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Abstract .. We establish numerically the validity of Huberman-Rudnick scaling relation for 
Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We 
extend our studies to the context of a combination map. where the scaling index is found to 
be different. 
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1. Introduction 

The behaviour of nonlinear dynamical systems can be analysed most extensively 
using one-dimensional iterative maps. These maps undergo a transition from regular 
to chaotic behaviour at certain values of the system parameter; the most prominent 
route for this transition being the period doubling scenario [1]. Studies related to 
the universal nature of indices associated with this scenario have resulted in the 
classification of one-dimensional maps into different universality classes, based on z, 
the order of the maximum of the map [2]. The chaotic state is detected most often, 
using an index called the Lyapunov characteristic exponent (,t). It gives a quantitative 
measure of the average separation of two initially close orbits as the system evolves 
in time. A positive value for· A. is an unambiguous signature ·of chaos while a negative 
value implies periodic or quasiperiodic behaviour in the system. As such, A. can be 
referred to as an order parameter in the transition from periodic to chaotic state. In 
this context, the scaling behaviour of A. during the transition from order to chaos is 
important and interesting in understanding the onset of chaos in the system. The 
nature of this scaling near the period doubling accumulation point has been 
theoretically worked out for one dimensional maps by Huberman and Rudnick [3]. 
They have shown that the Lyapunov characteristic exponent follows the relation, 

(1) 

where a oo is the value of the control parameter a at the period doubling accumulation 
point and 

In2 
V=- (2) 
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b being the Feigenbaum universality constant. This scaling law in the context oC 
quadratic maps has been verified experimentally using a sinusoidally driven diode 
circuit [4]. A scaling theory for noisy period doubling transition to chaos has been 
developed by Shraiman et al [5] in which it is shown that in the limit of the noise 
amplitude tending to zero, the Hubennan-Rudnick [H-R] relation is recovered. 

The H-R relation indicates that the exponent v depends' on z through b which is 
different for different universality classes. However, it is not clear whether v may 
depend on..z in some other way. To the best of our knowledge, no numerical investiga­
tions have been 'reported for z other than 2. In this paper, we report the results of a 
detailed numerical study of the scaling law near aa:) in one dimensional maps for 
different z values. We prove the universal validity of the H-R relation and at the 
same time extend the studies to combination maps. Such maps, when combined using 
maps belonging to the same universality class and therefore with the same b value are 
found to have different scaling indices. 

This paper is organized as follows. In § 2 we' give the details of our numerical 
analysis for maps of different universality classes. The period doubling accumulation 
point aa;J for different z-values are detennined and the nature of the scaling of ). 
obtained by plotting 10gl against logla - alXll. In § 3 we extend the analysis to a 
combination map defined there. The salient features of this map during the onset of 
chaos and the scaling of its). are included. Our concluding remarks and comments 
are given in § 4. 

2. Scaling law for general one-dimensional maps 

We start by considering maps of the form, 

(3) 

dermed on the interval'( - 1,1), with the control parameter at lying between 0 and 
2. This is a unimodal map with the critical point Xc = 0; z denotes the order of the 
maximum at Xc' This map can be transfonned into one on the unit interval (0, 1) by 
a nonlinear transformation [1]. 

The transformed map then becomes 

Xn+ 1 = f(Xn) = (~) - 2(~-2)aIX!l- ~r (4) 

withO<a<4 and Xc=t. 
The Lyapunov characteristic exponent in the context of such maps is defined as 

1 N-l 

A = lim - L Inlf'(X1)1 
N"'~ N i=O 

(5) 

This can be used as such-in the computation of.A. for different z-values [6]. However, 
a numerical analysis poses the following difficulties. Since round off errors may 
possibly build up in a. computer, ).. can be computed only by setting an upper bound 
for N which may lead to some truncation error. In our computations N is fixed as 
10,000. Again the proximity of a large number of periodic windows within the chaotic 
regime near the accumulation point reduces the number of useful values of)., especially 
for large values of z. But this can be overcome to some extent by adding a very weak 
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Figure 1. Variation of a"" with z, the order of the maximum of the map. Note 
that as z increases, the chaotic regime QC!) < a < 4 shrinks and becomes very narrow 
for z> 10. 

noise to the system. Such a noise term smoothens the curve for A. against.a [7]. Thus 
for high values of z, we added a small amplitude noise term ~ to- 15

, for computational 
purposes. 

Starting with z = 1'2, the 1 values for the map (4) are computed with values of a 
increased in small steps. The value of a", at which transition to chaos is roughly 
estimated as that value of a at which A. changes from negative to positive value for 
the first time. Then the value of a is varied in further small steps around this rough 
estimate and a better value for aa) is obtained. Continuing this process, the value of 
aoo is determined up to an accuracy of 10-6-10- 8. The Lyapuno,v characteristic 
exponent (1) is then computed for a number of values of a> a", and very near to 
aa)' This was repeated for different z-values. 

For higher values of z,l in the chaotic side near a<tJ changes to negative values 
quite often. This is due to the presence of a large number of periodic windows in the 
chaotic regime. The variation of am with z is sketched in figure 1. For large z, the 
value of a<tJ approaches the fully chaotic limit a = 4 and the entire chaotic regime 
shrinks to a, narrow region in the parameter space. Since the chaotic regime has to 
accommodate all the periodic windows, it is clear'that a large number of periodic' 
windows will be found near a oo , especially for high values of z. The addition of a 
small noise can wash out the fine structure of the periodic windows in the chaotic 
region. For z ~ 2, we added a Gaussian noise of zero mean and variance (}2. The 
typical strength for the noise amplitude was 10 - 15. Such a low noise cannot seriously 
affect the scaling behaviour of the system. It is to be emphasized that even with noise, 
the problem of periodic windows cannot be completely overcome. Thus for very high 
z-values (z ~ 4~ we report the envelope scaling for 1, with the periodic windows 
avoided. 

For each value of z, we obtain a plot of 10gl against logla - aool and the line of 
best fit is drawn. Its slope gives an estimate of v. A typical log-log plot is presented 
in figure 2. From the available values of lJ for different z-values [8], the theoretical 
value for v using (2) is calculated. These results are compared in table 1. Giving 
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Figure 2. A typical log-log plot of 1 vs (a - a..,) for z = 1'2. The slope of the line 
gives the scaling exponent v. 

Table 1. The scaling index v for different values of 
z, calculated numerically and using H-R relation. 

Order of v (using H-R) 
maximum (z) \I (numerical) = (In2/lno) 

1·2 0·60171 (}6057799 
1·5 (}52281 0'5192090 
2-0 0·42117 (}4498200 

3·0 (}40711 (}3834490 
4·0 (}30117 (}3489280 
5·0 (}29953 (}3266080 

allowance for possible computational errors, we can say that there is excellent 
agreement with the H-R scaling relation. 

3. Combination of two maps of the quadratic family 

We consider the dynamics of a combination map obtained by combining a sinusoidal 
map with the well known logistic map. This map is thus an example of a two parameter 
one dimensional map and is given by, 

Xlt+1 =f(X",Jl,A)=JlX,,(1-XII )-Asin(nX,,). (6) 

Here both the maps fl(XII,Jl)=JlX,,(l-X II ) and f2(X",A)=Asin{nX n ) belong to 
the same universality class viz, the quadratic family. 

The map defined in (6) has anextremum at X = i which is a second_order maximum 
for A ranging from (Jl/4 - 1) to (2J.l/n1 ) while it is a minimum for 2Jl/1t2 < A < Jl./4. 
Thus there is a point of inflexion at X = 1/2 when A = 2Jl/1t2. Consequently f(X

lt
, Jl.. A) 

is one humped for (JL/4 - 1) < A < 2J.t/~ and two humped for 2J.l/rr2 < A < J1./4. For 
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Figure 3. The combination map f(X) given in (6) for Jl = 4. The curves correspond 
to A = 0,0·5, 8/1[2, 3/n and 1 in that order from top to bottom. 

any value of P. the corresponding minimum value for A is (p/4 - 1) and this occurs 
as f(Xn,J..t,A) becomes equal to 1. Likewise the maximum value of A for a given 
value of p. is p./4 which occurs as f(XII,p.,A) becomes equal to zero. These features 
are made evident in figure 3 where f(X lI ,p.,A) is plotted as a function of XII for 
different values of A, .keeping p. = 4. We thus observe that the parameter A must lie 
between (p./4 - 1) and (p./4) so as to keep the iterates of the combined map within 
the unit interval (0,1). 

With p. fixed at 4, we do a detailed numerical analysis of the system in (6). The 
parameter A is increased slowly in steps of 0001 and a bifurcation diagram is drawn 
(figure 4). It is interest~ng to note that the system retraces the entire period doubling 
route to chaos in the reverse order as A is slowly tuned and finally settles down to 
a one cycle for A ~ 0·2435. Here, the effect of the combination- of the sinusoidal term 
to the logistic one is to reduce. the height of the maximum at X = 1/2 as the parameter 
A is increased, as is clear from figure 3. Further, if we start from a value of p. 
corresponding to one of the periodic cycles of the logistic map, by applying a negative 
value for A, the system can be brought to chaotic state. 

It can be shown that in the one humped region of the map viz, (p/4 - 1) < A < 2Jl/n2, 
the Schwarzian derivative of the function f(X '" p.A) is negative over the entire range 
(0.1) for X. This means that period doubling is generic in the system [9]. 

By changing the value of p., a parameter space plot for the system is drawn (figure 5). 
This gives details regarding the transition from Ch~lOS to order and vice versa. For 
each chosen value of p., the Lyapunov characteristic exponent is calCulated by varying 
A in steps of 0·001 and A<X) is determined as before. The thick line that represents the 
values of Aro for each value of J.I. is thus the transition line between order and chaos. 
The lines parallel to it (only two are shown in figure 5) represent the bifurcation 
curves along which each period doubling occurs. The shaded region corresponds to 
the chaotic regime of the system, where the L.C.E is generally positive, except for 
windows of periodicity within the chaotic regime. The lowermost line corresponds 
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FigtIn: 4. Bifurcation structure of th.e map in (6). With JJ "" 4 and A - 0, the 
system is rully chaotic. As A is slowly tuned. periodic cycles are traced in the 
reverse direction. 
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Fip't So The parameter space (p,A) of the combination map. The thick line 
represents the transition rrom order to chaos while the lines parallel to it, are the 
bifurcation curves. 

to A = (P/4 - I). By extending tbis line upwards. we observe that we can increase the 
value of Jl beyond JJ = 4 also, by taking suitable high values for A. 

Since the bifurcation curves in the parameter space (p.A) are parallel lines, it is 
clear that the Feigenbaum index 0 defined in terms of the bifurcation values A" for 
fixed IJ, must be the same as the lJ for the logistic map alone. 

Scaling of rlu Lyapunov exponent 

]n order to investigate the sca1ing behaviour of 1. for the combination map. we use 
the same numerical procedure discussed in § 2. Keeping the value of J.l = 4, 1. for the 
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Table 2. The scaling index v and accumulation 
point Aea for the combination map considered 
in § 3, for various values of Jl. 

3{) 

3·5 
4·0 

32 

- () 1382968450 
-(}0170178750 

() 1 046909450 
7·2212675805 

v 

(}9989838 
(}9677731 
(}9936844 
(}9996790 

system is computed by slowly varying the parameter A. This enables us to obtain 
the value of Aco. the parameter value at which transition from chaos to order occurs, 
up to an accuracy of 10- 8. Then the value of A is varied in steps of lO-8 around 
Aco and the corresponding values of 1 are determined. The slope of the line of best 
fit obtained by plotting 10gl11 against 10glA - Acol is determined as the scaling index 
v. This is repeated for Jl = 3·5 and 3 also. We then extend the investigations for a 
very high value of Jl namely Jl = 32. Here. the parameter A can vary from 7 to 8. In 
the latter case, the combination map is two humped from the very beginning. The 
results are presented in table 2. 

From table 2, it is clear that in all the cases studied for the combination map, the 
scaling index is entirely different from that for the logistic map. The scaling index 
for the combination map is almost unity for ~ll the cases considered. It is to be noted 
that this map has the same {) as the quadratic map. This would mean that the scaling 
relation in this case does not follow the H-R law. From the log-log plot for the 
combination map given in figure 6, it is evident that the points lie exactly along a 
straight line. The proximity of the periodic windows does not seem to hinder the 
numerical computations in this case. This could mean that periodic windows are leSS 
in number or they have been smeared out by the additional term in the map. 

In an attempt to see why the combination map doe~ not follow the H-R scaling 
relation, we carried out a d.etailed numerical analysis of the chaotic regime of the 
map. The control parameter A is slowly and carefully varied and a series of bifurcation 

1 

c. 

-17·S'-------'----....1----L.--__ ~ 
-21,5 -20,5 -19'5 -18'S -17-5 

In (A-A«J ) 

Figure 6. The LeE scaling for the combination map, In I A - A co I is plo~ted 
against In 1,1.1. Here, the value of Jl = 32 V in this case is found to be ~ 1. 
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Table J. Parameter vaJues for successive 
bifurcations of the chaotic band or the 
combination map and its convergence ratc 
6, . 

Parameter vaJue 
(A, ) 

~07909091 

~09954546 

~I0360000 

~1M44000 

~10463SOO 

~10467600 

~10468445 

0-10468625 

Convergence rate 
6, 

5·0449130 
4·8267857 . 
4-3076923 
4-7560975 
4·8235300 
4·7222222 

o'.",r-----------------------, 

I 

FiCUrc 7. The band structure of the combinatiOD map on an enlarged scale. As 
A. increases towards Aa) ' merging of bands take place. 

diagrams are drawn on an enlarged scale. This enabled us to observe the fine structure 
of the chaotic bands. With Il. = 4 and A = O. the system is in the fully chaotic state. 
As A is increased towards A .... the cbaotic band undergoes a series of bifurcations. 
After each bifurcation, one of the branches is taken and the bifurcation diagram is 
drawn on an enlarged scale. The control parameter is increased in very small steps 
and the next bifurcation point is obtained. Continuing ihis process., we could trace 
out the values of A up to the 8th stage of band bifurcation. The values of A at which 
successive band bifurcations occur and the convergence rate ~. calculated in terms 
of these A-values are presented in table 3. With further increase of the control 
parameter A towards A oo . recombination of bands is seen. Figure 7 ' shows the 
corresponding bifurcation diagram, in which merging of bands can be seen. Thus it 
is clear tbat in the case: of the combination map, band bifurcation does not take place 
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ad infinitum. This incomplete nature of the cascade of bifurcations in the case of the 
combination map could be the possible reason for the scaling behaviour of its 
Lyapunov characteristic exponent (1) to be different from the H-R law. 

4. Concluding remarks 

The work presented above establishes the validity of Huberman-Rudnick scaling 
law for different universality classes of one dimensional maps. However, we also find 
that it is possible to consider certain combinations of maps for which the Huberman­
Rudnick law is not obeyed, as far as the scaling of the Lyapunov characteristic 
exponent is concerned. These combination maps have almost the same bifurcation 
structure as single maps. But our investigations indicate that the behaviour of the 
combination map in the immediate neighbourhood of Aco is entirely different. What 
we observe is a series of band splittings and mergings before the system enters the 
periodic region. The exact reason as to why the cascade of band bifurcations is not 
complete is not yet clear. This is currently being investigated. 
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