
Pramii.~a-J. Phys., Vol. 29, No. 6, December 1987, pp. 533-542. © Printed in India. 

Bifurcation structure and Lyapunov exponents of a modulated 
logistic map' 

K P HARIKRISHNAN and V M NANDAKUMARAN 
Department of Physics, Cochin University of Science and Technology, Cochin 682 022, 
India 

MS received 3 June 1987; revised 6 October 1987 

Abstraet. We have studied the bifurcation structure oC the logistic map with a time 
dependant control parameter. By introducing a specific nonlinear variation for the 
parameter, we show that the bifurcation structure is modified qualitatively as well as 
quantitatively from the first bifurcation onwards. We have also computed the two Lyapunov 
exponents o( the system and find that the modulated logistic map is less chaotic compared to 
the logistic map. 
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1. Introduction 

Nonlinear difference equations have become effective mathematical models in our 
understanding of the transition from regular to chaotic behaviour in physical systems 
(Feigenbaum 1978, 1979; Bai-Lin 1984). Several examples are known in which a 
system shows the period doubling route to chaos (May 1976), where the details of the 

• transition from periodic to chaotic behaviour is represented by a bifurcation structure. 
Kapral and Mandel (1985) studied the bifurcation structure of a nonautonomous 
quadratic map in which the control parameter is assumed to vary linearly in time, and 
showed that the time dependence delayed the onset of bifurcations in the system. 

In this paper, we study the bifurcation structure of the logistic map with the control 
parameter ). made a function of time. In particular, we have considered a situation 
where the value of ,4. at any instant depends on its value at the previous instant in a 
nonlinear way. This map shows some very interesting features which are absent in the 
case of the logistic map. Now, there are several experimental situations where the 
parameter is made time-dependent and this time dependence has been shown to 
induce dramatic changes in the bifurcation diagram (Mandel and Erneux 1984). 
Moreover, during the last few years, there has been an increased interest in the study 
of different kinds of laser systems by modulating one of its physical parameters 
(Tredicce et aI1985). Several authors have analysed the bifurcation structure and have 
shown that the output can be periodic as well as chaotic depending on the strength of 
the modulation (Brun et at 1984; Midavaine et al 1985). 
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In § 2 we introduce a modulated logistic map. compute its bifurcation structure and 
discuss the new features that appear in the diagram. In § 3 we obtain analytically the 
fixed points of the map up to the 2-cycJe and perform a linear stability analysis to 
confirm some of our numerical results. In § 4, we analyse the chaotic region of the map 
by computing the two Lyapunov exponents of the system. Discussions are presented 
in §S. 

2. A modulated logistic map: bifurcation structure 

We consider the following two-dimensional map: 

X,+ 1 =4A.,X,(1- XI). 

A., +1 :=4JU.,(1-A.,). (1) 

Here, essentially we modulate the parameter of the logistic map. Now, the role of the 
control parameter is played by Jl, which,represents the strength of the modulation. We 
can oonsider(l) as a map ,in the space Rl®Rl and we call it a modulated logistic map. 

For O<p<(}75 we have a single attracting fixed point for '\'t and hence for X, also. 
Therefore, in order to determine the bifurcation structure, we start from the parameter 
value Jl=0'7 and increase it by steps of (}o1. always using an initial condition for 
(Xt, A.,) in the interval [0, 1], say (0'3, 0'3). The important asymptotic values for)." X, 
and the corresponding parameter Jl are collected in table 1. 

0.9r----------------~ 
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Figure 1. Bifurcation structure of the modulated logistic map projected in the (X.p) plane. 
The branches cross oVer each other in the 4-cycle region resulting in a complete modification 
of the structure. Note that the second bifurcation is much earlier than in the case of the 
logistic map and also the asymmetry of the figure. 

230 



A modulated logistic map 535 

Table 1. Asymptotic values of A, and X r 

IJ A, X, 

(}7 (}6428571 (}6111111 

(}74 (}6621622 (}6224488 

(}75 (}6683250 (}6202936 
(}6649998 0-6296404 

(}78 (}5475750 0·7489202 
(}7729381 (}4118614 

(}8 (}5130444 (}7539450 
(}7994550 (}3807031 

0·84 0·4623756 (}7534620 
0·8352432 (}3435580 

(}7534756 
(}3435452 

(}85 (}4519632 0·7340323 
(}S421544 0'3529470 

(}7693097 
(}320&439 

0·87 (}3950656 (}8688380 
(}8316804 (}lSOO840 
<M871584 (}4912024 
(}8694256 (}4870072 

0·89 (}3488245 (}8894232 
(}8086390 (}1372268 
(}5508806 (}3829568 
(}8807835 (}5206940 
(}3738138 (}8792132 
(}8333148 (}1587240 
(}4944891 (}4450920 
(}8898920 (}4885256 

When we plot these values against p, a three-dimensional bifurcation diagram 
results. But the essential modification in the bifurcation structure and the new features 
that appear due to the modulation of the parameter can be clearly sh9wn by taking a 
two-dimensional projection of the diagram in the (X,,}L) plane, which is shown in 
figure 1. 

It is clear from the figure that even from the first bifurcation onwards the behaviour 
is quite different from that of the logistic map. One novel aspect of the diagram is that 
the inner. bifurcation branches cross over each othyr in. the 4-cyc1e region. Although 
the branches appear to cut each other, it is not so because we are only considering the 
projection of the 3-dimensional diagram in a 2-dimensional plane. The crossing over 
of the bifurcation branches is the result of a significant change in the asymptotic 
behaviour of the system from the normal one, in a sman range of the parameter, say 
J.L=0·86 to 0·87. In this small range, the branches appear to be very steep indicating 
that the asymptotic behaviour of the system in this region is very sensitive to small 
changes in the parameter values. To have a closer look at thjs region, we calculated 
the orbits separately in that range by increasing J.L in steps of 0·002, and is shown in 
figure 2. From the figure we see that as J.I. is increased from 0-861 to 0'865, the lower 
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~9r---------------------------------~--' 
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Figure 2. The 4-cycJe region of the figure 1 is shown magnified. The branches are very steep 
in a small piuameter range 1'=0'861 to (}865 which results in.the cross over of the bifurcation 
branches at a value of Jl around 0·87. 

branch shoots up and the upper branch sharply comes down to eventually cross each 
other at some value around 1I=(}-87. 

Another important observation is that the bifurcations occur earlier than in the 
case of the logistic map from the second bifurcation onwards. This is clearly evident in 
the case of the 2-cycle (see figure 1 or table 1) which becomes unstable at 11=0·86225 
for the logistic map, whereas, for our map it is somewhere around Jl = 0-845 with the 
value of the parameter A. still lower. The difference becomes less pronounced as we go 
to the higher and higher bifurcations. This result is exactly opposite to the one 
obtained by Kapral and Mandel (1985)' and implies that linear and nonlinear 
variations of the parameter can have entirely different effect on the asymptotic 
behaviour of the system. 

Finally, we note a peculiar aspect of our bifurcation diagram. It is easily seen that 
figure 1 lacks the symmetry of the bifurcation structure of the logistic map. There is a 
marked difference in the bifurcations between the upper and lower arms of our 
bifurcation tree. All the bifurcations of the upper branch appear to be asymmetric 
whereas that of the lower branch are somewhat symmetric. 

3. Linear stability analysis 

In this section, we will try to confirm some of the results obtained above by 
determining the fixed points of the map analytically and then performing a linear 
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stability analysis (Greene 1968; Bountis 1981). Taking (X*,.A.*) as the fixed point of the 
map (1), we get: 

and 

X* = [(3p-l)/(4p-l)], 

).* =(4p-l)/4p 

(2) 

(3) 

apart from the trivial solution (X*,.A.*) = (0, 0). It is evident that, for O<Jl< 1/4, (0, 0) is 
the only stable fixed point oftbe map(l~ As Jl increases beyond 1/4, (3) becomes stable 
whereas (2) becomes stable only at a higher value of Jl, say Jl'. The value of Jl' is 
determined by the conditidn 

(4P' -1)f4Ji = 1/4 

which gives Jl' = 1/3. 
Therefore, for 1/4<Jl< 1/3, the stable I-cycle is given by 

(X*,A*)=(0,(4Jl-1)f4p) 

(4' • J 

(5) 

whereas the nontrivial fixed point given by (2) and (3) becomes stable in the range 
1/3 < p < 3/4 and at Jl= 3/4, we have the first bifurcation. Now, what we are really 
interested is in the region Jl> 3/4. But it is impractical to obtain the fixed points 
analytically beyond the 2-cycle. 

The 2-cycle, say (X! ,.A.n and (X! ,A.n, is defined by the following set of four 
equations: 

X!=4A.!X!(1-Xn (6.1) 

A! =4Jl).!(I-l!), (6.2) 

Xr =4.tf Xf(l-Xn, (6.3) 

.tT = 4JlA.f (1- An (6.4) 

Since (2) and (3) constitute a trivial solution of(6), we can solve them completely to get' 

AT = (1/8Jl)(4Jl + 1)+ (1/8Jl)[(4Jl+ 1)(4Jl- 3}]1/2, (7) 

(5Jl-l) 1 [(5Jl -l)2 8Jl{4Jl-I){Jll_4Jl-1)]1/2 
X! 2(4Jl-1) 2 (4Jl-1)1 + P(4Jl+ 1)(3Jl-l) , 

(8) 

A! = (1/8Jl)(4Jl + 1)-(1/8Jl)[(4Jl + 1)(4Jl- 3)J1
/
2

, 
(9) 

(4Jl-l)(4Jl+ 1-Jl2) pXr 
X* , 

:2 (4Jl+l)(3Jl-l) 2{4Jl-l) 
(10) 

P=(4Jl+ 1)+ [(4Jl+ 1)(4Jl-3)r /2
• 

(11) 
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Now, to study the stability of the 2-cyc1e we consider the lacobian of map (1): 

2 

Taking M = n J(Xr,).n we have 
i=l 

Tr M = 1611 )'~(1-2Xr)(1-2Xf)+ 16JLl(1-2).!Hl-2l!). (12) 

For the 2-cycle to be stable, we have the condition ITr MI ~2. Substituting (7}-{1O) in 
(12), the required JL values can be obtained numerically. We see that the 2-cyc1e 
becomes stable at JL"v O·754 and becomes unstable at W ...... o-858, which is in agreement 
with our numerical result that the bifurcations are earlier from the second bifurcation 
onwards. 

4. Lyapunoyexponents 

In this section, we attempt to study the chaotic region of the map by estimating the 
Lyapunov exponent (LE) which plays a crucial role in the theory of dynamical 
systems. For a chaotic system, it measures the rate of exponential divergence of nearby 
trajectories in phase space, whereas, for stable periodic orbits, it measures the rate of 
convergence towards the stable attractor. The dependence of LE of stable and 
unstable periodic orbits of the logistic map on the control parameter has been studied 
by Giesel et al (1981), using an approximate renormalization procedure. They take 
negative values for stable periodic orbits, whereas in the chaotic region, their values 
become positive. Huberman and Rudnick (1980) have studied the LE for chaotic 
bands and found a power law behaviour as a function' of the control parameter. 

Since map (1) is a two-dimensional map, we can define two LEs, (11 and (12' one for 
the X -degree of freedom and the other for the l-degree of freedom (Lichtenberg and 
Liebeo:nan 1983). Also, the LE for the l-degree of freedom, say (12' will be same as that 
of the logistic map. We now compute (11 and (1~ numerically for several values of JL in 
the range JL = 0'84 to JL = 1. The method we use has been frequently employed in the 
literature (Benettin et al 1976; Lichtenberg and Lieberman 1983) for the numerical 

. estimation of the LE. 
Similar to the case of one-dimensional maps, we can define LEs of map (1) as 

follows: Let M be the matrix given by the product of the lacobians J(x,l) of map (1): 

N 

M = n J(Xjsl/). (13) 
i=\ 

Then the LEs of the map are given by 

1
. 1 

(11 = un -lnIAd, 
N ... coN 

(14.1) 

(J2 = lim Nt In IA21, 
N-co 

(14.2) 
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where Al and A2 are the eigenvalues of M given by 

N 

Al = rI 4J.Jl-2Xi ), (15.1) 
i=1 

N 

A2 = D. 4.u(1- 2),,). (15.2) 
i"" 1 

Note that (J 2 reduces to the LE of the logistic map. 
Now, in order to evaluate these numerically, we take a particular j.t value for the 

map. Starting from an initial value (X l'A.l), we iterate the map N times and calculate 
the Jacobian at all these N iterates. We then evaluate M and the corresponding 
eigenvalues Al and A2 and calculate the quantities (l/N)In IAI. Repeating this for 
several N values, we plot these quantities against N separately. The same is repeated 
for other Jl values and the results are shown in figures 3 and 4. From the behaviour of 
the graph, we see that (1/N)lnIA11 and (l/N)lnIA21 settle down to almost constant 
values as N -.00, which serves as an approximate estimate of the LE and can be 
directly read from the graphs. 

A comparison of figures 3 and 4 reveals some interesting features. (J2 is negative in 
the regular region but becomes positive as j.t crosses over to the chaotic phase. At 
Jl=O'96, (J2 is negative indicating the existence of a periodic window, where the 

-0.5 

-0.4 ~=O·9 

o.~.L 

-0·3 / --oS 

~ .= 0·94: -i:& -
-0.2 

0.96 

0.98 

-0.1 

0.66 

O·B~ 

500 1000 1500 2000 
to! 

Figure 3. An approximate numerical estimation of the Lyapunov exponent of the modula­
ted logistic map for the X-degree of freedom. Note that it is negative for all values of f.L 
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Figure 4. Lyapunov exponent for the ..I.-degree of freedom which is same as that of the 
logistic map. As /l increases to IJ"". and above, the LE cross over from a negative to positive 
value reaching In2 for /l=l. At p=0-96 the value is negative indicating the presence of a 
periodic window. . 

behaviour is once again regular. As we increase J.I., (12 increases steadily and reaches a 
value,.., In 2 corresponding to Jl= 1. (There are several periodic windows in between 
with negative (12 values which cannot be seen in our graph). The behaviour of (11 is 
quite different. It is always negative irrespective of whether we are in the regular region 
or chaotic region. It has a small negative value in the regular region and reaches its 
maximum when the system just crosses over to the chaotic state. With further increase 
in J.L, its value is reduced. 

The fact that the LE for the X-degree of freedom is always negative can be 
understood in the following way. The modulated logistic map is a two-dimensional 
noninvertible map of a square interval [0, 1] on to itself. A bounded chaotic motion, 
as shown by the system, is not possible if it has positive LEs for both the degrees of 
freedom because, in that case, an initial phase volume will expand for ever making the 
system unstable. This naturally restricts (11 to negative values. 

Now, LE is a measure of the exponential separation of nearby points in phase space 
and hence is proportional to the rate of loss of information regarding the state of the 
system (Shuster 1984). Also, the degree of chaos in a system can be measured in terms 
of this rate of loss of information. The logistic map has a single positive LE in the 
chaotic phase whereas the modulated logistic map has by definition two LEs (11 and 
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(J 2' Such a system turns chaotic when at least one LE becomes positive. Since 0'1 is 
always negative, the rate ofloss of infonnation contained in a cell of phase space ofthe 
modulated logistic map is less compared to that of the logistic map. In other words, we 
can say that the system which results by modulating the parameter of the logistic map 
is less chaotic than the logistic map itself. This is in agreement with a recent 
observation by Tomita (1984). 

In order to get a better comparison of the chaotic regions Qf the two systems, we 
have computed the power spectrum for the modulated and unmodulated cases, for 
p=(}98, which are shown in figures 5 and 6 respectively. It is easily seen that figure 6 
contains more frequency components than figure 5 which supports our conclusion. 

o~--------------------------------, 

-5 

-15l..-__ .l....-__ ...L-_....L-_~----'-----J,---"--'~ 
o 

FREQUENCY 

Figure S. Power spectrum or the modulated logistic map for 1L=(}98. 

o~-------------------------------. 

-lSL..
O 
---I..---I--.&.-_...I.....---'--~--~--

FREQUENCY 

Figure 6. Power spectrum of the logistic map for ].I=(}98. 
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5. Discussion and summary 

We have considered tbe logistic map, which is a very well-studied model applicable in 
several physical situations, with a time-dependent control parameter. We observe tbat 
by introducing a specific nonlinear variation for the parameter, several new features 
appear in the bifurcation diagram and it is modified qualitatively as well as quantita­
tively. For example, though the 8-cycle region appear 'similar to that of the logistic 
map, it is not because the inner branches are interchanged as a result of the crossing 
over of the branches. There may be more such crossings as we approach the chaotic 
region and so the'structure soon becomes more complicated than that of the logistic 
map. 

Before concluding, let us note a final aspect of our bifurcation diagram which may 
be of mathematical interest. It is known that the ordering of the iterates for any stable 
period obey certain allowed sequences called the MSS sequences (Derrida et al 1979) 
and this ordering is unchanged throughout the entire stability zone. But in our 
diagram, it seems that this is no longer satisfied, as the ordering is necessarily changed 
when the bifurcation branches cross over. 

All these novel aspects of the diagram must be considered as the effect of the 
nonlinear modulation of the parameter since they are absent when the parameter is 
varied linearly with time. 

To summarize, we have shown that a simple type of non)inear modulation of the 
control parameter can change the asymptotic behaviour of the logistic map signifi­
cantly. 
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