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We consider a resistively sbunted Josephson junction with a resistance that depends 
inversely on voltage. It is shown tbat such a junction in the underdamped case can give rise 
10 extremely Iona-lived metastable states even in the absence of external noise. We 
investigate numerically this metastable state and its transition to a chaotic state. The 
junction voltages correspondina to these states arc studied. 

1. Introduction 

Nonlinear dissipative systems subjected to external periodic force have been 
found to exhibit a remarkable variety of modes of response inspite of the 
apparent simplicity of the equations representing their dynamics. The Josephson 
junction is an example of such a system, in which the appearance of a specific 
mode depends sensitively on the parameters characterising the external force. 
The noisy behaviour in this junction has been extensively studied using 
numerical methods and analog circuit simulations. 1.2 The occurrence of irregular 
behaviour has been attributed to the existence of chaotic solutions to the 
nonlinear equation of the junction.3.4 A theoretical study of the tunnel junction 
is rather complicated due to the nonlinearity of the 1-V characteristics. What is 
usually done is to approximate the behaviour by an equivalent current biased 
circuit~ with a resistance R and a capacitance C in parallel. This resistively 
shunted junction (RSJ) model, however, is inadequate for describing actual 
junctions, since R is taken to be a constant. It is true that experimentally 
measured junction resistance is highly voltage dependent.6 A more realistic 
model would therefore be one in which the resistance depends inversely on 
voltage, resulting in parabolic I-V curves. In this paper we study this modified 
RSJ which results in an equation of motion with a quadratic dissipation term. 
This is found to alter the response of the junction to external periodic force and 
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give rise to metastable states with extremely long-lived transients in an 
underdamped junction. For large values of the driving amplitude, a transition to 
the chaotic state takes place. 

In tbis context, we would like to mention that such metastable states have been 
observed in experimental studies of actual junctions.7 However, the mechanism 
for the decay of the current has always been related to the intrinsic thermal 
fluctuations at finite but low temperatures. The lifetime of the metastable state 
depends on the resistance R in the low damping regime. In a recent experimental 
work concerning supercurrent decay in Josephson junctions, Silvestrini et al. 8,9 

consider the effect of dissipation in an underdamped junction. They have 
established an exponential temperature dependence for R. In the present work, 
we concentrate on the voltage dependence of R and show that metastable states 
arise mainly due to the nonlinear nature of resistance and can occur even in the 
absence of noise. The role of noise (or constant bias) is to reduce the barrier 
height, which in the present case is achieved through the driving force. 

In Sec. 2, we briefly summarise the equations of motion represent~ng the 
junction and discuss the analytic solution that exists in the absence of external 
force. The details regarding the different modes of response of the system at low 
frequencies as revealed by studying the phase portraits, Poincare maps and power 
spectrum are given in Sec. 3. The occurrence of the metastable states is discussed 
in Sec. 4. Section 5 is devoted to an analysis oftbe transition to chaos. The results 
are summarised in Sec. 6. 

2. The Equation of Motion ror tbe Josephson Juuction with Nonlinear Resistance 

The electrodynamics of a Josephson junction shunted by a capacitance C and 
a resistance R, and driven by a constant current Idc and periodic current of 
frequency Cl) is governed by the equationlO 

(1) 

where 8 is the junction phase which is related to the junction voltage Vas 

o - 2eV/" . (2) 

Taking R to be Ro/Vand using (2), (1) can be simplified to 

(3) 
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where we use the scaled variables 

1-at with a; (lICl2eIJIn; k - Ro(1zl2eCIJIf2 , 

Po - Id/Io and PI - l/lo . (4) 

Equation (3) in the absence of external driving is known to possess periodic 
solutions. 1O With PI - 0 and y - 8, (3) can be written as 

(5) 

which can be solved to give 

y2 = po/ k + 4 cos (0 + P)/(l + 4~)1f2 + Cl exp ( - 2k£J) (6) 

with tan p = 2k. The steady state solutions after transients have died out can be 
integrated to obtain 0 in terms of lacobian elliptic functions. 

When PI ~O, the system shows a rich variety of interesting dynamics. The 
method of Melnikov· analysis has been used to predict the lowest threshold for 
chaos in this system. 11 We carry out detailed investigations regarding the possible 
routes to chaos, the nature of the chaotic state, etc. in this model. 

3. Profiles of Motion and Response Modes 

The dynamics of the junction described by (3) can be simulated by a particle 
moving dissipatively in a potential U(O) given by 

(7) 

This corresponds to 'a' series of potential wells whose barrier heights are modified 
by the biasing parameters PI and Po. The pitch of this screw type motion increases 
with PI until for a critical value P~ the trajectory escapes from the central well. 
The junction voltage in this frequency region shows a square wave pattern, which 
under finer scaling reveals periodic motions in two widely differing time scales 
(Fig. Ib). 

4. Metastable State 

In the frequency range 0.2 < Cl) < I, we observe that the system exhibits a 
metastable oscillatory mode characterised by a trajectory that continues indefi­
nitely for a long interval oftime (Fig. 2a). The continuous disturbance introduced 
by the quadratic -damping prevents the system from forming stable limit cycles. 
The small fluctuations associated with the transient nature of the motion leads to 
broading of peaks in the power spectrum of voltage. This is clear from Fig. 2b 
where the Fast Fourier Transform (FFT)12 of the junction voltage is given. The 
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Fi,. I I. The screw type 1n\iectory plotted iD the (} -8 plane for w. 0.05 with k - 0.1, Po - 0 and 
P, .0.9. 
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Fig. lb. The vanatlon5 in the junction voltage V for the parameters in Fil. la. The voltage 
multiplied by (2e/h) is ploUed along the Y axis while time is along the X axis. T is the period of the 
external force (- 2tr./w). 
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corresponding Poincare map shows a very slowly advancing curve. A quantitative 
characterisation of this metastable state, we feel, is possible through the 
Lyapunov Characteristic Exponent (LCE), which measures the average rate of 
convergence or divergence of nearby trajectories. Using the conventional 
techniques, 1 J we compute the maximum LCE -<max and find that for the 
metastable state the value of A.",u is very small, ~ 10- 2. Whether it is central well 
has -n/2 < (J < x/2 with the minimum at e cO. The motion of the system in 
general is of the oscillatory type confined to the central well for low values of PI' 
while for large values of Pl the system escapes from the well and describes 
running modes over the potential maxima. We find that the response of the 
system, both before and after the escape, depends primarily on the frequency of 
the driving current w. Depending on the value of k, after escaping from the well, 
the system may get itself trapped in any of the successive minima too. Chaotic 
states arise due to random shuttling between running and oscillatory modes. 

For our analysis, (3) is rewritten as a system of three first order equations. 
With () e X I we have 

(8) 

This constitutes a three dimensional dissipative system with quadratic damping. 
We restrict the analysis to the case of extreme underdamping with k a 0.1. For 
low values of w, namely, 0.02 < w < 0.2, the system behaves adiabatically and 
the profile of motion has structure on a very fine scale. The trajectory shows a 
screw type motion around the () axis (Fig. la) which is being repeated as an 
oscillation over a certain region with the periodicity of the applied force. The 
amplitude of the motion decreases after each oscillation but the system refuses to 
settle down to a stable trajectory. The positive or negative depends, in this 
context, on w. Metastable states can thus decay into a stable trajectory or develop 
into a chaotic attractor, after a sufficiently long interval of time. If -<max is 
positive, the ultimate state is chaotic while a negative )'max takes the trajectory 
asymptotically to stable limit cycle. Here the rate of convergence or divergence 
is seen to follow a power law rather than an exponential behaviour that is usually 
observed near limit cycles or chaotic attractofS. 

The transient nature of the solution to (3) is clear from the last term in (6). 
What the external periodic force does is to prevent the transients from dying 
down fast and thus sustain them, thereby resulting in metastability. This is 
especially so for low damping which we consider here. The fluctuations in the 
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Fia. 2a. MetastabIe trajectoly observed for w - 0.6, Pn - 0, k - 0.1 and PI - 0.3. 
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Fig. 2b. The power spectrum of the rnetastable state using FFT. Log(powcr) is plotted along the Y 
axis with frequency along the X axis. 
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Fig. 2e. The Buctuations in tbe junction voltage in the metastable state corresponding to the 
parameters in Fig. la. 

junction voltage corresponding to this state is given in Fig. 2c. As w is increased 
further; the metastable nature of the trajectory prevails, but A",ax becomes 
positive, though small. 

5. Transition to Chaos 

In all the frequency ranges investigated by us a transition to a chaotic state 
with positive A",ax (0.4-0.5) takes place after escape from the central well. This 
happens at a critical value of PI. viz. Pc. which depends on w and Po. For low 
values of w, after escape from the well, the trajectory runs over several hundreds 
of potential wells and, in accordance with the terminology introduced by 
Yamaguchi,14 we therefore call this state running chaos. The fluctuations in the 
voltage for this state is clear from Fig. 3a. The chaotic nature is due to the fact 
that the point where the trajectory turns back to the central region is random. 
This results in a random shuttling between the positive and negative running 
modes through damped oscillations. As w is increased, the nature of the chaotic 
state remains the same. However, now the trajectory runs only over a few 
potential wells and so is called oscillatory chaos. The junction voltage variations 
are given in Fig. 3b. The trajectories and their FFTs corresponding to both these 
types of chaos are seen in Fig. 4. 
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~~-----------------------------

Fig. la. The junc:tion voltage in the chaotic stale after escape from the central well. Here w - 0.05, 
k- 0.1, Po- 0 and PI - 1.2. 
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Fig. 3b. The voltage corresponding to a frequt'ncy w = 0.6, where oscillatory chaos is observed. 
k - 0.1. Po - 0, PI - 2. 
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Fig. 4a. The runnilll chaos observed in the Jow frequency regime with P, - ) .2. Note that the value 
of 0 goes upto 150. 
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Fig. 4b. The FFl corresponding 10 running chaos. 
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Fig. 4c. The oscillatory type chao& at (J) - 0.6 and PI - 2. 
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Fig. 4d. The FFT of the oscillatory chaotic state. 

6. Conclusion 

We have investigated numerically a modified RSJ model for a driven 
Josephson junction with low damping. The mechanism of the onset of chaos in 
this system is similar to that in the usual RSJ model. But in the latter model, 
stable periodic limit cycles exist before chaos and they do undergo the period 
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doubling route. 3 However, in the system considered here, stable limit cycles exist 
only in a very narrow frequency range, from 4 to 5.5 for large values of k:::: 2. 
Moreover, the running modes are unstable even before chaos and the oscillatory 
modes inside the central well are not stable but metastable. In our computations 
we have kept Po = O. But for nonzero Po qualitatively the same behaviour is 
observed with the escape from the wen taking place at a lower value of PI' The 
role of noise is also to shift the value of Pc' The metastable nature arises mainly 
due to the nonlinear nature of the resistance. Both the running and the oscillatory 
types of chaos are found to occur in this system. 
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