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Abstract. This paper is a review of the work done on the dynamics of modulated logistic systems. 
Three different problems are treated, viz, the modulated logistic map, the parametrically perturbed 
logistic map and the combination map obtained by combining two maps of the quadratic family. 
Many of the interesting features displayed by these systems are discussed. 
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1. Introduction 

The complicated dynamical behaviour that can arise in the low dimensional deterministic 
nonlinear systems has generated a lot of intense research in the last two decades [1, 2]. 
These studies have shown that simple physical systems obeying simple laws can often 
show complex and chaotic behaviour. Since several nonlinear systems can be analysed 
using one dimensional maps, such maps have come to play an important role in 
understanding many of the general features of chaotic systems. One of the simplest one 
dimensional maps, namely the logistic map, originally introduced in the study of the 
population dynamics of non overlapping generations in biology [3] has become a 
paradigm for such systems. The logistic map is a one-hump map of the form 

Xn+l = 4AXn(1 - Xn) (1) 

defined in the interval (0, 1) and is characterized by a control parameter A which is also 
varied in the interval (0, 1). This system undergoes a transition to chaos via the well- 
known period doubling route and shows universal metric [4] as well as structural 
properties [5]. 

One of the earliest experimental observations of the period doubling route to chaos was 
in CO2 laser [6]. However, in many of the experimental situations the control parameter 
can have a time dependence of its own. Therefore, it would be interesting to consider the 
dynamics of a map with a time-dependent control parameter. 

In one of the earlier studies, Kapral and Mandel [7] investigated a non autonomous 
quadratic map wherein the control parameter was assumed to vary linearly with time. 
They have observed that this time dependence of the parameter delayed the onset of 
bifurcations in the system. The system also showed bistability and hysteresis. Ruelle had 
suggested the study of dynamical systems with adiabatically fluctuating parameters 
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where the control parameter has a very slow variation in time and this time dependence 
itself might be determined by a dynamical system [8]. 

In this paper the dynamics of the modulated logistic system is presented. We use the 
term modulated logistic system (MLS) to describe the following three situations: 

(i) A logistic map in which the control parameter has a discrete time-dependence 
determined by a dynamical system - a modulated logistic map (MLM). 

(ii) A logistic map wherein the control parameter is perturbed by the addition of a 
periodic term (parametrically perturbed logistic map). 

(iii) A combination map where the logistic map is combined with another map of the 
same quadratic family. 

The paper is organized as folllows. In § 2, we introduce the MLM and present some 
of the earlier results of Harikrishnan and Nandakumaran [9-12]. Some of the related 
works in this field are also discussed in the section [13]. We assume that the time 
evolution of the control parameter is determined by another logistic map. This coupled 
system shows many interesting features such as the locking of the periodicities of the 
two subsystems. Section 3 deals with the parametrically perturbed logistic map. Here 
the control parameter of the logistic map is perturbed by a sequence of periodic 
pulses. Such a system is relevant for modelling those systems which are subjected to 
periodic stimuli. The dynamics of the system shows many interesting and novel features 
such as the formation of bubble structure in the bifurcation diagram, emergence of 
periodic behaviour after a chaotic regime etc. The combination map is presented in § 4. 
This is a one hump map obtained by adding a sinusoidal map to the logistic map (both the 
maps belong to the same universality class). It is found that the scaling index 
characterizing the behaviour of the Lyapunov exponent near the onset of the chaotic 
transition is different from that of a single one-hump map. Section 5 contains the 
concluding remarks. 

2. Modulated logistic map 

In this section we briefly review the results obtained by Harikrishnan and Nandakumaran 
on MLM [9-12]. An MLM is defined by the following pair of equations: 

X,+I = 4)~nX,(1 - X,), (2) 

A.+I = 4/zA. (1 - An) (3) 

with 0 < Xn, An, # < 1. Here/z plays the role of the control parameter. This system is 
analogous to the one suggested by Ruelle although in the present case the time evolution 
of the A-system is not slow, but is of the same order as that of the X-system. As # is 
varied continuously, the MLM undergoes a sequence of period doubling bifurcations. 
However, the bifurcation diagram for X is very much different from the one for the A- 
system [11]. 

In order to establish the universality properties of the map we have determined the 
Feigenbaum constant 6 using the method of eigenvalue matching renormalization due to 
Derrida et al [14, 15]. The basic idea of the method is the following. Let us represent the 
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MLM as 

(Xn+l, ,~n+l) = T#(Xn,/~n). (4) 

We linearize the map T (n) in the neighbourhood of an n-cycle. With each # we associate 
a #' such that the linearization of Tu (n) around a point of cycle n is identical to 

T ~  ) around a point of cycle 2n. This gives rise to a relation connecting # linearization of 
and #', the fixed point of which is given by #oo universal constant 6 is then given by 

~ =  d___#_# . 
du' (5) 

The details of the calculations are presented in [10]. In the first order approximation, 
we choose n = 1, this gives a value of 6 = 4.4339... which is consistent with the 
Feigenbaum constant for the logistic map. Better agreement can be obtained by choosing 
higher values for n. 

One of the interesting features that we have observed in MLM is that the periodicity of 
X is identical to that of )~ except in the range of values 0.848 < 0.860 [9, 13] where ,~ has 
a periodicity of 2 while X has a periodicity of 4. As # is varied )t period doubles and so 
does the variable X. This locking of the periodicities of the two is a special case of the 
more general situation described by Batra and Varma. For a given value of # they have 
derived conditions under which the X-system is in a state of periodicity n or in a state of 
periodicity which is an integral multiple of n, when the ,k-system is in a stable state of 
periodicity n. For the MLM the two periodicities are identical except in the range of # 
mentioned above. This result has an important consequence. It shows that the MLM has a 
stable n-cycle for the same range of # for which the logistic map has an n-cycle. Thus the 
periodicity of X is enslaved to the periodicity of )~. This implies that the ordering of the 
cycles in MLM is the same as that of the logistic map. Thus the Sarkovskii ordering [16] 
which is an universal structural property of unimodel maps is maintained in the MLM. 
Batra and Varma have suggested other possible 2D-systems that may show Sarkovskii 
ordering. These universal properties of MLM makes it suitable to model physical systems 
in which the control parameter is time-dependent. 

3. Parametrically perturbed logistic map 

In this section we consider a logistic map whose control parameter is perturbed by the 
addition of a periodic term [17]. Instead of changing )~ continuously it is changed in a 
discrete sequence of pulses, repeated periodically, the envelope of the amplitudes of these 
pulses forming a positive sine profile. Maps where the control parameter is perturbed by a 
sequence of pulses may be relevant in the study of certain biological systems subjected to 
periodic stimuli [18]. A logistic system with a similar perturbation but with a cosine 
profile that includes both the positive and the negative half cycles has been considered 
earlier [19]. It has been shown that the map undergoes a transition from a fixed point to a 
state which has the periodicity of the perturbation. We observe that the map has some 
novel features not considered earlier. Quadrative maps with additive periodic forcing that 
leads to bistability and the coexistence of multiple attractors have been studied by Sanju 
and Varma [20]. 
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Figure 1. Bifurcation diagram of the parametrically perturbed map for q = 3. 
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Bifurcation diagram for q = 8. 

The parametrically perturbed logistic map is defined by the equations 

X,+s = 4%X,(1 - X,), 

with 

,~ = ),o + )~* sin(~r~n), (t~n) mod 1. (6) 

This represents a train of  pulses whose periodicity is determined by w. 
I f  oJ = p / q ,  the control parameter forms a periodic q-sequence. In what follows we 

chose q = 1. w can also be chosen as irrational. The dynamics of  the map (6) is studied 
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Figure 3. Bifurcation diagram for q = (5 I/2 - 1)/2. 

numerically by fixing A0 and varying the strength of the perturbation amplitude A*. To 
obtain a wide tunability for A* we fixed a low value for A0 = 0.1. For this value of Ao, the 
unperturbed logistic map has a stable fixed point X* = 0. The bifurcation diagrams are 
drawn for q = 3, 8 and (51/2 - 1)/2 which is the golden mean (figures 1, 2 and 3). For 
q = 3, when A* is increased the fixed point X* = 0 becomes unstable and the system 
makes a transition to a stable 3-cycle and remains locked to it for a very long range of A*. 
After this, period doublings follow in quick succession followed by a chaotic regime. 
When A* is increased still further the iterates leave the interval (0, 1) and escape to 
infinity. Qualitatively similar features are seen for q = 8. However, for q = 8, the chaotic 
region is followed by the reappearance of 8-cycles which further period doubles and goes 
to chaos. Some of the other novel features observed in this system have not been included 
in this paper since they form the contents of another paper which has been sent for 
publication. When q = (51/2 - 1)/2, the stable fixed point becomes unstable as A* is 
increased and goes to a quasiperiodic state (figure 3) and remains in that state until 
escape. When w is chosen as irrational there are additional interesting phenomena such as 
strange nonchaotic attractors [21]. However, we do not consider this in the present case. 

It is instructive to study the superstable cycles in this map. For superstable cycle, 
x = 1/2 is one of the cycle elements. Metropolis et al [5] have studied extensively the 
sequence of iterates starting from the extremum at x = 1/2. These sequences are often 
called the MSS sequences. The superstable cycles are represented by a sequence of 
symbols R and L depending on whether the iterate falls on the right (R) or the left (L) of 
the extremum at x = 1/2. We have done a similar analysis for the map (6) and the results 
are tabulated in table 1 for various q-values. It is clear from the table that the map (6) can 
support sequences that do not fall under the MSS classification. In fact the first 
superstable sequence for each w contains only the symbol L. In the table the sequences 
indicated by a star belong to the MSS classification. 

The parametrically perturbed map is of importance since it may be used to model many 
experimental situations such as a laser system [22] where the control parameter would be 
modulated by periodic pulses or pulse trains. 
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Table 1. Super stable sequences of the parametrically perturbed 
logistic map. The super stable value of  ,V is indicated by A*. 

q Sequences A* 

3 k = 3 L 2 0.6672028 
k : 6 L2RL 2 1.008131 

4 k = 4 L 3 0.5871376 
*RL 2 0.6724169 
L 2 R 0.9041113 

5 k = 5  L 4 0.5268982 

6 k = 6 L 5 0.4899559 
*RL 4 0.5539654 
L 4 R 0.7129956 

7 k = 7 L 6 0.4855321 
*RL 5 0.59889335 
L 4 R 2 0.6514045 
*RL 4 R 0.80803725 

8 k ----- 8 L 7 0.4585666 
*RL 6 0.5080377 
L 5 R 2 0.5843965 
R 3 L 4 0.655407 
L4R 3 0.81519066 
L 4 RLR 0.92404916 

9 k = 9 L 8 0.4621206 
RE 7 0.4633298 
R2L 6 0.5403486 
R 3 L 5 0.7149534 
*RE 5 R 2 0.720069367 
RE 5 R 2 0.80574375 
L 4 R 4 0.85825292 
*RL4R 3 0.9043900 

10 k = l0 L 9 0.44201028 
*RL s 0.48165978 
L 7 R 2 0.508807 
R 3 L 6 0.57816015 
L 5 R 4 0.691275 
* RE 5 R 3 0.7179589 
RLRL 5 R 0.7626641 
RLRLRL 4 0.7773538 
L 4 R 2 LRL 0.8562051 

*Indicates the cycles that occur in the MSS sequences. If k is the 
period of the cycle the sequence contains (k - 1) symbols. 

4. Dynamics of a combination map 

The  combina t ion  map  is obtained by combin ing  the logist ic  map  with  a s inusoidal  map.  

Thus we  have  a two-parameter  one  d imens iona l  map  g iven  by [23, 24] 

Xn+l = f ( X n ,  A,A) = 4)d~n(1 - Xn) - A sin(TrX~). (7) 
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Figure 4. The combination map for A= 1. The curves correspond to 
A = 0,0.5, 8/~,3/7r and 1 in that order from top to bottom. 

On the right hand side both the terms belong to the same universality class, viz, the 
quadratic family. The motivation for studying the map (7) is to see whether the map still 
has all the characteristics of the quadratic family. We shall show that it has the same 
universal constants as the logistic map, however, the scaling index of the Lyapunov 
exponent at the transition point is different. 

The map (7) has an extremum at x = 1/2 which is a second order maximum for 
(~ - 1) < A < 8A/Tr 2 while it is a minimum for 8)~/~ < A < A and there is a point of 
inflexion at x =  1/2 for A = 8,VTr 2. Consequently, f(Xn,,~,A) is one humped for 
()~ - 1) < A < 8)~/7r 2 and two humped for 8A/Tr 2 < A < ~. It can easily be seen that the 
parameter A must lie between ()~ - 1) and A so as to keep the iterates of (7) within the 
unit interval (0, 1). The function f(x, ,~,A) is plotted for various values of A in figure 4. 
In figure 5, we give the complete bifurcation structure for the map by keeping )~ = 1 and 
by changing A in steps of 0.001. As the parameter A is slowly tuned, the system retraces 
the entire period doubling route to chaos in the reverse order and finally settles down to a 
one-cycle for A > 0.2435. One can also consider negative values of A which would bring 
the system from a state of periodicity to a state of chaos. By changing ~, the value AM of 
A at which the system makes transition from chaos to order and vice versa, is determined 
by calculating the Lyapunov exponent and by noting the value of A at which it changes 
sign. The thick line figure 6 represents the value of A as a function of )~. The lines parallel 
to it (only two are shown in figure 6) represent the bifurcation lines along which each 
period doubling occurs. The shaded region corresponds to the chaotic regime of the 
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Figure 5. Bifurcation structure of the combination map with A = 1. 
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Figure 6. The parameter space (A,A) of the combination map. The thick line 
represents the transition from order to chaos while the lines parallel to it are the 
bifurcation curves. 

system where the Lyapunov exponent is generally positive except for windows of 
periodicity within the chaotic regime. The lowermost line represents the minimum value 
of A, namely (A - 1) for each A. By extending this line upwards we can increase the 
value of A beyond A = 1 by taking suitably l~.'gh value of A. Also, since the bifurcation 
curves in the ()~,A) space are parallel lines, it is clear that the Feigenbaum constant 6 
defined in terms of the bifurcation values An for fixed A must be the same as that for the 
logistic map alone. 
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Table 2. The scaling index v and accumulation point Aoo 
for the combination map considered in § 4. 

A Am v 

0 . 7 5  -0.1382968450 0.9989838 
0 . 8 7 5  -0.0170178750 0.9677731 
1.0 -0.1046909450 0.9936844 
8 7.2212675805 0.9996790 

To see whether the combination map has all the characteristics of the quadratic 
maximum we have investigated the scaling property of the Lyapunov exponent as a. 
function of ]A - A m  1. For a one-hump map the nature of this scaling near the period 
doubling accumulation point has been worked out by Hubermann and Rudnick [25]. They 
have shown that the Lyapunov exponent ~r follows the relation 

~r ~ la - a~l ~, (8) 

where am is the accumulation point for the period doubling bifurcations and that 

v = In 2/ In  6, (9) 

6 being the Feigenbaum constant. The Hubermann-Rudnick (HR) relation (9) indicates 
that v depends on z, the order of the map, through the value of 6 which is different for 
maps belonging to different universality classes (different z) [26]. Since 6 is the same for 
the combination map one expects the same value for v for the combination map also. To 
test this we have determined v and A for the combination map and the results are shown 
in table 2 [24]. 

It is clear from the table that v for the combination map is almost double the value of 
1/2 for the quadratic family as predicted by the HR relations and also computed 
numerically for the logistic map. Thus, for the combination map which also has a 
quadratic maximum at x = 1/2 does not satisfy the HR relations. Numerical studies have 
shown that a series of bifurcation for the chaotic band take place as A --~ Aoo [23]. 
However, this cascade of band bifurcations does not take place ad infinitum. This 
incomplete nature of the cascade for the combination map could be a possible reason for 
the violation of HR relations for the map. 

5. Concluding remarks 

In this review we have considered the dynamics of modulated logistic systems. 
Specifically we have discussed three different systems, viz, the modulated logistic map, 
the parametrically perturbed logistic map and the combination map obtained by 
combining two maps in the same quadratic family. Each of these systems shows several 
interesting features, such as the enslavement of the periodicities (in MLM), occurence of 
superstable sequences other than the ones included in the MSS classification, the 
reappearance of periodicity after a chaotic regime (in the parametrically perturbed 
logistic map) and the violation of the Hubermann-Rudnick scaling relations for the 
Lyapunov exponents (in the combination map). 
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