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Chapter 1 

Introduction 
 

Modelling physical and natural phenomenon or the process of modelling 

has been a necessity for the human race because of many reasons. The task would 

have been simple if the phenomenon or the process was deterministic. Almost all 

physical equations related to motion assume that the hidden process is 

deterministic or they will tactically neglect the randomness that may arise because 

of the changes in acceleration due to gravity, friction in the air etc. Every 

modelling problem is thus simplified by neglecting the hidden random nature 

involved in the process. 

With the Heisenberg’s Uncertainty Principle randomness became an 

accepted fact and scientists were forced to model, by taking into consideration, the 

effects due to randomness. In order to incorporate randomness from single source, 

one dimensional random variables were introduced. However, later it was noticed 

that the randomness could be from more than one source. For example, the time 

taken by a mass to reach the ground depends on the distance as well as the air 

friction. Hence, the randomness is attributed not only to a single factor but also to 

two factors. Hence, in order to integrate randomness due to various factors or 

randomness from various sources multivariate random variables were introduced.  

The problem was further worsened while dealing with random variables 

that change over time. Since time is not finite dimensional, time variables cannot 

be modelled by multivariate distributions. This paved the way for the introduction 

of stochastic processes that could be used to model the random quantities that vary 

over time or place. One of the basic characteristics of these variables is that they 

are related to each other. If these are independent, then they can be modelled using 

the one dimensional random variables. Stochastic processes can be classified based 

on the continuous or discrete nature of the random variable at each time and also 

that of the time scale.  
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A major class of stochastic processes is the one that satisfies the Markov 

property. Markov property states that the future depends on the present not on the 

past in statistical sense. Hence, by assuming that the processes follow Markov 

property it is assumed that the conditional distribution of a future value of the 

process is dependent only on the most recent available value. Once the initial 

distribution and the one-step transition probability matrix is known then the 

probabilistic properties of the whole process are tracked. The Markov process with 

its nice probabilistic properties and the dependence structure finds application in 

many areas of applied science including Physics, Chemistry and Genetics. In this 

study, problems in reliability, quality control and distribution have been modelled 

using the Markov process.  

Chapter two is dedicated to the preparation of the theoretical background 

for introducing the various concepts in the study. The basic results regarding the 

continuous and discrete time Markov chains, transition probability matrices, 

infinitesimal generators etc. are discussed in the chapter. The various repair 

policies are also discussed in this chapter. Neuts (1975) introduced the phase type 

distribution from the continuous time Markov chains. This is a situation of 

modelling using the Markov chains. For an elaborate discussion on phase type 

distribution one may refer to Neuts (1981) and Neuts (1995). Quality control is an 

area where the Markov chain can be effectively exploited to model various strange 

situations. Start-up demonstration tests are the mechanism by which the quality of 

a product can be conveyed to the customer by the vendor. An elaborate discussion 

on the start-up demonstration tests and various concepts in the literature is dealt 

with in the chapter. The concept of runs and the various methods of making a 

record of the runs are also discussed in the chapter. Fu and Koutras (1994) have 

introduced Markov chain embedding as an effective procedure for deriving the 

distributions associated with runs. An introduction to the Markov chain embedding 

technique is provided in the chapter. 

Most of the classical reliability modelling papers deal with two states 

namely, working and failure state systems. Here we model multi-state systems that 
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allow the system to be in various intermediate states in between. The modelling of 

lifetime, after repair, has been confusing for those who are working with these 

situations. Earlier they were either assumed to be in perfect condition or were 

brought back to the situation just prior to the failure.  Lam (1988) introduced 

geometric process model, which could satisfactorily model monotone random 

variables and this has been widely used to model the repair as well as the working 

time models as these can be considered to be monotone variables in the case of a 

two state system. There have been many attempts to model the multi-state systems 

involving repairs using extensions of the geometric process model (for details see 

Lam (2005) and the references therein). All these papers assume that the lifetimes 

and the repair times as a sequence of monotone random variables, which cannot be 

justified always in the case of a multistate system. Repair time for the critical 

failures will take more time than the minor failures even if it occurs prior to the 

second time. Hence, a state based modelling mechanism is essential to model these 

situations. 

In the third chapter a multistate system with monotone lifetimes (repair 

times) is discussed. To generalize the model, the consecutive life times and repair 

times are considered to have Markov dependence. Neuts and Bhattacharjee (1981) 

proved that every distribution in the positive real domain can either be treated as a 

phase type random variable or approximated very well by the phase type 

distribution. Hence, the life times or the repair times in each state are assumed to 

follow phase type distribution. A regression model introduced by the Cox (1972) 

has been used to incorporate the impact of the repairs on the repair and the 

lifetimes assuming the repairs to be as the concomitant or the covariate variable. 

An expression for the long run cost for the assumed model is obtained. Further an 

algorithm which enables the evaluation of the best N (say) policy has been 

developed and the results are illustrated.  

There is relatively little literature available in the discrete time reliability 

systems in which the life time is measured on a discrete scale, like number of 

copies by a printer, number of operations by a switch etc, in comparison to the 
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usual continuous scale. The only attempt to model the repair or lifetimes in 

discrete time systems having impact of the repair on them has been done by Castro 

and Sajuan (2004) by the Power process. That can also be used only for modelling 

stochastically increasing or decreasing variables. But we made an attempt to model 

this in a more generalised frame work by assuming discrete phase type distribution 

(Kao (1997)) for the repair as well as the lifetimes and with the Cox regression 

models (Cox (1972)) to incorporate the impact of repair. Expression for the long 

run cost has been derived and the results are illustrated. 

Any interruption while the repair is in progress may have high financial 

liabilities and such interruptions can be averted by incorporating appropriate 

protection procedures. The question of when the process should be protected has 

the natural answer of protection during the whole repair time. However, the 

problem becomes more complicated if the protection cost is very high compared to 

the repair cost. Such repair processes arise if the repairs have to be started from 

scrap, once interrupted. Interruption may be the immediate withdrawal of the 

repair person who has been working on repair or power failure etc. While repairing 

complicated machines an immediate withdrawal by the repairing personal may 

result in stating the repair from zero. Even though papers on interruption appear in 

the queuing scenario connecting with service breaks (See Krishnamoorthy et. al. 

(2009) and references therein), there are not sufficient work dealing with 

interruption in the reliability scenario. In chapter four, we try to model this 

situation assuming that the repair times follow Erlang distribution with n  states. 

We will find the optimum value for the number of states to be protected. 

Quality control is another area where probability and the Markov property 

can be effectively used. Classical quality control problems assume that the 

consecutive trials are independent. However, that may not be the case always. 

Generally they are Markov dependent. Start-up demonstration tests are the 

procedure of convincing the customer about the quality of certain products like 

heavy machines. Han and Gage (1983) introduced the concept of start-up 

demonstration tests. The results of the general theory of runs have been exploited 
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widely in the context of start-up demonstration tests. Most of the researchers in 

start-up demonstration test describe it with the help of later or sooner waiting time 

problem of runs. For more discussions on the theory of start-up demonstration 

tests one may refer to Balakrishnan and Koutras (2002). Viveros and Balakrishnan 

(1993) introduced the Markov dependence structure in the start-up demonstration 

tests. The idea of repair or corrective action in the start-up scenario was introduced 

by Balakrishnan et. al. (1995).  

Balakrishnan and Chan (1999) introduced two stage start-up demonstration 

tests in which the product is accepted if 1k  consecutive successes occur before 1l  

failures and if the above event does not happen but 2k  consecutive successes occur 

before the next 2l  failures and the product is rejected if both the events do not 

happen. Smith and Griffith (2003) proposed a procedure having similarities with 

the Markov chain embedding technique introduced by Fu and Koutras (1994) in 

run scenario. A general procedure for finding various probabilities of interest in 

the start-up context was discussed by Aston and Martin (2005), start-up 

demonstration test was formulated as a special case of the competing patterns. 

Martin (2008) obtained a recursive formula for various variables of interest for 

different start-up demonstration tests.  

In chapter five, we introduce two new start-up demonstration tests and 

derive the various characteristics involved. In the first model, we try to generalize 

the existing models in the start-up scenario. Here we assume that if consecutive 

failures occur for the product, it will be sent for repair and the rejection takes place 

when the number of random failure becomes large. In the second model, we reject 

the product based on the number of consecutive failures and the repair process will 

be triggered if the number of failures exceeds certain specified number. 

Consecutive failure occurs when the product is bad or has failed components and 

the random failures are due to the accidental causes. This is the motive for the 

introduction of the second model.  
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Runs have been finding applications in various fields like quality control, 

reliability, distributions, statistical testing procedures, genetics etc. Reliability of 

consecutive k out of n system can be computed by the application of runs. In many 

applications, along with the number of runs, it is of interest to find the number of 

occurrence of each outcome. In many practical situations, there involve more than 

two types of outcomes. Most of the earlier works dealing with the distributions of 

runs were dealing with the independent trails and they exploited combinatorics. 

For more applications on runs one may refer to Balakrishnan and Koutras (2002), 

Koutras (2003) and the references there in. Markov chain embedding has been 

widely used since Fu and Koutras (1994) in run scenario. Later Han and Aki 

(1999) further enhanced the Markov chain embedding technique by introducing 

multinomial and returnable type embeddings and they obtained the distribution of 

the runs in a sequence of multi- state trials. Fu and Lou (2003) discusses runs and 

patterns with Markov chain embedding in detail. 

However, almost all works in this context were dealing with the runs alone. 

When we tried to model the multistate systems with an extension of the geometric 

process (Lam (2005)) with the Markov dependence between consecutive working 

and repair states, we were forced to derive the distribution of runs and the 

occurrence of each outcome. In chapter six, we derive the distribution of the runs 

and the occurrence of the events exploiting the Markov chain embedding 

methodology. Most interesting factor is that the various methods of counting viz. 

overlapping (Mood (1940) and Ling (1988)), non overlapping (Feller (1968)), 

partially overlapping (Aki and Hirano (2000)), runs of length greater than or equal 

to some specified number, Markov Binomial and Markov multinomial 

distributions comes as special cases of the what we discussed. The results obtained 

here can be easily extended to the l  dependence (Aki and Hirano (2000)) case too. 

The study can be extended to the case of patterns also. 

Geometric distributions and the negative binomial distributions are the 

well-known waiting time distributions. We also derive the expressions for 
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obtaining the waiting time distributions associated with runs and the occurrence of 

each event too.   

In the present study, we have discussed only some of the most important 

applications of the Markov chains, especially in the field of reliability, quality 

control and distributions. The above mentioned methods can be extended in 

framing nonparametric tests or in developing quality based sampling plans for 

multistate systems. Many problems in genetic modelling can be easily over ridden 

by the use of the Markov chains and it is still an area to be explored.  
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Chapter 2 
Basic Concepts and the Literature Survey 

 

2.1 Introduction 

Ageing is an important characteristic prevailing in the universe and there 

has been evidence of ageing since the beginning of the universe. Darwin’s 

evolution theory reiterates that dependence is attributed to ageing. In mechanical 

systems or the phenomenon having ageing, it is assumed to have either an 

increasing or a decreasing trend in the consecutive observations of the random 

variable. Hence there is dependence between the consecutive observations of the 

random phenomena under investigation. But most of the earlier papers assume that 

there is no dependence or in other words there is no ageing. In this chapter we will 

introduce some of the concepts that will be used in the thesis.   

2.2 Stochastic Process 

A stochastic process is a family ( ){ },X t t T∈ of random variables defined 

on the probability space ( ), ,F PΩ . The set T is called the index set or the time set, 

and can assume values from any infinite subset of real numbers. ( )X t  at each 

value of t T∈  is a random variable. Hence stochastic process is an infinite 

dimensional random vector indexed by a parameter. Depending on the index set 

being countable or uncountable a stochastic process is termed as discrete time or 

continuous time stochastic process. Normally a continuous time stochastic process 

is denoted by ( ){ },X t t T∈  and a discrete time stochastic process is denoted by 

{ },nX n N∈ , N being any subset of the set of integers. The set of possible values 

the random variable can assume is called the state space. Based on the state space 

being continuous or discrete, we can classify a stochastic process as discrete or 
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continuous stochastic process. The function ( ), , ,X t t Tω ω ∈Ω ∈ , is called the 

realizations or sample paths of the process ( ){ },X t t T∈ . 

2.2.1 Markov Process 

 Markov process is an important class of stochastic process. It finds 

application in almost every field, where there is dependence between the 

consecutive trials or attempts. Given the value of ( )X t , the value of ( ) ,X u u t> , 

is independent of the value of ( ) ,X s s t< , then the stochastic process 

( ){ },X t t T∈  is said to satisfy the Markov property. In simple terms, Markov 

property states that the future depends statistically on the present not on the past. 

Hence a discrete time stochastic process { },nX n N∈  satisfies the Markov 

property if  

( ) ( )1 1 1 1 2 2 1 1
, ,....,

n n n n n n n n
P X x X x X x X x P X x X x+ + + += = = = = = =  (2.1) 

Let us denote ( ) ,

ij

n n k

n k n
P X j X i P +

+ = = = , then ,

ij

n n kP +  is said to be k- step 

transition probability for transition from state i  to state j  through n , n k+ . If 

,

ij

n n kP +  does not depend on n  but on the length k  in (2.1), then we say that the 

chain is homogeneous. For 1k = , the transition probabilities are called one-step 

transition probabilities. A matrix whose elements are one-step transition 

probabilities is called the transition probability matrix (t.p.m). Any matrix whose 

elements are non-negative and each row sum is unity is called a transition 

probability matrix P . Hence ( )( )ij
P P=  and let 

( ) ( )( )( )n n

ijP P=  be the n -step 

transition probability matrix. Then we can establish that ( )n
P  is nothing other than 

nP  itself.  

The initial probability vector, vector of probabilities that the process is in at 

each state at the start of the Markov chain, and the transition probability matrix of 

a homogeneous Markov process describes the process completely. 
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For a Markov chain { },nX n N∈ , let n

iif  denote the probability of return to 

state i , starting from state i  for the first time in n  steps, that is, 

( )0
, , 1, 2,..., 1n

ii n r
f P X i X i r n X i= = ≠ = − = . A state i  is said to be recurrent if 

and only if 
1

1n

ii

n

f
∞

=

=∑ , otherwise it is called transient. In other words, a state i  is 

said to be recurrent if and only if the probability of ultimate return to state i  is 

unity. The discrete time analogue of Chappman-Kolmogrov equation gives the 

method to finding the n -step transition probabilities, for 1n > , which is given by 

1

n r n r

ij ik kj

k

p p p
∞

−

=

=∑ . 

Consider a Markov process ( ){ },X t t T∈  with states 0,1, 2,... . Let us 

assume that the usual transition probabilities are stationary that is the transition 

probability remains unaltered by the time at which transition occurs. Let

( ) ( ) ( )( )ij
P t P X t s j X s i= + = =  be the probability of transition from state i  to 

state j , during a duration of time t . Then for a discrete state, continuous time 

Markov process we have  

( )
0

1
lim

ii

i
h

p h
q

h→ +

−
=  and  

( )
0

lim
ij

ij
h

p h
q

h→ +
=  called the infinitesimal generators. 

Then the matrix 

0 01

10 1

. .

. .

. . . .

. . . .

q q

q q
A

− 
 − =
 
 
 

 is called the matrix of  infinitesimal 

generators. It can be seen that each row sum for the matrix is zero. 
ijq  is finite for 

every Markov process but 
i

q  is finite for finite state Markov process and it can be 

infinite for infinite state Markov process. 
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The Chappman-Kolmgrov equation for the Markov process is given by 

( ) ( ) ( )
1

ij ik kj

k

p t s p t p s
∞

=

+ =∑ , for every ,s t . 

Kolmogrov’s forward equation and backward differential equations 

(Ross,1997) are widely used in modelling problems using Markov processes. 

Kolmogrov’s backward equations are given by  

( ) ( ) ( )'
ij ik kj j ij

k i

p t q p t q p t
≠

= −∑  for every ,i j  and t o≥ .  

Kolmogrov’s forward equations are given by, ( ) ( ) ( )'
ij kj ij j ij

k i

p t q p t q p t
≠

= −∑  for 

every ,i j  and 0t ≥ . 

2.2.3 Renewal Process 

Renewal process is an important class of stochastic processes. Consider the 

situation of replacing a bulb immediately after failure. Let ,  1, 2,3,...
i

X i =  denote 

the lifetime of the th
i  bulb. Since the replacements are by a new one, lifetimes of 

each bulb can be assumed to be independent and identical. Hence it is natural to 

find the number of replacements by the time t  or the time of failure of the th
n  

bulb. Renewal theory is associated with such problems. 

A renewal process ( ){ }, 0N t t >  is a non negative integer valued stochastic 

process that registers the successive occurrence of an event during the time 

interval ( ]0, t , where the time durations between consecutive events are positive, 

independent, identically distributed random variables (Karlin and Taylor, 1975). 

Associated with a renewal process ( ){ }, 0N t t >  we can define another variable 

{ }, 0,1,2...nS n = , where 
n

S  denotes the time of occurrence of the th
n event. Both 

{ }, 0,1,2...nS n =  and ( ){ }, 0N t t >  are invariably called the renewal processes. 

The time between the consecutive occurrence of the events, , 1, 2,3....
i

X i = ,  are 
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known to be as the inter-occurrence times. The relation connecting these variables 

is ( ) nN t n S t≤ ⇔ ≥ . Further we have  
1

n

n i

i

S X
=

=∑ . 

Renewal Process finds application in various fields including reliability 

theory and queuing theory. While modelling perfect repair models, models 

assuming that the system is as good as new, the consecutive lifetimes or the repair 

times can be assumed to be independent and identical. Hence renewal process can 

be used to model these problems. In queuing problems consecutive arrival times 

and the service times are assumed to be independent and identical. Hence the 

service times and the repair times can be assumed to be forming a renewal process. 

For an elaborate discussion on the renewal theory one may refer to classical books 

like Karlin and Taylor (1975) or Cox (1965) or any other books on Stochastic 

Processes.  

Poisson process can be treated as a special case of the renewal process. A 

renewal process whose inter-occurrence times follow exponential distribution are 

known as the Poisson process. It can be proved that the ( )N t  follows Poisson 

distribution in the case of a Poisson process. It can be seen that if the inter-

occurrence times , 1, 2...
i

X i =   follow exponential distribution with parameter λ  , 

( )N t  follows Poisson distribution with parameter tλ  and 
n

S  follows a gamma 

distribution with parameters ( ),n λ . Arrival process and the departure times of the 

classical Markovian queuing models are examples of the Poisson process. 

One of the major advantages of the Poisson process is the lack of memory 

property of the exponential distribution. Lack of memory property says that the 

distribution of future value of the random variable given that the random variable 

has elapsed some time is independent of the time for which it has been working. In 

other words, the probabilistic statements about the residual value for the random 

quantity is the same as that of the quantity when observed from the beginning. Let 

X  be a continuous random variable. Then X  is said to satisfy the  lack of 

memory property or the memoryless property if  ( ) ( )P X s t X s P X t≥ + ≥ = ≥ ,  
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,s t  being real. The joint distribution of , 1,2,....
i

S i n=  given that ( )N t n=  , in the 

case of a Poisson process, is the distribution of the order statistics from a sample of 

n  observations taken from the uniform distribution on [ ]0, t . Also for u t<  and 

k n<  , ( ) ( )( )P N u k N t n= =  follows Binomial distribution with parameters n  

and 
u

t
. 

Developing a formal definition for the random variables whose values tend 

to increase or decrease as the number of trials becomes large is given in this 

section. The amount of error while taking measurements will reduce considerably 

with the experience of the one who measures it. Given two random variables X

and Y , X is said to be stochastically larger than Y  or Y is stochastically smaller 

than X  , if 

( ) ( )P     P  X Yα α> ≥ > ,  for all real α (Lam 2005). 

This is denoted by 
st

X Y≥ or 
st

Y X≤ . Furthermore, we say that a stochastic 

process { },nX n N∈ is stochastically decreasing if 
1n st n

X X +≥  and stochastically 

increasing if 
1n st n

X X +≤  for all n = 1, 2, . . . . 

2.3 Phase Type Distribution 

The first attempt of embedding a Makov process was carried out by 

Neuts(1975). He developed a distribution as the waiting time till absorption in a 

Markov Process with only one transient state. Since then Phase type (PH) 

distribution has been used widely, in modelling problems. Later the concept 

behind the development of the PH distribution paved way for a set of methods 

popularly known as Matrix Analytic Methods. 

Consider a Markov process with states { }1,2,...., , 1m m +  with infinitesimal 

generator 

0

0 0

T T 
 
 

, where T  is an m m×  matrix and 0T  is a column vector of 
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size m  and the initial vector ( )1, mα α +  where ( )1 2, ,...., mα α α α= . A probability 

distribution ( ).F  on [0, )∞  is a distribution of phase type (PH Distribution) 

(Neuts,1981) if and only if it is the time until absorption in the Finite Markov 

process. The pair ( ),Tα  is called the parameters or the representation of ( ).F . 

For a phase type distribution, the distribution function ( ).F  has a jump of 

height 
1m

α +  at 0x =  and the density function is given by ( ) ( ) 0expf x Tx Tα=  and 

the , 0thi i ≥  moments about zero is given by ( ) ( )1
' 1 !

i

i i T eµ α −= − . 

The Erlang distribution of order m with parameters 
1 2
, ,...,

m
λ λ λ  has the 

representation ( )1,0,0,...0α =  and 

1 1

2 2

1 1

...

m m

m

T

λ λ

λ λ

λ λ

λ
− −

− 
 − 
 =
 

− 
 − 

. When 

,  1,2,...,
i

i mλ λ= = , Erlang distribution reduces to Gamma. 

The Coxian distribution of order m is given as the Phase type distribution 

with parameters ( )1,0,...,0α =  and 

1 1 1

2 2 2

1 1 1

...

m m m

m

p

p

T

p

λ λ

λ λ

λ λ

λ
− − −

− 
 − 
 =
 

− 
 − 

 

where 0 1
i

p≤ ≤ . 

2.4 Concepts involved in the optimal replacement Policies 

The time at which a system, that is subjected to repair, is to be replaced has 

been a puzzling question for all those who are working in area of reliability. The 

replacements are made so as to either maximize availability or minimize long run 

average cost. Optimal maintenance policies aim to provide optimum system 
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reliability or availability and safety performances at the least possible maintenance 

cost. 

2.4.1 Repair Policies 

The repair policies can be broadly classified into two namely, corrective 

maintenance and preventive maintenance. Under corrective maintenance, repair 

facility is triggered at the time of system failure. Under preventive maintenance 

however, the repair is triggered at a specified time, even if the system is 

functioning, in order to keep the system in a predetermined state or condition. One 

of the major advantages of preventive maintenance over corrective maintenance is 

that it optimizes the availability of the system. 

2.4.2 Bistate and Multistate Systems 

The commonly used reliability systems are assumed to have two state viz. 

working and failure. A multistate model generalizes these models by admitting 

intermediate states between these extremes. A system can be assumed to have the 

states working, partially working, partially failed and failed. Multistate models are 

the most commonly used models for describing the development of longitudinal 

failure time data. A multistate model is defined as a discrete state stochastic 

process with the sojourn times in each state having some distribution. A change in 

state is called a transition. An excellent review on multistate models can be found 

in Houggard (1999). Griffith (1980) presents an axiomatic development of the 

multistate model.  

A    :k out of n G  system comprising of n  units is in working condition if at 

least k  components are in the working state, where as, a system which comprises 

of n  units is said to be a    :k out of n F system if at least k  components are in the 

failed or in non working condition. A Consecutive    :k out of n G  system is the one 

which works if at least k  consecutive components are in working condition. 

Similarly we can define Consecutive    :k out of n F  system. 
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2.4.3  Maintenance Policies 

Maintenance actions are classified according to the operating condition of the item 

restored by maintenance. At the initial stages, it is assumed that the failed systems 

after repair will be ‘as good as new’ and this maintenance policy is known as 

perfect repair. The replacement by a new component is assumed to be the perfect 

repair. Renewal theory is enough to model the perfect repair system. Barlow and 

Hunter (1960) introduced minimal repair model which restores the system to 

functioning condition, with the failure rate it had when it failed i.e., after the repair 

process, the system is ‘as bad as old’. However, in practice, most of the systems lie 

in between these extreme situations. Motivated by this Brown and Proschan (1983) 

introduced imperfect repair model in which the failed system will undergo a 

perfect repair with probability p and a minimal repair with probability (1-p). 

Clearly when p=1 it coincides with perfect repair and when p=0 it coincides with 

minimal repair. Block et. al. (1985) incorporated an inhomogenity to the above 

model by assuming the probability p to be age dependent. Kijima et. al. (1988) 

developed an imperfect repair model by using the idea of virtual age of the 

repairable system.  

In most of the real life situations it has been observed that the lifetimes 

become shorter and the repair times become larger after each repair. Lam (1988a 

&1988b) introduced geometric process model, which could satisfactorily model 

monotone random variables. A sequence of non-negative independent random 

variables { }, 0,1, 2,...nX n =  is called a geometric process if for any 0a >  the 

distribution function of 
n

X  is ( )n
F a x  for 0,1, 2,...n = where ( ).F  denote the 

distribution function of the random variable 1X . Later Wang & Pham (1996) 

introduced almost the same model in a different name called quasi renewal 

process. Various other imperfect models appeared in literature from time to time. 

An elaborate discussion on various imperfect models and their modelling methods 

can be read from Pham and Wang (1996), Wang and Pham (1996).  
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A sequence of non negative independent random variables { }, 0nX n ≥  is 

called a power process (Castro and Sanujan,2004) with an associated sequence 

{ }, 0,1, 2,...n nγ =  where ( )0,nγ ∈ ∞  and 1
o

γ = , if the survival function of 
n

X  is 

( ) , 0,1,...
n

F x n
γ

  =   where ( ).F is the survival function of 0X . Power process is 

widely accepted as discrete time analogue for the geometric processes. 

2.4.2 Replacement Policies 

The dominant replacement policies include N, T, (T, N) policies among 

others . In N policy, a system is replaced once the number of repairs exceeds some 

pre-assigned number N. In T policy, a replacement is carried out when the 

cumulative working period of the system exceeds some pre-assigned value T. In 

the case of (T, N) policy, replacement is started when the cumulative working 

period exceeds T or the number of repair exceeds N whichever occurs first.  

2.5 Regression Models 

There may exist heterogeneity due to repairs in the lifetime data or the 

repair time data. Covariates can be effectively exploited to model the 

heterogeneity present in the data. Such an approach has been used widely in the 

survival studies but rarely in the reliability scenario. In reliability context, the 

voltage level during the break down time of equipment is an example of covariate. 

Regression models are employed to understand and exploit the relationship 

between the main variables, sometime lifetime or the repair time of the 

components, and the covariates.  The effect of covariates on lifetime variable may 

change over time and such covariates are referred to as time-dependent or time-

varying covariates. The proportional hazards model introduced by Cox (1972) is 

the commonly employed regression model in survival analysis  

2.5.1 Multiplicative Regression Models 

The multiplicative regression model assumes that the covariates have a 

multiplicative effect on the hazard rate function of individuals. Here the 
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infinitesimal generator for transition from state i  to state j  given the covariate to 

be as X  is given by  

( ) X

ij ijq X qθ=  

where θ  is the ageing factor, ( )ijq X  denote the infinitesimal generator of 

transitions from state i  to state j  under the covariate X  and 
ijq  is the 

infinitesimal generator in the absence of any covariates. When 1θ > , we will have 

stochastically decreasing random variable and when 1θ < , we have stochastically 

increasing random variable. The much celebrated Proportional Hazards model(PH 

model) is an example for the multiplicative regression model. 

2.6 Runs and its Various Counting Methods 

 A run is defined as an uninterrupted sequence of an outcome. Let the  

outcomes of a binary experiment be SSSFSSFFFFF. Then we have a success run 

of length three initially, then a failure run of length one, again a success run of 

length two and finally a failure run of length four. Runs find application in almost 

every field of human activity. Continuous Sampling Plans in the Statistical Quality 

Assurance is an example of runs. We will accept the project if c  good items be 

produced consecutively, that is, if a run of c  good items is produced. Runs find 

applications in the field of Statistical Inference where various test procedure for 

randomness is considered.  

2.6.1 Various Counting Procedures 

 Different ways of counting the runs are available in related literature. Feller 

(1968) discussed the most classical way of counting the runs called the non-

overlapping success runs of length k . Overlapping success runs of length k  were 

introduced by Ling (1988). Later Aki and Hirano (2000) generalized the above two 

models by introducing l  overlapping success runs. 

The counting of the runs can be done in different ways. In the non-

overlapping success runs (Feller, 1968) when k  consecutive successes are 
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observed it is said that a success run of length k  has occurred and we start 

counting from scratch at the end of the completed run. But in the case of 

overlapping success runs (Ling, 1988 and Mood, 1940) we will start counting for 

the run starting from the second element of the preceding run. An uninterrupted 

success run of length l k>  preceded and followed by a failure  accounts for 

1l k− +  overlapping success runs of length k . In this case the first k   accounts for 

the first success run of length , second runs starts from the second element in the 

run to the ( )1
st

k +  element in the run, third run is from third element to ( )2
th

k +  

element etc. Aki and Hirano (2000) brought these counting procedures into a 

single platform by introducing  µ -overlapping runs. In the µ -overlapping runs of 

length of k  the last µ  elements of the preceding run will be used in counting the 

second run. By assuming 0µ = , it reduces to the non-overlapping case studied in 

Feller(1968) and when 1kµ = −  it reduces to the overlapping counterpart as 

mentioned in Ling (1988). 

Success runs of length exactly equal to k  and greater than or equal to k  

were studied by Mood (1940). In runs of length greater than or equal to k , every 

run of length greater than or equal to k  will account for a single unit where as in 

the case of runs of length exactly equal to k will only  be accounted for. Consider 

the following sequence of 18 binary trials of Success (S) and Failure (F). 

FFSSSFSSSSSSFFFSFS. There are three non-overlapping success runs of length 

three, two non-overlapping failure runs of length two, whereas there are five 

overlapping success runs of length three of which three are contributed from the 

second series of successes and three overlapping failure runs of length two. Also 

there are three one-overlapping success runs of length three, only one success of 

run length exactly equal to three and two runs of length greater than or equal to 

three. 

2.6.2 Waiting Time Distributions 

Like the geometric distribution in the independent scenario we can have an 

associated waiting time distribution. But unlike there, here we can have two 
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special class of waiting times, sooner and the later waiting times, in the case of 

runs. We will explain these in the case of binary trials which can be easily 

generalized to multistate trials. Let 1 2, ,...X X  be a sequence of binary trials and  

1k  , 2k  be any two positive integers. 

The waiting time for the occurrence of the 1k  consecutive successes or 2k  

consecutive failure runs is known as the sooner waiting time. But the later waiting 

is defined as the time for the occurrence of both, 1k  consecutive successes and 2k  

consecutive failure runs. 

2.7 Literature Survey 

Optimal replacement policies for various models under various 

assumptions have been studied and are being studied extensively. In literature Lam 

(1988) analyzed N policy and T policy using geometric process model and he 

proved that N policy is better than T policy under certain conditions. Zhang (1994) 

used bivariate (T ,N) policy and showed that bivariate policy is better than 

univariate N and T policies. Other works on the geometric process model in 

maintenance analysis include Stadje and Zuckerman (1990), Lam (1991), Lam 

(1995), Lam and Zhang (1996) and Zhang (1999) and Zhang et. al. (2001). 

Zhang (2004) derived the optimal replacement policy for a system with two 

failure states and one working state. Zhang et. al. (2002) obtained the optimal 

replacement policy for a deteriorating multistate system with k  failure state and 

one working state. Lam and Tse (2003) discussed optimal replacement policy for a 

multistate system with one failure state and k  working state. Lam (2005) 

discussed optimal replacement policy for a monotone multistate system without 

any restriction on number of states. Zhang et. al. (2007) obtained the bivariate 

optimal replacement policy for a multistate repairable system with k  failure states 

and one working state. All these papers use a geometric process based approach 

for modelling multistate systems. 
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Interruption and vacation are two concepts that are used in the queuing 

literature widely. By interruption we mean the shocks that cause the non-

functioning of the service facility while the vacation points to the situation where 

the service facility went on vacation. For elaborate discussion on the queuing 

models dealing with interruptions one may refer to Pramod(2009) or 

Krishnamoorthy et. al. (2009). Protecting the repair facility so that the 

interruptions will not affect the repair process is dealt in this thesis. 

A start-up demonstration is a mechanism by which the vendor 

demonstrates to the customer the reliability of equipment with regard to its 

working. While purchasing complex systems like power generators, chain saws, 

water pumps etc. reliability of the system is often assessed by its reliability with 

respect to starting. The results of the general theory of runs have been exploited 

widely in the context of start-up demonstration tests. Most of the researchers in 

start-up demonstration test describe it with the help of later and sooner waiting 

time problem of runs. In chapter five we propose two start-up demonstration tests, 

first preserving the interest of the buyer and the second preserving the interest of 

the seller. 

  The credit of introducing the concept of start-up demonstration test goes to 

Han and Gage (1983). They introduced a model in which the product is accepted 

when k  consecutive successes occur. They considered the case in which each trial 

is independently and identically distributed. Viveros and Balakrishnan (1995) 

considered the same model of start-up demonstration tests and derived the 

expressions for the mean and variance of the number of trials required to complete 

the test. Inference procedures for the start-up demonstration tests were also 

discussed.  These authors also discussed the problem when the consecutive start-

ups are dependent in Markovian fashion. Balakrishnan et. al (1995) developed the 

probability generating function (pgf) of the random variable denoting the length of 

the test in Markovian dependent trials. The idea of repair or corrective action in the 

start-up scenario was introduced by Balakrishnan et. al.(1995). A sequential 

correction plan in which equipment is intervened with repair after each failure was 
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studied by Balakrishnan et. al.(1997). Extensions of these start-up demonstration 

tests to th
m  order Markov dependent series were studied by Aki et. al. (1996) and 

Balakrishnan et. al. (1997) 

 Balakrishnan and Chan (2000) introduced a start-up demonstration test in 

which the product is accepted if  k  consecutive successes occur prior to d  random 

failures and the product is rejected if this event does not happen. Mean time for the 

termination of the experiment and various conditional expectations were also 

discussed. Explicit expressions for various variables of interest under Markovian 

dependence were studied by Martin (2004). Balakrishnan and Chan (1999) 

introduced two stage start-up demonstration tests in which the product is accepted 

if 1k  consecutive successes occur before 1l   failures and if the above event does 

not take place but 2k  consecutive successes occur before the next 2l   failures then 

also the product is accepted and we reject the product if both the events do not 

happen. Koutras and Balakrishnan (1999) discussed another start-up demonstration 

test based on the scan statistics.  

 Smith and Griffith (2003) proposed a procedure having similarities with 

the Markov chain embedding technique introduced by Fu and Koutras (1994) in 

run scenario and later refined by Koutras and Alexandrou (1995). Since its 

introduction the technique of Markov chain embedding has been exploited widely 

in the context of runs. Fu (1996) introduced forward and backward principle to 

cover the case of arbitrary patterns. Koutras (1997) obtained the distribution of 

waiting times associated with runs using the said method. Han and Aki (1999) 

further enhanced the Markov chain embedding technique by introducing 

multinomial and returnable type embeddings and they obtained the distribution of 

the runs in a sequence of multi- state trials.  For an elaborate discussion on Markov 

chain embedding technique interested readers may refer to Koutras (2003). Many 

authors like Antzoulakos (2001) and Balasubramanian et. al. (1993) discussed the 

problem of sooner and later waiting time introduced by Ebneshahrashoob and 

Sobel(1990), which can be compared with start-up demonstration tests. A general 

procedure for finding various probabilities of interest in the start-up context was 
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discussed by Aston and Martin (2005) formulating start-up demonstration test as a 

special case of the competing patterns. Martin (2008) obtained a recursive formula 

for various variables of interest for different start-up demonstration tests. For a 

comprehensive discussion on various start-up demonstration tests and their 

comparisons one may refer to Smith and Griffith (2008).  

 The idea of runs comes into picture in almost every applied area of 

Statistics involving experimental trials with two or more possible outcomes in each 

trial. It finds its application in theoretical scenario too by its involvement in the 

non-parametric statistical testing. For an elaborate discussion on the application of 

the runs, the interested readers may refer to Shwanger (1983) and Koutras (2003) 

and Balakrishnan and Koutras (2002) and references there in. In many 

applications, along with the number of runs, it is of interest to find the number of 

occurrence of each each outcome. In many practical situations, there involve more 

than two types of outcomes. For example, consider an application in quality 

control. Classical quality assurance problems consider sampling plans with two 

types of products, good and bad or in other words conforming and non- 

conforming. This however may not be the case always. There are cases in which 

we have more than two types of products viz., best, good and bad. In this case if 

we develop some sampling procedure the runs come into fray. Naturally in such 

case the number of occurrence of each item would also evolve interest. When it 

comes to the reliability scenario, one of the natural generalizations of the classical 

consecutive    k out of n  :G system will be consecutive ( )1 2, ,...,  mk k k out of n : G 

system, which will work if consecutive 
i

k  components are in state i  for any

{ }1, 2,...i m∈ , possible states of the components. Then it is of interest to find the 

various reliability parameters and the number of components functioning.  

 Many papers addressing the distribution of the runs in trials with two 

possible outcomes appeared in the literature. Most of the earlier works studied the 

distribution concerning the runs in the independent trial case and later many papers 

appeared dealing with various dependencies. For more references one may go 

through Koutras (2003). Aki (1985) introduced the binomial distribution of order k 
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based on the belief that success (failure) yields success (failure) with varying 

probability. 

 Doi and Yamamoto (1998) obtained the joint distribution of c  kinds of 

success runs in ( )1c +  state trial case. Shinde and Kotwal (2006) derived the joint 

distribution of runs in Multi state trials using the conditional pgfs. Koutras (1997) 

studied the waiting time distributions in trinary trials. The joint distribution of 

runs, success, failures and patterns and expressions for the distributional properties 

of waiting times of bistate trials was derived by Chadjiconstantinidis et. al.(2000). 

Distribution of number of failures and number of trials before the first occurrence 

of a success run of length k  was studied by Aki and Hirano (1994). Even though 

there are many papers available in literature dealing with Binomial distribution of 

order k , its number shrinks sharply as we move on to the multinomial distribution. 

Wang and Yang (1995) defines a Markov multinomial distribution under some 

conditions regarding the transition probabilities.  

 Fu and Koutras (1994) proposed a unified and a simple method for finding 

the distribution of success runs of identical and non-identical Bernoulli trials using 

Markov Chain embedding technique. Till then most of the papers dealing with 

runs used combinatorial identities to obtain the distributions concerning runs. 

Koutras and Alexandrou (1995) refined the method of Markov chain embedding. 

Fu (1996) introduced forward and backward principle to cover the case of arbitrary 

patterns. Koutras (1997) obtained the distribution of waiting times associated with 

runs using the said method. Han and Aki (1999) further enhanced the Markov 

chain embedding technique by introducing multinomial and returnable type 

embeddings and they obtained the distribution of the runs in a sequence of multi- 

state trials. 

 In this chapter we considered the basic concepts that are involved with 

modelling problems to be dealt with in this thesis. A quick review of the available 

literature is also done in the chapter.  
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Chapter 3 
Maintenance Policy for a Multi-State System1 

 

3.1 Introduction 

Consider a 3-out-of 4 G: System, which will work if three of the four units 

in the system work. Hence we can classify the working stages into two substates 

namely, all the four units are working and only three units are working. The 

system will be in failure if only two, one or no units are working condition. Also 

assume that the repair facility is started only if the system fails completely. Also 

once the repair is triggered the system need not be in the best working condition at 

the end of the repair. Hence in cases the system may be in four units working state 

or three or two units working state. In the conventional monotone lifetime models 

we assume that the lifetimes after each repair is less than the preceding ones. But 

this may not be the case over here. For example consider the case if the last repair 

system was brought back to three unit working state while the current repair 

brought it to the four unit working system. Naturally the lifetime after the current 

repair will be expected to be stochastically larger than the preceding one. 

Moreover the lifetime after the current repair cannot be expected to be at par with 

the new system. The repairs should have some impact on the lifetime and the 

lifetime depends on the state in which it is working. This cannot be achieved with 

the existing monotone lifetime models. 

In this chapter we model similar situations using Phase-Type distribution. 

The Cox regression models are exploited to model the impact due to repairs. 

As mentioned in section 2.7, one major characteristic of the studies dealing 

with multistate system is that the consecutive states are independent. But this is not 

the case always, for example, a car which had repair due to engine failure has high 

                                                           
1
 A part of this chapter is communicated in Nair and Thomas(2011) 
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probability of another engine failure. Also in all these models assume a monotone 

structure for the life times after repair. This cannot be justified always. For 

example consider a two component parallel system with the working state given 

by both components working and one component working. It is natural that the 

lifetime with two component working system is stochastically greater than the 

lifetime with one component working system even if the system had undergone 

repair. From the above considered system it is trivial that there are cases in which 

the life times are not monotone. 

Hence in this chapter we will consider a multistate system in which 

consecutive states are Markov dependent. Also we will assume that the sojourn 

time in each state is a state dependent Phase type distribution. The remaining part 

of the chapter is organized as follows. In section 3.2 we formally introduce the 

model. Necessary notations used in this chapter are introduced in section 3.3. 

Expression for the long run reward and the optimal replacement policy algorithms 

are discussed in section 3.4. An algorithm which enables calculation of the optimal 

policy is given in section 3.5. A numerical illustration is performed in section 3.6.  

3.2 The Model 

Consider a multistate system with 'k working and 'l  repair states 

respectively given by { }' 1, 2,...., 'W k=  and { }' ' 1, ' 2,..., ' 'F k k k l= + + + and 

' ' 'W FΩ = ∪ .In this chapter, we will assume that the states are Markov 

dependent. Also we will incorporate the possibility of transition from a working 

state to another working state. Let us assume that nu  denote the time at which nth 

transitions takes place.  Let ( )Z t  denote the system state at time t . Then we have  

{ }1( ( ) | ( ) ) ,  ', 'n n ijP Z u j Z u i p i j i+ = = = ∈Ω ∈Ω − . 

Let ( )ij
P p=  denote the matrix of transition probabilities from state i  to 

state j . Now we partition P as 

( ) ( )

( ) ( )

1,1 1,0

0,1 0,0

P P
P

P P

 
=  
  

 where 
( ) ( )( )1,1 0,0

P P  denote the 
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submatrix of transition probability between working (failure) states and the 

probability submatrix  of transition from a working (failure) state to a failure 

(working) state is shown by 
( ) ( )( )1,0 0,1

P P .  

We will also assume that the sojourn time in each state is phase type 

distributed with parameters depending on the state in which it occupy. Since the 

Phase type distribution is dense in the class of distribution functions of the random 

variables having non-negative range (Neuts and Bhattacharjee, 1981), our 

assumption is not restrictive. By the definition of the phase type distribution there 

exists phases associated with each state of which one phase is recurrent and all 

other phases are transient. Let 
i

k  and 
jl respectively denote the number of transient 

phases associated with th
i  working state and thj repair state. Let us denote 

'

1

k

i

i

k k
=

=∑  and 
'

1

l

j

j

l l
=

=∑ . Also let the sojourn times associated with th
i  working and 

thj  failure state, 1, 2,.., 'i k=  and  1, 2,..., 'j l=  given by ( ),
i i

PH Tα  and 

( ),
j j

PH Sβ  respectively. 

 Let ( )1 2 '
ˆ , ,...,

k
diagα α α α=  and ( )1 2 '

ˆ , ,..., ldiagβ β β β=  are respectively 

k k×  and l l×  matrix with non-negative terms in the th
i  row denote the 

probability distribution of the process coming to that state. Note that both α̂  and 

β̂  are not diagonal matrices, but diagonal in the partitioned form. Similarly we 

denote 
( )

( ) ( ) ( )( )1

1 2 '
, ,...,

k
E diag e e e=  and 

( )
( ) ( ) ( )( )2

' 1 ' 2 ' '
, ,...,

k k k l
E diag e e e

+ + +
=  with ( )ie  

denoting the column vector of dimension equal to the number of substates in state 

i . Let 
( )0

i
T denote the vector of transition intensity from the transient state to the 

recurrent state in the case of working state i  ie., ( )
( )

0

i i i
T T e= . Similarly, 

( )0

jS  denote 

the column vector of transition intensities from the transient to recurrent state 

corresponding to the repair time in the thj  failure state. 
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Now we embed two separate Markov processes with the working times and 

the repair times. The totality of all the phases associated with each working state 

followed by that of failure states. Hence the state space is given by 

( ){ ( ) ( ) ( ) ( ) }
1 1

' ' '

1 2 1 2 ' 1 2 1 '
1 ,1 ,...,1 ,..., , ,..., , ' 1 , ' 1 ,..., ' 1 ,..., ' ' ,..., ' 'k k l l

k k k k k k k l k lΩ = + + + + +

 Let ( )1
P  and ( )2

P  respectively denote the matrices of transition intensities 

of working time and repair time Markov processes. The repair (working) states are 

absorbing with respect to the working (repair) times. 
( )1 0

0 0

T T
P

 
=  
 

, where 

( )ij
T t=  is a k k×  and ( )0

0 ij
T t=  a k l×  matrix respectively denoting the 

infinitesimal generators of transition from a working state to a working state and 

working state to a failure state. Clearly we have 

( )

0

,    ,                                         

,              

k

ij

ij

lk kj i

t if i j are phases in the state k
t

p t if i and j are respectively phses of state l and kα


= 


        and 

0 0
,          

ij ik kj i
t p t if j is a subset of the repair state kβ=  

where 0

it  is the infinitesimal generator to the absorbing state in the phase 

type distribution corresponding to the th
i  state that is, 

0
,

i ij
t t= −∑  where 

summation is over all transient phases in the state i . If  ( )1 2 '
ˆ , ,..., kT diag T T T=  and 

( )1 2 '
ˆ , ,..., lS diag S S S= . Then under the matrix notations, 

( ) ( )1 1,1ˆ ˆ ˆT T TE P α= −  and  
( ) ( )1 1,0

0
ˆˆT TE P β= − ,  

Similarly if ( )ij l l
S s

×
=  denote the matrix of transition intensities of the 

transitions between the repair states i  to j  and ( )0

0 ij
l k

S s
×

= denote the transition 

intensity from repair state i  to the working state j
 
then 

( )2

0

0 0
P

S S

 
=  
 

. Clearly 

we have  
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( )

0

,                                                  

,                

k

ij

ij

lk kj i

s if i and j are phases of the failure state k
s

p s if i and j are phases of the repair states l and k respectivelyβ


= 


     

   and  

0 0
,                   ij lk kj is p s if i and j are the phases of the repair state l and working state k respectivelyα=

where 0

is  denote the transition intensity from state i  to the corresponding 

absorbing state. Hence proceeding as in the case of working state we have  

( ) ( )2 0,0ˆ ˆ ˆS S SE P β= −   and 
( ) ( )2 0,1

0
ˆ ˆS SE P α= −  

We incorporate the effect of repair on the state sojourn times by using the 

regression models.  In our study we will consider the number of repairs the system 

has undergone as the concomitant variable. Let
( )n

ijλ  denote the transition intensity 

for transitions from state i  to state j  after n  repairs with 
( )0

ij ijλ λ=  denoting the 

initial transition intensity function. Then by the multiplicative assumption 

( ) ( )1n n

ij i ijλ θ λ−
= , where 

i
θ  denote the ageing factor of the th

i  state. Hence here we 

will assume that 
( ) ( )1

,   ,
n n

ij i ijt t i j Wδ −
= ∈  and 

( )
( )

( )
( )

0

,0 1

0
,   ,

n ij n

ij i ik

k Wil

l F

t
t t i W j F

t
δ −

∈

∈

= ∈ ∈∑
∑

. Similarly for the repair times we 

have
( ) ( )1

,   ,
n n

ij i ijs s i j Wδ −
= ∈ . It can be seen that if 1

i
θ >  for every i W∈ then the 

sequence forms a stochastically increasing sequence. Also, 1
i

θ <  for every i W∈  

forms a stochastically decreasing sequence. 

 3.3 Notations 

Throughout this chapter we will use the following notations 

je - Unit column vector of length j . 

( ),j i
e - Column vector of length j  with all elements zeros except th

i element 

where we have unity. 



32 

n
X - r.v denoting the life time after ( )1

th
n −  repair. 

n
Y - r.v denoting the repair time for th

n  failure. 

,
n n

F f - D.F and p.d.f of 
n

X . 

,
n n

G g - D.F and p.d.f of 
n

Y . 

,n nF f - Vectorized D.F and p.d.f of 
n

X . 

,n nG g - Vectorized D.F and p.d.f of 
n

Y . 

( )i
δ δ= - Matrix of ageing factor of the working times 

( )i
γΓ =  - Matrix of ageing factor for the repair times. 

( )x t  - Diagonal matrix of size k  with the th
i diagonal term, 

( ) ( )i
x t , denote the 

probability that the system is in working state i  at time t . 

( )0x t  - Diagonal matrix of size l  with thj  diagonal term, 
( ) ( )
0

j
x t , denote the 

probability that the system is in failure state j  at time t .  

( )X n  - Failure state at th
n  failure 

( )Y n  - Working state after the th
n  repair, i W∈ . 

[ ]

1,1 1,2 1,

2,1 2,2 2,1

0

,1 ,2 ,

...

...
( , ) exp( )

: : ::: :

...

k

k

l l l k

a a a

a a a
A S t St I S S

a a a

−

 
 
 = − =
 
 
 

 

( )

1,1 1,2 1,

2,1 2,2 2,1

0

,1 ,2 ,

...

...

: : ::: :

...

l

l

k k k l

b b b

b b b
B T T T

b b b

−

 
 
 = =
 
 
 
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( ) ( ) ( ) 0, , exp
d

D S t A S t St S
dt

= =  

3.4 Long run average cost 

Under the above mentioned notations, by Kolmogrov forward equations, 

we have ( ) ( )'x t x t T=  with ( )0x µ= . 

( ) ( )log log
d

x t T x t Tt c
dt

= ⇒ = +  

( ) ( )expx t Ttµ⇒ =  

Proceeding exactly in the same way  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 0

j j i

i W

x t h x t P Z t h j Z t j x t P Z t h j Z t i
∈

+ = + = = + + = =∑
But as far as the working states are concerned, failure states are all absorbing 

hence the probability on the first term will become zero. Hence dividing the above 

equation by h  and taking the limit as 0h → , it reduces to  

( ) ( ) ( ) ( )0 '
j i

ij

i W

x t x t q
∈

=∑ , 
ijq  denote the infinitesimal generator from state i  

to state j . 

Hence we have ( ) ( )0 0'x t x t T=  

 ( ) ( )0 0' expx t Tt Tµ⇒ = .  

On integrating we have ( ) ( ) 1

0 0expx t Tt T T Cµ −= +  with the initial 

condition ( )0 0x = 0 .  

Hence 1

0T T Cµ − = ( ) ( ) 1

0 0
expx t Tt I T Tµ −⇒ = −   . 

Now ( ) ( ) ( ) ( ) 1

1 1 0 0
expF t P X t x t Tt I T Tµ −= < = = −   . 
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Hence ( ) ( ) ( ) ( ) 1

1 0 0
exp

ll
F t x t e Tt I T T eµ −= = −   . But the definition of 

infinitesimal generators we have ( ) ( )0k l
Te T e+ = 0  ( )

1

0 kl
T T e e−⇒ = − . 

Hence ( ) ( ) ( )1
exp 1 exp

k k
F t Tt I e Tt eµ µ= − − = −   . 

Also ( ) ( ) ( ) ( )1

1 1 0 0exp exp
d

f t F t Tt TT T Tt T
dt

µ µ−= = = . 

( ) ( ) ( )1 1 0exp l

d
f t F t Tt T e

dt
µ= = . 

( ) 1

1 k
E X T eµ −= − . 

We will assume that the repair times depend on the last failure state. Hence 

the distribution of failure states becomes the initial distribution of the repair times. 

Hence ( ) ( ) ( ) ( )( ) ( )( )1 11

0

, 1 , 1
i F

G t P Y t P Y t X x X i P X x X i dx

∞

∈

= < = < = = = =∑∫

 ( ) ( ) ( ) ( )
' 1

0 0, ,

0

exp exp
l i l i

i F

e St I S S Tx T e dxµ
∞

−

∈

= −  ∑∫

 
( )

( ) ( ) ( ),

' 1 1

0 0 ,
exp

l i l i

i F

e St I S S T T eµ− −

∈

= − −  ∑  

( ) ( ),B T A S tµ= −  

Also ( )
( )

( ) ( ) ( ) ( )
,

' 1

1 0 0 ,
exp ,

l i l i

i F

g t e St S T T e B T D S tµ µ−

∈

= − = −∑  . 

( ) ( ) ( )1 ,G t B T A S tµ=

 ( ) ( ) ( ) ( ) ( )1 1

1 0

0

exp lk
E Y B T St I S S e B T S eµ µ

∞
− −= − =  ∫

( ) ( )( )2 2 1

0

, 1
j W

P X t P X t Y y Y j dy

∞

∈

< = < = =∑∫  

 
( )

( ) ( ) ( ) ( ) ( )
,

1'

0

0

exp ,
l i

i W

e Tt I T T B T D S y dyδ δ δ µ
∞

−

∈

= −  ∑∫  
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Then ( ) ( ) 0

0 0

, expD S t dt St S dt

∞ ∞

=∫ ∫  

  ( )1

0S S B S
−= = . 

Hence ( )
( )

( ) ( ) ( ) ( ) ( ) ( ),

1'

2 0 ,
exp

l i l i
i F

P X t e Tt I T T B T B S eδ δ δ µ
−

∈

< = −  ∑

 ( ) ( ) ( ),B T B S A T tµ δ= − . 

( ) ( ) ( ) ( )2 ,µ δ= −f t B T B S D T t . 

( ) ( ) ( ) ( )
1

2 k
E X B T B S T eµ δ

−
= − . 

Similarly we have  

 ( ) ( ) ( ) ( ) ( )2 ,G T B T B S B T A S tµ δ γ= − . 

 ( ) ( ) ( ) ( ) ( )2 ,g t B T B S B T D S tµ δ γ= −  

 ( ) ( ) ( ) ( ) ( )
1

2 l
E Y B T B S B T S eµ δ γ

−
= . 

Proceeding exactly in the same way we obtain the following  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )2 2 1
... ,

n n n

n
F t B T B S B T B S B T B S A T tµ δ γ δ γ δ− − −

= −  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )2 2 1
... ,

n n n

n
f t B T B S B T B S B T B S D T tµ δ γ δ γ δ− − −

= −  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )
1

2 2 1
...

n n n

n k
E X B T B S B T B S B T B S T eµ δ γ δ γ δ

−
− − −

= −        (3.1) 

Also ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )1 1
... ,

n n

n
G T B T B S B T B T B T A S tµ δ γ δ γ− −

= − . 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )1 1
... ,

n n

n
g T B T B S B T B T B T D S tµ δ γ δ γ− −

= −  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
1

1 1
...

n n

n l
E Y B T B S B T B T B T S eµ δ γ δ γ

−
− −

= .       (3.2) 

Let  ( )− −= 1 1

0 0

n

n
D T T S S  and ( )1 1

0
E T T S

− −= .  
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Then ( ) ( )
( ) ( ) ( )µ δ µ δ

− − − − −− − − −
−= − = −

1
1 11 1 1 1

0 0 1

n
n n

n k n k
E X T T S S T e D T e        (3.3) 

and 

 ( ) ( )
( )

( ) ( ) ( )µ γ µ γ
− − − − −− − − −

−
= =

1
1 11 1 1 1

0 0 0 1

n
n n

n l n l
E Y T T S S T T S e D E e    (3.4) 

Now we calculate the long run average reward. Our objective is to find the 

value of N  which optimizes the long run average reward. Let ( )L N  denote the 

long run average reward at th
N  failure. It is clear that the replacement time 

sequences { }, 1, 2,3,....nJ n =  forms a renewal process. The time between 

consecutive replacements forms the replacement cycle. The long run expected cost 

is given by  
( )
( )

E r

E T
 where ( )E r  is the expected reward in a replacement cycle and 

( )E T  is the expected length of the replacement cycle. 

( )
( ) ( )

( ) ( )

1

1 1

1

1 1

N N

i i r

i i

N N

n n

i i

E R E C C

L N

E X E Y τ

−

= =
−

= =

− −

=

+ +

∑ ∑

∑ ∑
 

( ) ( )

( ) ( )

1
1 11

1 1 0 1

1 1

1
1 11

1 1

1 1

N N
n n

n k n l r

n n

N N
n n

n k n l

n n

A D T a e A D Eb e c

D T a e D Eb e

µ µ

µ µ

−
− − − −−

− −
= =

−
− − − −−

− −
= =

− − −

=

− +

∑ ∑

∑ ∑
.      (3.5) 

By simplification it can be seen that  

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1
1 1 11 1

0 1 1 1 1

1 1

1
1 11

1 1

1 1

1

N N
n n NN

n l N k n k N l

n n

N N
n n

n k n l

n n

A A D Eb e D T a e D T a e D Eb e

L N L N

D T a e D Eb e

µ µ µ µ

µ µ

−
− − − − − −− − −

− − −
= =

−
− − − −−

− −
= =

 
+ − 

 + − =
 

− − 
 

∑ ∑

∑ ∑

 

   

( ){ }
( ) ( )

11

1

1
1 11

1 1

1 1

NN

r N k N l

N N
n n

n k n l

n n

c D T a e D Eb e

D T a e D Eb e

µ µ

µ µ

− −− −

−

+
− − − −−

− −
= =

− −

 
− − 
 
∑ ∑
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For a convex function in N  the cost function ( )L N increases with N

initially and then start decreasing. Hence the optimum number of repairs is the 

value of N  for which the ( ) ( )1L N L N+ − becomes negative for the first time ie, 

( ) ( )1 0
N

Inf L N L N+ − ≤   . This is not easy to find the roots making use of the 

equation given above. Hence we develop an algorithm which serves a great deal in 

finding the optimal solution to the problem. 

3.5  Numerical Implementation 

For the sake of developing the algorithm, on proceeding similar lines with 

Castro and Perez-Ocon,2006, we assume that the system is monotone and we 

define the following functions. 

( )
1

1 1

1

0 k l

l k

T e Ee
B

Ee D T e

µ µ

µ µ δ

−

− −

−
=

−
                             (3.6) 

( )

( ) ( ) ( )

( )

1
1 1 11 1

1 1 1

1 1

1 1

1

N N
n N nN

N k n l N l n k

n n

N N

N l N k

D T a e D Eb e D Eb e D T a e

B N
D Eb e D T a e

µ µ µ µ

µ µ

−
− − − − − −− − −

− − −
= =

− − − −

−

−

=
−

∑ ∑
(3.7) 

It can be easily seen that the term in the denominator is the sum of the 

mean of two positive random variables and numerator is the product of two 

positive terms. Hence ( )0B  is positive.  

( ) ( ) ( ) ( )1 11 1

1 11
N N N N

N k N l N k N l
B N B N D T a e D Eb e D T a e D Eb eµ µ µ µ− + − −− − − −

+ −
 + − = −   

( ) ( )

( ) ( )

1
1 11

1 1

1 1

1 11 1

1 1

N N
n n

n l n k

n n

N NN N

N l N k N l N k

D Eb e D T a e

D Eb e D T a e D Eb e D T a e

µ µ

µ µ µ µ

+
− − − −−

− −
= =

− − − +− − − −
− +

 
− 

 
   − −   

∑ ∑

. 

It can be seen that the denominator is the product of two positive terms. 

Now the second term in the numerator is again greater than zero, in order to prove 

that ( )B N  is increasing it is remaining to prove that first term in numerator is 
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greater than zero. 1 N

N kD T a eµ − −  correspond to the negative of the mean working 

time of the system or component after th
n  repair. Since we are assuming that the 

working (repair) times are stochastically decreasing (increasing), expected 

working (repair) times forms a decreasing (increasing) sequence. That is, 

( )11 1

1

N N

N k N kD T a e D T a eµ µ− +− − −

+− < −  and 
( )1

1

N N

N l N lD Eb e D Eb eµ µ− − −
− < . 

( ) ( )µ µ µ µ
− + − −− − − −

+ −
⇒ >

1 11 1

1 1

N N N N

N k N l N k N l
D T a e D Eb e D T a e D Eb e  

Hence we have ( ) ( )1 0  B N B N N+ − > ∀ . So ( )B N  forms an increasing function 

of N .Now we will prove that ( )B N  is bounded above. We have  

( )

( ) ( ) ( )

( )

1
1 1 11 1

1 1 1

1 1

1 1

1

N N
n N nN

N k n l N l n k

n n

N N

N l N k

D T a e D Eb e D Eb e D T a e

B N
D Eb e D T a e

µ µ µ µ

µ µ

−
− − − − − −− − −

− − −
= =

− − − −

−

−

=
−

∑ ∑
 

Since the denominator is positive and ( )B N  is positive for all N , second 

term in the numerator is greater than the first term, else ( )B N  would have been 

negative. Hence we have 

( )

( ) ( )

( )

1 11

1 1

1

1 1

1

N
N n

N l n k

n

N N

N l N k

D Eb e D T a e

B N
D Eb e D T a e

µ µ

µ µ

− − − −−
− −

=

− − − −

−

−

≤
−

∑
 

( )

( ) ( )

( )

1 11

1 1

1

1

1

N
N n

N l n k

n

N

N l

D Eb e D T a e

B N
D Eb e

µ µ

µ

− − − −−
− −

=

− −

−

−

≤
∑

 

( )11

1

1

N
n

n k

n

D T a eµ − −−

−
=

≤ −∑ .     (3.8) 

 Hence we had proved that ( )B N  is a monotone increasing 

sequence which is bounded above, for stochastically increasing working times and 

stochastically decreasing lifetime. Hence it is bounded deteriorating systems. 
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 Our objective is to find that value of N  that maximizes the 

expected reward. It reduces to find minimum N  such that  

( ) ( ) ( )
1 0

1 0+ − < ⇒ <
+

r
c

L N L N B N
A A

.   

Hence the maximum value for the long run reward ( )L N  is obtained when 

optN N=  where ( )
0

1 0

min r
opt

N

c
N B N

A A≥

 
= < 

+ 
, ( )B N  being in the form given in 

equations (3.6) and (3.7). If the minimum value of N  is such way that 

( )
1 0

r
c

B N
A A

=
+

,  then N  and 1N +  maximize the long run reward ( )L N .  

As special cases if ( )
1 0

0r
c

B
A A

<
+

, then 0optN =  i.e., it is better to replace 

the system by a new component rather than going for repair.  Also if 

( ) [ ] ( )

11

1 0

limr

k
N

c
B N DT I a e

A A
µ

−−

→∞
> = − −

+
, then 

optN = ∞  that is , it is better to 

repair systems than going for replacement.  

Since deriving an analytic optimal solution that maximizes the long run 

average reward per unit time is extremely complicated, we will try to find an 

algorithm for numerical identification of nonnegative minimum value of N  that 

satisfies the condition ( )
1 0

r
c

B N
A A

<
+

. In other words, it is the root of the equation

( ) ( )
1 0

r
c

G N B N
A A

= −
+

. In general the solution to the above equation need not be 

integers, in that case we will take the largest integer less than the zero of ( )G N . 

The problem is equivalent to finding the zeros of ( )R N  given by  

( ) ( ) ( )1 1 1

1 0 1
1

r l k k l
R c Ee D T e A A T e Eeµ µ δ µ µ− − −= − + +  
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 and for 2N ≥   

( ) ( )( )1 1

1

N N

r N l N k
R N c D Eb e D T a eµ µ− − − −

−= − ( )0 1A A− +  

    
( ) ( ) ( )

1
1 1 11 1

1 1 1

1 1

N N
n N nN

N k n l N l n k

n n

D T a e D Eb e D Eb e D T a eµ µ µ µ
−

− − − − − −− − −

− − −
= =

 
− 

 
∑ ∑ . 

Now we formulate an algorithm to find the solution to the above problem. 

Our algorithm can be described as discrete analogue of the Halley’s Rational 

method (Ortega and Rheinboldt,2000) for finding the root of the equation.  

Algorithm 

Step One. Check whether ( )

1
1 1

1 0

r

k

c
DT I a e

A A
µ

−
− − > − − +

. If it hold, then 

optN = ∞  and the search ends. 

Step Two. If the inequality ( )
1 0

0r
c

B
A A

<
+

 is satisfied then 0optN =  and here 

also no further exploration is needed. 

Step Three. Now fix the following values 
0

0N = , 
1

1N =  and 
2

2N = . 

Step Four. Check whether ( ) ( )1 2
sign G N sign G N≠        and if it satisfies 

1optN = ,  the algorithm terminates. 

Step Five. Proceeding in line with rational Halley’s method for finding the 

zeros of an polynomial, calculate ( ) ( )2 1d G N G N= −  and 

( ) ( ) ( )2 1 0
ˆ 2d G N G N G N= − + . 

Step Six. 
( ) ( )

1

1 1

2

ˆ
1

G N G N d

d d

−
 

∆ = − 
  

. 
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Step Seven. Now we obtain the new values of '
i

N s  as 

{ }0 1 1 1,   max
N N

N N N N N
∈

= = < + ∆  and 
2 1

1N N= + . 

Step Eight. Now go to Step Four. 

 

3.6 Numerical Illustration 

Through out this chapter we were assuming that the lifetimes and the repair 

times are phase type distributed. In the numerical illustration we will assume that 

our system consist of two working states and three failure states. Special cases of 

the Phase type distribution mamely, Erlang distribution and the mixture 

exponential distribution are used for modelling the lifetimes and the repair rimes. 

Specific reason for going for models is their mathematical tractability. Another 

reason for selecting Erlang and mixture exponential distribution is that the 

coefficient of variation of the first is less than one and the latter is greater than 

zero. Weibull distribution is widely used in the reliability scenario. We employ an 

approximation of the Weibull distribution to model the sojourn time in the third 

repair state.  

We will assume transition probability between various states to be as 

follows 

  

0 0.2 0.3 0.3 0.2

0.1 0 0.3 0.3 0.3

0.4 0.4 0 0.1 0.1

0.4 0.3 0.2 0 0.1

0.3 0.2 0.4 0.1 0

P

 
 
 
 =
 
 
  

.  

The sojourn times in first working state and the first failure state (third 

state) are distributed according to a Erlangian distribution with four, five substates 

respectively and the infinitesimal generator partitioned for the recurrent states and 

the initial distribution for each are respectively given by 
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0.75 0.75 0

0 0.75 0.75

0 0 0.75

− 
 − 
 − 

  , [ ]1 0 0    and 

6 6 0 0

0 6 6 0

0 0 6 6

0 0 0 6

− 
 − 
 −
 

− 

, [ ]1 0 0 0 . 

 The sojourn times in the second working state and the second 

failure state (fourth state) are distributed according to mixture exponential 

distribution with three substates and the infinitesimal generators of the recurrent 

states and the initial distribution for each state are respectively given by 

( )-1/3,-1/2,-1/4diag , [ ]0.3 0.2 0.5  and [ ]-1.2 -2 -0.5diag , 

[ ]0.75 0.15 0.1 .  

 For modelling the repair time in the third state we will use the phase 

type approximation of the Weibull distribution discussed in Kao (2002). The 

infinitesimal generator for the recurrent states and the initial distribution are 

respectively given by  

-5.5997 5.5997 0 0 0 0

0 -5.5997 5.5997 0 0 0

0 0 -5.5997 4.1667 0 0

0 0 0 -5.5997 4.5853 0

0 0 0 0 5.5997 5.5997

0 0 0 0 0 -5.5997

 
 
 
 
 
 
 −
 
 

 and   

[ ]1 0 0 0 0 0 .  

For [ ]1.05 1.07a =  and [ ]0.95 0.97 0.93b =  with replacement cost 

180
r

c = , uptime reward rate 
1

25A =  and the downtime cost rate 
0

5A =  the long 

run average reward per unit time is shown in figure 3.1 for different values of 

number of repairs.  
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Figure 3.1 Long run average reward for various values of number of repairs. 

 

 

Figure 3.2 Plot with ( )B N  and 
1 0

r
c

A A+
 for different values of number of repairs,

N . 
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It can be seen from the figure 3.1 that the maximum reward per unit time is 

12.955 and is attained when the number of repairs is 9optN = . Values ( )B N  for 

various values of number of repairs and 
1 0

r
c

A A+
 are plotted in figure 3.2. The 

optimal value of N  is obtained at the largest integer where these two lines 

intersect. It can be seen that the lines intersect at 9N = . Hence the discussions 

above are verified using the numerical example. 

 3.7 Conclusion 

In this chapter we considered a general multistate system in which the 

lifetime and the repair times are not monotone and the consecutive states are 

Markov dependent. Long run average cost for the system is developed. An 

algorithm is developed keeping in mind that the system is monotone increasing. 
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Chapter 4 
Optimal Protection Policy for Repair Facility 

with Interruption 
 

4.1 Introduction 

Vacation is a concept that is used widely in queuing literature. This chapter 

is motivated by the concept of vacation. Consider the case of software 

development. Assume that the development is done by an individual. One of the 

major threats of employing a single individual for the execution of the project is 

that the project may need to be dealt from scrap if the concerned person leaves the 

company without notice. This is because the approach and logic applied varies 

from person to person. Hence the company should keep alternatives open to tackle 

such situations. But keeping a standby from the beginning is not admissible from 

the cost perspective. It may be economical to restart if the concerned person leaves 

abruptly than keeping a standby from the beginning. Furthermore when the project 

enters some subsequent stages it might be desirable to have a standby than starting 

from scrap. Hence the most admissible choice will be to go for maintaining a 

standby resource once the development enters some critical stage. The time at 

which the standby person should be hired is a serious decision making problem.  

In this chapter we deal with these types of problems. We assume that the 

spans of various stages are exponentially distributed with parameters depending on 

the stage. 

4.2 Model 

Consider a multi-state repair facility with n  states. The repair facility can 

be interrupted because of many reasons like shut down at the repair facility, 

attrition of the service personal etc. Here we assume that the interruption will 

result in restarting the repair facility when the repair process is in certain class of 

states. But since restarting the repair facility from the scrap cannot be financially 
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viable always, we introduce the concept of protecting some of the repair states 

from interruption. When the repairs are in these states, the shocks or the 

interruption will not have any impact of the repairs, that is, the repairs will 

continue uninterrupted. Hence it will be desirable to protect every step of the 

repair. This incurs a heavy financial commitment as the cost of protecting a state 

be too high. Hence it will be interesting to find the number of states to be 

protected. 

Suppose there are n  states in the repair procedure. Assume that the initial 

k  are unprotected. Hence the number of protected states will be n k− . Let  U  and 

P  respectively denote the set of unprotected and protected states. Once the 

process enters a protected state, it is protected till the completion of the repair 

facility. Hence transitions are assumed to be from unprotected state to same class 

or unprotected to protected and within the protected class. Transitions are not 

allowed from a protected state to unprotected state.  

Let us assume that the repair times are distributed as an Erlang random 

variable with parameters ( ),n λ . Hence the state at which the process is in at time t   

is, one plus the number of renewals by the time t  . Hence the probability that the 

process is in state 1m +  at time t   is given by 
( ) ( )exp

, 0,1, 2,..., 1
!

m
t t

m n
m

λ λ−
= − . 

Then ( )( )
( ) ( )1

0

exp

!

m
k

m

t t
P X t U

m

λ λ−

=

−
∈ =∑                                     (4.1) 

 ( )( )
( )( )1 exp

!

m
n

m k

t t
P X t P

m

λ λ−

=

−
∈ =∑                                     (4.2) 

( )
( )( )exp

Repair is completed by time 
!

m

m n

t t
P t

m

λ λ∞

=

−
=∑                               (4.3) 

Let ,  
u

X X  and 
pX   respectively be the random variable denoting repair time, the 

time spent in the unprotected states and the time spent in protected state till the 

completion of the repair. Let ( )X t  denote the state occupied by the repair facility 
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at time t . Let random variable Y denote the time for the occurrence of the shock or 

the interruption. We will assume that the shocks occur according to an exponential 

distribution with parameter δ . Let c  denote the cost incurred per unit time when 

the system is under repair. Let 
pc  denote the protection cost per unit time. Our 

objective is to find k  so that the expected cost will be minimized during the 

procedure. Let ( )L k  denote the expected cost with k  unprotected states. 

We can broadly classify the whole time interval into three distinct cases, 

assuming that the shock has occurred at time t ;  

(i) repair process is still in unprotected states at time t  and the cost will be 

ct ,  

(ii) repair process is in protected state at time t  and  

(iii) repair process has completed by the time t .  Let ( )|L k t  denote the 

expected cost with k  unprotected states when the occurrence of the 

shock is given to be at t . Then under situation (i), the cost will be  

 ( )( ) ( )( )ct L k P X t U+ ∈                                                  (4.4) 

Now under (ii), assume that the repair process is in state ,  i i P∈  at time t , then 

expected time for the completion of repair after the thi  state is given by 
( )n i

λ

−
. 

Also since the sojourn time in state i  is assumed to be exponentially distributed, 

the expected time in the state is independent the time for which it had been 

working in state i  which implies that the expected time of stay in state i  after time 

t  is given by 
1

λ
. Hence the cost incurred for repair, if  ( )X t i∈ ,  is given by  

 
1n i

c t
λ

− + 
+ 

 
                                                                 (4.5) 

Now in (iii), the repair process has completed by the time  t . Hence if we consider 

the transitions from each state as a renewal in a Poisson Process, repair has 

completed by the time t  imply that the number of renewals for the corresponding 
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renewal process is ,  1,  ...n n + . Let the process is in at state i  at time t   that is 

( )1i −  renewals had occurred by the time t .  

 Let  
1 2
, ,...Y Y  denote the interoccurence times and ( )N t  denote the number 

of renewals by the time t  for the renewal process. Let 
1

k

k i

i

S Y
=

=∑ . Then it is known 

that the distribution of 
k

S  given that ( )N t i=   is the distribution of the thk  order 

statistic of i   uniform random variables over the range ( )0, t .  

Hence  

 ( )( )
( )

( ) ( )

1 1
1 ! 1

| 1 1
1 ! 1 !

n i n

X

i x x
f x N t i

n i n t t t

− − −
−    

= − = −   
− − −    

. 

Hence  

 ( )( )
( )

( ) ( )

1 1

0

1 ! 1
| 1 1

1 ! 1 !

n i n
t i x x

E X N t i x dx
k i k t t t

− − −
−    

= − = −   
− − −    

∫ . 

Putting 
x

y
t

=   the integral reduces to a beta integral and on simplification we get 

( )( )
( )

( ) ( )
( )1 ! ! 1 !

| 1
1 ! 1 ! !

i n i k nt
E X N t i t

n i n i i

− − −
= − = =

− − −
. 

Hence  ( )
( ) ( )
( )

1

1

|
1 !

i

i n

exp t tnt
E X T t

i i

λ λ
−

∞

= +

−
= =

−
∑  

  
( ) ( )

( )1 !

i

i n

exp t n t

i

λ λ

λ

∞

= +

−
= ∑  

Now it is remaining to find out the protection cost under the condition (ii). Let us 

assume that ( ) ,  X t i i P∈ ∈ . Then the time for which protection is given by time t  

is 
u

t X− . Then the distribution of 
u

X  is the thk order statistic of a random sample 

of size  1i −   taken from a uniform distribution over the interval ( )0, t . Hence  
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 ( )( )
( )

( ) ( )

1 1
1 ! 1

| 1
1 ! 1 !u

k i k

X

i x x
f x X t i

k i k t t t

− − −
−    

= = −   
− − −    

 

Hence the expected time in protected states till time t  when the process is in state 

,i i P∈  at time t  is ( )
( )

( ) ( )

1 1

0

1 ! 1
1

1 ! 1 !

k i k
t i x x

I t x dx
k i k t t t

− − −
−    

= − −   
− − −    

∫ , Putting 

x
y

t
=  we have 

 

( )
( ) ( )

( ) ( )

( )

1 11

0

1 !
1 1

1 ! 1 !

i kk
i

I t y y y dy
k i k

t i k

i

− −−−
= − −

− − −

−
=

∫
                     (4.6) 

Following similar argument in condition (ii), expected time to the completion of 

the repair after time t   and ( )X t i∈
 
 is 

1n i

λ

− +
. 

Hence   

( ) ( )( ) ( )( ) ( )( )

( )
( )( ) ( )( )

( )
( )( )

1 1

0

1

1

1

1
|

1
                    

                    

k n

i i k

n

p

i k i n

p

i n

n i
L k t ct L k P X t i c t P X t i

t i k n i cnt
c P X t i P X t i

i

c t n k
P X t i

λ

λ λ

λ

− −

= =

− ∞

= = +

∞

= +

− + 
= + = + + = 

 

− − +
+ = + = 

 

−
+ =

∑ ∑

∑ ∑

∑

        

( )( ) ( ) ( )( )
( )

( ) ( )( )

( )
( )( )

( )
( )( )

1 1 1

0 0

1

1

1
n k n

p

i i i k

n
p p

p

i k i n

c c
ct P X t i L k P X t i n i P X t i

c c nt c ktt i k
c P X t i P X t i

i

λ

λ λ

− − −

= = =

− ∞

= = +

+
= = + = + − + =

 +−
 + = + − =
 
 

∑ ∑ ∑

∑ ∑
 

Integrating over the range of  t , we have  

 

( ) ( ) ( )

( ) ( )
( )

0

1 2 3 4 5

| exp

p p

p p

L k L k t t dt

c c n c k
cI L k I c c I c I I

δ δ

λ λ

∞

= −

 +
 = + + + + + −
 
 

∫
           (4.7) 
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where  

 

( )( )
( )

( )( )

( )

( )

1

1
0

0

1
1

0
0

1

2
0

exp
exp

!

exp
!

1

i
n

i

in
i

i

in

i
i

t t
I t t dt

i

t t dt
i

i

λ λ
δ δ

λ δ
λ δ

δλ

λ δ

− ∞

=

− ∞
+

=

−

+
=

−
= −

= − +

+
=

+

∑∫

∑ ∫

∑

 

Hence   

( )( )

( )1

1
1

n

n

I

λ
δ λ

λ δ

δ δ λ δ

 
+ +  

+ = −
+

       

                                  (4.8) 

 

( )( )
( )

( )( )

( )

1

2
0

0

1

0
0

1

1
0

exp
exp

!

exp
!

i
k

i

ik
i

i

ik

i
i

t t
I t dt

i

t t dt
i

λ λ
δ δ

λ δ
λ δ

δλ

λ δ

− ∞

=

− ∞

=

−

+
=

−
= −

= − +

=
+

∑∫

∑ ∫

∑

 

Hence         
2

1

k

I
λ

δ λ

 
= −  

+ 
                                               (4.9) 

 

( ) ( )
( )

( )

( )
( )( )

( )

( )

1

3
0

1

11
1

0
0

21

0

exp1
exp

1 !

1
exp

1 !

1

i
n

i k

in
i

i

in

i
i

t tn i
I t dt

i

n i
t t dt

i

n i

λ λ
δ δ

λ

λ δ
λ δ

λ

δλ

λ δ

−
∞

= +

−− ∞
−

=

−−

=

−− +
= −

−

− +
= − +

−

− +
=

+

∑ ∫

∑ ∫

∑

 

Hence        

( )

( )

1

3

k n

k

k

n k

I

λ
λ δ λ λ

λ δ

δ λ δ

−

−
  

− − +   +  =
+

                                 (4.10) 
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Now  
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On Simplification we get  

( )

1

5

n

n
I

λ

δ λ δ

+

=
+

                                               (4.12) 

Now making use of equations (4.8) to (4.12) in equation (4.7), we will have the 

expression for ( ) ,  1,2,...,L k k n= .  

 For 0k = , that is the case when all the states are protected, the expected 

cost will be independent of the time at which shock occurs and the expected time 

to complete the repair process is given by 
n

λ
. Hence the expected cost in this will 

be ( )p

n
c c

λ
+ .  
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4.3 Numerical Illustration 

The results obtained in this chapter are illustrated with the help of a 

numerical example. The illustrations are performed with the help of 

MATHEMATICA®. The results are validated with various values of the 

parameters  , , cλ δ and pc , the values of the number of states are assumed to be 

constant at 20n = . The results are summarized in table4.1. The figures in the 

boldface letter indicated the optimal values. 

Table 4.1 Long run cost for various values of ( ), , , pc cλ δ and constant at 

20n =  

( ), , , pc cλ δ  

    k  

10,2,50,80 10,2,30,80 10,2,10,80 10,6,10,80 

1 284.8659 239.6491 194.4323 172.0237 

2 283.1871 236.5269 189.8667 164.6362 

3 283.522 234.7298 185.9376 158.2151 

4 286.2235 234.4728 182.7222 153.3396 

5 291.7047 236.0039 180.3031 150.9361 

6 300.4494 239.6085 178.7675 152.4862 

7 313.0238 245.6147 178.2056 160.3594 

8 330.09 254.3991 178.7081 178.3454 

9 352.4218 266.3926 180.3635 212.5053 

10 380.9226 282.0876 183.2527 272.5327 

11 416.6469 302.0449 187.443 373.931 

12 460.824 326.9017 192.9793 541.4956 

13 514.8861 357.3793 199.8725 814.8825 

14 580.5 394.2919 208.0837 1257.515 

15 659.6041 438.5543 217.5045 1970.83 

16 754.4498 491.1901 227.9303 3117.056 

17 867.6497 553.338 239.0262 4955.655 

18 1002.231 626.2574 250.2833 7901.593 

19 1161.7 711.3311 260.9622 12618.54 

20 1350.107 810.064 270.0213 20167.93 
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4.4 Conclusion 

 We introduced the concept of protection during the repair process in this 

chapter. An optimal modelling assuming that the sojourn times in each state as 

exponential distribution is also done. Since the most of the lifetime distribution can 

be approximated by Coxian distribution, the results can be applied to the single 

state systems, splitting the total stay as to be combination of exponential random 

variables. 
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Chapter 5 
Two-Phase Start-up Demonstration Tests2 

 

5.1 Introduction 

Business people demonstrates or convinces customer about the reliability 

of heavy machine by start-ups and such a procedure is normally termed as start-up 

demonstration test. Most of the earlier studies in the start-up demonstration tests 

were assuming that the consecutive attempts are independent. But this may not be 

situation as success yields success with higher probability. For example a team 

winning a game has higher chance for winning the next match as the win in a 

match will increase the morale of the team as a whole. Also vendor is always 

motivated to sell his product. Hence he will make attempts to convince the 

customer about the quality of the product with necessary steps like looking for new 

or alternative product if the initial attempts make to have positive impact on sthe 

customer. But at the same time as the customer is vigilant he might be having 

certain conditions for the rejection of the product. Hence in this chapter we will 

introduce two test procedures which a vendor can be applied for selling his 

product.  

5.2 Models 

The proposed models consist of two phases. We will incorporate repair 

action in phase one. Let us consider the first model. The product is accepted in the 

first phase if 1k  consecutive successes occur prior to 1c  consecutive failure and 1d  

failed attempts and we reject it in the phase one if we observe 1d  failures ahead of  

1k  consecutive successes and 1c  consecutive failure. If 1c  consecutive failures 

occur prior to 1k  consecutive successes and 1d  failures, we will take product for 

repair and the repaired product, in second phase, is accepted if 2k  consecutive 

                                                           
2
 A part of this chapter is communicated in Nair and Thomas(2011) 
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successes occur before we observe 2d  failures and we reject the product 

otherwise. If we take 1 1 1c d= +  our model reduces to the case with rejection of 

units upon observing d  failures proposed by Balakrishnan and Chan (2000) and 

later studied by Martin (2004) and Smith and Griffith (2005). When 1 1c =  our 

model reduces to single corrective model discussed by Balakrishnan et. al 

(1995,1997). 

In the second model we will sent the product for repair if accidental causes 

exceeds specified limits and once a permanent failure observed for the product, 

leading to consecutive failure, we will reject the product.  In phase one, we will 

accept if 1k  consecutive successes prior to 1c  consecutive failures and 1d  random 

failures and if 1c  consecutive failures occur before 1k  consecutive successes and 

1d  random failures, we reject the product. The product is sent for repair if 1d  

random failures come ahead of the other two events. Now in order to make sure 

that the test terminates with probability one, in the second phase we reject the 

product if 2d  random failures occur ahead of the 2k  consecutive successes. On the 

contrary we accept the product.  

It is natural to think that success (failure) leads to success (failure) with 

high probability. Hence throughout this paper we will assume that the probability 

of success (failure) depends on the number of just preceding consecutive success 

(failure), discussed as l  dependent sequences by Aki and Hirano (2000). 

Independent and identical and Markov dependent trials comes as special cases to 

our proposed model. So let ( )ssp x  denotes the probability for a success 

following a success run of length x  and ( )fsp x  denotes the probability for a 

success following a failure run of length x . Similarly ( )ffp x  ( )( )sf
p x  denote 

probability for a failure following a failure (success) run of length x . 

For both the models of start-up demonstration tests, we proceed by 

embedding a Markov chain with each phase of the test. The states of the embedded 
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Markov chain, in both phases, are given by the triplet ( ), ,x y z  where x  denotes 

the length of the current run, y  denotes the type of the current run i.e. s   if a 

success run is going on and f  otherwise. z  corresponds to the number of failures 

occurred till now. Also throughout this paper we will assume that 1 '  unit vector 

of appropriate dimension so that the matrix multiplication is conformable.  

Let 
( ){ }1

, 1
n

A n ≥  be the Markov chain associated with the first phase of the 

test. Then the transition probabilities of the Markov chain 
( ){ }1

, 1
n

A n ≥  are given by 

( ) ( ) ( ) ( )( ) ( )1 1

1 1 11, , , ,       0 1,   0 1n n ssP A x s z A x s z p x if z d x k+ = + = = ≤ ≤ − ≤ ≤ −

( ) ( ) ( ) ( )( ) ( )1 1

1 11, , 1 , ,       0 1,   0 1n n ffP A x f z A x f z p x if z d x c+ = + + = = ≤ ≤ − ≤ ≤ −

( ) ( ) ( ) ( )( ) ( )1 1

1 1 11, , 1 , ,       0 1,   0 1n n sfP A f z A x s z p x if z d x k+ = + = = ≤ ≤ − ≤ ≤ −

( ) ( ) ( ) ( )( ) ( )1 1

1 11, , , ,       0 1,   0 1n n fsP A s z A x f z p x if z d x c+ = = = ≤ ≤ − ≤ ≤ −  

and  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 1

1 1 1

1 1

1 1 1 1

1 1

1 1

, , , , 1     0 1 

, , , , 1    0 1

, , , , 1    0

n n

n n

n n

P A x f d A x f d x c

P A k s z A k s z z d

P A c f z A c f z z d

+

+

+

= = = ≤ ≤ −

= = = ≤ ≤ −

= = = ≤ ≤

 

Based on the decision whether we accept, reject or repair we can divide the 

states of the Markov chain into four classes viz., Non-decisive, accepting, rejecting 

and repair classes. We will continue with making attempts as long as the Markov 

chain is in non-decisive class. Once the Markov chain enters the accepting, 

rejecting or repair class, we will accept, reject or repair the product. Hence the 

states in the accepting, rejecting and repair classes are all absorbing. Clearly the 

last three equations correspond to the absorbing states. Now we can partition the 

transition probability matrix corresponding to the first phase of the start-up 

demonstration test as shown 
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( ) ( ) ( ) ( )1 1 1 1

1

0 0 0

0 0 0

0 0 0

a t rR Q Q Q

I
P

I

I

 
 
 =
 
 
  

 

where ( )1
R  denote the matrix of transition probabilities between the non-

decisive states or non-absorbing states. 
( ) ( )1 1

,a tQ Q  and 
( )1

rQ  respectively denote the 

transition probabilities from non-decisive states to the accepting, repair/corrective 

and rejecting states 

Let 
( ) ( )1 1

,a tτ τ  and 
( )1

rτ  denote the number of transition required either to 

accept or to repair or to reject the product in the first phase. Then by using the 

Chappman-Kolmogrov equation and the first phase t.p.m we have  

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 1
1 1 1 1 1 1 1 1

1
1 1 1 1

1 ',     1 '

1 '

n n

a a t t

n

r r

P n R Q P n R Q

P n R Q

τ α τ α

τ α

− −

−

= = = =

= =

   (5.1) 

where 1 '  denote the unit vector of appropriate dimension so that the matrix 

multiplication is conformable and 
( )1α  denote the initial probability distribution.  

Then the  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 1
1 1 1 1 1 1

1

1 1
1 1 1 1 1 1

1

1 1
1 1 1 1 1 1

1

Acceptance of the product in phase 1 1 ' 1 '

Rejection of the product in phase 1 1 ' 1 '

Repair product 1 ' 1 '

n

a a

n

n

r r

n

n

t t

n

P R Q I R Q

P R Q I R Q

P R Q I R Q

α α

α α

α α

∞ − −

=

∞ − −

=

∞ − −

=

 = = − 

 = = − 

 = = − 

∑

∑

∑
          (5.2) 

As in phase one we can associate a Markov chain in the second phase also. 

Let 
( ){ }2

, 1
n

A n ≥  be the Markov chain associated with the second phase of the test. 

Here again we will denote the states of the Markov chain by triplet as denoted in 

the phase one. Transition probabilities in the second phase is given by  
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( ) ( ) ( ) ( )( ) ( )2 2

1 2 21, , , ,       0 1,   0 1
n n ss

P A x s z A x s z p x if z d x k+ = + = = ≤ ≤ − ≤ ≤ −

( ) ( ) ( ) ( )( ) ( )2 2

1 21, , 1 , ,       0 , 1
n n ff

P A x f z A x f z p x if x z d+ = + + = = ≤ ≤ −

( ) ( ) ( ) ( )( ) ( )2 2

1 2 21, , 1 , ,       0 1,   0 1
n n sf

P A f z A x s z p x if z d x k+ = + = = ≤ ≤ − ≤ ≤ −

( ) ( ) ( ) ( )( ) ( )2 2

1 11, , , ,       0 , 1
n n fs

P A s z A x f z p x if x z d+ = = = ≤ ≤ −  

and  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2

1 2 2 2

2 2

1 2 2 2

, , , , 1    0  

, , , , 1    0 1

n n

n n

P A x f d A x f d x d

P A k s z A k s z z d

+

+

= = = ≤ ≤

= = = ≤ ≤ −
 

Since there is no scope for repair in the second phase, we can partition the 

states of the Markov chain into subclasses (i) Non-decisive class (ii) accepting 

class and (iii) rejecting class. On achieving any states in the class leads to the 

acceptance or rejection of the product then such a class is respectively called as 

accepting and rejecting class. As in phase one the transition probability matrix 

associated with the embedded Markov chain is given by  

( ) ( ) ( )2 2 2

2 0 0

0 0

a r
R Q Q

P I

I

 
 

=  
 
 

 

with ( )2
R  denoting the matrix of transition probabilities between the non-

decisive states, 
( )2

a
Q  and 

( )2

r
Q  respectively denote the matrix of transition 

probability from a non-decisive state to an accepting, rejecting state. As the test is 

stopped once we reach any of the accepting or rejecting states, those states are all 

absorbing states. Also let the number of trials required either to accept or to reject 

the product in the second phase be denoted respectively by 
( )2

a
τ  and

( )2

r
τ . Then by 

exploiting Chappman-Kolmogrov (Bhat 2002, Feller 1968) equation and the 

second phase t.p.m we have 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
1 1

2 2 2 2 2 2 2 2
1 ',    1 '

n n

a a r r
P n R Q P n R Qτ α τ α

− −

= = = =     (5.3) 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 1
2 2 2 2 2 2

1

1 1
2 2 2 2 2 2

1

Acceptance of the product in phase 2 1 ' 1 '

Rejection of the product in phase 2 1 ' 1 '

n

a a

n

n

r r

n

P R Q I R Q

P R Q I R Q

α α

α α

∞ − −

=

∞ − −

=

 = = − 

 = = − 

∑

∑
               (5.4) 

Hence from equations (5.2) and (5.4) we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1 1 1 2 2 2

1 1
1 1 1 1 2 2 2

Acceptance of the product 1 ' 1 ' 1 '

Rejection of the product 1 ' 1 ' 1 '

a t a

r t r

P I R Q Q I R Q

P I R Q Q I R Q

α α

α α

− −

− −

    = − + −     

    = − + −     
                (5.5) 

Now we will consider the states in the different classes in both phases of 

the test. Since both tests vary only in the first phase and Markov chain 
( ){ }2

, 1
n

A n ≥  

and their partitions are the same for both phases of the test. They differ only in 

their partition of the states of the Markov chain
( ){ }1

, 1
n

A n ≥ . First we shall consider 

the case for the first model. States in the non-decisive class, which forms a 

( ) ( )( ) ( ) ( )1 1 1 1 1 1 12 1 1 1 1 2 / 2k d d c c c c+ − + − + − + − −  dimensional vector, can be 

further subdivided into three sub classes, namely.,  

(i) ( ){ ( ) 10, ,0 , , , ,1 1,s x s z x k≤ ≤ −  }1 0 1z d≤ ≤ −  with ( )1 11 1k d+ −   states 

(ii) class with ( ) ( )1 1 11 1 1d c c+ − + −  states given by 

( ) ( ) ( ) ( ){ ( )1 1 1 10, ,0 , 1, ,1 ,... 1, , 1 , 1, , 2 ,..., 1, , ,...,f f c f c f c f c− − −  

( ) ( )}1 1 11, , ,..., 1, , 1f d c c f d− − − .  

(iii) Class given by ( ){ ( ) ( )1 1 1 1 1 11, , 2 ,..., 2, , 1 , 1, , 3 ,f d c c f d f d c− + − − − +   

( ) ( )}1 1 1..., 3, , 1 ,..., 1, , 1c f d f d− − − , with dimension  ( )( )1 11 2 / 2c c− − .  

Accepting class, a row vector with dimension 1d  is given by

( ) ( ) ( ){ }1 1 1 1, ,0 , , ,1 ,..., , , 1k s k s k s d − . Rejecting class given by ( ){ ( )1 11, , , 2, , ,f d f d  
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( ) ( )}1 13, , ,..., , ,f d c f d has  1c   states.  A ( )1 1d c−  states class, with elements given 

by ( ) ( ) ( ){ }1 1 1 1 1 1, , , , , 1 ,..., , , 1c f c c f c c f d+ −  forms the repair class.  

For the second model, the rejecting class and the repair class got replaced 

each other. Hence the class of states ( ) ( ) ( ) ( ){ }1 1 1 11, , , 2, , , 3, , ,..., , ,f d f d f d c f d  

forms the rejection class, corresponds to the rejection of the products. Clearly there 

are 1c  states in the class. Once the Markov chain enters any of the states in the 

repair class, with ( )1 1d c− states, given by  

( ) ( ) ( ){ }1 1 1 1 1 1, , , , , 1 ,..., , , 1c f c c f c c f d+ −  then the product is sent for 

repair/corrective action. The non-decisive class and the accepting class remains to 

be the same.  

Now let us consider the partition of states in the second phase. Since the 

conditions of acceptance and rejection remain same in both the models, the 

partition is same for both the models. The class ( )2 2, , ,0 1k s z z d≤ ≤ −   with 2d  

states forms the accepting class, where as the class of 2d  states given by 

( )2, , ,x f d
21  x d≤ ≤ . Non-decisive class consists of  r  states , where 

 ( ) ( )2 2 2 22 1 1 / 2r k d d d= + − + − , states and is given by  

( ){ ( ) ( ) ( ) ( ) ( ) ( )2 2 20, ,0 , 1, ,0 ,..., 1, ,0 , 1, ,1 ,..., 1, , 1 , 0, ,0 , 1, ,1 ...,s s k s s k s d f f− − −  

( ) ( ) ( ) ( )}2 2 2 2 21, , 1 , 1, ,2 ,..., 2, , 1 ,..., 1, , 1d f d f d f d f d− − − − − .  

5.3 Results 

 In this section we will derive the expressions for the probability 

generating functions (pgfs) of the random variable the number of trials under 

different scenario. Let N  and ( )
  ,  1, 2

i
N i =  denote the number of trials in the test 

and in the th
i  state respectively. Then we have 
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Theorem 5.1: If  ( ) ( ) ( ), ,  1,  2iN N
z z iφ φ =  denote the pgf of ( )

, ,  1,  2
i

N N i = .Then  

i. ( ) [ ] ( ) ( ) ( ) ( ) ( ){ }1 1
1 1 1 2 2

1 1 ' 1 1
N t

z z I zR zQ I zRφ α α
− −

   ′ ′= − − + −   
 (5.6)

 

ii. ( ) ( ) [ ] ( ) ( ) 1

1 1 1,     1, 2i

i i

N
z z I zR iφ α

−
  ′= − − + =   

Proof:  

We have ( ) ( )n

N
z E zφ =

 

 
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )

11 1 1
1 1 1 1 1 1 1 2 2

1 1

1 ' 1 ' 1 '
nn n

n

a r t

n

z R Q Q R Q R
µ µ

µ

α α α
∞ −− − − −

= =

 
= + + 

 
∑ ∑  

     ( ) ( ) }2 2
1 ' 1 '

a r
Q Q  + 

  (5.7) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 1

1 1 1 1 1 1 1 1

1 1

1' 1 ' 1 ' 1 ' 1 '
n n

n n

a r t

n n

z R Q Q z R R Qα α
∞ ∞− −

= =

+ = − −∑ ∑  

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
1 1

1 1 1 1 1 1 1 1

1 0 1

1 ' 1 ' 1 1 '
n n n

n

t

n n n

z zR zR z R Qα α α α
∞ ∞ ∞− −

= = =

′= − + −∑ ∑ ∑

 [ ] ( ) ( ) ( ) ( )( ) ( )
11

1 1 1 1 1

1

1 1 ' 1 1 '
n

n

t

n

z I zR z R Qα α
∞ −−

=

 = − − + −  ∑   (5.8) 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ){ }
1 1 1

1 1 1 2 2 2 2

1 1

1 ' 1 ' 1 '
n n

n

t a r

n

z R Q R Q Q
µ µ

µ

α α
∞ − − − −

= =

+∑ ∑  

 
( ) ( )( ) ( ) ( ) ( )( ) ( ){ }

1 1 1
1 1 1 2 2 2

1 1

1 ' 1' 1 '
n n

n

t

n

z R Q R R
µ µ

µ

α α
∞ − − − −

= =

= −∑ ∑  

Interchanging the order of summation, we have 

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )
1 1

1 1 1 2 2 2

1 1

1 1 1
n

n

t

n

R Q z R R
µ µ

µ µ

α α
∞ ∞− − −

= = +

 ′ ′ ′= − ∑ ∑  

( )( )
( ) ( ) ( ) ( )( )

( ) ( )
1 1

2 2 2 2

1 1

1 1 1 1
n n

nn

n n

z R R z z R R
µ µ

µµ

µ µ

∞ ∞− − − −
−

= + = +

   ′ ′ ′ ′− = −   ∑ ∑  
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( )( )
( ) ( )( )

( )1
2 2

1 1

1 ' 1
n n

n n

z z zR zR
µ

∞ ∞′ ′−

′ ′= =

 
′= − 

 
∑ ∑

 
( )( )

( ) ( )( )
( )1

2 2

1 0

1 1 1
n n

n n

z z R R
µ

∞ ∞′ ′−

′ ′= =

 
′ ′ ′= − + 

 
∑ ∑

 ( ) ( ){ }1
2

1 1 1z z I zR
µ

−
  ′ ′= − − +               (5.9) 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ){ }
1 1 1

1 1 1 2 2 2 2

1 1

1 1 1' 1
n n

n

t a r

n

z R Q R Q Q
µ µ

µ

α α
∞ − − − −

= =

′ ′ ′+∑ ∑  

   
( ) ( )( )

( ) ( ) ( ) ( ) ( ){ }1 1
1 1 1 2 2

1

1 1 1 1
t

R Q z z I zR
µ

µ

µ

α α
∞ − −

=

 ′ ′ ′= − − + ∑  

Using (5.9) 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
1 11

1 1 1 2 2 1 1 1

1 1

1 1 1 1
t t

z zR Q z I zR z R Q
µ µ

µ

µ µ

α α α
∞ ∞− −−

= =

 ′ ′ ′= − − + ∑ ∑
                    (5.10) 

Now using (5.8) and (5.10) in (5.7), we have 

( ) [ ] ( ) ( ) ( ) ( )( ) ( )
11

1 1 1 1 1

1

1 1 1 1
n

n

N t

n

z z I zR z R Qφ α α
∞ −−

=

  ′ ′= − − + − +  ∑  

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
1 11

1 1 1 2 2 1 1 1

1 1

1 1 1 1
t t

z zR Q z I zR z R Q
µ µ

µ

µ µ

α α α
∞ ∞− −−

= =

 ′ ′ ′− − + ∑ ∑
 

( ) [ ] ( ) ( ) ( ) ( ) ( ){ }1 1
1 1 1 2 2

1 1 1 1
N t

z z I zR zQ I zRφ α α
− −

   ′ ′ ′= − − + −     

(ii) Also we have, 

( )( ) ( )( ) ( )( ) ( )( )1 1 1 1

a r t
P N n P n P n P nτ τ τ= = = + = + =  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )
1 1

1 1 1 1 1 1 1 1
1 1 1' 1 1 1

n n

a r t
R Q Q Q R Rα α

− −

′ ′ ′ ′ ′= + + = −  
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( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )1

1
1 1 1 1

1 1

1 1
n

n n

N
n n

z z P N n z R Rφ α
∞ ∞ −

= =

′ ′= = = −∑ ∑  

 ( ) ( ) ( )( )
( ) ( ) ( )( )

1
1 1 1 1 1

1 1

1 1
n n

n n

n n

z z R z Rα α
∞ ∞−

−

= =

′ ′= −∑ ∑  

 ( ) ( )( )
( ) ( ) ( )( ) ( )

1
1 1 1 1 1

1 0

1 1 1
n n

n n

z zR zRα α α
∞ ∞−

= =

′ ′ ′= − +∑ ∑  

[ ] ( ) ( )( )
( )

[ ] ( ) ( )
1 1

1 1 1 1

1

1 1 1 1 1 1
n

n

z zR z I zRα α
∞ − −

=

 ′ ′= − + = − − + ∑
 

Working on the same line as in (ii) we can prove (iii) 

( ) ( ) [ ] ( ) ( )
2

1
2 2

1 1 1
N

z z I zRφ α
−

  ′= − − +   

Remark 5.1: We can find the expected number of trials in the test and in each 

phase of the test by taking the derivative of the pgfs with respect to s  and setting 

1s = . Hence we have from the above generating function 

1. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 1 1 1 1 2 2

1 1 1
t

E N I R I R Q I Rα α α
− − −

     ′ ′ ′= − + − −       

2. 
( )( ) ( ) ( ) 1
1 1 1

1E N I Rα
−

  ′= −   

3. 
( )( ) ( ) ( ) 1
2 2 2

1E N I Rα
−

  ′= −   

It will be interesting to find the expected number of trials before we accept 

or reject the product. 

Theorem 5.2: Expected number trials given that accept or reject the product is  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){2 1 1
1 1 1 1 1 1 2 2

1 1
a t

E N Accept I R Q I R Q I Rα α α
− − −

     ′ ′= − + − −       

     
( ) ( ) ( )} ( ) ( )1 1
1 1 2 2 2

1 1
t a

I R Q I R Qα
− −

   ′ ′+ − −     
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){2 1 1
1 1 1 1 1 1 2 2

Reject 1 1
r t

E N I R Q I R Q I Rα α α
− − −

     ′ ′= − + − −       

     
( ) ( ) ( )} ( ) ( )1 1
1 1 2 2 2

1 1
t r

I R Q I R Qα
− −

   ′ ′+ − −     

Proof :  

We have  

( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

11 1 1
1 1 1 1 1 1 2 2 2

1 1 1

1 1 1
nn n

a t a

n n

E N Accept n R Q n R Q R Q
µ µ

µ

α α α
∞ ∞ −− − − −

= = =

′ ′ ′= +∑ ∑ ∑

First let us consider 

( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 2
1 1 1 1 1 1

1

1 ' 1 '
n

a a

n

n R Q I R Qα α
∞ − −

=

 = − ∑  

Also we have 

 
( ) ( )( ) ( ) ( ) ( )( ) ( )

1 1 1
1 1 1 2 2 2

1 1

1 ' 1 '
n n

t a

n

n R Q R Q
µ µ

µ

α α
∞ − − − −

= =

∑ ∑  

  
( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

1 1
1 1 1 2 2 1

1 1

1
n

t r

n

R Q n R Q
µ µ

µ µ

α α
∞ ∞− − −

= = +

′=∑ ∑ , 

Interchanging the order of summations 

( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )
1 1

1 1 1 2 2 2

1 1

1 1
n

t a

n

R Q n R Q
µ µ

µ µ

α α µ
∞ ∞− − −

= = +


′ ′= − +


∑ ∑  

       
( )( )

( ) ( )
1

2 2

1

1
n

a

n

R Q
µ

µ

µ
∞ − −

= +


′


∑  

 
( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 2 1
1 1 1 2 2 2 2 2

1

1 1 1
t a a

R Q I R Q I R Q
µ

µ

α α µ
∞ − − −

=

   ′ ′ ′= − + −   ∑  

 
( ) ( ) ( ) ( ) ( ){1 1
1 1 1 2 2

1
t

I R Q I Rα α
− −

   ′= − − +     

     
( ) ( ) } ( ) ( ) ( )1 1
1 1 2 2 2

1 1
t a

I R Q I R Qα
− −

   ′ ′− −     
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){2 1 1
1 1 1 1 1 1 2 2

1 1
a t

E N Accept I R Q I R Q I Rα α α
− − −

     ′ ′= − + − −       

( ) ( ) ( )} ( ) ( )1 1
1 1 2 2 2

1 1
t a

I R Q I R Qα
− −

   ′ ′+ − −     

Proceeding as in (i) we can prove (ii). 

5.4 Numerical Illustrations 

In this section we will consider examples for each model to validate the 

above-discussed results. Authors had developed a MATLAB® program that 

generates, for given values of 
1 1 1 2
, , ,k d c k  and

2
d , the involved sub matrices and 

computes various probabilities and the expected number of trials under different 

conditions. Here we will consider a l  dependent trials discussed by Aki and 

Hirano (1999). The constants under the given conditions are given by  

( ) ( )

( ) ( )

(1/2)

1

2 (1/3)

2 2

12; 1-1/ ( 1); 1-1/ ( 1);

5; 8; 1- (1/ ( 1)) ; 1- ( / ( 2));

ss ff

ss ff

k p t t p t t

k d p t t p t t t

= = + = +

= = = + = +
 

with the initial distribution, in both phases, as equally likely in the states ( )0, ,0s  

and ( )0, ,0f . 

5.4.1 Model 1 

First we consider the first model and obtain different probabilities for 

values of 
1c  less than 

1 18d = . Figure 1 probability of acceptance in the test, 

probability of acceptance in phase one, phase two are depicted. Probabilities of 

repair for the product for various values of  
1c   are also given.  
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Figure 5.1 Values of different Probabilities for various values of  
1

c  in the case of 

model 1 

 

It can be seen from the figure5.1 that as 
1c  increases the probability of 

repair converges to zero and the Probability of acceptance of the product in the test 

and in phase one stabilize to the same limit.  

In figure 5.2 expected number of trials required to terminate the test and in 

phase one are depicted for various values of 
1c  . 

  



67 

 

Figure 5.2 Values of different Expected value measures for various values of  
1

c
 
in 

the case of Model 1 

The expected number of trials in the test and in phase one, even though distant 

apart for small values of c  will converge to the same limit as c  increases. Also it can 

be seen that the expected number of trials will converge to a limit as the values of 
1

c  

increases. 

5.4.2 Model 2 

Here we will obtain different probabilities for values of 
1d  ranging from six to 

50. For the given constant value of 6c = . 

In figure 5.3 as in figure 1, plots of various probabilities against corresponding 

1d  value is shown. The probability of interest include probability of acceptance, 

probability of acceptance in phase one, phase two and the probability of repair. 
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Figure 5.3 Values of different Probabilities for various values of  
1

c in the case of 

model 2 

 

As the value of 
1d  increase the probability of repair as well as probability of 

acceptance in phase two converges to zero. Also Probability of acceptance in the test 

and in phase one converges to the same limit.  

Figure 5.4 Values of different Expected value measures for various values of  
1

c in the 

case of Model 2 



It can be seen that as the value of 1d  increases the expected number of trials 

becomes convergent. It asserts the logical results that the number of trials in phases 

one becomes equal to the number of trials in the test.    

5.5 Conclusion  

In this chapter we proposed two new models of start-up demonstration having 

two phases with the condition for the corrective action in the first model being 

specified number of consecutive failures and in the second model being specified 

number of random failures. 
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Chapter 6 

Distribution of Runs and Occurrence of each 
outcome3 

 

6.1 Introduction 

Runs find application in almost every field of human activity. In most of the 

run related problems we are interested in finding the distribution of runs alone. But in 

some of the problems we may need to find the joint distribution of runs as well as the 

number of occurrences of each type of outcome. For example consider a system with 

k  causes for failure denoted by 1, 2,..., k . A probable question that may arise is 

whether the consecutive causes for failures are dependent or not. Let 
ij

n  denote the 

number of failures with current cause of failure as j  and the previous cause as i  and  

in  denote the number of failures due to cause i , , 1, 2,...i j k= . Now it is interesting to 

derive the joint distribution of the variables ( ), , , 1, 2,...
ij i

n n i j k= . In this chapter we 

deal with these classes of problems. 

6.2 Distribution of Runs and occurrence of each outcome 

Let 
1 2, ,...Z Z  be a sequence of outcomes in a multistate trial with m  outcomes. 

Let ( ) ( ) ( )( )1 2
, ,...,

m

n n n nX X X X=  be the random vector denoting the number of runs in a 

sequence of n   trials where 
( )i
nX  denote the number of runs of thi  type in n  trials. 

Also let ( ) ( ) ( )( )1 2
, ,...,

m

n n n nY Y Y Y=  , with 
( )i

nY  denote the occurrence of thi  type outcome 

in n  trials, denote the random vector denoting the number of occurrence of each 

                                                           
3
 A part of this chapter is communicated in Nair and Thomas (2011) 
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outcomes. Our objective is to find the Joint distribution of  ( ),n nX Y . We have the 

following definition. 

 Definition 1 (Han and Aki, 1999):  

The random vector nX  is called a Markov chain embeddable vector of 

multinomial type (MVM), if 

(1). there exists a Markov chain { }, 0
t

tα ≥  defined on a state space Ω , 

(2). there exists a partition { }, 0
x

C x ≥  on the state space Ω , 

(3). for every x ,  Pr( ) Pr( )n n xX x Cα= = ∈   and  

(4). * 1
Pr( | ) 0

t t xx x
C Cα α −+

∈ ∈ =    if * 0x ≠   or * ,    1, 2,...
k

x e k m≠ = . 

Instead of the partition xC , here we will partition as 
,x y

C . We assume that the 

cardinality of 
,x y

C  is β  ie., 
,x y

Cβ = . Then we denote  

{ }, , ;1 , ;2 , ;
, ,...,

x y x y x y x y
C C C C β= . 

 Now associated with the above Markov chain we can associate two matrices 

given by  

( ) ( ), ; 1 , ;
( , ) Pr( | )   1, 2,...

t k

k

t x y e j t x y i
A x y C C k m

β β
α α+ −

×
= ∈ ∈ = . 

( ) ( ),

, ; 1 , ;
( , ) Pr( | )   , 1, 2,...

t k l

k l

t x e y e j t x y i
B x y C C k l m

β β
α α+ + −

×
= ∈ ∈ = . 

The matrix ( ) ( , )
t

k
A x y  corresponds to an increase in the number of occurrence 

of  th
k  type outcome where as 

( ),
( , )

t

l k
B x y  corresponds to an increase in both th

l  type 

runs and th
k type outcome. Now we have the probability vector of the th

t  step of the 

Markov chain as  

( ) ( ) ( ) ( )( ), ;1 , ;2 , ;, Pr , Pr ,...Pr ,0 ,0 ,t t x y t x y t x y t tf x y C C C x l y nβα α α= ∈ ∈ ∈ ≤ ≤ ≤ ≤  

         0,1,...t n= . 
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where ( ) ( ) ( )( )1 2
, ,...,

m

n n n nl l l l=  , ( ) ( ) ( ) ( ){ }max : Pr( ) 0
i i i i

n nl x X x= = > , 

( ) ( ) ( )( )1 2
, ,...,

m

t t t tn n n n= , ( ) ( ) ( ) ( ){ }max : Pr( ) 0
i i i i

t nn y y y= = >  

Theorem 6.1: The sequence of probability vectors 

 ( ), ,0 ,0 , 0,1,...t t tf x y x l y n t n≤ ≤ ≤ ≤ =   satisfies  

( ) ( ) ( ) ( ) ( )1

1

, , , 0
t

m
k

t t k k k

k

f x y f x y e A x y e I y e−
=

= − − − ≥ +∑   

( ) ( ) ( ) ( ),

1

, 1

, , 0, 0 .
t

m
l k

t k k l k l k

k l

f x e y e B x e y e I x e y e−
=

− − − − − ≥ − ≥∑
       (6.1) 

where   ( )
1          true

0      

if P is
I P

otherwise


= 


 

then the probability distribution function is given by ( ) '( , ) , 1
n n n

P X x Y y f x y= = = . 

Proof :  

We can prove the above theorem as proceeding in the same line as Han and Aki 

(1999) done for the MVM. 

The recurrence relation follows immediately as a consequence of the 

Chapman-Kolmogrov equations and from the form of the matrices ( ) ( , )
t

k
A x y   and

( ),
( , )

t

l k
B x y , , 1, 2,...k l m= . 

Also ( ) ( ) ( ) ( ) '

, , ;

1

Pr , Pr Pr ,
n n n x y n x y i n

i

X x Y y C U f x y
β

α α
=

= = = ∈ = ∈ =∑ 1 . 

Hence the theorem. 

  Now we consider the case when ( ) ( , )
t

k
A x y  and ( ),

( , )
t

l k
B x y  are independent 

of ( ),x y . 
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Let ( )1 2, ,..., mz z z z= , 1 2

1 2
... m

m

xx xx
z z z z= , ( )1 2, ,..., ms s s s=  and 1 2

1 2
... m

m

yy yy
s s s s= .  

Consider the probability generating function of the random vectors nX   and  nY  

 ( ) ( ) 1 2 1 2

1 2 11 2 1 2

0 0

, ,..., , ,.... Pr , ... ....m m

m m

t t

x yx x y y

n m m n n

x l y n

z z z s s X x Y y z z z s s sφ
≤ ≤ ≤ ≤

= = =∑ ∑

.We introduce ( )
( ) ( ) ( ) ( ){ }: ;0 , 1, 2,..., 1, 1,...,
k k j j

tx x x l j k k mδχ δ= = ≤ ≤ = − +  

 ( )
( ) ( ) ( ){ }: ;0 , 1, 2,..., 1, 1,...,
k k j

y y y n j k k mδη δ= = ≤ ≤ = − +      1, 2,... .k m=  

Theorem 6.2: If ( ) ( , )
t

k
A x y  and ( ),

( , )
t

l k
B x y  does not depend on ( ),x y , that is  

( ) ( )( , )
t

k k

tA x y A=  and ( ) ( ), ,
( , )

t

l k l k

tB x y B= , 1, 2,...k m=   for all ( ),x y , we have  

( ) ( ) ( ) ( ),

1

1 1

, ,
m m

k l k

t t k t l t

k l

z s z s s A z Bφ φ −
= =

  
= +  

  
∑ ∑    (6.2) 

Proof:  

We have ( ) ( )
0 0

, ,
t t

x y

t t

x l y n

z s f x y z sφ
≤ ≤ ≤ ≤

= ∑ ∑ . Using (6.1) we will have 

( ) ( ) ( )( ( )1

0 0 1

, , 0
t

t t

m
k

t t k k

x l y n k

z s f x y e A I y eφ −
≤ ≤ ≤ ≤ =

= − − ≥ +∑ ∑ ∑   

    ( ) ( ) ( ),

1

1

, 0, 0
t

m
l k x y

t l k l k

k

f x e y e B I x e y e z s−
=


− − − ≥ − ≥ 


∑  

 ( ) ( ) ( )1

1 0 0

, 0 k

t

t t

m
k y ex

k t k k

k x l y n

s f x y e A I y e z s
−

−
= ≤ ≤ ≤ ≤

= − − ≥∑ ∑ ∑ + 

( ) ( ) ( ),

1

, 1 0 0

, 0, 0 l k

t

t t

m
l k x e y e

l k t l k l k

k l x l y n

z s f x e y e B I x e y e z s
− −

−
= ≤ ≤ ≤ ≤

− − − ≥ − ≥∑ ∑ ∑
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( ) ( )
1

1 0 0

,
t

t t k

m
k x y

k t

k x l y n e

s f x y A z s−
= ≤ ≤ ≤ ≤ −

= +∑ ∑ ∑

 ( ) ( ),

1

, 1 0 0

,
t

t l t k

m
l k x y

l k t

k l x l e y n e

z s f x y B z s−
= ≤ ≤ − ≤ ≤ −

∑ ∑ ∑  

Note that 1t tl l −−  and 1t tn n −−  is zero or a finite sum of different 'ke s , 1, 2,...k m= . 

Hence we have two cases viz., (1) 
1t tl l −− = 0  and 

1

1
j

r

t t i

j

n n e−
=

− =∑  

and    (2) 
1

1

1 j

R

t t i

j r

l l e−
=

− =∑  and 
2

2

1 j

R

t t i

j r

n n e−
=

− =∑ . 

Case 1:  

1t tl l −− = 0  and 1

1
j

r

t t i

j

n n e−
=

− =∑  

( ) ( ) ( )

( ) ( )

1
1

1

1
1

1

1

1 0
0

,

1

, 1 0
0

, ,

                            ,

t
r

t

t i kj
j

t
r

t l

t i kj
j

m
k x y

t k t

k x l
y n e e

m
l k x y

k k t

k l x l e
y n e e

z s s f x y A z s

z s f x y B z s

φ
−

−

=

−
−

=

−
= ≤ ≤

≤ ≤ + −

−
= ≤ ≤ −

≤ ≤ −

= +

∑

∑

∑ ∑ ∑

∑ ∑ ∑
   (6.3) 

( ) ( )

( ) ( )

1
1

1

1
1

1

1

1 0
0

1

1 1 0
0

,

                         ( ) ,

t
r

t

t i kj
j

t
r

t

t i ij
j

m
k x y

k t

k x l
y n e e

r m
i x y

i t

r x l
y n e e

s f x y A z s

s f x y A z sρ

ρ

ρ

ρ ρ

−
−

=

−
−

=

−
= ≤ ≤

≤ ≤ −

−
= = + ≤ ≤

≤ ≤ + −

=

∑

+

∑

∑ ∑ ∑

∑ ∑ ∑ ∑
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( ) ( )

( ) ( )

1
1

1,

1
1

1

1

1 0
0

1

1 0
0

,

                                  ,

t
r

t

t i j
j j

t
r

t

t i kj
j

r
i x y

i t

x l
y n e

m
i x y

i t

r x l
y n e e

s f x y A z s

s f x y A z s

ρ

ρ

ρ

ρ

ρ

ρ

ρ

−
−

= ≠

−
−

=

−
= ≤ ≤

≤ ≤ +

−
= + ≤ ≤

≤ ≤ + −

= +

∑

∑

∑ ∑ ∑

∑ ∑ ∑

 ( ) ( ) ( ) ( )

1 1

1
1

1 1

1 0 0 1,

, ,
t t

i j
t t

i
n
t

r r
i ix y x y

i t t

x l y n j j y

s f x y A z s f x y A z sρ ρ

ρ

ρ
ρ ρ η− −

 
+ −

 

− −
= ≤ ≤ ≤ ≤ = ≠ ∈




= + 



∑ ∑ ∑ ∑ ∑  

 ( ) ( ) ( ) ( )

1 1

1
1

1 1

1 0 0 1

, ,
t t

i j
t t i

i
n
t

m r
i ix y x y

i t t

r x l y n e j y

s f x y A z s f x y A z sρ ρ

ρ

ρ
ρ

ρ η− −
 

+ −
 

− −
= + ≤ ≤ ≤ ≤ − = ∈


 

+ + 
 



∑ ∑ ∑ ∑ ∑  

                    (6.4) 

But, 

( ) ( ) ( ) ( ) ( ) ( )

1 1

1

1 1 1

0 0

, , ,
t t t

i
t i t i

n
t

i i ix y x y x y

t t t

y n e y n y

f x y A z s f x y A z s f x y A z sρ ρ ρ

ρ
ρ ρ

η− −  
 

− 

− − −
≤ ≤ − ≤ ≤ ∈

= −∑ ∑ ∑

  (6.5) 

Now ( ) ( ),

1

, 1 0 0

,
t

t l t k

m
l k x y

l k t

k l x l e y n e

z s f x y B z s−
= ≤ ≤ − ≤ ≤ −

∑ ∑ ∑  

 ( ) ( )

1

1
1

,

1

1 1 1 0
0

( ) ( ) ,
t

i r
t

i
t i kl j

t
j

m r m
l k x y

l i t

l r x l x
y n e e

z s f x y B z s
ρ

ρ

ρ
ρ ρ χ−

 
 −
  =

−
= = = + ≤ ≤ ∈

≤ ≤ + −

 
 

= + − 
 
 ∑
 

∑ ∑ ∑ ∑ ∑ ∑

( ) ( ) ( ) ( )

1 1

1
1

, ,

1 1

1 1 0 0

, ,
t t

i
t t

i
n
t

m r
l i l ix y x y

l i t t

l x l y n y

z s f x y B z s f x y B z sρ ρ

ρ
ρ

ρ
ρ η− −

 
+ −

 

− −
= = ≤ ≤ ≤ ≤ ∈


  = +  


∑ ∑ ∑ ∑ ∑  

( ) ( ) ( ) ( )

1

1
1 1

, ,

1 1

1 0

, ,
t t

i i
t

i i
l n
t t

r
l i l ix y x y

i t t

y nx y

s f x y B z s f x y B z sρ ρ

ρ
ρ ρ

ρ ρ
ρ χ η−

   
+   − −

   

− −
= ≤ ≤∈ ∈

 − + 
∑ ∑ ∑ ∑  
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 ( ) ( ) ( ) ( )

1 1

1
1

, ,

1 1

1 0 0

, ,
t t

i
t t

i
n
t

m
l i l ix y x y

i t t

r x l y n y

s f x y B z s f x y B z sρ ρ

ρ
ρ

ρ
ρ η− −

 
+ −

 

− −
= + ≤ ≤ ≤ ≤ ∈

 + + 
∑ ∑ ∑ ∑  

( ) ( ) ( ) ( )

1

1
1 1

, ,

1 1

1 0

, ,
t t

i i
t

i i
l n
t t

m
l i l ix y x y

i t t

r y nx y

s f x y B z s f x y B z sρ ρ

ρ
ρ ρ

ρ ρ
ρ χ η−

   
+   − −

   

− −
= + ≤ ≤∈ ∈


 − +   


∑ ∑ ∑ ∑

 (6.6) 

But ( ) ( ),

1 1, 0  
l k

t t tf l y B− − =  for every 1, 2,...l m= . 

 ( ) ( ) ( ) ( ),

1 1 1 1, 0, , 0
k l k

t t k t t t k tf x n e A f x n e B− − − −+ = + =  for every , 1, 2,..,l k m=  

Multiplying (6.3) by '1  and applying (6.4), (6.5) and (6.6) and putting 

,  1,  1,2,...k ks z k m= =   we have the theorem. 

Case 2: 
1

1

1 j

R

t t i

j r

l l e−
=

− =∑  and 
2

2

1 j

R

t t i

j r

n n e−
=

− =∑  

( ) ( ) ( )

1

1

1

1 0
0

, ,
t

r
t

t i kj
j

m
k x y

t k t

k x l
y n e e

z s s f x y A z sφ

−

=

−
= ≤ ≤

≤ ≤ + −

= +

∑

∑ ∑ ∑  

( ) ( )

1 1

1 1

,

1

, 1
0 0

,
t

r r

t i l t i kj j
j j

m
l k x y

l k t

k l
x l e e y n e e

z s f x y B z s

− −

= =

−
=

≤ ≤ + − ≤ ≤ −∑ ∑

∑ ∑ ∑   (6.7) 

Consider the first term in equation (6.7), 

( ) ( )

1 1

1 1

1

1
0 0

,
t

r r

t i t i kj j
j j

m
k x y

k t

k
x l e y n e e

s f x y A z s

− −

= =

−
=

≤ ≤ + ≤ ≤ + −∑ ∑

∑ ∑ ∑  

 ( ) ( )1

1 1
11

1
1

1

1 1 0
0

( ) ( ) ,
t

i r
t

i
t i il j

t
j

r m
i x y

i t

r x l x
y n e e

s f x y A z sρ

ρ
ρ

ρ ρ

ρ ρ χ−
  −+ −
  =

−
= = + ≤ ≤ ∈

≤ ≤ + −

= + +

∑

∑ ∑ ∑ ∑ ∑  
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 ( ) ( )1

1
11

1
1,

1

1 0
0

( ) ,
t

i r
t

i
t il j

t
j j

r
i x y

i t

x l x
y n e

s f x y A z sρ

ρ
ρ

ρ

ρ

ρ χ−
  −+ −
  = ≠

−
= ≤ ≤ ∈

≤ ≤ +

= + +

∑

∑ ∑ ∑ ∑  

   ( ) ( )

1 1
11

1
1

1

1 0
0

( ) ,
t

i r
t

i
t i kl j

t
j

m
i x y

i t

r x l x
y n e e

s f x y A z sρ

ρ
ρ

ρ
ρ χ−

  −+ −
  =

−
= + ≤ ≤ ∈

≤ ≤ + −

+

∑

∑ ∑ ∑ ∑  

( ) ( )1

1 1

1
1

1

1 0 0

( ) ,
t

i
t t

i
l
t

r
i x y

i t

x l y nx

s f x y A z sρ

ρ
ρ

ρ
ρ χ− −

 
+ −

 

−
= ≤ ≤ ≤ ≤∈

= + +∑ ∑ ∑ ∑

( ) ( )

( )
( )

1 1

1
2 111

1

1

1 0 1,

( ) ,
t

i i jt
i ntl
t

r r
i x y

i t

x l j jx y

s f x y A z sρ

ρ
ρ

ρ
ρ ρχ χ−

  +−+ −
 

−
= ≤ ≤ = ≠∈ ∈

+ +∑ ∑ ∑ ∑ ∑

( ) ( )

1 1 1

1
1

1

1 0 0

( ) ,
t

i
t t i

i
l
t

m
i x y

i t

r x l y n ex

s f x y A z sρ

ρ
ρ

ρ
ρ

ρ χ− −
 

+ −
 

−
= + ≤ ≤ ≤ ≤ −∈

+∑ ∑ ∑ ∑ +

( ) ( )

( )
( )1 1

2 111
1

1

1 0 1,

( ) ,
t

i i jt
i ntl
t

m r
i x y

i t

r x l j jx y

s f x y A z sρ

ρ
ρ

ρ
ρ ρχ χ−

  +−+ −
 

−
= + ≤ ≤ = ≠∈ ∈

+∑ ∑ ∑ ∑ ∑   

Since ( ) ( )
1 1, 0

k

t t k tf x n e A− − + = , second and the fourth term in the above 

summation becomes identically equal to zero. Then we have 

( ) ( )

1 1

1 1

1

1
0 0

,
t

r r

t i t i kj j
j j

m
k x y

k t

k
x l e y n e e

s f x y A z s

− −

= =

−
=

≤ ≤ + ≤ ≤ + −∑ ∑

∑ ∑ ∑

 ( ) ( )1

1 1

1
1

1

1 0 0

( ) ,
t

i
t t

i
l
t

r
i x y

i t

x l y nx

s f x y A z sρ

ρ
ρ

ρ
ρ χ− −

 
+ −

 

−
= ≤ ≤ ≤ ≤∈

= + +∑ ∑ ∑ ∑     

  ( ) ( )

1 1 1

1
1

1

1 0 0

( ) ,
t

i
t t i

i
l
t

m
i x y

i t

r x l y n ex

s f x y A z sρ

ρ
ρ

ρ
ρ

ρ χ− −
 

+ −
 

−
= + ≤ ≤ ≤ ≤ −∈

+∑ ∑ ∑ ∑               (6.8)  

Now let us consider the second term in equation (6.7) 
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( ) ( ),

1

, 1 0 0

,
t

t l t k

m
l k x y

l k t

k l x l e y n e

z s f x y B z s−
= ≤ ≤ − ≤ ≤ −

∑ ∑ ∑

 ( ) ( )
1

2 1
1

1 1

1 1

,

1

1 1 1
0 0

( ) ,
t

r r

t i l t i kp j
p j

rm m
l k x y

l k t

l k k r
x l e e y n e e

z s f x y B z s

− −

= =

−
= = = +

≤ ≤ + − ≤ ≤ + −

 
 
 = +
 
 ∑ ∑
 

∑ ∑ ∑ ∑ ∑

 ( ) ( )

1 1

1, 1,

,

1

1 1
0 0

,
t

r r

t i t ij j
j j j j

m r
l i x y

i t

l
x l e y n e

s f x y B z sρ

ρ

ρ ρ

ρ
− −

= ≠ = ≠

−
= =

≤ ≤ + ≤ ≤ +




= +
 ∑ ∑

∑ ∑ ∑ ∑    

   ( ) ( )

1 1

1 1

,

1

1
0 0

,
t

r r

t i i t i ij j
j j

m
l i x y

i t

r
x l e e y n e e

s f x y B z sρ

ρ

ρ ρ

ρ
− −

= =

−
= +

≤ ≤ + − ≤ ≤ + −




∑ ∑ 

∑ ∑ ∑ . 

( ) ( ) ( ) ( )

( )
( )1 1 1

11

, ,

1 1

1 1 0 0 1 0 1,

, ,
t t

i jt t t
nt

m r r r
l i l ix y x y

l i t i t

l x l y n x l j j
y

z s f x y B z s s f x y B z sρ ρ

ρ ρ
ρ ρ ρ

η− − −
+−

− −
= = ≤ ≤ ≤ ≤ = ≤ ≤ = ≠

∈


= + +


∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

( ) ( )

( )
( )

( ) ( )

( )1
11 1 11 1

, ,

1 1

1 0 1, 1 1,

, ,
t t

i ji ij jt
i j in jt l nt t

r r r r
l i l ix y x y

i t i t

y n j j j j xy y

s f x y B z s s f x y B z sρ ρ

ρ ρ
ρ ρ ρ ρ χχ η−

 +  − +  +    − −   

− −
= ≤ ≤ = ≠ = = ≠ ∈∈ ∈

− +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

 ( ) ( )

1 1

,

1

1 0 0

,
t

t i t i

m
l i x y

i t

r x l e y n e

s f x y B z sρ

ρ

ρ ρ
ρ − −

−
= + ≤ ≤ − ≤ ≤ −

∑ ∑ ∑ + 

( ) ( )

( )
( )1

11

,

1

1 0 1,

,
t

i jt
nt

m r
l i x y

i t

r x l j j
y

s f x y B z sρ

ρ
ρ ρ

η−
+−

−
= + ≤ ≤ = ≠

∈

+∑ ∑ ∑ ∑

( ) ( )

( )
( )1

11

,

1

1 0 1,

,
t

i jt
nt

m r
l i x y

i t

r y n j j
y

s f x y B z sρ

ρ
ρ ρ

χ−
+−

−
= + ≤ ≤ = ≠

∈

−∑ ∑ ∑ ∑

( ) ( )

( )
1 11 1

,

1

1 1,

,
t

i j i j
i j i jl nt t

m r
l i x y

i t

r j j x y

s f x y B z sρ

ρ

ρ ρ χ η   +  +    − −   

−
= + = ≠ ∈ ∈







∑ ∑ ∑ ∑    (6.9)  
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But, 

( ) ( ) ( ) ( )

1 1 1 1

1 1

1 0 0 1 0 0

, ,
t t

t i t i t t

m m
i ix y x y

i t i t

r x l e y n e r x l y n

s f x y B z s s f x y B z sρ ρ

ρ ρ

ρ ρ
ρ ρ− − − −

− −
= + ≤ ≤ − ≤ ≤ − = + ≤ ≤ ≤ ≤

= −∑ ∑ ∑ ∑ ∑ ∑

 

( ) ( )

( )
( )

( ) ( )

( )
( )1 1

1 1

1 1

1 0 1, 1 0 1,

, ,
t t

i ij jt t
n lt t

m r m r
i ix y x y

i t i t

r x l j j r y n j j
y y

s f x y B z s s f x y B z sρ ρ

ρ ρ
ρ ρ ρ ρ

η χ− −

− −

− −
= + ≤ ≤ = ≠ = + ≤ ≤ = ≠

∈ ∈

− +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

    ( ) ( )

( )

1 1

1

1 1,

,
t

i j i j
i j i jl nt t

m r
i x y

i t

r j j x y

s f x y B z sρ

ρ

ρ ρ χ η        − −   

−
= + = ≠ ∈ ∈

∑ ∑ ∑ ∑   (6.10) 

Now, it is worthwhile to note that ( ) ( ),

1 1 , 0
l k

t t l tf l e y B− − + = , and split the 

summation based on l   into two regions as above for the case of  k . 

Multiplying (6.7) by '1  and substituting (6.8), (6.9) and (6.10), 

,  1,  1,2,...k ks z k m= = , we have the theorem. 

Hence in both the cases theorem holds. 

From the theorem, when the transition probability matrices are independent of ( ),x y , 

we have  

( ) ( ) ( ) ( )
0

1 11

, , 1 '
n m m

k k

n k t k k t

k kt

z s z s s A s z Bφ φ
= ==

 
= + 

 
∑ ∑∏ , 

where ( ) ( )
0 0

0 0

0 0

, , x y

x l y n

z s f x y z sφ
≤ ≤ ≤ ≤

= ∑ ∑ . 

Corollary 6.1: Han and Aki (1999) derived the distribution of runs in the multi state 

trial. The same formula can be obtained by putting 1,   1, 2,...,ks k m= =   and let 

( )

1

m
k

t t

k

A A
=

=∑ . 
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Corollary 6.2: Now put 1,   1,2,...,kz k m= =  we will get the generating function 

corresponding to the multinomial distribution. In such cases the matrices ( ),
0,   

l k
B =

for every  , 1, 2,...k l m= . Then the generating function becomes 

( ) ( ) ( )
0

11

1, 1, 1 '
n m

k

n k t

kt

s s s Aφ φ
==

 
=  

 
∑∏ .  

Now we will consider the case when the transition rates are homogeneous. 

Throughout this paper we will use the following notations. 

( ) ( ) ( ),

1

1 1

,
m m

k l k

k l

k l

D z s s A z B
= =

  
= +  

  
∑ ∑  , ( ) ( ),

1 1

m m
k l k

k l

D A B
= =

 
= + 

 
∑ ∑ , ( ) ( ), ,

1

m
j l j

l

B B
•

=

=∑  and 

( ) ( ), ,

1

m
i i j

j

B B
•

=

=∑ .  

Now it will be interesting to find how the number of occurrence of each event 

and the number of runs are related. Let us define ( ) ( ) ( ) ( )( )
1

i j

i j n

n nX Y
n

Q w E X Y w
∞

=

=∑ . 

Theorem 6.3: If ( ) ( ) ( ),
k k

tA x y A=   , ( ) ( ) ( ), ,
,

l k l k

tB x y B=  and 0 00, 0n l= =  , we have  

( ) ( )( ) ( ) ( ) ( ) ( )( )
1

, ,1 1

0

1 1

1,1 1 '
n r

i j i j jp r p

n n

r p

E X Y D B D A Bφ
−

• •− − −

= =


= + +


∑ ∑  

    
( ) ( )( ) ( ) ( ) ( ), , 1 ,1 1

1

1' 1 '
n r

j j i r i jr q

q

D A B D B D B
−

• • −− −

=


+ + 


∑ . 

( ) ( )( ) ( )
( )[ ]

( )
( ) [ ] ( ) ( )( ){

( ) ( )( )[ ] ( ) }

1

1, ,0

,

1, ,2

1,1

1

                                              1 '

i i

i i i

X Y

i i i

I wD
Q w B I wD A B

w

w A B I wD B wI

φ
−

−• •

−• •

−
= − + +

−

+ − +

. 
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Proof:  

We have 

 ( ) ( )( ) ( )2 ,
1, 1

i j n

n n

i j

z s
E X Y z s

z s

φ∂
= = =

∂ ∂

( )
( ) ( ) ( ) ( ) ( )( ) ( )

2

,0 1

1 0 1 1

1

,
, 1' , , , 1 '

n
j jn r n r

j

ri j i

z s
D z s z s D z s A z B D z s

z s z

φ
φ •− −

=

∂ ∂
= + + +

∂ ∂ ∂
∑

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1

, ,1 1 1

0 1 1 0 1 1

1 1 1 1

, , , , , ,
n n r m

i i kr n r p r p

i k

r r p kj

z s D z s s B D z s z s D z s s B D z s
s

φ φ
−

•− − − − −

= = = =

∂
+

∂
∑ ∑∑ ∑

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,1 1

1 0 1 1

1 1 1 1

, 1 ' , , ,
m n m n r

j l j j l jn r r q

l l

l r l q

A z B D z s z s D z s A z B D z sφ
−

− − −

= = = =

   
+ + +   

   
∑ ∑ ∑ ∑

 
( )( ) ( ) ( ) ( ) ( ) ( ), ,1

0 1 1

1

, 1 ' , , , 1 ' 1, 1
m

i k i jn r q r n r

k

k

s B D z s z s D z s B D z s z sφ− − − −

=


+ = =


∑  

Now when 0 00,   0n l= = , derivatives of ( )0 ,z sφ  vanishes to zero. 

Hence  

( ) ( )( ) ( ) ( ) ( ) ( )( )
1

, ,1 1

0

1 1

1,1 1 '
n r

i j i j jp r p

n n

r p

E X Y D B D A Bφ
−

• •− − −

= =


= + +


∑ ∑    

     

 
( ) ( )( ) ( ) ( ), , ,1 1 1

1

1' 1 '
n r

j j i i jr q r

q

D A B D B D B
−

• •− − −

=


+ + 


∑    (6.11) 

Now consider ( ) ( ) ( ) ( )( )
1

i j

i j n

n nX Y
n

Q w E X Y w
∞

=

=∑     

 (6.12) 

But 

( ) ( ) ( )( ) ( ) ( ) ( )( )
1

. , , ,1 1 1 1

1 1 1 1 1

1 ' 1 '
n r

i j j i j jp r p n p r p n

n r p p r p n r

D B D A B w D B D A B w
∞ − ∞ ∞ ∞

• • • •− − − − − −

= = = = = + =

+ = +∑∑∑ ∑ ∑ ∑
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   ( ) ( ) ( )( )
( )

, ,1 1

1 1

1 '
1

r
i j jp r p

p r p

w
D B D A B

w

∞ ∞
• •− − −

= = +

= +
−

∑ ∑  

        
[ ] ( ) [ ] ( ) ( )( )

( )

1 1, ,
1 '

1

i j j
I wD B I wD A B

w

− −• •
− − +

=
−

  (6.13) 

and 

( ) ( )( ) ( ) ( ) ( )( ) ( ), , , ,1 1 1 1

1 1 1 1 1 1

1 ' 1 '
n n r n r

j j i j j ir q n r q n

n r q r q q

D A B D B w D A B D w B
∞ − ∞ ∞ −

• • • •− − − −

= = = = = =

+ = +∑∑∑ ∑∑∑  

     
[ ] ( ) ( )( )[ ] ( )

( )

1 1, ,2 1 '

1

j j i
w I wD A B I wD B

w

− −• •
− + −

=
−

 (6.14) 

Using equations (6.11), (6.13), (6.14) in (6.12), we have the result.  

Remark 6.1: By changing the order of differentiation, we have a different looking but 

the same results. 

( ) ( )( ) ( ) ( ) ( )( ) ( )
1

, ,1 1

0

1 1

1,1 1 '
n r

i j j j ip r p

n n

r p

E X Y D A B D Bφ
−

• •− − −

= =


= + +


∑ ∑  

   
( ) ( ) ( )( ) ( ) ( ), , 1 ,1 1

1

1 ' 1 '
n r

i j j r i jr q

q

D B D A B D B
−

• • −− −

=


+ + 


∑ , 

( ) ( )( ) ( )
( )[ ]

( )
( ) ( )( )[ ] ( ){

1

1, ,0

,

1,1

1
i i

i i i

X Y

I wD
Q w A B I wD B

w

φ
−

−• •−
= + − +

−
   

     
( ) [ ] ( ) ( )( ) }1, ,2

1 '
i i i

w B I wD A B wI
−• •

− + + . 
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Theorem 6.4 : If ( ) ( ) ( ),
k k

tA x y A=  , ( ) ( ) ( ), ,
,

l k l k

tB x y B=  and when 0 0n = , we have  

( )( ) ( ) ( ) ( )( ),1

0

1

1,1 1 '
n

j j jr

n

r

E Y D A Bφ •−

=

= +∑ , 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
1

, ,1 1

0

1 1

1,1 1 '
n r

i j i i j jp r q

n n

r p

E Y Y D A B D A Bφ
−

• •− − −

= =


= + + +


∑ ∑  

     
( ) ( )( ) ( ) ( )( ), ,1 1

1

1 '
n r

j j i ir q

q

D A B D A B
−

• •− −

=


+ + 


∑  

Also 

 ( ) ( ) ( )[ ] ( ) ( )( )1 ,

0 1,1 1 '
1

i

i j

Y

w
Q w I wD A B

w
φ

− •
= − +

−
 

( ) ( ) ( ) ( )[ ] ( ) ( )( )[ ] ( ) ( )( ){1 1, ,

0 1,1
1

i j

i i j j

Y Y

w
Q w I wD A B I wD A B

w
φ

− −• •
= − + − + +

−

     
( ) ( )( )[ ] ( ) ( )( )}1, ,

1 '
j j i i

A B I wD A B
−• •

+ − +  

Proof :   

We have, ( )( ) ( )1, 1
j

n n

j

E Y s s
s

φ
∂

= =
∂

    

( ) ( ) ( )( ),

0

1

1, 1 ' 1

n
m

k k

k

kj

s s A B s
s

φ •

=

 ∂  
= + =  ∂    

∑  

( ) ( ) ( )( ) ( ) ( ) ( )( )
1

, ,

0 0

1 1 1

1, 1 ' 1,

n r
m n m

k k k k

k k

k r kj

s s A B s s A B
s

φ φ

−

• •

= = =

∂    
= + + +   ∂    

∑ ∑ ∑  

    
( ) ( )( ) ( ) ( )( ), ,

1

1 ' 1

n r
m

j j k k

k

k

A B s A B s

−

• •

=

 
+ + = 

  
∑  
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But when 0 0n = , ( )0
1, 0

j

s
s

φ
∂

=
∂

 

Hence ( )( ) ( ) ( ) ( )( ),1

0

1

1,1 1 '
n

j j jr

n

r

E Y D A Bφ •−

=

= +∑ . 

( ) ( )( ) ( ) ( ) ( )( )
2

,

1

1, 1 ' 1

n
m

i j k k

n n o k

ki j

E Y Y s s A B s
s s

φ •

=

 ∂  
= + =  ∂ ∂    

∑

( ) ( )
( )

( ) ( ) ( )( ) ( )
2

,0 1

0 1 1 1

1

1,
1, 1, 1 ' 1, 1, 1 '

n
i in r n r

ri j j

s
s D s D s A B D s

s s s

φ
φ •− −

=

∂∂
= + + +  ∂ ∂ ∂

∑  

( )
( ) ( ) ( )( ) ( ) ( ) ( )

1
,0 1 1

1 1 0 1

1 1 1

1,
1, 1, 1 ' 1, 1,

n n r
j jr n r p

r r pi

s
D s A B D s s D s

s

φ
φ

−
•− − −

= = =

∂
+ + 

∂ 
∑ ∑ ∑

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , ,1 1

1 1 11, 1, 1,
i i j j j jr p n r rA B D s A B D s D s A B

• • •− − − −+ + + +  

( ) ( ) ( )( ) ( ),1 1

1 1

1

1, 1, 1 ' 1
n r

j jq q

q

D s A B D s s
−

•− −

=


+ =


∑ . 

Under the assumption 0 0n = , ( )0
1, 0

j

s
s

φ
∂

=
∂

 hence ( )
2

0 1, 0
j i

s
s s

φ
∂

=
∂ ∂

 

Hence  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
1

, ,1 1

0

1 1

1,1 1 '
n r

i j i i j jp r p

n n

r p

E Y Y D A B D A Bφ
−

• •− − −

= =


= + + +


∑ ∑  

    
( ) ( )( ) ( ) ( )( ), ,1 1

1

1 '
n r

j j i ir q

q

D A B D A B
−

• •− −

=


+ + 


∑ . 

Proceeding analogues to the second part of the theorem 6.3 we can prove the 

remaining results.  

Hence we have the theorem. 



 

85 

 

Remark 6.2: By taking 1,   1, 2,...,ks k m= =  and proceeding as in the above theorem 

we will obtain the distributional properties of joint distribution of runs as derived by 

Han and Aki (1999). 

Theorem 6.5: If ( ) ( ) ( ),
k k

tA x y A=  and ( ) ( ) ( ), ,
,

i j x y

tB x y B= , , , 1, 2,...,i j k m=  for all 

( ),x y  and 0t ≥ , then ( ) ( ) ( ) ( )

1

,

0

1 1 1

, ; , 1 '
m m m

k i j

k i j

k i j

z s w z s I s A s z B wφ φ

−

= = =

   
= − −  

   
∑ ∑∑  

Proof: Under the conditions of the theorem, 

( ) ( ) ( ) ( ),

0

1 1 1

, , 1 '

n
m m m

k i j

n k i j

k i j

z s z s s A s z Bφ φ
= = =

 
= − 

 
∑ ∑∑  

Hence  

( ) ( ) ( ) ( ),

0

1 1 1 1

, ; , 1 '

n
m m m

k i j n

k i j

n k i j

z s w z s s A s z B wφ φ
∞

= = = =

   
= −  

   
∑ ∑ ∑∑  

( ) ( ) ( ),

0

1 1 1 1

, 1 '

n
m m m

k i j n

k i j

n k i j

z s s A s z B wφ
∞

= = = =

   
= −  

   
∑ ∑ ∑∑  

( ) ( ) ( )

1

,

0

1 1 1

, 1 '
m m m

k i j

k i j

k i j

z s I s A s z B wφ

−

= = =

   
= − −  

   
∑ ∑∑  

Hence the theorem. 

6.4 Distributions Associated with Waiting Times 

Let ( ) ( ) ( ) ( )( )1 1 2
, , ,...,

m

rT r r r r=  denote the sooner waiting times associated with 

the runs i.e. 
( )1

rT  denote the number of trials required for the occurrence of thi run 
( )i

r  
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times for any 1, 2,...,i m= . Also let ( ) ( ) ( ) ( )( )2 1 2
,  , ,...,

m

rT r r r r=  denote the later waiting 

times associated with the runs i.e., the minimum number of trials required for the 

occurrence of th
i  run at least ( )

  1, 2,...,
i

r i m∀ =  times and let 

( ) ( ) ( ) ( )( )3 1 2
,  , ,...,

m

rT r r r r=  denote the waiting time till the occurrence of each run 

exactly ( )
, 1, 2,...,

i
r i m=  times. Now let   

( ) ( ) ( )( ), , , 0 1, 2,3
i i

r r nh n y P T n Y y y i= = = ≥ = . 

Theorem 6.6: The joint probability mass function ( )
( )( ), ,  1, 2,3i
r

i

r T
T Y i =  can be 

expressed as  

i. 
( ) ( ) ( ) ( ) ( )1 , '

1

, 1 1

, , ,
i i

m
i j

r k n i j k

i j kx

h n y x y f x e y e e
β

µ −
= =∈Ψ

= − −∑ ∑ ∑  

ii. 
( ) ( ) ( ) ( ) ( )2 , '

1

, 1 1

, , ,
i i

m
i j

r k n i j k

i j kx

h n y x y f x e y e e
β

µ −
= =∈ϒ

= − −∑ ∑∑ . 

iii. ( ) ( ) ( ) ( ) ( )3 , '

1

, 1 1

, , ,
m

i j

r k n i j k

i j k

h n y r y f r e y e e
β

µ −
= =

= − −∑∑ . 

where , ( ) ( ) ( ){ }: , ,
j j ii i

x x r j i x rΨ = < ≠ = ,  ( ) ( ) ( ){ }: , ,
j j ii i

x x r x r j iϒ = > = ≠  and  

( ) ( ) ( ) ( ), ,
, , 1'

i j i j

k k n i j
x y e B x e y eµ = − − . 

Proof :   

To prove (i), we have  

 ( ) ( ) ( )( )1 1
, ,r r nh n y P T n Y y= = =  
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Let us assume that the runs attain the value r  for the first time with the occurrence of 

thi  type outcome. Also let 
( )1

,r iT  denotes the waiting time for such an outcome to occur. 

Then  

( ) ( ) ( )( )1 1

,

1

, ,
m

r r i n

i

h n y P T n Y y
=

= = =∑ . 

Let ( ) ( ) ( ) ( )( )1 2
, ,..., ,..., ,  1, 2,...,

i mix x x r x i m= =  denote the outcome that attains the 

number of occurrence of runs equal to r  only at thi  position i.e.,  

( ) ( ) ( ) ( )
,    

j j i i
x r x r and j i≠ = ≠ . Then  

( ) ( ) ( )1

1

1

, , ,
i i

m
i i

r n n i n

i x

h n y P X x X x e Y y−
= ∈Ψ

= = = − =∑ ∑  

 ( )1 1

1 1

, , ,
i i

m m
i i

n n i n n j

i jx

P X x X x e Y y Y y e− −
= =∈Ψ

= = = − = = −∑ ∑ ∑  

Also let ,i

n n
J X x Y y = = =  , 

 ( ), 1 1 1 , ,

1

,
i j

i

i j n i n j n x e y e k

k

J X x e Y y e C
β

α− − − − −

=

 = = − = − = ∈  ∪ , 

( ) ( ) ( ) ( ) ( ), ,

, , , 1' ,
i j i j

i j k k n i j kP J J e B x e y e x yµ= − − =  and  

( ) ( ) '

, , 1 ,
i j k n i j k

P J f x e y e e−= − −  

Then 
( ) ( ) ( )1

, ,

1 1

,
i i

m m

r i j n

i jx

h n y P J J
= =∈Ψ

=∑ ∑ ∑ ∩  

  
( ) ( ) ( ), '

1

, 1 1

, ,
i i

m
i j

k n i j k

i j kx

x y f x e y e e
β

µ −
= =∈Ψ

= − −∑ ∑ ∑  

Thus we get (i). 
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Proceeding as in (i) we can easily prove (ii) and (iii). 

Now let us consider the double generating functions corresponding to the above 

waiting time distributions. Let us denote  

( ) ( ) ( ) ( )
1 0 0

, ; ,      1,3
n

i i n y r

r

r n y

H z s w h n y z s w i
∞ ∞

= = =

= =∑∑∑  

Theorem 6.7: If ( ) ( ) ( ),
k k

tA x y A=  and ( ) ( ) ( ), ,
,

i j i j

tB x y B= , , , 1, 2,...,i j k m=  for all 

( ),x y . Then the following results hold 

(i) ( ) ( ) ( )
( )

( )
( ){ }

,
11 '

0 1

, 1 1

1,

, ; , ,

1

i jm
i j

km
i j k

l

l l i

w s
H z s w zw w s I D w s z e

w

βµ
φ

−

= =

= ≠

= −  
−

∑ ∑
∏

 

(ii) 
( ) ( ) ( ) ( ) ( ){ }13 , '

0 1

, 1 1

, ; , ,
m

i j

i j k

i j k

H z s w z w s w s I D w s z e
β

φ µ
−

= =

= −  ∑ ∑  where ( )1
,D w s  is 

defined as above. 

Proof:  

(i) Under the conditions of the theorem we have ( ) ( ) ( ), ,
,

i j i j

k i j
x e y eµ µ− − = . 

( ) ( ) ( ) ( )1 1

1 0 0

, ; ,
n

n y r

r

r n y

H z s w h n y z s w
∞ ∞

= = =

=∑∑∑  

 ( ) ( ) ( ), '

1

1 0 0 , 1 1

, ,
i i

n m
i j n y r

k i j n i j k

r n y i j kx

x e y e f x e y e e z s w
β

µ
∞ ∞

−
= = = = =∈Ψ

= − − − −∑∑∑∑ ∑ ∑  

 
( ) ( ), '

1

, 1 1 0 0 1

,
i i

m n
i j n y r

k n i j k

i j k n y r x

f x e y e e z s w
β

µ
∞ ∞

−
= = = = = ∈Ψ

= − −∑∑ ∑∑∑ ∑  
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 ( ) ( )

( )

, 1 '

, 1 1 0

1,

,

1

m
i j n n

k i j km
i j k n

l

l l i

w s
w s z e

w

β φ
µ

∞
−

= = =

= ≠

=

−
∑∑ ∑

∏
. 

But ( ) ( ) ( ) ( ) ( ),

0 0 1

1 1

, , , ( , )

n
m m

k j k n

n k j

k j

z s z s s A z B z s D z sφ φ φ
= =

  
= + =  

   
∑ ∑  

( ) ( ) ( ) ( ) ( )

( )

1

1 , 0 1 '

, 1 1 0

1,

, ,
, ;

1

nm
i j n

i j km
i j k n

l

l l i

w s D s z
H z s w w s z e

w

β φ
µ

−∞

= = =

= ≠

=

−
∑ ∑∑

∏
 

Thus we get,  

( ) ( ) ( )
( )

( )
( ){ }

,
11 '

0 1

, 1 1

1,

, ; , , 1'

1

i jm
i j

km
i j k

l

l l i

w s
H z s w z w s I D s z z e

w

βµ
φ

−

= =

= ≠

= −  
−

∑ ∑
∏

 

 (ii) can be proved similarly. 

Now it is interesting to find the waiting time for the occurrence of specified 

number of particular outcome. Let ( ) ( ) ( ) ( )( )1 1 2
,  , ,...,

m

pV p p p p=  denote the sooner 

waiting times associated with the occurrence of outcomes that is ( )1

pV  denote the 

number of trials required for the occurrence of any of the outcome ( )
, 1, 2,...,

i
p i m=  

times. Also let ( ) ( ) ( ) ( )( )2 1 2
, , ,...,

m

pV p p p p=  denote the later waiting times associated 

with the occurrence of outcomes i.e., the minimum number of trials required for the 

occurrence of each outcome at least ( )
, 1, 2,...,

i
p i m=  times and let 

( ) ( ) ( ) ( )( )3 1 2
, , ,...,

m

pV p p p p=  denote the waiting time till the occurrence of each 

outcome exactly ( )
, 1, 2,...,

i
p i m=  times. Now let 

 ( ) ( ) ( )
( )( ), , , 0 1, 2,3i

p

i i

p pV
g x n P X x V n x i= = = ≥ =  
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Theorem 6.8: The joint probability mass function ( )
( )( ), , 1,2,3i

p

i

pV
X V i =  can be 

expressed as  

1. 
( ) ( ) ( ) ( )1 ( , ) '

1

, 1 1

, , ,
i i

m
j i

p k n j i k

i j kx

g x n x y f x e y e e
β

π −
= =∈Ω

= − −∑ ∑ ∑ . 

2. 
( ) ( ) ( ) ( )2 ( , ) '

1

, 1 1

, , ,
i i

m
j i

p k n i j k

i j kx

g x n x y f x e y e e
β

π −
= =∈Θ

= − −∑ ∑∑ . 

3. 
( ) ( ) ( ) ( )3 ( , ) '

1

, 1 1

, , ,
m

j i

p k n i j k

i j k

g x n x y f x e y e e
β

π −
= =

= − −∑∑ . 

where ( ) ( ) ( ) ( ){ }, ,
: , ,

i j j i i ii y y p j i y pΩ = < ≠ = ,  

( ) ( ) ( ) ( ){ }, ,
: , ,

i j j i i ii y y p j i y pΘ = ≥ ≠ =  and  

( ) ( ) ( ) ( ) ( ) ( ), ,
, , 1' , 1'

j i j i i

k k n j i k n i
x y e B x e y e e A x y eπ = − − + − . 

Proof : 

 (i) We have 
( ) ( ) ( )

( )( )1

1 1
, ,

p
p pV

g x n P X x V n= = =  

Let us assume that the occurrence of thi  outcome attains the value p   for the 

first time i.e., the number of occurrence of thj  type outcome is less than ( )
   

j
p j i∀ ≠ . 

Also let ( )1

,p iV   denotes the waiting time for such an outcome to occur. Then  

( ) ( ) ( )( )1 1

,

1

, ,
m

p n p i

i

g x n P X x V n
=

= = =∑ . 

Let ( ) ( ) ( ) ( )( )1 2
, ,..., ,..., , 1, 2,...,

i mi
y y y p y i m= =  denote the outcome that attains 

the value equal to p  only at th
i  position that is,  
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 ( ) ( ) ( ) ( ), ,
,       y

i j j i i i
y p j i and p≠ ≠ = .  

Then  

( ) ( ) ( )1

1

1

, , ,
i i

m
i i

p n n i n

i y

g x n P X x Y y e Y y−
= ∈Ω

= = = − =∑ ∑  

 ( )1 1

1 1

, , ,
i i

m m
i i

n n j n n i

i jy

P X x X x e Y y Y y e− −
= =∈Ω


= = = − = = − +


∑ ∑ ∑   

    ( )}1 1, , ,i i

n n n n iP X x X x Y y Y y e− −= = = = −  

Let ,
i

n n
K X x Y y = = =  , 

( ), 1 1 1 , ,

1

,
j i

i

j i n j n i n x e y e k

k

K X x e Y y e C
β

α− − − − −

=

 = = − = − = ∈  ∪ , 

, , 1 , , , 0,1,...
j ij i k n x e y e kK C j mα − − −

 = ∈ =    with 0 0e =  

Also ( )
( ) ( )

( ) ( )

,

, ,

, 1 ',  1, 2,...

, 1 ' 0

j i

k n j i

j i k
i

k n i

e B x e y e j m
P K K

e A x y e j

 − − =
= 

− =

     and   

( ) ( ) '

, , 1 ,
j i k n j i k

P K f x e y e e−= − −

( ) ( ) ( ) ( )1

, , 0, ,

1 1 1

,
i i

m m

p j i k i k

i j kx

g n y P K K P K K
β

= = =∈Ψ

 
= + 

 
∑ ∑ ∑∑ ∩ ∩  

( ) ( ) ( ) ( ) ( ), '

1

1 1 1

, 1 ' , 1 ' ,
i i

m m
j i i

k n j i k n i n i j k

i k jx

e B x e y e e A x y e f x e y e e
β

−
= = =∈Ψ

 
= − − + − − − 

 
∑ ∑ ∑ ∑ . Let 

us denote ( ) ( ) ( ) ( ) ( ),( , ) , , 1 ' , 1 '
j i ij i

k k n j i k n i
x y e B x e y e e A x y eπ = − − + −  then the above 

equation reduces to 
( ) ( ) ( ) ( )1 ( , ) '

1

, 1 1

, , ,
i i

m
j i

p k n j i k

i j kx

g x n x y f x e y e e
β

π −
= =∈Ω

= − −∑ ∑ ∑ . 

Similarly we can prove the other two cases. 
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Now we define the double generating function corresponding to the above 

variables as  

 
( ) ( ) ( ) ( )

1 0 0

, ; ,       1,3
i i n x p

p

p n x

G z s w g x n z s w i
∞ ∞ ∞

= = =

= =∑∑∑  

Theorem 6.9: If ( ) ( ) ( ),
k k

tA x y A=   and ( ) ( ) ( ), ,
,

i j i j

tB x y B= , , , 1, 2,...,i j k m=   for all 

( ),x y . Then the following results hold 

(i) ( ) ( ) ( )
( )

( )

( ) ( )

1,

1 , '

0

, 1 1 1 1 1

1,

, ; ,

1

i jm m m m
i j k i j

k i j km
i j k k i j

l

l l i

w s
G z s w z w s I s A s z B z e

w

βµ
φ

−

= = = = =

= ≠

    
= − −   

    −  
∑ ∑ ∑ ∑∑

∏
 

(ii) 
( ) ( ) ( ) ( ) ( ) ( )

1

3 , , '

0

, 1 1 1 1 1

, ; ,
m m m m

i j k i j

i j k i j k

i j k k i j

G z s w z w s w s I s A s z B z e
β

φ µ

−

= = = = =

    
= − −   

     
∑ ∑ ∑ ∑∑  

Proof : 

(i) Under the conditions of the theorem we have ( ) ( ) ( ), ,
,

i j i j

k i j k
x e y eµ µ− − =  

( ) ( ) ( ) ( )1 1

1 0 0

, ; , n x p

p

p n x

G z s w g x n z s w
∞ ∞ ∞

= = =

=∑∑∑  

( ) ( ) ( ) ( ), '

1 1

1 0 0 1 1 1

1 ' , 1 ' ,
i i

n m m
j i i n x p

k n j i k n i k

p n x i k jx

e B f x e y e e A f x y e e z s w
β∞ ∞

− −
= = = = = =∈Ψ

 
= − − + − 

 
∑∑∑∑ ∑ ∑ ∑

 ( ) ( ), '

1

, 1 0 0 1

,
i i

m n
i j n y r

n i j k

i j n y r x

f x e y e e z s wµ
∞ ∞

−
= = = = ∈Ψ

= − −∑ ∑∑∑ ∑  

 ( ) ( )

( )

, 1 '

, 1 1 0

1,

,

1

m
i j n n

k i j km
i j k n

l

l l i

w s
w s z e

w

β φ
µ

∞
−

= = =

= ≠

=

−
∑∑ ∑

∏
. 
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But  ( ) ( ) ( ) ( ) ( ) ( ),

0 0 1

1 1 1

, , , ,

n
m m m

k i j n

n k i j

k i j

z s z s s A s z B z s D z sφ φ φ
= = =

 
= + = 

 
∑ ∑∑ . 

( ) ( ) ( ) ( ) ( )

( )

1

1 , 0 1 '

, 1 1 0

1,

, ,
, ;

1

nm
i j n

i j km
i j k n

l

l l i

w s D z s
G z s w w s z e

w

β φ
µ

−∞

= = =

= ≠

=

−
∑ ∑∑

∏
 

 ( )
( )

( )

( ) ( )

1,

, '

0

, 1 1 1 1 1

1,

, 1 '

1

i jm m m m
i j k i j

k i j km
i j k k i j

l

l l i

w s
z w s I s A s z B z e

w

βµ
φ

−

= = = = =

= ≠

    
= − −   

    −  
∑ ∑ ∑ ∑∑

∏
 

Proceeding on the same line as (i) we can prove (ii). 

6.5 Illustrations 

Here, as an illustration to the above mentioned method, we obtain the 

transition matrices for the distribution of runs and occurrence of each outcome under 

various ways of counting. Commonly used counting schemes of runs and the 

corresponding random variables with respect to usual Bernoulli trials are as follows. 

• 
, ,n k

X µ  denote the number of  µ  overlapping success runs of length k  in n 

Markov dependent Bernoulli trials(Aki and Hirano 2000). 

• 
,n k

G  denote the number of success runs of length greater than or equal to k in  

n  Markov dependent Bernoulli trials. 

• 
,n k

E  denote  the number of success runs of length exactly equal to k  in  n 

Markov dependent Bernoulli trials (Mood,1940). 

6.4.1 Joint distribution of 
( ) ( ) ( )( )1 2

, ,...,
mµ µ µ µ=  overlapping runs of length 

1 2( , ,..., )mk k k k=  (Aki and Hirano Sense) and the number of occurrence of each 

outcome. 

Let ( )
, ,

i

n kX µ  denote the number of iµ overlapping th
i  type run of length ik  and 

( )i
nY  

be the number of occurrence of the th
i  type  outcome in n Markov dependent 



 

94 

 

multistate trials. Clearly the upper end points of ( )
, ,

i

n kX µ  is given by 

( ) ( ) ( )/
i

n i i i
l n kµ µ= − −    and the random vector 

, ,n k
X µ  can be treated as a Markov chain 

Embeddable Variable under the below transformations. Let { }, 0t tα ≥ is Markov chain 

defined on the state space Ω . 

Now we partition the state space Ω  i.e., ,

, 0
n n

n n

x y

x y

C
≥

Ω = ∪ where 

( )
1

, ; , : 0 1
n

m

x n n i i i

i

C x y u i u k
=

 
= ≤ ≤ − 
 
∪      0

n
x ≥  

where ( ) ( ) ( ){ }1 2
, ,...

m

n n n nx x x x=  denote the realizations 
, ,n k

X µ  and 

( ) ( ) ( ){ }1 2
, ,...,

n n n

m

ny y y y=  be a realization of the vector
nY . Let b  denote number of 

trailing identical symbols in the observed sequence and ( )mod  
i i i

u b k i Wµ= − ∀ ∈  . 

Now the within state transition probabilities are given by  

( )1 , ; 1, , ; ,|    0 1  , ,
j j jt x y e u j t x y u j jj j i

P C C p u k i j Wα α+ + +∈ ∈ = ≤ ≤ − ∈  

( )1 , ;1, , ; ,|    0 1, , ,
i jt x y e i t x y u j ji j j

P C C p u k i j i j Wα α+ +∈ ∈ = ≤ ≤ − ≠ ∈  

And the between state transition probabilities are given by 

( ), ; , , ; 1,|    
i i i it x e y e l i t x y k i ii

P C C p i Wα α+ + −∈ ∈ = ∈   

where 
ie  denotes a m  dimensional row vector thi   with element unity and all other 

elements as zeros. 

( )k

tA  is a matrix whose thk  column is given by  

( ) ( ) ( ) ( ) ( ) ( )( )1, 2, 1, 1, ,, ,..., , , ,...,
k k k k k k k m k

t t t t t tν ν ν θ ν ν− +  
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where ( )

( )
( )

( )
( )

0, 0 ( ) 0 . 0

1, 0 0 ( ) . 0

. . . . . .

2, 0 0 0 . ( )

1, 0 0 0 . 0
i i

ii

ii

i

i ii

i k k

i p t

i p t

t

k i p t

k i

θ

×

 
 
 
 =
 

−  
 −  

 

and  

( )

( )
( )

( )

0 0 . 0

0 0 . 0

. . . . .   

. . . . .

0 0 . 0
i j

ij

ij

ij

ij k k

p t

p t

t i j

p t

ν

×

 
 
 
 = ∀ ≠
 
 
 
 

 ,i j W∈  

The between state transition probability matrices 
( ) ( ) ( ), ,i i i i

t tB x B=   will be a 

1 1

m m

i i

i i

k k
= =

×∑ ∑  have all their entries zero except at 
1

1 1

, 1
i i

j j i

j j

k k µ
−

= =

 
+ + 

 
∑ ∑  where we have 

( )ii
p t . 

Remark 6.3 :  
,n k

N  denote the number of non-overlapping (Feller’s counting) success 

runs of length equal to k in n Markov dependent Bernoulli trials. 
,n k

M  denote the 

number of overlapping (Ling’s counting) success runs of length equal to k in n 

Markov dependent Bernoulli trials. It can be seen that both these counting comes as 

special cases of the above discussed counting scheme. 
( ) ( ) ( )( )1 2

, ,...,
mµ µ µ µ=  

overlapping runs of length 
1 2( , ,..., )mk k k k=  reduces to the non-overlapping counting 

scheme if ( )
0    1, 2,...,

i
i mµ = ∀ =  and it reduces to overlapping counting scheme if 

( )
1   1,2,...,

i

ik i mµ = − ∀ = . We can easily obtain the transition probability matrices 

corresponding these cases by making respective substitution for ( )    1, 2,...,
i

i mµ ∀ =  in 

the above transition matrices discussed for Aki and Hirano counting Scheme. 
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6.4.2 Joint Distribution of number of runs of length at least 1 2( , ,..., )mk k k k=  and the 

number of occurrence of each outcome 

 Let 
( ) ( )
, ,
i i

n k nG Y  denote the number of th
i  type runs of length ik  and occurrence of 

th
i  outcome respectively for 1, 2,...,i m=  in n  trials The upper bounds for the number 

of runs of length at least ik  is given by ( ) ( ) ( ), 1 / 1
i

n k i
l n k=  + +    , 1, 2,...,i m= . Now 

proceeding exactly as in the above two cases we will define a new Markov chain 

whose state space Ω  is given by 
,

, 0
n n

n n

x y

x y

C
≥

Ω = ∪   where 

( ),
{ , ; , :1 }

n nx y n n i i i

i W

C x y u i u k
∈

= ≤ ≤∪   , 0x y ≥  

and 
( ) ( ) ( ){ }1 2

, ...
m

n n n nx x x x=  denote the realizations of  

( ) ( ) ( )( )1 2

, , , ,, ,...,
m

n k n k n k n k
G G G G= and 

( ) ( ) ( ){ }1 2
, ,...,

n n n

m

ny y y y=  be a realization of the vector

( ) ( ) ( )( )1 2
, ,...,

m

n n n nY Y Y Y= .  

     1,

      ,   

i

i

i i

m if m k i W
u

k if m k i W

≤ − ∈
= 

≥ ∈
 

Now the within state transition probabilities are given by  

( ) ( )1 , ; 1, , ; ,|        0 1,   
i i it x y e u i t x y u i ii i i

P C C p t if u k i Wα α+ + +∈ ∈ = ≤ ≤ − ∈  

( ) ( )1 , ;1, , ; ,|     0 1,   ,
j it x y e j t x y u j ij i i

P C C p t if u k i j Wα α+ +∈ ∈ = ≤ ≤ − ∈  

( ) ( )1 , ; , , ; ,| ,   
j j jt x y e k j t x y k j jj

P C C p t j Wα α+ +∈ ∈ = ∈  

Also the between state transition probabilities are given by 

 ( ) ( )1 , ;1, , ; ,| ,   ,   ,
i jt x e y e j t x y k i ij

P C C p t i j i j Wα α+ + +∈ ∈ = ≠ ∈  
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( )k

tA  is a matrix whose th
k  column is given by  

( ) ( ) ( ) ( ) ( ) ( )( )1, 2, 1, 1, ,, ,..., , , ,...,
k k k k k k k m k

t t t t t tν ν ν θ ν ν− +  

where ( )

( )
( )

( )
( )

1 1

0, 0 ( ) 0 . 0

1, 0 0 ( ) . 0

. . . . . .

1, 0 0 0 . ( )

, 0 0 0 . ( )
i i

ii

ii

i

i ii

i ii k k

i p t

i p t

t

k i p t

k i p t

θ

+ × +

 
 
 
 =
 

−  
  

 

  ( )
( )

1 1

0 ( ) 0 . 0

0 0 . 0

. . . . .

. . . . .

0 0 0 . 0
i j

ii

ij

ij

k k

p t

p t

t i jν

+ × +

 
 
 
 = ∀ ≠
 
 
  

 ,i j W∈  

The between state transition probability matrices 
( ) ( ) ( ), ,i i i i

t tB x B=   have all 

their entries zero except at ( ) ( )
1 1

1 , 2 , 0,1... ,
i n

j j

j j

k k n m n i
= =

 
+ + = ≠ 

 
∑ ∑  where we have 

1np . 

6.4.3 Joint Distribution of number of runs of length exactly equal to 1 2( , ,..., )mk k k k=  

and the number of occurrence of each outcome 

 Denote the number of th
i  type runs of length exactly equal to ik  and 

occurrence of th
i  outcome in n  trials respectively by 

( ) ( )
, ,
i i

n k nE Y  for 1, 2,...,i m= . We 

can define a Markov chain corresponding to this case as discussed above. Then 

corresponding within state transition probabilities are given by 

( ) ( ), ; 1, , ; ,|    0 1,   
i i it x y e u i t x y u i ii i i

P C C p t if u k i Wα α+ +∈ ∈ = ≤ ≤ − ∈  
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( ) ( )1 , ;1, , ; ,|     , 0 1,   ,
j it x y e j t x y u i ij i i

P C C p t if j i u k i j Wα α+ +∈ ∈ = ≠ ≤ ≤ − ∈  

( ), ; 1, , ; 1,|     
jt x y e j t x y j jj

P C C p j Wα α+ − −∈ ∈ = ∈  

and the between state transition probabilities are as follows 

( )1 , ;1, , ; ,|        ,   ,
i j it x e y e j t x y k i ij

P C C p if i j i j Wα α+ + +∈ ∈ = ≠ ∈  

( )k

tA  is a matrix whose thk  column is given by  

( ) ( ) ( ) ( ) ( ) ( )( )1, 2, 1, 1, ,, ,..., , , ,...,
k k k k k k k m k

t t t t t tν ν ν θ ν ν− +  

where ( )

( )
( )

( )
( ) ( ) ( )2 2

0, 0 ( ) 0 . 0

1, 0 0 ( ) . 0

. . . . . .

, 0 0 0 . ( )

1, 0 0 0 . ( )
i i

ii

ii

i

i ii

ii k k

i p t

i p t

t

k i p t

i p t

θ

+ × +

 
 
 
 =
 
 
 −  

 

( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )2 2

0 0 . 00,

0 0 . 01,

. . . . ..

0 0 0 . 0,

0 0 . 01,
i j

ij

ij

ij

ij k k

p ti

p ti

t i j

k i

p ti

ν

+ × +

 
 
 
 = ≠
 
 
 −  

 ,i j W∈  

 The between state transition probability matrices 
( ) ( ) ( ), ,i i i i

t tB x B=  have all their 

entries zero except at 
1 1

, 3 , 1, 2,...   
i n

j j

j j

k i k n n m n i
= =

 
+ + + = ≠ 

 
∑ ∑  and we will have 1np

there. 
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6.4.4 Markov Multinomial distribution 

 As mentioned earlier one can obtain the Markov multinomial distribution. By 

taking each ( ),
0   , 1, 2,...

l k
B l k m= ∀ = . For a Markov multinomial distribution 

( )1 ;1, ; ,|    0,1
kt x e k t x u k kkP C C p uα α+ +∈ ∈ = =  

( )1 ;1, ; ,|    0,1, ,t x i t x u j jiP C C p u i j Wα α+ ∈ ∈ = = ∈  

Then the th
k  column of the matrix 

( )k

tA  is given by  

( ) ( ) ( ) ( ) ( ) ( )( )1, 2, 1, 1, ,, ,..., , , ,...,
k k k k k k k m k

t t t t t tν ν ν θ ν ν− +  

where ( )
( )
( )

2 2

0

0

ij

ij

ij

p t
t

p t
ν

×

 
=  
 

      for every i j≠  and    

( )
( )
( )

2 2

0, 0 ( )

1, 0 ( )

ii

i

ii

i p t
t

i p t
θ

×

 
=  

 
   for every  i W∈  

6.1 Conclusions 

In this chapter we derived a recurrence for the evaluation of the joint 

distribution of the runs and the outcomes of each type. The moment generating 

functions and the various expected values are also derived. The expression for the 

interdependence between the both characters also studied. The waiting time 

distributions under the sooner and the later scenario are also derived. The 

methodology is illustrated in the case of runs formed under different ways of 

counting. 
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Chapter 7 

Conclusion and Future Works 
 

Every real life problem has a solution, that has been the motivating stone for 

this thesis. The thesis deals with modelling situations that involve dependence 

between the random quantities of interest. Most of the natural phenomena in real life 

involve dependence between the consecutive observations. The assumption of 

dependence between the variables becomes impossible when the phenomenon or the 

characteristic under study involves some repetitions. Most of the modelling problems 

neglect the dependence that is redundant in them. Here we tried to model some of the 

scenarios where there is dependence. 

In chapter three, we considered a multistate system with Markov dependence 

between the states occupied by the system. We assumed that the lifetimes and the 

repair times in each state follow Phase type distribution with the parameters 

depending on the state. We also assumed that the repairs will have an impact on the 

lifetime or the repair time. We modelled the impact of the repairs on the lifetimes or 

the repair times by the Cox multiplicative model. The number of repairs on the system 

is assumed to be the concomitant variable and the  regression factor is assumed to be 

depending on the state. An expression for long run cost per cycle for the system is 

derived. An algorithm that simplified the procedures for finding the optimal number 

of repair, minimizing the expected cost per cycle, was also developed. Finally the 

algorithm was illustrated with a numerical example. 

Eventhough we were able to derive an expression for the long run expected 

cost per unit time in the case of general multistate systems which do not assume any 

stochastic ordering between the lifetimes or repair times, the development of the 

algorithm was based on the assumption that the lifetime or the repair times are 

stochastically monotone random variables. Developing a simple method or algorithm 
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for finding the optimal policy under the given condition is still interesting. We 

exploited the Phase type distribution to model the lifetimes and the repair times in 

each state. Exploiting general situation involving any distribution can also be dealt 

with in the future. Even in the case of approximating the lifetimes or the repair times 

by a Phase type distribution, estimating the number of recurrent states to be used is an 

open problem for almost a decade. Deriving the statistical inference procedures for the 

model is also an area to be explored. We assumed that the ageing factor depends only 

on the state which it is occupying. But systems in which the ageing factors depend on 

the state occupied till now is an interesting problem. Optimization based on the time 

dependent factors like availability is also a problem to be tackled in the future. 

In chapter four, we introduced the concept of protection into the reliability 

modelling scenario. Till now we did not consider problems with the shocks or the 

failures that may cause the malfunctioning or even the nonfunctioning of the repair 

facility. It ha been assumed that there will not be any reliability concerns regarding 

the repair facility. We considered the situation where the repair had to be restarted 

from the scratch when an interruption happens to the repair facility. Long run cost for 

the completion of the repair has been developed assuming that the k  states are 

unprotected while the remaining n k−  are protected states, shocks do not have any 

impact on the repair facility when the repair is in these states. Since high cost is 

involved with protecting the states, an optimal policy regarding the time of 

introduction of the repair facility is considered in the chapter. The results are 

illustrated with the help of a numerical example. 

It has been assumed that the repair time in each state is an exponentially 

distributed random variable. Generalizing this into the general frame work is 

interesting and this is to be opened upon. Also we assume a sequential transition 

between the states. This is also restrictive. We also did not consider situations where 

we take away the protection after some time if the system is performing reasonably 

well. 
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In chapter five, we proposed two new models of start-up demonstration having 

two phases with the condition for the corrective action in the first model, being 

specified number of consecutive failures, and in the second model, being specified 

number of random failures. Expressions for various measures of interest like the 

probability of acceptance of the product, probability of rejection of the product, 

expected number of start-ups etc were developed. We assumed a Markov dependence 

between the consecutive trials. We considered a numerical example. The probability 

of acceptance of the product can be used to derive an optimal policy in both cases.  

One of the possible generalizations is one with more than two phases and the 

results can be obtained in a similar fashion as we had done for the two-phase case. 

The models can be generalized to m  Markov dependent case by proceeding as in 

Aston and Martin (2005).  

 In chapter six we obtained the joint distribution of runs and occurrence of  

outcomes there for multi-state  outcomes, there by generalizing Han and Aki (1999) 

and Chadjiconstantinidis et. al (2000).Probability generating functions for the joint 

distribution of occurrence of events and the runs was also derived. Probability 

generating functions of the distribution of occurrence of the events and the runs were 

also derived. The results were in tune with Han and Aki (1999). Expected values of 

the joint variables and the marginal variables are also derived. We derived the 

expression for the waiting times also. The recurrence relation, we derived, can be used 

to evaluate the probabilities in the case of various types of counting as illustrated. A 

more general Markov Multinomial distribution was also derived Throughout the 

development of the chapter we assumed that the consecutive trials are Markov 

dependent. 

All the results discussed in the chapter can be extended to the case of l  

dependent variables discussed by Aki and Hirano (2000). Patterns and scans are area 
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of interest, generalizing the results to the case of patterns and the scans can also be 

considered in future. 
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