in continuous time is a simple Markovian birth-death

queueing model. Let 1/λ be the mean inter arrival time and 1/µ be the

mean service time. Then to analyse its steady state behaviour, we first
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form the steady state probability distribution Pn for the system to have

n units, by using difference-differential equation method. Then Pn =

ρn(1− ρ) if ρ < 1 where ρ = λ/µ called traffic intensity. It is a geometric

distribution. If the system capacity is finite, we have the M/M/1/K

model, where Pn = (1−ρ)ρn
1−ρK+1 if ρ 6= 1 and Pn = 1

K+1
if ρ = 1 for n > 0 and

P0 = 1−ρ
1−ρK+1 if ρ 6= 1 and P0 = 1

K+1
if ρ = 1. This geometric nature of

the solutions are the main motivating fact to the introduction of matrix

geometric solutions for extended models.

1.3 Matrix analytic methods

Most of the modern queueing problems are difficult to analyse by making

difference-differential equations and solving by the method of generating

functions and Laplace transforms. This difficulty can be overcome by

using Matrix analytic methods introduced by Neuts (see [45]). Here usual

birth-death process can be extended to quasi-birth-death(QBD) process.

If the tridiagonal elements in the intensity matrix of a birth-death process

are matrices, then such a process is called a QBD process. Here the

state space consists of states of the form (i, j, ...). The first dimension

is called the level of the process, while the other dimensions are called

phases. The transitions are restricted to the same level or to the two

adjacent levels. Thus it is possible only to move from (n, j) to (m, k) in

one step if m = n + 1, n or n − 1 for n > 1 and m = 0, 1 for n = 0. If

the transitions rates are level independent, the resulting QBD process is

called level independent quasi-birth-death process(LIQBD).
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Let the infinitesimal generator of a LIQBD process be

Q =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where the matrices B0, B2, A0, A2 are non negative and the matrices B1

and A1 have non negative off diagonal elements but strictly negative di-

agonal elements. The row sums of Q are necessarily equal to zero.

Let x be a stationary vector. Then xQ = 0 and xe = 1 where e is a

column vector of ones of appropriate order. Let x be partitioned by the

levels in to subvectors xi for i > 0. Then xi has the matrix geometric form

xi = x1R
i−1 for i > 2 where R is the minimal non negative solution to the

matrix equation A0 +RA1 +R2A2 = 0 and the vectors x0, x1 are obtained

by solving the equtions x0B1 + x1B2 = 0 and x0B0 + x1(A1 + RA2) = 0

subject to the normalising condition x0e+ x1(I −R)−1e = 1.

For the existence of stationary solution, spectral radius of R; sp(R) <

1, which is analogues to the condition ρ < 1 in familiar M/M/1 queueing

model. R is called rate matrix. Once R is determined, the geometric

nature of the solution is established. If the matrix A = A0 + A1 + A2 is

irreducible, then sp(R) < 1 iff πA0e < πA2e where π is the stationary

probability vector of the generator matrix A. That is π is the solution of

πA = 0 and πe = 1. One can use the iterative formula R = −A0(A1 +

Rn−1A2)
−1 for n > 1 with an initial value R0 which converges to R if

sp(R) < 1.
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The following are some distributions frequently used in queueing the-

ory.

1. Exponential and Geometric distribution

Consider a Poisson process {N(t), t > 0} with parameter λ where N(t)

represents total number of arrivals in an interval of duration t. Then the

time between two successive arrivals will follow exponential distribution

with probability density function f(x) = λe−λx, x > 0. The distribution

function is F (x) = 1− e−λx. The exponential distribution is the only one

continuous distribution which exhibits Markovian property. This property

states that the probability that a customer currently in service has t units

of remaining service is independent of how long it has already been in

service. That is, P [T 6 t1|T > t0] = P [0 6 T 6 t1 − t0]. The only other

distribution to exhibit this property is the geometric distribution which is

the discrete analogue of the exponential distribution. Probability density

function of geometric distribution is f(x) = pqx where 0 < p < 1 and

q = 1− p.

2. Continuous time phase type distribution

Let {Xt, t > 0} be a finite MC with statespace {1, 2, ......,m+ 1} and

generator Q =

[
T T 0

0 0

]
. Here 1, 2, ...,m are transient states and m+ 1

or 0 is absobing state. T is a square matrix of order m satisfying Tii < 0

for 1 6 i 6 m and Tij > 0 for i 6= j. Also Te + T 0 = 0 where e is a

column vector of ones of order m. Let the initial probability vector be

(α, αm+1) with α a row vector of dimension m, so that αe + αm+1 = 1.

Let Z = inf [t > 0, Xt = m + 1] be the random variable of the time

until absorption in state m + 1. The distribution of Z is called phase
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type distribution. We denote it by PH(α, T ). The dimension m of T is

called the order of the phase type distribution. The states 1, 2, ...m are

called phases. If Z follows PH(α, T ), the distribution function of Z is

given by F (t) = P (Z 6 t) = 1 − α.exp(Tt).e, ∀t > 0 and the density

function is f(t) = α.exp(Tt).T 0, ∀t > 0. It is possible to approximate

any distribution on the non negative real numbers by a PH-distribution.

Moments of Z are given by E(Zn) = (−1)nn!αT−ne, ∀n ∈ N. So E(Z) =

−αT−1e is the mean time to absorption.

3. Discrete time phase type distribution

Let Z = min[n ∈ N0, Xn = m + 1] denote the time until absorption

in the state m+ 1. The transition probability matrix(TPM) has the form

P =

[
T T 0

0 1

]
where T is a square matrix of order m such that I − T is

non-singular and Te + T 0 = e. The distribution of Z is called a discrete

PH-distribution. P (Z = n) = αT n−1T 0 and P (Z 6 n) = 1 − αT ne,

∀n ∈ N . The mean time to absorption is given by E(Z) = α(I − T )−1e.

4. Erlang distribution

An Erlang distribution with n degrees of freedom (or stages) and pa-

rameter λ is the distribution of the sum of n exponential random vari-

ables with parameter λ. It has the density function f(t) = λn

(n−1)!
tn−1e−λt,

∀t > 0. It can be represented as the holding time in the transient state set

{1, 2, ......, n} of a MC with absorbing state n+ 1 where the only possible

transitions occur from a state k to the next state k + 1 (k = 1, 2, ..., n)

with rate λ each. This can be approximated to PH distribution with
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α = (1, 0, 0, ...., 0),

T =



−λ λ

−λ λ
. . . . . .

−λ λ

−λ


, T 0 =


0

0
...

λ

 .

In the discrete case, general Erlang distribution with m stages is approx-

imated to PH distribution with α = (1, 0, 0, ...., 0),

T =



s11 s12

s22 s23

. . . . . .

smm


, T 0 =


0

0
...

smo

 .

where Te+ T 0 = e.

1.4 Summary of the thesis

In many real life situations a work may be postponed for several reasons.

It may be to attened a more important job or to go on vacation. To bring

the postponed work in the usual service track, we introduce N -policy.

Considering the physical limitation of a system, finite capacity queues

are more realistic than infinite capacity queues. But this will result in

overflow of jobs and make cosiderable loss to the system. Models with
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postponement are an alternative to finite capacity queues to minimise

such a loss.

A paper to deal with postponed work was introduced by Deepak et.al.

(see [16]). They analysed such a system in the stationary case and provided

a number of system performance measures. No further development in this

is reported so far. Nevertheless this notion of postponement of work has

been introduced into inventory by a few researchers (see Krishnamoorthy

and Islam [36], Arivarignan et.al. [2], Paul Manuel et.al. [46], Sivakumar

and Arivarignan [48]).

The thesis entitled “Queues with postponed work under N -policy” is

divided in to 6 chapters.

Chapter 1 is an introductory chapter containing basic definitions and

terminologies of stochastic process, queueing theory and matrix analytic

methods. We provide a brief of the work done so far in queues with

postponed work; some associated work is reviewed in this chapter.

Chapter 2 describes an M/PH/1 queue with postponed work under

N -policy. Here we extend the model described in [16] by introducing N -

policy for transfer of customers from the pool. When a buffer having

capacity K is full, newly arriving jobs are not necessarily lost. They can

accept the offer of joining a pool of postponed work having infinite capacity

with probability γ. With probability 1−γ, such customers do not join the

system. When at the end of a service, if there are postponed customers,

the system operates as follows. If the buffer is empty, the one ahead of

all waiting in the pool gets trasferred to the buffer for immediate service.

If the buffer contains y jobs, where 1 6 y 6 L − 1; 2 6 L 6 K − 1 at a
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service completion epoch, then again the job at the head of the buffer starts

service and with probability p, the head of the queue in pool is transferred

to the finite buffer and positioned as the last among the waiting customers

in the buffer. With probability q = 1− p, no such transfer takes place.

N -policy ensures an early service for pooled customers. If the pool

contains atleast one postponed work, continuously served customers from

the buffer since the last transfer under N -policy, is counted at each service

completion epoch. When it reaches a pre-assigned number N , then the one

ahead of all waiting in the pool gets transferred to the buffer for immediate

service. The N -policy introduced here differs from the classical N -policy

as explained below. In the classical case, N customers are to queue up to

start the new service cycle once the system becomes empty. However in

the present case N -policy is applied to determine a priority service to be

given to a customer from the pool.

A stability condition based on first passage time probability and sta-

tionary distribution has been obtained. We derived the expected waiting

time of a tagged customer (i) in the buffer and (ii) in the pool, the expected

duration (i) between two consecutive transfers under N -policy (ii) for the

first N -policy transfer in a busy cycle and the expectation of FIFO viola-

tion. Several system performance measures and an optimization problem

involving N are discussed. Numerical illustrations are also provided.

In Chapter 3, we modify the model discussed in chapter 2. The entry

to the buffer is restricted by the system with the increasing number of

work in the buffer. If the buffer is empty, an arriving customer can enter

in to it and his service starts immediately. Otherwise there is a probability

depending on the number of work in the buffer. But at every time, when a
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customer is not allowed to enter the buffer, he may join a pool of postponed

work having infinite capacity with probability δ. If the buffer is full,

a customer may select the pool with probability γ1. But at that time,

system may reject him with probability γ2. Usual transfer from the buffer

to the pool with some probability p and N -policy is considered for the

service of postponed work. We studied its long run behaviour. Several

system performance measures, and numerical illustrations are provided.

By treating server and customer as players, we give a game theoretic

approach to the model and found the mixed strategies of the players and

the value of the game.

Chapter 4 discusses an M/M/1 Queue with Postponed work and ser-

vice interruption under N -policy. At a service completion epoch, if the

buffer size drops to a pre-assigned level or below, a postponed work is

trasferred to the buffer for immediate service with some probability. Dur-

ing the service of such a pooled customer, if the buffer size rises to a

pre-assigned higher level, then the postponed work at server will be inter-

rupted, again postponed and wait at the head of the queue in pool. Just

after the interruption, we start to count the number of continuously served

customers from the buffer. When it reaches a pre-assigned number N at

a service completion epoch, the interrupted pooled customer gets trans-

ferred to the buffer for immediate service, and further interruption is not

allowed for such a work. We studied its long run behaviour and obtained

several system performance measures. Several numerical illustrations are

also provided.

Chapter 5 analyses a discrete time Geo/PHd/1 queue with postponed

work under N -policy. It is the discrete time counter part of the continuous

time model discussed in chapter 2. Continuous time models describe the
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event in a very short interval of time. But in this discrete time queueing

system, time axis is divided in to intervals of equal length called slots,

and where all queueing activities takeplace at the slot boundaries. Both

arrival and departure may happen in a slot. We consider late arrival

system. That is departures occur at the moment immediately before the

slot boundaries and arrivals occur at the moment immediately after the

slot boundaries. The time between two successive arrivals is is governed by

a geometrical law with parameter α and service time of each customer by

a discrete phase-type distribution. The model is studied as a quasi birth-

death(QBD) process and a solution of the classical matrix geometric type

is obtained.

In Chapter 6 we consider two models of discrete time Geo/Ed/1 queues

with postponed work and protected stages. If a buffer having finite capac-

ity is not full, a higher priority customer can enter it and a lower priority

customer is directed to a pool of postponed work having infinite capacity.

When the buffer is full, new arrivals of higher priority customers cannot

join the system and will leave the system permanently. At that time,

a new arrival of lower priority customer will join the pool with proba-

bility γ or it is lost to the system for ever with probability 1 − γ. At

a service completion epoch, if buffer size drops to a pre-assigned lower

level or below a postponed work is transferred to the buffer for immedi-

ate service with some probability. During the service of such a pooled

customer, if the buffer size raises to a pre-assigned higher level, the post-

poned work at server, serving in unprotected stages will be lost for ever

in the model-1 and will be interrupted in the model-2. Interrupted work

is again postponed and wait at the head of the queue in the pool. After

the interruption, when the continuously served customers from the buffer
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reaches a pre-assigned number N , at a service completion epoch, the ser-

vice of interrrupted customer will suddently repeat. We study its long run

behaviour and obtained certain system performance measures. Several

numerical illustrations are also provided.

In chapter 7, we compare the performance of all the models discussed

through chapters 2 to 6. Concluding remarks and some further possible

investigations are also included.
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Chapter 2

An M/PH/1 Queue with

Postponed work under

N-policy

In many practical situations a work may be postponed for several reasons.

Queueing theory deals with a variety of postponement of work dealing with

multi priority system. When a higher priority customer arrives, service

of lower priority customers waiting in the line, may be postponed. In the

case of bulk service, postponement due to lack of quorum can happen.

On many occassions, postponement of a work may be to attened a more

important job or to go on vacation. Postponement of work may depend

Some results of this chapter are included in the following paper.
1. A.Krishnamoorthy, C.B.Ajayakumar, P.K.Pramod, An M/PH/1 Queue with Post-
poned work under N -policy (Communicated)

19
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on both input and service process.

Even though postponement of work is not desirable, it turns out to be

unavoidable in many real life situations. So naturally a question arises:

how to bring the postponed work in the usual service track? In this

chapter we consider the situation of postponement due to the finiteness

of the buffer. If a customer on arrival, finds the buffer not full, it joins

the same. Otherwise it proceeds to a pool of postponed work having

infinite capacity, with a specified probability, or else leaves the system

permanently. So a customer can decide whether to join the pool or not,

according to the service process of the system. Here we emphasize that

customers arriving when there are fewer customers in the buffer than its

capacity, are not subjected to postponement. They wait for service in

the buffer in the usual manner. So naturally the pool is occupied by

postponed work. Pooled customers are transferred to the buffer with a

known probability at a service completion epoch, if the number in the

buffer at that time is less than a pre-assigned level. This transferred

customer is positioned as the last among the waiting units. If there is no

customer left in the buffer at a service completion epoch, and at least one

is in the pool, the one at the head of the pool is transferred to the buffer

with probability one for immediate service.

Models with postponement are an alternative to finite capacity queues

in which overflow jobs are irrevocably lost. With this in view, a paper

to deal with postponed work was introduced by Deepak et.al. (see [16]).

They analysed such a system in great detail in the stationary case and

provided a number of system performance measures. No further develop-

ment in this is reported so far. Nevertheless this notion of postponement

of work has been introduced into inventory by a few researchers (see Krish-
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namoorthy and Islam [36], Arivarignan et.al. [2], Paul Manuel et.al. [46],

Sivakumar and Arivarignan [48]). Here we extend the model described in

[16] by introducing N -policy for customers from the pool as follows: If the

pool contains at least one postponed work, continuously served customers

from buffer since the last transfer under N -policy is counted at each ser-

vice completion epoch. When it reaches a pre-assigned number N , then

the one ahead of all waiting in the pool gets transferred to the buffer for

immediate service. The model discussed can be used to design queueing

systems to minimise loss due to customers not joining the system when

the buffer is full. In finite capacity queues, blocked customers are lost to

the system for ever. However in the present model, the introduction of

the N -policy, reduces the waiting time of pooled customers and this is an

incentive for customers to join the pool when the buffer is full. Immediate

commencement of service to the transferred customer from the pool under

N -policy adds to the attraction of joining the pool. This fraction can be

increased by suitably designing the system. A diagramatic representation

of the model is given in figure 2.1.

Remark 2.0.1. The N -policy mentioned here differs from the classical

N -policy. In the classical case, N customers are to queue up to start the

new service cycle once the system becomes empty; it is a control policy.

However in the present case N -policy is applied to determine a priority

service to be given to a customer from the pool. This again is a control

policy; nevertheless it counts the number of continuously served customers

from the buffer.

In real life situations, the model described in this chapter is working

quite naturally. A customer on arriving at a service station, seeing the

server is busy with a specified number of works, may go to another sevice
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station if he has emergency to get service. But if the customer is not

bothered about the waiting time and his importance lies in the service of

that particular service station, he can register there in a pool of postponed

work.

2.1 Mathematical description

Fig 2.1: M/PH/1 queue with postponed work under N -policy

Consider an M/PH/1 queue with finite buffer of capacity K. If the

buffer contains less than K customers including the one at server, newly

arriving customers will join it. When the buffer is full with K customers,

newly arriving jobs are not necessarily lost. They are offered the choice of

leaving the system immediately or of being postponed until the system is

less congested. That is a customer can accept the offer of postponement

with probability γ (0 6 γ < 1). So he may join a pool of postponed work

of infinite capacity. With probability 1−γ, such customers do not join the

system. In the absence of the pool the system behaves like the familiar

M/PH/1/K queue. When at the end of a service, if there are postponed
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customers, the system operates as follows. If the buffer is empty, the one

ahead of all waiting in the pool gets trasferred to the buffer for immediate

service. If the buffer contains y jobs, where 1 6 y 6 L−1; 2 6 L 6 K−1

at a service completion epoch, then again the job at the head of the buffer

starts service and with probability p, the head of the queue in pool is

transferred (we call this a p-transfer) to the finite buffer and positioned

as the last among the waiting customers in the buffer. With probability

q = 1 − p, no such transfer takes place. No such transfer takes place at

a service completion epoch if there is atleast L customers in the buffer.

Also if the pool contain at least one postponed job, the continuously served

customers from the buffer since the last transfer underN -policy is counted,

at each service completion epoch. When it reaches N , (N > 0) then the

one ahead of all waiting in the pool gets transferred to the buffer for

immediate service. At this time, system does not consider the p-transfer.

To be specific, if at a service completion epoch, if number of customers in

the buffer is less than L and the number of continuously served customers

from the buffer has reached N , then the transfer under N -policy is given

preference.

Remark 2.1.1. It may be noted that the N -policy leads to violation of

FIFO rule for customers in the pool. For example assume that there are

two or more customers in the pool at a service completion epoch at which

the number in the buffer droped to L − 1 or below and the number of

continuously served customers reached N−1. So the first in the pool may

be selected under p-transfer and placed as the last in the buffer. When

the next service is completed, the current head of the pool gets transferred

to the buffer for immediate service there by violating the FIFO rule for

pooled customers. Further it may be noted that this situation does not

arise among the queued customers in the buffer. The probability of FIFO
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violation among customers from the pool is calculated in section 2.3.5.

Customers arrive according to a homogeneous Poisson process of rate

λ. The duration of the successive services, whether of regular or of post-

poned customers, are independent and identically distributed with the

service time distribution following Phase Type(PH). Here the PH distri-

bution has the irreducible representation (β , S). There are m phases and

the vector S0 = −Se containing elements Sh0 denoting the absorption rate

from the phase h, h = 1, 2, ...,m. Absorption (service completion) occurs

with probability 1 from any phase i in {1, 2, ......m} if and only if the ma-

trix S is nonsingular (see [45]). Then the mean time until absorption is

−βS−1e. Also the equilibrium distribution of the excess life is PH(π∗, S)

where π∗ is the stationary probability vector satisfying π∗Q∗ = 0 and

π∗e = 1 where Q∗ = S + S0β (see [22]).

The model is studied as a Quasi Birth-Death(QBD) process and a

solution of the classical matrix geometric type is obtained (see [45] and

[38]). We define the state space of the QBD and exhibit the structure of

its infinitesimal generator.

The state space consists of all tuples of the form (i, j, b, h) with i > 1;

1 6 j 6 K; 0 6 b 6 N ; 1 6 h 6 m, where i is the number of postponed

work, j is the number of work in the finite buffer including the unit in

service, b is the number of continuously served customers from the buffer

at a service completion and h is the phase of the service in progress at

a time t. For a given value of i, K(N + 1)m states constitute the level

i of the QBD. Now consider the boundary level i = 0. Then we denote

the empty system (0, 0, 0, 0) by 0. Also there are Km states of the form

(0, j, 0, h), 1 6 j 6 K; 1 6 h 6 m. This is due to the fact that when
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the pool has no customers, N -policy is suspended. These have the same

significance as before, except that in these states, no postponed jobs are

present, but there are jobs in the finite buffer. These Km+ 1 states make

up the boundary level 0 of the QBD.

The infinitesimal generator of the QBD describing the M/PH/1/K

queue with postponed customers under N -policy is of the form

Q =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where the matrix B0 is of dimension (Km+ 1)×K(N + 1)m, B1 is square

matrix of order Km+ 1 and B2 is of dimension K(N + 1)m× (Km+ 1).

A0, A1 and A2 are square matrices of order K(N + 1)m. Each of these

matrices is itself highly structured.

The matrix B1 corresponds to the transition from the level 0 to 0 is

given below, where I is the identity matrix of order m and all non specified
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entries are zeros:

B1 =



−λ λβ

S0 S − λI λI

S0β S − λI λI

S0β S − λI λI
. . . . . . . . .

. . . . . . . . .

S0β S − λI λI

S0β S − λI


.

Except for a single block λγt5⊗Im at its south- east corner, the matrix

B0 is zero, where t5 is a row vector of order N + 1 with first element 1

and all other elements zero with Im representing identity matrix of order

m. The matrix B2 is given by

B2 =
[

0̄ diag
(
H1, H2, · · · , HL, HL+1, · · · , HK

) ]
where 0̄ is zero matrix of appropriate order and diag(H1, H2, ..., HL, HL+1,

..., HK) represents a diagonal block matrix of order K with diagonal block

entries H1 = t6 ⊗ S0β, H2 = ... = HL = t7 ⊗ S0β, HL+1 = ... = HK =

t8 ⊗ S0β and t6 is a column vector of order N + 1 with all entries are 1,

t7 is a column vector of order N + 1 with all elements are p except a 1

at (N, 1)th position, t8 is a column vector of order (N + 1) with (N, 1)th

element is 1 and all other elements zero.

The matrix A0 is zero except for a single block λγIN+1 ⊗ Im at its

south- east corner where IN+1 is the identity matrix of order N + 1. The
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matrix A2 is given by

A2 = diag
(

Λ1, Λ2, · · · , Λ
L
, ΛL+1, · · · , ΛK

)
.

It denotes diagonal block matrix with block entries on main diagonal

given by Λ1 = t1 ⊗ S0β, Λ2 = ... = ΛL = t2 ⊗ S0β, ΛL+1 = ... = ΛK =

t3 ⊗ S0β where t1 is a square matrix of order N + 1, given by

t1 =

[
0̄ IN

1 0̄

]

where IN is identity matrix of order N . t2 is a square matrix of order

N + 1 given by

t2 =



0 p 0 0 · · · 0 0

0 0 p 0 · · · 0 0

0 0 0 p · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p 0

0 0 0 0 · · · 0 1

p 0 0 0 · · · 0 0


and t3 is a square matrix of order N + 1 with (N,N + 1)th entry 1 and all
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other entries zero. The matrix A1 is given by

A1 =



ζ Ω

Θ1 ζ Ω
.. . . . . . . .

Θ1 ζ Ω

Θ2 ζ Ω
.. . . . . . . .

Θ2 ζ Ω

Θ2 η


where ζ corresponds to the transition of the buffer size from j to j for

j = 1, 2, ..., K−1 and ζ = IN+1⊗(S−λIm); η corresponds to the transition

of the buffer size from K to K where η = IN+1⊗(S−λγIm); Ω corresponds

to the transition of the buffer size from j to j + 1 for j = 1, ..., K − 1 and

Ω = λIN+1 ⊗ Im; Θ1 corresponds to the transition of the buffer size from

j to j − 1 for j = 2, 3, ..., L and Θ1 = t4 ⊗ qS0β ; Θ2 corresponds to the

transition of the buffer size from j to j − 1 for j = L+ 1, L+ 2, ..., K and

Θ2 = t4 ⊗ S0β. Also t4 is a square matrix of order N + 1 which is given

below:

t4 =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 0

1 0 0 0 · · · 0 0


.
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2.2 Analysis of the system

2.2.1 Stability criterion

Theorem 2.2.1. The system is stable if and only if

λγ
N∑
b=0

m∑
h=1

πKbh <
1

K(N+1)m∑
l=1

m1l

.

Proof. Here we obtain the first passage time probability (fundamental

period) from a level i to the level i− 1 for i > 1 (see [45]).

Let Gll′(k, x) be the conditional probability that the QBD process

starting in the state l = (i, j, b, h) (for i > 1) where 1 6 j 6 K; 0 6 b 6 N ;

1 6 h 6 m at time t = 0 reaches the state l′ = (i − 1, j′, b′, h′) where

1 6 j′ 6 K; 0 6 b′ 6 N ; 1 6 h′ 6 m, for the first time, involving exactly

k transitions and completing before time x. That is

Gll′(k, x) = P [τ <∞ : χ(τ) = l′|χ(0) = l]

where τ is the first passage time from the level i to the level i− 1 and χ is

the discussed QBD process. Because of the structure of Q, the probability

Gll′(k, x) does not depend on i. The matrix with elements Gll′(k, x) is

denoted by G(k, x).
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Now introduce the transform matrix,

Ĝ(z, θ) =
∞∑
k=1

zk
∞∫

0

e−θxdG(k, x)

for |z| 6 1, θ > 0. The matrix Ĝ(z, θ) satisfies the matrix equation

Ĝ(z, θ) = z(θI − A1)
−1A2 + (θI − A1)

−1A0Ĝ
2(z, θ).

Use the notations C0(θ) = (θI − A1)
−1A2 and C2(θ) = (θI − A1)

−1A0.

Now the transform matrix Ĝ(z, θ) is equal to the minimal non negative

solution of the matrix quadratic equation

X(z, θ) = zC0(θ) + C2(θ)X
2(z, θ)

and it is obtained by successive substitutions starting with the zero matrix.

Also we have

lim
z→1,θ→0

Ĝ(z, θ) = G(k, x) = [Gll′(k, x)].

Then G is obtained as the minimal non negative solution to the equation

G = C0 +C2G
2 where C0 = (−A1)

−1A2 and C2 = (−A1)
−1A0. That is, G

is the minimal non negative solution of the matrix quadratic equation

A2 + A1G+ A0G
2 = 0.

The matrix G can be computed by using the logarithmic reduction algo-

rithm.

Let m1 = [m1l ] denotes the column vector of dimension K(N + 1)m
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where m1l denotes the mean first passage time from the level i (i > 1)

to the level i − 1 given that the first passage time started in the state l.

Then,

m1 =

[
− ∂

∂θ
Ĝ(z, θ)e

]
θ=0,z=1

= −(A1 + A0(I +G))−1e.

Suppose the matrix A = A0+A1+A2 is irreducible. Then the necessary

and sufficient condition for the positive recurrence of the process is that

the matrix G is stochastic. For this, the condition πA2e > πA0e must

be satisfied where π is the stationary probability vector associated with

A = A0 +A1 +A2. That is, it is the unique solution to πA = 0, πe = 1 and

A = A0 +A1 +A2. The quantity ρ = πA0e
πA2e

is called the traffic intensity of

the QBD process. That is for the system stability, the rate of drift from

level i to level i− 1 should be greater than that to level i+ 1. The rate of

drift from the level i to the level i + 1 is given by λγ
N∑
b=0

m∑
h=1

πKbh and the

rate of drift from the level i to the level i− 1 is given by 1
K(N+1)m∑

l=1

m1l

.

It follows that the condition πA0e < πA2e is equivalent to

λγ

N∑
b=0

m∑
h=1

πKbh <
1

K(N+1)m∑
l=1

m1l

.

So by an appropriate choice of γ, that is by postponing a fraction of

overflowing customers, one can obtain a stable system even if arrival rate
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is greater than service rate.

2.2.2 Stationary distribution

Since the model is studied as a QBD process, its stationary distribution,

if it exists, has a matrix geometric solution. Assume that the stability

criterion is satisfied. Let the stationary vector x of Q be partitioned by

the levels in to subvectors xi for i > 0. Then xi has the matrix geometric

form

xi = x1R
i−1 (2.1)

for i > 2 where R is the minimal non negative solution to the matrix

equation

A0 +RA1 +R2A2 = 0 (2.2)

and the vectors x0, x1 are obtained by solving the equations

x0B1 + x1B2 = 0 (2.3)

x0B0 + x1(A1 +RA2) = 0 (2.4)

subject to the normalising condition

x0e+ x1(I −R)−1e = 1. (2.5)

From the above discussion it is clear that to determine x, a key step is the

computation of the rate matrix R. Although there exist several algorithms

for computing R, we use logarithmic reduction algorithm (see [38]), which

is considered to be the most efficient one among the existing algorithms.

The important steps of this algorithm is given below.
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Assign H := (−A1)
−1A0; L := (−A1)

−1A2; G := L; and T := H;

and repeat

U := HL+ LH; M := H2; H := (I − U)−1M ; M := L2;

L := (I − U)−1M ; G := G+ TL; T := TH

until ||1−G.e||∞ 6 ε.

Then R = −A0(A1 + A0G)−1

Note that here, due to the special structure of the coefficient matrices

A0, A1 and A2 occuring in equation 2.2, the matrix R of order K(N +1)m

of the form

R =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

R1 R2 · · · Rk


where each Ri, 1 6 i 6 K, is a square matrix of order (N + 1)m. We

partition xi by sublevels as

x0 = (x00, x01, x02, ...., x0K)

and

xi = (xi1, xi2, xi3, ...., xiK)

where i > 1 and x00 is a scalar; x0j, 1 6 j 6 K, are vectors of order m

and

xij = (xij0, xij1, ...., xijN)

where i > 1; 1 6 j 6 K and xijb, 0 6 b 6 N are vectors of order m.
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2.3 Computation of Expected values

In this section we derive the expected waiting time of a tagged customer

(i) in the buffer and (ii) in the pool, the expected duration (i) between two

consecutive transfers under N -policy (ii) for the first N -policy transfer in

a busy cycle and the expectation of FIFO violation.

2.3.1 Expected waiting time in buffer

We denote the mean waiting time of customers who upon their arrival

enter the buffer by E(W1).

Case 1. N > K

In this case the tagged customer is not affected by the new arrivals in

buffer and in pool. So we can calculate the waiting time by considering

the system state at which the tagged customer enters. Hence

E(W1) =
∑
i

∑
j

∑
b

∑
h

E(waiting time of the customer who finds the

system in state (i, j, b, h)) Pr(system is in state (i, j, b, h))

E(W1) =
k−1∑
j=1

m∑
h=1

−βS−1e(j − 1)x0j0h

+
∞∑
i=1

K−1∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh
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+
∞∑
i=1

K−1∑
j=1

m∑
h=1

−βS−1e(j − 1)xijNh − π∗S−1e

where π∗Q∗ = 0, π∗e = 1 and Q∗ = S + S0β and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N

where [y] denotes the greatest integer value of y. −π∗S−1e is the additional

time required to complete the service of the customer who is at the server

when the tagged person enters the buffer.

Remark 2.3.1. In M/M/1 case with service rate µ,

E(W1) =
K−1∑
j=1

1
µ
jx0j0 +

∞∑
i=1

K−1∑
j=1

N−1∑
b=0

1
µ
(j + ψ)xijb

+
∞∑
i=1

K−1∑
j=1

1

µ
jxijN

where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

Case 2. N < K

In this case, the tagged customer in the buffer will be affected by the

number of new arrivals in the pool and so the number of new arrivals

in the buffer. So the waiting time of the tagged customer depends on

the following susequent developments in the pool: one or more visits to

zero level, and a finite number of customers joining the pool after the

tagged customer. Because of the complexity of calculation, we may turn
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to computing an upper bound on the waiting time, by keeping in mind,

the fact that only a maximum finite number K of persons in the pool will

affect the tagged person. In the worst case we have N = 1 which represents

service alternating between buffer and pool. So an upper bound for the

waiting time of a customer who upon his arrival enters the buffer in the

state (i, j, b, h), is

UB(W1) =
k−1∑
j=1

m∑
h=1

−βS−1e(j − 1 + [ j
N

])x0j0h

+
∞∑
i=1

K−1∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

+
∞∑
i=1

K−1∑
j=1

m∑
h=1

−βS−1e(j − 1 + [
j − 1

N
])xijNh − π∗S−1e

where π∗Q∗ = 0 , π∗e = 1 and Q∗ = S + S0β and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

−π∗S−1e is the additional time required to complete the service of the

customer who is at the server when the tagged person enter buffer.

Remark 2.3.2. In M/M/1 case with service rate µ,

UB(W1) =
K−1∑
j=1

1
µ
(j + [ j

N
])x0j0 +

∞∑
i=1

K−1∑
j=1

N−1∑
b=0

1
µ
(j + ψ)xijb

+
∞∑
i=1

K−1∑
j=1

1

µ
(j + [

j − 1

N
])xijN
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where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

2.3.2 Expected waiting time in pool

We denote the expected waiting time of a customer who upon his arrival

enters the pool, by E(W2).

To find this, first we define the Markov process {X(t)} as follows.

X(t) = (a, j, b, h) where a denotes the rank of the tagged customer en-

tered pool, j denotes the number of customers in the buffer, b denotes the

number of continuously served customers from buffer and h is the phase

of the service process at time t. The rank a of the customer is assumed

to be r if he joins as rth customer in pool. His rank may decrease to 1

with the customers ahead of him transferred from the pool to the buffer.

Since the customers who arrive after the tagged customer cannot change

his rank, level changing transitions in {X(t)} can takeplace only to one

side of the diagonal. We arrange the statespace of {X(t)} as

{r, r − 1, ......., 2, 1} × {1, 2, ....., K} × {0, 1, ....., N} × {1, 2, ......,m}

with absorbing state 0 in the sense that the tagged customer is either se-

lected to be served under N -policy or placed in the buffer with probability

p or to the server with probability 1 if the buffer size reduces to 0 at the

end of a service. The infinitesimal generator of the process is

Q̃ =

[
T T 0

0̄ 0

]
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where

T =



A1 A2

A1 A2

. . . . . .
. . . . . .

A1 A2

A1


of order rK(N + 1)m and

T 0 =


0̄
...

0̄

B2

 .

Now the expected absorption time of a particular customer is given by the

column vector

E(r)
w = −ĨT−1e

where Ĩ =
[
IK(N+1)m 0̄

]
having order K(N + 1)m × rK(N + 1)m and

e is a column vector of ones of order rK(N+1)m. So the expected waiting

time of the tagged customer is

WL =
∞∑
r=1

xrE
(r)
w

where xr is the steady state probability vector corresponding to i = r.

WL gives the waiting time of a customer in the pool up to the epoch of

his transfer to the buffer.
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Case 1. N > K

Expected waiting time in pool is

E(W2) =
∞∑
i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh(WL +W (1)p(
L∑
j=1

xijbhsh0))

where

W (1) =
L∑
j=1

m∑
h=1

−βS−1e(j − 1)x0j0h

+
∞∑
i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

Case 2. N < K

In this case we get an upperbound UB(W2) for the waiting time in

pool.

UB(W2) =
∞∑
i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh(WL + UB(W (1))p(
L∑
j=1

xijbhsh0))
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where

UB(W (1)) =
L∑
j=1

m∑
h=1

−βS−1e(j − 1 +

[
j − 1

N

]
)x0j0h

+
∞∑
i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

2.3.3 Expected duration between two consecutive

transfers under N-policy

For computing expected duration between two consecutive transfers under

N - policy, we consider the Markov process {X(t)} described as follows.

X(t) = (b, i, j, h) where b is the number of continuously served customers

from the buffer, if pool has at least one person, at time t, measured from

the service completion of the last customer who was transferred under N -

policy. So b = 0, 1, 2, ...., N . Here we regard 0, 1, 2, ..., N − 1 as transient

states and N as absorbing state (that is the state at which a new N -policy

transfer occurs). i denotes the number of postponed jobs at time t. Even

if pool is of infinite capacity, we restrict here it to be a finite value say V

for sufficiently large V . So i = 0, 1, 2, ..., V ; j(= 0, 1, 2, ..., K) denotes the

number of customers in the buffer at time t. Also h = 1, 2, ...,m denotes

the phase of the service in progress at a time t. The process {X(t)} has

the state space

{0, 1, 2, ..., N − 1, N} × {0, 1, 2, .., V } × {0, 1, 2, ..., K} × {1, 2, 3, ...,m}
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Generator of the process is

Q̂ =

[
U U0

0̄ 0

]

where

U =



C0 D0

C1 C3 D1

C1 C3 D1

C1 C3
. . .

...
. . . . . .

C1
. . . D1

C2 C3


(NVKm+Km+1)×(NVKm+Km+1)

and

U0 =


0
...

0

D2



C0 =



E1 E4

E2 E5

. . . . . .
. . . . . .

E2 E5

E3


(V Km+Km+1)×(V Km+Km+1)

where E1 is of order (Km+ 1)× (Km+ 1) and
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E1 =



−λ λβ

S0 S − λIm λIm

S0β

· · ·
S − λIm λIm

S0β S − λγIm



E2 =


S − λIm λIm

· · · · · ·
· · · · · ·

S − λIm λIm

S − λγIm


Km×Km

E3 =


S − λIm λIm

· · · · · ·
· · · · · ·

S − λIm λIm

S


Km×Km

E4 =

[
0̄ 0̄

0̄ λγIm

]
(Km+1)×Km

E5 =

[
0̄ 0̄

0̄ λγIm

]
Km×Km

Also

C1 =

[
E6 0̄

0̄ 0̄

]
(KVm)×(KVm+Km+1)

C2 =

[
E7 0̄

0̄ 0̄

]
(KVm)×(KVm+Km+1)



2.3. Computation of Expected values 43

where

E6 =

 0 S0β 0̄ 0̄

0̄ 0̄ IL−1 ⊗ pS0β 0̄

0̄ 0̄ 0̄ 0̄


Km×(Km+1)

E7 =
[

0̄ IK ⊗ S0β
]
Km×(Km+1)

E8 =

 0̄ 0̄

IL−1 ⊗ qS0β 0̄

0̄ IK−L ⊗ S0β


Km×Km

E9 =

 S0β 0̄ 0̄

0̄ IL−1 ⊗ pS0β 0̄

0̄ 0̄ 0̄


Km×Km

C3 =



E2 E5

. . . . . .
. . . . . .

E2 E5

E3


KVm×KVm

D1 =


E8

E9
. . .
. . . . . .

E9 E8


KVm×KVm
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D0 =

[
0̄

D1

]
KVm×KVm

D2 =

[
0̄ 0̄

IV−1 ⊗ IK ⊗ S0β 0̄

]
KVm×KVm

where ⊗ denotes Kronecker product. The initial probability vector of Q̂

is

δ =

[
1

KVm+Km∑
r=0

xr

[
x0 x1 · · · xKVm+Km

]
0̄

]
1×(NKVm+Km+1)

where x0 = x0000. xr = xij0h, 0 6 i 6 V ; 1 6 j 6 K; 1 6 h 6 m and r

varies from 1 to KVm + Km according to its lexicographic order. Then

we have the following lemma:

Lemma 2.3.1. Expected duration between two consecutive transfers under

N-policy follows PH distribution with representation (δ, U) and it is given

by

NABSORB = −δU−1e.

Using this expected value, a cost function is defined in section 2.6 and

the optimal value of N is determined.

2.3.4 Expected duration for the first N-policy

transfer in a busy cycle

Here we compute the expected duration of the time elapsed from the

epoch of the first arrival to an idle system until the first N -policy transfer

is effected. This can be obtained as corollary to lemma 2.3.1.
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Corollary 2.3.2. The time elapsed, starting with an arrival to an

idle system, until the realization of the N -policy for the first time follows

the PH-distribution with representation (α, U) where

α =
1

m∑
r=1

xr

[
0 x1 x2 · · · xm 0̄

]
1×(NKVm+Km+1)

where xr = x010h; 1 6 h 6 m, r varies from 1 to m and U is described in

section 2.3.3.

Proof. At the epoch of the first arrival to an idle system, process starts

with the service in one of the m phases with steady state probability

xr = x010h; 1 6 h 6 m, r varies from 1 to m. This justifies the form of the

initial probability vector α as given above.

Then the expected duration for the realization of the above random

variable is

NFIRST = −αU−1e.

2.3.5 Expected number of FIFO violation

Next we compute the expectation of the indicator random variable defined

as FIFO violation in pool as explained in remark 2.1.1. Its expectation is

the probability for FIFO violation in pool which is given by

PFIFO =
∞∑
i=1

L∑
j=2

N−1∑
b=N−j+1

xijbhpSh0.
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The FIFO may be violated by more than one customers who join the

pool after the tagged customer joins the buffer when N < L. However

this can be overcome by making N large than L. If N > K, a customer

joining the pool will not overtake any of the customers in the buffer who

had joined before his entering the pool. At this time, FIFO is violated

by atmost one successor in pool. Even this can be overcome by a slight

modification by redefining the N -policy by resetting b in (i, j, b, h) as zero

at the time of p-transfer.

2.4 Performance measures

1. The probability that there are i customers in the pool is

ai =
K∑
j=1

N∑
b=0

m∑
h=1

xijbh

for i > 1 and

a0 = x00 +
K∑
j=1

m∑
h=1

x0j0h.

2. The probability that there are j customers in the buffer (including

the one in service)is

bj =
m∑
h=1

x0j0h +
∞∑
i=1

N∑
b=0

m∑
h=1

xijbh

for 1 6 j 6 K and

b0 = x00.
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3. The mean number of pooled customers is

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e.

4. The mean buffer size is

µBUFFER =
K∑
j=1

jbj.

5. The probability that a customer, on its arrival enters the pool is

γbK .

6. The probability that an arriving customer enters service immediately

is b0.

7. The rate at which the customer who finds the buffer full leave the

system without service (mean number of customers not joining the

system per unit time) is

θLOST = λ(1− γ)bK .

That is

θLOST = λ(1− γ)(
m∑
h=1

x0K0h +
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh).

8. The rate at which pooled customers transfer in to the buffer is

θTR =
∞∑
i=1

N∑
b=0

m∑
h=1

xi1bhSh0 +
∞∑
i=1

L∑
j=2

N−2∑
b=0

m∑
h=1

xijbhpSh0
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+
∞∑
i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0 +
∞∑
i=1

L∑
j=2

m∑
h=1

xijNhpSho.

9. The rate at which pooled customers transfer under N -policy(mean

number of transfers under N -policy per unit time) is

TN =
∞∑
i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0.

10. Mean number of customers served out per unit time is

µSERV ED = (1− bo)
1

−βS−1e
.

2.5 Numerical results

We present some numerical results in order to illustrate the performance

of the system. Take

γ =
Lp

K
+

1

N

in order to bring out explicitly the dependence of γ on the system param-

eters.

This is justified as follows. Larger the L value, the customer encounter-

ing the buffer full, will be inclined to join the pool with higher probability.

Also same is the relationship of γ with p. On the other hand, γ inversely

varies with K. The additional term 1
N

comes through N -policy. Here as N

increases γ decreases so that γ and N vary inversely. But the relationship

is feasible for those values of L, p,K and N such that 0 6 γ 6 1. This is
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Fig 2.2: N versus µPOOL and µBUFFER

possible if N > K and such a selection is highly consistent. But N can be

made less than K by suitably selecting other variables so that 0 6 γ 6 1,

and that can be considered as an incentive to customers joining the pool.

The impact of N on various measures of descriptors with K = 6, L =

3,m = 2, λ = 7, p = 0.5, γ = Lp
K

+ 1
N

,

β =
[

0.3 0.7
]

S =

[
−12.5 6.0

6.0 −12.5

]
S0 =

[
6.5

6.5

]

is shown in figure 2.2 and figure 2.3. As N decreases µPOOL, µBUFFER, θTR

increase monotonically whereas θLOST decrease monotonically. This is due

to the fact that by our assumption γ varies inversely as N and as a result,
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Fig 2.3: N versus θTR and θLOST

loss rate decreases and inflow rate to the pool increases as N decreases.

As N decreases, transfer rate from pool to buffer increases, and thus mean

buffer size increases. As a result, expected waiting time in buffer increases

which is shown in figure 2.4 with p = 0.5, λ = 7, K = 6,m = 2.

By keeping K = 6, L = 3,m = 2, λ = 7, N = 5, γ = Lp
K

+ 1
N

the effect

of p on various measures is shown in figures 2.5 and 2.6. Here also µPOOL,

µBUFFER, θTR are monotonically increasing and θLOST is monotonically

decreasing in p, as expected. The measures are numerically computed for

various values of L and shown in table 2.1. Here also µPOOL, µBUFFER,

θTR are monotonically increasing and θLOST is monotonically decreasing

as expected, in L. All the above are true due to the fact that by our

assuption, γ varies directly as p and L. As a result, loss rate decreases
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Fig 2.4: N versus expected waiting time in buffer

and inflow rate to the pool increases as p and L increases. This will make

µPOOL increasing. Also transfer rate from pool to buffer increases as p

and L increases. So mean buffer size increases.

L µPOOL µBUFFER θTR θLOST
2 1.4772367 3.6969533 0.5948937 1.0082242
3 2.3480656 3.8571582 0.7786083 0.9418701
4 3.2663956 4.0585852 1.0212065 0.8890664
5 3.8800666 4.2669754 1.3845636 0.8587388

Table 2.1: K = 6, p = 0.5,m = 2, λ = 7, N = 5, γ = Lp
K + 1

N

Keeping service rate fixed and p = 0.5, N = 3, L = 3, K = 6 we can

increase the arrival rate λ by reducing the value of γ (by assuming the
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Fig 2.5: p versus µPOOL and µBUFFER

independence of γ on L, p,K and N) so as to maintain the system stability.

It can be seen that as γ tends to 0, arrival rate λ can approach∞ for a fixed

service rate as shown in figure 2.7, so as to satisfy the stability criterion

given by the theorem 2.2.1 which is true, since this case results in the loss

system M/PH/1/K queue.

2.5.1 Comparison with model of Deepak et.al.[16]

Here we compare the present model with the model of Deepak et.al.[16]

to emphasize the effect of N -policy. We call model of Deepak et.al.[16] as

model 1 and the present one as model 2. The same numerical example

for model 1 as given in Deepak et.al.[16] is taken here also. By keeping

K = 6, L = 3,m = 3, λ = 0.8, N = 3, γ = Lp
K

+ 1
N

,

β =
[
0 0.2 0.5 0.3

]
, S =

 −3 1 0.5

0.3 −2 0.1

1 2 −4

 , S0 =

 1.5

1.6

1

 ,
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Fig 2.6: p versus θLOST and θTR

various measures in models 1 and 2 are plotted against p, and is shown in

figures 2.8 and 2.9. From these figures it is clear that µPOOL, µBUFFER,

and θTR in model 2 are greater than that in model 1 and θLOST in model 2

is less than that in model 1 as expected which is a consequence of the N -

policy. Tables 2.2 and 2.3 show the effect of L on various descriptors which

are numerically computed for the models 1 and 2 by keeping p = 0.5. Here

also µPOOL, µBUFFER, and θTR in model 2 are greater than that in model

1 and θLOST in model 2 is less than that in model 1.

µPOOL µBUFFER
L Model1 Model2 Model1 Model2
2 0.00753 0.01536 1.06938 1.08449
3 0.01154 0.01885 1.07122 1.08838
4 0.01572 0.02175 1.07298 1.09314
5 0.02007 0.02278 1.07466 1.09940

Table 2.2: Effect of L on µPOOL and µBUFFER in models 1 and 2

Remark 2.5.1. The above M/PH/1 queue with postponed work under

N policy can be approximated to other models by suitably fixing the
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Fig 2.7: λ versus γ

variables.

If γ → 0, it is M/PH/1/K model.

If N →∞ then we get the model of Deepak et.al.[16]

If γ → 1, N → ∞, p → 1, L = K and m = 1 then it is M/M/1/∞
model.

If N = 1 and p→ 0 then service alternates between buffer and pool.
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Fig 2.8: p versus µPOOL and µBUFFER in models 1 and 2

θTR θLOST
L Model1 Model2 Model1 Model2
2 0.00145 0.00493 0.00723 0.00487
3 0.00217 0.00583 0.00652 0.00413
4 0.00290 0.00681 0.00580 0.00339
5 0.00363 0.00813 0.00508 0.00271

Table 2.3: Effect of L on θTR and θLOST in models 1 and 2

2.6 Cost function and determination of

optimal N

Here we investigate the value of N which minimises a suitably defined cost

function. The following important costs are included.

C1 : Holding cost per customer per unit time in buffer

C2 : Holding cost per customer per unit time in pool (C1 > C2)
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Fig 2.9: p versus θTR and θLOST in models 1 and 2

C3 : Fixed cost of transfer of a customer from pool to buffer for im-

mediate service by N -policy

Total expected cost TC = C1 (mean buffer size) + C2 (mean pool size)

+ C3(1/ expected duration between two consecutive N -policy transfers)

That is

TC = C1 µBUFFER + C2 µPOOL + C3
1

NABSORB

where

µBUFFER =
K∑
j=1

jbj

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e

and

NABSORB = −δ U−1 e.
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Fig 2.10: N versus total expected cost

In figure 2.10, total expected cost is plotted against N with C1 = 10, C2 =

9, C3 = 5, K = 6, L = 3,m = 2, λ = 7, p = 0.5, γ = Lp/K,

β =
[

0.3 0.7
]

S =

[
−12.5 6.0

6.0 −12.5

]
S0 =

[
6.5

6.5

]

Figure 2.10 indicates that total expected cost of the system first decreases

and then increases as N increases. For given parameters, it can be seen

that beyond a certain value of N , this cost is asymptote to N axis. Thus

we could anticipate a global minimum for the value of N .
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Chapter 3

Modified M/PH/1 Queue with

Postponed work under

N-policy

In this chapter, we modify the model discussed in chapter 2. We consider

a selection rule for an entry to the buffer if there is a vacancy in it. This

can be analysed by giving a probability for each buffer entry. At the same

situation, we may also take the interest of customers in to consideration.

If a customer is not bothered about the waiting time and their importance

lies in the service of that particular service station, the system will provide

a pool of postponed work having infinite capacity. Such customers can

Some results of this chapter are included in the following paper.
1. A.Krishnamoorthy, C.B.Ajayakumar, Modified M/PH/1 Queue with Postponed
work under N -policy (Communicated)

59



60
Chapter 3. Modified M/PH/1 Queue with Postponed work under

N -policy

register there and wait as usual for a chance to get service from that

particular service station. Here we emphasize that at each epoch, entry

to pool is decided by the customer according to a specified probability

law. When the buffer is full, entry to pool can also be restricted by the

system with a probability, to retain system stability. So in this model, we

consider the interest of both the server and the customers to reduce the

total loss to the system.

Pooled customers are transferred to the buffer with a known probability

at a service completion epoch, if the number in the buffer at that time is

less than a pre-assigned level. This transferred customer is positioned as

the last among the waiting units. If there is no customer left in the buffer

at a service completion epoch, and at least one is in the pool, the one at

the head of the pool is transferred to the buffer with probability one for

immediate service. To work with N -policy if the pool contain at least one

postponed work, continuously served customers from buffer is counted at

each service completion epoch. When it reaches a pre-assigned number

N , then the one ahead of all waiting in the pool gets transferred to the

buffer for immediate service. A diagramatic representation of the model

is given in figure 3.1.

3.1 Mathematical Formulation

Consider an M/PH/1 queue with finite buffer of capacity K. If the sys-

tem is empty, an arriving customer will join buffer and his service starts

immediately. If the buffer has l persons where 1 6 l 6 K − 1, then a

newly arriving customer will be allowed to enter buffer with probability
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Fig 3.1: Modified M/PH/1 queue with postponed work under N -policy

sl. We assume that as l increases, the probability sl decreases. That is,

s1 > s2 > s3 > .... > sK−1 with s0 = 1 and sK = 0. If a customer is not

allowed to enter the buffer, he will be directed with probability 1 − sl to

a pool of postponed work having infinite capacity . In this case, however,

the customer may decide to join the pool with probability δ or to leave

the system forever with probability 1 − δ. So If the buffer has l persons

where 1 6 l 6 K − 1, customers join buffer with rate λsl, join pool with

rate λ(1−sl)δ and leave the system forever without getting service at rate

λ(1 − sl)(1 − δ). If the buffer is full, then the newly arriving customer

decides to join pool, with probability γ1 or to leave with probability 1−γ1.

However in the former case, the server permits him to join pool with prob-

ability γ2 or to decline admission with probability 1− γ2. So in this case,

a customer will join pool with rate λγ1γ2 and will leave from the system

with rate λ(1− γ1) + λγ1(1− γ2).

When at the end of a service, if there are postponed customers, the

system operates as described in chapter 2. That is if the buffer is empty,
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the one ahead of all waiting in the pool gets transferred to the buffer for

immediate service. If the buffer contains y jobs, where 1 6 y 6 L−1; 2 6

L 6 K−1 at a service completion epoch, then again the job at the head of

the buffer starts getting service and simultaneously with probability p the

head of the queue in the pool is transferred to the buffer and positioned

as the last among the waiting customers in the buffer. With probability

q = 1 − p, no such transfer takes place. No such transfer takes place at

a service completion epoch if there is atleast L customers in the buffer.

Also if the pool contain at least one postponed job, the continuously served

customers from the buffer since the last transfer underN -policy is counted,

at each service completion epoch. When it reaches N (N > 0), the one

ahead of all waiting in the pool gets transferred to the buffer for immediate

service. At this time, system does not consider the p-transfer.

Customers arrive according to a homogeneous Poisson process of rate

λ. The duration of the successive services whether of regular or of post-

poned customers are independent and identically distributed with the ser-

vice time distribution following Phase Type(PH). Here the PH distribu-

tion has the irreducible representation (β , S). There are m phases and

the vector S0 = −Se containing elements Sh0 denoting the absorption rate

from the phase h, h = 1, 2, ...,m.

The model is studied as a Quasi Birth-Death(QBD) process and a

solution of the classical matrix geometric type is obtained (see [45] and

[38]). We define the statespace of the QBD and exhibit the structure of

its infinitesimal generator.

The state space consists of all tuples of the form (i, j, b, h) with i > 1,

1 6 j 6 K; 0 6 b 6 N ; 1 6 h 6 m where i is the number of postponed
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work, j is the number of work in the finite buffer including the unit in

service, b is the number of continuously served customers from the buffer

at a service completion and h is the phase of the service in progress at

a time t. For a given value of i, K(N + 1)m states constitute the level

i of the QBD. Now consider the boundary level i = 0. Then we denote

the empty system (0, 0, 0, 0) by 0. Also there are Km states of the form

(0, j, 0, h), 1 6 j 6 K; 1 6 h 6 m. This is due to the fact that when

the pool has no customers, N -policy is suspended. These have the same

significance as before, except that in these states, no postponed jobs are

present, but there are jobs in the finite buffer. These Km+ 1 states make

up the boundary level 0 of the QBD.

The infinitesimal generator of the QBD describing the M/PH/1/K

queue with postponed customers under N -policy is of the form

Q =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where the matrix B0 is of dimension (Km+ 1)×K(N + 1)m, B1 is square

matrix of order Km+ 1 and B2 is of dimension K(N + 1)m× (Km+ 1).

A0, A1 and A2 are square matrix of order K(N + 1)m. Each of these

matrices is itself highly structured.

The matrix B1 corresponds to the transition from the level 0 to 0 is

given below, where I is the identity matrix of order m and all non specified
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entries are zeros.

B1 =



−λ λβ

S0 ∆1 Ω1

S0β ∆2 Ω2

. . . . . . . . .
. . . . . . . . .

S0β ∆K−1 ΩK−1

S0β ∆


where ∆ = S − λγ1γ2Im, ∆l = S − εlIm, Ωl = λslIm, εl = λ(sl + δ − slδ),
l = 1, 2, ...., K − 1.

B0 =

[
0̄

diag(Γ1,Γ2, ......,ΓK−1,Γ)

]

where Γl = λ(1−sl)δt5⊗ Im, l = 1, 2, ..., K−1; Γ = λγ1γ2t5⊗ Im and t5 is

a row vector of order N+1 with first element 1 and all other elements zero

with Im representing identity matrix of order m. Also 0̄ is zero matrix of

appropriate order and diag(Γ1,Γ2, ...,ΓK−1,Γ) represents a diagonal block

matrix of order K.

The matrix B2 is given by

B2 =
[

0̄ diag
(
H1, H2, . . . , HL, HL+1, . . . , HK ,

) ]
where diag(H1, H2, ..., HL, HL+1, ..., HK) represents a diagonal block ma-

trix of order K with diagonal block entries H1 = t6 ⊗ S0β , H2 = ... =

HL = t7⊗ S0β , HL+1 = ... = HK = t8⊗ S0β and t6 is a column vector of

order N+1 with all entries are 1, t7 is a column vector of order N+1 with
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all elements are p except a 1 at (N, 1)th position, t8 is a column vector of

order (N + 1) with (N, 1)th element is 1 and all other elements zero.

The matrix A0 is given by

A0 = diag(ω1, ω2, ....., ωK−1, ω)

where ωl = λ(1− sl)δIN+1 ⊗ Im, l = 1, 2, ...., K − 1; ω = λγ1γ2IN+1 ⊗ Im
and IN+1 is the identity matrix of order N + 1.

The matrix A2 is given by

A2 = diag(Λ1,Λ2, ...,ΛL,ΛL+1, ...,ΛK)

It denotes diagonal block matrix with block entries on main diagonal given

by Λ1 = t1 ⊗ S0β, Λ2 = ... = ΛL = t2 ⊗ S0β, ΛL+1 = ... = ΛK = t3 ⊗ S0β

where t1 is a square matrix of order N + 1,given by

t1 =

[
[0] IN

1 [0]

]

where IN is identity matrix of order N and [0] is zero matrix of appropriate
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order. t2 is a square matrix of order N + 1 given by

t2 =



0 p 0 0 · · · 0 0

0 0 p 0 · · · 0 0

0 0 0 p · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p 0

0 0 0 0 · · · 0 1

p 0 0 0 · · · 0 0


and t3 is a square matrix of order N + 1 with (N,N + 1)th entry 1 and all

other entries zero.

The matrix A1 is given by

A1 =



Θ1 Φ1

ζ Θ2 Φ2

ζ Θ3

. . . . . . . . .

ζ ΘL ΦL

η ΘL+1

. . . . . . . . .

ΘK−1 ΦK−1

η Θ


where ζ corresponds to the transition of the buffer size from j to j−1, j =

2, 3, ..., L and ζ = t4 ⊗ qS0β; η corresponds to the transition of the buffer

size from j to j−1, j = L+1, ..., K and η = t4⊗S0β; Θ corresponds to the
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transition of the buffer size from K to K and Θ = IN+1 ⊗ (S − λγ1γ2Im);

Θj corresponds to the transition of the buffer size from j to j where j =

1, 2, ..., L, L+1, ..., K−1 and Θj = IN+1⊗ (S− εjIm), εj = λ(sj +δ−sjδ),
j = 1, 2, ..., L, L + 1, ..., K − 1; Φj corresponds to the transition of the

buffer size from j to j + 1 where j = 1, 2, ..., L, L + 1, ..., K − 1 and

Φj = λsjIN+1 ⊗ Im, j = 1, 2, ..., L, L + 1, ..., K − 1. Also t4 is a square

matrix of order N + 1 which is given below:

t4 =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 0

1 0 0 0 · · · 0 0


.

3.2 Analysis of the system

3.2.1 Stability criterion

Theorem 3.2.1. The system is stable if and only if

λγ1γ2

N∑
b=0

m∑
h=1

πKbh + λδ

K−1∑
j=1

1∑
b=0

n∑
h=1

(1− sj)πjbh <
1

K(N+1)m∑
l=1

m1l

.

Proof. Let Gll′(k, x) be the conditional probability that the QBD pro-
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cess starting in the state l = (i, j, b, h) (for i > 1) where 1 6 j 6 K,

0 6 b 6 N , 1 6 h 6 m at time t = 0 reaches the state l′ = (i− 1, j′, b′, h′)

where 1 6 j′ 6 K, 0 6 b′ 6 N , 1 6 h′ 6 m for the first time, involving

exactly k transitions (that is after exactly k service completions from the

system) and completing before time x. Because of the structure of Q,

the probability Gll′(k, x) does not depend on i. The matrix with elements

Gll′(k, x) is denoted by G(k, x).

Now introduce the transform matrix,

Ĝ(z, θ) =
∞∑
k=1

zk
∞∫

0

e−θxdG(k, x)

for |z| 6 1, θ > 0. The matrix Ĝ(z, θ) satisfies the matrix equation

Ĝ(z, θ) = z(θI − A1)
−1A2 + (θI − A1)

−1A0Ĝ
2(z, θ).

Use the notations C0(θ) = (θI − A1)
−1A2 and C2(θ) = (θI − A1)

−1A0.

Now the transform matrix Ĝ(z, θ) is equal to the minimal non negative

solution of the matrix quadratic equation

X(z, θ) = zC0(θ) + C2(θ)X
2(z, θ)

and it is obtained by successive substitutions starting with the zero matrix.

Also we have

lim
z→1,θ→0

Ĝ(z, θ) = G(k, x) = [Gll′(k, x)].

Suppose the matrix A = A0+A1+A2 is irreducible. Then the necessary



3.2. Analysis of the system 69

and sufficient condition for the positive recurrence of the process is that

the matrix G is stochastic. For this, the condition πA2e > πA0e must

be satisfied where π is the stationary probability vector associated with

A = A0 +A1 +A2. That is it is the unique solution to πA = 0, πe = 1 and

A = A0 +A1 +A2. The quantity ρ = πA0e
πA2e

is called the traffic intensity of

the QBD process. G is obtained as the minimal non negative solution to

the equation G = C0+C2G
2 where C0 = (−A1)

−1A2 and C2 = (−A1)
−1A0.

That is, G is the minimal non negative solution of the matrix quadratic

equation A2 + A1G+ A0G
2 = 0.

Let m1 = [m1l ] denotes the column vector of dimension K(N + 1)m

where m1l denotes the mean first passage time from the level i (i > 1)

to the level i − 1 given that the first passage time started in the state l.

Then,

m1 =

[
− ∂

∂θ
Ĝ(z, θ)e

]
θ=0,z=1

= −(A1 + A0(I +G))−1e.

For the system stability, the rate of drift from level i to level i−1 should

be greater than that to level i+1. This means that the Markov Chain(MC)

is stable if and only if πA2e > πA0e. The rate of drift from level i to the

level i + 1 is given by λγ1γ2

N∑
b=0

m∑
h=1

πKbh + λδ
K−1∑
j=1

1∑
b=0

n∑
h=1

(1− sj)πjbh. It

follows that the condition πA0e < πA2e is equivalent to

λγ1γ2

N∑
b=0

m∑
h=1

πKbh + λδ

K−1∑
j=1

1∑
b=0

n∑
h=1

(1− sj)πjbh <
1

K(N+1)m∑
l=1

m1l

.
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So by an appropriate choice of γ1 and γ2 , that is by postponing a

fraction of overflowing customers, one can obtain a stable system even if

arrival rate is greater than service rate.

3.2.2 Stationary distribution

Since the model is studied as a QBD process, its stationary distribution,

if it exists, has a matrix geometric solution. Assume that the stability

criterion is satisfied. Let the stationary vector x of Q be partitioned by

the levels in to subvectors xi for i > 0. Then xi has the matrix geometric

form

xi = x1R
i−1 (3.1)

for i > 2 where R is the minimal non negative solution to the matrix

equation

A0 +RA1 +R2A2 = 0 (3.2)

and the vectors x0, x1 are obtained by solving the equtions

x0B1 + x1B2 = 0 (3.3)

x0B0 + x1(A1 +RA2) = 0 (3.4)

subject to the normalising condition

x0e+ x1(I −R)−1e = 1 (3.5)

From the above discussion it is clear that to determine x, a key step is the

computation of the rate matrix R. we use logarithmic reduction algorithm
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as in section 2.2.2 in chapter 2. We can partition xi by sublevels as

x0 = (x00, x01, x02, ...., x0K)

and

xi = (xi1, xi2, xi3, ...., xiK)

where i > 1 and x00 is a scalar and x0j , 1 6 j 6 K are vectors of order

m and

xij = (xij0, xij1, ...., xijN)

where i > 1 , 1 6 j 6 K and xijb, 0 6 b 6 N are vectors of order m.

3.3 Computation of Expected values

In this section we derive the expected waiting time of a tagged customer

(i) in the buffer and (ii) in the pool, the expected duration (i) between two

consecutive transfers under N -policy (ii) for the first N -policy transfer in

a busy cycle and the expectation of FIFO violation.

3.3.1 Expected waiting time in buffer

We denote the mean waiting time of customers who upon their arrivals

enter the buffer by E(W1).

Case1: N > K.

In this case the tagged customer is not affected by the new arrivals in
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buffer and in pool. So we can calculate the waiting time by considering

the system state at which the tagged customer enters. Hence

E(W1) =
∑
i

∑
j

∑
b

∑
h

E(waiting time of the customer who finds the

system in state (i, j, b, h)) Pr(system is in state (i, j, b, h))

E(W1) =
k−1∑
j=1

m∑
h=1

−βS−1e(j − 1)x0j0h

+
∞∑
i=1

K−1∑
j=1

N−1∑
b=0

m∑
h−1

−βS−1e(j − 1 + ψ)xijbh

+
∞∑
i=1

K−1∑
j=1

m∑
h=1

−βS−1e(j − 1)xijNh − π∗S−1e

where π∗Q∗ = 0 , π∗e = 1 and Q∗ = S + S0β and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N

where [y] denotes the greatest integer value of y. −π∗S−1e is the additional

time required to complete the service of the customer who is at the server

when the tagged person enters the buffer.

Remark 3.3.1. In M/M/1 case with service rate µ,

E(W1) =
K−1∑
j=1

1

µ
jx0j0 +

∞∑
i=1

K−1∑
j=1

N−1∑
b=0

1

µ
(j + ψ)xijb
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+
∞∑
i=1

K−1∑
j=1

1

µ
jxijN

where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

Case2: N < K.

In this case, the tagged customer in the buffer will be affected by the

new arrivals in the pool and so the new arrivals in the buffer. So the

waiting time of the tagged customer depends on the various susequent

developments in the pool such as visits to zero level one or more, but a

finite number in the pool joining after the tagged customer. Because of

the complexity of calculation, we may turn to computing an upper bound

on the waiting time, by keeping in mind, the fact that only a maximum

finite number K of persons in the pool will affect the tagged person. In the

worst case we have N = 1 which represents service alternating between

buffer and pool. So an upper bound for the waiting time of a customer

who upon his arrival enters the buffer in the state (i, j, b, h), is

UB(W1) =
k−1∑
j=1

m∑
h=1

−βS−1e(j − 1 + [
j

N
])x0j0h

+
∞∑
i=1

K−1∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

+
∞∑
i=1

K−1∑
j=1

m∑
h=1

−βS−1e(j − 1 + [
j − 1

N
])xijNh − π∗S−1e
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where π∗Q∗ = 0 , π∗e = 1 and Q∗ = S + S0β and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

−π∗S−1e is the excess time required to complete the service of the cus-

tomer who is at the server when the tagged person enter buffer.

Remark 3.3.2. In M/M/1 case with service rate µ,

UB(W1) =
K−1∑
j=1

1

µ
(j + [

j

N
])x0j0 +

∞∑
i=1

K−1∑
j=1

N−1∑
b=0

1

µ
(j + ψ)xijb

+
∞∑
i=1

K−1∑
j=1

1

µ
(j + [

j − 1

N
])xijN

where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

3.3.2 Expected waiting time in pool

We denote the expected waiting time of a customer who upon his arrival

enters the pool, by E(W2).

To find this, first we define the Markov process {X(t)} as follows.

X(t) = (a, j, b, h) where a denotes the rank of the tagged customer en-

tered pool, j denotes the number of customers in the buffer, b denotes the

number of continuously served customers from buffer and h is the phase
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of the service process at time t. The rank a of the customer is assumed

to be r if he joins as the rth customer in pool. His rank may decrease to 1

with the customers ahead of him transferred from the pool to the buffer.

Since the customers who arrive after the tagged customer cannot change

his rank, level changing transitions in {X(t)} can takeplace only to one

side of the diagonal. We arrange the statespace of {X(t)} as

{r, r − 1, ......., 2, 1} × {1, 2, ....., K} × {0, 1, ....., N} × {1, 2, ......,m}

with absorbing state 0 in the sense that the tagged customer is either se-

lected to be served under N -policy or placed in the buffer with probability

p or to the server with probability 1 if the buffer size reduces to 0 at the

end of a service. The infinitesimal generator of the process is

Q̃ =

[
T T 0

0̄ 0

]

where

T =



A1 A2

A1 A2

. . . . . .
. . . . . .

A1 A2

A1


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of order rK(N + 1)m and

T 0 =


0̄
...

0̄

B2

 .

Now the expected absorption time of a particular customer is given by the

column vector

E(r)
w = −ĨT−1e

where Ĩ =
[
IK(N+1)m 0̄

]
having order K(N + 1)m × rK(N + 1)m. So

the expected waiting time of the customer is

WL =
∞∑
r=1

xrE
(r)
w

where xr is the steady state probability vector corresponding to i = r.

WL gives the waiting time of a customer in the pool up to the epoch of

his transfer to the buffer.

Case1: N > K

Expected waiting time in pool is

E(W2) =
∞∑
i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh(WL +W (1)p(
L∑
j=1

xijbhsh0))
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where

W (1) =
L∑
j=1

m∑
h=1

−βS−1e(j − 1)x0j0h

+
∞∑
i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

Case2: N < K

In this case we get an upperbound UB(W2) for the waiting time in

pool.

UB(W2) =
∞∑
i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh(WL + UB(W (1))p(
L∑
j=1

xijbhsh0))

where

UB(W (1)) =
L∑
j=1

m∑
h=1

−βS−1e(j − 1 +

[
j − 1

N

]
)x0j0h

+
∞∑
i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

−βS−1e(j − 1 + ψ)xijbh

where

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.
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3.3.3 Expected duration between two consecutive

transfers under N-policy

For computing expected duration between two consecutive transfers under

N - policy, we consider the Markov process {X(t)} described as follows.

X(t) = (b, i, j, h) where b is the number of continuously served customers

from the buffer, if pool has at least one person, at time t, measured from

the service completion of the last customer who was transferred under N -

policy. So b = 0, 1, 2, ...., N . Here we regard 0, 1, 2, ..., N − 1 as transient

states and N as absorbing state (that is the state at which a new N -policy

transfer occurs). i denotes the number of postponed jobs at time t. Even

if pool is of infinite capacity, we restrict here it to be a finite value say V

for sufficiently large V . So i = 0, 1, 2, ..., V ; j(= 0, 1, 2, ..., K) denotes the

number of customers in the buffer at time t. Also h = 1, 2, ...,m denotes

the phase of the service in progress at a time t. The process {X(t)} has

the state space

{0, 1, 2, ..., N − 1, N} × {0, 1, 2, .., V } × {0, 1, 2, ..., K} × {1, 2, 3, ...,m}

Generator of the process is

Q̂ =

[
U U0

0̄ 0

]

where
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U =



C0 D0

C1 C3 D1

C1 C3 D1

C1 C3
. . .

...
. . . . . .

C1
. . . D1

C2 C3


(NVKm+Km+1)×(NVKm+Km+1)

and

U0 =


0
...

0

D2



C0 =



E1 E4

E2 E5

. . . . . .
. . . . . .

E2 E5

E3


(V Km+Km+1)×(V Km+Km+1)

where
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E1 =



−λ λβ

S0 S − ε1Im λs1Im

S0β

· · ·
S − εK−1Im λsK−1Im

S0β S − λγ1γ2Im


which is of order (Km+ 1)× (Km+ 1) where εl = λ(sl + δ − slδ).

E2 =


S − ε1Im λs1Im

· · · · · ·
· · · · · ·

S − εK−1Im λsK−1Im

S − λγ1γ2Im


Km×Km

E3 =


S − ε1Im λs1Im

· · · · · ·
· · · · · ·

S − εK−1Im λsK−1Im

S


Km×Km

E4 =



λ(1− s1)δIm

· · ·
· · ·

λ(1− sK−1)δIm

λγ1γ2Im


having

order (Km+ 1)×Km.
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E5 =


λ(1− s1)δIm

· · ·
· · ·

λ(1− sK−1)δIm

λγ1γ2Im

 having

order Km×Km.

Also

C1 =

[
E6 0̄

0̄ 0̄

]
(KVm)×(KVm+Km+1)

C2 =

[
E7 0̄

0̄ 0̄

]
(KVm)×(KVm+Km+1)

where

E6 =

 0 S0β 0̄ 0̄

0̄ 0̄ IL−1 ⊗ pS0β 0̄

0̄ 0̄ 0̄ 0̄


Km×(Km+1)

E7 =
[

0̄ IK ⊗ S0β
]
Km×(Km+1)

E8 =

 0̄ 0̄

IL−1 ⊗ qS0β 0̄

0̄ IK−L ⊗ S0β


Km×Km

E9 =

 S0β 0̄ 0̄

0̄ IL−1 ⊗ pS0β 0̄

0̄ 0̄ 0̄


Km×Km
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C3 =



E2 E5

. . . . . .
. . . . . .

E2 E5

E3


KVm×KVm

D1 =


E8

E9
. . .
. . . . . .

E9 E8


KVm×KVm

D0 =

[
0̄

D1

]
KVm×KVm

D2 =

[
0̄ 0̄

IV−1 ⊗ IK ⊗ S0β 0̄

]
KVm×KVm

where ⊗ denotes Kronecker product. The initial probability vector of Q̂

is

δ =

[
1

KVm+Km+1∑
r=1

xr−1

[
x0 x1 · · · xKVm+Km+1

]
0̄

]
1×(NKVm+Km+1)

where x0 = x0000. xr = xij0h, 0 6 i 6 V ; 1 6 j 6 K; 1 6 h 6 m and r

varies from 1 to KVm + Km according to its lexicographic order. Then

we have the following lemma:

Lemma 3.3.1. Expected duration between two consecutive transfers under

N-policy follows PH distribution with representation (δ, U) and it is given

by

NABSORB = −δU−1e.
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Using this expected value, a cost function is defined in section 7 and

the optimal value of N is determined.

3.3.4 Expected duration for the first N-policy

transfer in a busy cycle

Here we compute the expected duration of the time elapsed from the

epoch of the first arrival to an idle system until the first N -policy transfer

is effected. This can be obtained as corollary to lemma 4.1.

Corollary 3.3.2. The time elapsed, starting with an arrival to an

idle system, until the realization of the N -policy for the first time follows

the PH-distribution with representation (α, U) where

α =
1

m∑
r=1

xr

[
0 x1 x2 · · · xm 0̄

]
1×(NKVm+Km+1)

where xr = x010h; 1 6 h 6 m, r varies from 1 to m and U is described in

section 4.3.

Proof. At the epoch of the first arrival to an idle system, process starts

with the service in one of the m phases with steady state probability

xr = x010h; 1 6 h 6 m, r varies from 1 to m. This justifies the form of the

initial probability vector α as given above.

Then the expected duration for the realization of the above random
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variable is

NFIRST = −αU−1e.

3.3.5 Expected number of FIFO violation

It may be noted that the N -policy leads to violation of FIFO rule for

customers in the pool. For example assume that there are two or more

customers in the pool at a service completion epoch at which the number

in the buffer droped to L − 1 or below and the number of continuously

served customers reached N − 1. So the first in the pool may be selected

under p-transfer and placed as the last in the buffer. When the next

service is completed, the current head of the pool gets transferred to the

buffer for immediate service there by violating the FIFO rule for pooled

customers. Further it may be noted that this situation does not arise

among the queued customers in the buffer. We compute the expectation

of the indicator random variable defined as FIFO violation in pool. Its

expectation is the probability for FIFO violation in pool which is given by

PFIFO =
∞∑
i=1

L∑
j=2

N−1∑
b=N−j+1

xijbhpSh0.

The FIFO may be violated by more than one successors if N < L.

However this can be overcome by making N sufficiently large than L. If

N > K, a customer joining the pool will not overtake any of the customers

in the buffer who had joined before his entering to pool. At this time, FIFO

is violated by atmost one successor in pool. Even this can be overcome by

a slight modification by redefining the N -policy by resetting b in (i, j, b, h)
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as zero at the time of p-transfer.

3.4 Performance measures

1. The probability that there are i customers in the pool is

ai =
K∑
j=1

N∑
b=0

m∑
h=1

xijbh

for i > 1 and

a0 = x00 +
K∑
j=1

m∑
h=1

x0j0h.

2. The probability that there are j customers in the buffer (including

the one in service) is

bj =
m∑
h=1

x0j0h +
∞∑
i=1

N∑
b=0

m∑
h=1

xijbh

for 1 6 j 6 K and

b0 = x00.

3. The mean number of pooled customers is

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e.
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4. The mean buffer size is

µBUFFER =
K∑
j=1

jbj.

5. The probability that a customer, on its arrival enters the pool is

γ1γ2bK + δ
K−1∑
j=1

(1− sj)bj.

6. The probability that an arriving customer enters service immediately

is b0.

7. The rate at which a customer enters the buffer is

λb0 + λ
K−1∑
j=1

sjbj.

8. The rate at which the customer who leave the system without service

(mean number of customers not joining the system per unit time) is

θLOST = λ(1− δ)
K−1∑
j=1

(1− sj)bj + λ(1− γ1)bK + λγ1(1− γ2)bK .

9. The rate at which pooled customers transfer in to the buffer is

θTR =
∞∑
i=1

N∑
b=0

m∑
h=1

xi1bhSh0 +
∞∑
i=1

L∑
j=2

N−2∑
b=0

m∑
h=1

xijbhpSh0
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+
∞∑
i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0 +
∞∑
i=1

L∑
j=2

m∑
h=1

xijNhpSho.

10. The rate at which pooled customers transfer under N -policy(mean

number of transfers under N -policy per unit time) is

TN =
∞∑
i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0.

11. Mean number of customers served out per unit time

= (1− bo) 1
−βS−1e

.

3.5 Numerical results

We present some numerical results in order to illustrate the performance

of the system. We reinterpret the probabilities γ1, γ2, sx, δ as:

γ1 : Customer’s eagerness to join the pool when the buffer is full.

γ2 : Server’s interest on a new work to postpone when the buffer is

full.

sx : Server’s interest on a new work to accept in to the buffer when x

customers are present.

δ : Customer’s special interest to the service station.

Take γ1 = Lp
K

+ 1
N

in order to bring out explicitly the dependence of

γ1 on the system parameters.
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Fig 3.2: N versus µPOOL and µBUFFER

This is justified as follows. Larger the L value, the customer encounter-

ing the buffer full will be inclined to join the pool with higher probability.

Also same is the relationship of γ1 with p. On the other hand, γ1 inversely

varies with K. The additional term 1
N

comes through N -policy. Here as

N increases γ1 decreases so that γ1 and N vary inversely. But the rela-

tionship is feasible for those values of L, p,K and N such that 0 6 γ1 6 1.

This is possible if N > K and such a selection is consistent. However

N can be made less than K by suitably selecting other variables so that

0 6 γ1 6 1, and that can be considered as an incentive to customers

joining the pool.

The impact of N on various measures of descriptors with K = 6, L =

3,m = 2, λ = 7, p = 0.5, s1 = 0.9, s2 = 0.8, s3 = 0.7, s4 = 0.6, s5 =

0.5, γ1 = Lp
K

+ 1
N
γ2 = 0.8, δ0.5

β =
[

0.3 0.7
]

S =

[
−12.5 6.0

6.0 −12.5

]
S0 =

[
6.5

6.5

]
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Fig 3.3: N versus θLOST and θTR

is shown in figure 3.2 and figure 3.3. As N increases µBUFFER, θTR de-

crease monotonically whereas θLOST increases monotonically; but µPOOL

decreases at first and then increases. This is due to the fact that by our

assumption γ1 varies inversely as N . So as N increases, customer’s at-

traction to the pool decreases when the buffer is full. So the pool size

decreases. Also transfer rate decreases. This will make the number in the

buffer decrease. So the influence of δ increases which makes the number

in the pool increase.

By keeping K = 6, p = 0.5,m = 2, λ = 7, N = 5, γ1 = Lp
K

+ 1
N

the

effect of L on various measures is shown in figures 3.4 and 3.5. Here also

µBUFFER, θTR are monotonically increasing as L increases, as expected.

This will gradually makes the buffer full. So the influence of δ decreases

which makes the pool size decreasing and the effect of γ1 increases which

makes θLOST monotonically decreasing. The measures are numerically

computed for various values of p by keeping L = 3 and shown in table 3.1.

Here also µPOOL, µBUFFER, θTR are monotonically increasing and θLOST

is monotonically decreasing in p as expected. For a lower L, increase in p
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Fig 3.4: L versus µPOOL and µBUFFER

does not contribute much towards increase in the buffer size, in contrast

to the effect of δ.

p µPOOL µBUFFER θTR θLOST
0.3 1.6284441 2.8322663 1.0228137 0.3299661
0.4 1.6445645 2.8706489 1.0458466 0.3119004
0.5 1.6752849 2.9082990 1.0713297 0.2926464
0.6 1.7203127 2.9454260 1.0992774 0.2722456
0.7 1.7798784 2.9821990 1.1297385 0.2507135

Table 3.1: K = 6, L = 3,m = 2, λ = 7, N = 5, γ1 = Lp
K + 1

N

Remark 3.5.1. If sx = 1,∀x, x = 1, 2, ..., K − 1 and γ2 = 1 then we get

the model discussed in [?].
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Fig 3.5: L versus θTR and θLOST

3.6 A Game Theoretic Approach

If the buffer is full with K customers, a newly arrived customer may join

the pool with probability γ1 or leave the system without joining the pool

with probability 1−γ1. At the same time the server may permit a customer

to join the pool with probability γ2 or may decline admission to the pool

with probability 1 − γ2. The situation can be modelled by a two-person

zero-sum game as follows.

Let the customer be treated as the player 1 and the system as the

player 2. The player 1 has two alternatives: (1) join pool (2) leave the

system without joining the pool. The player 2 has also two alternatives:

(1) allow the customer to enter pool (2)does not allow the customer to

enter pool.

Let the mixed strategy of the player 1 be (γ1, 1−γ1) where 0 < γ1 < 1

and that of the player 2 be (γ2, 1− γ2) where 0 < γ2 < 1 where γ1 is the

probability of the customer to join the pool and γ2 is the probability of
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the server to admit the customer to the pool. Then the pay-off matrix of

player 1 is [
C11 C12

C21 C22

]
where C11 is the gain to the customer when he decides to join the pool and

the server admit him to the pool; C12 is the loss to the customer when he

decides to join the pool and at the same time the server does not admit

him to the pool; C21 is the gain to the customer when he decides not to

join the pool but the server is ready to admit him to the pool; C22 is the

gain to the customer when he decides not to join the pool and the server

decides not to admit him to the pool. Now a valid assumption can be

C11 > C12, C22 > C12 and C22 > C21. Then

γ1 =
C22 − C21

(C11 + C22)− (C21 + C12)
,

γ2 =
C22 − C12

(C11 + C22)− (C21 + C12)

and the value of the game is

γ =
C11C22 − C12C21

(C11 + C22)− (C21 + C12)
.



Chapter 4

An M/M/1 Queue with

Postponed work and service

interruption under N-policy

Interruption in the service of a customer is a common phenomenon. Sev-

eral reasons like server breakdowns or arrival of priority customers create

interruption. In this chapter we introduce interruption in a system with

postponed work. If a customer on arrival, finds the buffer having finite

capacity full, he is allowed to join a pool of postponed work having infinite

capacity with a specified probability. A customer will select such a facility,

if he is not bothered about the waiting time and his importance lies in the

Some results of this chapter are included in the following paper.
1. A.Krishnamoorthy, C.B.Ajayakumar, An M/M/1 Queue with Postponed work and
service interruption under N -policy (Communicated)

93
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service of that particular service station. Such a postponed work will be

tranferred to the buffer for immediate service with a specified probability,

at a service completion epoch if the number of customers in the buffer at

that time is less than a pre-assigned level. Also, If there is no customer

left in the buffer at a service completion epoch, and atleast one is in the

pool, the one at the head of the pool is transferred to the buffer with

probability one for immediate service.

Here the postponed work is transferred to the buffer for immediate

service due to the attaining of a pre-assigned low level in the buffer. But

during the service of such a pooled customer, the buffer size may rise to a

pre-assigned higher level and so the server will be compelled to preempt

the service of that pool work. So the postponed work gets interruption

and it is again postponed and wait at the head of the pool for next chance

of transfer. Now we introduce an N -policy as follows. At the time of

interruption, system starts to count the number of continuously served

customers from the buffer. When it reaches a pre-assigned number N

at a service completion epoch, the interrupted postponed work is again

considered for immediate service and further interruption is not allowed

for such a work in any circumstance. The interrupted work is assumed to

be repeated after the interruption. A diagramatic representation of the

model is given in figure 4.1.

The situation in this model is very common in real life situations.

Some work may be postponed by the server to do it when he is about to

be idle. When the server considers to deal with such a postponed work, it

may be interrupted and again postponed due to the arrival of a number

of emergency work.
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4.1 Mathematical formulation

Fig 4.1: Postponed work with service interruption

Consider an M/M/1 queue with finite buffer of capacity K. If the

buffer contains less than K customers including the one at server, newly

arriving customer will join it. When the buffer is full with K customers,

newly arriving jobs are not necessarily lost. They are offered the choice of

leaving the system immediately or of being postponed until the system is

less congested. That is, a customer can accept the offer of postponement

with a probability γ (0 6 γ < 1). So he may join a pool of postponed

work of infinite capacity. With probability 1 − γ, he does not join the

system. When at the end of a service, if there are postponed customers,

the system operates as follows. If the buffer is empty, the one ahead of all

waiting in the pool gets trasferred to the buffer for immediate service. If

the buffer contains y jobs, where 1 6 y 6 L−1; 2 6 L 6 K−1 at a service

completion epoch, then with a probability p, the head of the queue in pool

is transferred to the finite buffer for immediate service. With probability

q = 1 − p, no such transfer takes place. When at the end of a service, if

the buffer is empty, and the pool has no work, the server becomes idle.
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When the service of a pooled customer is going on, if the buffer size

rises to a pre-assigned number M + 1 such that L 6 M 6 K − 1 at an

arrival epoch, then the current customer is preempted with probability

one. Thus this interrupted postponed work is further postponed and stay

as the head of the queue in the pool for getting next chance of transfer.

At that time, server will perform buffer work. At the time of interruption,

the system starts to count the number of continuously served customers

from the buffer. When it reaches N (N > 0) at a service completion

epoch, then the interrupted pooled customer gets transferred to the buffer

for immediate service and no further interruption is allowed for such a

customer. If the number N is not attained, the customer may be again

get interrupted if he is considered again for immediate service due to the

buffer size reaching L− 1 or below.

Customers arrive according to a homogeneous Poisson process of rate

λ. The duration of the successive services whether of regular or of post-

poned customers are independent and identically distributed exponential

random variables with parameter µ. The model is studied as a quasi birth-

death(QBD) process and matrix geometric solution is obtained (see [45]

and [38]). We define the state space of the QBD and exhibit the structure

of its infinitesimal generator.

The state space consists of all tuples of the form (i, j, b, r) where i

denotes the number of postponed work in the pool having infinite capacity;

j denotes the number of jobs in the finite buffer including the unit in

service; b denotes the status of the system where
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b =

{
0 , the buffer work is going on serving

1 , the pool work is going on serving

If b = 0, r denotes the number of continuously served customers from the

buffer including the customer in service and if b = 1, r denotes the number

of continuously served customers from the buffer only, during the period

of interruption where r 6= 0. r = 0 indicates that the head of the pool

work is not an interrupted one.

Consider the boundary level i = 0. We denote the empty system

(0, 0, 0, 0) by 0.

If 1 6 j 6 K and b = 0 then r = 0.

If 1 6 j 6 M and b = 1 then r = 0, 1, 2, ..., N .

If M + 1 6 j 6 K and b = 1 then r = N . So the boundary level i = 0

constitute MN + 2K + 1 states. Now consider the level i 6= 0.

If 1 6 j 6 K and b = 0 then r = 0, 1, 2, ..., N .

If 1 6 j 6 M and b = 1 then r = 0, 1, 2, ..., N .

If M + 1 6 j 6 K and b = 1 then r = N . So there are 2M(N + 1) +

(K −M)(N + 2) states are there in the level i 6= 0.

The infinitesimal generator of the QBD describing the M/M/1/K

queue with postponed work and service interruption under N -policy is



98
Chapter 4. An M/M/1 Queue with Postponed work and service

interruption under N -policy

of the form

Q =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where the matrix B0 is of dimension [MN + 2K + 1] × [2M(N + 1) +

(K −M)(N + 2)], B1 is square matrix of order MN + 2K + 1 and B2 is

of dimension [2M(N + 1) + (K −M)(N + 2)]× [MN + 2K + 1]. A0, A1

and A2 are square of order 2M(N + 1) + (K −M)(N + 2). Each of these

matrices is itself highly structured.

The matrix B1 corresponds to the transition from the level 0 to 0 is

given below.

B1 =



−λ λt1

µt2 Ω λIN+2

µt2 Ω
.. .

. . . . . . λIN+2

µt2 Ω λt3

µt4 η λI2

µt5 η
. . .

. . . . . . λI2

µt5 Θ


where Ω = (−λ− µ)IN+2 corresponds to the transition of buffer size from

j to j where j = 1, 2, ...,M ; η = (−λ− µ)I2 corresponds to the transition

of buffer size from j to j where j = M + 1, ...., K − 1; Θ = (−λγ − µ)I2
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corresponds to the transition of buffer size from K to K and all non

specified entries are zeros. Also, t1 is a row vector of dimension N + 2,

with first element 1 and all other entries are zeros. t2 is a column vector

of ones of dimension N + 2.

t3 =



1 0

0 0
...

...

0 0

0 1


(N+2)×2

t4 =

[
1 0 0 · · · 0

1 0 0 · · · 0

]
2×(N+2)

t5 =

[
1 0

1 0

]
2×2

λIN+2 corresponds to the transition of buffer size from j to j + 1 where

j = 1, 2, ...,M − 1; λt3 corresponds to the transition of buffer size from M

to M + 1; λI2 corresponds to the transition of buffer size from j to j + 1

where j = M +1, ..., K−1; µt2 corresponds to the transition of buffer size

from j to j − 1 where j = 1, 2, ...,M ; µt4 corresponds to the transition of

buffer size from M + 1 to M ; µt5 corresponds to the transition of buffer

size from j to j − 1 where j = M + 2, ..., K.

The matrix B0 corresponds to the transition from the level 0 to 1 such

that the transition rate from the buffer size M to M is given by the block

λV0 representing interruption and the transition rate from the buffer size

K to K is given by the block λγt7 representing postponement and all

other block entries are zero matrices where,

t6 =

[
0̄ IN

0 0̄

]
(N+1)×(N+1)

V0 =

[
0̄ 0̄

t6 0̄

]
(N+2)×2(N+1)
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t7 =

[
1 0 · · · 0 0

0 0 · · · 0 1

]
2×(N+2)

.

The matrix B2 is given by

B2 =
[

0̄ diag
[
µV1, µV2, · · · , µV3, · · · , µt10, · · · , µt10

] ]
where 0̄ is a zero matrix of suitable dimension, µV1 corresponds to the

transition of buffer size from 1 to 1, µV2 corresponds to the transition of

buffer size from j to j where j = 2, ..., L, µV3 corresponds to the transition

of buffer size from j to j where j = L + 1, ...,M , µt10 corresponds to the

transition of buffer size from j to j where j = M + 1, ..., K. where

t8 =


1 0 · · · 0

1 0 · · · 0
...

...
...

...

1 0 · · · 0


(N+1)×(N+1)

V1 =

[
0̄ IN+1

0̄ t8

]
2(N+1)×(N+2)

V2 =

[
0̄ F

0̄ pt8

]
2(N+1)×(N+2)

V3 =

[
0̄ t9

0̄ 0̄

]
2(N+1)×(N+2)

F =

[
pIN 0̄

0̄ 1

]
(N+1)×(N+1)

.

Also t9 is an (N + 1)× (N + 1) matrix whose last entry is 1 and t10 is an

(N + 2)× 2 matrix whose [(N + 1), 2]th entry is 1 and all other elements

in both the matrices are zeros.

In the matrix A0, the transition rate from the buffer size M to M is

given by the block λV4 representing interruption and the transition rate
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from the buffer size K to K is given by the block λγIN+2 representing

postponement and all other block entries are zero matrices where,

V4 =

[
0̄ 0̄

t6 0̄

]
2(N+1)×2(N+1)

.

The matrix A1 is given by

A1 =



∆1 Γ1

Φ1 ∆1 Γ1

. . . . . . . . .

Φ2 ∆1 Γ1

. . . . . . . . .

Φ2 ∆1 Γ2

Φ3 ∆2 Γ3

Φ4 ∆2
. . .

. . . . . . Γ3

Φ4 ∆3


where ∆1 = (−λ − µ)I2(N+1) corresponds to the transition of buffer size

from j to j where j = 1, 2, ...,M ; ∆2 = (−λ − µ)IN+2 corresponds to

the transition of buffer size from j to j where j = M + 1, ...., K − 1;

∆3 = (−λγ − µ)IN+2 corresponds to the transition of buffer size from K

to K; Γ1 = λI2(N+1) corresponds to the transition of buffer size from j to

j + 1 where j = 1, 2, ...,M − 1; Γ2 = λV6 corresponds to the transition of

buffer size from M to M + 1; Γ3 = λIN+2 corresponds to the transition

of buffer size from j to j + 1 where j = M + 1, ..., K − 1; Φ1 = qµV5

corresponds to the transition of buffer size from j to j − 1 where j =
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1, 2, ..., L; Φ2 = µV5 corresponds to the transition of buffer size from j to

j − 1 where j = L + 1, ...,M ; Φ3 = µV7 corresponds to the transition of

buffer size from M + 1 to M ; Φ4 = µV8 corresponds to the transition of

buffer size from j to j − 1 where j = M + 2, ..., K.

t11 =

 1 0 0̄

0̄ 0̄ IN−1

0 0 0̄


(N+1)×(N+1)

t12 =


0
...

0

1


(N+1)×1

t13 =
[

1 0 · · · 0
]

1×(N+1)

V5 =

[
t11 0̄

t8 0̄

]
2(N+1)×2(N+1)

V6 =

[
IN+1 0̄

0̄ t12

]
2(N+1)×(N+2)

V7 =

[
t11 0̄

t13 0̄

]
(N+2)×2(N+1)

V8 =

[
t11 0̄

t13 0̄

]
(N+2)×(N+2)

where 0̄ is zero matrix of appropriate order. All non specified entries are

zeros. The matrix A2 is given by

A2 = diag
[
µV9, µV10, · · · , µV11, · · · , µV11, µV12 · · · µV12

]
where µV9 corresponds to the transition of buffer size from 1 to 1, µV10

corresponds to the transition of buffer size from j to j where j = 2, ..., L,

µV11 corresponds to the transition of buffer size from j to j where j =

L + 1, ...,M , µV12 corresponds to the transition of buffer size from j to j



4.1. Mathematical formulation 103

where j = M + 1, ..., K. Also,

V9 =

[
0̄ IN+1

0̄ t8

]
2(N+1)×2(N+1)

V10 =

[
0̄ F

0̄ pt8

]
2(N+1)×2(N+1)

V11 =

[
0̄ t9

0̄ 0̄

]
2(N+1)×2(N+1)

V12 =

[
0̄ t12

0̄ 0̄

]
(N+2)×(N+2)

.

4.1.1 Stability criterion

Theorem 4.1.1. The system is stable if and only if

λγ

(
N∑
r=0

πK0r + πK1N

)
+ λ

N−1∑
r=0

πM1r <
1

2M(N+1)+(K−M)(N+2)∑
l=1

m1l

.

Proof. Let Gll′(k, x) be the conditional probability that the QBD pro-

cess starting in the state l = (i, j, b, h) (for i > 1) at time t = 0 reaches the

state l′ = (i− 1, j′, b′, h′) for the first time, involving exactly k transitions

(that is after exactly k service completions from the system) and complet-

ing before time x. Because of the structure of Q, the probability Gll′(k, x)

does not depend on i. The matrix with elements Gll′(k, x) is denoted by

G(k, x).

Now introduce the transform matrix,

Ĝ(z, θ) =
∞∑
k=1

zk
∞∫

0

e−θxdG(k, x)
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for |z| 6 1, θ > 0. The matrix Ĝ(z, θ) satisfies the matrix equation

Ĝ(z, θ) = z(θI − A1)
−1A2 + (θI − A1)

−1A0Ĝ
2(z, θ)

Use the notations C0(θ) = (θI − A1)
−1A2 and C2(θ) = (θI − A1)

−1A0.

Now the transform matrix Ĝ(z, θ) is equal to the minimal non negative

solution of the matrix quadratic equation

X(z, θ) = zC0(θ) + C2(θ)X
2(z, θ)

and it is obtained by successive substitutions starting with the zero matrix.

Also we have

lim
z→1,θ→0

Ĝ(z, θ) = G(k, x) = [Gll′(k, x)]

Suppose the matrix A = A0+A1+A2 is irreducible. Then the necessary

and sufficient condition for the positive recurrence of the process is that

the matrix G is stochastic. For this, the condition πA2e > πA0e must

be satisfied where π is the stationary probability vector associated with

A = A0 +A1 +A2. That is it is the unique solution to πA = 0, πe = 1 and

A = A0 +A1 +A2. The quantity ρ = πA0e
πA2e

is called the traffic intensity of

the QBD process. G is obtained as the minimal non negative solution to

the equation G = C0+C2G
2 where C0 = (−A1)

−1A2 and C2 = (−A1)
−1A0.

That is, G is the minimal non negative solution of the matrix quadratic

equation A2 + A1G+ A0G
2 = 0.

Let M1 = [m1l ] denotes the column vector of dimension 2M(N + 1) +

(K −M)(N + 2) where m1l denotes the mean first passage time from the

level i (i > 1) to the level i − 1 given that the first passage time started
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in the state l. Then,

M1 =

[
− ∂

∂θ
Ĝ(z, θ)e

]
θ=0,z=1

= −(A1 + A0(I +G))−1e.

For the system stability, the rate of drift from level i to level i − 1

should be greater than that to level i + 1. This means that the Markov

Chain(MC) is stable if and only if πA2e > πA0e. The rate of drift from

level i to the level i+ 1 is given by λγ

(
N∑
r=0

πK0r + πK1N

)
+ λ

N−1∑
r=0

πM1r.

It follows that the condition πA0e < πA2e is equivalent to

λγ

(
N∑
r=0

πK0r + πK1N

)
+ λ

N−1∑
r=0

πM1r <
1

2M(N+1)+(K−M)(N+2)∑
l=1

m1l

.

So by an appropriate choice of γ , that is by postponing a fraction of

overflowing customers, one can obtain a stable system even if arrival rate

is greater than service rate.

4.1.2 Stationary distribution

Since the model is studied as a QBD process, its stationary distribution,

if it exists, has a matrix geometric solution. Assume that the stability

criterion is satisfied. Let the stationary vector x of Q be partitioned by
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the levels in to subvectors xi for i > 0. Then xi has the matrix geometric

form

xi = x1R
i−1 (4.1)

for i > 2 where R is the minimal non negative solution to the matrix

equation

A0 +RA1 +R2A2 = 0 (4.2)

and the vectors x0, x1 are obtained by solving the equtions

x0B1 + x1B2 = 0 (4.3)

x0B0 + x1(A1 +RA2) = 0 (4.4)

subject to the normalising condition

x0e+ x1(I −R)−1e = 1 (4.5)

To determine x, the rate matrix R should be computed. We use logarith-

mic reduction algorithm, as in section 2.2.2 in chapter 2, for this purpose.

We again partition xi by sublevels as

x0 = (x00, x01, x02, ...., x0M , x0(M+1), ...., x0K)

and

xi = (xi1, xi2, ...., xiM , xi(M+1), ...., xiK)

where i > 1 and x00 is a scalar and x0j = (x0j0, x0j1), where if 1 6 j 6 M ,

then x0j0 are scalars and x0j1 are vectors of order N + 1 and if M + 1 6
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j 6 K, then x0j0 and x0j1are scalars. Also

xij = (xij0, xij1)

where i > 1 and if 1 6 j 6 M , then xij0 and xij1 are vectors of order

N + 1 and if M + 1 6 j 6 K, then xij0 are vectors of order N + 1 but xij1

are scalars.

4.2 Performance characteristics

1. The probability that there are i customers in the pool is

ai =
M∑
j=1

1∑
b=0

N∑
r=0

xijbr +
K∑

j=M+1

(xij1N +
N∑
r=0

xij0r)

for i > 0 and

a0 = x00 +
M∑
j=1

(x0j00 +
N∑
r=0

x0j1r) +
K∑

j=M+1

(x0j00 + x0j1N).

2. The probability that there are j customers in the buffer (including

the one in service)is

bj =


x00 , if j = 0

x0j00 +
N∑
r=0

x0j1r +
∞∑
i=1

1∑
b=0

N∑
r=0

xijbr, if 1 6 j 6 M

x0j00 + x0j1N +
∞∑
i=1

N∑
r=0

xij0r +
∞∑
i=1

xij1N , if M + 1 6 j 6 K
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3. The mean number of pooled customers is

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e.

4. The mean buffer size is

µBUFFER =
K∑
j=1

jbj.

5. The probability that a customer, on its arrival enters the pool is

γbK .

6. The probability that an arriving customer enters service immediately

is b0.

7. The rate at which the customer who find the buffer full leave the

system without service (mean number of customers not joining the

system per unit time) is

θLOST = λ(1− γ)bK .

8. The rate at which pooled customers transfer in to the buffer for

immediate service is

θTR =
∞∑
i=1

1∑
b=0

N∑
r=0

xi1brµ+
∞∑
i=1

L∑
j=2

1∑
b=0

N−1∑
r=0

xijbrpµ+
∞∑
i=1

K∑
j=1

xij0Nµ.



4.3. Numerical results 109

9. Interruption rate is

IR =
∞∑
i=0

N−1∑
r=0

xiM1rλ.

4.3 Numerical results

Fig 4.2: N versus µPOOL and µBUFFER

Fig 4.3: N versus θTR and θLOST



110
Chapter 4. An M/M/1 Queue with Postponed work and service

interruption under N -policy

Fig 4.4: L versus µPOOL and µBUFFER

In this section, we illustrate the performance of the system by con-

sidering some numerical results. A customer encountering the buffer full,

will be inclined to join the pool with higher γ if the L and p values are

larger. On the other hand γ inversely varies with K and N . To model this

situation, we take γ = Lp
K

+ 1
N
. But the relationship is feasible for those

values of L, p,K and N such that 0 6 γ 6 1.

The impact of N on various measures of descriptors with K = 6, L =

3,M = 4, λ = 5, µ = 7, p = 0.5, γ = Lp
K

+ 1
N

, is shown in figure 4.2 and

figure 4.3. As N increases µPOOL, µBUFFER, θTR decrease monotonically

whereas θLOST increases monotonically. This is due to the fact that by our

assumption γ varies inversely as N and as a result, loss rate increases and

inflow rate to the pool decreases as N increases. So the transfer rate of

the interrupted customer from the pool to the buffer decreases, and thus

mean buffer size decreases.

By keeping K = 6, L = 3,M = 4, λ = 5, µ = 7, N = 3, γ = Lp
K

+ 1
N

the

effect of p on various measures are numerically computed and shown in
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Fig 4.5: L versus θTR and θLOST

table 4.1. Here also µPOOL, µBUFFER, θTR are monotonically increasing

and θLOST is monotonically decreasing in p, as expected. The measures

are computed for various values of L also by keeping K = 7, p = 0.5,M =

6, λ = 5, µ = 7, N = 4, γ = Lp
K

+ 1
N

and shown in figures 4.4 and 4.5. Here

also µBUFFER, θTR are monotonically increasing and θLOST is monotoni-

cally decreasing as expected, in L. All the above are true due to the fact

that by our assuption, γ varies directly as p and L. As a result, loss rate

decreases and inflow rate to the pool increases as p and L increases. This

will make µPOOL increasing. But after an initial increase, µPOOL will de-

crease for lower arrival rate λ. This is due to the increasing of the transfer

rate from the pool to the buffer. So mean buffer size increases. Further

as M increases interruption rate decreases as shown in figure 4.6 which is

also expected.
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Fig 4.6: M versus interruption rate

p µPOOL µBUFFER θTR θLOST
0.1 0.1765235 1.7919855 0.0841676 0.1322650
0.2 0.1941219 1.8023695 0.0969422 0.1228671
0.3 0.2126601 1.8134754 0.1100714 0.1133072
0.4 0.2322224 1.8253230 0.1236016 0.1035701
0.5 0.2529308 1.8379211 0.1375848 0.0936373
0.6 0.2749491 1.8512663 0.1520791 0.0834871
0.7 0.2984872 1.8653363 0.1671473 0.0730956
0.8 0.3238123 1.8800848 0.1828565 0.0624368
0.9 0.3512580 1.8954289 0.1992740 0.0514831

Table 4.1: K = 6,M = 4, λ = 5, µ = 7, N = 3, L = 3, γ = Lp
K + 1

N



Chapter 5

A Discrete time Geo/PHd/1

Queue with Postponed work

under N-policy

In the previous chapters we described continuous time level independent

quasi birth-death processes of postponed work. We started with a basic

model and assumptions that are gradually added to realize more practical

situations. From this chapter on we consider some realistic models in dis-

crete time. Now a days, discrete time queueing systems are widely applied

in telecommunications and computer networks. This is the reason for its

wide analysis by many researchers. As a beginning, in this chapter, we

Some results of this chapter are included in the following paper.
1. A.Krishnamoorthy, C.B.Ajayakumar, P.K.Pramod, A Discrete time Geo/PHd/1
Queue with Postponed work under N -policy (Communicated)

113
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consider the discrete time counter part of the model discussed in chapter

2.

5.1 Mathematical description

Consider aGeo/PHd/1 queue with finite buffer of capacity K. If the buffer

contains less than K customers including the one at server, newly arriving

customer will join it. When the buffer is full with K customers newly

arriving customers are offered the choice of leaving the system immediately

with probability 1−γ or of being postponed with probability γ (0 6 γ < 1)

until the system is less congested. When at the end of a service, if there

are postponed customers, the system operates as described in chapter 2.

That is, if the buffer is empty the one ahead of all waiting in the pool

gets trasferred to the buffer for immediate service. If the buffer contains

y jobs, where 1 6 y 6 L − 1; 2 6 L 6 K − 1, at a service completion

epoch, then again the job at the head of the buffer starts service and

with probability p, the head of the queue in pool is transferred to the

finite buffer and positioned as the last among the waiting customers in

the buffer. With probability q = 1 − p, no such transfer takes place. If

there is at least L customers in the buffer at a service completion epoch

then no such transfer takes place. Also if the pool contain at least one

postponed job, the continuously served customers from the buffer since

the last transfer under N -policy is counted, at each service completion

epoch. When it reaches a pre-assigned number N (N > 0), then the one

ahead of all waiting in the pool gets transferred to the buffer for immediate

service. At this time, system does not consider the p-transfer. The N -
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policy introduced here differs from the classical N -policy as explained

below. In the classical case, N customers are to queue up to start the

new service cycle once the system becomes empty. However in the present

case N -policy is applied to determine a priority service to be given to a

customer from the pool.

In Continuous time case atmost one event can take place with posi-

tive probability in a short interval. But in discrete time queueing system,

time axis is divided in to intervals of equal length called slots, and where

all queueing activities takeplace at the slot boundaries. An arrival and

a departure also can happen at a slot boundary. In other words, two or

more distinct events can also take place at slot boundaries in the discrete

time set up. Whereas in the continuous time case we were constructing

the infinitesimal generator of the underlying Markov chain, in the discrete

time set up, it is the transition probability matrix, with transitions taking

place at slot boundaries is considered. Let the time axis be marked by

0, 1, 2, ....., n, ... For mathematical clarity, we assume that departures oc-

cur in the interval (n−, n) and arrivals occur in the interval (n, n+). That

is, departures occur at the moment immediately before the slot boundaries

and arrivals occur at the moment immediately after the slot boundaries.

In this chapter we assume that the time between two successive arrivals

is governed by a geometrical law with parameter α and the service time dis-

tribution of each customer by a discrete phase-type distribution described

by an irreducible PH-representation (β, S) of order m. So, probability of

an arrival is α. The model is studied as a quasi birth-death(QBD) process

and a solution of the classical matrix geometric type is obtained (see [45]

and [38]). We define the state space of the QBD and exhibit the structure

of its transition probability matrix.
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The state space consists of all tuples of the form (i, j, b, h) with i > 1;

1 6 j 6 K; 0 6 b 6 N ; 1 6 h 6 m where i is the number of postponed

work, j is the number of work in the finite buffer including the unit in

service, b is the number of continuously served customers from the buffer

since the last transfer from the pool under the N -policy and h is the phase

of the service in progress at any given epoch. For a given value of i 6= 0,

K(N + 1)m states constitute the level i of the QBD. Now consider the

boundary level i = 0. Here we denote the empty system (0, 0, 0, 0) by 0.

Also there are Km states of the form (0, j, 0, h), 1 6 j 6 K; 1 6 h 6 m.

This is due to the fact that when the pool has no customers, N -policy

is suspended. These have the same significance as before, except that in

these states, no postponed job is present, but there are jobs in the finite

buffer. These Km+1 states make up the boundary level 0 of the QBD. At

time n, the system can be described by the Markov process {Xn, n > 1}
with Xn = (i, j, b, h).

The transition probability matrix is

P =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where the matrix B0 is of dimension (Km+ 1)×K(N + 1)m, B1 is square

matrix of order Km+ 1 and B2 is of dimension K(N + 1)m× (Km+ 1).

A0, A1 and A2 are square matrices of order K(N + 1)m. Each of these

matrices is itself highly structured.
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Except for a single block αγt5⊗S at its south- east corner, the matrix

B0 is zero, where t5 is a row vector of order N + 1 with first element 1 and

all other elements are zeros. The matrix B1 corresponds to the transition

from the level 0 to 0 is given below:

B1 =



1− α αβ

∆3 ∆1 αS

∆4
. . . . . .
. . . . . . . . .

. . . ∆1 αS

∆4 ∆2


where all non specified entries are zeros;

∆1 = (1−α)S+αS0β corresponds to the transition of the buffer size

from j to j for j = 1, 2, ..., K − 1;

∆2 = (1 − αγ)S + αS0β corresponds to the transition of the buffer

size from K to K;

∆3 = (1− α)S0 corresponds to the transition of the buffer size from

1 to 0;

∆4 = (1−α)S0β corresponds to the transition of the buffer size from

j to j − 1 for j = 2, 3, ..., K.
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The matrix B2 is given by

B2 =



∆6 Ω6

∆7 Ω7

. . . . . .
. . . . . .

∆7 Ω7

∆8 Ω8

. . . . . .
. . . . . .

∆8 Ω8

∆9


where

∆6 = (1− α)t6 ⊗ S0β corresponds to the transition of the buffer size

from 1 to 1;

Ω6 = αt6 ⊗ S0β corresponds to the transition of the buffer size from

1 to 2;

∆7 = (1− α)t7 ⊗ S0β corresponds to the transition of the buffer size

from j to j for j = 2, 3, ..., L;

Ω7 = αt7 ⊗ S0β corresponds to the transition of the buffer size from

j to j + 1 for j = 2, 3, ..., L;

∆8 = (1− α)t8 ⊗ S0β corresponds to the transition of the buffer size

from j to j for j = L+ 1, ...., K − 1;
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Ω8 = αt8 ⊗ S0β corresponds to the transition of the buffer size from

j to j + 1 for j = L+ 1, ...., K − 1;

∆9 = (1−αγ)t8⊗S0β corresponds to the transition of the buffer size

from K to K.

Also t6 is a column vector of order N + 1 with all entries 1, t7 is a

column vector of order N + 1 with all elements p except 1 at (N, 1)th

position and t8 is a column vector of order (N + 1) with (N, 1)th element

1 and all other elements zero.

The matrix A0 is zero except for a single block αγIN+1⊗S at its south-

east corner where IN+1 is the identity matrix of order N + 1. The matrix

A2 is given by

A2 =



Γ1 Ω1

Γ2 Ω2

. . . . . .
. . . . . .

Γ2 Ω2

Γ3 Ω3

. . . . . .
. . . . . .

Γ3 Ω3

Γ4


where

Γ1 = (1− α)t1 ⊗ S0β corresponds to the transition of the buffer size
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from 1 to 1;

Γ2 = (1− α)t2 ⊗ S0β corresponds to the transition of the buffer size

from j to j for j = 2, 3, ..., L;

Γ3 = (1− α)t3 ⊗ S0β corresponds to the transition of the buffer size

from j to j for j = L+ 1, ...., K − 1;

Γ4 = (1−αγ)t3⊗S0β corresponds to the transition of the buffer size

from K to K

Ω1 = αt1 ⊗ S0β corresponds to the transition of the buffer size from

1 to 2;

Ω2 = αt2 ⊗ S0β corresponds to the transition of the buffer size from

j to j + 1 for j = 2, 3, ..., L;

Ω3 = αt3 ⊗ S0β corresponds to the transition of the buffer size from

j to j + 1 for j = L+ 1, ...., K − 1.

Also t1 is a square matrix of order N + 1 given by

t1 =

[
0̄ IN

1 0̄

]

where IN is identity matrix of order N and 0̄ is zero matrix of appropriate
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order. Again t2 is a square matrix of order N + 1 given by

t2 =



0 p 0 0 · · · 0 0

0 0 p 0 · · · 0 0

0 0 0 p · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · p 0

0 0 0 0 · · · 0 1

p 0 0 0 · · · 0 0


and t3 is a square matrix of order N + 1 with (N,N + 1)th entry 1 and all

other entries zero.

The matrix A1 is given by

A1 =



Γ5 ∆5

Ω4 Γ6 ∆5

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .

Ω4 Γ6 ∆5

Ω5 Γ7 ∆5

. . . . . . . . .
. . . . . . . . .

Ω5 Γ7 ∆5

Ω5 Γ8


where
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∆5 = αIN+1⊗S corresponds to the transition of the buffer size from

j to j + 1 for j = 1, 2, ..., K − 1;

Γ5 = IN+1⊗ (1− α)S corresponds to the transition of the buffer size

from 1 to 1;

Γ6 = αqt4 ⊗ S0β + (1− α)IN+1 ⊗ S corresponds to the transition of

the buffer size from j to j for j = 2, 3, ..., L;

Γ7 = αt4 ⊗ S0β + (1 − α)IN+1 ⊗ S corresponds to the transition of

the buffer size from j to j for j = L+ 1, L+ 2, ..., K − 1;

Γ8 = αt4⊗ S0β + (1− αγ)IN+1⊗ S + αγt3⊗ S0β corresponds to the

transition of the buffer size from K to K;

Ω4 = (1−α)qt4⊗S0β corresponds to the transition of the buffer size

from j to j − 1 for j = 2, ..., L;

Ω5 = (1− α)t4 ⊗ S0β corresponds to the transition of the buffer size

from j to j − 1 for j = L+ 1, ...., K.

Also t4 is a square matrix of order N + 1 which is given below.

t4 =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 0

1 0 0 0 · · · 0 0


.
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5.1.1 Stability criterion

Theorem 5.1.1. The system is stable if and only if

αγ
N∑
b=0

m∑
h=1

πKbh <
1

K(N+1)m∑
l=1

m1l

where π is the unique solution to πA = π; πe = 1 for A = A0 + A1 + A2.

Proof. Let Gll′ be the conditional probability that the QBD process

starting in the state l = (i, j, b, h) (for i > 1) where 1 6 j 6 K; 0 6 b 6 N ;

1 6 h 6 m at time t = 0 reaches the state l′ = (i − 1, j′, b′, h′) where

1 6 j′ 6 K; 0 6 b′ 6 N ; 1 6 h′ 6 m, for the first time, in a finite time.

That is

Gll′ = P [τ <∞ : χ(τ) = l′|χ(0) = l]

where τ is the first passage time from the level i to the level i−1. Because

of the structure of Q, the probability Gll′ does not depend on i. The matrix

with elements Gll′ is denoted by G.

Suppose the matrix A = A0+A1+A2 is irreducible. Then the necessary

and sufficient condition for the positive recurrence of the process is that

the matrix G is stochastic. For this, the condition πA2e > πA0e must

be satisfied where π is the stationary probability vector associated with

A = A0 + A1 + A2. That is, it is the unique solution to πA = π, πe = 1

and A = A0 +A1 +A2. The quantity ρ = πA0e
πA2e

is called the traffic intensity

of the QBD process. G is obtained as the minimal non negative solution
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to the matrix quadratic equation

G = A2 + A1G+ A0G
2.

This is obvious. On the left-hand side, G records the distribution of the

first state visited in l′ conditioned on the initial state being in l. On the

right-hand side, these visits to l′ are decomposed in to three groups; the

first term corresponds to the case where the QBD directly moves from i to

i− 1 in one transition with probabilities recorded in A2; as for the second

term, with probabilities recorded in A1, the QBD remains in l from where

it still has to move eventually to l′, with probabilities recorded in G; finally

for the last term, with probabilities recorded in A0, the QBD moves up

to i+ 1 from where it still has to move eventually to l, with probabilities

recorded in G and then to l′ again with probabilities recorded in G.

Let m1 = [m1l ] denotes the column vector of dimension K(N + 1)m

where m1l denotes the mean first passage time from the level i (i > 1)

to the level i − 1 given that the first passage time started in the state

l. We have G = (I − A1)
−1A2 + (I − A1)

−1A0G
2. Consequently m1 =

[I − A1 − A0(I +G)]−1e.

For the system stability, the rate of drift from level i to level i − 1

should be greater than that to level i + 1. The rate of drift from level i

to the level i+ 1 is given by αγ
N∑
b=0

m∑
h=1

πKbh. It follows that the condition

πA0e < πA2e is equivalent to

αγ

N∑
b=0

m∑
h=1

πKbh <
1

K(N+1)m∑
l=1

m1l

.
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So by an appropriate choice of γ, that is by postponing a fraction of

overflowing customers, one can obtain a stable system even if arrival rate

is greater than service rate.

5.1.2 Stationary distribution

Since the model is studied as a QBD process, its stationary distribution,

if it exists, has a matrix geometric solution. Assume that the stability

criterion is satisfied. Let the stationary vector x of P be partitioned by

the levels in to subvectors xi for i > 0. Then xi has the matrix geometric

form

xi = x1R
i−1 (5.1)

for i > 2 where R is the minimal non negative solution to the matrix

equation

A0 +RA1 +R2A2 = R (5.2)

and the vectors x0, x1 are obtained by solving the equtions

x0(B1 − I) + x1B2 = 0 (5.3)

x0B0 + x1(A1 − I +RA2) = 0 (5.4)

subject to the normalising condition

x0e+ x1(I −R)−1e = 1 (5.5)
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From the above discussion it is clear that to determine x, a key step is the

computation of the rate matrix R. For this, we use logarithmic reduction

algorithm (see [38]). The important steps of this algorithm is given below.

Assign H := (I − A1)
−1A0; L := (I − A1)

−1A2; G := L; and T := H;

and repeat

U := HL+ LH; M := H2; H := (I − U)−1M ; M := L2;

L := (I − U)−1M ; G := G+ TL; T := TH

until ||1−G.e||∞ 6 ε.

Then R = A0(I − A1 + A0G)−1

We can partition xi by sublevels as

x0 = (x00, x01, x02, ...., x0K)

and

xi = (xi1, xi2, xi3, ...., xiK)

where i > 1; x00 is a scalar and x0j, 1 6 j 6 K are vectors of order m and

xij = (xij0, xij1, ...., xijN)

where i > 1; 1 6 j 6 K and xijb, 0 6 b 6 N are vectors of order m.

5.2 Computation of Expected values

In this section we derive the expected waiting time of a tagged customer

(i) in the buffer and (ii) in the pool. Also we calculate the expectation of

the number of FIFO violation.
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5.2.1 Expected waiting time in buffer

We denote the mean waiting time of customers, who upon their arrival

enter the buffer, by E(W1).

Case 1. N > K

In this case the tagged customer is not affected by the new arrivals

in the buffer and in the pool. So we can calculate the waiting time by

considering the system state at which the tagged customer enters. Hence

E(W1) =
∑
i

∑
j

∑
b

∑
h

E(waiting time of the customer who finds the

system in state (i, j, b, h)) Pr(system is in state (i, j, b, h))

E(W1) =
k−1∑
j=1

m∑
h=1

β(I − S)−1e(j − 1)x0j0h

+
∞∑
i=1

K−1∑
j=1

N−1∑
b=0

m∑
h=1

β(I − S)−1e(j − 1 + ψ)xijbh

+
∞∑
i=1

K−1∑
j=1

m∑
h=1

β(I − S)−1e(j − 1)xijNh + π∗(I − S)−1e

where π∗P ∗ = π, π∗e = 1 and P ∗ = S + S0β and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N

where [y] denotes the greatest integer value of y. π∗(I − S)−1e is the

additional time required to complete the service of the customer who is in

service when the tagged person enters the buffer.
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Case 2. N < K

In this case, the tagged customer in the buffer will be affected by the

number of new arrivals in the pool and so the number of new arrivals

in the buffer. So the waiting time of the tagged customer depends on

the following susequent developments in the pool: one or more visits to

zero level, and a finite number of customers joining the pool after the

tagged customer. Because of the complexity of calculation, we may turn

to computing an upper bound on the waiting time, by keeping in mind,

the fact that only a maximum finite number K of persons in the pool will

affect the tagged person. In the worst case we have N = 1 which represents

service alternating between buffer and pool. So an upper bound for the

waiting time of a customer who upon his arrival enters the buffer in the

state (i, j, b, h), is

UB(W1) =
k−1∑
j=1

m∑
h=1

β(I − S)−1e(j − 1 + [ j
N

])x0j0h

+
∞∑
i=1

K−1∑
j=1

N−1∑
b=0

m∑
h=1

β(I − S)−1e(j − 1 + ψ)xijbh

+
∞∑
i=1

K−1∑
j=1

m∑
h=1

β(I − S)−1e(j − 1 + [
j − 1

N
])xijNh + π∗(I − S)−1e

where π∗P ∗ = π, π∗e = 1 and P ∗ = S + S0β and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

π∗(I−S)−1e is the additional time required to complete the service of the

customer who is at the server when the tagged person enter buffer.
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5.2.2 Expected waiting time in pool

We denote the expected waiting time of a customer who upon his arrival

enters the pool, by E(W2).

To find this, first we define the Markov process {X(t)} as follows.

X(t) = (a, j, b, h) where a denotes the rank of the tagged customer en-

tered pool, j denotes the number of customers in the buffer, b denotes the

number of continuously served customers from buffer and h is the phase

of the service process at time t. The rank a of the customer is assumed to

be r if he joins as rth customer in pool. His rank may decrease to 1 with

the customers ahead of him transferred from pool to buffer. Since the

customers who arrive after the tagged customer cannot change his rank,

level changing transitions in {X(t)} can takeplace only to one side of the

diagonal. We arrange the statespace of {X(t)} as

{r, r − 1, ......., 2, 1} × {1, 2, ....., K} × {0, 1, ....., N} × {1, 2, ......,m}

with absorbing state 0 in the sense that the tagged customer is either se-

lected to be served under N -policy or placed in the buffer with probability

p or to the server with probability 1 if the buffer size reduces to 0 at the

end of a service. The infinitesimal generator of the process is

P̃ =

[
T T 0

0̄ 0

]

where
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T =



A1 A2

A1 A2

. . . . . .
. . . . . .

A1 A2

A1


of order rK(N + 1)m and

T 0 =


0̄
...

0̄

B2

 .

Now the expected absorption time of a particular customer is given by the

column vector

E(r)
w = Ĩ(I − T )−1e

where Ĩ =
[
IK(N+1)m 0̄

]
having order K(N + 1)m × rK(N + 1)m and

e is a column vector of ones of order rK(N+1)m. So the expected waiting

time of the tagged customer is

WL =
∞∑
r=1

xrE
(r)
w

where xr is the steady state probability vector corresponding to i = r.

WL gives the waiting time of a customer in pool up to the epoch of his

transfer to buffer.

Case 1. N > K
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Expected waiting time in pool is

E(W2) =
∞∑
i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh(WL +W (1)p(
L∑
j=1

xijbhsh0))

where

W (1) =
L∑
j=1

m∑
h=1

β(I − S)−1e(j − 1)x0j0h

+
∞∑
i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

β(I − S)−1e(j − 1 + ψ)xijbh

and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

Case 2. N < K

In this case we get an upperbound UB(W2) for the waiting time in

pool.

UB(W2) =
∞∑
i=1

K∑
j=1

N∑
b=0

m∑
h=1

xiKbhWL(xij(N−1)hsh0 + xi1bhsh0)

+
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh(WL + UB(W (1))p(
L∑
j=1

xijbhsh0))
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where

UB(W (1)) =
L∑
j=1

m∑
h=1

β(I − S)−1e(j − 1 +

[
j − 1

N

]
)x0j0h

+
∞∑
i=1

L∑
j=1

N−1∑
b=0

m∑
h=1

β(I − S)−1e(j − 1 + ψ)xijbh

and

ψ = 1 +

[
j − (N − b)

N

]
, 0 6 b < N.

5.2.3 Expected number of FIFO violation

It may be noted that the N -policy leads to violation of FIFO rule for

customers in the pool. For example assume that there are two or more

customers in the pool at a service completion epoch at which the number

in the buffer droped to L − 1 or below and the number of continuously

served customers reached N − 1. So the first in the pool may be selected

under p-transfer and placed as the last in the buffer. When the next

service is completed, the current head of the pool gets transferred to the

buffer for immediate service there by violating the FIFO rule for pooled

customers. Further it may be noted that this situation does not arise

among the queued customers in the buffer.

We compute the expectation of the indicator random variable defined

as FIFO violation in pool. Its expectation is the probability for FIFO
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violation in pool which is given by

PFIFO =
∞∑
i=1

L∑
j=2

N−1∑
b=N−j+1

xijbhpSh0.

The FIFO may be violated by more than one customers who join the

pool after the tagged customer joins the buffer when N < L. However

this can be overcome by making N larger than L. If N > K, a customer

joining the pool will not overtake any of the customers in the buffer who

had joined before his entering the pool. At this time, FIFO is violated

by atmost one successor in pool. Even this can be overcome by a slight

modification by redefining the N -policy by resetting b in (i, j, b, h) as zero

at the time of p-transfer.

5.3 Performance characteristics

1. The probability that there are i customers in the pool is

ai =
K∑
j=1

N∑
b=0

m∑
h=1

xijbh

for i > 1 and

a0 = x00 +
K∑
j=1

m∑
h=1

x0j0h.

2. The probability that there are j customers in the buffer (including
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the one in service) is

bj =
m∑
h=1

x0j0h +
∞∑
i=1

N∑
b=0

m∑
h=1

xijbh

for 1 6 j 6 K and

b0 = x00.

3. The mean number of pooled customers is

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e.

4. The mean buffer size is

µBUFFER =
K∑
j=1

jbj.

5. The probability that a customer, on its arrival enters the pool is

γbK .

6. The probability that an arriving customer enters service immediately

is b0.

7. The probability that the customer who find the buffer full leave the

system without service (mean number of customers not joining the

system per unit time) is

θLOST = α(1− γ)bK .
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That is

θLOST = α(1− γ)(
m∑
h=1

x0K0h +
∞∑
i=1

N∑
b=0

m∑
h=1

xiKbh).

8. The rate at which pooled customers transfer in to the buffer is

θTR =
∞∑
i=1

N∑
b=0

m∑
h=1

xi1bhSh0 +
∞∑
i=1

L∑
j=2

N−2∑
b=0

m∑
h=1

xijbhpSh0

+
∞∑
i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0 +
∞∑
i=1

L∑
j=2

m∑
h=1

xijNhpSho.

9. The rate at which pooled customers transfer under N -policy(mean

number of transfers under N -policy per unit time) is

TN =
∞∑
i=1

K∑
j=1

m∑
h=1

xij(N−1)hSh0.

10. Mean number of customers served out per unit time is

µSERV ED = (1− bo)
1

β(I − S)−1e
.

5.4 Numerical results

We present some numerical results in order to illustrate the performance

of the system. Take γ = Lp
K

+ 1
N

in order to bring out explicitly the

dependence of γ on the system parameters.
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Fig 5.1: N versus µPOOL and µBUFFER

L µPOOL µBUFFER θTR θLOST
2 0.1490699 2.6181972 0.0079576 0.0241934
3 0.2093819 2.6617301 0.0102942 0.0220709
4 0.2621410 2.7166486 0.0131344 0.0200996
5 0.2811960 2.7723031 0.0173686 0.0188443

Table 5.1: K = 6, p = 0.5,m = 2, α = 0.4, N = 5, γ = Lp
K + 1

N

This is justified as follows. Larger the L value, the customer encounter-

ing the buffer full, will be inclined to join the pool with higher probability.

Also same is the relationship of γ with p. On the other hand, γ inversely

varies with K. The additional term 1
N

comes through N -policy. Here as N

increases γ decreases so that γ and N vary inversely. But the relationship

is feasible for those values of L, p,K and N such that 0 6 γ 6 1. This is

possible if N > K and such a selection is highly consistent. But N can be

made less than K by suitably selecting other variables so that 0 6 γ 6 1,

and that can be considered as an incentive to customers joining the pool.

The impact of N on various measures of descriptors with K = 6, L =
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Fig 5.2: N versus θTR and θLOST

3,m = 2, α = 0.4, p = 0.5, γ = Lp
K

+ 1
N

,

β =
[

0.3 0.7
]

S =

[
0.3 0.2

0.4 0.2

]
S0 =

[
0.5

0.4

]

is shown in figures 5.1 and 5.2. As N decreases µPOOL, µBUFFER, θTR

increase monotonically whereas θLOST decrease monotonically. This is

due to the fact that by our assumption γ varies inversely as N and as

a result, loss rate decreases and inflow rate to the pool increases as N

increases. As N decreases, transfer rate from pool to buffer increases, and

thus mean buffer size increases.

By keeping K = 6, L = 3,m = 2, α = 0.4, N = 5, γ = Lp
K

+ 1
N

the effect

of p on various measures is shown in figures 5.3 and 5.4. Here also µPOOL,

µBUFFER, θTR are monotonically increasing and θLOST is monotonically

decreasing in p, as expected. The measures are numerically computed for

various values of L and shown in table 5.1. Here also µPOOL, µBUFFER,

θTR are monotonically increasing and θLOST is monotonically decreasing
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Fig 5.3: p versus µPOOL and µBUFFER

as expected, in L. All the above are true due to the fact that by our

assuption, γ varies directly as p and L. As a result, loss rate decreases

and inflow rate to the pool increases as p and L increases. This will make

µPOOL increasing. Also transfer rate from pool to buffer increases as p

and L increases. So mean buffer size increases.
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Fig 5.4: p versus θTR and θLOST
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Chapter 6

Discrete time Geo/Ed/1

Queues with Postponed work

and Protected stages

In this chapter, we study a discrete time Geo/Ed/1 queue with postponed

work with the service of each customer having n stages of which first v

stages are unprotected. Till now we assumed that all the arriving cus-

tomers are alike. But here we categorise the customers in to high and low

priority customers. If the buffer has at least one customer, the low prior-

ity ones are postponed and high priority ones wait in the buffer. When

the buffer is full, the system will not permit further arrivals of high pri-

Some results of this chapter are included in the following papers.
1. A.Krishnamoorthy, C.B.Ajayakumar, Discrete time Geo/Ed/1 Queues with Post-
poned work and Protected stages (Communicated).

141
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ority customers. But at that time, a low priority customer can enter the

pool with a specified probability or it is also lost from the system with

complementary probability.

This is highly practical since in many cases, time is a constraint for

the existence of finite capacity queues and the server will be interested to

make maximum gain. So he naturally turns to high priority customers

and the srvice of low priority customers will be postponed. If the buffer

is full, no further high priority customers join it. At that time, even the

low priority customer may not accept the offer of postponement. So the

priority based postponement is desirable from the system point of view.

However the postponed work are transferred to the buffer for immedi-

ate service with a specified probability at a service completion epoch if the

number in the buffer at that time is less than a pre-assigned lower level.

But during the service of that postponed work, the buffer size may rise to

a pre-assigned higher level and so the server will be compelled to preempt

the service of the low priority customer. But the server cannot preempt

the work if it is on protected stages of service. We discuss two models in

this chapter. The preempted work from unprotected stages will be lost

for ever from the system in model-1. This is considered as a negative ar-

rival. In queues with negative arrivals, it is assumed that customer(s) in

service is removed due to such an arrival. However in this model, a new

arrival hitting a pre-assigned higher level in the buffer takes the role of

negative arrival since it decreases a low priority customer in the system.

This is also common in practical cases. Actually the undergoing work gets

damaged without completing the service. Sudden death of a patient in an

operation theatre is an example of such a negative arrival.
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In model-2, the preempted work from unprotected stages is considered

as an interruption and such an interrupted work is again postponed and

wait at the head of the pool for the next chance of transfer. But in the

interruption period, if the number of continuously served higher priority

work from the buffer attains a pre-assigned number at a service completion

epoch, the interrupted customer is transferred to the buffer for immediate

service and no further interruption is allowed to that customer in service.

The service to the interrupted customer is repeated when it is taken for

service again.

6.1 Model-1: With negative arrivals

6.1.1 Mathematical formulation

Consider a Geo/Ed/1 queue with finite buffer of capacity K. The time

between two successive arrivals is governed by a geometrical law with pa-

rameter α and the service time of each customer is ruled by a discrete

Erlang distribution having n stages of which first v stages are unprotected

and the remaining n − v stages are protected. It is described by an irre-

ducible PH-representation (β, S) of order n where

β =
[

1 0 · · · 0
]

1×n
;
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S =


s11 s12

s22 s23

. . . . . .


n×n

; S0 =


0
...

0

sn0


n×1

.

Arriving customers are classified in to two categories; high priority cus-

tomers with arrival probability p1 and low priority customers with arrival

probability p2. If a higher priority customer on arrival finds the buffer not

full, he joins the same. Otherwise he leaves the system permanently. If a

low priority customer on arrival sees the buffer empty, he enters the buffer

for immediate service. If the buffer has at least one customer, he proceeds

to a pool of postponed work having infinite capacity. But if the buffer is

full, he joins the pool only with a specified probability γ (0 6 γ < 1).

With probability 1− γ, such customers do not join the system. So clearly

the pool will occupy only low priority customers. But the buffer will be oc-

cupied by high priority customers and atmost one transferred low priority

customer.

When at the end of a service, if there are postponed customers, the

system operates as follows. If the buffer is empty, the one ahead of all

waiting in the pool gets transferred to the buffer for immediate service.

If the buffer contains y jobs, where 1 6 y 6 L − 1; 2 6 L 6 K − 1,

at a service completion epoch, then with probability p, the head of the

queue in the pool is transferred to the buffer for immediate service. With

probability q = 1 − p, no such transfer takes place. When at the end

of a service, if the buffer is empty, and the pool has no work, the server

becomes idle.

When a pool work is on service in unprotected stages, if the buffer
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size rises to a pre-assigned number M + 1 such that L 6 M 6 K − 1 at

an arrival epoch, the server will preempt the service of the lower priority

customer. The preempted work from unprotected stages will be lost for

ever from the system. Here the event which causes to decrease the number

of customers by 1, without an actual service completion, is the arrival of

a high priority customer to rise the buffer level from M to M + 1. So

here this is the negative arrival(event). We emphasize that if the pool

work at server is on protected stages, such an arrival does not act as a

negative arrival as there is no preemption for the low priority customer.

Following a negative arrival, the server will perform the buffer work. A

diagrammatic representation of model-1 is given in figure 6.1.

Fig 6.1: Geo/Ed/1 queue with postponed work and Negative arrival

In this discrete time queueing system, time axis is divided in to in-

tervals of equal length called slots, and where all queueing activities take

place at the slot boundaries. An arrival and a departure also can happen

at a slot boundary. In other words, two or more distinct events can also

take place at slot boundaries in the discrete time set up. Let the time axis
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be marked by 0, 1, 2, .....,m, ... For mathematical clarity, we assume that

departures occur in the interval (m−,m) and arrivals occur in the interval

(m,m+). That is, departures occur at the moment immediately before

the slot boundaries and arrivals occur at the moment immediately after

the slot boundaries. The model is studied as a quasi birth-death(QBD)

process and a solution of the classical matrix geometric type is obtained

(see [45] and [38]). We define the state space of the QBD and exhibit the

structure of its transition probability matrix.

The state space consists of all tuples of the form (i, j, b, h) where i

denotes the number of postponed work in the pool having infinite capacity;

j denotes the number of jobs in the finite buffer including the unit in

service; b denotes the status of the system where

b =

{
0 , buffer work is in progress

1 , pool work is being served

and h denotes the stage of service in progress at that instant.

Consider the boundary level i = 0. We denote the empty system

(0, 0, 0, 0) by 0.

If 1 6 j 6 K and b = 0 then h = 1, 2, ..., n.

If 1 6 j 6 M and b = 1 then h = 1, 2, ..., n.

If M + 1 6 j 6 K and b = 1 then h = v + 1, ..., n. So the boundary

level i = 0 constitute N1 = 1 + 2Mn+ (K −M)(2n− v) states.

Now consider the level i 6= 0.
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If 1 6 j 6 K and b = 0 then h = 1, 2, ..., n.

If 1 6 j 6 M and b = 1 then h = 1, 2, ..., n.

If M + 1 6 j 6 K and b = 1 then h = v + 1, ..., n. So there are

N2 = 2Mn+ (K −M)(2n− v) states are there in the level i 6= 0.

The transition probability matrix is

P =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where the matrix B0 is of dimension N1×N2, B1 is square matrix of order

N1 and B2 is of dimension N2 × N1. A0, A1 and A2 are square of order

N2. Each of these matrices is itself highly structured.

We use the following matrices in the sequel.

E = S0β =

[
0̄ 0̄

sn0 0̄

]
n×n

;

t1 =
[
αp1β αp2β

]
1×2n

; t2 =

[
(1− α)S0

(1− α)S0

]
2n×1

;
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V1 =

[
(1− α)S + αp1E αp2E

αp1E (1− α)S + αp2E

]
2n×2n

;

V2 =

[
S 0̄

0̄ S

]
2n×2n

; V3 =

[
E 0̄

0̄ E

]
2n×2n

;

V4 =

[
(1− α)S + αp1E 0̄

αp1E (1− α)S

]
2n×2n

;

V5 =

[
(1− α)S + αp1E 0̄

αp1E + αp1t3 (1− α)S

]
2n×2n

; t3 =

[
ev 0̄

0̄ 0̄

]
n×n

where ev is a column vector of ones of order v;

t4 =


s(v+1)(v+1) s(v+1)(v+2)

s(v+2)(v+2)
. . .
. . .

snn


(n−v)×(n−v)

;

t5 =

[
0̄

t4

]
n×(n−v)

; t6 =

[
0̄ 0̄

sn0 0̄

]
(n−v)×n
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V6 =

[
S 0̄

0̄ t5

]
2n×(2n−v)

; V7 =

[
E 0̄

t6 0̄

]
(2n−v)×2n

;

V8 =

[
(1− α)S + αp1E 0̄

αp1t6 (1− α)t4

]
(2n−v)×(2n−v)

;

V9 =

[
S 0̄

0̄ t4

]
(2n−v)×(2n−v)

; V10 =

[
E 0̄

t6 0̄

]
(2n−v)×(2n−v)

;

V11 =

[
(1− αp2γ)S + αp1E 0̄

αp1t6 (1− αp2γ)t4

]
(2n−v)×(2n−v)

;

V12 =

[
0̄ E

0̄ E

]
2n×2n

;V13 =

[
(1− α)S αp2E

0̄ (1− α)S + αp2E

]
2n×2n

;

V14 =

[
(1− α)S + qαp1E pαp2E

qαp1E (1− α)S + pαp2E

]
2n×2n

.

The matrix B1 corresponds to the transition from the level 0 to 0 is
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given below:

B1 =



1− α t1

t2 V1 Φ1

∆1 V2
. . .

. . . . . .

V5 Φ2

∆2 V8 Φ3

∆3
. . . . . .
. . . . . .

V8 Φ3

∆3 V11


N1×N1

where Φ1 = αp1V2 corresponds to the transition of the buffer size from j

to j + 1 for j = 1, 2, ...,M − 1, Φ2 = αp1V6 corresponds to the transition

of the buffer size from M to M + 1 and Φ3 = αp1V9 corresponds to the

transition of the buffer size from j to j+1 for j = M +1,M +2, ..., K−1.

∆1 = (1− α)V3 corresponds to the transition of the buffer size from j to

j − 1 for j = 2, 3, ...,M , ∆2 = (1 − α)V7 corresponds to the transition

of the buffer size from M + 1 to M and ∆3 = (1 − α)V10 corresponds

to the transition of the buffer size from j to j − 1 for j = M + 2,M +

3, ..., K. Also V1 corresponds to the transition of the buffer size from 1

to 1, V4 corresponds to the transition of the buffer size from j to j for

j = 2, 3, ...,M − 1, V5 corresponds to the transition of the buffer size from

M to M , V8 corresponds to the transition of the buffer size from j to j

for j = M + 1,M + 2, ..., K − 1 and V11 corresponds to the transition of

the buffer size from K to K.
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The matrix B0 is given by

B0 =



Φ4

∆4
. . .
. . . Φ4

∆5 Φ5

∆6
. . .
. . . Φ5

∆6 Φ6


N1×N2

where Φ4 = αp2V2 corresponds to the transition of the buffer size from j

to j for j = 1, 2, ...,M , Φ5 = αp2V9 corresponds to the transition of the

buffer size from j to j for j = M + 1,M + 2, ..., K − 1 and Φ6 = αp2γV9

corresponds to the transition of the buffer size from K to K. Also ∆4 =

αp2V3 corresponds to the transition of the buffer size from j to j − 1 for

j = 2, 3, ...,M , ∆5 = αp2V7 corresponds to the transition of the buffer size

from M + 1 to M and ∆6 = αp2V10 corresponds to the transition of the

buffer size from j to j − 1 for j = M + 2,M + 3, ..., K.

The matrix B2 is given by

B2 =



∆7 Φ7

∆8 Φ8

. . . . . .

∆8 Φ8


N2×N1

where Φ7 = αp1V12 corresponds to the transition of the buffer size from
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1 to 2 and Φ8 = pαp1V12 corresponds to the transition of the buffer size

from j to j+ 1 for j = 2, 3, ..., L. Also ∆7 = (1−α)V12 corresponds to the

transition of the buffer size from 1 to 1 and ∆8 = (1−α)pV12 corresponds

to the transition of the buffer size from j to j for j = 2, 3, ..., L.

The matrix A1 is given by

A1 =



V13 Φ9

∆9 V14
. . .

. . . . . .

∆10 V4
. . .

. . . . . . . . .

V5 Φ10

∆11 V8 Φ11

∆12
. . . . . .
. . . . . .

V11


N2×N2

where V13 corresponds to the transition of the buffer size from 1 to 1,

V14 corresponds to the transition of the buffer size from j to j for j =

2, 3, ..., L, V4 corresponds to the transition of the buffer size from j to j

for j = L + 1, L + 2, ...,M − 1, V5 corresponds to the transition of the

buffer size from M to M , V8 corresponds to the transition of the buffer

size from j to j for j = M + 1,M + 2, ..., K − 1, V11 corresponds to

the transition of the buffer size from K to K.Φ9 = αp1V2 corresponds to

the transition of the buffer size from j to j + 1 for j = 1, 2, ...,M − 1.

Φ10 = αp1V6 corresponds to the transition of the buffer size from M to

M + 1, Φ11 = αp1V9 corresponds to the transition of the buffer size from j
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to j+1 for j = M +1,M +2, ..., K−1. Also ∆9 = (1−α)qV3 corresponds

to the transition of the buffer size from j to j − 1 for j = 2, 3, ..., L,

∆10 = (1− α)V3 corresponds to the transition of the buffer size from j to

j−1 for j = L+1, ...,M , ∆11 = (1−α)V7 corresponds to the transition of

the buffer size from M + 1 to M and ∆12 = (1−α)V10 corresponds to the

transition of the buffer size from j to j − 1 for j = M + 2,M + 3, ..., K.

The matrix A0 is given by

A0 =



Φ12

∆13
. . .
. . .

∆14
. . .
. . .

∆15 Φ13

∆16
. . .
. . .

∆16 Φ14


N2×N2

where

The matrix A2 is given by

A2 =



∆17 Φ15

∆18 Φ16

. . . . . .

∆18 Φ16


N2×N2
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where Φ15 = αp1V12 corresponds to the transition of the buffer size from

1 to 2 and Φ16 = pαp1V12 corresponds to the transition of the buffer size

from j to j+1 for j = 2, 3, ..., L. Also ∆17 = (1−α)V12 corresponds to the

transition of the buffer size from 1 to 1 and ∆18 = (1−α)pV12 corresponds

to the transition of the buffer size from j to j for j = 2, 3, ..., L.

6.1.2 Stability criterion

Theorem 6.1.1. The system is stable if and only if

αp2

K−1∑
j=1

1∑
b=0

n∑
h=1

πjbh + αp2γ
1∑
b=0

n∑
h=1

πKbh <
1

N2∑
l=1

m1l

where N2 = 2Mn + (K − M)(2n − v) and π is the unique solution to

πA = π; πe = 1 for A = A0 + A1 + A2.

Proof. Let Gll′ be the conditional probability that the QBD process,

starting in the state l = (i, j, b, h) (for i > 1) where 1 6 j 6 K; 0 6 b 6 N ;

1 6 h 6 m at time t = 0 reaches the state l′ = (i − 1, j′, b′, h′) where

1 6 j′ 6 K; 0 6 b′ 6 N ; 1 6 h′ 6 m, for the first time, in a finite time.

That is

Gll′ = P [τ <∞ : χ(τ) = l′|χ(0) = l]

where τ is the first passage time from the level i to the level i−1. Because

of the structure of Q, the probability Gll′ does not depend on i. The matrix

with elements Gll′ is denoted by G.

Suppose the matrix A = A0+A1+A2 is irreducible. Then the necessary
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and sufficient condition for the positive recurrence of the process is that

the matrix G is stochastic. For this, the condition πA2e > πA0e must

be satisfied where π is the stationary probability vector associated with

A = A0 + A1 + A2. That is, it is the unique solution to πA = π, πe = 1

and A = A0 +A1 +A2. The quantity ρ = πA0e
πA2e

is called the traffic intensity

of the QBD process. G is obtained as the minimal non negative solution

to the matrix quadratic equation

G = A2 + A1G+ A0G
2.

This is obvious. On the left-hand side, G records the distribution of the

first state visited in l′ conditioned on the initial state being in l. In the

right-hand side, these visits to l′ are decomposed in to three groups; the

first term corresponds to the case where the QBD directly moves from i to

i− 1 in one transition with probabilities recorded in A2; as for the second

term, with probabilities recorded in A1, the QBD remains in l from where

it still has to move eventually to l′, with probabilities recorded in G; finally

for the last term, with probabilities recorded in A0, the QBD moves up

to i+ 1 from where it still has to move eventually to l, with probabilities

recorded in G and then to l′ again with probabilities recorded in G.

Let m1 = [m1l ] denote the column vector of dimension K(N + 1)m

where m1l denotes the mean first passage time from the level i (i > 1)

to the level i − 1 given that the first passage time started in the state

l. We have G = (I − A1)
−1A2 + (I − A1)

−1A0G
2. Consequently m1 =

[I − A1 − A0(I +G)]−1e.

For the system stability, the rate of drift from level i to level i − 1

should be greater than that to level i + 1. The rate of drift from level
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i to the level i + 1 is given by αp2

K−1∑
j=1

1∑
b=0

n∑
h=1

πjbh + αp2γ
1∑
b=0

n∑
h=1

πKbh. It

follows that the condition πA0e < πA2e is equivalent to the given stability

criterion.

So by an appropriate choice of γ, that is by postponing a fraction of

overflowing customers, one can obtain a stable system even if arrival rate

is greater than service rate.

6.1.3 Stationary distribution

Since the model is studied as a QBD process, its stationary distribution,

if it exists, has a matrix geometric solution. Assume that the stability

criterion is satisfied. Let the stationary vector x of P be partitioned by

the levels in to subvectors xi for i > 0. Then xi has the matrix geometric

form

xi = x1R
i−1 (6.1)

for i > 2 where R is the minimal non negative solution to the matrix

equation

A0 +RA1 +R2A2 = R (6.2)

and the vectors x0, x1 are obtained by solving the equtions

x0(B1 − I) + x1B2 = 0 (6.3)

x0B0 + x1(A1 − I +RA2) = 0 (6.4)
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subject to the normalising condition

x0e+ x1(I −R)−1e = 1 (6.5)

From the above discussion it is clear that to determine x, a key step is the

computation of the rate matrix R. For this purpose, we use logarithmic

reduction algorithm as in section 5.1.2 in chapter 5. We again partition

xi by sublevels as

x0 = (x00, x01, x02, ...., x0M , x0(M+1), ...., x0K)

and

xi = (xi1, xi2, ...., xiM , xi(M+1), ...., xiK)

where i > 1 and x00 is a scalar and x0j = (x0j0, x0j1), where if 1 6 j 6 M ,

then both x0j0 and x0j1 are vectors of order n and if M + 1 6 j 6 K, then

x0j0 is a vector of order n and x0j1 is a vector of order n− v. Also

xij = (xij0, xij1)

where i > 1 and if 1 6 j 6 M , then both xij0 and xij1 are vectors of order

n and if M + 1 6 j 6 K, then xij0 are vectors of order n and xij1 are

vectors of order n− v.
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Fig 6.2: p1 versus µPOOL and µBUFFER

6.1.4 Performance characteristics

1. The probability that there are i customers in the pool is

ai =
M∑
j=1

1∑
b=0

n∑
h=1

xijbh +
K∑

j=M+1

(
n∑
h=1

xij0h +
n∑

h=v+1

xij1h

)

for i > 0 and

a0 = x00 +
M∑
j=1

1∑
b=0

n∑
h=1

xojbh +
K∑

j=M+1

(
n∑
h=1

x0j0h +
n∑

h=v+1

x0j1h

)
.

2. The probability that there are j customers in the buffer (including

the one in service)is

bj =

 x00 , if j = 0
1∑
b=0

n∑
h=1

x0jbh +
∞∑
i=1

1∑
b=0

n∑
h=1

xijbh if 1 6 j 6 M
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Fig 6.3: p1 versus θLOST and θTR

and for M + 1 6 j 6 M ,

bj =
n∑
h=1

x0j0h +
n∑

h=v+1

x0j1h +
∞∑
i=1

(
n∑
h=1

xij0h +
n∑

h=v+1

xij1h).

3. The mean number of pooled customers is

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e.

4. The mean buffer size is

µBUFFER =
K∑
j=1

jbj.

5. The probability that an arriving customer enters service immediately

is b0.

6. The rate at which the lower priority customer who find the buffer
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Fig 6.4: p1 versus the probability of negative arrival

full leave the system without entering pool is

θLOST = αp2(1− γ)bK .

7. The rate at which pooled customers transfer in to the buffer for

immediate service is

θTR =
∞∑
i=1

1∑
b=0

xi1bnsn0 +
∞∑
i=1

L∑
j=2

1∑
b=0

xijbnpsn0.

8. Probability for a negative arrival (the rate at which negative arrival
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Fig 6.5: p versus µPOOL and µBUFFER

occurs) is

NR =
∞∑
i=0

v∑
h=1

xiM1hαp1.

6.1.5 Numerical results

To illustrate the performance of the system, we present the following nu-

merical results. A lower priority customer encountering the buffer full,

will be inclined to join the pool with higher value of γ if the value of L

and p are larger. On the other hand, γ inversely varies with K. Based

on this, we can take γ = Lp
K

. The impact of p1 (the probability of higher

priority customer) on various measures with K = 7, L = 4,M = 5, n =

4, v = 2, α = 0.24, p = 0.5, γ = Lp
K

,



162
Chapter 6. Discrete time Geo/Ed/1 Queues with Postponed work and

Protected stages

Fig 6.6: p versus θLOST and θTR

S =


0.001 0.999

0.001 0.999

0.0015 0.9985

0.001

 and S0 =


0

0

0

0.999


are numerically computed and shown in figures 6.2, 6.3 and 6.4. As p1

increases the mean pool size decreases due to the decrease of lower priority

customers. At the same time, the mean buffer size increases. Hence the

transfer rate from the pool to the buffer decreases. As the buffer becomes

full, loss rate of lower priority customers starts to increase. As the buffer

size approaches M , probability of a negative arrival increases at first and

then decreases when it rises above M .

The effect of p on various measures with K = 7, L = 4,M = 5, n =

4, v = 2, α = 0.24, p1 = 0.8, γ = Lp
K

and for the same S and S0 mentioned

above, is computed and shown in figures 6.5, 6.6 and 6.7. Here also as p

increases, transfer rate increases. So the mean pool size decreases for a

high value of p1. Then the buffer size increases. Also probability of loss
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Fig 6.7: p versus the probability of negative arrival

of lower priority customers decreases due to the effect of the dependence

of p on γ. As p increases probability of a negative arrival increases as

expected.

6.2 Model-2: With service interruptions un-

der N-policy

Here we discuss the discrete time version of the model discussed in chapter

4, with several additional features such as protected stages of service and

priority of customers.
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6.2.1 Mathematical formulation

In model-1, when a pooled customer is on service, if the buffer size rises

to a pre-assigned number M + 1 such that L 6 M 6 K − 1, at an arrival

epoch, the server will preempt the pool work in progress in unprotected

stages and the preempted work will be lost for ever from the system. But

in this model, the preempted work is considered to get interrupted. This

interrupted pool work is postponed and stay as the head of the queue in the

pool for getting next chance of transfer. From the epoch of interruption,

the server will serve customers from the buffer and the counting of the

number of continuously served customers from the buffer starts. When it

reaches N (N > 0) at a service completion epoch, the interrupted pooled

customer gets transferred to the buffer for immediate service and further

interruption is not allowed for such a work. The server will repeat the

interrupted work when it is considered again. All other assumptions are

same as that of model-1. A diagrammatic representation of the model-2

is given in figure 6.8.

Fig 6.8: Geo/Ed/1 queue with postponed work and Service interruption

The state space consists of all tuples of the form (i, j, b, r, h) where i
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denotes the number of postponed work in the pool having infinite capacity;

j denotes the number of jobs in the finite buffer including the unit in

service; b denotes the status of the system where

b =

{
0 , buffer work is in progress

1 , pool work being served

If b = 0, r denotes the number of continuously served customers from the

buffer including the work at server and If b = 1, r denotes the number of

continuously served customers from the buffer only, during the period of

interruption with r 6= 0; r = 0 indicates that the head of the pool work is

not an interrupted one; h denotes the stage of service in progress at that

epoch.

Consider the boundary level i = 0. We denote the empty system

(0, 0, 0, 0) by 0.

If 1 6 j 6 K and b = 0 then r = 0 and h = 1, 2, ..., n.

If 1 6 j 6 M and b = 1 then r = 0, 1, 2, ..., N , and h = 1, 2, ..., n.

If M +1 6 j 6 K , b = 1 and r = 0, 1, 2, ..., N−1 then h = v+1, ..., n.

If M + 1 6 j 6 K , b = 1 and r = N then h = 1, 2, ..., n.

So the boundary level i = 0 constitute ℵ1 = 1 + M(N + 2)n + (K −
M)[2n+N(n− v)] states.

Now consider the level i 6= 0.

If 1 6 j 6 K and b = 0 then r = 0, 1, 2, ..., N and h = 1, 2, ..., n.
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If 1 6 j 6 M and b = 1 then r = 0, 1, 2, ..., N and h = 1, 2, ..., n.

If M +1 6 j 6 K , b = 1 and r = 0, 1, 2, ..., N−1 then h = v+1, ..., n.

If M + 1 6 j 6 K , b = 1 and r = N then h = 1, 2, ..., n.

So there are ℵ2 = 2Mn(N + 1) + (K −M)[N(n− v) + (N + 2)n states

are there in the level i 6= 0.

The transition probability matrix is

P =



B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .



where the matrix B0 is of dimension ℵ1 × ℵ2, B1 is square matrix of

order ℵ1 and B2 is of dimension ℵ2×ℵ1. A0, A1 and A2 are square of order

ℵ2. Each of these matrices is itself highly structured.

We use the following matrices in the sequel. β, S, S0 are all same as

that of model-1 and E = S0β.

S∗ =


s(v+1)(v+1) s(v+1)(v+2)

s(v+2)(v+2)
. . .
. . .

snn


(n−v)×(n−v)

;
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u1 =
[
β 0̄

]
1×(N+1)n

; u2 = eN+1 ⊗ S0;

u3 =
[
E 0̄

]
n×(N+1)n

; u4 = eN+1 ⊗ E;

u5 =


(1− α)S + αp2E · · ·

αp2E (1− α)S
...

. . .

αp2E (1− α)S


(N+1)n×(N+1)n

;

u6 = IN+1 ⊗ S ; u7 =
[
S 0̄

]
n×(N+1)n

;

u8 =
[
eN+1 ⊗ E 0̄

]
(N+1)n×(N+1)n

;

u9 =

[
0̄

S∗

]
n×(n−v)

; u10 =

[
IN ⊗ u9 0̄

0̄ S

]
(N+1)n×[N(n−v)+n]

;

u11 =

[
0̄ IN ⊗ F
0 0̄

]
(N+1)n×(N+1)n

; u12 =

[
0̄ 0̄

sn0 0̄

]
((n−v)×n

;
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u13 =

[
eN ⊗ u12

E

]
[N(n−v)+n]×n

;

u14 =

[
IN ⊗ S∗ 0̄

0̄ S

]
[N(n−v)+n]×[N(n−v)+n]

;

u15 =

[
eN ⊗ u12 0̄

E 0̄

]
[N(n−v)+n]×(N+1)n

;

u16 =

[
0̄ 0̄

0̄ E

]
(N+1)n×(N+1)n

; u17 =

[
0̄ 0̄

0̄ E

]
(N+1)n×[N(n−v)+n]

;

u18 = IN+1 ⊗ E ; u19 =

[
IN ⊗ pE 0̄

0̄ E

]
(N+1)n×(N+1)n

;

u20 =

 E 0̄ 0̄

0̄ 0̄ IN−1 ⊗ E
0̄ 0̄ 0̄


(N+1)n×(N+1)n

;

H1 =
[
αp1β αp2u1

]
1×(N+2)n

; H2 =

[
S0

t2

]
(N+2)n×1

;
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H3 =

[
(1− α)S + αp1E αp2u3

αp1u4 u5

]
(N+2)n×(N+2)n

;

H4 =

[
αp1S 0̄

0̄ αp1u6

]
(N+2)n×(N+2)n

;H5 =

[
E 0̄

u4 0̄

]
(N+2)n×(N+2)n

;

H6 =

[
(1− α)S + αp1E 0̄

αp1u4 (1− α)u6

]
(N+2)n×(N+2)n

;

H7 =

[
αp1S 0̄

0̄ αp1u10

]
(N+2)n×(N+2)n

;

H8 =

[
E 0̄

u13 0̄

]
[N(n−v)+2n]×(N+2)n

;

H9 =

[
(1− α)S + αp1E 0̄

αp1u13 (1− α)u14

]
[N(n−v)+2n]×[N(n−v)+2n]

;

H10 =

[
αp1S 0̄

0̄ αp1u14

]
[N(n−v)+2n]×[N(n−v)+2n]

;
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H11 =

[
E 0̄

u13 0̄

]
[N(n−v)+2n]×[N(n−v)+2n]

;

H12 =

[
(1− αp2γ)S + αp1E 0̄

αp1u13 (1− αp2γ)u14

]
[N(n−v)+2n]×[N(n−v)+2n]

;

H13 =

[
0̄ u18

0̄ u8

]
2(N+1)n×(N+2)n

;

H14 =

[
(1− α)u6 αp2u18

0̄ (1− α)u6 + αp2u8

]
2(N+1)n×2(N+1)n

;

H15 =

[
u6 0̄

0̄ u6

]
2(N+1)n×2(N+1)n

; H16 =

[
0̄ u19

0̄ pu8

]
2(N+1)n×(N+2)n

;

H17 =

[
u20 0̄

u8 0̄

]
2(N+1)n×2(N+1)n

;

H18 =

[
(1− α)u6 + qαp1u20 pαp2u18

qαp1u8 (1− α)u6 + pαp2u8

]
2(N+1)n×2(N+1)n

;
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H19 =

[
0̄ u16

0̄ 0̄

]
2(N+1)n×(N+2)n

; H20 =

[
0̄ u17

0̄ 0̄

]
2(N+1)n×[N(n−v)+2n]

;

H21 =

[
(1− α)u6 + αp1u20 αp2u16

αp1u8 (1− α)u6

]
2(N+1)n×2(N+1)n

;

H22 =

[
u6 0̄

0̄ u10

]
2(N+1)n×[(N+2)n+N(n−v)]

;

H23 =

[
αp2u6 0̄

αp1t11 αp2u6

]
2(N+1)n×2(N+1)n

;

H24 =

[
0̄ u17

0̄ 0̄

]
[(N+1)n+N(n−v)+n]×[n(n−v)+2n]

;

H25 =

[
u20 0̄

u15 0̄

]
[(N+1)n+N(n−v)+n]×[2(N+1)n]

;

H26 =

[
(1− α)u6 + αp1u20 αp2u17

αp1u15 (1− α)u14

]
having order [(N + 1)n+N(n− v) + n]× [(N + 1)n+N(n− v) + n] ;
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H27 =

[
u6 0̄

0̄ u14

]
[(N+1)n+N(n−v)+n]×[(N+1)n+N(n−v)+n]

;

H28 =

[
u20 0̄

u15 0̄

]
[(N+1)n+N(n−v)+n]×[(N+1)n+N(n−v)+n]

;

H29 =

[
(1− αp2γ)u6 αp2γu17

αp1u15 (1− αp2γ)u14

]
having order [(N + 1)n+N(n− v) + n]× [(N + 1)n+N(n− v) + n] ;

H30 =

[
u7 0̄

0̄ u6

]
(N+2)n×2(N+1)n

; H31 =

[
u3 0̄

u8 0̄

]
(N+2)n×2(N+1)n

;

H32 =

[
0̄ 0̄

u11 0̄

]
(N+2)n×2(N+1)n

; H33 =

[
u3 0̄

u15 0̄

]
[(N(n−v)+2n]×2(N+1)n

;

H34 =

[
u7 0̄

0̄ u14

]
[N(n−v)+2n]×[(N+1)n+N(n−v)+n]

;

H35 =

[
u3 0̄

u15 0̄

]
[(N(n−v)+2n]×[(N+1)n+N(n−v)+n]

;
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H36 =

[
0̄ u18

0̄ u8

]
2(N+1)n×2(N+1)n

;

H37 =

[
0̄ u19

0̄ pu8

]
2(N+1)n×2(N+1)n

; H38 =

[
0̄ u16

0̄ 0̄

]
2(N+1)n×2(N+1)n

;

H39 =

[
0̄ u17

0̄ 0̄

]
2(N+1)n×[(N+1)n+N(n−v)+n]

;

H40 =

[
0̄ u17

0̄ 0̄

]
[(N+1)n+N(n−v)+n]×[(N+1)n+N(n−v)+n]

.

The matrix B1 corresponds to the transition from the level 0 to 0 is

given below:

B1 =



1− α H1

Ω1 H3 H4

Ω2 H6
. . .

. . . . . . H7

Ω3 H9 H10

Ω4
. . . . . .
. . . . . .

H9 H10

Ω4 H12


ℵ1×ℵ1
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where Ω1 = (1 − α)H2 corresponds to the transition of the buffer size

from 1 to 0, Ω2 = (1 − α)H5 corresponds to the transition of the buffer

size from j to j − 1 for j = 2, 3, ...,M , and Ω3 = (1 − α)H8 corresponds

to the transition of the buffer size from M + 1 to M , Ω4 = (1 − α)H11

corresponds to the transition of the buffer size from j to j − 1 for j =

M + 2,M + 3, ..., K. Also H1 corresponds to the transition of the buffer

size from 0 to 1, H4 corresponds to the transition of the buffer size from j

to j+1 for j = 1, 2, ...,M−1, H7 corresponds to the transition of the buffer

size from M to M + 1, H10 corresponds to the transition of the buffer size

from j to j+ 1 for j = M + 1,M + 2, ..., K − 1 and H3 corresponds to the

transition of the buffer size from 1 to 1, H6 corresponds to the transition

of the buffer size from j to j for j = 2, 3, ...,M , H9 corresponds to the

transition of the buffer size from j to j for j = M + 1,M + 2, ..., K − 1,

H12 corresponds to the transition of the buffer size from K to K.

The matrix B0 is given by

B0 =



Θ1

Ω5
. . .
. . . Θ2

Ω6 Θ3

Ω7
. . .
. . . . . .

Ω7 Θ4


ℵ1×ℵ2

where Ω5 = αp2H31 corresponds to the transition of the buffer size from

j to j − 1 for j = 2, 3, ...,M , Ω6 = αp2H33 corresponds to the transition
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of the buffer size from M + 1 to M and Ω7 = αp2H35 corresponds to the

transition of the buffer size from j to j − 1 for j = M + 2,M + 3, ..., K.

Also Θ1 = αp2H30 corresponds to the transition of the buffer size from

j to j for j = 1, 2, ...,M − 1, Θ2 = αp2H30 + αp2H32 corresponds to the

transition of the buffer size from M to M ,Θ3 = αp2H34 corresponds to

the transition of the buffer size from j to j for j = M + 1,M + 2, ..., K−1

and Θ4 = αp2γH34 corresponds to the transition of the buffer size from K

to K.

The matrix B2 is given by

B2 =



Ω8 Θ5

Ω9 Θ6

. . . . . .

Ω10 Θ7

. . . . . .

Θ8

Ω11 Θ9

. . . . . .
. . .


ℵ2×ℵ1

where Ω8 = (1 − α)H13 corresponds to the transition of the buffer size

from 1 to 1, Ω9 = (1−α)H(16) corresponds to the transition of the buffer

size from j to j for j = 2, 3, ..., L, and Ω10 = (1 − α)H19 corresponds to

the transition of the buffer size from j to j for j = L + 1, L + 2, ....,M ,

Ω11 = (1−α)H24 corresponds to the transition of the buffer size from j to j

for j = M+1,M+2, ..., K−1 and Ω12 = (1−α)p2γH24 corresponds to the
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transition of the buffer size from K to K. Also Θ5 = αp1H13 corresponds

to the transition of the buffer size from 1 to 2, Θ6 = αp1H16 corresponds

to the transition of the buffer size from j to j + 1 for j = 2, 3, ..., L,

Θ7 = αp1H19 corresponds to the transition of the buffer size from j to j+1

for j = L+ 1, L+ 2, ...,M − 1, Θ8 = αp1H20 corresponds to the transition

of the buffer size from M to M + 1 and Θ9 = αp1H24 corresponds to the

transition of the buffer size from j to j+1 for j = M +1,M +2, ..., K−1.

A1 =



H14 Θ10

Ω12 H18
. . .

. . . . . .

Ω13 H21
. . .

. . . . . . Θ10

H21 Θ11

Ω14 H26 Θ12

Ω15
. . .

. . . . . . Θ12

Ω15 H29


ℵ2×ℵ2

where Ω12 = (1 − α)qH17 corresponds to the transition of the buffer size

from j to j − 1 for j = 2, 3, ..., L, Ω13 = (1 − α)H17 corresponds to the

transition of the buffer size from j to j − 1 for j = L+ 1, L+ 2, ...,M and

Ω14 = (1−α)H25 corresponds to the transition of the buffer size from M+1

to M , Ω15 = (1 − α)H28 corresponds to the transition of the buffer size

from j to j−1 for j = M+2,M+3, ..., K. Also Θ10 = αp1H15 corresponds

to the transition of the buffer size from j to j + 1 for j = 1, 2, ...,M − 1,
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Θ11 = αp1H22 corresponds to the transition of the buffer size from M to

M+1, Θ12 = αp1H27 corresponds to the transition of the buffer size from j

to j+ 1 for j = M + 1,M + 2, ..., K− 1, H14 corresponds to the transition

of the buffer size from 1 to 1, H18 corresponds to the transition of the

buffer size from j to j for j = 2, 3, ..., L, H21 corresponds to the transition

of the buffer size from j to j for j = L+1, L+2, ...,M , H26 corresponds to

the transition of the buffer size from j to j for j = M+1,M+2, ..., K−1,

H29 corresponds to the transition of the buffer size from K to K.

A0 =



Θ13

Ω16
. . .
. . .

Ω17
. . .
. . . V23

Ω18 Θ14

Ω19
. . .

Θ14

Ω19 Θ15


ℵ2×ℵ2

where Ω16 = qαp2H17 corresponds to the transition of the buffer size from

j to j − 1 for j = 2, 3, ..., L, Ω17 = αp2H17 corresponds to the transition

of the buffer size from j to j− 1 for j = L+ 1, L+ 2, ...,M , Ω18 = αp2H25

corresponds to the transition of the buffer size from M+1 to M and Ω19 =

αp2H28 corresponds to the transition of the buffer size from j to j − 1 for

j = M + 2,M + 3, ..., K. Also Θ13 = αp2H15 corresponds to the transition

of the buffer size from j to j for j = 1, 2, ...,M−1, H23 corresponds to the
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transition of the buffer size from M to M , Θ14 = αp2H27 corresponds to

the transition of the buffer size from j to j for j = M + 1,M + 2, ..., K−1

and Θ15 = αp2γH27 corresponds to the transition of the buffer size from

K to K.

A2 =



Ω20 Θ16

Ω21 Θ17

. . . . . .

Ω22 Θ18

. . .

. . . Θ19

Ω23 Θ20

. . . . . .

Ω24


ℵ2×ℵ2

where Ω20 = (1 − α)H36 corresponds to the transition of the buffer size

from 1 to 1, Ω21 = (1−α)H(37) corresponds to the transition of the buffer

size from j to j for j = 2, 3, ..., L, and Ω22 = (1 − α)H38 corresponds to

the transition of the buffer size from j to j for j = L + 1, L + 2, ....,M ,

Ω23 = (1−α)H40 corresponds to the transition of the buffer size from j to j

for j = M+1,M+2, ..., K−1 and Ω24 = (1−α)p2γH40 corresponds to the

transition of the buffer size from K to K. Also Θ16 = αp1H36 corresponds

to the transition of the buffer size from 1 to 2, Θ17 = αp1H37 corresponds

to the transition of the buffer size from j to j + 1 for j = 2, 3, ..., L,

Θ18 = αp1H38 corresponds to the transition of the buffer size from j to j+1

for j = L+1, L+2, ...,M −1, Θ19 = αp1H39 corresponds to the transition
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of the buffer size from M to M + 1 and Θ20 = αp1H40 corresponds to the

transition of the buffer size from j to j+1 for j = M +1,M +2, ..., K−1.

6.2.2 Stability criterion

Theorem 6.2.1. The system is stable if and only if

αp2

(
K−1∑
j=1

N∑
r=0

n∑
h=1

πj0rh +
M∑
j=1

N∑
r=0

n∑
h=1

πj1rh

)

+αp2

K−1∑
j=M+1

(
N−1∑
r=0

n∑
h=v+1

πj1rh +
n∑
h=1

πj1Nh

)

+αp2γ

(
N−1∑
r=0

n∑
h=V+1

πK1rh +
n∑
h=1

πK1Nh +
N∑
r=0

n∑
h=1

πK0rh

)

+αp1

N−1∑
r=0

v∑
h=1

πM1rh <
1

ℵ2∑
l=1

m1l

where ℵ2 = 2Mn(N + 1) + (K −M)[N(n − v) + (N + 2)n and π is the

unique solution to πA = π; πe = 1 for A = A0 + A1 + A2.

Proof. Let Gll′ be the conditional probability that the QBD process

starting in the state l = (i, j, b, h) (for i > 1) where 1 6 j 6 K; 0 6 b 6 N ;

1 6 h 6 m at time t = 0 reaches the state l′ = (i − 1, j′, b′, h′) where

1 6 j′ 6 K; 0 6 b′ 6 N ; 1 6 h′ 6 m, for the first time, in a finite time.

That is

Gll′ = P [τ <∞ : χ(τ) = l′|χ(0) = l]
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where τ is the first passage time from the level i to the level i−1. Because

of the structure of Q, the probability Gll′ does not depend on i. The matrix

with elements Gll′ is denoted by G.

Suppose the matrix A = A0+A1+A2 is irreducible. Then the necessary

and sufficient condition for the positive recurrence of the process is that

the matrix G is stochastic. For this, the condition πA2e > πA0e must

be satisfied where π is the stationary probability vector associated with

A = A0 + A1 + A2. That is, it is the unique solution to πA = π, πe = 1

and A = A0 +A1 +A2. The quantity ρ = πA0e
πA2e

is called the traffic intensity

of the QBD process. G is obtained as the minimal non negative solution

to the matrix quadratic equation

G = A2 + A1G+ A0G
2.

This is obvious. On the left-hand side, G records the distribution of the

first state visited in l′ conditioned on the initial state being in l. In the

right-hand side, these visits to l′ are decomposed in to three groups; the

first term corresponds to the case where the QBD directly moves from i to

i− 1 in one transition with probabilities recorded in A2; as for the second

term, with probabilities recorded in A1, the QBD remains in l from where

it still has to move eventually to l′, with probabilities recorded in G; finally

for the last term, with probabilities recorded in A0, the QBD moves up

to i+ 1 from where it still has to move eventually to l, with probabilities

recorded in G and then to l′ again with probabilities recorded in G.

Let m1 = [m1l ] denotes the column vector of dimension K(N + 1)m

where m1l denotes the mean first passage time from the level i (i > 1)

to the level i − 1 given that the first passage time started in the state
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l. We have G = (I − A1)
−1A2 + (I − A1)

−1A0G
2. Consequently m1 =

[I − A1 − A0(I +G)]−1e.

For the system stability, the rate of drift from level i to level i − 1

should be greater than that to level i + 1. It follows that the condition

πA0e < πA2e is equivalent to the given stability criterion.

So by an appropriate choice of γ, that is by postponing a fraction of

overflowing customers, one can obtain a stable system even if arrival rate

is greater than service rate.

6.2.3 Stationary distribution

Since the model is studied as a QBD process, its stationary distribution,

if it exists, has a matrix geometric solution. Assume that the stability

criterion is satisfied. Let the stationary vector x of P be partitioned by

the levels in to subvectors xi for i > 0. Then xi has the matrix geometric

form

xi = x1R
i−1 (6.6)

for i > 2 where R is the minimal non negative solution to the matrix

equation

A0 +RA1 +R2A2 = R (6.7)
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and the vectors x0, x1 are obtained by solving the equtions

x0(B1 − I) + x1B2 = 0 (6.8)

x0B0 + x1(A1 − I +RA2) = 0 (6.9)

subject to the normalising condition

x0e+ x1(I −R)−1e = 1 (6.10)

From the above discussion it is clear that to determine x, a key step

is the computation of the rate matrix R. Here also we use logarithmic

reduction algorithm as in section 5.1.2 in chapter 5. We again partition

xi by sublevels as

x0 = (x00, x01, x02, ...., x0M , x0(M+1), ...., x0K)

and

xi = (xi1, xi2, ...., xiM , xi(M+1), ...., xiK)

where i > 1 and x00 is a scalar and x0j = (x0j0, x0j1), where if 1 6 j 6 M ,

then x0j0 are vectors of order n and x0j1 are vectors of order (N + 1)n and

if M + 1 6 j 6 K, then x0j0 are vectors of order n and x0j1 are vectors of

order N(n− v) + n . Also

xij = (xij0, xij1)

where i > 1 and if 1 6 j 6 M , then xij0 and xij1 are vectors of order

(N + 1)n and if M + 1 6 j 6 K, then xij0 are vectors of order (N + 1)n

but xij1 are vectors of order N(n− v) + n.
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6.2.4 Performance characteristics

1. The probability that there are i customers in the pool is

ai =
M∑
j=1

1∑
b=0

N∑
r=0

n∑
h=1

xijbrh

+
K∑

j=M+1

(
N∑
r=0

n∑
h=1

xij0rh +
N−1∑
r=0

n∑
h=v+1

xij1rh +
n∑
h=1

xij1Nh

)
for i > 0 and

a0 = x00 +
M∑
j=1

(
n∑
h=1

x0j00h +
N∑
r=0

n∑
h=1

x0j1rh

)

+
K∑

j=M+1

(
n∑
h=1

x0j00h +
N−1∑
r=0

n∑
h=v+1

x0j1rh +
n∑
h=1

x0j1Nh

)
.

2. The probability that there are j customers in the buffer (including

the one in service)is

bj =
n∑
h=1

x0j00h +
N∑
r=0

n∑
h=1

x0j1rh +
∞∑
i=1

1∑
b=0

N∑
r=0

n∑
h=1

xijbrh

for 1 6 j 6 M ,

bj =
n∑
h=1

(x0j00h + x0j1Nh) +
N−1∑
r=0

n∑
h=v+1

x0j1rh

+
∞∑
i=1

(
N∑
r=0

n∑
h=1

xij0rh +
N−1∑
r=0

n∑
h=v+1

xij1rh +
n∑
h=1

xij1Nh

)
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for M + 1 6 j 6 K and b0 = x00.

3. The mean number of pooled customers is

µPOOL =
∞∑
i=1

iai = x1(I −R)−2e.

4. The mean buffer size is

µBUFFER =
K∑
j=1

jbj.

5. The probability that an arriving customer enters service immediately

is b0.

6. The rate at which the lower priority customer who find the buffer full

leave the system without entering pool (mean number of customers

not joining the system per unit time) is

θLOST = αp2(1− γ)bK .

7. The rate at which pooled customers transfer in to the buffer for

immediate service is

θTR =
∞∑
i=1

1∑
b=0

N∑
r=0

xi1brnsn0 +
∞∑
i=1

L∑
j=2

1∑
b=0

N−1∑
r=0

xijbrnpsn0

+
∞∑
i=1

K∑
j=1

xij0Nnsn0.
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8. Interruption rate is

IR =
∞∑
i=0

N−1∑
r=0

v∑
h=1

xiM1rhαp1.

6.2.5 Numerical results

Fig 6.9: p versus µPOOL and µBUFFER

Fig 6.10: p versus θLOST and θTR
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Fig 6.11: N versus µPOOL and µBUFFER

In this section, we illustrate the performance of the system by consid-

ering some numerical results. A lower priority customer encountering the

buffer full, will be inclined to join the pool with higher γ if the L and p

values are larger. On the other hand γ inversely varies with K and N . To

model this situation, we take γ = Lp
K

+ 1
N
. But the relationship is feasible

for those values of L, p,K and N such that 0 6 γ 6 1.

The effect of p on various measures with K = 7, L = 4,M = 5, n =

4, N = 3, v = 2, α = 0.2, p1 = 0.8, γ = Lp
K

+ 1
N

,

S =


0.001 0.999

0.001 0.999

0.0015 0.9985

0.001

 and S0 =


0

0

0

0.999


is computed and shown in figures 6.9 and 6.10. As p increases, trans-

fer rate increases. So the mean pool size decreases for a high value of p1.

Then the buffer size increases. Also probability of loss of lower priority

customers decreases due to the effect of the dependence of p on γ.
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Fig 6.12: N versus θLOST and θTR

The impact of N on various measures with K = 7, L = 4,M = 5, n =

4, v = 2, α = 0.2, p1 = 0.8, p = 0.5, γ = Lp
K

+ 1
N

and for the same S and

S0 mentioned above, is shown in figures 6.11 and 6.12. As N increases

µPOOL, µBUFFER, θTR decrease monotonically whereas θLOST increases

monotonically. This is due to the fact that by our assumption γ varies

inversely as N and as a result, loss rate increases and inflow rate to the

pool decreases as N increases. So the transfer rate of the interrupted

customer from the pool to the buffer decreases, and thus the mean buffer

size decreases.
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Chapter 7

A Comparison study and

Conclusion

In this chapter we compare, wherever possible, the models described in

chapters 2 to 6. In these models, eventhough the objective is to mini-

mize the loss of customers due to the overflow of finite capacity buffer

by means of postponement, we included the situations involving interrup-

tion, priority, protection and negative arrivals. So each model has its own

importance. But the comparison will help to understand the relative per-

formance of the models. For comparison, we consider the three continuous

time models in chapters 2, 3 and 4 and the three discrete time models in

chapters 5 and 6 separately. We call the model described in chapter 1

by model-I, the model described in chapter 2 by model-II and the model

described in chapter 3 by model-III.

We start to compare the model-I and the model-II. In the model-I, a

189
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µPOOL µBUFFER
N model − I model − II model − I model − II
3 4.3481455 1.6520991 4.1272182 3.0041764
4 2.8674562 1.6472070 3.9493656 2.9432521
5 2.3480656 1.6752849 3.8571582 2.9082990
6 2.0938632 1.7069173 3.8007855 2.8855472
7 1.9466079 1.7358847 3.7627959 2.8695617
8 1.8520240 1.7611248 3.7354820 2.8577244

Table 7.1: Effect of N on µPOOL and µBUFFER in models I and II

θTR θLOST
N model − I model − II model − I model − II
3 1.1983539 1.1803304 0.8487673 0.2618262
4 0.9203455 1.1096535 0.9117374 0.2834340
5 0.7786083 1.0713297 0.9418701 0.2926464
6 0.6934710 1.0471536 0.9592767 0.2973242
7 0.6359809 1.0301353 0.9705053 0.2999944
8 0.5944450 1.0173856 0.9783031 0.3016568

Table 7.2: Effect of N on θTR and θLOST in models I and II

newly arriving customer will join the buffer if it has a vacancy. It will

make the buffer size of model-I larger than that in the model-II. This is

due to the restriction in terms of probability to enter the buffer in the

model-II. So the loss rate of the model-II will be always lower than that of

the model-I. By keeping K = 6, L = 3,m = 2, λ = 7, p = 0.5, γ = Lp
K

+ 1
N

,

β =
[

0.3 0.7
]

S =

[
−12.5 6.0

6.0 −12.5

]
S0 =

[
6.5

6.5

]

for the model-I and K = 6, L = 3,m = 2, λ = 7, p = 0.5, s1 = 0.9, s2 =



Chapter 7 :A Comparison study and Conclusion 191

µPOOL µBUFFER
p model − I model − II model − I model − II

0.3 1.2279803 1.6284441 3.6858897 2.8322663
0.4 1.7021447 1.6445645 3.7669792 2.8706489
0.5 2.3480656 1.6752849 3.8571582 2.9082990
0.6 3.2551939 1.7203127 3.9574442 2.9454260
0.7 4.5879235 1.7798784 4.0678077 2.9821990

Table 7.3: Effect of p on µPOOL and µBUFFER in models I and II

θTR θLOST
p model − I model − II model − I model − II

0.3 0.5633762 1.0228137 1.0290717 0.3299661
0.4 0.6669288 1.0458466 0.9869518 0.3119004
0.5 0.7786083 1.0713297 0.9418701 0.2926464
0.6 0.8999512 1.0992774 0.8935239 0.2722456
0.7 1.0324645 1.1297385 0.8411404 0.2507135

Table 7.4: Effect of p on θTR and θLOST in models I and II

0.8, s3 = 0.7, s4 = 0.6, s5 = 0.5, γ1 = Lp
K

+ 1
N
, γ2 = 0.8, δ=0.5 with same β,

S and S0 for the model II, various measures of descriptors are shown in

the tables 7.1, 7.2, 7.3 and 7.4. As N increases, eventhough µPOOL and

µBUFFER of model-II are less than that of the model-I, θLOST of model-II

is not larger than that for the model-I. This is because of the chance of

vacancy in the buffer for a new arrival due to the probability restriction

in the model-II. This makes the buffer less congested and so the transfer

rate is higher for it. The same situation can be seen as p increases. So the

model in chapter 3 is superior to the model in chapter 2.

The model-III discussed in chapter 4 is entirely different from the pre-

vious two models. In model-III, we transfer the pool work to the buffer for



192 Chapter 7. A Comparison study and Conclusion

Fig 7.1: p versus µPOOL and µBUFFER in models I and III

immediate service. But at that time, if the buffer size rises to M , the pool

work at server is interrupted and postponed again. So clearly it will ensure

that the buffer not full. This will reduce the loss rate. We do not go for a

comparison of model-III with model-II as the former concentrates on the

arrival process and the latter concentrates on the service process. As we

compare the model-III with model-I, we can see that the loss rate of model-

III is much smaller than that of model-I. So preemption in the model-III

when the number of customers in the buffer rises to a pre-assigned level, re-

duces the rate of loss. Also θTR and µBUFFER are less and µPOOL is higher

for the model-III than that for the model-I. Comparison of model-I by fix-

ing K = 6, L = 3, λ = 5,m = 1, N = 3, (−βS−1e)−1 = 7, and γ = Lp
K

+ 1
N

is done with model-III by fixing K = 6, L = 3, λ = 5, µ = 7,M = 4, N = 3

and γ = Lp
K

+ 1
N

as shown figures 7.1, 7.2, 7.3, and 7.4. From these obser-

vations, we can say that model-III is superior to model-I.

Now consider the three discrete time models in chapters 5 and 6. We

call the model described in chapter 5 by model-IV, the first model de-

scribed in chapter 6 by model-V and the second model by model-VI. We
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Fig 7.2: p versus θLOST and θTR in models I and III

start to compare model-IV and model-V. The priority based postpone-

ment of model-V makes its buffer size smaller than that in model-IV.

So the loss rate of the model-V will be always lower than that of the

model-IV. These measures are computed for various values of p by fixing,

K = 7, L = 4, α = 0.24,m = 4, N = 3, γ = Lp
K

+ 1
N

,

S =


0.001 0.999

0.001 0.999

0.0015 0.9985

0.001

 and S0 =


0

0

0

0.999


for model-IV and K = 7, L = 4,M = 5, n = 4, v = 2, α = 0.24, p1 =

0.8, γ = Lp
K

with same S and S0 for model-V, and shown in figure 7.5.

From these observations it is clear that model-V is superior to model-

IV. Comparison of model-IV is done with model-VI for various values of

N by fixing K = 7, L = 4, α = 0.24,m = 4, N = 3 in model-IV and

K = 7, L = 4,M = 5, n = 4, v = 2, α = 0.24, p1 = 0.8, N = 3 in model-

VI and shown in the figure 7.6. Here also we can see that loss rate of
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Fig 7.3: N versus µPOOL and µBUFFER in models I and III

model-VI is much smaller than that of model-IV. This makes model-VI

superior to model-IV. This is due to the effect of priority based postpone-

ment of the model-VI. Model-IV is a discrete time counterpart of model-I.

We have not obtained any surprising results in model-IV to compare it

with model-I.

As a conclusion, this thesis studied queues with postponed work under

N -policy. It proposed finite buffer models with infinite capacity pool of

postponed work. It suggested methods to minimize overflow jobs in finite

capacity queues. It analysed various features in such a system and pre-

sented some numerical computation formulas. This can be considered as

an extended study of the well-known area of finite capacity queues.

The models discussed in this thesis can be extended in several direc-

tions. A game theoretic approach is desirable in many cases. In discrete

time, it is also possible to have arbitrarily distributed service time. In in-

terruption models with postponed work, instead of N -policy, we can also

analyse the effect of T -policy.
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Fig 7.4: N versus θLOST and θTR in models I and III

Fig 7.5: p versus µBUFFER and θLOST in models IV and V
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Fig 7.6: N versus θLOST in models IV and VI
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