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CHAPTER I 

INTRODUCTION 

Ever since the publication of the book 'Cours d' economie Politique 

by Vilfredo Pareto in 1897, the study of income distributions has continued to 

be a fertile area of research with improvements and implications of the Pareto 

model itself as the central theme and other viable alternatives to replace the 

Paretian logic with in a much broader framework that could explain the 

generating mechanism behind income data. What makes the study still 

interesting and challenging is the intricated random behaviour of incomes of 

individuals due to multiplicity of causes of changes such as those pertaining to 

structure of the populations, sources of income, behaviour of the economy, 

duration of stay of individuals in particular interval, to mention a few. While it 

is difficult to accommodate all the contributory causes, let alone account 

adequately for each, a model obtained under simplifying assumptions may 

ultimately render a reasonable fit to data, but only at the risk of discarding vital 

conclusions on the data due to the over-simplification already effected to 

achieve a pleasing model. A reasonable agreement with a probability 

distribution that could be conceived as representing size distribution of 

incomes in different countries, regions or strata of society over a period of 

time is still eluding research, keeping people busy with excavation of newer 

models along with methods of validation. We have made a comprehensive 

account of all important milestones in this journey covering an array of 

distributions when a review of literature on income distributions is taken up in 

the next chapter. 

The creative work of Pareto demonstrated the usefulness of his 

distribution, not only in finding a suitable fit for the upper tail of income 

distributions in many instances, but also in other directions. In the first place it 

led to the consideration of fat tailed distributions either obtained as 

modifications or generalizations of the classical Pareto law and discussion of 

other heavy tail distributions in connection with income and other economic 
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phenomena. Even when other models than Pareto were thought of, it 

became almost customary, especially in earlier works, to compare the 

behaviour of the tail of the new distribution with that of Pareto, beyond a 

certain value of the variable. Besides the empirical validity, the shapes of 

income and wealth distributions are unaltered to changes in the different 

measurement units such as family, personal or household. It also gave the 

impetus to developing various measures of income inequality during the pre­

second world war period. The post-war period saw a re-surgence of the 

Pareto law, mainly from the characterizations obtained from those of the 

exponential law by applying monotone transformations. The dullness property 

of incomes, relation between true and reported incomes, residual incomes, 

truncation invariant Gini index etc. are such examples of identifying Pareto 

law as the only income model satisfying these properties. 

Some unanswered questions while persisting with the Pareto law 

were, an inadequate justification for what economic phenomenon causes 

Pareto incomes especially in the upper tail, the determination of the point 

beyond which it holds and finally model that could apply for the entire range of 

incomes. It appears that the answers to these questions came in the 

introduction of flexible families of distributions with focus on obtaining good fit 

to income data from various sources. In the process most of the standard 

continuous distributions like exponential, Lomax, gamma, beta, Weibull, 

lognormal and some of their generalizations were proposed with means of 

estimating their parameters and various measures of income inequality. 

There were many attempts at explaining the data generating mechanism also, 

like the law of proportional effect leading to the lognormal distribution, income 

power models and diffusion models leading to Champernowne distribution 

etc., but most of them were not found holding universally. Such a scenario 

has thrown up opportunities to search for alternative methodologies to unify 

the existing procedures of data analysis. 

The study of probability distributions as models in applied problems 

can be accomplished in two different ways; one by specifying the distribution 

function (or equivalently the probability density function) and other through the 
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quantile distribution function. In modeling size distribution of incomes to our 

knowledge, all except one paper have adopted the first approach and 

proposed distribution functions. A modest beginning to the latter law of 

thought was made by Tarsitano (2004) when he used a general version of the 

Tukey Lambda family of quantile distributions to model income data. Different 

schools of thought prevail in forming the attitude towards analysis of statistical 

data, broadly classified as confirmatory and exporatory analyses. The former 

lays stress on what could be actually established from the data in a 

probabilistic approach while the latter is the willingness to look for what we 

expect the data to provide as well as exploration of things that are not explicit. 

It is argued that the second form of analysis is more complete and the 

quantile method is best suited for the same. Quantiles provide descriptive 

statistics in the data and are easily amenable to analytic treatment besides 

giving meaningful graphical representations. The treatment using quantile 

functions and distribution functions are theoretically equivalent as one implies 

the other. Several versions of quantile distributions have been introduced 

since the nineteen sixties as replacements for distribution functions, though it 

is always possible to transform one form into the other, especially for the 

standard distributions. An interesting feature of these quantile distributions is 

that they are families of distributions that are flexible enough to take different 

shapes as the data situation demands. They provide empirical models in the 

sense that, without much information of the physical properties of the data 

generating mechanism, one will be able to locate a member of the family that 

fits the data. In cases where some of physical properties are known or 

hypothesized, they are easily convertible in terms of quantiles so that the 

appropriate distribution can still be arrived at. 

Tarsitano (2004) has used a four parameter quantile distribution 

function in his novel approach to modeling income distribution. Comparatively 

simple methods were adopted by him in estimation of the parameters of the 

model and measures of income inequality. The present study is a 

continuation of this direction of approach intended to supplement and 

strengthen the existing results. 
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A close analysis of the Tarsitano model reveals that there is a 

substantial limitation to the parameter space that compels the analyst to verify 

whether there exist models corresponding to the set of solutions obtained. It 

would therefore be advantageous to effect modifications in the model toward 

off this problem. A modified lambda family available in literature though 

slightly complex in form, satisfying our requirement is therefore a plausible 

candidate as the quantile distribution function. Another general problem 

common to all quantile functions is that there may exist more than one set of 

parameter values capable of generating a proper distribution. Often one may 

have to appeal to some property of the empirical distribution that is consistent 

with the parameter values in the ultimate choice. This difficulty can be 

avoided to a large extent if the estimation procedure itself is designed in such 

a way that the basic characteristics derived from the observations match with 

those in the theoretical model. The present work explores the possibilities of 

this aspect while inferring the parameters. Achievement of a good fit to the 

data does not necessarily mean that we have a meaningful model, unless it is 

shown that the distribution results from physical characteristics present in the 

observations. This means that we should be able to verify the presence of 

some characteristics associated with the income distribution with those in the 

data. Measures of income inequalities widely used for the purpose of 

characterizing income distributions are the basic tools employed for such 

verifications. The income gap ratios for the poor and affluent along with the 

truncated Gini indices have been proposed in earlier literature as 

characteristics suitable for differentiating income distributions. The problem of 

characterizing income distributions by the functional form of these quantities is 

still open. The present thesis is an attempt to resolve the above mentioned 

problems and the work in this connection is organized into five chapters with 

the following contents. 

After this introduction, Chapter 11 provides a review on eXisting 

income distributions in literature. The properties of modified lambda family 

are discussed in Chapter III along with the justifications for using it as an 

income model. A new estimation procedure involving quantile measures of 

location, dispersion, skewness and kurtosis is introduced to estimate the 
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parameters of modified lambda family in Chapter IV. Using this procedure, 

modified lambda family is fitted to a real income data. A simulation study is 

also conducted in the fourth chapter to compare the new estimation procedure 

with two other estimation techniques in the existing literature. Finally, in 

Chapter V, income distributions are characterized using the functional forms 

of income gap ratio and truncated Gini coefficient. 
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2.1 Introduction 

CHAPTER 111 

REVIEW OF LITERATURE 

There are two general approaches to the study of income 

distributions, one motivated by the distribution of income among factors of 

production initiated by Ricardo (1817) and the other analyzing the distribution 

of total income of a given population receiving incomes making use of 

probability distribution functions. The latter stream of thought introduced by 

Pareto (1895) has generated considerable interest among statisticians and 

economists to produce a large body of literature on new models based on 

empirical as well as theoretical justifications. The dynamic nature of income 

distributions always leaves scope for refinements to existing models and 

theories to make this a fertile area of research. The present chapter 

undertakes a survey of the important results in this respect so as to provide 

the background material for further study and research. 

The review material in this chapter is categorized into three 

sections. Section 2.2 discusses the probability distributions used as size 

distribution of incomes along with their justifications and inferential procedures 

that is of interest to distribution theory and practitioners of income mode ling. 

A major theme in income analysis is how the distribution of income units is 

made on the basis of income size and the degree of income inequality. The 

literature on these concepts is surveyed in Section 2.3. The use of distribution 

functions in income modeling can be indirectly accomplished through quantile 

functions, which is a major tool employed in the present study. Accordingly 

we present some basic results in this area in Section 2.4. 

I Part of the work in this chapter is being published in Nair & Haritha (2005). 
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2.2 Size distribution of incomes 

One stream of research in income distribution models attempts to 

describe stochastic mechanisms that generate income distributions via certain 

properties. This class includes the work of Gibrat (1931), Champernowne 

(1953, 1973), Ericson (1945), Rutherford (1955), Wold and Whittle (1957), 

Lydall (1959) etc. For details of these models we refer to Arnold (1983). The 

present study being focused on the distribution function approach, we confine 

our attention largely to parametric families of distributions that are proposed 

for modeling income data. 

The model most frequently applied in the literature to fit the 

distribution of personal income is the Pareto model. It is generally accepted 

for high income groups. Pareto (1895,1896) observed a decreasing linear 

relationship between the logarithm of income and the logarithm of the 

number N, of income receivers with income greater than x, viz. 

10gN,=A-a1ogx, x~er. 

Normalizing by the number of income receivers N = N er ' 

~ =I-F(x)=(:)".x:o-a>o (2.1 ) 

which is the classical Pareto distribution, where a > 0 and er > 0 are 

respectively the shape (also measuring the heaviness of the right tail) and 

scale parameters. Champernowne (1953) demonstrated that under certain 

assumptions the stationary income distribution of an appropriately defined 

Markov process will approximate the Pareto distribution irrespective of the 

initial distribution. Mandelbrot (1961,1964), Wold and Whittle (1957), Lydall 

(1959) and Sphilberg (1977) arrived at Pareto distribution from true models in 

different situations. Introducing an additional location parameter Pareto (1896) 

suggested Pareto(lI) distribution with distribution function 

_ _ [ ( x - Jii]-a . . F(x)-l 1+ er) ,x>,li,a>O,er>O. (2.2) 
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The shape parameter a is sometimes interpreted as an index of inequality. 

The maximum likelihood estimates of Pareto I are given by 

1\ 

[ ]

-1 
1\ n X 

and a = ; 2)og_i 
i=I X I:n 

O"=X 1:11 

Quandt (1966) proposed the moment estimates (by equating the sample 

minimum and the sample mean to their corresponding expectations) as 

~1 = (nX - XL/l ) / n ( X - X J:II ) 

and 

;M = ( n a~f - 1) Xl:/l / n a:, 

and the quantile estimates (selecting two probability levels PI and P2 

[1- Pi = P(X > xi),i = 1,2] and substituting the corresponding sample 

quantiles X[ .]. for XPX2 in 1- Pi = (Xi )-a ,i = 1,2) as 
/lP, .11 0" 

and 

-.L 
1\ ~ 

O"Q = X[ ]. (1- PI fQ . np, .11 

Several authors have considered the problem of deriving 8ayes estimates for 

the parameters of the Pareto type I distribution. [Malik (1970). Zellner (1971). 

Lwin (1972). Rao Tummala (1977) and Sinha and Howlader (1980)]. Silcock 

(1954) and Harris (1968) proposed maximum likelihood estimates, Harris 

(1968) (when,u =0) and Arnold and Laguna (1977) used the method of 

moments, while Moore and Harter (1967, 1969), Kulldorff and Vannman 

(1973) and Vannman (1976) suggested estimates based on order statistics for 

the parameters of Pareto(lI) distribution. The properties of the above 

distributions, interpretations for the parameters and all the above estimation 

techniques are discussed in detail in Arnold (1983). Classical regression type 

estimators and several recent developments. notably in connection with 

UMVU estimation are discussed in Kleiber and Kotz (2003). 
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The pioneering study marking initial use of the log normal 

distribution as an economic size distribution was Gibrat's thesis of 1931. 

Assuming X(O) to be the initial income to which a random number N(t) of 

independent increments ZiS are added so that at the end of a period of time 

the income X(t) of the individual becomes 

N(t) 

log X(t) ~ log X(O) + I Zj 

i=1 

Using central limit theorem log X(t) is asymptotically normal and hence X(t) 

has an approximate lognormal distribution for large values of t. The 

probability density function of the lognormal distribution is given by 

f(x)= ~ exp{-~(10gX-J1)2},x>O'0"Ji>O (2.3) 
x 2IrO' 20' 

This distribution as well as methods of estimation of parameters are 

discussed in detail in Aitchison and Brown (1957), Crow and Shimizu (1988), 

Johnson, Kotz and Balakrishnan (1994) and Kleiber and Kotz (2003). The 

maximum likelihood estimates are given by 

and 

'\ 1 n _ 
O'~ = - I {log x; - Iogx). 

n i=1 

Quensel (1944) found that the lognormal curve is the better approximation in 

the lower range of incomes. The Gibrat's law of proportional effect has not 

found acceptance as a generating mechanism of income distributions. 

As an alternative to Pareto I which does not fit the entire range of 

income size adequately Champernowne (1937, 1952) suggested the 

distribution of log income Y=log X, termed income power and assumed that it 

has a density function of the form 

f(y) = [( )] ,-oo<y<oo,a,A,yo,n>O (2.4) 
Cosh a y- Yo +A 

n 

and fitted successfully income data pertaining to Bohemian and United 

Kingdom income data sets. A stochastic model leading to the 
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Champernowne distribution as the equilibrium distribution was briefly 

discussed by Ord (1975). This distribution has Paretian tails at both 

extremities, which was the initial attraction of the model. As far as estimation 

is concerned, Champernowne (1952) considered methods starting with some 

form of average income and Harrison (1974) suggested a minimum distance 

estimator, determining parameters simultaneously using an iterative 

generalized least squares approach. 

Simon (1955,1958), Metcalf (1969) and Thurow (1970) proposed 

the Yule, displaced lognormal and beta distributions, with improved fit than 

Pareto and lognormal. But the interpretation of parameters is more difficult in 

these cases. 

Salem and Mount (1974) approximated the distribution of personal 

income by a two parameter gamma density function with probability density 

function 

I() A a a-I -;lx 0 1 0 
X =r(a)x e , <X<CX>,a,A> . (2.5) 

They showed that the gamma density provides an alternative model that fits 

the income data by Amoroso (1925). Salem and Mount (1974) used 

maximum likelihood method for the estimation of parameters. 

In Economics, Weibull distribution specified by 

f(X) = ;(;T'e(jr,x>o,a,/i>o (2.6) 

is probably less prominent, but D'Addario (1974) noticed its potential for 

income data. Bartels (1977), McDonald (1984), Atoda, Suruga and 

Tachibanaki (1988), Brachmann, Stich and Trede (1996) etc. fit Weibull 

distribution to incomes of various countries. Parameter estimation (maximum 

likelihood method) for the Weibull distribution is discussed in Cohen and 

Whitten (1988), Johnson. Kotz and Balakrishnan (1994) and Kleiber and Kotz 

(2003). The maximum likelihood estimators satisfy the equations 
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and 

A [1 1/ ~]: /3= -Ixi 
n i=l 

for a random sample( X p ... , xn) from (2.6). 

Singh and Maddala (1976) derived the model with distribution 

function 

F(x) = l-[l+(nr ,x> O,a,b,q > ° (2.7) 

which includes the Pareto and Weibull distributions as special cases. The 

distribution has been fitted to United States income data and has been found 

to fit remarkably well. Singh and Maddala (1976), McDonald and Ransom 

(1979), Dagum (1983), McDonald (1984), Majumder and Chakravarty (1990) 

fits this distribution to various income data and found to outperform almost all 

the other distributions so far discussed. Singh and Maddala (1976) estimated 

parameters by using a regression method minimizing 

See also Stoppa (1995) for a regression method utilizing the elasticity 

d logF(x) 
of the distribution. The likelihood equations are difficult to solve 

dlogx 

and therefore special methods to solve the equations are proposed by Mielke 

and Johnson (1974). Wingo (1983) and Watkins (1999). Another alternative 

is to employ the maximum product of spacings (MPS) estimation (Shah and 

Gokhale (1993» which maximizes 

1 n 

H = -Ilog{F(x"B)- F(Xi_I,B)} , i = 1,2, ... ,n + 1, 
n + 1 i=l 

with Xo = -00 and xn+l = 00. 
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Oagum (1977) introduced the distribution with the distribution 

function 

F(x) ~ [I +(~Jr ,x> O,a > O,b:? O,p:? 0 (2.8) 

and two further generalizations [Oagum type 11 and Ill, Oagum (1977,1980)] 

as models for the size distribution of personal income. The Oagum type II 

distribution has the cumulative distribution function 

F(x) ~ a + (I-a)[1 +(~ rr ,x:? 0 a,b,p > 0 ,a E (0,1). 

(2.9) 

The type 11 distribution was proposed as a model for income distributions with 

null and negative incomes. The cumulative distribution function of Oagum 

type III distribution is given by 

F(x) ~ a +(\-a{\+(~ J"rp ,a,b,p >0 ,a < O,xo < x < oc 

I 

Xo > 0, where Xo ~ {b[ (\- ~)~ -I Jr is determined such that F(x):? O. 

(2.10) 

The introduction of the model was justified on the basis of empirical 

observation that the income elasticity of the cumulative distribution function of 

income is a decreasing and bounded function of F. Kleiber (1996) showed 

that the Oagum and the Singh-Maddala income distributions are closely 

related through a reparametrization of the reciprocal random variable. That is, 

1 1 
X - SM(a,b,q) ~ - - D(a, -, q). 

X b 

He exploited this relationship to derive Lorenz ordering results for the Oagum 

distributions from known results for the Singh-Maddala family. Further he 

explained why the Oagum distribution almost necessarily gives the better fit. 

Lukasiewicz and Orlowski (2004) showed that Oagum's model well describes 

distributions of incomes both in American and Polish households. As a further 
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theoretical support Fattorini and Lemmi (1979) derived Dagum distribution as 

the equilibrium distribution of a continuous time stochastic process under 

certain assumptions on its infinitesimal mean and variance. Dagum (1977) 

discussed five methods for estimating the model parameters and 

recommended a nonlinear least squares method by minimizing 

t {~'(X)-[l+(; rr}, 
A further regression type estimator utilizing the income elasticity of the 

cumulative distribution function was considered by Stoppa (1995). 

The Fisk (1961 a, b) distribution with cumulative distribution function 

F(x) ++(~ r r ,x > O,a,b > 0 (2.11 ) 

is a Singh-Maddala distribution with q=1, a Dagum distribution with p=1 and a 

special case of three parameter Champernowne distribution. We refer to the 

Pareto III distribution in Arnold (1983) for a variant of this model. 

McDonald (1984) proposed a generalization of the beta distribution 

of the second kind, denoted GB(a,b,p,q) represented by the probability 

density function 

axap - I 

f(x) = p+q ,x ~ O,a,b,p,q > 0 

bO' E(p, q>[ 1 + ( ~ r ] (2.12) 

that could subsume the majority of the models suggested in literature. This 

distribution in (2.12) covers as special cases the Singh Maddala distribution 

(p=1), Dagum distribution (q=1), the beta distribution of the second kind (a=1), 

the Fisk distribution (p=q=1), Pareto type 11 distribution (a=p=1). See 

McDonald and Xu (1995) for further details. It is to be noted that the family is 

closely related to the type III and XII of the Burr family (Tadikammala (1980)). 

The generalization offered by Majumder and Chakravarty (1990) of the Singh­

Maddala and the Dagum models is not reviewed separately it being only a 

reparametrized version of (2.12) (McDonald and Mantrala (1995)). Much 
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work has not been done in estimating the parameters of (2.12) except Venter 

(1983) who considered ML estimation. Recently, Brazauskas (2002) obtained 

the Fisher information matrix of the GB2 distributions. For details one can 

refer Kleiber and Kotz (2003). Specializing (2.12) for a=1 one arrives at the 

beta distribution of the second kind with probability density function 

X,,-I 

[(x) = ,X> 0 
. []p+q 

b"B(p,q) l+~ 
(2.13) 

which appeared as a realistic model for Finnish income data (Vartia and 

Vartia (1980)). 

Almost along the same logic the beta distribution of first kind used 

for modeling income data by Thurow (1970), was also extended to general 

form by McDonald (1984) with density function 

ax"PII1-(Hr' 
f(x)~ l J ,O~x~b 

bap B(p,q) 
(2.14) 

where all the four parameters a, b, p, q are positive. Here b is a scale and a, 

p, q are shape parameters. 

Esteban (1986) has shown that the (inverse) generalized gamma 

distribution with probability density function 

(2.15) 

can be used as an income distribution. 

Similar attempts at finding a more flexible family led McDonald and 

Xu (1995) to the five parameter distribution termed as the generalized beta 

(GB), with probability distribution function 
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lalx"p-l (I-(I-C)(~ Jf 
f(x) = [ Jp+q , 

b"PB(p,q) I+C(O 
forO<x a <bG;Oscsl;b,p,q>O, (2.16) 

and fitted this model to the 1985 US family incomes but selected the 

subfamily represented by (2.12). 

Ripsy Bandarian et al. (2002) took ten special cases GB 1, 

GB2,Beta 1, Beta 2, Generalized Gamma, Singh Maddala, Dagum, 

Lognormal, Gamma and Weibull and fitted them to 82 data sets comprising of 

23 countries at different time periods. The conclusion of this empirical 

comparison was that the Weibull, Dagum and GB2 gave better fits and the 

number of shape parameters is a significant factor in improving the fit. 

Reed and Jorgensen (2004) suggested a new parametric model 

named Double Pareto-Lognormal distribution (dPIN) for mode ling size 

distributions. This distribution which has four parameters arises as that of the 

state of a geometric brownian motion (GBM) with lognormally distributed initial 

state, after an exponentially distributed length of time (or equivalently as the 

distribution of the killed state of such a GBM with constant killing rate). As an 

income distribution the explanation revolves around the assumption that an 

individual's earnings follows GBM and that the population of individuals is 

approximately growing at a fixed rate. Starting incomes are assumed to be 

log normally distributed and evolving as GBM. The assumption of a growing 

population implies that the time that an individual has been earning is 

approximately exponentially distributed, and thus that current earnings or 

income follow close to that of a GBM killed with a constant killing rate. The 

probability density function of dPIN distribution in terms of the cumulative 

distribution function and complementary cumulative distribution function tjJ 

and tjJc of N(O,1) can be given by 
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( 
a2r2 J 

whereA(B,u,r)=exp BU+-2~ . (2.17) 

Examples of the fit of the dPIN (with plots) to various income distributions are 

presented in Reed (2003). The estimation techniques such as method of 

moments and maximum likelihood method have been discussed in Reed and 

Jorgensen (2004). 

The book by Kleiber and Kotz (2003) investigated parametric 

statistical distributions of economic size phenomena of various types and 

listed Pareto, Lognormal, Gamma-type and Beta type distributions. They also 

discuss the properties, characterizations, inequality measures and estimation 

of parameters of the above distributions. 

2.3 Measures of income inequality 

In general measures of income inequality can be classified as intra 

distribution measures and inter distribution measures. The former is restricted 

to a single population of income receivers and the latter depicts the inequality 

between population of income receivers. Dalton (1920) introduced the 

following desiderata to be satisfied by intra distribution measures. 

(1) Principle of transfers:- transferring of income from higher income 

receiver to lower one should reduce the measure. 

(2) Principle of proportionate addition to incomes (scale 

independence):- proportionate addition or subtraction to all incomes 

should leave the measure unaffected. 

(3) Principle of proportional addition to persons:- the measure should 

be invariant to proportionate additions to the population of income 

receivers. 

(4) Principle of symmetry:- invariance of the measure to any 

permutation of income among the income receivers. 
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(5) Principle of normalization:- the range of the measure should be in 

the interval [0, 1] with zero(one) for perfect equality(inequality). 

(6) Principle of operationality:- the intra distribution inequality measure 

should provide a unique, straight forward and unambiguous estimate of 

the income inequality by all researchers using the same observed or 

fitted income distribution, independently of their subjective inequality 

aversion. 

The most widely used measure of inequality is the Lorenz Curve, 

(Lorenz (1905)) defined for finite populations as a function L (u) on [0,1] such 

that, for fixed u, L(u) represents the proportion of the total income in the 

population accounted for by the 100u % poorest individuals in the population. 

Gastwirth (1971) gave a rigorous definition by defining the corresponding 

inverse distribution function by F-1(y) = sup{x: F(x) ~ y},o < y < 1 and 

defining the Lorenz Curve by the equation 

u 

fF-1(y)dy 

L( u) = ~ ,0 < u < 1. (2.18) 

fF-1(y)dy 
o 

The significance of the Lorenz Curve lies in two derived measures 

of inequality viz., the Gini index [Gini (1914)] and Pietra index [Pietra (1932)] 

defined respectively as 

1 

G=2f[u-L(u)}du (2.19) 
o 

and 

Elx -E(X)I 
p= . 

2E(X) 
(2.20) 

Two other important income inequality measures are Atkinson 

(1970) measu res 

17 



I

AE=1- E(~) {jxl-EdF(X)t' (2.21)

where E: > 0 is a sensitivity parameter giving more weight to the small

incomes as it increases, and the generalized entropy measures [Cowell and

Kuga (1981)]

1 w1l x Je }GE - ~- -1 F x
0- 8(8 - 1) 0 E(X) ()

As 8 tends 0 and 1 we have

t; = GEl =wf~X_10gl~X_ldF(x)
o E(X) lE(X) J

and

t; =GEo =jlOg[ E(X) l'F(x).
o x J

(2.22)

(2.23)

The latter two measures are known as the Theil coefficients (Theil (1967».

Some usual measures of dispersion suitably scaled have also been proposed

in literature. They are

Absolute Mean Deviation:

w

TI(X) = flx-E(x)ldF(x)
o

Relative Mean Deviation:

1 w

T2(X) =~- flx-E(x)ldF(x)
E(X) 0

Absolute Standard Deviation:

w

T3(X) = f( x - E(X))2 dF(x)
o

Coefficient of Variation:

T (X) = T3(X )
4 E(X)

18

(2.24)

(2.25)
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Gini's Mean Difference: 

In the above notations the Gini index becomes 

's(X) 

2E(X) 

(2.28) 

Ord et al. (1978) discussed a general class of inequality measures 

given by 

'g (X) = E[g(X)/ E(X)] 

where g is a convex function on (0,00). In particular, g(x) = (Xl+1 - 1) / Y (y + 1) 

and y = -2,-1,0 and 1 respectively can be associated with the ratio of the 

arithmetic to the harmonic mean, the ratio of the arithmetic to the geometric 

mean, the Theil index and the Herfindhal index ( the squared coefficient of 

variation ). 

Ord et al. (1981) also suggested the entropy measures given by 

1 CJ) 

ereX )=- ffex)[l- frex)}ix,-l<y<oo 
yo 

to serve as inequality measures. 

(2.29) 

Frigyes (1965) proposed three measures which have direct 

economic interpretation (other inequality measures including gini index lack 

this property) and are given by 

m m, m2 u=-,v=-- ,W=- (2.30) 
m1 mJ m 

where m=E(X), mJ=E(XIX<m), m2=E(XIX~m). The measure v 

may be regarded as a measure of inequality for the entire income distribution, 

while u and w indicate the inequalities of the two respective parts of the 

distribution below and above the mean. The properties and applications of 

these measures have been discussed by Elteto amd Frigyes (1968). 
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Hart (1975) introduced the concept of moment distribution and 

explained some of the common measures in terms of moments of this 

distribution. The rlh moment distribution of a non-negative random variable 

X (with distribution function F) is given by 

(2.31 ) 

The Lorenz curve can be described as the set of points in the unit square with 

coordinates (F(x),F;(x)) where x ranges from 0 to 00. The functionL(u) 

may be defined implicitly by 

x 

U = fdF(4") 
o 

and 

L(u) = 1 -'fcdF(4") 
E(X) 0 -

(2.32) 

Gini index can be related to the moment distribution as 

'Xl 

G = }- 2 fF; (x)dF(x) (2.33) 
o 

Further expressions of other inequality measures in terms of moment 

distributions are given in Arnold (1983). 

A class of linear measures of income inequality due to Mehran 

(1976) is 

I 

l=! KF-'(p)-Jl ]W(p)dp 
Jl o 

(2.34) 

where W(p) is a score function chosen independently of the shape of F with 

I 

fW(p)dp = O. Each score function defines a particular linear inequality 
o 

measure. 
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The Gini index was generalized by Kakwani (1980), Dona!dson and 

Weymark (1980, 1983) and Yitzhaki (1983) by applying different weight 

functions for the area under the Lorenz curve. 

1 

Gn = I-n(n-l) jL(u)(1-U),,-2du, 11 > 1. (2.35) 
o 

Muliere and Scarsini (1989) observed that 

G = 1- E(XbJ 
n E(X) 

Zenga (1984) used the first moment distribution and the quantiles 

of the size distribution to define a new measure 

F-'( ) 
Z(u)=I- I u ,O<u<l 

0~) (u) 
(2.36) 

{[u,Z(u)]lu E (O,1)} is often referred to as the Zenga concentration curve. 

Most of these measures have been subjected to study for the 

Pareto distribution (see Arnold (1983)) and individual measures calculated for 

certain distributions. However, for analytic discussion of the various indices 

pertaining to a particular model or for comparing their relative behaviour in 

different distributions it is necessary to have an account of the measures for 

all the income models discussed in this chapter. In the absence of such a 

comprehensive list of measures of inequality we have presented in Table 2.1 

some important measures relating to various distributions for reference. 
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Table 2.1: 

Income Inequality measures 

Distribution ][ Coefficient of Variation 1[" Lorenz Curve JL Gini Index 

I I- ! I 
Pareto I (a 2 - 2ap 1_(1 _,,) a --

2a - 1 

r--
! I I a[I - (I - U)1 ~ Parelo 1I(,u = 0 ) - (a - I)u a 

a2 (a-2f2 --
2a - 1 

Lognormal V; 
~[~- I (,,) _,,2J 

2~(i)- 1 e -I 
(1 ) 

I r(a+~) 
Gamma Ta (2) r(a+I),J; 

{+~) r(~+I,- ln(l - p)) 
Weibull I (3) 

_I 
H+~)-[r( ' +~)]T r(~ + I J 1-2 a 

r (q)r(I +~)+ - ~) _I 
(4) 

1- r(q)r(2q -~) 
Singh Maddala ( I I) 

r2( 1 +~Jr2(q - ~J I 1+ - q-- r( q-;Jr(20). [I -(i-,,~] a' a 

Oagum 
r(p)r (p + ~)r( I - ;) _I 

I-I( or. )(I- .!. ,P+.!. ) 
r(p)r(2p + ~) 1 

r2 (p +~Jr2(1 - ~J ,, ·-1 a a r(2p)r(p+~J 

Generalized Beta IB (P,q)B(P+~,q - ~) _I ~. 

of second kind ~ B2(p+~,q - ~J 
(5) (6) 

'i 

Generalized r(p)r(p +~) 1 (7) (8) 
Gamma r2 (p + ~J 

Gontd .. 
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Distribution Generalized Gini Coefficient Pietra Index 

n- I (a - Ifl --
Parelo I na - I aa 

a(n-I) (t Parelo II( J1 = 0) a-I 
nu - I a 

Lognormal (9) 2'(:)-1 

Gamma (10) (:f r(:+I) 
; 

. . , 

Weibull -l (11 ) l - n a 

Singh Maddala. 
r(nq -~) r(q) 

(12) ~ . 
r(nq)r( q-~J i 

Oagum rep) t (-I)j-tf(jP+~) (13) Hj"1 } rUp) p+ -
a 

" 

Generalized Beta of (15) (14) 
second kind F()J)-F(I)()J) , 

Generalized Gamma (16) (17) 

Contd .. 
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Distribution Generalized Entropy Measure Atkinson's Measure 

{ ( )0 aO } 1-a-I [a"I-& t - & 
I a- I a a 

Pareto I 0(0- 1) (a-O) - I aa a+&- I 

O(~-I) j(a- l)° aD(9+I,a- O)-!) 
a(a-I) 

Pareto II(p = 0) 
1---.e -. B(2- e,a+c- l) 

" 

e~82+B+I ) ,,2e 

Lognormal 
0(0- 1) I-e 2 

Gamma 
I [r(o +a) ] 

0(0 - 1) r(a)arl 1_..I.[r(a-&+I) t '-& 
a r(a) 

I r (~+ I) I [~ I-& J]'[-& 
(r(~+ I))O -I 

I-fA) - +1 
0(0- 1) 1+~ a 

Weibull a 

I I ~!+I.q :) b [~I-& l-eJf-e 8(8-1) l -I ( ~;'I,q--Dl~ 
I I - ~l I] ~l,q-

Singh Maddala 
- +I,q- a a 
a a 

-
Dagum 

I [ I ~I-~'P~J I 
0(0- 1) P~ i ( ~I~,p+m~ 

I [ ~&-I &-1 Jl'{-& 
1- ~ I I ) P -+I,p-

p I-,p+- a a 
a a 

~~ ~J 1- D(p,q) [1~< '" 1:&) 7H 
Generalized Beta 

I 18(8-1) , 

(~~ ,,~Jr o(p+~,q-~J D{p,q) 
of second kind 

I [ f-I ~~+pJ ) [~ I r-& Generalized I _ r(p) p+;;(i -&) 
0(0- 1) [ r(p) [~~+p J( 

Gamma /il"(P~J r(p) 
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Expressions used in Table 2.1 

(1) f/J denotes the cumulative distribution function of the standard normal 

distribution. 

(2) {[ u,L(u) J} = {[ F( x:1,a ),F(x:1,a+l )JiXE( O,oo)} 

x tal 
(3)r(a,x)=Je-t -

o 

I z t p - I 

(4) Iz(p,q)= ()J p+qdt,z>O 
B p,q O(I+t) 

(5) l[ u,L(u)]} ~ {[ F(x: a,b,p,q ),F( x: a,b,p + ~,q - :) ]Ix E (O,OO)} 

2B(2P + !,2q -!) 
(6) a a x 

pB(p,q )B(P + ~,q - ~ J 

{~ 3F2 [1,P +q,2P+±;P+ 1,2(p +q);l]- P: ± 3F2[I,P+Q,2P+±;P+±+ 1,2(P+Q);IJ} 

(7) {[ u,L( u)]} ~ {[ F (x: a, fJ, p),F ( x: a,fJ,p + ~)]Ix E (O,OO)} 

1 j 1 ( I I ) 1 ( I I I)j (8) 1 x -2Fl I,2p+-;p+l;2: --I-2FI 1,2p+-;p+l+-;2: 
2 P+(i ( 1 ) pap + __ a a 

2 B p,p+-- a 
a 

v2 
n 00 n-I --

(9) 1- J. J [1- f/J( v + a) ] e 2 dv 
2;r -00 
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1 na+1 00 
n/l., 11-1 ( ) a -AX (10) 1- n fr a,A;x x e -cb: 

a(r(a)) 0 

x a-I -u 00 a-I -u 
wherer(a,x)=fu e duandr(a,x)=fu e duo 

o x 

(12) FSM (,u;a,b,q)- FGB2 (,u;a,b,l + ~,q - ~) where J'SM (.) and F GE2 (.) 

are the distribution functions of SinghMaddala and Generalised Beta of 

second kind respectively. 

1 p+--I 
n 00 n~ u a 

(14) 1 - ( ) f [1 - J u (p, q ) ] p+q du 
1 1 0 (I + u) B p+-,q--
a a 

(15) F(.) and ~I) (.) are the distribution function and the first moment 

distribution of Generalised Beta of second kind respectively. 

1 n 00 1 p+--I 
(16) 1- () f r n

- (p,u)e-Uu a du 

( )
n-1 I 0 r(p) r p+-

a 
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2.4 Tukey lambda Distributions 

In the previous sections we discussed various forms of the 

distribution functions that could represent data on incomes. An alternative 

way of describing a continuous distribution is to use the quantile functions 

defined as 

Q(u) = P-'(u) = inf(xIF(x) ~ u), 0 < II < 1. 

Since F(x) ~ u if and only if Q(u):s; x, the knowledge of the form of Q(u) is 

equivalent to the knowledge of the functional form of F(x). Taking account of 

this aspect, Hastings et al. (1947) introduced the one parameter symmetric 

lambda distribution given by the quantile function 

Q(u) = u
A 
-(l-u);( (2.37) 

A 

where u follows a uniform distribution in (0,1). Subsequently several 

symmetric and asymmetric forms with increased number of parameters of 

Q(u) were introduced as alternative models from a variety of applications. Of 

these the four parametric version introduced by Ramberg and Schmeiser 

(1974) is specified by 

).J (l );(4 
Q( u) :::; A, + U - - u , ° < u < 1 , 

,12 
(2.38) 

where ~ is the location parameter, ~ the scale parameter and A, and A4 

determine the skewness and kurtosis of the distribution respectively. Model 

(2.38) is widely used in literature because of its ability to give distributions of 

different shapes. The density function is 

1 
f(x) = Q'(u) 

= ~ 
~U~-I + ,14(l-U)A4 -1 

(2.39) 

Notice that (2.39) specifies a valid distribution if and only if 

A,u~-J +,14(l-U)A4 -1 has the same sign (positive or negative) for all u in [0,1], 

as long as ~ takes that sign also. The four regions of parameter values 

where the GLD is a legitimate probability distribution are given in Table 2.2. 
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Table 2.2: 

Parameter space of GLD 

Region Value of lowerBound UpperBound 

A, <0 

2 A, < 0 A, > 1 A <-1 • 
3 A, > 0 A,>O - ~ A,>O A.-I/"\' A.+I/"\' 

A, > 0 A, = 0 A" >0 A. A. + I/..\, 

A, > 0 A, > 0 A, =0 A.-I/"\' A. 

4 A, < 0 A, <0 14 < 0 --«) "' 
A, < 0 A, =0 1. <0 

A. 
"' 

A, <0 
--«) 

A. A, <0 A, = 0 

While any A.,. A, values in these regions produce proper statistical 

distributions, the regions do not include all the A., , A, values that do so. 

Karian, Dudewicz and Mc Donald (1996) report that sections of the regions 

excluded by Ramberg and Schmeiser (1974) can also produce proper 

-statistical distributions. They therefore added two new regions, adjoining 

regions 1 and 2. 

For A, = 0, the k" moment of (2.38) is given by 

E( X·) = ..,-.t,(: }-IJ' B(A.,(k -i) + I,A,i + 1) (2.40) 

when it exists, where B( a,r) denotes the beta f unction evaluated at a,r. 

Ramberg et al.(1979), Ozturk and Dale (1985), King and MacGillivray (1999), 

Karian and Dudewicz (1999), King and MacGillivray (2006) discussed some 
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estimation procedures for (2.38). Mac Gillivray (1982) and Groeneveld 

(1986) discuss some properties of this family. 

Tarsitano (2004) proposed (2.38) as a flexible and adaptable model 

to fit the distribution of incomes. He discussed the methods of least squares, 

quantiles and moments to fit the model to grouped income data. Some well 

known income inequality measures of the distribution are also evaluated in 

that paper. 
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3.1 Introduction 

CHAPTER III 

MODIFIED LAMBDA FAMILY 

In the previous chapter we have seen that a wide variety of 

statistical distributions have been considered as possible models for incomes. 

Some of these models are derived by postulating the data generating 

mechanism through stochastic processes or by specifying the physical 

characteristics governing the income distribution through concepts in 

economics. In situations where none of these approaches satisfactorily 

represent the complexities in the observations a statistical model is selected 

for its ability to fit the given data and then it is used to analyse the income 

characteristics as a best approximation. Recently in statistical practice, the 

use of the quantile function (in the place of the distribution function) in data 

analysis and inference is finding greater acceptance due to its simplicity and 

flexibility. As pointed out in the previous chapter, Tarsitano (2004) proposed 

the generalized lambda distribution introduced by Ramberg and Schmeiser 

(1974), as a flexible and adaptable model to fit the distribution of incomes. 

The density function for generalized lambda family cannot be expressed in 

closed form. However, it can be expressed in terms of its quantile function. 

But the model proposed by Tarsitano (2004) is not valid in the entire 

parametric space. In order to avoid this problem in the present study, we 

consider another four- parameter generalized lambda distribution proposed by 

Freimer et al. (1988) for modeling income. In Section 3.2 we present a 

general theory of quantile function, including its properties, relative 

advantages over the distribution function approach and the various 

characteristics of the distribution such as location, dispersion, skewness, 

kurtosis and shape, in terms of quantile functions. This will form the essential 

background material for further discussions in the present thesis. Following 

this, in Section 3.3, the modified lambda family of Freimer et al. (1988) is 

studied with respect to the quantile function approach, by describing several 
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new properties of the family that were not illuminated in the basic paper of the 

authors. The focus in our study being the use of the distribution to income 

modeling in Section 3.4 the conventional measures of income inequality are 

reframed in terms of quantile measures to facilitate their subsequent analysis. 

3.2 Quantile functions 

Historically, the idea of quantiles seems to have originated in the 

work "Statistics by inter comparison : with remarks on the Law of Frequency 

of Error" by Francis Galton published in Philosophy Magazine in 1875, 

although the term quantiles was first introduced only by Kendall (1940). 

Tukey's (1970) work on exploratory data analysis (as against prevailing 

confirmatory analysis) and Parzen's (1979) paper stimUlated the development 

of quantile functions as an essential tool instead of the distribution function in 

statistical analysis. 

For a general distribution function which is continuous from the 

right 

Q(p) = F-1 (p) = inf {x: F(x) ~ p} (3.1 ) 

is defined as the quantile function, which has the fundamental property that 

for every 0 ~ p ~ 1, F (x) ~ p, iff Q(p) ~ x, where -co < x < co. When the 

functions Q(p) and F (x) are continuous and increasing in the respective 

arguments, Q(p) =F-1 (p) and F(x) =Q-I (x). The derivative of Q(p), is 

called the quantile density function denoted by q (p ). Thus 

q(p)= dQ(p) 
dp 

(3.2) 

is non-negative for 0::; p ::; 1. Various properties of Q(p) that makes it useful 

in modeling and analysis of statistical data include 

(i) -Q(l- p) is the reflection of Q(p) on the line x = O. 
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n 

(ii) If Q (p ) 's are quantile functions L Q (p) is also a 
i=l 

quantile function. 

(iii) Q (p) > 0, i:::: 1,2 implies Q1 (p) Q2 (p) also represent a 

distribution quantile function. 

(iv) Q(p)=aQJ(p)+(I-a)Q2p, Osasl, 

the mixture of two quantile functions, lies between the two 

distributions with quantile functions Q1 (p) and Q2 (p). 

(v) If QJ (p) has zero median and unit interquartile range (or 

some other measures of location and scale) then 

Q2 (p) = J.l + o-QI (p) has location f.1 and scale 0-. 

(vi) If X has quantile function Q(p), (Xr J 
has quantile 

function (Q(l- p)t. 

(vii) For a non-decreasing function H (p ), 0 s psi, with 

H(O) = 0 and H (1) = 1, Q( H(p)) is a quantile 

function in the same range of Q(p). 

It is clear from (i) through (vii) that many of the properties of Q(p) 

are not shared by the distribution function F (x) which brings the advantages 

of using the quantile functions and its flexibility, especially in modeling 

problems. Just like the distribution function, but with lesser effort ( dispensing 

with the expected values that require integration of functions with respect to 

the density function) the characteristics of the distribution such as location, 

dispersion etc. can be worked out directly from the Q(p) function. We briefly 

discuss the quantile measures associated with the distribution. 

Generally, the distribution parameters of the position are the 

Median, AI = Q( 0.5), 
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lower quartile QI =Q(O.2S) and the upper quartile Q3 = Q(O.7S).Sometimes 

along with M, Ql and Q2' we may use Q(O) and Q(l) to get a feel of the 

spread of the distribution. As a measure of dispersion we have the 

interquartile range 

IQR = Q3 -QI (3.4) 

and for skewness, the Galton coefficient of skewness 

(3.5) 

Notice that S is independent of position and scale and lies in (-1,1), with 

S = 0 indicating a symmetric distribution and a large positive S is indicative 

of a long right tail. All these three measures M , IQR and S are available in 

classical literature on descriptive statistics and many analysts have favoured 

the mean, variance and Pearson coefficient of skewness /31 in their places in 

new of the developments that took place after the discovery of the Pearson 

family of distributions that are uniquely characterized by the four-tuple (mean, 

variance, /31 ' /32 ) or by the first four moments. The non-robustness of these 

measures, susceptibility to outliers, instability of corresponding sample 

characteristics while matching with population values. all have made model 

building through them far from universally acceptable. While the relative 

advantages of median and interquartile range are well documented in 

literature, the role of PI as a measure of skewness is also subject to scrutiny. 

The relative position that mean should be greater than median for a positively 

skewed distribution which is basic to the concept of skewness is not satisfied 

by on /31 values. PI = 0 holds for asymmetric distributions, unusually abrupt 

changes in PI for relatively small changes in the parameter values etc have 

motivated several proposals for alternative measures of skewness and re­

affirmation of the utility of S. Pearson's second /32 as a measure of kurtosis 

is also not free of criticism. For a standardized variable Z, the relationship 

E ( Z4 ) = V ( Z2 ) + 1 

would mean that the interpretation of /32 depends on the concentration of 

probability near the central tendency as well as at the tails of the distribution. 
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Moors (1988) have proposed a new quantile measure of kurtosis that takes 

into account the above two aspects viz 

T=[(e7 -eS )+(e3 -eJ)]/IQR 

= [Q(7/8) - Q( 5/8) + Q(3/8) - Q(l/8) J/ IQR (3.6) 

so that e's are the octiles of the distribution. In addition to these standard 

quantile measures one can also use the shape index 

s( )
=Q(I-p)-Q(p), 

P 0 ~ P ~ 0.5 
IQR 

and the skewness ratio 

Q(l- p)-M 
S(p)= M-Q(p) 

in making judgements on the shape and skewness. 

(3.7) 

(3.8) 

Sometimes a median based measure of dispersion, that is often a 

more robust estimator than the variance, called median absolute deviation 

defined as 

MAD = Median (IX - MD 
is used. Further the correlation between two random variablesX and Y can 

be proposed by extending the definition of MAD in the form (Falk (1997)) 

(
X Y) = Median [(X - M x)(Y - My)] 

~, MAD(X)MAD(Y) 

Although the emphasis made so far is on descriptive measures 

based on quantiles, the evaluation of moments to facilitate the m.ean, 

variance, PI and P2 is equally relevant and straightforward. In fact, 

F(x) = p implies f(x )dx = dp and therefore 

I 

E(xr)= [Q(p)J dp. (3.9) 
o 

More generally, for any non-decreasing transformation T(X) of X 

J 

E[T(X)]:::: fT(Q(p ))dp (3.10) 
o 
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enables one to look at expected values of most desirable functions. As 

pointed our earlier higher order moments when used in inference and model 

building provide statistics with huge variability, especially in situations of multi­

parameter distributions. The contributory factor to such instabilities is the use 

of higher powers of X, which suggests that employing linear functions can 

solve the problem to some extent. Accordingly linear functions of order 

statistics are considered for the purpose of describing distributional 

characteristics. Denoting by X r:
1I 

the rth order statistic from a sample of size 

n, the first four moments (called L -moments) in samples of 1,2,3 and 4 is 

defined as (Gilchrist (2000)) 

PI = E(X1:I ) 

P2 :::: Et ( X 2:2 - X 12 ) 

p) = EH X 3:3 - 2X2:3 + Xl:3) 

and 

P4 =E±(X4:4 -3X3:4 +3X2:4 -X1:4 )· 

This leads to formation of L - Coefficient of Variation 

CV = P2 / PI 

Skewness 

Kurtosis 5S
2 
-1 K 1 , < < 

4 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Using the relationship between the quantile density function 1(r) (p) of X(r) 

with that of X J 

1 

P2 = jQ(p)(2p-1)dp (3.18) 
o 

I 

P3 = jQ(p)(6p 2-6p+l)dp (3.19) 
o 

I 

P4= jQ(p)(20p3-30p2+12p-l)dp (3.20) 
o 
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Another type of moments used in the context of quantile functions 

is probability-weighted moments (PWM) given by 

(3.21 ) 

where generally t is taken to be unity to avoid inclusion of powers that may 

lead to complications in the manner explained for X r
• Two interesting special 

cases are then t = 1, s = 0 and t = 1 and r = 0, giving w,.,o and wo,s' 

satisfying 

wr,o = t(r](-lY wo,s and wo,s = t(S](-lr w,.,o· 
s=O S r=O r 

3.3 Modified Lambda Family 

A disturbing feature of the Tarsitano model (2.38) for incomes is 

that it is not always a quantile function and provides a proper density function 

of X only for certain regions of the parameter space viz (~2 0, .,14 2 0) , 

(~s;0,A4S;0), (~>I,A4<-1) and (~<-1,A4>1). Further no positive 

moments exist for the last two regions (Ramberg et al. (1979)). Motivated by 

these limitations which adversely affect the fitting process and to utilize the 

advantages of the quantile function approach, we consider the modified 

lambda family (MLF) as an income model in the present work introduced by 

Friemer et al. (1988) as an alternative to the Ramberg and Schmeiser (1974) 

lambda distribution disc.ussed in Chapter 11. 

3.3.1 Quantile Function 

The quantile function of MLF is given by 

1 [p 1"3 _ 1 (1 - p ) A, - 1] 
Q(p) = A, + ~ ~ - .,14 ' ~ ,~ • ~ , .,14 real. 

(3.22) 
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Here ~ is a location parameter, ~ is a scale parameter and ~ and ,,14 

determine the shape of the distributions in the family. This parameterization is 

well defined for the values of the shape parameters (~, ,,14) over the entire 

two dimensional plane in a continuous manner. Freimer et al. (1988) 

considers the canonical form of the MLF (3.22) obtained by setting ~ = 0 

and ~ = 1 while discussing the properties of the family. Since ~ and ~ are 

also essential parameters in income modeling we look at the four parameter 

version and present the properties of the latter in the present chapter. Thus 

the range of the random variable X in modification of the results in 

Freimer et al. (1988) becomes 

( ~ __ l_,~ +_1_J if ~,,,14 ~O; 
~~ ~,,14 

( A, - A,l", ,00 }u, > 0';(4 ,; 0; 

( -co,~ + _1_J if ~ ~ 0,,,14 > 0 
~,,14 

and 

(-co,co) if both~ and A4 are ~ O. 

We discuss below only those properties that pertain to the four parameter 

model and refer to Freimer et al. (1988) for other characteristics that are 

invariant with respect to ~ and ~. Figure 3.1 illustrates the shapes of 

quantile function for certain values of the parameters. 

Some comments regarding the interpretation of the model 

(3.22) and its comparison with the Ramberg and Schmeiser family, not stated 

in earlier papers on the subject, seems to be in order. In the first place the 

component p~ is the quantile function corresponding to the power 

) . 
distribution F (x) = x"I3, 0 < x < 1 and the factor (1- Pt to the quantile 

) 

function of the Pareto distribution F (x) = 1- x;;, x> 1. The two distributions 

have special relevance as models of income. Further (3.22) can be thought of 
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as generated to be the sum of two quantile functions (with appropriate 

location and scale changes) according the result stated in (ii) of Section 3.2. 

To compare the Ramberg-Schmeiser (1974) and Friemer et al. (1988) 

families, we assume without loss of generality that the two have the same set 

of parameters with Q! (p) and Q2 (p) as their respective quantile functions. 

Then 

so that the changes between the two is basically in scale and in the shape. 

3.3.2 Density Quantile Function 

The quantile density function is obtained from (3.2) as 

(3.23) 

A related quantity obtained by replacing x, in the probability density function 

J (x) of X by the quantile function Q(p) is the density quantile function 

1 ~ 
J(Q(p))=-( ) = ~-! (1 }'4-1 

qp p + -p 
(3.24) 

Plotting the density for given A" A2, ~, ,14 requires evaluation of (3.24) for 

various values of p ranging from zero to one. Then J (Q(p )) is plotted on 

the Y -axis versus Q(p) on the X -axis. Eventhough A, does not 

explicitly appear in (3.24), the density is a function of A, since it is defined in 

terms of Q(p), which depends upon ~, as can be seen from (3.22). The 

ordinates at the extremes are given by 

J(Q(O)) = f(Q(1)) = ~ 

= 0 
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f(Q(O))=O and f(Q(l))=~ when ~ <1 and A4 > 1 

f(Q(O))=~ and f(Q(I))=O when ~ > 1 and A4 <1. 

A detailed study of density shape classification of MLF is given in Freimer et 

al. (1988). MLF contains unimodal (~,A4<1 or ~,A4>2), U-shaped (~ 

and A4 lies in [1,2]). J-shaped (A., > 2 and A4 in [1,2]) and monotone (A., > 1 

and A4 < 1) pdfs. We have illustrated in Figure 3.2 the shapes of density 

functions for different values of the shape parameters. 

3.3.3 Characteristics of MLF 

Defining the quartiles Q by p( X < Q) S; ~ and 

p(X> Q) S; 1-~, i = 1,2,3. the Median of MLF is given by 

Me = Q, =;' I l [ OS~ -1 _ 05:: -1 ] (3.25) 

When ~ = A4 , Me = A, . 

Inter quartile range is given by 

fOR = Q _ Q = _1 [0.75,13 - 0.25"'3 + 0.75"'4 - 0.25"'4] (3.26) 
- 3 1 ~ A., A4 

The quartile deviation now becomes 

40 



--, 
(j 
" • 
" 

• \ 
, , 

... t "'l/ 

" 
'-, " 

• • " • " " 
, , 

" 
" 
o •. 

" 
I o. 

o • 

., .. .. 
. , •• 0 

Figure 3.2 

Density Function 

E ......... ,I i 

• " • • " 

--
,. 

" 
, 

• 
" 
" 
• 

" " " 

MI ...... 

~ 
" 

E .... u • .ul i , 

" 

" 

" • • " 
, 

" 

.u- .... ...... <u 

0 .' , .. • , 

41 

~ 

" 

F_"" JI 

" 

-'.' .......,_ 1 

• •• 



given by 

Galton's measure of skewness defined in terms of quartiles is 

s = Q3 -2Q2 +Q 
Q3 -Q) 

,,14 [ 0.75~ - 2( 0.5A) ) + 0.25}'3 ] - ~ [ 0.75A~ - 2( 0.yl4 ) + 0.25/c4 ] 
=~~----~--------~~~--------~~-----= 

,,14 [ O. 75 A3 - 0.25,i) ] + ~ [ 0.75A~ - 0.25 A4 
] 

(3.28) 

Moor's kurtosis measure is 

where 0;, i = 1, ... ,7 
I 

are the octiles defined by p( X < 0; ) ~ '8 and 

For the MLF, 

(3.29) 

Clearly S = 0 when ~ = ,,14 and the distribution is symmetric. When ~ = 1, 

,,14 = 00 or ~ = 00, ,,14 = 1 , then also S = 0 but not symmetric. Now consider 

the figures 3.3 and 3.4. From the figures we can arrive at the following 

conclusions. 
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Case (i) ~ < 0 

S > 0 when ~ > A4 

S < 0 when ~ < A4 

S decreases monotonically with respect to A4 • 

Case (if) 0 < ~ < 1 

Here also S > 0 when ~ > A4 

S < 0 when ~ < A4 

But S decreases to a negative value and then slightly increases but attains a 

constant negative value itself. 

Case (iii) 1 < ~ :s; 2 

S == 0 for two values of A4 , one exactly at A4 == ~ and another point 

which is greater than ~,say Av. S > 0 when A4 < ~ and A4 > Ao and S < 0 

in the interval (~,Av). 

Case (iv) 2 < ~ < 3 

In this region, S ~ 0 for every value of A4 except for some values in 

2 < A4 < 3. 

Case (v) ~ ~ 3 

Here also S == 0 for two values of A4 , one at a point which is less 

than ~, say Ao and another at A4 = ~. Here also S > 0 when A4 < Aa and 

A4 > ~ and S < 0 in the interval (Ao'~). 

Similarly we can observe the variation of S with ~ by fixing the 

value of A4 • 
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Case (i) ,14 < 0 

S increases monotonically with ~. 

S < 0 for ~ < ,14 

S> 0 for ,13 > ,14 

Case (ii) 0 < ,14 < 1 

S > 0 for ,13 > ,14 

S < 0 for ~ < ,14 

But S monotonically increases to a positive value and then slightly decreases 

and attains a constant positive value. 

Case (tU) 1 < ,14 < 2 

S == 0 at two points, one at ~ == ,14 and another at a point greater 

than ,14' say Av . 

S < 0 when ~ < ,14 and ~ > ,10 

S > 0 in the interval (,14 ,Av). 

Case (iv) 2 < ,14 < 3 

S < 0 for all values of ~ except for some values in 2 < ~ < 3. 

Case (v) ,14> 3 

S = 0 at two points of ~, one at a point less than ,14' say Av and 

another at ~ == ,14' S < 0 when ~ < Av and ~ > ,14' S > 0 in the interval 

(,10,,14) . 

Now the three dimensional view of skewness by taking ~ along 

the X -axis and ,14 along the Y -axis is given in figure 3.5. 

Moor's kurtosis measure T == 1 when ~ == ,14 == 1 and ~ == ,14 == 2. 

The three dimensional view of kurtosis is given in figure 3.6. 
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Now the k III raw moment of MLF is 

1 

E(Xk)= [Q(p)J dp 
o 

I k 

= K a + bQ* (p) ] dp 
o 

k 1 

= Lak-rbr K Q* (p) J dp (3.30) 
r=O 0 

where 

and 

(3.31) 

Using this, Lakhany and Mauser (2000) derived expressions of mean, 

variance, third and fourth central moments of MLF. 

The L -moments defined in the previous section are obtained for 

MLF as follows. 

(3.32) 
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(3.33) 

(3.34) 

1( 1 6 10 5 1 6 10 5 J 
p 4 = ~ 1 + ~ - 2 + ~ + 3 + ~ - 4 + ~ + 1 + 14 - 2 + 14 + 3 + 14 - 4 + 14 

(3.35) 

Using these we get the L -coefficient of variation, skewness and kurtosis of 

MLF as P2 P3 and P4 respectively. 
PI P2 P2 

Now two special cases of probability weighted moments defined in 

(3.21), when t = 1, s = 0 and t = 1, r = 0 are obtained for MLF as follows. 

~ 1 1 [ 1 ] 
wr,o = r + 1 - ~ (r + 1)( ~ + r + 1) + ~14 r + 1 - P (r + 1,14 + 1) 

(3.36) 

and 

~ 1 1 ( 1 ) w =-+ +-- P +1 s+l --
o,s s + 1 ~ ( s + 1)( 14 + s + 1 ) ~~ ( ~ , ) s + 1 

(3.37) 

3.3.4 Modified lambda family as a model of income 

The primary objective of present study being modeling income 

using the quantile function approach in which the modified lambda family is 

the basic tool, it is necessary to examine how far that family is appropriate in 

such a context. Various properties of the family derived in the previous 

section serve as back ground materials for application, provided that there is 

sufficient justification for the lambda family to represent income data. We 
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have provided in Chapter 11 a review of probability distributions used in 

literature that could serve as models of income. These include the Pareto 

type I, Pareto type 11, exponential, lognormal, gamma, Weibull, Singh­

Maddala, Oagum type I, 11 and Ill, Fisk, generalized beta etc. with each model 

justified in terms of its appropriateness in particular situations, with no model 

enjoying universal acceptance over time and space. In the present section 

we study the modified lambda family vis-a-vis its relationship with the above 

distributions either as a particular case or as a limiting case or as an 

approximation. 

(i) In the quanti!e function of MLF at (3.22) 

so that 

or 

Setting ~ = 0' , ~ = aO'-1 and A4 = _a-I, we get the Pareto type I 

distribution (2.1). Since p < 1, the convergence of p~ / A3 to zero in the 

above limit for a desired degree of accuracy is attained for a moderate value 

of ~ > 1 . Notice that in the above case, A4 < 0 and x p ~ ~ > 0 are 

necessary conditions for the MLF to fit a Pareto I data. In this case, the 

quantile estimates proposed by Quandt (1966) becomes useful. 
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(ii) As before taking limits as ~ ~ 00 

which shows that the MLF reduces to the Pareto type 1I distribution with 

1 a 
moderate ~ > 1, A4 = -- < 0 and ~ ::: -. Notice in this case that in (2.2 ) 

a (J" 

the parameter f.1 = ~ . 

(iii) The Weibull distribution (2.6) has the quantile function 

1 

Q(p)= p[ -log(l- p)} 

so that, it is not a member of the MLF but can be approximated through the 

relationship 

(iv) The Singh-Maddala (1976) model in equation (2.7) is governed by 

the equation 

which means that the transformed variable Y = ( ~J has MLF with 

1 
parameters A, =0, ~ =q, 14 =-- as A, ~oo. 

q 

(v)Arguing in the same way as above, the Oagum distribution provides 

( 
b \U 

Thus the transformation Y::: X) leads to MLF with ~ = 0, ~ = -c , 

1 
)"') = -- and A4 ~ 00. 

C 
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( vi) On similar lines the Fisk distribution (2.11 ) can be expressed as 

or 

(3.38) 

The right side of equation (3.38 ) represents the product of quantile functions 

that represent the power distribution F (x ) ~ ( ; J with scale parameter b 

and shape parameter a and the Pareto distribution F (x) = 1- x -a, X > 1 with 

shape parameter a. Both the component distributions are in MLF. 

In addition to the above as ~ ~ 0 or -14 ~ 0 we have the 

exponential model, as both ~ and -14 ~ 0 the logistic model and as ~, -14 

both tends to unity or two or when ~ ~ Cl) and -14 tends to unity or when ~ 

tends to unity and -14 tends to infinity the resulting distributions are uniform. 

Also when ~ = -14 = 0.1349 MLF describes the normal with a maximum error 

of 0.001. By equating the quantile measures of location, dispersion, 

skewness and kurtosis of the other distributions to those of the MLF we can 

get reasonably good approximations. For e.g. the Singh-Maddala distribution 

with a = 10, b = I, q == 0.5 is a close approximation to the MLF with 

,1,=1.09246, ~:::7.01713, ~=0.310545 and -14 =-0.36819 (see Fig. 3.7). 

Thus the MLF appears to be a flexible family that could accommodate many 

of the income models through a judicious choice of the parameter values in a 

practical situation. 
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3.5 Income Inequality Measures 

A detailed review of income inequality measures which are 

common in the analysis of income data has been done in Chapter 11. In the 

present Section we try to express those inequality measures in terms of 

quantile functions. Moreover the closed form expressions of those measures 

for MLF are obtained. The existence of income inequality measures in closed 

form is an attractive feature of MLF to be used as an income model. 

The definition of Lorenz curve which is already in the quantile form 

is given in (2.18). Tarsitano (2005) derived the Lorenz curve for Ramberg and 

Schmeiser model. Sarabia (1996) used this to define a hierarchy of Lorenz 

curves. 

For MLF the Lorenz curve is given by 

where 1 [1 1] Jl=E(X)::::~+- ---~ . 
~ A4 + 1 ~ + 1 

Also f-1 = Q(po) for some 0 < Po < 1. We can find Po by solving for p in the 

equation Jl = Q(p). 

Gini index can be expressed in terms of L (p) and is given in 

(2.19). For MLF it is given by 

G = Jl-1 ~ -I { 1 + 1 1 
(~+l)(~ +2) (A4 +1)(A4 +2)f 

(3.40) 

The absolute mean deviation (2.24) can be given in quantile form 

as 
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1 

71 = ]Q(u)-Q(Po)!du 
o 

and for MLF 7] is given by 

(3.41 ) 

The relative mean deviation and Pietra index are given respectively 

by 7 - ~ and P = ~ . Now the coefficient of variation (2.27) of MLF is 
2 - P 2p 

obtained as 

1 1 
~~+ -------

CV=-r====================1=+=A=4==1=+=~=================== 
1 

----_. -- ---

2 2 f3 (1 + ~, 1 + A4) 1 (1 1)2 
~ (1 + 2~ ) - - -- ~~4 + A/ ( 1 + 2A4) - ~( 1 + ~) - A4 (1 + A4) 

(3.42) 

The three measures proposed by Frigyes given in (2.30) can be 

translated into quantile forms as 

1 

PoQ(po) 
U = -----'--

Po ' 

J Q(p)dp 

f Q(p)dp 
v=~,,--,,-Po __ _ 

1 p Po 
- 0 J Q(p)dp 

o o 

and 

] 

fQ(p)dp 
w = --'-'Po'---__ _ 

(1- Po)Q(po)" 
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For MLF, 

(3.43) 

(3.44 ) 

(3.45) 

The quantile form of Atkinson measures given in (2.21) is 

I 

{j(Q(p)t' dp t' 
Ac=l-~~I ----~-

JQ(p)dp 
o 
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and that of generalized entropy measures (2.22) and (2.23) respectively are 

If Q(p) Q(p) If Q(po) 
T; = ( ) log ( ) dp and T2 = log () dp. 

o Q Po Q Po 0 Q p 

The quantile form of the entropy measure (2.29) suggested by Ord et al. 

(1981) is 

The expressions of the above four measures do not exist in closed form for 

MLF. 

Now generalized Gini index (2.35) and Zenga curve (2.36) are in 

quantile forms itself. 

For MLF, Generalized Gini index, 

Gn =1-n(n-l),u-I{A,tJ(2,n-1)+ / )tJ(n-l,~+2)- ~+l )tJ(2,n-l) 
~~ ~+1 ~~ ~+l 

_ 1 + ,,14 +1 tJ(2 n-l)} 
~,,14 (,,14 + 1)( n + ,,14) ~A.4 (,,14 + 1) , 

(2.36) is the same as 

For MLF, 

Z(p) = 1- Qp(p )Q(po) 

JQ(u )du 
o 
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4.1 Introduction 

CHAPTER IV 

ESTIMATION AND FITTING 

In the previous chapter we have introduced the modified lambda 

family with the objective of considering it as a plausible model of income 

distribution. Supplementing the theoretical justifications given earlier for using 

MLF as an income model due to its versatility it is essential to establish its 

empirical validity by showing that members of the family fits income data. 

Towards this endeavour in the present chapter our attempt is to devise 

procedures for estimating the parameters of the MLF, establish some 

theoretical results that supports the use of such estimators and finally show by 

goodness of fit procedures that the distribution describes the data adequately. 

Since our aim is to substantiate the relevance of MLF as an income model, a 

deeper analysis of the proposed estimation procedure vis-a-vis other 

competing methods is not attempted. However, a short review of the existing 

procedures for estimating the parameters of the MLF has been conducted in 

Section 2, for the sake of completion. The new estimation procedure based 

on comparing selected characteristics in the population and in the sample is 

presented in Section 3. In Section 4, MLF is fitted to a real income data along 

with the assessment of the goodness of fit through Chisquare criterion. 

Finally in Section 5, the accuracy of the estimates a'rrived at by the proposed 

procedure is compared with those of the method of moments and percentiles 

through a simulation study. 

4.2 Review of estimation techniques 

Due to the mathematical form of the quantile function and the 

extent of the parameter space induced by the four parameters, the likely 

correlation between the estimates and time consuming operational problems 

renders the question of obtaining appropriate parameters for the MLF often a 

challenging task. There are many general methods of estimations prescribed 
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for the Ramberg and Schmeiser (1974) generalized lambda distribution 

mentioned in equation (2.38), but the formulas therein do not apply 

themselves to MLF. Hence our discussion of the present section confine only 

to those specifically confined to the MLF. 

King and Mac Gillivray (1999) proposed the starship method which 

consists in 

(a) transforming the data on X to F(X) 

(b) calculating the value of the Kolmogorov distance or Anderson­

Darling distance for the values of F (x) and the uniform distribution 

over (0,1) 

(c) choosing A - values that minimizes the distance. In a discussion of 

the method, the authors point out that it is of 'numerically intensive 

nature' requiring computer power to fit the data and analytical results 

are not available for the expected value and standard errors of the 

estimates. 

Tarsitano (2005) considered the quantile function 

which contains five parameters, A, for location, ~ and A, representing scale 

and ,,1,4 and As describing the shape. The model according to the author 

contains MLF and therefore his general conclusions about the estimates 

remain valid for the latter. Various methods of estimation discussed are 

percentile method that matches five selected sample percentiles with 

corresponding theoretical percentiles, method of moments, matching 

probability weighted moments E[Q(Pi)]' i = 0,1,2,3,4 with the sample 

counterparts 

1 n n} i 

to =-LC}, ti = L C}I1(j-r)/I1(n-r). i=1,2,3,4 
n }=l }=i+l r=! 1'=0 

where et s midpoints of class intervals, minimum distance method using 

Cramer - Von Mises statistic, that minimizes 
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where F is the estimated p value that would generate the observation Xi' 

maximum likelihood estimates obtained by minimizing the negative log­

likelihood 

k 

L = - I ni ( F (Xi) - F ( X H ) ) 

i=1 

and the Pseudo least square approach based on 

The simulation study for comparing the different methods for 36 configurations 

revealed that the minimum distance and probability weighted moments 

approaches gave the 'worst' results. Further, the method of maximum 

likelihood had given results 'slightly better than these obtained by minimum 

distance, but not by an amount of any practical importance besides both being 

computationally demanding. The percentile, moment and Pseudo least 

squares were reported to give desirable results. 

King and Mac Gillivray (2006) introduced the notion of spread 

functions 

in defining shape functionals 

and 

by which estimates that minimize the distance between sample and 

population values of the functionals were proposed. For the MLF short tails 

were found to be problematic in the estimation procedure. Due to the various 

limitations pointed out in starship method, maximum likelihood, minimum 

distance and shape functionals, consideration will be given in the present 

study to computationally simple and reasonably accurate methods using 
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percentiles and moments. First we present a new procedure for estimation by 

matching selected characteristics in the population and in the sample. 

4.3 New Estimation Procedure 

The method proposed in the present section resembles that of the 

classical methods of selected points, with the difference that the points 

chosen here is derived by matching the basic characteristics of the distribution 

viz. location, dispersion, skewness and kurtosis with those in the sample. The 

choice of the characteristics ensures that the parameter values determined 

there from corresponds to the true values that provide the same location, 

scale and shapes with a reasonable degree of accuracy. The accuracy 

results empirically from the criterion for optimization and theoretically from the 

asymptotic properties established in the sequel. The measures of location, 

dispersion, skewness and kurtosis involved in the new estimation procedure 

are the quantile based measures viz. Median, Quartile deviation, Galton's 

coefficient of skewness and Moor's kurtosis measure respectively. The 

expressions relating to these measures were obtained in equations 

(3.25),(3.27),(3.28) and (3.29) in the previous chapter. Hence the method of 

estimation of the parameters Ai' i = 1,2,3,4 in the model (3.22) is by solving 

for the Ai's from the equations obtained by setting (3.25), (3.27), (3,28) and 

(3.29) respectively equal to the corresponding measures in the sample. To 

accomplish this, we define the pth quantile corresponding to a random 

sample (X1,X2 , ••• ,XJ of observations on X as the pth quantile ~p of the 

sample distribution function F;I (x) = .!. ! 1 (Xi ~ x) where 1 (.) is the 
n i=1 

indicator function. Denoting the sample median, quartile deviation, measures 

of skewness and kurtosis by m,r,s and t based on ~p the problem is to 

solve the simultaneous equations 

1 [0.5,{J -1 0.5'''4 -ll A,+- - =m 
~ ~ ,,1,4 

(4.1 ) 
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1 [°.75'1.1 
- 0.25)') 0.75'" - 0.25"· ] 

-- + =r 
2~ ~ ~. 

(4.2) 

A4 [0.75)") - 2 x 0.5~ + 0.25''-) ] - --s [ 0.75)'4 - 2 X OS'4 + O.25A4 ] 
--~----~~--------~--~--------~~-----==S 

A4 [0.75 A
) - 0.25~ ] + A3 [0.75'" - 0.25'" ] 

(4.3) 

A.4 [ 0.87 5)~ - 0.625'" + 0.3752
, - 0.1252

, J + ;t, [ 0.87 Y" - 0.62Y<' + 0.3752
, - 0.125-<' ] 

A.
4

[0.7Y" -0.25).']+;t,[0.7yi4 -0.25 ,14 J =t 

(4.4) 

It may be noted that the above equations are non-linear and therefore, ends 

up with more than one quadruple of (~,~,~,A4) values that satisfy them. 

The solutions being unrestricted, some set of solutions may not be within the 

range prescribed for the A'S in Chapter 3, so that a proper probability 

distribution will not result. Secondly when more than one set arise as solution 

with admissible range, there is the question of some criterion that 

distinguishes the best solution. A solution to the first problem is to discard A 

values that do not fall within the parameter space. Answering how a choice 

be made when multiple admissible solutions occur can be made with the aid 

of an optimality criterion. One simple way of devising such a criterion is to 

ensure that the difference between the estimated values and the sample 

values of the measures of location, dispersion , skewness and kurtosis are 

within a preassigned small value. Since there are four such differences the 

criterion is prescribed as 

e = max(IM - ml,IR - rj,IS - sl,lr - tl) < £ 

for some positive £ , sufficiently small. 

The computation of the solutions are carried using the command 

'FindRoot' in Mathematica, which requires a set of initial values for the A'S to 

initiate the solution. While different initial values in some cases, may give 

different solutions, the e criterion is invoked to find the best among them. 

Thus empirically the method proposed leads to a unique solution within the 
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parameter space that nearly reproduces population characteristics that 

matches these found in the sample. 

Our next step is to show that the procedure can also be justified 

from a theoretical stand point. Consider a sample of size n from a one-

dimensional distribution of the continuous type with distribution function F (x) 

and density function [(x). Let C;p denote the pth quantile, 0 < p < 1 and 

suppose that in some neighbourhood of C;p' [(x) is continuous and has a 

continuous derivative ['(x). Then it is known that (Serfling, R. J. (1980)) the 

pth sample quantile z p is asymptotically normal (';p, J (~p ) ~ :q l Further 

as a special case the median of the sample m is a strongly 

consistent estimator of the population median M = ;1 and 
"2 

further m = Z l is asymptotically normal N ( M, ~ n [l' ( M) J'). Then rn 

belongs to the class of CAN estimators. In the same manner, 

1 
r = - (z - 7 ) is also a CAN estimator with 2 0.75 ~O.25 

distribution 

large values of n. The results in Serfling (1980) concerning the functions of 

quantiles can be adapted suitably to the result that (s, t) is consistent for 

(S,T) and .[;,(s-S,t-T)" has asymptotic bivariate normal distribution with 

mean (0,0 rand dispersion matrix ~' ( c ) A [~' (c) J where 

~(c)=(S,T)" 

and * denotes the transpose. The expected values of m - M, r - R, s - S 

and t - T being zero for large samples, our estimating equations m = M , 

r = R, s = Sand t = T provide A values that agrees with the above 
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expected values with small variations implied by the consistency of the 

estimators. 

4.4 Fitting MLF to income data 

Having set the background material for inference, the next 

important stage in model building is to test the model against the observations 

for adequacy. For the purpose, we consider the income data from Arnold 

(1983); referred to as 'Texas counties data' consisting of 157 observations. 

Each observation represents the total personal income accruing to the 

population of one of the 254 counties in Texas in 1969. The 157 included in 

the present data set represent all the Texas counties in which total personal 

income exceeds $20,000,000. 

From the observations, the sample characteristics required for our 

estimation procedure are computed as 

m=46.3, r=37.25, s=O.5651, (=2.4362 

Substitution in equations (4.1) through (4.4) and following the e criteria in the 

computational process gave the following admissible solutions (using 

Mathematica) 
,.. " ..... A 

~=27.3207, ~=0.0441223, ~=3.86057, A,4=-1.19399 

Of the various possible values of the A' s for different initial values above 

estimates are optimum according the e criteria that gave the maximum error 

of e = 0.0282 . In order to assess the appropriateness of the MLF with the 

above parameter values for the given observations, a frequency distribution 

was formed by classifying the data into 10 intervals (the class interval was 

taken unequal for larger incomes to accommodate a reasonable frequency) 

and the corresponding expected frequencies using the above estimates of the 

parameters are exhibited in Table 4.1. 
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Table 4.1 

Lambda distribution fit for Texas Counties Data 

Class intervals Observed frequency Expected frequency 

<30 39 41 .8895 

30-40 27 25.9491 

40·50 13 15.7135 

50·60 13 10.6738 

-

60·70 6 7.78014 

70-80 11 5.94857 

80·100 8 8.53515 

100·200 15 18.1278 

200·500 16 12.121 

>500 9 10.2614 
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The chi-square goodness of fit test provides x' = 7.884 that do 

not reject the hypothesis that observations follow the MLF. The histogram of 

the data and the frequency curve from the expected frequencies for the 

various class intervals are shown in Fig 4.1. Thus it is clear that MLF could 

be used as a model of incomes and that our method of estimation provides 

estimates of reasonable accuracy. 

Figure 4.1 

Histogram with MLF fit 
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Though the new procedure of estimation has both empirical and 

theoretical support. it is of interest to know how it fares in comparison with 

some of the standard methods. For reasons noted in Section 2 of the current 

chapter where review of the different approaches were taken uP. for 

comparison purposes we choose the method of percentiles and method of 

moments. 
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Since our expressions for the sample statistics are non-linear in the 

parameters analytic derivations of the standard errors of the A' s are difficult 

to obtain. Hence a quick assessment of the sampling variations in the 

estimates for the given data is not possible. Therefore we have conducted a 

simulation study to assess the standard errors of the estimates for 

comparison with other methods. These are presented in the next Section. 

4.5 Comparison with the Methods of Moments and Percentiles 

The most popular approach for estimating parameters in various 

forms of the lambda distribution is based on matching the first four moments 

of the empirical data with those of the population. In our approach, measures 

(M,R,S,r) provide alternatives to the moment induced quantities 

(p,a 2
, /31 ' /32 )' We have preferred the former set in view of the following. 

(i) The method of moments is restricted to distributions possessing 

fairly light tails because they must have finite moments. Heavy tails 

usually observed in empirical distribution does not support such a 

premise. Moreover, the sample moments are sensitive to extreme 

observations or other contaminants in the data and sampling 

variability in higher moments can be large. In income data usually 

the interval lengths are taken unequal then the estimated moments 

cannot be subjected to corrections for grouping, resulting in highly 

biased estimates. 

(ii) Existence of moments requires restrictions on the parameter space 

that are not always satisfied by the solution. This is not a necessary 

condition for using M,R,S and T. 

(iii) The quantities M,R,S and T can be found graphically and further 

has the advantage of being operative without the necessity of knowing 

every measurement. 

(iv) Sand T are invariant under location and scale and R is location 

invariant. 
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(v) The numerical values (s,r) show the same pattern of behaviour 

as (P1' P2)' except for the difference in size of the numerical values. 

Thus from a theoretical stand point the method proposed in the 

present study has several advantages over the method of 

moments. 

The percentile method to fit MLF to a given data consists in 

equating four suitably sample quantiles to their MLF counterparts and solving 

the resulting equations for A" ~, ~ and ,,1,4. The four sample statistics are 

defined by 

PI = Q(0.5) 

P2 = Q(0.9)-Q(0.1) 

A Q(0.5)-Q(0.1) 
P3= Q(0.9)-Q(0.5) 

A Q(0.75)-Q(0.25) 
P4 = A 

P2 

These sample statistics have the following interpretations. PI is the sample 

median; P2 is the inter-decile range, i.e. , the range between the 10th 

percentile and 90th percentile; P3 is the left-right tail-weight ratio, a measure of 

relative tail weights of the left tail to the right tail (distance from median to the 

10th percentile in the numerator and distance from 90th percentile to the 

median in the denominator); and P4 is the tail weight factor or the ratio of the 

inter-quartile range to the inter-decile range, which is ~ 1 and measures how 

great tail weight is (values close to 1.00 indicate the distribution is not spread 

out greatly in its tails, while values close to 0 indicate the distribution has long 

tails). 

For MLF, these measures are obtained as 
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_ 1 [0.5,13 -1 OS'" -1] 
PI - ~ + ~ ~ - ,,14 

= _1 [0.9)"3 -O.e"l + 0.9A
• -0.1..14

] 

P2 ~ ~ ,,14 

,,14 [O.5~ - O.e] ] + ~ [0.9A
, - 0.5 A

, ] 

P3 
= ,,14 [ 0.9~ - 0.5~ ] + ~ [ 0.5 i

'4 
- 0. e 4 

] 

,,14 [ 0. 75 A3 
- 0.25)'4 ] + ~ [ 0. 75 A4 

- 0.25 A
, ] 

P =--~~------~--~--------~~ 
4 A4[ 0.9 A

) -0.1~ J+~[0.9)4 _0.144 
] 

~ ~ A A 

mathematica we get the estimates ~, ~, ~ and ,,14' The computational 

aspects discussed for the new method are valid for the percentile method as 

the four equations are nonlinear. 

To assess the performance of the above three competing methods 

we have conducted a simulation study by generating samples of size 33 (to 

accommodate the quantiles) from MLF with parameters ~ = 13.7, ~ = 0.2, 

~ = 0.4 and A4 = 0.01. The parameters were then estimated using the three 

methods. The same procedure was repeated for samples of size 66. The 

bias and S.E are presented in Table 4.2. 

Based on the simulation studies carried over several samples have 

revealed the following features associated with the various methods. 

The absolute bias in the new method tend to decrease with 

increasing sample size for the estimates of all the four parameters, though the 

reduction in bias is not considerable. The estimates are thus more or less 

stable. This is confirmed by almost the same type of behaviour seen in the 

case of the mean square error as well. 
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Table 4.2: 

Bias and Mean Square Error 

Estimation Method Parameters Sample Absolute Bias Mean Square 

Size Error 

~ n =33 0.0407 0.163 

New Method n =66 0.03942 0.0927 

A2 n = 33 0.00088 0.000697 

n= 66 0.00084 0.000682 

~ n =33 0.0608 0.0116 

n = 66 0.0564 0.01365 

A4 n = 33 0.0612 0.0346 

n = 66 0.0563 0.0322 

~ n = 33 0.0459 0.1522 

Method of Percentiles n = 66 0.0622 0.1543 

A2 n =33 0.0007 0.0008 

n =66 0.0099 0.00377 

~ n = 33 0.0571 0.0169 

n= 66 0.01499 0.0184 

A4 n =33 0.0622 0.0397 

n = 66 0.0165 0.03796 

~ n =33 0.23695 0.1894 

Method of Moments n =66 0.1854 0.1451 

~ n =33 0.0314 0.0063 

n= 66 0.0296 0.0044 

~ n =33 0.2422 0.1459 

n = 66 0.2074 0.1088 

A4 n =33 0.1234 0.062 

n = 66 0.1186 0.0597 
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The percentile method shows larger bias for ~ , fluctuating bias for 

~ and decreasing bias for ~ and A4 • Generally the numerical value of the 

bias is seen larger than that of the new method. The mean square errors are 

lower for the new method, showing that there is more concentration of the 

estimates about the location measure .. 

Of the three methods, the method of moments fares the worst 

having produced considerably larger bias and mean square errors than the 

other two methods. Over all the impression gathered from the simulation 

study is that our method compares favourably and at times better than the 

method of percentiles and moments. 
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CHAPTER V 

IDENTIFICATION OF MODELS BY INCOME CHARACTERISTICS 

5.1 Introduction 

The present study so far focussed attention on the approach to 

modeling income data by using the quantile functions as an alternative to the 

distribution function traditionally employed in most of the situations. A 

particular quantile function proposed in Chapt~r III capable of generating the 

flexible family of distributions named as the modified lambda family, was seen 

to represent a potential income model in the sense of rendering a good fit to 

income data. A serious limitation to this approach was the lack of a stochastic 

mechanism that account for the distribution. Alternatively in the absence of 

stochastic arguments, one may also think of inherent characteristics of 

income data that may give rise to a unique distribution so that the data 

generating mechanism can be spelt out through the concerned characteristic. 

In other words the model appropriate to a given population of incomes can be 

based on a characterization satisfying the particular nature of an income 

characteristic suitable to that population. The objective of this chapter is to 

build up a theoretical frame work for this purpose. This needs well accepted 

choice of income characteristics that can distinguish various distributions and 

amenable to analytic treatment. We have selected the concept of income gap 

ratio and the truncated f()rm of Gini index for characterizing income 

distributions. Results are obtained for both distribution functions and quantile 

functions, by starting with the former and then making deductions to the latter 

case. The rest of the chapter consists of five more sections. In Section 2 we 

introduce the definitions of the Income Gap Ratio and Truncated Gini Index. 

We show in Section 3 that a(t) uniquely determines the distribution F(x) 

and that the power distribution is the only continuous distribution for which 

a (t) and G (t) are independent of the truncation point t. Further it is proved 

that (1 + G(t )).u(t) can characterize the income distribution. Similar results 
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concerning the affluent are proved in Section 4. The monotonic behaviour of 

the income gap ratio can be used as a criterion to classify income distributions 

that help the choice of the distribution as model of income. In Section 5 some 

results in this connection are presented. In the last Section almost all the 

results in the above sections are converted into the context of quantile 

functions and the income gap ratio and truncated gini index of the MLF have 

been evaluated. 

5.2 Income gap ratio and truncated Gini index 

Most of the indexes of poverty or affluence associated with income 

data are generally based on the proportion of people belonging to that 

category along with their income distribution through the income gap ratio and 

some measure of income inequality like the Gini index truncated at the 

appropriate level of income. Sen (1976), Takayama (1979) and Sen (1986, 

1988) deal with such indexes and their properties. Since the income gap ratio 

and truncated Gini coefficient have a vital role in the definition of an index, it is 

important to investigate their relationships with the basic income distribution. 

In situations where these quantities are estimated from the observations 

without knowing the form of the distribution of incomes, (e.g. non-parametric 

estimation of income gap ratio and Gini coefficient) one basic question is 

whether the values of these functions at different levels of income enable the 

determination of the income distribution of the population. Theoretically the 

problem looks at the derivation of the distribution function of incomes based 

on the functional form of the income gap ratio and the truncated Gini 

coefficient. The present chapter focuses attention on this problem and some 

related issues like classification of income distributions on the basis of the 

behaviour of income gap ratio. Analogous results for quantile function of 

incomes have also been discussed in this chapter. We first present the basic 

definitions of the income gap ratio and truncated Gini index using the 

distribution function approach. 

Let X be a non-negative random variable representing the income 

of a community of individuals with absolutely continuous distribution function 
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F(x), survival function F(x)=I-F(x) and density functionf(x). 

Assuming the poverty line X = t, the proportion of poor people is F (t ) and 

their income distribution becomes that of the random variable (XiX:::; t) viz. 

F(x) 
tF(x)= F(t) 

=1 

x:::; t 

x> t. 

The income gap ratio of the poor people is defined as 

a(f)=l-E( ~IX~f) 
I 

fyf(Y)dY 
=1--"-°----,----,-

tF(t) 

(5.1 ) 

(5.2) 

Using the standard definition of the Gini coefficient in (2.33) the truncated 

version relating to those below the poverty line is 

-I t 

G(t) = 1- 2[,u(t)] Jy [F(y Lf(y )dy 
o 

=1-2[,u(t)]-1 fY(1- F(Y))f(Y) dy (5.3) 
o F(t) F(t) 

where 

1 t -

,u(t) = -( ) Jyf(Y)dY = E(XIX:::; t) 
F t 0 

(5.4 ) 

is the average income below the poverty line. 

Analogously with reference to an affluence line X = t* the 

incomes for the affluent {X Ix > t*} has distribution specified by 
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_ F(x)-F(t*) 
I-F(t*) 

The income gap ratio of the affluent is then 

* *(*) 1 t a t = - -E-:---( x-I X-~-t-----:-* ) 

t* F(t) 
= 1 - -Cf:;;--'----"--

fyf(Y)dY 
t* 

* x> t 

and the corresponding truncated Gini coefficient becomes, 

(5.5) 

(5.6) 

*( *) [ *( *)J-I Cf:;;f F{y) f{y) (5.7) 
G t = 1 - 2 f-1 t Y - ( *) (* ) dy 

t* F t F t 

where 

(5.8) 

These definitions will be employed in the next section to develop 

characterization of F in terms of a(t), a* (t*), G(t) and G* (t*). 

5.3 Characterization of income distributions 

First we establish a one-to-one correspondence between income 

gap ratio and the base line income distribution. 

Theorem 5.1: 

If X has an absolutely continuous distribution function over (0,00) 

with finite mean and income gap ratio a (t) which is differentiable, then 

[ 
Cf:;;fl- a(y) - ya'(y) ] 

F (t ) = exp - dy ,t > O. 
t ya(y) 

(5.9) 

Proof: From the definition (5.2), 
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t 

(1- a(t ))tF(t) = fyj(y)(ZV 
o 

Differentiating with respect to t and re-arranging terms 

j(t) _ l-a(t) _ a'(t) 
F(t) - ta(t) a(t) 

Integrating from t to 00, 

[ ( )Joc _ ""f1- a(y)- ya'(Y) 
InF t - () dy 

I I ya Y 

which leads to (5.9). 

This theorem shows that using the functional form of a (t) one can 

determine the income distribution. Usually income gap ratios computed at 

several pOints of income are available directly from the income data without 

making assumptions about the income distribution. Empirically it is possible 

to draw conclusion about the form of the income gap ratio by plotting a(t) 

against t. We now establish some sample functional forms of a(t) that 

characterize income distributions. 

Theorem 5.2: 

The only continuous distribution for which the income gap ratio is a 

constant is the power distribution 

F(x) =(~ r ,0 < x < c,c,a > O. (5.10) 

Proof: Suppose X follows the power distribution (5.10). Then from 

definition (5.2), 

a (t) = _1_ , which is a constant. 
a+l 

Conversely, let a(t) = k , a constant less than unity. Then from (5.9), 

l-k 

F(X)=m
T 
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which is the power distribution with 

Remark: 

l-k 
a::::-->O. 

k 

The above result can be used to ascertain the changes in the 

income distribution (e.g. number of individuals whose income has to be raised 

to the next level) inorder to have a designated reduction in the income gap 

ratio. 

An analogous result for the power distribution exists regarding the 

truncated Gini coefficient relating to the poor. 

Theorem 5.3: 

If X has absolutely continuous distribution function F (x) 

satisfying E( XF (X») < C(l, then the truncated Gini coefficient G (t) is 

independent of t if and only if X has power distribution (5.10). 

Proof: From (5.3) and (5.4), 

G (t) = 1 - 2 [ (t)J-l [IJ f (Y ) d _ fJYF (y ) f (y) d ] 
f.1 oY F(t) Y 0 F2 (t) Y 

= 1- 2 + 2[ (t)J-l fJYF(Y )f(y) d 
f.1 0 F2 (t) Y 

which gives 

~f.1(t)[l+G(t)J::: IJYF(Y)f(Y) dy 
2 D F 2 (t) 

(5.11 ) 

When X follows power distribution (5.10), from (5.11) 

at 
=--

2a+ 1 
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and further 

a ,u(t)--­
- (a+l)t 

so that G(t) == 1 , a constant. This proves the if part. 
2a+l 

To see that the only if part holds we assume G(t)=k and write 

(5.11) as 

1 t t 

-F(t)(1+G(t)) J)'f(y}iy= J),F(y)J(Y)dY 
200 

Differentiating the last equation twice 

1 (1 + k )if(t) + -(1 + k )F(t) = if( t) + F (t) 
2 

or 

J(t) _ (I-k) 
F(t) - 2kt 

Integrating from t to c, 

[ Jc cJ1- k 
In F (t) I = t 2ky dy 

or 

J-k 

F(t)=Gt 
(I -k) 

which is the power distribution (5.10) with a = . 
2k 

The problem of obtaining a general inversion formula for finding 

F(t) in terms of G(t) was found to be difficult in view of the presence of 

,u(t) in (5.11). However, if one sets g(t)=,u(t)[l+G(t)J. we can express 

F(t) in terms of g(t). 
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From (5.11) 

1 I 

-[ F(t)J g(t) = fYF(Y )f(y )dy 
2 0 

Differentiating with respect to t , we obtain 

1 f(t )g(t) + 2 F(t )g' (t) = tf(t) 

or 

f(t) _ g'(t) 
F(t) - 2[t-g(t)] 

Integrating from t to 00, 

[ )]
OC! OC!f g'(y) 

In F (t = [ () ] dy 
I t 2 y- g y 

or 

F(t)=exp[-~ J g'{(\dY], t>O. 
2 I y- g Y 

(5.12) 

The practical utility of (5.12) is the identification of F (x) through the 

functional form of g(x). Expressions of g(x) for some income distributions 

are evaluated below, to indicate its usefulness in a practical situation. 

(i) Pareto distribution: 

f() a -a-J 0 0 . X = aCT x , x > CT > , a > 

g(x) = [1 + G(x )].U(x) 

=:::. 2"fyF(y)f(y)dy 

(7 F2 (x) 
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2acy 

( X )-(1+1 ( X )-2a+l 
1-, - 1- -

\. CY CY =---
a-I 2a-l 

(u) Exponential: 

(w) Power: 

F(x) = 1- e-,ix, x> 0, A> 0 

x Y[I- e-,iy ] Ae- 2y 

g(x) = 2 f 2 dy 
o [l_e- Xt

] 

F(X)~(;J 

g(x) ~ [(; )"J H~ J c-"ay"-Idy 

2ax 
=--

(2a + 1) 

(iv) Dagum: 

F(X)~[l+(~)T' x> 0 

g(x)~ [l+(h'r f++(~ J r apb'y-'-' [1 +(~ Jr' dy 

~2ap[I+(~Jr A:r[l+(~rr-' dy 
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x 

where Bx(p,q)= Jt P-
1(1+tf(p+q}dt. 

o 

5.4 Measures of affluence 

The income gap ratio and Gini coefficient for the affluent hold 

analogous properties as for the poor. 

Theorem 5.4: 

If X has absolutely continuous distribution function over (0,00) 

with finite mean and income gap ratio a * (t*), then 

(5.13) 

Proof: From (5.6), 

et) 

[l-a*(t*)] fYI(Y)dy=t*F(t*) 
t* 

Differentiating with respect to t* and simplifying 

( *) * ( *) * *' ( *) It _l-a t +ta t 
F(t) - a*(t*)(l-a*(t))t 

Integrating from 0 to r*, we get (5.13). 

Remarks: 

1. The only continuous distribution over the set of positive reals for 

which a * (t) is a constant is the Pareto distribution. This is easily 
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verified by noting that, a*(t*)=~ (in the form given above) and 
a 

substituting in (5.13) gives the desired form for F (x) . 

2. The generalized Pareto family with 

- (b J~+] F(x)= ,x>O,b>O,a>-l 
ax+b 

is characterized by an income gap ratio in the bilinear form 

* ( *) at* + b 
a t ==(a+l)r*+b 

(5.14) 

Note that (5.14) contains the exponential distribution as a ~ 0, the 

Pareto 11 distribution of the form 

F(x)=aC(x+afc, x,a>O 

] -] 
with a:::(c-lf, b=a(c-l) when O<a<l in (5.14) 

and the beta 

d 

P(x)+-;) ,O<x<R,d>O, 

a=-(d+lfl, b=R(d+lf] when -l<a<O in (5.14). 

3. Ord et. al (1983) have used the gamma entropy measure 

(5.15) 

as a measure of inequality and shows that (5.15) is truncation invariant 

(independent of t) if and only if X has exponential distribution. We now 

discuss the relationship of the measure ey (t) with the income gap ratio. 

Defining the random variable Y. =[ fY(X) !X>t*] it is easy to 
t *Y-Y(*) t F t 

see that 
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Now the geometric mean of ~* is G (t) , where 

00 

log G(t*) = Elog ~* = F&*) }(IOgf(X )-log P(t )-logt* )f(x )dx 

00 

= (,) Jf(x )logf(x)dx - rlog F(t')- r logt' (5.16) 
F t t* 

Again definingZ * = ( ~(7))iX > t') , Z * has geometric mean p(t) with 
1 t F x 1 

00 

= _(1 *) J(f(x)logf(x)-f(x)logF(x)- f(x)logt)d.\ 
F t 1* 

00 

= _(1 *) ff(x)logf(x)d\-logF(t)-logt +1 (5.17) 
F t 1* 

Comparing with (5.16) 

logp(t*) = 1 + ~ log G(t) 
r 

or 

1 

P ( t * ) = eG r (t ) 

Finally Zt* has harmonic mean H(t*) where 

• 00 

= (') JF(x)dx 
F t t* 

=1' [F(t)}Yf(Y)dY-t' l 
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* t * l * J =t 1-a*(t*)-t 

or 

( *) l-a*(t) H t = -----'--~ 
*2 * ( *) tat 

Since p(t*)~H(t*). from (5.18) 

G * > (l-a'(t*)r 
(I ) - ,}/Y (a'(t')f 

Further E ( ~* ) ~ G (t*) gives 

(5.19) 

which on simplification provides the following lower bound to the income gap 

ratio in terms of the entropy measure 

(5.20) 

The Gini coefficient for the affluent is defined in equations (5.7) and 

(5.8). Ord et. al (1983) have shown that this coefficient is constant among the 

class of absolutely continuous distributions with positive density almost 

everywhere in (k, 00), if and only if the distribution is Pareto. This result 

corresponds to Theorem 5.3. Writing 

g * (x) = (1- G* (x)) J1 * (x) 

one could see that 

Proceeding as in the earlier theorems we have the following result. 
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Theorem 5.5: 

If X has absolutely continuous distribution function with 

E( xi (X)) < co with Gini coefficient G* (t) and average income ,ll* (/*) 

above the affluence line X = t , then 

(5.21 ) 

where g * (y) = (1- G* (y ) ) JL * (y) . 

Remarks: 

1. The generalized Pareto family (5.14) is characterized by 

JL* (t)(I- G* (/*)) = 2at + 2t + b = At + B 
a+2 

(5.22) 

which is a unification of the result in Sathar, Rajesh and Nair (2003) 

separately proved for the exponential, Pareto 11 and beta distributions. 

They have also proved that the income gap ratio is in constant 

proportion with the G* (/*) for the above three distributions, the 

proportionality being ! for exponential, >! for Pareto 11 and <! for 
222 

*(*) l+a *(*) . the beta. From (5.22) the property G 1 = -- a t charactenzes 
2+a 

the generalized Pareto family. 

2. g * (y) = cy, where c is a constant greater than unity characterizes 

the Pareto distribution. 

5.5 Classes of Income Distributions 

Based on the monotonic behaviour of the income gap ratio a * (I *) 
it is possible to classify income distributions. These results are helpful in 
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modeling incomes where the empirical evaluation of the income gap ratios at 

different values of r* will give us an idea about the class of distributions from 

which the appropriate model should be chosen. 

Definition: A distribution function F (x) is increasing in income gap ratio for 

the rich IIR(r) (decreasing in income gap ratio - DIR(r» if a*(x*) is non-

decreasing (non-increasing) in x * . 

Belzunce et al. (1998) defines the class of decreasing mean left 

proportional residual income (DMLPRI) if 

(
X J 1 OCJ E -IX> t = ---=--( ) Jxf(x)dx 
t tF t t 

is decreasing in t. Since this criterion is equivalent to DIR(r) all results 

proved there are true for DIR(r) also, and accordingly we establish some new 

implications of the DIR(r) class which can supplement the existing results on 

DMLPRI. 

1. The classes of income distributions based on monotonicity of a*(t*) 
are well defined, as the exponential model is DIR(r), the beta discussed 

in Section 5.4 is IIR(r) while the Pareto distribution is both DIR(r) and 

IIR(r) with a * (t*), a constant. 

2. A sufficient condition for F (x) to be DIR(r) is that either of the 

following conditions hold. 

(a) f(x) is log-concave (b) F(x) has increasing failure rate. 

Proof: If g (x) is a monotonic (increasing or decreasing) function on ( a, b) 

with either g(a)=O or g(b)=O, then if g'(x) is log-concave then g(x) is 

also log-concave on (a,b). We use this result repeatedly for different 

functions in the proof. 
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To prove (a)Assume that f (x) is log-concave. Then by definition 

f'(x) 
of log-concavity f ( x ) 

. . . f' ( x ) F" ( x ) 
IS decreasmg, and since f ( x) = F' ( x) , 

DO 

F"(x) 
F'(x) 

and hence 
F'(x) 
F(x) 

are decreasing. Defining H (x) = JF (t )dt , 
x 

H"(x) H'( ) 
H'(x)=-F(x) and H"(x)=-p'(x). Thus H'(x) and hence H(;) are 

decreasing functions. Thus we find that 

is increasing and this implies a * (t*) is decreasing or F (x) is DIR(r). 

To prove (b) we note that whenever the failure rate 

h (x) = ~ ((x )) ~ -F' t? is increasing F' { x? is decreasing. The rest of the 
Fx Fx Fx 

proof follows from that of part (a). 

Remarks: 

1. Part (a) gives a simple criterion to distinguish income distributions 

with decreasing income gap ratio. For ITR(r) models the words 

increasing and log-concave in (a) and (b) are to be replaced by 

decreasing and log-convex. A classification of some distributions used 

to model incomes according to the above criteria is given below. 

Note: log-concavity properties are preserved under linear 

transformations so that scale and location parameters can be 

introduced without affecting their classifications. Also, the 

classifications hold for truncated versions of the above distributions. 

2. Belzunce et. al (1998) defines the class of increasing proportional 

failure rate (JPFR) distributions in which xh (x) is an increasing function 

and shows that IPFR => DMLPRI. When the class has increasing 
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failure rate xh (x) is also increasing so that IFR ~ IPFR, but the 

converse need not be as seen from the case of the distribution 

Therefore resulting from (b) above we can write the implications 

IFR ~ IPFR ~ DMLPRl <=> DIR(r). 

3. A necessary and sufficient condition that F(x) is DIR{r) (IIR{r)) is 

that a' (t'}«» , ( ') . 
t h t 

Proof: From the definition in equation (5.6) 

et) 

( 1 - a * ( t * )) f yf (y ) dy = t * F ( t * ) 
t* 

Differentiating with respect to t* and simplifying, 

or 

For IIR{r) distribution, a*' > 0 and hence 

the poor. 

* ( *) 1 
at> * (*)' t h t 

An analogous discussion holds in the case of income gap ratio for 

Definition: A distribution function F (x) is increasing in income gap ratio for 

the poor- IIR{p) (decreasing -DIR(p)) if a{x) is non-decreasing (non-

increasing) in x. This class is the same as that discussed by Belzunce et al. 
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(1998) in the name of decreasing mean right proportional residual income 

(DMRPRJ). They provide an exhaustive discussion of the properties of this 

class. We observe further that 

(i) a necessary and sufficient condition for P (x) to be llR (p) is that 

a < (I + tArt) t, where A(t) = ~~: ~, the reversed failure rate of X. 

I 

(ii) a (t) is increasing or F( x) is IIR(p) if and only if fF(t )dt is log­
o 

concave. 

5.6 Quantile Forms of Income Gap Ratio and Truncated Gini Coefficient 

Since the major theme in the present work is the mode ling of 

income data using the lambda distribution, the transformation of the 

expressions of inequality measures discussed in the previous sections of this 

chapter into quantile forms is relevant. 

Let p be the proportion of the poor people of a population. Then 

by the transformation u=p(x), O<u<l or x=Q(u) where Q(U)=p-l(U) 

in the equation (5.2) we get the income gap ratio of poor in terms of quantile 

functions and is given by 

p 

fQ(u )du 
a(p)=l-~o~~ 

pQ(p) 

Similarly, the income gap ratio of the rich is given by 

a*(p*)= 1- (1~ P*)Q(P*) 

f Q(u )du 
p. 

where (1- p *) is the proportion of rich people of the population. 
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Now the truncated Gini coefficient for poor and rich are given 

respectively by 

(5.25) 

where 
1 p 

,l1(p)=- JQ(U)dll 
Po 

and 

2[ '( ')T' , 
G'(p*)=I- f.1 P 2 J(l-u)Q(u)du (5.26) 

(I-p") p' 

, 
where J/(p*)=_l_, JQ(u)du. 

1- p . 
p 

Theorem 5.6: 

The quantile function Q(p) can be uniquely determined by the 

income gap ratio of the poor, a (p) as 

f.1 {I 1 } 
Q(p)= p[l_a(p)]exp - !U[I_a(u)]dU (5.27) 

Proof: From definition (5.23) 

p 

[l-a(p)JpQ(p)= JQ(u)du 
o 

Q(p) -
-----=-----= J Q ( u ) du - P [ 1 - a (p ) ] 

o 

Integrating from p to 1, 

[ ]

1 
p '1 

In JQ(u)du = J [ ()ldu 
o u I-a U J 

p p 
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P 1 1 
In ,u - In J Q ( u ) du = J [ () ] du 

o pU I-a u 

P 

JQ(u )du ! I 

In 0,u = - I U [ I - a ( u ) ] du 

p {I I } 
JQ(u)du = ,uexp - f [ ()Jdu 
o pU I-a u 

Now differentiating with respect to p, we get 5.27. 

Theorem 5.7: 

The quantile function can be uniquely determined by the income 

gap ratio of the rich, a"(p*) as 

Q* (p * ) = ,u * exp - f dll [
I-a*(p')J {p'I-a*(u) } 

I-p ol-u 

Proof: From definition 5.24, 

1 

[ I - a' (p * ) ] J Q ( u ) du = ( I - p.) Q ( p " ) 
p 

-Q(p") _ a"(p")-I 
IQ(u)du - I-p" 

P 

Integrating from 0 to p', 
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I {P·1 a* (u) } 
}Q(U)dU=,ueXp - f -l-u du 

Now differentiating with respect to p * , we get 5.28. 

Now (5.25) can be written as 

2 P 

[1+G(p)],u(p)=-2 fUQ(u)du 
p 0 

Let g(p) = [1 + G(p) ].u(p) 

Thus from (5.29), 

P 

p2g(p)= 2 JUQ(u)du 
o 

Differentiating with respect to p, 

Dividing by 2p , 

2pg(p)+ p2g'(p) = 2pQ(p) 

Q(p)=g(p)+ pg'(p) 
2 

(5.29) 

(5.30) 

Thus it is possible to determine the quantile function from g (p ) . 

As an illustration we have found below the expression of g(p) that 

characterizes Q(p) for some important distributions. 

(i) Pareto: 

I 

Q(p)=a(l- pr;; 

2 p 

g(P)=-2 fUQ(u)dU 
p 0 

2 p Ya 
= 2 Ju.a(l-ll r a du 

p 0 
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1 

2aa {( rl+2} 2aa(I-pr-;;+1 
= p2(a-l)(2a-I) a- 1- p a - p(a-I) 

(ii) Exponential: 

1 Q(p) = --In(l- p) 
A 

g(p) = -2 fu --In(I-u) du 2 p ( 1 ) 
P 0 A 

1 [1 1 In(P-l)] =- -+--In(l-p)+ 2 
A p 2 p 

(iii) Power: 

(iv) Oagum: 

2 p 1 

g(p) = -2 fucu-;;du 
p 0 

I 

2cap a 
=--

2a+l 

1 

Q(P)~b[P-~ -f 
2 P [ I ] g(p)= p2 IU.b u-P -1 du 

I 

pP I ') I 
2bP f -+~P-l ( )--=- va I-v a dv 

2 ' 
P 0 

I 

when v = u P 

Similarly Q(P*) can be uniquely determined by the function 

g* (p*) = [1- G* (p*) J~* (p*) 

which can be proved as follows. 
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From (5.26) 

Differentiating with respect to p' , we obtain 

Q ( p' ) = g' ( p' ) _ (1 - p' ) g" (p' ) 
2 

(5.31 ) 

The characterization results obtained in the previous sections can 

also be proved using quantile function approach. 

Now for MLF, 

94 



In conclusion, we have shown that the modified lambda family has the 

potential to be used as a model of income, because of its flexibility to assume 

different distributional shapes. In view of the quantile functions involved in the 

distribution, it is easier to generate random numbers than many of the 

competing parametric models. Since analysis of income data usually involves 

a large number of observations, the asymptotic properties seem to apply with 

a good amount of accuracy. Further there is closed form expressions for 

many of the measures of income inequality, making them easier to compute. 

We have also presented a few theoretical results that help the identification 

of the distribution of income given the income gap ratio or the truncated Gini 

coefficient at different values of the poverty or affluence limit. The poverty 

and affluence measures being directly expressed in terms of the a's and 

G's, the results established here have relevance in that context also. 

In the present study MLF is fitted to one income data remarkably 

well. It is essential to verify the goodness of fit of the family to the income 

datas of various countries in different time periods. This model can also be 

used to project the income distributions of future period. These problems are 

expected to be presented in a subsequent work. 
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