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Chapter 1

Preliminaries

1.1 Introduction

In the majority cases of analyzing statistical information, a fundamental crisis that

emerges at the beginning is the identification of a suitable model that can explain the

real condition which generated the observations. Once the exact model is known the

original problem permits analysis with minor effort, as the properties of the model

comes helpful to the analyst in drawing inferences and decisions. Due to the acces-

sibility of a huge number of probability distributions at disposal, very frequently the

choice of exacting one in an unambiguous situation turns out to be hard, unless one has

a reasonable basis or criteria that give good reason for the choice. A universal move

toward to this problem is to make use of experimental methods such as probability

plots or goodness-of-fit tests while another is, to apply some approximation theorems

from probability theory. Even though sometimes such considerations may guide to

reasonable models, neither are they of general applicability nor do they promise the

correct result all the time. The only means that enables the determination of a proba-

bility model precisely is a characterization theorem and as a result the study of such

theorems has emerged as an essential area of mathematical statistics. It is also general

that many such theorems are found useful from theoretical considerations as well.

1
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One such characterization that has been popular is the lack of memory property of

the exponential distribution. This property along with its generalizations and modifi-

cations was a subject of study for many researchers. This property manifests in many

properties of the exponential distribution. For instance, the constancy of important re-

liability concepts like hazard rate and mean residual life function. The importance of

hazard rate and mean residual life in reliability added to the popularity of this charac-

terization and thus evolved several multivariate generalizations of the lack of memory

property.

If X is a nonnegative random variable possessing absolutely continuous distri-

bution with respect to Lebesgue measure, we say that the random variable X or its

distribution has lack of memory property if for all x, y ≥ 0 such that P (X ≥ y) > 0,

P (X ≥ x+ y|X ≥ y) = P (X ≥ x) (1.1)

In expressions of the survival function of the random variable,

R(x) = P (X ≥ x) ,

(1.1) can be restated as

R(x+ y) = R(x)R(y). (1.2)

For an absolutely continuous survival function R(x), its hazard rate h(x) is defined as

h(x) =
−d logR(x)

dx
. (1.3)

The lack of memory property is equivalent to the statement,

h(x)= c, a constant.
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Further, the truncated mean or mean residual life is defined as

r(x) = E (X − x|X ≥ x)

=
1

R(x)

∫ ∞
x

R(t)dt,
(1.4)

often interpreted as the average lifetime remaining to a component at age x, is con-

nected to the hazard rate through the equation

h(x) =
1

r(x)

{
1 +

dr(x)

dx

}
. (1.5)

It is given in Cox (1962) that for the exponential distribution,

r(x)= k, a constant.

Galambos and Kotz (1978) established the similarity of lack of memory property, con-

stancy of the hazard rate and constancy of the mean residual life.

The hazard rate is found valuable in the investigation of right censored data. But in

a number of situations, we come across the left censored data. Left censoring occurs in

life test applications when a unit has failed at the time of its first assessment; we know

only that the unit failed earlier than the assessment time. In other situations, left cen-

sored observations occur when the precise value of a response has not been observed

and we have, instead, an upper bound on that response. Consider, for example, a mea-

suring device that lacks the sensitivity required to determine the observations below a

known threshold. When the dimension is taken, if the signal is below the instrument

threshold, we know only that the measurement is less than the threshold.

In such situations, the reversed hazard rate was found to be more adequate than

the hazard rate (Block et al. (1998), Andersen et al. (1993), Gupta and Hann (2001)).

This paved way of studying many reliability concepts in the reversed time scale. These

measures gained attention as they were not just ”duals” of the existing probability

and reliability measures but they found use and applications in the field of actuaries,
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biometry, maintenance theory, economics etc. in their own right. Motivated by this, in

the thesis we subject the lack of memory property to the reversed time scale to develop

a new property. We call this property the reversed lack of memory property and show

that it is radically different from the lack of memory property. Before getting into the

details we first consider the basic concepts required in the ensuing discussions.

1.2 Basics

Consider a random variable X with an absolutely continuous cumulative distribution

function F (x) = P (X ≤ x), survival function R(x) = 1 − F (x) and probability

density function f(x). Let a = inf {x|F (x) > 0} and b = sup {x|F (x) < 1}. Then

(a, b), −∞ ≤ a < b < ∞ is the interval of support of X . The distribution function

F (x) is a non-decreasing continuous function with F (a) = 0 and lim
x→b

F (x) = 1. The

probability density function of X may be represented as

f(x) =
dF (x)

dx
.

1.2.1 Hazard Rate

An essential function that characterizes lifetime distributions is the hazard rate h(x),

defined as

h(x) = lim
∆x→0

P (x ≤ X < x+ ∆x|X ≥ x)

∆x
.

The hazard rate specifies the instantaneous rate of death or failure at x, given that

the individual survives up to x. Thus h(x)∆x is the approximate probability of death

in the interval [x, x + ∆x), given survival up to x. The hazard rate is also known as

conditional failure rate in reliability, the force of mortality in demography, the intensity

function in stochastic processes, the specific failure rate in epidemiology, the inverse of

Mill’s ratio in economics or simply the hazard function. When the probability density
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function of X , f(x) exists, then the hazard rate is expressed as

h(x) =
f(x)

R(x)

= −d logR(x)

dx
.

The hazard rate completely specifies the distribution of X and determines the survival

function. Integrating the above equation with respect to x and using R(a) = 1, we

obtain

R(x) = exp

{
−
∫ x

a

h(u)du

}
.

Thus, the probability density function of X can be obtained as

f(x) = h(x) exp

{
−
∫ t

a

h(u)du

}
.

A related function is cumulative hazard rate H(x), defined as

H(x) =

∫ t

a

h(u)du.

Then, R(x) can be represented in terms of H(x) as

R(x) = exp {−H(x)} .

1.2.2 Reversed Hazard Rate

Recently, another concept, that is valuable in the survival studies, is developed which

is referred as the reversed hazard rate. The reversed hazard rate of X is defined for

x > a as

λ(x) = lim
∆x→0

P (x−∆x < X ≤ x|X ≤ x)

∆x
. (1.6)

That is, in a small interval, λ(x)∆x is the approximate probability of failure in the

interval (x−∆x, x], given failure before the end of the interval. Reversed hazard rate
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was proposed as a dual to the hazard rate by Barlow et al. (1963). When the probability

density function of X , f(x) exists, (1.6) can be expressed as

λ(x) =
f(x)

F (x)

=
d logF (x)

dx
.

(1.7)

The reversed hazard rate, λ(x) determines the distribution function uniquely by the

relationship

F (x) = exp

{
−
∫ b

x

λ(u)du

}
,

which was given by Keilson and Sumita (1982). The probability density function of

X can be obtained from λ(x) using the relationship

f(x) = λ(x) exp

{
−
∫ b

x

λ(u)du

}
.

The cumulative reversed hazard rate Λ(x) is defined as

Λ(x) =

∫ b

x

λ(u)du.

Then, F (x) can be represented in terms of Λ(x) as

F (x) = exp {−Λ(x)} .

Further, it is seen that the reversed hazard rate of−X is same as the hazard rate h(−x)

for x ∈ (−b,−a). Also, if E(X) < ∞ and ν(x) = E(X|X > x) is the vitality

function of X and η(x) = E(X|X ≤ x) is the conditional expectation, then (Nair et

al. (2005))
ν(x)− E(X)

h(x)
=
E(X)− η(x)

λ(x)

for all x ∈ (a, b).
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The above relation enables one to translate characterizations in terms of h(x)

and ν(x) (Ahmed (1991), Osaki and Li (1988), Ruiz and Navarro (1994), Nair and

Sankaran (1991)) to that between λ(x) and η(x). Thus, one would expect dual results

to exist for the reversed hazard rates.

Ware and DeMets (1976) advocated reversed hazard rate for the estimation of the

distribution function in the presence of left censored observations. Shaked and Shan-

thikumar (1994) presented a number of results based on reversed hazard rate ordering

and characterization of lifetime distributions based on reversed hazard rate. Block et al.

(1998) pointed out that there is no non-negative random variable having an increasing

reversed hazard rate distribution and observed that increasing hazard rate distributions

like Weibull, gamma and lognormal distributions are decreasing reversed hazard rate

distributions. Block et al. (1998) characterized properties for k out of n systems in

terms of reversed hazard rate. Kijima (1998) proved that if an irreducible Markov

chain in continuous time is monotone in the sense of reversed hazard rate ordering

then it must be skip-free to the left. A birth-death process is then characterized as a

continuous time Markov chain that is monotone in the sense of reversed hazard rate or-

derings. Bloch-Mercier (2001) applied the reversed hazard rate orderings in reliability.

Chandra and Roy (2001) have considered different implicative relationships with re-

spect to the monotonic behavior of reversed hazard rate. Finkelstein (2002) expressed

the relation between hazard rate h(x) and reversed hazard rate λ(x) as

λ(x) =
h(x)R(x)

F (x)

=
h(x)

exp
{∫ x

a
h(u)du

}
− 1

.

Lawless (2003) developed nonparametric estimators of R(x) for the right truncated

observations using reversed hazard rates. Reversed hazard rate is useful in forensic

science and actuarial science, as the time elapsed since failure is a quantity of interest

in order to predict the actual time of failure (Nanda et al. (2003)). Gupta et al. (2006)
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studied the monotonicity of the reversed hazard rate of the maximum for two well

known bivariate distributions viz the Farlie – Gumbel – Morgenstern (FGM) and Sar-

manov family. Increasing hazard rate and decreasing reversed hazard rate properties

of the minimum and maximum of multivariate distributions with log-concave densities

are studied by Hu and Li (2007). Li et al. (2010) dealt with the reversed hazard rate of

general mixture models. They also studied the dependence and monotone properties

of the reversed hazard rate. For more properties and applications of reversed hazard

rate function, one could refer to Kalbfleisch and Lawless (1989), Gupta and Nanda

(2001), Gupta and Wu (2001), Nair and Asha (2004), Chandra and Roy (2005), Nair

et al. (2005), Bartoszewicz and Skolimowska (2006) and Sankaran and Gleeja (2007).

1.2.3 Proportional Hazards Model

Cox (1972) defined proportional hazards model as

h(x) = φh0(x),

where h0(x) is an arbitrary baseline hazard rate and φ is some positive real constant of

proportionality and is a measure of relative risk.

Here, the survival functions can be related as

R(x) = [R0(x)]φ ,

where R0(x) is the baseline survival function. The class of models provided by this

process is sometime referred to as the Lehmann class (Lehmann (1953)). For a com-

prehensive review on this topic, one can refer Kalbfleisch and Prentice (2002) and

Lawless (2003).

As an example, for some positive integer value of φ, if X1, X2, ..., Xφ are inde-

pendently and identically distributed random variables with survival function R0(x)

representing the lifetime of components, in a φ-component series system, then the
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lifetime of the system is given by X = min (X1, X2, ..., Xφ) with survival function

R(x) given by R(x) = [R0(x)]φ.

1.2.4 Proportional Reversed Hazards Model

Gupta et al. (1998) proposed a dual model called proportional reversed hazards model,

which is expressed as

λ(x) = θλ0(x), (1.8)

where θ > 0 and λ0 is the baseline reversed hazard rate. Then the relation between

distribution functions can be expressed as

F (x) = [F0(x)]θ ,

where F0(x) is the baseline distribution function.

As an example, for some positive integer value of θ, if X1, X2, ..., Xθ are inde-

pendent and identically distributed random variables with distribution function F0(x)

representing the lifetime of components, in a θ-component parallel system, then the

lifetime of the system is given by X = max (X1, X2, ..., Xθ) with distribution func-

tion F (x) given by F (x) = [F0(x)]θ.

The proportional reversed hazards model has strong resemblance with the pro-

portional hazards model, but is appropriate in situations where proportional hazards

model becomes unsuitable. For example, the model (1.8) is helpful in the analysis of

left censored or right truncated data. Gupta et al. (1998) and Gupta and Gupta (2007)

studied the monotonicity of hazard rate and reversed hazard rate of the model (1.8).

The properties based on stochastic comparisons and results related to ageing notions

of random lifetimes are given in Di Crescenzo (2000). Chen et al. (2004) employed

the proportional reversed hazard rate models to study the longitudinal pattern of re-

current gap times. Further, Chen et al. (2004) introduced the concept of frailties in

proportional reversed hazard rate models. The applications and methods of inference
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of the model (1.8) are examined in Sengupta et al. (1998) and Gupta and Gupta (2007).

Sankaran and Gleeja (2008) derived a class of bivariate distributions having marginal

proportional reversed hazard rates. Further, Sankaran and Gleeja (2008) introduced

a class of proportional reversed hazard rate frailty models and propose a multivariate

correlated gamma frailty model. Li and Li (2008) investigated the properties of mix-

ture model of proportional reversed hazard rate. Li and Da (2010) studied multivariate

mixed proportional reversed hazard rate model having dependent mixing variables.

1.2.5 Reversed Mean Residual Life Function

Reversed hazard rate is very much related to another important notion known as the

reversed mean residual life function. The reversed mean residual life function of an

item failed in an interval [a, x] is defined as

m(x) = E(x−X|X ≤ x) =
1

F (x)

∫ x

a

F (u)du. (1.9)

In reliability studies the reversed mean residual life is also known as mean waiting

time, expected inactivity time or mean past lifetime. Assuming m(x) as differentiable

the reversed mean residual life is connected to λ(x) through the relationship

λ(x) =
1−m′(x)

m(x)
,

where m′(x) = d
dx
m(x). The distribution function can be uniquely determined from

the relation (Chandra and Roy (2001))

F (x) = exp

{
−
∫ b

x

1−m′(u)

m(u)
du

}
.

The corresponding density function is given by

f(x) = exp

[
−
∫ b

x

1−m′(t)
m(t)

dt

]{
1−m′(x)

m(x)

}
.
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Let X be a continuous random variable with finite mean µ. Then F (x) is uniquely

determined by ω(x) = λ(x)m(x), x ∈ (a, b) through the relation

F (x) = exp

[
−
∫ b

x

ω(t)

t− µ+ I(t)
dt

]
,

where I(t) =
∫ b
t
ω(x)dx.

Chandra and Roy (2001) studied a range of properties of reversed mean residual

life with respect to reversed hazard rate. Finkelstein (2002) focused the importance of

reversed mean residual life in defining reversed hazard rate and studied its properties.

Li and Lu (2003) established some stochastic comparisons on reversed mean residual

life and residual life of series and parallel systems and presented some applications

based on these comparisons. Reliability properties of reversed mean residual life and

the definition of a new ordering based on reversed mean residual life are discussed in

Nanda et al. (2003). Asadi (2006) studied properties of reversed mean residual life

for components of parallel system. Kayid (2006) introduced and studied multivariate

notions of reversed mean residual life. The properties of mean time to failure in an

age replacement model is presented by examining the relationship it has with reversed

hazard rate and reversed mean residual life were studied by Asha and Nair (2010). For

further properties of reversed mean residual life, one could refer to Kayid and Ahmad

(2004), Kayid (2006), Nanda et al. (2006), Sadegh (2008), Tavangar and Asadi (2008)

and Kundu and Nanda (2010).

1.2.6 Past Entropy

Study of uncertainty is a subject of interest common to reliability, survival analysis, ac-

tuary, economics, business and many other fields. A classical measure of uncertainty

for a random variable X having probability density functionf(x), cumulative distri-

bution function F (x) and the survival function R(x) = 1 − F (x), is the differential

entropy, also known as the Shannon information measure (Shannon (1948)), defined
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as

H(f) = −E (log f(X)) = −
∫ ∞
−∞

f(x) log f(x)dx (1.10)

where log denotes the natural logarithm.

The role of differential entropy as a measure of uncertainty in residual lifetime

distributions has attracted increasing attention in recent years. According to Ebrahimi

(1996), the residual entropy at time t of a random lifetime X is defined as the differ-

ential entropy of (X|X > t). Formally, for all t > 0 the residual entropy of X is given

by

H(f ; t) = −
∫ ∞
t

f(x)

R(t)
log

f(x)

R(t)
dx

= logR(t)− 1

R(t)

∫ ∞
t

f(x) log f(x)dx

= 1− 1

R(t)

∫ ∞
t

f(x) log r(x)dx.

(1.11)

where r(t) = f(t)
F (t)

is the hazard function or failure rate of X . Given that an item

has survived up to time t, H(f ; t)measures the uncertainty about its remaining life.

Various results concerning H(f ; t) have been obtained in recent years by Ebrahimi

(1996, 1997, 2000), Ebrahimi and Pellery (1995), Ebrahimi and Kirmani (1996), Asadi

and Ebrahimi (2000) and Navarro et al. (2002).

One of the main drawbacks of H(f) specified in (1.10) is that for some proba-

bility distribution, it may be negative and then it is no longer an uncertainty mea-

sure. Khinchin (1957) generalized (1.10) by choosing a convex function φ such that

φ(1) = 0 and defined the measure

Hφ(f) =

∫
f(x)φ (f(x)) dx. (1.12)

For two particular choices of φ, (1.12) becomes, for some fixed β > 0 and β 6= 1,

Hβ(f) =
1

β − 1

[
1−

∫ ∞
0

fβ(x)dx

]
(1.13)
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and for some α > 0 and α 6= 1,

Hα(f) =
1

1− α
log

∫ ∞
0

fα(x)dx. (1.14)

As β → 1 and α → 1 in (1.13) and (1.14) respectively, they reduce to H(f)given in

(1.10). It may be noted that although (1.10) may be negative for some distribution, but

Hβ(f) and Hα(f) can always be made nonnegative by choosing appropriate value of

β and α. As argued by Ebrahimi (1996), equations (1.13) and (1.14) can be redefined

for a unit surviving up to an age t as (Nanda and Paul (2006c))

Hβ(f ; t) =
1

β − 1

[
1−

∫ ∞
t

(
f(x)

R(t)

)β
dx

]
(1.15)

and

Hα(f ; t) =
1

1− α
log

∫ ∞
t

(
f(x)

R(t)

)α
dx (1.16)

respectively.

It can be noted that β → 1 and α → 1 in (1.15) and (1.16) respectively, they

reduce to (1.11). Hβ(f ; t) and Hα(f ; t) can be called residual entropy of order β

and α respectively. For a detailed survey on entropy function one may refer to Ullah

(1996).

However, in many realistic situations, uncertainty is not necessarily related to the

future but can also refer to the past (Maiti and Nanda (2009)). For instance if at time

t, a system which is observed only at certain pre-assigned inspection times, is found

to be down, then the uncertainty of the system’s life relies on the past, that is, at which

instant in (0, t) the system has failed. To be more specific, in a periodic replacement

policy where the system is observed at times T, 2T, 3T, ... for some pre-assigned time

T , it is possible that at time (n − 1)T the system is functioning, but at time nT the

system is found to be down, where n is a positive integer. Then, if X is the failure time

of the system, the variable of interest is [nT −X|X ≤ nT ].



CHAPTER 1. PRELIMINARIES 14

By writing nT = t, we have the random variable Xt = (t−X|X ≤ t), known as

the inactivity time. This is because, once at time X the system fails, and at time t it is

observed to be in a failure state, the random time for which the system was down isXt.

Based on this idea, Di Crescenzo and Longobardi (2002, 2004) have studied measures

of entropy and discrimination based on past entropy over (0, t).

Let us consider an absolutely continuous random variable X probability density

function f(x) and distribution function F (x). Let the support of the random variable

X be (a, b) where a = inf {x|F (x) > 0} and b = sup {x|F (x) < 1} with −∞ ≤ a <

b < ∞. Kundu et al. (2010) defined the measure of uncertainty for inactivity time or

past time distribution, called past entropy as

H(f ; t) = −
∫ t

a

f(x)

F (t)
log

f(x)

F (t)
dx

= 1− 1

F (t)

∫ t

a

f(x) log λ(x)dx,

(1.17)

where λ(x) = f(t)
F (t)

is the reversed hazard rate. Note that, as t → b, H(f ; t) becomes

the well known Shannon entropy given by

H(f) = −
∫ b

a

f(x) log f(x)dx.

For more properties and applications of H(f ; t) one may refer to Di Crescenzo and

Longobardi (2002, 2004), Nanda and Paul (2006a), Maiti and Nanda (2009) and the

references therein.

1.2.7 Cumulative Entropy

Recently, Rao et al. (2004) introduced an alternative measure of uncertainty called cu-

mulative residual entropy (CRE). This measure is based on the cumulative distribution

function F and is defined in the univariate case and for non-negative random variables
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as follows.

ξ(X) = −
∫ ∞

0

R(x) logR(x)dx.

They have obtained several properties of this measure and provided some applications

of it in reliability engineering and computer vision. Rao (2005) developed some more

mathematical properties of cumulative residual entropy and gave an alternative formula

for it.

Asadi and Zohrevand (2007) studied the relation between cumulative residual en-

tropy and mean residual life function. They proved that if X be a non-negative con-

tinuous random variable with mean residual life function r(x) and cumulative residual

entropy ξ(X)such that ξ(X) <∞. Then

ξ(X) = E (r(X)) .

Capturing effects of the age t of an individual or an item under study on the infor-

mation about the residual lifetime is important in many applications. For example, in

reliability when a component or a system of components is working at time t, one is

interested in the study of the lifetime of component or system beyond t. In such case,

the set of interest is the residual lifetime St = {x : x > t}.

Hence the distribution of interest for computing uncertainty and information is the

residual distribution with survival function

Rt(x) =


R(x)
R(t)

, x ∈ St
1, otherwise

where R denotes the survival function of X .

Based on these concepts, Asadi and Zohrevand (2007) introduced the cumulative

residual entropy for the residual lifetime distribution with survival function Rt(x) is

ξ(X; t) = −
∫ ∞
t

Rt(x) logRt(x)dx
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= −
∫ ∞

0

R(x)

R(t)
log

R(x)

R(t)
dx

= − 1

R(t)

∫ ∞
t

R(x) logR(x)dx+ r(t) logR(t).

They called this measure as dynamic cumulative residual entropy (DCRE). It worth

noting that ξ(X; t) provides a dynamic information measure for measuring the in-

formation of the residual life distribution. It is clear that ξ(X; 0) = ξ(X). They

also proved that that if F be an absolutely continuous distribution function with mean

residual life function ε(t) and dynamic cumulative residual entropy ξ(X; t) such that

ξ(X; t) <∞ for all t ≥ 0. Then

ξ(X; t) = E (r(X)|X ≥ t) .

Recently, Di Crescenzo and Longobardi (2009) introduced a new measure of informa-

tion, that will be called cumulative entropy is suitable to measure information when

uncertainty is related to the past, a dual concept of the cumulative residual entropy

which relates to uncertainty of the future lifetime of a system. Moreover, similarly to

the cumulative residual entropy, it is defined as

Cξ(X) = −
∫ ∞

0

F (x) logF (x)dx.

This measure recalls the differential entropy (1.10), the significant difference being

that now the argument of the logarithm is a probability. This implies Cξ(X) ≥ 0,

which does not hold for (1.10). If a system that begins to work at time 0 is observed

only at deterministic inspection times, and is found to be ‘down’ at time t, then the

uncertainty relies on which instant in (0, t) it has failed. Di Crescenzo and Longobardi

(2009) thus introduced the following new dynamic information measure.

Cξ(X; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx, t ≥ 0.
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The above measure is called as dynamic cumulative entropy which identifies the cu-

mulative entropy [X|X ≤ t].

1.3 Bivariate Notions

In many practical situations, one may have paired lifetime data. For example, the time

to deterioration level or time to reaction of a treatment may be of interest in pairs of

lungs, kidneys, eyes or ears of humans.

Let X = (X1, X2) be a random vector in the two-dimensional space admitting an

absolute continuous distribution function

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

in the support of (a1, b1) × (a2, b2) ∈ R2 where ai = inf {xi|Fi(xi) > 0} and bi =

sup {xi|Fi(xi) < 1}with F (x1, b2) = F1(x1) and F (b1, x2) = F2(x2) as the marginals

of Xi, i = 1, 2. The joint probability density function of X may be represented as

f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2

.

1.3.1 Bivariate Hazard Rate

In the bivariate case we can define the hazard rate in more than one way. The first

definition of bivariate hazard rate was given by Basu (1971) which is defined as

b(x1, x2) =
f(x1, x2)

R(x1, x2)
,

where R(x1, x2) = P (X1 > x1, X2 > x2) is the survival function of (X1, X2). As in

the univariate case, b(x1, x2), in general, does not determine the bivariate distribution

uniquely.

A following approach in defining bivariate hazard rate is given by Johnson and
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Kotz (1975). They defined bivariate hazard rate as a vector given by

h(x1, x2) = (h1(x1, x2), h2(x1, x2)) ,

where hi(x1, x2) = −∂ logR(x1,x2)
∂xi

, i = 1, 2.

Note that h1(x1, x2) is the instantaneous rate of failure of X1 at time x1 given that

X1 was alive at X1 = x1− and that X2 survived beyond time X2 = x2. The meaning

of h2(x1, x2) is similar.

The vector h1(x1, x2) uniquely determines the distribution of X through

R(x1, x2) = exp

{
−
∫ x1

a1

h1(u, a2)du−
∫ x2

a2

h2(x1, v)dv

}

or

R(x1, x2) = exp

{
−
∫ x1

a1

h1(u, x2)du−
∫ x2

a2

h2(b1, v)dv

}
.

1.3.2 Bivariate Reversed Hazard Rate

Unlike the univariate set up discussed above, there is more than one definition for

reversed hazard rate in the multivariate set up.

Gurler (1996) defined the bivariate reversed hazard rate as a three component vec-

tor given by

Λ(x1, x2) = (Λ12(x1, x2),Λ1(x1, x2),Λ2(x1, x2))

where Λ12(x1, x2) = F (dx1,dx2)
F (x1,x2)

, Λ1(x1, x2) = F (dx1,x2)
F (x1,x2)

and Λ2(x1, x2) = F (x1,dx2)
F (x1,x2)

.

The vector Λ(x1, x2) is used for the estimation of F (x1, x2) when the lifetime data

is right truncated.

Roy (2002a) defined reversed hazard rate as a two component vector given by

λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) (1.18)
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where λi(x1, x2) = lim
∆xi→0

P (xi−∆xi<Xi≤xi|X1≤x1,X2≤x2)
∆xi

= ∂ logF (x1,x2)
∂xi

, i = 1, 2.

For i = 1, λ1(x1, x2)∆x1 is the probability of failure of the first component in

the interval (x1 −∆x1, x1] given that it has failed before x1 and the second has failed

before x2. The interpretation for λ2(x1, x2) is similar. From Roy (2002a), it follows

that λi(x1, x2), i = 1, 2 determine F (x1, x2) uniquely by the relationship

F (x1, x2) = exp

{
−
∫ b1

x1

λ1(u, b2)du−
∫ b2

x2

λ2(x1, v)dv

}

or

F (x1, x2) = exp

{
−
∫ b1

x1

λ1(u, x2)du−
∫ b2

x2

λ2(b1, v)dv

}
(1.19)

where λ1(x1, b2) = λ1(x1) and λ2(b1, x2) = λ2(x2) are the marginal reversed hazard

rates of X1 and X2.

Recently, Bismi (2005) defined bivariate scalar reversed hazard rate as

r(x1, x2) =
f(x1, x2)

F (x1, x2)
. (1.20)

It can be easily seen that (1.20) is a natural extension of the univariate reversed hazard

rate given in (1.7). The term r(x1, x2)∆x1∆x2 + o(∆x1,∆x2) can be interpreted

as the probability of failure of components 1 and 2 in intervals (x1 − ∆x1, x1] and

(x2 −∆x2, x2] respectively, given that they failed before (x1, x2).

It can be seen that Λ12(x1, x2) = r(x1, x2)dx1dx2, Λ1(dx1, x2) = λ1(x1, x2)dx1

and Λ2(x1, dx2) = λ2(x1, x2)dx2.

Recently, another definition of reversed hazard rate has given in Sankaran and

Gleeja (2006) which is defined as

k(x1, x2) = (k1(x1, x2), k2(x1, x2)) , (1.21)

where ki(x1, x2) = lim
∆xi→0

P (xi−∆xi<Xi≤xi|Xi≤xi,Xj=xj)
∆xi

=
f(xi|Xj=xj)
F (xi|Xj=xj) with f(xi|Xj =

xj) as the conditional density function of Xi given Xj = xj and F (xi|Xj = xj) as the
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conditional distribution function of Xi given Xj = xj , i, j = 1, 2; i 6= j.

Further, Sankaran and Gleeja (2006) gave a unique representation for F (x1, x2) in

terms of bivariate reversed hazard rate given in (1.18) and (1.20) as

F (x1, x2) = exp

{
−
∫ b1

x1

r1(u)du

}
exp

{
−
∫ b2

x2

r2(v)dv

}
exp

{∫ b1

x1

∫ b2

x2

(r(u, v)− λ1(u, v)λ2(u, v)) dvdu

}
.

They also gave a local dependence measure using bivariate reversed hazard rates

and studied its properties.

1.3.3 Bivariate Reversed Mean Residual Life Function

The bivariate reversed mean residual life function of a random vector X = (X1, X2)

is defined as (Nair and Asha (2008))

m(x1, x2) = (m1(x1, x2),m2(x1, x2)) (1.22)

wheremi(x1, x2) = E (xi −Xi|X1 ≤ x1, X2 ≤ x2) = 1
F (x1,x2)

∫ xi
ai
F (xi, xj)dxi, i, j =

1, 2; i 6= j.

The bivariate reversed mean residual life function uniquely determines the distri-

bution function through the relation,

F (x1, x2) =
mi(b1, b2)mj(xi, bj)

mi(xi, bj)mj(x1, x2)
exp

{
−
∫ bi

xi

dt

mi(bj, t)
−
∫ bj

xj

dt

mj(xi, t)

}
, (1.23)

for i, j = 1, 2; i 6= j.

Further, Nair and Asha (2008) extended the definition of bivariate reversed mean

residual life function to the multivariate case. They also discussed the models based

on proportional reversed mean residual life and their properties. For more discussions
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of bivariate reversed mean residual life function, we may refer Kayid (2006).

1.4 Discrete Notions

There is an abundance of literature on continuous life distributions used in modeling

failure data. In reliability theory and survival analysis, time is assumed to be contin-

uous. But discrete failure data arise in various common situations where the system

lifetimes cannot be measured with calendar time. Consider the following examples:

1. A device is monitored only once per day (or month etc.). Then the random

variable of interest may be the successful number of periods completed prior to

the failure of the device.

2. A piece of equipment operates in cycles. In this case the random variable of

interest is the successful number of cycles before the failure. For instance, the

number of flashes in a car flasher prior to failure of the device.

3. In some situations the experimenter groups or discretizes the continuous obser-

vations.

Also Actuaries and Biostatisticians are interested in the lifetimes of persons or organ-

isms, measured in months, weeks, or days (Kemp (2004)). Since there is a limit on

the precision of any measurement, it can be arguably said that samples from a con-

tinuous distribution exist only in theory (Nanda and Sengupta (2005)). A discrete life

distribution is a natural choice where failure occurs only due to incoming shocks. For

example, in weapons reliability, the number of rounds fired until failure is more im-

portant than age at failure. Also discrete distributions have important applications in

reliability theory. For example, they can be used for modeling discrete lifetimes of

nonrepairable systems.

For the use of discrete models in reliability theory and characterization of probabil-

ity distributions, one may refer to Xekalaki (1983), Nair and Hitha (1989), Adams and



CHAPTER 1. PRELIMINARIES 22

Watson (1989), Roy and Gupta (1992), Shaked et al. (1994), Sengupta et al. (1995),

Bracquemond and Gaudoin (2003), Xekalaki and Dimaki (2005) and the references

therein.

LetX denote a discrete random variable taking values on Im = {n, n+ 1, n+ 2, ...,m}

where the integer n could be−∞, but m is finite and positive. Denote f and F respec-

tively the probability mass function (p.m.f.) and the distribution function of X . That

is,

f(x) = P (X = x)

and

F (x) = P (X ≤ x) =
x∑
j=n

f(j), x ∈ Im.

The reversed hazard rate of X is a useful tool in the analysis of left censored data,

which is defined as

λ(x) = P (X = x|X ≤ x) =
f(x)

F (x)
, x ∈ Im. (1.24)

Dewan and Sudheesh (2009) proposed a new definition for reversed hazard rate as

δ(x) = ln
F (x)

F (x− 1)
, x ∈ Im. (1.25)

The rationale behind this later definition is as follows. In the continuous case, the

reversed hazard rate is defined as

λ(x) =
F ′(x)

F (x)
=
d lnF (x)

dx
.

Instead of taking [F (x)− F (x− 1)] for F ′(x) which leads to the expression (1.7), we

could use [lnF (x)− lnF (x− 1)] for d
dx

lnF (x) so that (1.25) follows. Note that δ(x)

is not bounded by unity and is additive for parallel system as in the continuous case.
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The function δ(x) determines the distribution of X uniquely by the relation

F (x) = exp

(
−

m∑
y=x+1

δ(y)

)
. (1.26)

Hence, the cumulative reversed hazard rate is given by

Λ(x) =
m∑

y=x+1

δ(y) = − lnF (x).

Similar result holds when the lifetimes are continuous random variables. Since λ(x)

and δ(x) are related through

λ(x) = 1− e−δ(x), (1.27)

both λ(x) and δ(x) have same monotonic properties. That means, λ(x) is increas-

ing/decreasing if and only δ(x) is increasing/decreasing inx.

Further,

f(x) = F (x)
(
1− e−δ(x)

)
, x ∈ Im.

The hazard rate defined by

h(x) =
f(x)

1− F (x− 1)

can be written in terms of δ(x) as

h(x+ 1)(1− h(x))

h(x)
=
eδ(x+1) − 1

1− e−δ(x)
.

For the hazard rate r(x) defined in Xie et al. (2002), we see that

eδ(x+1) − 1

1− e−δ(x)
=

1− e−r(x+1)

er(x) − 1
.

The functional form of δ(x) enables the characterization of the distribution of X .

Another measure of interest is the mean past lifetime (MPL). Consider the condi-

tional random variable Xx = x −X|X ≤ x, where x ∈ Im. Then E(Xx), which we
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denote by k(x), is the mean past lifetime of X . To show why the mean past lifetime

function may be important, we give an example here. Consider a new car which has

been used for some time and undergoes for the first complete check up. Assume that

the technician has found that a unit of the engine system of the car, with lifetime X ,

has already failed. As such systems are not monitored continuously, the technician

might be interested in investigating the history of the system, e.g. when the unit has

failed. In this case the random variable of interest is Xx = x −X|X ≤ x, where x is

the day of the check up. The expected value of Xx is called the mean past life, denoted

as k(x) and is defined as (Goliforushani and Asadi (2008))

k(x) = E (x−X|X ≤ x)

=
1

F (x)

x∑
t=n

F (t).
(1.28)

Also, several properties of k(x) for lifetime random variable are studied in Goliforushani

and Asadi (2008). An inversion formula to retrieve distribution function from k(x)

may be obtained in Ruiz and Navarro (1995). They have given a more general inver-

sion formula for doubly truncated distributions.

Recently, Kundu et al. (2010) discussed about past entropy for a discrete random

variable X . The discrete past entropy is defined as

H(X; j) = −
j∑

k=n

f(k)

F (j)
ln
f(k)

F (j)
. (1.29)

Note that as j → m, H(X; j) becomes the well known Shannon entropy given by

H(X) = −
∑
k

f(k) ln f(k).
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The discrete generalized past entropy is defined as

H
β
(X; j) =

1

1− β
ln

[
j∑

k=n

(
f(k)

F (j)

)β]
. (1.30)

It is to be noted that as β → 1, (1.30) reduces to (1.29).

1.5 Present Study

The present study is largely based on the concepts defined above and is reported in the

coming five chapters.

In the second chapter, we introduce the reversed lack of memory property and char-

acterize the distributions by this property and its variants. The implications along with

characterizations of the reversed lack of memory property is taken up for study. This

chapter also considers the bivariate extension of this property and describes distribu-

tions that satisfy the bivariate reversed lack of memory property.

In the third chapter, we generalize this property which involves operations different

than the ”addition”. In particular an associative, binary operator ”∗” is considered. The

univariate reversed lack of memory property is generalized using the binary operator

and a class of probability distributions which include Type 3 extreme value, power

function, reflected Weibull and negative Pareto distributions are characterized (Asha

and Rejeesh (2009)). We also define the almost reversed lack of memory property

and considered the distributions with reversed periodic hazard rate under the binary

operation. Further, we give a bivariate extension of the generalized reversed lack of

memory property and characterize a class of bivariate distributions which include the

characterized extension (CE) model of Roy (2002a) apart from the bivariate reflected

Weibull and power function distributions. We proved the equality of local proportion-

ality of the reversed hazard rate and generalized reversed lack of memory property. A

few characterizations of the model are also discussed in this chapter.
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In the fourth chapter, we generalize the bivariate reversed lack of memory property

discussed in the previous chapter using two different binary associative operators and

we derive bivariate distributions with non-identical marginals that are characterized by

this property.

Study of uncertainty is a subject of interest common to reliability, survival analy-

sis, actuary, economics, business and many other fields. However, in many realistic

situations, uncertainty is not necessarily related to the future but can also refer to the

past. Recently, Di Crescenzo and Longobardi (2009) introduced a new measure of in-

formation called dynamic cumulative entropy. Dynamic cumulative entropy is suitable

to measure information when uncertainty is related to the past, a dual concept of the

cumulative residual entropy which relates to uncertainty of the future lifetime of a sys-

tem. We redefine this measure in the whole real line and study its properties. We also

discuss the implications of generalized reversed lack of memory property on dynamic

cumulative entropy and past entropy. These results are reported in the fifth chapter.

In the last chapter, we extend the idea of reversed lack of memory property to the

discrete set up. Here we investigate the discrete class of distributions characterized by

the discrete reversed lack of memory property. The concept is extended to the bivariate

case and bivariate distributions characterized by this property are also presented. The

implication of this property on discrete reversed hazard rate (Dewan and Sudheesh

(2009)), mean past life (Goliforushani and Asadi (2008)) and discrete past entropy

(Kundu et al. (2010)) are also investigated. The chapter along with the thesis concludes

with a small discussion on future work.



Chapter 2

The Reversed Lack of Memory

Property

2.1 Introduction

Here we introduce the reversed lack of memory property and derive the distribution

characterized by it. The study of characterization of probability distribution appears to

have begun with the work of Gauss in 1807 when he proved under certain conditions

that the maximum likelihood estimate of the location parameter of distribution is the

sample mean if and only if, the distribution is normal. Even though reckoned from

this work a long history can be accredited to the research activities in characterizing

probability distributions, a full fledged expansion of this field as part of mathematical

statistics, began taking shape only in the late fifties of the last century. The first au-

thoritative book on the tools employed in proving characterizations along with a large

compilation of results covering most probability distributions was published by Kagan,

Linnik and Rao in 1973. This along with the books by Patil et al. (1975), Galambos

and Kotz (1978), Mathai and Pederzoli (1977) and Azlarov and Volodin (1986) include

most of the literature on characterization results.

In this Chapter, we study the reversed lack of memory property in detail and char-

27
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acterize the distributions by this property and its variants. If X satisfies the lack of

memory property, it follows that −X satisfies the reversed lack of memory property.

However the converse is not true indicating that the reversed lack of memory property

is radically different from lack of memory property and so there is a scope for separate

study. In Section 2.2, we define the reversed lack of memory property and character-

ize the distribution by the same. Further, we extend this to bivariate set up which are

included in Section 2.3. Some distributional properties of the above property are also

studied.

2.2 The Reversed Lack of Memory Property

Consider a random variable X with an absolutely continuous cumulative distribution

function F (x) = P (X ≤ x), survival function R(x) = 1 − F (x) and probability

density function f(x). Let a = inf {x|F (x) > 0} and b = sup {x|F (x) < 1}. Then

(a, b), −∞ ≤ a < b <∞ is the interval of support of X . We define the reversed lack

of memory property by the following (Asha and Rejeesh (2007)).

Definition 2.1. Let X be a random variable having distribution function F (x) and

survival function R(x) with support (a, b) where a < 0 and b ≥ 0. Then X is said to

have the reversed lack of memory property (RLMP) if

P (X ≤ x|X ≤ x+ t) = P (X ≤ 0|X ≤ t) (2.1)

for all a < x ≤ x+ t ≤ b.

In terms of distribution function (2.1) can be written as

F (x)F (t) = F (x+ t)F (0) (2.2)

for all a < x ≤ x+ t ≤ b.
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Note that for a = 0 we require F (0) 6= 0 for (2.1) or (2.2) to hold.

A physical interpretation for the reversed lack of memory property can be that

given a component has maximum lifetime utmost x+ t then the failure of the compo-

nent at any instant before x + t, say x, depends only on the residual time t left, rather

than x.

It follows very directly that if X satisfies lack of memory property or X is ex-

ponential, then −X should satisfy the reversed lack of memory property or −X is

negative exponential with b = 0. We now investigate the converse. Let X satisfy the

reversed lack of memory property. Does −X satisfy lack of memory property? We

indicate that this is not necessarily true by the following.

Let X satisfies the reversed lack of memory property specified by (2.1). Then we

have

P (−X ≥ −x)P (−X ≥ −t) = P (−X ≥ −x− t)P (−X ≥ 0)

or

R−X(−x)R−X(−t) = R−X(−x− t)R−X(0)

which does not imply the lack of memory property, since R−X(0) < 1 by the fact

that −b ≤ −X < ∞. Thus the class of distributions satisfying the reversed lack of

memory property is a larger class than the negative exponential. Hence the reversed

lack of memory property is radically different from the lack of memory property.

Now, by taking logarithm on both sides of (2.2), we get

lnF (x) + lnF (t) = lnF (x+ t) + lnF (0) (2.3)

for all a < x ≤ x+ t ≤ b.

For an absolutely continuous random variable X differentiating (2.3) with respect

to x, yields
f(x)

F (x)
=
f(x+ t)

F (x+ t)
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which implies

λ(x) = λ(x+ t) (2.4)

for all a < x ≤ x+ t ≤ b.

Thus λ(x) = c, a constant when the reversed lack of memory property is satisfied.

Since λ(x) uniquely determines the underlying distribution, it follows from Block et

al. (1998) that a = −∞ and b < ∞ and the cumulative distribution function of X is

given by

F (x) =

 exp [c (x− b)] , x < b

1, x ≥ b, c > 0
(2.5)

Hence we have the following characterization for an absolutely continuous random

variable X .

Theorem 2.1. An absolutely continuous random variableX in the support of (−∞, b),

b ≥ 0 has the reversed lack of memory property if and only if any of the following

equivalent conditions hold.

1. F (x)F (t) = F (x+ t)F (0) for all −∞ < x ≤ x+ t ≤ b <∞.

2. λ(x) = c where c > 0 is a constant for all −∞ < x ≤ b.

3. X is distributed as a subclass of Type 3 extreme value distribution defined on

(−∞, b), b ≥ 0 specified by

F (x) =

 exp [c (x− b)] , x < b

1, x ≥ b, c > 0

This Type 3 extreme value distribution also belongs to the reversed generalized

Pareto distribution developed by Castillo and Hadi (1995) as a fatigue model that sat-

isfy certain compatibility conditions arising out of physical and statistical conditions

in fatigue studies.



CHAPTER 2. THE REVERSED LACK OF MEMORY PROPERTY 31

In the nonnegative support (0, b), b <∞,

F (x) =


exp [−cb] , x = 0

exp [c (x− b)] , x < b

1, x ≥ b, c > 0

Thus X ceases to be an absolutely continuous random variable. Nevertheless it is

characterized by the reversed lack of memory property.

In the next section we attempt a bivariate extension of this property and call it

the bivariate reversed lack of memory property (BRLMP) and investigate distributions

characterized by the same. It should be noted that multivariate extension is merely an

extension of the bivariate case and derivations are quite straight forward.

2.3 The Bivariate Reversed Lack of Memory Property

Consider a random vector X = (X1, X2) in the two dimensional space with joint

distribution function F (x1, x2) in the support of (a1, b1)× (a2, b2) ∈ R2 where

ai = inf {xi|Fi(xi) > 0} and bi = sup {xi|Fi(xi) < 1},

with F (x1, b2) = F1(x1) and F (b1, x2) = F2(x2) as the marginals of Xi, i = 1, 2.

Now we define the bivariate reversed lack of memory property as follows

Definition 2.2. A random vector X = (X1, X2) in the support of (a1, b1)× (a2, b2) ∈

R2 with ai < 0 and bi ≥ 0, i = 1, 2 is said to have the bivariate reversed lack of

memory property (BRLMP) if

P [X1 ≤ x1, X2 ≤ x2|X1 ≤ x1 + t1, X2 ≤ x2 + t2] =

P [X1 ≤ 0, X2 ≤ 0|X1 ≤ t1, X2 ≤ t2] (2.6)

for all xi and ti such that ai < xi ≤ xi + ti ≤ bi <∞, i = 1, 2.
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In terms of distribution function (2.6) can be written as

F (x1, x2)F (t1, t2) = F (x1 + t1, x2 + t2)F (0, 0) (2.7)

for all xi and ti such that ai < xi ≤ xi + ti ≤ bi <∞, i = 1, 2.

As in the univariate case, here also we assume F (0, 0) 6= 0 when ai = 0, i = 1, 2

for (2.7) to hold. From (2.6), by putting t1 = 0 and x1 = b1 it follows that

P [X2 ≤ x2|X2 ≤ x2 + t2] = P [X1 ≤ 0, X2 ≤ 0|X1 ≤ 0, X2 ≤ t2] (2.8)

for all a2 < x2 ≤ x2 + t2 ≤ b2.

For x2 = 0 it further follows that

P [X2 ≤ 0|X2 ≤ t2] = P [X1 ≤ 0, X2 ≤ 0|X1 ≤ 0, X2 ≤ t2] .

Hence (2.8) reduces to

P [X2 ≤ x2|X2 ≤ x2 + t2] = P [X2 ≤ 0|X2 ≤ t2]

for all a2 < x2 ≤ x2 + t2 ≤ b2.

In a similar manner it can be shown that

P [X1 ≤ x1|X1 ≤ x1 + t1] = P [X1 ≤ 0|X1 ≤ t1]

for all a1 < x1 ≤ x1 + t1 ≤ b1.

This implies that if (X1, X2) has bivariate reversed lack of memory property, then

the marginals satisfy reversed lack of memory property.

In the coming results we investigate the bivariate distributions characterized by the

bivariate reversed lack of memory property.
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Theorem 2.2. Let (X1, X2) be a random vector in the support of (a1, b1)× (a2, b2) ∈

R2 with ai < 0 and bi ≥ 0, i = 1, 2; then (X1, X2) satisfies the bivariate reversed

lack of memory property if and only if X1 and X2 are independently distributed and

the marginals having the reversed lack of memory property.

Proof. If X1 and X2 are independently distributed, making use of the fact that X1 and

X2 satisfy reversed lack of memory property, the bivariate reversed lack of memory

property can be verified directly.

To prove the converse, putting t2 = 0 and x2 = b2 in (2.7) we have

F (x1, b2)F (t1, 0) = F (x1 + t1, b2)F (0, 0)

for all x1 and t1 such that a1 < x1 ≤ x1 + t1 ≤ b1.

Further, for x1 = x2 = 0 gives that

F (t1, 0)

F (0, 0)
=
F1(t1)

F1(0)
, (2.9)

where Fi(ti) denotes the marginal of Xi, i = 1, 2.

Similarly, we can obtain
F (0, t2)

F (0, 0)
=
F2(t2)

F2(0)
. (2.10)

Putting ti = bi, i = 1, 2 in either (2.9) or (2.10) we get

F (0, 0) = F1(0)F2(0).

Hence it now follows from (2.9) and (2.10) that

F (t1, 0) = F1(t1)F2(0)

and

F (0, t2) = F1(0)F2(t2) (2.11)
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For x2 = 0 in (2.7) we get

F (x1, 0)F (t1, t2) = F (x1 + t1, t2)F (0, 0).

Once again by substituting t1 = 0 we get

F (x1, 0)F (0, t2) = F (x1, t2)F (0, 0).

Using (2.11), the above equation becomes

F (x1, 0)F1(0)F2(t2) = F (x1, t2)F (0, 0).

Or,

F (x1, t2) =
F (x1, 0)

F (0, 0)
F1(0)F2(t2).

By applying (2.9) we have

F (x1, t2) = F1(x1)F2(t2). (2.12)

Similarly,

F (t1, x2) = F1(t1)F2(x2). (2.13)

To see that independence holds for any ai < xi ≤ bi, put xi = bi − ti, i = 1, 2 in (2.7)

to get

F (b1 − t1, b2 − t2)F (t1, t2) = F (0, 0), ai < bi − ti ≤ bi, i = 1, 2.

Using (2.12) and (2.13),

F (b1 − t1, b2 − t2) =
F1(0)

F1(t1)

F2(0)

F2(t2)
, ai < bi − ti ≤ bi, i = 1, 2. (2.14)
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Since bivariate reversed lack of memory property implies reversed lack of memory

property it follows that X1 and X2 has the reversed lack of memory property hence

F1(b1 − t1)F1(t1) = F1(0)F1(b1)

and

F2(b2 − t2)F2(t2) = F2(0)F2(b2).

Substituting in (2.14) we get

F (b1 − t1, b2 − t2) = F1(b1 − t1)F2(b2 − t2), ai < bi − ti ≤ bi, i = 1, 2.

It now follows that

F (x1, x2) = F1(x1)F2(x2), ai < xi ≤ bi, i = 1, 2.

Hence the theorem.

For a random vector(X1, X2) with an absolutely continuous distribution function

satisfying (2.7) we can have

lnF (x1, x2) + lnF (t1, t2) = lnF (x1 + t1, x2 + t2) + lnF (0, 0) (2.15)

Differentiating (2.15) with respect to xi, i = 1, 2, we have

λ(x1, x2) = λ(x1 + t1, x2 + t2) (2.16)

where λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) is the bivariate reversed hazard gradient

(Roy (2002a)) with

λi(x1, x2) =
∂ logF (x1, x2)

∂xi
, i = 1, 2.
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If Xi’s are independent it then follows that λi(x1, x2) is λi(xi), the univariate reversed

hazard rate ofXi, i = 1, 2 defined in Section 1.2.2. Thus, under bivariate reversed lack

of memory property

λ(x1, x2) = λ(x1 + t1, x2 + t2) = (λ1(x1), λ2(x2)) = (c1, c2)

for some ci > 0, i = 1, 2. It now follows from Block et al. (1998) thatXi has a support

ai = −∞, bi <∞, i = 1, 2 and is distributed as (2.5).

From the above discussions we have the following theorem.

Theorem 2.3. An absolutely continuous random vector (X1, X2) with distribution

function F (x1, x2) with support in (a1, b1) × (a2, b2) ∈ R2, bi ≥ 0, i = 1, 2 satis-

fies the bivariate reversed lack of memory property

F (x1, x2)F (t1, t2) = F (x1 + t1, x2 + t2)F (0, 0) (2.17)

for all xi and ti such that ai < xi ≤ xi + ti ≤ bi < ∞, i = 1, 2, if and only if the

following equivalent conditions hold.

1. Xi’s are independently distributed as

F (xi) =

 exp [ci (xi − bi)] , xi < bi

1, xi ≥ bi, ci > 0, i = 1, 2.
(2.18)

2. The bivariate reversed hazard gradient

λ(x1, x2) = (λ1(x1, x2), λ2(x1, x2)) = (c1, c2)

where λi(x1, x2) = ∂ logF (x1,x2)
∂xi

, i = 1, 2 for any constants c1, c2 > 0.

Proof. From Theorem 2.2 it follows that (2.17) implies X1 and X2 are independently

distributed and the marginals satisfy the reversed lack of memory property. Hence
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from Theorem 2.1 it follows that Xi’s are distributed as in (2.18). Since Xi’s are in-

dependent, the bivariate reversed hazard gradient λ(x1, x2) = (λ1(x1), λ2(x2)) where

λi(xi), i = 1, 2 is the univariate reversed hazard rate. That (2.18) is characterized

by constancy of reversed hazard rate follows from Block et al. (1998). Hence the

theorem.

Thus the class of distributions characterized by the bivariate reversed lack of mem-

ory property is the class of distributions possessing constant bivariate reversed hazard

gradient.

The bivariate reversed lack of memory property is too strong generalization of the

reversed lack of memory property as the distribution function F (x1, x2) that satisfies

(2.17) is the subclass of trivial bivariate extreme value Type 3 distribution which is the

product of its marginals. A meaningful relaxation of (2.17) is

P [X1 ≤ x1, X2 ≤ x2|X1 ≤ x1 + t,X2 ≤ x2 + t] =

P [X1 ≤ 0, X2 ≤ 0|X1 ≤ t,X2 ≤ t] (2.19)

for all xi and t such that ai < xi ≤ xi + t ≤ bi <∞, i = 1, 2.

In terms of the distribution function this can be written as

F (x1, x2)F (t, t) = F (x1 + t, x2 + t)F (0, 0) (2.20)

for all xi and t such that ai < xi ≤ xi + t ≤ bi <∞, i = 1, 2.

We shall term this property as BRLMP(1). This is the dual of the bivariate lack of

memory property (BLMP) (Galambos and Kotz (1978)).

In particular, for x1 ≥ x2, put t = b1 − x1 in (2.20) to get

F (x1, x2) =
F (0, 0)F2 (b1 − (x1 − x2))

F (b1 − x1, b1 − x1)
. (2.21)

Similarly for x1 ≤ x2 putting t = b2 − x2, we get
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F (x1, x2) =
F (0, 0)F1 (b2 − (x2 − x1))

F (b2 − x2, b2 − x2)
. (2.22)

Further for x1 = x2, the equation (2.20) reduces to

F (x, x)F (t, t) = F (x+ t, x+ t)F (0, 0), a < x ≤ x+ t ≤ b

which reduces to the Cauchy functional equation

H(x)H(t) = H(x+ t), a < x ≤ x+ t ≤ b (2.23)

where

H(x) =
F (x, x)

F (0, 0)
.

Solving for (2.23) (Aczel (1966)), we have

H(x) = exp (cx) , a < x ≤ b

for some constant c.

Since F (x, x) is a distribution function, F (b, b) = 1 and hence it follows that

F (x, x) = exp [c (x− b)] , a < x ≤ b, c > 0. (2.24)

Thus, substituting (2.24) in (2.21) and (2.22) the general form of distribution satisfying

BRLMP(1) is

F (x1, x2) =

 ec(x2−b2)F1 (b2 − (x2 − x1)) , x1 ≤ x2

ec(x1−b1)F2 (b1 − (x1 − x2)) , x1 ≥ x2,
(2.25)

for ai < xi ≤ bi, c > 0, i = 1, 2 .
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Observe that (2.25) is the distribution of Z = max (X1, X2) and Z has an abso-

lutely continuous distribution function only when ai = −∞, i = 1, 2.

The next theorem discusses a bivariate distribution with absolutely continuous

marginals characterized by the BRLMP(1).

Theorem 2.4. Let (X1, X2) be a random vector with marginals specified by

Fi(xi) = exp [ci (xi − bi)] ,−∞ < xi ≤ bi, bi > 0, ci > 0, i = 1, 2, (2.26)

then (X1, X2) satisfy the BRLMP(1) if and only if the distribution of (X1, X2) is given

by

F (x1, x2) = exp [c1 (x1 − b1) + c2 (x2 − b2) + c12 max (x1 − b1, x2 − b2)] , (2.27)

−∞ < xi ≤ bi, ci > 0, i = 1, 2, c12 ≥ 0.

Proof. Let the BRLMP(1) be satisfied, then it follows that

F (x1, x2) =

 ec(x2−b2)F1 (b2 − (x2 − x1)) , x1 ≤ x2

ec(x1−b1)F2 (b1 − (x1 − x2)) , x1 ≥ x2

Given that the marginals are specified as in (2.26) we get

F (x1, x2) =

 exp [c1 (x1 − b1) + c2 (x2 − b2) + (c− c1 − c2) (x2 − b2)] , x1 ≤ x2

exp [c1 (x1 − b1) + c2 (x2 − b2) + (c− c1 − c2) (x1 − b1)] , x1 ≥ x2

Writing(c− c1 − c2) = c12, we retrieve the form (2.27). The converse is quite straight

forward.

Remark 2.1. Even though marginals are absolutely continuous, the bivariate distri-

bution (2.27) is not the same. Also when (X1, X2) is having a nonnegative support
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with marginal specified as (2.26), then

F (x1, x2) = Fd + Fc + Fac,

where

Fd =

 e−cibi , xi = 0, x3−i = bi, i = 1, 2

e−c1b1−c2b2+c12 max(−b1,−b2), xi = 0, i = 1, 2
,

Fc = ec1(x−b1)+c2(x−b2)+c12 max(x−b1,x−b2), x1 = x2 = x,

and

Fac = exp [c1 (x1 − b1) + c2 (x2 − b2) + c12 max (x1 − b1, x2 − b2)] ,

for all 0 < xi ≤ bi, ci > 0, i = 1, 2, c12 ≥ 0.

Thus we observe that the boundary class of distributions of the increasing bivariate

reversed hazard rate class and decreasing bivariate reversed hazard rate class does not

consist of absolutely continuous distributions.

Theorem 2.5. A random vector (X1, X2) with distribution function F (x1, x2)with

support in (a1, b1) × (a2, b2) ∈ R2, bi ≥ 0, i = 1, 2 satisfies the BRLMP(1) if and

only if the following conditions are satisfied.

1. Z = max (X1, X2) is distributed as

P [Z ≤ z] = exp [c (z − b)] ,−∞ < z ≤ b, b ≥ 0. (2.28)

2. Z and T = |X2 −X1| are mutually independent.

Proof. From equation (2.25) it follows that if BRLMP(1) is satisfied Z and T are

independent. Conversely, let Z and T be independent with Z distributed as (2.28). We
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then have for −∞ < x1 ≤ x2 ≤ b2,

F (x1, x2) = F (x1, x1) + P [X1 ≤ x1, x1 ≤ X2 ≤ x2]

= F (x1, x1) +

∫ x2

x1

P [T > z − x1]
dP [Z ≤ z]

dz

= F (x1, x1) +

∫ x2

x1

P [T > z − x1]
dec(z−b)

dz
.

We further have that for a fixed x1,

∂

∂x2

F (x1, x2) = P [T > x2 − x1] cec(x2−b2) (2.29)

Also,

∂

∂x2

F (x1 + t, x2 + t) = P [T > x2 − x1] cec(x2+t−b2)

= P [T > x2 − x1] cec(x2−b2)ect.

From (2.28) and (2.29) this can be equivalently written as

∂

∂x2

F (x1 + t, x2 + t) =
F (t, t)

F (0, 0)

∂

∂x2

F (x1, x2).

Integrating with respect to x2,

F (x1 + t, x2 + t)F (0, 0) = F (x1, x2)F (t, t),−∞ < x1 ≤ x2 ≤ b2.

Similar computations holds for −∞ < x2 ≤ x1 ≤ b1.

Hence the result.

The following characterization is now evident.

Corollary 2.1. A random vector (X1, X2) with distribution function with support in

(a1, b1)× (a2, b2) ∈ R2, bi ≥ 0, i = 1, 2 specified in (2.27) if and only if the following
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conditions hold.

1. The marginal distributions of Xi, i = 1, 2 are specified by (2.26).

2. Z = max (X1, X2) is distributed as (2.28).

3. Z and T = |X2 −X1| are mutually independent.



Chapter 3

Generalized Reversed Lack of

Memory Property

3.1 Introduction

In this Chapter we generalize the reversed lack of memory property which involves

operations different than the addition. In particular we shall consider an associative,

binary operator ∗.

A binary operator ∗ over real numbers is said to be associative if

(x ∗ y) ∗ z = x ∗ (y ∗ z) (3.1)

for all real numbers x, y, z. The binary operation ∗ is said to be reducible if x∗y = x∗z

if and only if y = z and if y ∗ w = z ∗ w if and only if y = z. The general reducible

continuous solution of the functional equation (3.1) is (Aczel (1966)),

x ∗ y = g−1(g(x) + g(y)) (3.2)

where g(.) is a continuous and strictly monotone function provided x, y, x ∗ y belong

to a fixed interval A in the real line. The function g(.) in (3.2) is determined up to

43
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a multiplicative constant; g−1
1 (g1(x) + g1(y)) = g−1

2 (g2(x) + g2(y)) for all x, y in a

fixed interval A, implies g2 = αg1 for all x in that interval, for α 6= 0. We assume

hereafter that the binary operation is reducible and associative with the function g(.)

continuous and strictly increasing. Further more assume that there exists an identity

element ẽ ∈ R̃ such that

x ∗ ẽ = x, x ∈ A (3.3)

Further more every continuous, reducible and associative operation defined on an in-

terval A in the real line is commutative (Aczel (1966)). Let X be a random variable

with distribution function F (x) having support A. Define

Φ∗X(s) =

∫
A

exp{isg(x)}dF (x),−∞ < s <∞,

Note that the above function is the characteristic function of the random variable g(X)

and hence determine the distribution function of the random variable g(X) uniquely.

Characterization of distributions through binary operations is given in Muliere and

Scarcini (1987) and Muliere and Prakasa Rao (2003). In Prakasa Rao (2004), the bi-

variate lack of memory property (Roy (2002b)) is generalized and classes of bivariate

probability distributions which include bivariate exponential, Weibull, Pareto distribu-

tions are characterized under binary associative operations. Also implication of these

characterizations on hazard rate is considered in Prakasa Rao (2004).

In this chapter, we generalize the reversed lack of memory property and character-

ize probability distributions using this property. In Section 3.2, the univariate reversed

lack of memory property is generalized using the binary operation and a class of prob-

ability distributions which include Type 3 extreme value, power function, reflected

Weibull, negative Pareto and truncated extreme value distributions are characterized.

In Section 3.3, we studied the almost reversed lack of memory property and considered

the distributions with reversed periodic hazard rate under the binary operation. Unlike

the situation for the univariate case, there is more than one way in which a model can
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be extended to the multivariate case. In Section 3.4, we give a bivariate extension of

the generalized reversed lack of memory property and characterize a class of bivariate

distributions which include the characterized extension (CE) model of Roy (2002a)

apart from the bivariate reflected Weibull and power function distributions. We also

prove the equality of local proportionality of the reversed hazard rate and generalized

reversed lack of memory property. A few characterizations of the model are also dis-

cussed.

3.2 Univariate Characterizations

Here we shall extend the reversed lack of memory property discussed in the previous

Chapter using a binary associative operator ∗.

Definition 3.1. Let X be a random variable having distribution function F (x) and

survival function R(x) with support (a, b) where a < 0 and b ≥ 0 . Then X is said to

have the generalized reversed lack of memory property (GRLMP) if

P (X ≤ x|X ≤ x ∗ t) = P (X ≤ e|X ≤ t) (3.4)

for all a < x < x ∗ t ≤ b < ∞, a ≤ e, where the binary operator ∗ is associative

specified by (3.1) and its continuous solution is given by (3.2).

In terms of the distribution function, (3.4) can be written as

F (x)F (t) = F (x ∗ t)F (e), (3.5)

for all a < x < x ∗ t ≤ b <∞, a ≤ e.

A class of distributions characterized by the generalized reversed lack of memory

property is given in the following theorem which show that the continuous solution of

(3.5) are generalized proportional reversed hazards (PRH) models.
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Theorem 3.1. The continuous solution of (3.5) is

F (x) = exp[c(g(x)− g(b))] (3.6)

with c > 0 and g−1(−∞) < x < b <∞ where g is a continuous and strictly monotone

function.

Proof. Combining (3.2) and (3.5) we have

F (x)F (t) = F
[
g−1(g(x) + g(t))

]
F (e) (3.7)

Writing s = g(x), u = g(t) and F ◦ g−1 = H , (3.7) can be rewritten as

H(s)H(u) = H(s+ u)H(g(e))

for all −∞ < s < g(b) and g(e) ≤ u ≤ g(b) which implies

G(s)G(u) = G(s+ u),

where G(s) = H(s)
H(g(e))

for all −∞ < s < g(b) and g(e) ≤ u ≤ g(b).

The solution to the above Cauchy functional equation is (Aczel (1966))

G(s) = ecs,−∞ < s < g(b), c > 0.

Thus we have

F (x) = ecg(x)F (e), x ∈
(
g−1(−∞), b

)
. (3.8)

Now taking x = b we get,

F (e) = e−cg(b).
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Thus (3.8) reduces to

F (x) =

 exp [c (g(x)− g(b))] , x ∈ (g−1(−∞), b)

1, x ≥ b, c > 0, b <∞

Hence the theorem.

Remark 3.1. If we particularize the operation ∗ we obtain different types of distribu-

tions. We now present a few members of this class.

Example 3.1. Type 3 extreme value distribution (Gumbel (1958), Castillo and Hadi

(1995)).

For x ∗ y=x+ y, we get g(x) = x, x ∈ (−∞, b) with a = −∞, b <∞ and e = 0.

The distribution function is now given by

F (x) =

 exp [c (x− b)] , x < b

1, x ≥ b, c > 0, b <∞

The lack of memory property for exponential distribution can be reduced from reversed

lack of memory property as given below.

We have the reversed lack of memory property is given by

P [X ≤ x]P [X ≤ t] = P [X ≤ x+ t]P [X ≤ 0]

for all −∞ < x ≤ x+ t ≤ b <∞ which implies

P [−X ≥ −x]P [−X ≥ −t] = P [−X ≥ −(x+ t)]P [−X ≥ 0]

or,

P [b−X ≥ b− x]P [b−X ≥ b− t] = P [b−X ≥ b− (x+ t)]P [b−X ≥ b] .
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Taking Y = b−X , the above equation can be expressed as

P [Y ≥ b− x]P [Y ≥ b− t] = P [Y ≥ b− (x+ t)]P [Y ≥ b] . (3.9)

From Johnson et al. (1995), it follows that ifX has a Type 3 extreme value distribution

in the support of (−∞, b), b <∞, then Y = b−X follows an exponential distribution

in the interval (0,∞).

Hence

P [Y ≥ b− (x+ t)]P [Y ≥ b] = e−c[b−(x+t)]e−cb

= e−c[(b−x)+(b−t)]

= P [Y ≥ (b− x) + (b− t)] .

Thus (3.9) reduces to

P [Y ≥ b− x]P [Y ≥ b− t] = P [Y ≥ (b− x) + (b− t)]

which implies

P [Y ≥ x′]P [Y ≥ t′] = P [Y ≥ x′ + t′]

or

R(x′)R(t′) = R(x′ + t′)

where x′ = b− x, t′ = b− t and R(x′) = 1− F (x′), the survival function. Hence the

result.

Example 3.2. Power function distribution.

1. For x ∗ y=xy, we get g(x) = log x, x ∈ (0, b) with b < ∞ and e = 1. In this

case the distribution function is given by
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F (x) =


(
x
b

)c
, 0 ≤ x < b

1, x ≥ b, c > 0

which is the distribution function for the power function distribution.

The dullness property for Pareto distribution can be reduced from the general-

ized reversed lack of memory property as follows.

Here the reversed lack of memory property becomes

P [X ≤ x]P [X ≤ t] = P [X ≤ xt]P [X ≤ 1]

for all 0 ≤ x ≤ b, 1 ≤ x ≤ b and xt ≤ b which implies

P

[
b

X
≥ b

x

]
P

[
b

X
≥ b

t

]
= P

[
b

X
≥ b

xt

]
P

[
b

X
≥ b

]
.

Taking Y = b
X

, the above equation can be written as

P

[
Y ≥ b

x

]
P

[
Y ≥ b

t

]
= P

[
Y ≥ b

xt

]
P [Y ≥ b] . (3.10)

From Johnson et al. (1995), it follows that ifX has a power function distribution

in the support of (0, b), b < ∞, then Y = b
X

follows the Pareto distribution in

the interval (1,∞).

Hence

P

[
Y ≥ b

xt

]
P [Y ≥ b] =

(
b

xt

)−(c+1)

b−(c+1)

=

(
b

x

b

t

)−(c+1)

= P

(
Y ≥ b

x

b

t

)
.
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Thus (3.10) reduces to

P

(
Y ≥ b

x

)
P

(
Y ≥ b

t

)
= P

(
Y ≥ b

x

b

t

)
.

Or,

R(x′)R(t′) = R(x′t′)

where x′ = b
x
, t′ = b

t
and R(x′) = 1 − F (x′), the survival function. Hence the

result.

2. For x ∗ y=x + y + xy, we get g(x) = log(x + 1), x ∈ (−1, b) with b < ∞ and

e = 0. In this case the distribution function is given by

F (x) =


(
x+1
b+1

)c
,−1 ≤ x < b

1, x ≥ b, c > 0

which is the distribution function for the power function distribution in the sup-

port of (−1, b) with b <∞.

Example 3.3. Reflected Weibull distribution (Lai and Xie (2005)).

If we take x ∗ y =
√
x2 + y2, we get g(x) = −x2, x ∈ (−∞, 0) with e = 0. The

corresponding distribution function is given by

F (x) =

 exp [−cx2] , x < 0

1, x ≥ 0, c > 0,

which is the distribution function for a reflected Weibull distribution.

Example 3.4. Negative Pareto distribution (Malinowska and Szynal (2008)).

For x ∗ y = x+ y − xy, we get g(x) = − log(1− x), x ∈ (−∞, 0) with e = 0. In

this case the distribution function is given by

F (x) =

 (1− x)−c , x < 0

1, x ≥ 0, c > 1
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Remark 3.2. Malinowska and Szynal (2008) characterized a class of continuous dis-

tributions by the conditional expectation of the kth lower record values and this class

contains the distributions discussed above. Thus the above class can be considered as

a subclass of Malinowska and Szynal (2008).

Remark 3.3. If X is a random variable in the support of (g−1(e), b) with F (e) 6= 0,

then X satisfies the generalized reversed lack of memory property if and only if

F (x) =

 exp [c (g(x)− g(b))] , x ∈ (g−1(−∞), b)

1, x ≥ b, c > 0, b <∞

which has a probability mass at x = g−1(e). Thus there exist no absolutely continuous

distribution satisfying generalized reversed lack of memory in the interval (g−1(e), b).

Remark 3.4. The distribution specified in (3.6) can be considered as a proportional

reversed hazard (PRH) model, since F (x) can be written as F (x) = [F ∗(x)]c, where

F ∗(x) = exp [g(x)− g(b)], g−1(−∞) < x < b and c > 0. Then the reversed hazard

rate can be expressed as λ(x) = cλ∗(x), c > 0 where λ∗(x) is the reversed haz-

ard rate of F ∗(x). Hence, all the distributions discussed above can be considered as

proportional reversed hazard models.

In the next section we studied about the almost reversed lack of memory property.

3.3 Almost Reversed Lack of Memory Property

A random variable X is said to have the almost reversed lack of memory property

(ARLMP) if the equation (3.4) holds for a sequence a < xn < b, n ≥ 1 for all

0 ≤ t ≤ b.

Suppose that ∗ is a binary operation with an identity element e ∈
∼
R and further

suppose that the equation (3.5) holds for a random variable X , with a continuous dis-

tribution function F with support (g−1(−∞), b), for a sequence g−1(−∞) < xn < b,
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n ≥ 1 for all e ≤ t ≤ b. Here g(.) is the continuous strictly increasing function

corresponding to the binary associative operation ∗. Equation (3.5) implies that

F (xn ∗ t)F (e) = F (xn)F (t), n ≥ 1 (3.11)

A random variable X satisfying the equation (3.11) is said to have the almost reversed

lack of memory property under the binary associative operation ∗.

We now characterize the class of all such distributions. Equation (3.11) shows that

F
[
g−1 (g (xn) + g (t))

]
F (e) = F (xn)F (t), n ≥ 1 (3.12)

Let g(xn) = un, g(t) = d and F ◦ g−1 = H , then (3.12) becomes

H(un + d)H(g(e)) = H(un)H(d), n ≥ 1.

Or,

G(un + d) = G(un)G(d), where G(un) = H(un)
H(g(e))

.

Applying the results from Lau and Rao (1984), we get

G(u) = p1(u)ec1u + p2(u)ec2u (3.13)

for some c1, c2 ∈ R ( c1 may be equal to c2) and the function pi(u) has period d such

that 0 < pi(x+ d) = pi(x), i = 1, 2.

Let us take c1 = c2. Then (3.13) becomes

H(un)

H(g(e))
= [p1(u) + p2(u)]ecu

which implies

F
(
g−1(g(x))

)
= [p1(g(x)) + p2(g(x))]ecg(x)F (e) (3.14)
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Since F (b) = 1, we have

F (e) = [p1(g(b)) + p2(g(b))]−1e−cg(b).

Hence,

F (x) =
[p1(g(x)) + p2(g(x))]

[p1(g(b)) + p2(g(b))]
exp (c[g(x)− g(b)]) , (3.15)

for all x ∈ (g−1(−∞), b), c > 0.

Thus, we have the following result.

Theorem 3.2. A random variable X with a continuous distribution function has the

almost reversed lack of memory property under a binary operation ∗ as described

above if and only if its distribution function F is of the form (3.15), where g(.) is the

continuous strictly increasing function corresponding to the binary associative opera-

tion ∗ and pi(.) is a periodic function with period d for some constant d > 0 such that

xn = nd, n ≥ 1.

Remark 3.5. It is easy to see that

p (g(x) + d) = p (g(x))

which implies that

p
(
g(x) + g(g−1(d))

)
= p (g(x))

or,

p
(
g(x ∗ g−1(d))

)
= p (g(x)) , x ∈

(
g−1(−∞), b

)
or,

(p ◦ g) (x ∗ ρ) = (p ◦ g) (x) ,

for all x ∈ (g−1(−∞), b) and for some constant ρ > g−1(−∞) where (p ◦ g) (x) =

p(g(x)).
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In other words the function (p◦ g) (.) is periodic under the operation ∗ with period

ρ.

Remark 3.6. For different forms for the binary operator ∗, we get different members

of the family (3.15) which are given in Table 3.1.

3.3.1 Distributions with reversed periodic failure rate under the

binary operation ∗.

Consider a binary operation ∗ with an identity e as described earlier. Let g(.) be the

corresponding continuous strictly increasing function such that

x ∗ y = g−1 [g(x) + g(y)] .

Let X be random variable with a continuous distribution function of the form

F (x) =
[p1(g(x)) + p2(g(x))]

[p1(g(b)) + p2(g(b))]
exp (c[g(x)− g(b)]) ,

for all x ∈ (g−1(−∞), b), c > 0 and (pi◦g) (.), i = 1, 2 is periodic under the operation

∗ with period ρ > g−1(−∞).

Suppose the function p(g(.)) is differentiable with respect to x. Then the probabil-

ity density function of X is given by

f(x) = 1
[p1(g(b))+[p2(g(b))]

{c[p1(g(x)) + p2(g(x))] exp(c[g(x)− g(b)])g′(x)

+ exp(c[g(x)− g(b)])[p′1(g(x)) + p′2(g(x))]}

for all x ∈ (g−1(−∞), b).

Then the reversed failure rate is given by,

λ(x) =
f(x)

F (x)
= cg′(x) +

[p′1(g(x)) + p′2(g(x))]

[p1(g(b)) + p2(g(b))]
,
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for all x ∈ (g−1(−∞), b).

It is easy to see that

(p ◦ g) (x ∗ ρ) = (p ◦ g) (x)

and

(p′ ◦ g) (x ∗ ρ) g′ (x ∗ ρ) = (p′ ◦ g) (x) g′ (x)

for x ∈ (g−1(−∞), b) from the periodicity of the function (p ◦ g) (.) under the binary

operation ∗ with period ρ.

Further more,

g(x ∗ ρ) = g(x) + g(ρ), x ∈
(
g−1(−∞), b

)
and hence

g′(x ∗ ρ) = g′(x), x ∈
(
g−1(−∞), b

)
.

Therefore,

λ(x ∗ ρ) = λ(x), x ∈ (g−1(−∞), b) with F (x ∗ ρ) < 1.

This shows that the distribution function F has reversed periodic failure rate with

period ρ under the binary operation ∗.

3.4 Bivariate Extension

In this section we evolve the concept of generalized reversed lack of memory property

to higher dimensions. In Roy (2002a) a distribution free characterization of models

retaining the local proportionality, that is λi(x1, x2) must be locally proportional to

λi(xi) where the constant of proportionality, ci(x3−i), using dependence only on x3−i,

i = 1, 2, is given. The above model is referred to as the characterized extension

model. Here we extend the generalized reversed lack of memory property so that it

characterizes the characterized extension model and since the local proportionality of
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the reversed hazard rate is maintained we term it the generalized reversed local lack of

memory property (GRLLMP).

Definition 3.2. A random vector X = (X1, X2) in the support of (a1, b1)× (a2, b2) ∈

R2 with ai < 0 and bi ≥ 0, i = 1, 2 is said to have the generalized reversed local lack

of memory property (GRLLMP) if

P (Xi ≤ xi|Xi ≤ xi ∗ ti, Xj ≤ xj) = P (Xi ≤ e|Xi ≤ ti, Xj ≤ xj) (3.16)

for all xi and ti such that ai < xi ≤ xi ∗ ti ≤ bi, ai ≤ e, e ≤ ti ≤ bi; i, j = 1, 2; i 6= j,

F (e) 6= 0.

For i = 1, (3.16) can be expressed in terms of distribution function as

F (x1, x2)F (t1, x2) = F (x1 ∗ t1, x2)F (e, x2) (3.17)

for all x1 and t1 such that a1 < x1 ≤ x1 ∗ t1 ≤ b1 <∞, a1 ≤ e, e ≤ t1 ≤ b1.

As x3−i → bi we get

Fi (xi)Fi (ti) = Fi (xi ∗ ti)Fi (e) ,

for all xi and ti such that a < xi ≤ xi ∗ ti ≤ bi <∞, ai ≤ e, i = 1, 2.

It hence follows from Theorem 3.1 that

Fi(xi) =

 exp [ci (g(xi)− g(bi))] , g
−1(−∞) < xi ≤ bi

1, xi ≥ bi, ci > 0, i = 1, 2
(3.18)

Now combining (3.17) and (3.2) we get

F
(
g−1 (g(x1) + g(t1)) , x2

)
F (e, x2) = F (x1, x2)F (t1, x2).
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By taking si = g(xi), i = 1, 2, u1 = g(t1), F ◦ g−1 = H , we can write

H(s1 + u1, s2)H(g(e), s2) = H(s1, s2)H(u1, s2)

for all g(ai) < si ≤ g(bi), i = 1, 2 and g(e) ≤ u1 ≤ g(b1), which gives

G(s1 + u1, s2) = G(s1, s2)G(u1, s2) (3.19)

for all g(ai) < si ≤ g(bi), i = 1, 2 and g(e) ≤ u1 ≤ g(b1) whereG(s1, s2) = H(s1,s2)
H(g(e),s2)

.

In a similar manner, we get

G(s1, s2 + u2) = G(s1, s2)G(s1, u2) (3.20)

for all g(ai) < si ≤ g(bi), i = 1, 2 and g(e) ≤ u2 ≤ g(b2) whereG(s1, s2) = H(s1,s2)
H(s1,g(e))

.

In (3.19), s2 can be interpreted as a fixed parameter. Hence (3.19) reduces directly

to the functional equation as

fs2(s1 + u1) = fs2(s1)fs2(u1).

Because of the assumed positivity of G(s1, s2), it follows that (Aczel (1966))

fs2(s1) = exp [c(s2)s1]

where the constant c naturally still depends on the parameter s2.

Thus,

G(s1, s2) = exp [c(s2)s1] .

If we substitute this into (3.20), then

c(s2 + u2) = c(s2)c(u2)
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Again appealing to the positivity of G(s1, s2), we have

c(s2) = cs2,

so that

G(s1, s2) = exp [cs1s2] , g(ai) < si ≤ g(bi), i = 1, 2; c > 0

which implies

H(s1, s2)

H(g(e), s2)
= exp [cs1s2] , g(ai) < si ≤ g(bi), i = 1, 2; c > 0

or

F (x1, x2) = exp [cg(x1)g(x2)]F (e, x2),

for all g−1(−∞) < xi ≤ bi, i = 1, 2 and c > 0.

As x1 → b1, we get

F2(x2) = exp [cg(b1)g(x2)]F (e, x2), g−1(a2) < x2 ≤ b2.

Thus, it follows that

F (x1, x2) = exp [cg(x2) {g(x1)− g(b1)}+ c2 {g(x2)− g(b2)}] , (3.21)

for all g−1(−∞) < xi ≤ bi, i = 1, 2 and c, c2 > 0.

Proceeding similarly and using (3.18) we have

F (x1, x2) = exp [cg(x1) {g(x2)− g(b2)}+ c1 {g(x1)− g(b1)}] , (3.22)

for all g−1(−∞) < xi ≤ bi, i = 1, 2 and c, c1 > 0.
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Identifying (3.21) and (3.22) we have

cg(x2) [g(x1)− g(b1)]+c2 [g(x2)− g(b2)] = cg(x1) [g(x2)− g(b2)]+c1 [g(x1)− g(b1)]

or,
cg(x2)− c1

g(x2)− g(b2)
=

cg(x1)− c2

g(x1)− g(b1)

which implies
cg(xi)− cj
g(xi)− g(bi)

= θ,

a constant independent of xi and xj with c1c2 > θ ≥ 0, i, j = 1, 2; i 6= j.

Thus,

cg(xi) = cj + θ [g(xi)− g(bi)] , i, j = 1, 2; i 6= j. (3.23)

Substituting (3.23) in (3.21) or (3.22), we get

F (x1, x2) = exp {c1 [g(x1)− g(b1)] + c2 [g(x2)− g(b2)]

+ θ [g(x1)− g(b1)] [g(x2)− g(b2)] (3.24)

for all g−1(−∞) < xi ≤ bi <∞, ci > 0, i = 1, 2 and c1c2 > θ ≥ 0.

Remark 3.7. The variables X1 and X2 are independent if and only if θ = 0.

Remark 3.8. For different forms for the binary operator ∗ , we get different members

of this family which are given in Table 3.2.

3.4.1 Characterizations

In Roy (2002a) a distribution free characterization of models retaining the local propor-

tionality, that is λi(x1, x2) must be locally proportional to λi(xi) where the constant

of proportionality, ci(x3−i), using dependence only on x3−i, i = 1, 2, is given. The

above property uniquely determines the model referred to as the characterized exten-
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sion model (Roy (2002a)) which is given by

F (x1, x2) = F1(x1)F2(x2) exp {−γ (logF1(x1)) (logF2(x2))}

for some γ.

In this section we establish the equality of the reversed local lack of memory prop-

erty and local proportionality of the bivariate reversed hazard rate, thus giving a more

explicit form to the characterized extension model of (Roy (2002a)). The results are

summarized in the following theorem.

Theorem 3.3. A continuous random vector X = (X1, X2) in the support of (a1, b1)×

(a2, b2) ∈ R2 with ai < 0 and bi ≥ 0, i = 1, 2 has a distribution specified by (3.24) if

and only if the vector valued reversed hazard rate function is of the form

λ (x1, x2) = (k1(x2)g′(x1), k2(x1)g′(x2))

where ki(xj) is a function of xj alone with ki(bj) = ci, i, j = 1, 2; i 6= j and g(.) is a

continuous, monotone increasing function.

Proof. Assume that λ (x1, x2) has the above form. Then from Roy (2002a), we have

F (x1, x2) = exp

{
−
∫ b1

x1

r1(u, b2)du−
∫ b2

x2

r2(x1, v)dv

}
= exp [c1 [g(x1)− g(b1)] + k2(x1) [g(x2)− g(b2)]]

(3.25)

and

F (x1, x2) = exp [k1(x2) [g(x1)− g(b1)] + c2 [g(x2)− g(b2)]] . (3.26)

Comparing (3.25) and (3.26),

c1 [g(x1)− g(b1)]+k2(x1) [g(x2)− g(b2)] = k1(x2) [g(x1)− g(b1)]+c2 [g(x2)− g(b2)]
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or,
k1(x2)− c1

g(x2)− g(b2)
=

k2(x1)− c2

g(x1)− g(b1)

holding for all x1, x2 which is in fact true if and only if,

ki(xj) = ci + θ [g(xj)− g(bj)] , i, j = 1, 2; i 6= j

where θ is independent of x1 and x2. Substituting this in (3.25) or (3.26) we have the

distribution function of the required form. The converse is straightforward.

For the distribution (3.18), the reversed hazard rate λi(xi), i = 1, 2 is given by

λi(xi),= cig
′(xi), i = 1, 2.

Hence the above theorem restated as follows.

Theorem 3.4. A continuous random vector X = (X1, X2) in the support of (a1, b1)×

(a2, b2) ∈ R2 with ai < 0 and bi ≥ 0, i = 1, 2 has a distribution specified by (3.24) if

and only if the vector valued reversed hazard rate function is of the form

λ (x1, x2) = (k1(x2)λ1(x1), k2(x1)λ2(x2))

where λi(xi) is the univariate reversed hazard rate and ki(xj) is a function of xj alone

with ki(bj) = 1, i, j = 1, 2; i 6= j.

Events of the form Xj ≤ xj , where Xj represents a continuous random variable

are of specific interest in various fields of applied resrearch. In the bivariate set up

it is possible to have access on information about the behaviour of the variable Xi

given that Xj ≤ xj , i, j = 1, 2; i 6= j and therefore there is some apparent interest

in characterizing the joint distribution of (X1, X2) given the forms of the conditional

distribution of Xi given that Xj ≤ xj .
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If the distribution function of X = (X1, X2) is of the form (3.24), we have

P (Xi ≤ xi|Xj ≤ xj) = exp ci[g(xi)− g(bi)] + θ[g(xi)− g(bi)][g(xj)− g(bj)]

so that differentiation with respect to xi yields

f(xi|Xj ≤ xj) = [ci + θ[g(xj)− g(bj)]]g
′(xi) exp ci[g(xi)− g(bi)]

+ θ[g(xi)− g(bi)][g(xj)− g(bj)]

which is in the exponentiated form.

Conversely, assuming f(xi|Xj ≤ xj) are of exponentiated form, it should be of the

form

f(xi|Xj ≤ xj) = ci(xj) exp {ci(xj) [g(xi)− g(bi)]} g′(xi)

and therefore

P (Xi ≤ xi|Xj ≤ xj) = exp {ci(xj) [g(xi)− g(bi)]} (3.27)

Putting xj = bj in (3.27) we have

P (Xi ≤ xi) = exp {ci [g(xi)− g(bi)]}, whereci = ci(bj).

Thus, the joint distribution function can be written either as

F (x1, x2) = P (X1 ≤ x1|X2 ≤ x2)P (X2 ≤ x2)

= exp {c1(x2) [g(x1)− g(b1)] + c2 [g(x2)− g(b2)]}
(3.28)

or
F (x1, x2) = P (X2 ≤ x2|X1 ≤ x1)P (X1 ≤ x1)

= exp {c1 [g(x1)− g(b1)] + c2(x1) [g(x2)− g(b2)]} .
(3.29)
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Equating (3.28) and (3.29)

c1(x2) [g(x1)− g(b1)]+c2 [g(x2)− g(b2)] = c1 [g(x1)− g(b1)]+c2(x1) [g(x2)− g(b2)]

which after rearrangement yields,

c1(x2)− c1

g(x2)− g(b2)
=

c2(x1)− c2

g(x1)− g(b1)

for all ai < xi ≤ bi, i = 1, 2.

Using similar arguments, we find that

ci(xj) = ci + θ [g(xj)− g(bj)] , i, j = 1, 2; i 6= j (3.30)

where θ is a constant. Substituting (3.30) in (3.28) or (3.29), we arrive at (3.24) and

this completes the proof.

Thus, we have the following result.

Theorem 3.5. Let X = (X1, X2) be a bivariate random vector in the support of

(a1, b1) × (a2, b2) ∈ R2 with ai < 0 and bi ≥ 0, i = 1, 2 admitting an absolutely

continuous distribution with respect to a Lebesgue measure. The distribution function

of X is of the form (3.24) with continuous and strictly increasing g(.) if and only if for

every ai < xi ≤ bi, the conditional densities f(xi|Xj ≤ xj), i, j = 1, 2; i 6= j are in

the exponentiated form.

Summarizing all the above, we have the following.

Theorem 3.6. For an absolutely continuous random vector X = (X1, X2) in the

support of (a1, b1) × (a2, b2) ∈ R2 with ai < 0 and bi ≥ 0, i = 1, 2, the following

statements are equivalent.

1. X = (X1, X2) satisfies the GRLLMP specified by (3.16).

2. The distribution function of X = (X1, X2) is (3.24).
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3. The bivariate reversed hazard rate of X = (X1, X2) is of the form

λ (x1, x2) = (k1(x2)λ1(x1), k2(x1)λ2(x2)) ,

where λi(xi) is the univariate reversed hazard rate and ki(xj) is a function of xj

alone with ki(bj) = 1, i, j = 1, 2; i 6= j.

4. The conditional densities f(xi|Xj ≤ xj), i, j = 1, 2; i 6= j are in the exponenti-

ated form

Now we consider the reversed mean residual life function of a bivariate random

vector.

Let X = (X1, X2) be an absolutely continuous random vector. We define the

bivariate reversed mean residual life function (BRMRLF) of X as

m(x1, x2) = (m1(x1, x2),m2(x1, x2)) (3.31)

where mi(x1, x2) = E (xi −Xi|X1 ≤ x1, X2 ≤ x2), i = 1, 2.

The BRMRLF uniquely determines the distribution function by the relation (Nair

and Asha (2008)),

F (x1, x2) =
mi(b1, b2)

mi(xj, bi)

mj(xj, bi)

mj(x1, x2)
exp

[
−
∫ bi

xi

dt

mi(bj, t)
−
∫ bj

xj

dt

mj(xi, t)

]
, (3.32)

for i, j = 1, 2; i 6= j.

In general for the family specified by (3.24), the BRMRLF defined by (3.31) does

not have a closed form expression and therefore, there does not exist characterization

of the entire family in terms of simple functional forms of the reversed mean residual

life. However, it is worthwhile to investigate the existence of characterization theo-

rems comprising certain subclass of the above family. We now present a result in this

direction.
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Theorem 3.7. If g(xi) is differentiable and [g′(bi)]
−1 <∞, i = 1, 2, then a necessary

and sufficient condition that a bivariate density have a reversed mean residual life

vector of the form (
a1(x2)

g′(x1)
,
a2(x1)

g′(x2)

)
where a2(x1) and a1(x2) are nonnegative continuous functions, is that the correspond-

ing distribution function is

F (x1, x2) =
g′(x1)g′(x2)

g′(b1) g′(b2)
exp {c1 [g(x1)− g(b1)] + c2 [g(x2)− g(b2)]

+ θ [g(x1)− g(b1)] [g(x2)− g(b2)] (3.33)

Proof. Given that

mi(x1, x2) =
ai(xj)

g′(xi)
, i, j = 1, 2; i 6= j.

From relation (3.32),

F (x1, x2) =

a1(b2)
g′(b1)

a2(x1)
g′(b2)

a1(b2)
g′(x1)

a2(x1)
g′(x2)

exp

[
−
∫ b1

x1

g′(t)

a1(b2)
dt−

∫ b2

x2

g′(t)

a2(x1)
dt

]
=
g′(x1)g′(x2)

g′(b1) g′(b2)
exp

[
g(x1)− g(b1)

a1(b2)
+
g(x2)− g(b2)

a2(x1)

]

and

F (x1, x2) =
g′(x1)g′(x2)

g′(b1) g′(b2)
exp

[
g(x1)− g(b1)

a1(x2)
+
g(x2)− g(b2)

a2(b1)

]
.

Equating the two forms,

(g(x1)− g(b1))

[
1

a1(x2)
− 1

a1(b2)

]
= (g(x2)− g(b2))

[
1

a2(x1)
− 1

a2(b1)

]
.

By the usual arguments, this yields

ai(xj) = [ci + θ [g(xj)− g(bj)]]
−1 , i, j = 1, 2; i 6= j
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where ci = [ai(bj)]
−1.

Substituting this value of [ai(xj)]
−1 in F (x1, x2) we get the distribution specified

by (3.33). The converse is obvious by taking the relation

mi(x1, x2) =

∫ xi
a
F (xi, xj)dxi

F (x1, x2)
, i, j = 1, 2; i 6= j.

Remark 3.9. Observe that for x ∗ y = x+ y, we get the distribution function

F (x1, x2) = exp {c1(x1 − b1) + c2(x2 − b2) + θ(x1 − b1)(x2 − b2)} (3.34)

for all −∞ < xi ≤ bi < ∞, ci > 0, i = 1, 2 and c1c2 > θ ≥ 0, which characterizes

that the bivariate reversed mean residual lives m(x1, x2) are locally constants (Nair

and Asha (2008)).

Theorem 3.8. The only absolutely continuous distribution of the random vector X =

(X1, X2) defined on (−∞, b1)× (−∞, b2), bi <∞, i = 1, 2 satisfying

ri(x1, x2)mi(x1, x2) = 1, i = 1, 2 (3.35)

is the bivariate Type 3 extreme value distribution defined in (3.34).

Proof. The bivariate Type 3 extreme value distribution (3.34) verifies

ri(x1, x2) = ci + θ(xj − bj), i, j = 1, 2; i 6= j

and

mi(x1, x2) = [ci + θ(xj − bj)]−1 , i, j = 1, 2; i 6= j

so tha ri(x1, x2)mi(x1, x2) = 1, i = 1, 2.
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Conversely if (3.35) is assumed, using the relation (Nair and Asha (2008)),

ri(x1, x2) = [mi(x1, x2)]−1

[
1− ∂

∂xi
mi(x1, x2)

]
, i = 1, 2

we get

1− ∂

∂xi
mi(x1, x2) = 1

which on integration gives,

mi(x1, x2) = ki(xj)

where ki(xj), i, j = 1, 2; i 6= j is a constant of integration. Thus, we see that

mi(x1, x2), i = 1, 2 are locally constants which characterizes the bivariate Type 3

extreme value distribution (3.34).

Theorem 3.9. The only absolutely continuous distribution of the random vector X =

(X1, X2) defined on (0, b1)× (0, b2), bi <∞, i = 1, 2 satisfying

ri(x1, x2)mi(x1, x2) = Ai(xj), i, j = 1, 2; i 6= j

is the bivariate power function distribution defined by

F (x1, x2) =

(
x1

b1

)c1 (x2

b2

)c2+θ log
(
x1
b1

)
,

for all xi ∈ (0, bi); ci > 0, i = 1, 2; θ ≥ 0, where Ai(xj) is a positive function

independent of xi.
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Chapter 4

Bivariate Generalized Reversed Lack

of Memory Property

4.1 Introduction

Now we try to evolve the concepts of generalized reversed lack of memory property to

the higher dimensions. One of the main problems associated with such an attempt is

that there is no unique way of evolution. We here consider the definition of bivariate

reversed lack of memory property as specified in Chapter 2 to extend the concept

of univariate generalized reversed lack of memory property to the bivariate case and

derive bivariate models characterized by the respective property. Since multivariate

derivations are rather straight forward extensions, it is excluded.

4.2 Bivariate Extensions

Consider a random vector X = (X1, X2) in the two-dimensional space with joint

distribution function F (x1, x2) = P [X1 ≤ x1, X2 ≤ x2] in the support of (a1, b1) ×

(a2, b2) ∈ R2 where

ai = inf(xi|Fi(xi) > 0) and bi = sup(xi|Fi(xi) < 1),

70
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with F (x1, b2) and F (b1, x2) as the marginals of Xi, i = 1, 2.

Then a direct extension of RLMP is

F (x1 + t1, x2 + t2)F (0, 0) = F (x1, x2)F (t1, t2) (4.1)

for all xi and ti such that ai < xi ≤ xi + ti ≤ bi, ai < 0, i = 1, 2.

The only solution for (4.1) is (Aczel (1966))

F (x1, x2) = exp [c1 (x1 − b1) + c2 (x2 − b2)] ,

for all −∞ < xi < bi, ci > 0, i = 1, 2.

A more fruitful way of extending the reversed lack of memory property to the

bivariate case is to investigate the equation

F (x1 + t, x2 + t).F (0, 0) = F (x1, x2).F (t, t), (4.2)

for all ai < xi ≤ xi + t ≤ bi, ai < 0 i = 1, 2.

Then the unique solution of (4.2) among probability distribution functions is

F (x1, x2) = exp [c1 (x1 − b1) + c 2 (x2 − b2) + c12 max (x1 − b1, x2 − b2)] ,

where −∞ < xi < bi, ci > 0, i = 1, 2.; c12 ≥ 0.

We consider analogous equation of (4.1) for the associative binary operators ∗ and

◦ given by the following proposition.

Proposition 4.1. Let

F (x1 ∗ t1, x2 ◦ t2) F (e1, e2) = F (x1, x2) F (t1, t2) (4.3)



CHAPTER 4. BIVARIATE GRLMP 72

for all a1 < x1 ≤ x1 ∗ t1 ≤ b1, a2 < x2 ≤ x2 ◦ t2 ≤ b2; ai < ei, i = 1, 2. Then

F (x1, x2) = exp [c1 [g (x1)− g (b1)] + c2 [h (x2)− h (b2)]] ,

for all g−1(−∞) < x1 < b1, h
−1(−∞) < x2 < b2, ci > 0, i = 1, 2, where g and h

are continuous and strictly increasing functions.

Proof. We have

F (x1 ∗ t1, x2 ◦ t2) .F (e1, e2) = F (x1, x2)F (t1, t2) .

Consider the representations x∗y = g−1 (g(x) + g(y)) and x◦y = h−1 (h (x) + h (y)),

then we get

F [g−1 (g (x1) + g (t1)) , h−1 (h (x2) + h (t2))]F [e1, e2] =

F [g−1 (g (x1)) , h−1 (h (x2))] F [g−1 (g (t1)) , h−1 (h (t2))]

which implies

H (g (x1) + g (t1) , h (x2) + h (t2))H (g(e1), h(e2)) =

H (g (x1) , h (x2)) H (g (t1) , h (t2))

where H(., .) = F (g−1(.), h−1(.)) .

Taking g (x1) = u1, h (x2) = u2, g (t1) = v1 and h(t2) = u2, the above equation

becomes,

H (u1 + v1, u2 + v2)H (g(e1), h(e2)) = H (u1, u2)H (v1, v2) .

which implies

G (u1 + v1, u2 + v2) = G (u1, u2)G (v1, v2)

where G (u1, u2) = H(u1,u2)
H(g(e1),h(e2))

.
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The solution to the above Cauchy functional equation is (Aczel (1966)),

G (u1, u2) = ec1u1+c2u2 , c1, c2 > 0

which means,
H (u1, u2)

H (g(e1), h(e2))
= ec1u1+c2u2

or

H (u1, u2) = ec1u1+c2u2H (g(e1), h(e2)) .

That is,

F
[
g−1 (g (x1)) , h−1 (h (x2))

]
= ec1g(x1)+c2h(x2)F (e1, e2)

which implies,

F (x1, x2) = ec1g(x1)+c2h(x2)F (e1, e2)

Since F (b1, b2) = 1, we have F (e1, e2) = e−c1g(b1)−c2h(b2)

Hence,

F (x1, x2) = exp [c1 (g(x1)− g(b1)) + c2 (h(x2)− h(b2))] ,

for all g−1(−∞) < xi < bi; ci > 0, i = 1, 2.

Thus, X1 and X2 are independent with marginal distribution functions specified by

FX1(x1) = exp[c1(g(x1)− g(b1))] and FX2(x2) = exp[c2(g(x2)− g(b2))] where g and

h are continuous and strictly increasing functions.

Now we investigate the possibility of generalizing the bivariate reversed lack of

memory property (4.2) using two different associative operations. In order to solve

this problem, we need the following.

Lemma 4.1. (a) Let F (x1 ∗ t, ϕ (x2 ∗ t))F (e1, ϕ(e2)) = F (x1, ϕ (x2))F (t, ϕ (t))

with ϕ continuous and strictly increasing.
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(b) F1 (x1 ∗ t)F1 (e1) = F1 (x1)F1 (t) with F1 (x1) = F1 (x1, ϕ (b2)) .

(c) F2 (ϕ (x2 ∗ t))F2 (ϕ(e2)) = F2 (ϕ (x2))F2 (ϕ (t)) with F2 (x2) = F2 (b1, x2) .

Then,

F (x1, x2) = exp [c1 (g(x1)− g(b1)) + c2 (g (ϕ−1 (x2))− g (b2)) +

c12max (g(x1)− g(b1), g (ϕ−1 (x2))− g (b2))]

for all g−1(−∞) < xi < bi; ci > 0, i = 1, 2; c12 ≥ 0.

Proof. From (a), we get

F
[
g−1 (g (x1) + g(t)) , ϕ

(
g−1 (g (x2) + g(t))

)]
F (e1, ϕ(e2)) =

F (x1, ϕ (x2))F (t, ϕ(t))

Setting g (x1) = v, g(t) = u, g (x2) = w, we have

F [g−1 (v + u) , ϕ (g−1 (w + u)))]F [g−1 (g(e1)) , ϕ (g−1 (g(e2)))] =

F [g−1 (v) , ϕ (g−1 (w))]F [g−1 (u) , ϕ (g−1 (u))]

(4.4)

When v = w, we obtain

F [g−1 (v + u) , ϕ (g−1 (v + u)))]F [g−1 (g(e1)) , ϕ (g−1 (g(e2)))] =

F [g−1 (v) , ϕ (g−1 (v))]F [g−1 (u) , ϕ (g−1 (u))]

which implies,

G [g−1 (v + u) , ϕ (g−1 (v + u)))] =

G [g−1 (v) , ϕ (g−1 (v))]G [g−1 (u) , ϕ (g−1 (u))]

where G [g−1 (v) , ϕ (g−1 (v))] =
F [g−1(v),ϕ(g−1(v))]

F [g−1(g(e1)),ϕ(g−1(g(e2)))]
.
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This is a Cauchy equation, whose solution is

G
[
g−1 (v) , ϕ

(
g−1 (v)

)]
= eδv, δ > 0

which implies

F [x1, ϕ (x1)] = eδg(x1)F (e1, ϕ(e2)) ,

which means

F [e1, ϕ (e2)] = e−δg(b1).

Hence,

F
[
g−1 (v) , ϕ

(
g−1 (v)

)]
= eδ(v−g(b1)), δ > 0 (4.5)

Therefore,

F (x1, ϕ (x1)) = eδ(g(x1)−g(b1)).

From (4.4), we get

F (x1 ∗ t, ϕ (x2 ∗ t)) =
F (g−1 (v) , ϕ (g−1 (w)))F (g−1 (u) , ϕ (g−1 (u)))

F (e1, ϕ(e2))

When x2 = b2,

F (x1 ∗ t, ϕ(b2 ∗ t)) =
F (g−1(v), ϕ(g−1(b2)))F (g−1(u), ϕ(g−1(u)))

F (e1, ϕ(e2))

=
F1(g−1(v))F (g−1(u), ϕ(g−1(u)))

F (e1, ϕ(e2))
using (b)

=
F1(x1)F (g−1(u), ϕ(g−1(u)))

F (e1, ϕ(e2))

=
ec1[g(x1)−g(b1)]eδ[g(t)−g(b1)]

eδg(bi)

= ec1[g(x1)−g(b1)]+δg(t).

Now let x1 ∗ t = s1 and b2 ∗ t = s2 then g(x1) = g(s1)−g(t) and g(b2) = g(s2)−g(t).
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Thus,

F (s1, ϕ(s2)) = ec1[g(s1)−g(b1)−g(s2)+g(b2)]+δ[g(s2)−g(b2)]; s2 ≥ s1.

Arguing similarly we can prove that

F (s1, ϕ(s2)) = ec2[g(s2)−g(b2)−g(s1)+g(b1)]+δ[g(s1)−g(b1)]; s2 ≤ s1.

Writing c12 = δ − c1 − c2 and rearranging we obtain,

F (s1, ϕ(s2)) = exp{c1(g(s1)− g(b1)) + c2(g(s2)− g(b2))

+ c12 max(g(s1)− g(b1), g(s2)− g(b2))},

or

F (x1, ϕ(x2)) = exp{c1(g(x1)− g(b1)) + c2(g(x2)− g(b2))

+ c12 max(g(x1)− g(b1), g(x2)− g(b2))}.

Hence,

F (x1, x2) = exp{c1(g(x1)− g(b1)) + c2(g(ϕ−1(x2))− g(b2))

+ c12 max(g(x1)− g(b1), g(ϕ−1(x2))− g(b2))} (4.6)

where g−1(−∞) < xi < bi; ci > 0, i = 1, 2, c12 ≥ 0.

The next theorem characterizes the distribution characterized by bivariate general-

ized reversed lack of memory property.

Theorem 4.1. (a) Let

F (x1 ∗ t, x2 ◦ z)F (e1, e2) = F (x1, x2)F (t, z) ,
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for all xi ∈ (ai, bi), i = 1, 2, t ∈ (e1, b1), z ∈ (e2, b2) with x∗t = g−1 (g (x) + g (t)),

y ◦ z = h−1 (h (y) + h(z)) , h(z) = g(t).

(b) F1 (x1 ∗ t)F1 (e) = F1 (x1)F1 (t) with F1 (x1) = F (x1, b2) .

(c) F2 (x2 ◦ z)F2 (e) = F2 (x2)F2 (z) with F2 (x2) = F (b1, x2) .

Then,

F (x1, x2) = exp{c1(g(x1)− g(b1)) + c2(h(x2)− h(b2))

+ c12 max(g(x1)− g(b1), h(x2)− h(b2))} (4.7)

for x1 ∈ (g−1(−∞), b1), x2 ∈ (h−1 (−∞) , b2), ci > 0, i = 1, 2 ; c12 ≥ 0.

Proof. Put x2 = h−1 (g(v)) = ϕ(v). Then (a) becomes

F
(
x1 ∗ t, ϕ

(
g−1 (g(v) + g(t))

))
F (e, e) = F (x1, ϕ(v))F (t, ϕ(t))

This is just (a) of the above lemma. It is very easy to verify that conditions (b) and (c)

of this theorem are equivalent to (b) and (c) of above lemma. The equivalence of (4.6)

and (4.7) is immediate.

Remark 4.1. If we take the same operators ∗ and ∗ instead of ∗ and ◦, then we get the

class of bivariate distributions with identical marginals as

F (x1, x2) = exp{c1(g(x1)−g(b))+c2(g(x2)−g(b))+c12 max(g(x1)−g(b), g(x2)−g(b))}

(4.8)

for all g−1(−∞) < xi < b, ci > 0, i = 1, 2; c12 > 0.

Remark 4.2. The members of the class of distributions (4.7) and (4.8) are given in

Table 4.1 and Table 4.2 respectively.

Remark 4.3. It can be seen that for (4.7) and (4.8), a necessary and sufficient condi-

tion for X1 and X2 to be independent is c12 = 0.
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Remark 4.4. If (X1, X2) is distributed as (4.8), then the distribution function of

max(X1, X2) has the following form:

P [max(X1, X2) < s] = P [X1 < s,X2 < s]

= F (s, s)

= e(c1+c2+c12)[g(s)−g(b)]

Hence, the distribution of max(X1, X2) has the identical form as the marginal distri-

butions of Xi , i = 1, 2.

Theorem 4.2. Let (X1, X2) be a bivariate random variable with joint distribution

function F (x1, x2). Then F is as (4.8) if and only if there exist independent and iden-

tically distributed random variables U , V , W whose marginal distributions are given

by F (x) = eλ[g(x)−g(b)], such that X1 = max(U,W ), X2 = max(V,W ).

Proof.

F (x1, x2) = P (X1 < x1, X2 < x2)

= P (U < x1,W < x1, V < x2,W < x2)

= P (U < x1).P (V < x2).P (W < max(x1, x2))

= eλ1[g(x1)−g(b)]+λ2[g(x2)−g(b)]+λ12 max[g(x1)−g(b),g(x2)−g(b)].
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Chapter 5

Characterizations of the GRLMP

Class Based on Past Entropy Measures

5.1 Introduction

Information coding and transmission play a central role in understanding and describ-

ing the behavior of biological and engineering systems. Entropy as a baseline con-

cept in the field of information theory was introduced by Shannon (1948) and Wiener

(1948), and it is, for instance, also invoked to deal with information in the context of

theoretical neurobiology (Johnson and Glantz (2004)).

As is well-known, the classical approach to the description of information related

to an absolutely continuous random variable X is based on the differential entropy of

X , or Shannon information measure, defined by

H(X) = −E (log f(X)) = −
∫ ∞
−∞

f(x) log f(x)dx, (5.1)

where ‘log’ refers to the natural logarithm and f(x) is the probability density function

of X . The integrand function on the right-hand side of (5.1) depends on x only via

f(x), thus making H(X) shift-independent. In other terms, H(X) is position-free,

81
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in the sense that X possesses the same differential entropy as X + b, for any b ∈ R.

The differential entropy (5.1) presents various deficiencies when it is used as a contin-

uous counterpart of the classical Shannon entropy for discrete random variables. One

among these is that, this measure is not always nonnegative. Various attempts have

been made in order to define possible alternative information measures. One alterna-

tive is due to Schroeder (2004), who proposed a measure which, unlike the classical

Shannon’s entropy for discrete variables, can be easily and consistently extended to the

continuous probability distributions, and unlike differential entropy is always positive

and invariant with respect to linear transformation of coordinates.

Rao et al. (2004) defined the cumulative residual entropy (CRE) as

ξ(X) = −
∫ ∞

0

R(x) logR(x)dx, (5.2)

where R(x) = P (X > x) is the cumulative residual function or survival function of

X . The key idea in the definition (5.2) is to use the cumulative distribution in place

of the density function in Shannon’s information measure. The distribution function

is more regular because it is defined in an integral form unlike the density function,

which is computed as the derivative of the distribution. Moreover, in practice what is

of interest and/or measurable is the distribution function. For example, if the random

variable describes the life span of a light bulb, then the event of interest is not whether

the life span equals t, but whether it exceeds t. The definition (5.2) also preserves the

well established principle that the logarithm of the probability of an event should rep-

resent the information content in the event. Applications of ξ(X), to image alignment

and to measurements of similarity between images can be found in Wang and Vemuri

(2007) and Wang et al. (2003a, b). The cumulative residual entropy is also suitable to

describe the information in problems related to ageing properties of reliability theory

based on the mean residual life function (Asadi and Zohrevand (2007)). In addition,

in Asadi and Zohrevand (2007) a dynamic version of (5.2) is proposed in order to pin-

point the age effect of a system. The definition of ξ(X) has been extended to the case



CHAPTER 5. CHARACTERIZATIONS BASED ON PAST ENTROPY 83

of distribution with support in R = (−∞,∞) has been presented and studied in Drissi

et al. (2008) and Zografos and Nadarajah (2005) as

ξ(X) = −
∫ ∞
−∞

R(x) logR(x)dx.

However, it is reasonable to presume that in many realistic situations uncertainty

is not necessarily related to the future but can also refer to the past. For instance,

consider a system whose state is observed only at certain preassigned inspection times.

If at time t the system is inspected for the first time and it is found to be ‘down’,

then the uncertainty relies on the past, i.e. on which instant in (0, t) it has failed.

Based on this idea, Di Crescenzo and Longobardi (2009) introduced a new information

measure similar to ξ(X), that turns out to be particularly useful to measure information

on the inactivity time of a system. The inactivity time is a rather recent concept in

reliability that is suitable to describe the time elapsing between the failure of a system

and the time when it is found to be ‘down’. In other words, the measure introduced by

them called cumulative entropy is suitable to measure information when uncertainty

is related to the past, a dual concept of the cumulative residual entropy which relates

to uncertainty on the future lifetime of a system. The cumulative entropy for a non-

negative random variable X is defined as (Di Crescenzo and Longobardi (2009))

Cξ(X) = −
∫ ∞

0

F (x) logF (x)dx, (5.3)

where F (x) = P (X ≤ x) is the distribution function of X . Since the argument of

the logarithm is a probability, it easily follows from (5.3) that Cξ(X) takes values in

[0,+∞]. In particular, Cξ(X) = 0 if and only if X is a constant.

Note that, in (5.3) the support of the random variable X is R+, the set of non-

negative real numbers. Although the positive case is of great interest for many ap-

plications, cumulative entropy entail difficulties when working with random variables

with supports that are not restricted to positive values. This motivates us to general-
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ize the measure (5.3) from R+ to R = (−∞,∞). This is discussed in Section 2 of

the present chapter. Section 3 focuses the implication of generalized reversed lack of

memory property on the dynamic cumulative entropy. In Section 4, we consider the β

and α-order generalized past entropy measures and characterize the GRLMP class us-

ing these measures. These characterizations generalize many existing characterization

results.

5.2 Generalized Cumulative Entropy

Let X be a random variable with absolutely continuous distribution function F (x),

then the generalized cumulative entropy is defined as

Cξ(X) = −
∫ ∞
−∞

F (x) logF (x)dx. (5.4)

Observe that, Cξ(X) ≥ 0.

The existence of (5.4) can be established without further assumption upon distri-

bution than the existence of absolute moments of order p, p > 1.

Theorem 5.1. Cξ(X) <∞ if for some p > 1, E [|X|p] <∞.

Proof. From the definition of Cξ(X) specified in (5.4), we have

Cξ(X) = −
∫ 0

−∞
F (x) logF (x)dx−

∫ ∞
0

F (x) logF (x)dx.

We first prove the existence of the first term.

Since lim
x→0

x log x = 0 and log x < 0, we have the inequality,

x log x ≤ x , for 0 ≤ x ≤ 1.

Using this inequality, we have

F (x) logF (x) ≤ F (x).
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Thus, ∫ 0

−∞
F (x) logF (x)dx ≤

∫
R

F (x)I[−∞,0](x)dx,

where IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.

Now,

FX(x)I(−∞,0](x) ≤ I[−1,0](x) + FX(x)I(−∞,−1)(x)

= I[0,1](u) + FX(−u)I(1,∞)(u);u = −x

= I[0,1](u) + P (X ≤ −u) I(1,∞)(u)

≤ I[0,1](u) + P (|X| ≥ u) I(1,∞)(u)

Now using the Markov inequality

P (|X| ≥ u) ≤ u−pE [|X|p]

we have

FX(x)I(−∞,0](x) ≤ I[0,1](u) + u−pE [|X|p] I(1,∞)(u)

.

Hence,

∫
R

FX(x)I(−∞,0](x)dx ≤
∫
R

{
I[0,1](u) + u−pE [|X|p] I(1,∞)(u)

}
du

≤ 1 +

∫ ∞
1

u−pE [|X|p] du

Since E [|X|p] <∞, we have

∫
R

FX(x)I(−∞,0](x)dx <∞
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.

For proving the existence of the second term, we use the inequality

x log x ≤ 1− x for 0 ≤ x ≤ 1,

which gives

F (x) logF (x) ≤ 1− F (x) = R(x).

Thus, ∫∞
0
F (x) logF (x)dx ≤

∫∞
0
R(x)dx <∞,

under the assumption E [|X|p] <∞, p > 1. Hence the result.

Remark 5.1. Cξ(X) need not exist for distributions that do not have finite mean. For

example, the Pareto distribution with cumulative distribution function F (t) = 1 − 1
t
,

t ≥ 1. Thus all the results discussed here after, is based on the assumption that

Cξ(X) <∞.

It is easy to check that like Shannon entropy the generalized cumulative entropy in

(5.4) remains constant with respect to variable translation. That means,

Cξ(X + a) = Cξ(X),∀a ∈ R. (5.5)

In the same way, it is clear that

Cξ(aX) = aCξ(X), ∀a ∈ R+. (5.6)

When a < 0, we do not have such a nice property. However, let us consider the

important particular case where the distribution of X has a symmetry of the form,

there exist µ, for all x

F (µ− x) = 1− F (µ+ x). (5.7)

In this case, we get the following result.
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Theorem 5.2. For a random variable X that satisfies symmetry property (5.7), one

has

∀a ∈ R,Cξ(aX) = |a|Cξ(X).

Proof. Since it is clear that for all a ∈ R+, Cξ(aX) = aCξ(X), we just have to check

that Cξ(−X) = Cξ(X), which can be established as follows:

−Cξ(−X) =

∫ ∞
−∞

F−X(x) logF−X(x)dx

=

∫ ∞
−∞

F−X(x− µ) logF−X(x− µ)dx

=

∫ ∞
−∞

RX(−x+ µ) logRX(−x+ µ)dx

=

∫ ∞
−∞

(1−RX(x+ µ)) log (1−RX(x+ µ)) dx

=

∫ ∞
−∞

F (x+ µ) logF (x+ µ)dx

=

∫ ∞
−∞

F (x) logF (x)dx

= −Cξ(X).

Another measure of uncertainty which has gained much interest is the dynamic

information measure (Di Crescenzo and Longobardi (2009)). For a random variable

X with distribution function F (x) in support of R+, the new dynamic information

measure is defined as

Cξ(X; t) = −
∫ t

0

F (x)

F (t)
log

F (x)

F (t)
dx, t ∈ (−∞,∞), F (t) > 0. (5.8)

Cξ(X; t) identifies the cumulative entropy of the event [X|X ≤ t] and is useful to

measure information on the inactivity time [t−X|X ≤ t].

For a random variable X with distribution function F (x) with support R, (5.8) can
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be redefined as

Cξ(X; t) = −
∫ t

−∞

F (x)

F (t)
log

F (x)

F (t)
dx, t ∈ R,F (t) > 0

= − 1

F (t)

∫ t

−∞
F (x) logF (x)dx+ logF (t)

1

F (t)

∫ t

−∞
F (x)dx

= m(t) logF (t)− 1

F (t)

∫ t

−∞
F (x) logF (x)dx.

(5.9)

We call the measure (5.9) as generalized dynamic cumulative entropy.

5.3 Implication of GRLMP on Dynamic Cumulative En-

tropy

In this section we study the implication of GRLMP on the generalized dynamic cumu-

lative entropy.

We have

Cξ(X; t) = − 1

F (t)

∫ t

−∞
F (x) log

F (x)

F (t)
dx,

for t ∈ (−∞,∞), F (t) > 0.

Let X be as in Definition 3.1. Then,

Cξ(X; t ∗ t′) = − 1

F (t ∗ t′)

∫ t∗t′

g−1(−∞)

F (x) log
F (x)

F (t ∗ t′)
dx

= − F (e)

F (t)F (t′)

∫ t∗t′

g−1(−∞)

F (x) log
F (x)

F (t ∗ t′)
dx.

Take x = y ∗ t′ so that dx = d(y ∗ t′).

When x = g−1(−∞), y = g−1(−∞) ∗ (t′)⊕, where (t′)⊕ is the inverse such that

t′ ∗ (t′)⊕ = e, the identity element. Similarly, when x = t ∗ t′, y = t.
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It follows that,

Cξ(X; t ∗ t′) = − F (e)

F (t)F (t′)

∫ t

g−1(−∞)∗(t′)⊕
F (y ∗ t′) log

F (y ∗ t′)
F (t ∗ t′)

d(y ∗ t′)

= − F (e)

F (t)F (t′)

∫ t

g−1(−∞)∗(t′)⊕

F (y)F (t′)

F (e)
log

F (y)F (t′)

F (t)F (t′)
d(y ∗ t′)

= − 1

F (t)

∫ t

g−1(−∞)∗(t′)⊕
F (y) log

F (y)

F (t)
d(y ∗ t′).

(5.10)

To study the above relation for particular forms of the operator ∗ or equivalently dif-

ferent forms of g(x), we need the following theorems.

Theorem 5.3. Let X be an absolutely continuous random variable with distribution

function F (t), reversed mean residual life m(t), reversed hazard rate λ(t) and gener-

alized dynamic cumulative entropy Cξ(X; t). Then

Cξ(X; t) = km(t), k > 0,

if and only if X is distributed as

1. Type 3 extreme value when k = 1,

2. Power function when 0 < k < 1,

3. Negative Pareto when k > 1.

Proof. The ‘if’ part of the theorem is straightforward to prove.

To prove the ‘only if’ part, let us assume that

Cξ(X; t) = km(t), k > 0.

That is,

m(t) logF (t)− 1

F (t)

∫ t

a

F (x) logF (x)dx = km(t).



CHAPTER 5. CHARACTERIZATIONS BASED ON PAST ENTROPY 90

Differentiating both sides of this with respect to t gives

km′(t) = m′(t) logF (t) +m(t)λ(t)− logF (t) + λ(t)
1

F (t)

∫ t

a

F (x) logF (x)dx

= m′(t) logF (t) +m(t)λ(t)− logF (t) + λ(t) [m(t) logF (t)− km(t)] .

(5.11)

On the other hand we have

m′(t) = 1−m(t)λ(t).

Substituting m′(t) from this last equation in (5.11) we get

k [1−m(t)λ(t)] = [1−m(t)λ(t)] logF (t) +m(t)λ(t)− logF (t)

+m(t)λ(t) logF (t)− km(t)λ(t).

From this we obtain for any t ∈ (a, b), −∞ ≤ a < t ≤ b <∞

m(t)λ(t) = k.

Or,

m′(t) = 1− k. (5.12)

1. When k = 1, (5.12) becomes

m′(t) = 0

implies

m(t) = constant,

which characterizes the Type 3 extreme value distribution.

2. For 0 < k < 1, the proof follows from Theorem 6.2 of Di Crescenzo and

Longobardi (2009).



CHAPTER 5. CHARACTERIZATIONS BASED ON PAST ENTROPY 91

3. For the negative Pareto distribution

F (x) =

 (1− x)−c , x < 0

1, x ≥ 0, c > 1
,

the reversed mean residual life function is given by

m(t) =
1− t
c− 1

= m(0) +
t

1− c
,

where m(0) = E(−X) = 1
c−1

.

Now, integrating both sides of (5.12) with respect to t on (0, t) yields the follow-

ing linear form for m(t):

m(t) = (1− k) t+m(0)

=
t

(1− c)
+m(0),

by taking k = c
c−1

< 1 , which characterizes the negative Pareto distribution.

Theorem 5.4. LetX be an absolutely continuous random variable. Then for all values

of t, t ∈ (−∞, b),

Cξ(X; t) =
E
(
(t−X)2 |X ≤ t

)
2m(t)

if and only if X has the Type 3 extreme value distribution.

Proof. Assume that

Cξ(X; t) =
E
(
(t−X)2 |X ≤ t

)
2m(t)

.
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Then using Di Crescenzo and Longobardi (2009), we have

2m(t)

∫ t

−∞
m(x)f(x)dx =

∫ t

−∞
(t− x)2 f(x)dx.

Differentiating both sides of this with respect to t and after some simplification, we get

m(t)m(t)f(t) +m′(t)

∫ t

−∞
m(x)f(x)dx =

∫ t

−∞
(t− x)2 f(x)dx.

Dividing both sides by F (t) we have

m′(t)Cξ(X; t) +m(t)m(t)λ(t) = m(t),

which gives

m′(t)Cξ(X; t) +m(t) [m(t)λ(t)− 1] = 0.

By using the relation m′(t) = 1−m(t)λ(t), the above equation becomes

m′(t) [Cξ(X; t)−m(t)] = 0.

This means either m′(t) = 0 or Cξ(X; t) = m(t). In each case we get the required

result. That means, the distribution is Type 3 extreme value.

We now study the implication of the generalized reversed lack of memory property

on Cξ(X; t).

Theorem 5.5. Let X be a random variable in the interval (−∞, b), b < ∞. Then X

has the Type 3 extreme value distribution if and only if

Cξ(X; t+ t′) = Cξ(X; t); t, t′ ∈ (−∞, b).

Theorem 5.6. Let X be a random variable in the interval (0, b), b <∞. Then X has
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the power function distribution if and only if

Cξ(X; t+ t′) = t′Cξ(X; t); t, t′ ∈ (0, b).

Theorem 5.7. Let X be a random variable in the interval (−∞, 0). Then X has the

negative Pareto distribution if and only if

Cξ(X; t+ t′ − tt′) = (1− t′)Cξ(X; t); t, t′ ∈ (−∞, 0).

5.4 Characterizations Based on Generalized Past En-

tropy Measures

The Khinchin’s (1957) measure of information is given by

Hφ(f) =

∫
f(x)φ (f(x)) dx (5.13)

where φ is a convex function such that φ(1) = 0.

In particular when φ(f(x)) = 1
β−1

[
1− fβ−1(x)

]
, Hφ(f) reduces to

Hβ(f ; t) =
1

β − 1

[
1−

∫ t

a

(
f(x)

F (t)

)β
dx

]
, (5.14)

for β > 0 and β 6= 1. This measure has been studied in Nanda and Paul (2006b) and

they referred to (5.14) as the generalized past entropy of order β. Another measure

known as the generalized past entropy of order α was also introduced in Nanda and

Paul (2006b) as

Hα(f ; t) =
1

1− α
log

∫ t

a

(
f(x)

F (t)

)α
dx, (5.15)

for α > 0 and α 6= 1.

Observe that β → 1 and α → 1 in (5.14) and (5.15) respectively, they reduce to
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the past entropy, H(f ; t) (Kundu et al. (2010)) specified in (1.17).

Gupta and Nanda (2002) studied the properties of generalized past entropies of

order β and α for the proportional reversed hazard model. The ordering and ageing

properties in terms of generalized past entropies have been defined and their properties

have been studied in Nanda and Paul (2006b). In their work, they analyzed how the

generalized past entropies behave when the distribution is truncated above by t. One

may find a similar kind of result in Belzunce et al. (2004).

In Nanda and Paul (2006b) it is shown that ifHβ(f ; t) (
(
Hα(f ; t)

)
) is increasing in

t, thenHβ(f ; t) (
(
Hα(f ; t)

)
) uniquely determines the underlying distribution function.

In this section, we investigate the implication of the generalized reversed lack of

memory property on these measures. The β and α-order generalized past entropies for

the GRLMP class (3.6) are given by

Hβ(f ; t) =
1

β − 1

[
1−

∫ t

g−1(−∞)

(cg′(x))β eβc[g(x)−g(b)]

eβc[g(t)−g(b)]
dx

]
(5.16)

and

Hα(f ; t) =
1

1− α
log

{∫ t

g−1(−∞)

(cg′(x))α eαc[g(x)−g(b)]

eαc[g(t)−g(b)]
dx

}
. (5.17)

The following behavior of the generalized past entropy measures of order α and β are

the characterizations for the GRLMP class.

Theorem 5.8. Let X be an absolutely continuous random variable. Then X has Type

3 extreme value distribution if and only if

Hα(f ; t+ t′) = Hα(f ; t),

for t, t′ ∈ (−∞, b).

Proof. Let X has Type 3 extreme value distribution specified by

F (x) = ec(t−b), t ∈ (−∞, b) , c > 0
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. Then, from (5.17) we have

Hα(f ; t) = k(α),

where k(α) is a function of α independent of t, which gives

Hα(f ; t+ t′) = Hα(f ; t); t, t′ ∈ (−∞, b)

Conversely, let

Hα(f ; t+ t′) = Hα(f ; t)

which gives

e−Hα(f ;t+t′) = e−Hα(f ;t).

From Nanda and Paul (2006b), the above equation becomes

λ (t+ t′) = λ (t)

which implies

λ (t) = constant.

Then, from Asha and Rejeesh (2007), the underlying distribution is Type 3 extreme

value.

A similar result hold for Hβ(f ; t). Thus we have

Theorem 5.9. The generalized past entropy measure of order β satisfies

Hβ(f ; t+ t′) = Hβ(f ; t),

for t, t′ ∈ (−∞, b) if and only if X is distributed as Type 3 extreme value distribution

(2.5).

Corollary 5.1. The generalized past entropy measures of order α and β are of the

form
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1. Hα(f ; t) = k(α)

2. Hβ(f ; t) = k(β),

where k(α) and k(β) are functions of α and β respectively which are independent of

t, if and only if F has a Type 3 extreme value distribution.

Proof. From Asha and Rejeesh (2007) the Type 3 extreme value distribution is char-

acterized by

λ(t) = c, t ∈ (−∞, b) .

Substituting the last equation in (5.16) and (5.17) we obtain Hα(f ; t) = k(α) and

Hβ(f ; t) = k(β).

Hence the result.

Theorem 5.10. Let X be an absolutely continuous random variable. Then X has the

power function distribution if and only if

Hα(f ; tt′) = Hα(f ; t) + log t′,

for t, t′ ∈ (0, b).

Proof. Let us assume that X has the power function distribution given by

F (x) =
(
t
b

)c, t ∈ (0, b) and c > 0.

Then, from (5.17), we have

Hα(f ; t) =
1

1− α
log

(
c

αc− α + 1

)
− log

(c
t

)
,
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which gives

Hα(f ; tt′) =
1

1− α
log

(
c

αc− α + 1

)
− log

( c
tt′

)
=

1

1− α
log

(
c

αc− α + 1

)
− log

(c
t

)
+ log t′

= Hα(f ; t) + log t′; t, t′ ∈ (0, b).

Conversely, let

Hα(f ; tt′) = Hα(f ; t) + log t′; t, t′ ∈ (0, b)

Then,

−Hα(f ; t) = −Hα(f ; tt′) + log t′

which gives,

e−Hα(f ;t) = t′e−Hα(f ;tt′).

Using Nanda and Paul (2006b), the above equation becomes

λ (t) = t′λ (tt′)

or,

λ (tt′) =
λ (t)

t′
.

The solution to the above equation is λ (t) = c
t
, c > 0 which characterizes the power

function distribution.

In the next theorems, we discuss certain characterizations of the GRLMP class us-

ing the relationship between the β and α order generalized past entropies and reversed

hazard rate λ (t).

Theorem 5.11. The generalized past entropy of order β for a random variable X is of
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the form

Hβ(f ; t) =
1

β − 1

[
1− 1

β
λβ−1(t)

]
, (5.18)

if and only X has the Type 3 extreme value distribution (2.5).

Proof. Let X have the Type 3 extreme value distribution as in (2.5),

F (x) = ec(t−b), t ∈ (−∞, b) and c > 0.

Then the reversed hazard rate is

λ(t) = c.

Then using (5.16),

Hβ(f ; t) =
1

β − 1

[
1− cβ−1

β

]
=

1

β − 1

[
1− 1

β
λβ−1(t)

]
.

Conversely, let (5.18) holds. Then,

∫ t
g−1(−∞)

fβ(x)dx

F β(t)
=

1

β
λβ−1(t).

Differentiating the above equation with respect to t on both sides, we get, after simpli-

fication

λβ(t)− βλ(t)
λβ−1(t)

β
=

1

β
(β − 1)λβ−2(t)

d

dt
λ(t).

Or,

λ−2(t)
d

dt
λ(t) = λβ(t)− λβ(t) = 0

which implies,
d

dt
λ(t) = 0,

which in turn implies λ(t) = c, a constant. Since λ(t) uniquely determines the un-

derlying distribution it follows that X has the Type 3 extreme value distribution (Asha
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and Rejeesh (2007)).

We have a similar result for generalized past entropy of order α.

Theorem 5.12. The generalized past entropy of order α for a random variable X is of

the form

Hα(f ; t) =
1

1− α
log

[
1

α
λα−1(t)

]
, (5.19)

if and only if X has the Type 3 extreme value distribution (2.5).

From the above theorems also we can arrive at Corollary 5.1

Remark 5.2. Since the mean inactivity time m(t) = E(t − X|X ≤ t) is related to

λ(t) as

λ(t) =
1−m′(t)
m(t)

,

for the Type 3 extreme value distribution the mean inactivity time is given bym(t) = 1
c
.

Thus, from (i) of the above corollary we have.

Hα(f ; t) = k(α) + logm(t).

In the following theorems, we characterize Hα(f ; t) for the power function distri-

bution in terms of reversed hazard rate and mean inactivity time.

Theorem 5.13. The generalized past entropy measure of order α is of the form

Hα(f ; t) = k(α)− log λ(t)

if and only if F has a power function distribution.

Proof. Assume that F has a power function distribution given by

F (x) =
(
t
b

)c, t ∈ (0, b) and c > 0.
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Then using (5.17), we get

Hα(f ; t) =
1

1− α
log

(
c

αc− α + 1

)
− log

(c
t

)
= k(α)− log λ(t),

where k(α) = 1
1−α log

(
c

αc−α+1

)
.

Conversely, let

Hα(f ; t) = k(α)− log λ(t).

Then, ∫ t
−∞

fα(x)
Fα(t)

dx = aλα−1(t), where a = ek(α)[1−α]

which implies, ∫ t

−∞
fα(x)dx = aF (t)fα−1(t).

Differentiating both sides with respect to t, we get

fα(t) = aF (t) (α− 1) fα−2(t)f ′(t) + afα(t)

which gives,

1− a = a (α− 1)F (t)
f ′(t)

f 2(t)
.

From Kundu et al. (2010), we have

λ′(t) =
f ′(t)

F (t)
− λ2(t).

Thus,

1− a =
a (α− 1)F (t)

f 2(t)

[
F (t)λ′(t) + F (t)λ2(t)

]
=
a (α− 1)F 2(t)λ′(t)

f 2(t)
+
a (α− 1)F 2(t)λ2(t)

f 2(t)
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or,

1− a = a (α− 1)
λ′(t)

λ2(t)
+ a (α− 1)

which in turn implies that
λ′(t)

λ2(t)
=

1− aα
a (α− 1)

.

Solving this differential equation yields,

λ(t) =
c

t

where c = a(α−1)
aα−1

, which is the reversed hazard rate of power function distribution.

This completes the proof.

Theorem 5.14. The generalized past entropy measure of order α is of the form

Hα(f ; t) = b(α) + logm(t),

where b(α) is a function of α if and only if F has a power function distribution.

Proof. It is easily seen that the mean inactivity time of X having a power function

distribution is

m(t) =
t

(c+ 1)
.

Assume that F has the power function distribution. Then,

Hα(f ; t) =
1

1− α
log

[
cα

(αc− α + 1)

]
+

1

1− α
log

[(
t

c+ 1

)1−α

(c+ 1)1−α

]

=
1

1− α
log

(
cα (c+ 1)1−α

αc− α + 1

)
+ log

(
t

c+ 1

)
= b(α) + logm(t),

where b(α) = 1
1−α log

(
cα(c+1)1−α

αc−α+1

)
.
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Conversely, assume

Hα(f ; t) = b(α) + logm(t).

Then,
∫ t
−∞

fα(x)
Fα(t)

dx = km1−α(t), where k = eb(α)[1−α]

or, ∫ t

−∞
fα(x)dx = kF 2α−1(t)

[∫ t

−∞
F (x)dx

]1−α

.

Differentiating both sides with respect to t, we get

fα(t) = kF 2α−1(t) (1− α)

[∫ t

−∞
F (x)dx

]−α
F (t)

+ k (2α− 1)F 2α−2(t)f(t)

[∫ t

−∞
F (x)dx

]1−α

or,

[
f(t)

∫ t

−∞
F (x)dx

]α
= k (2α− 1) f(t)F 2(α−1)(t)

∫ t

−∞
F (x)dx+ (1− α) kF 2α(t)

which gives

[
f(t)

∫ t
−∞ F (x)dx

F 2(t)

]α
= k (2α− 1)

f(t)

F (t)

1

F (t)

∫ t

−∞
F (x)dx+ (1− α) k

or,

λα(t)mα(t) = k (2α− 1)λ(t)m(t) + k (1− α) .

By using the relation,

λ(t) =
1−m′(t)
m(t)

we get

[1−m′(t)]α = k (2α− 1) [1−m′(t)] + k (1− α) .
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If the second derivative of m(t) exists, then we get

α [1−m′(t)]α−1
m′′(t) = k (2α− 1)m′′(t)

which gives,

m′(t)= constant.

Hence, the mean inactivity time of X is linear which is the required result.

As β → 1 and α→ 1, the β and α- order generalized past entropies reduces to the

past entropy given by Kundu et al. (2010) which is defined as follows:

Let X be an absolutely continuous random variable with distribution function F

in the support of (a, b), where a = inf {t : F (t) > 0} and b = sup {t : F (t) < 1},

−∞ ≤ a < t ≤ b < ∞. Then the measure of uncertainty for inactivity time or past

time distribution called past entropy is defined as

H(X; t) = −
∫ t

a

f(x)

F (t)
ln

(
f(x)

F (t)

)
dx

= 1− 1

F (t)

∫ t

a

f(x) log λ(x)dx.

(5.20)

In the following theorem, we characterize the GRLMP class in terms of past entropy

and the reversed hazard rate.

Theorem 5.15. Let X be an absolutely continuous random variable with distribution

function F (t) and reversed hazard rate λ(t). Then X belongs to the GRLMP class if

and only if the following equation holds.

H(f ; t) + log λ(t) = 1 +
1

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx.

Proof. Assume that X belongs to the GRLMP class. Then,

F (x) = ec(g(t)−g(b)), t ∈
(
g−1(−∞), b

)
, c > 0
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with

λ (t) = cg′(t).

Now, from (5.20), we have

1−H(f ; t) =
1

F (t)

∫ t

a

f(x) log λ(x)dx

=
1

F (t)

{
log λ(t)F (t)−

∫ t

a

λ′(x)

λ(x)
F (x)dx

}
= log λ(t)− 1

F (t)

∫ t

a

λ′(x)

λ(x)
F (x)dx.

Thus,

H(f ; t) + log λ(t) = 1 +
1

F (t)

∫ t

a

λ′(x)

λ(x)
F (x)dx.

Since X belongs to the GRLMP class, the above equation becomes

H(f ; t) + log λ(t) = 1 +
1

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx.

Conversely, suppose that

H(f ; t) + log λ(t) = 1 +
1

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx.

Differentiating with respect to t, we get

H
′
(f ; t) +

λ′(t)

λ(t)
=
F (t)g

′′(t)
g′(t)

F (t)− f(t)
∫ t
g−1(−∞)

(
g′′(x)
g′(x)

)
F (x)dx

F 2(t)

=
g′′(t)

g′(t)
− λ(t)

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx

or,

H
′
(f ; t) =

g′′(t)

g′(t)
− λ(t)

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx− λ′(t)

λ(t)
.
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From Kundu et al. (2010), we have

H
′
(f ; t) = λ(t)

[
1− log λ(t)−H(f ; t)

]
.

Then,

λ(t)− λ(t) log λ(t)− λ(t)− λ(t)

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx+ λ(t) log λ(t)

=
g′′(t)

g′(t)
− λ(t)

F (t)

∫ t

g−1(−∞)

(
g′′(x)

g′(x)

)
F (x)dx− λ′(t)

λ(t)

which gives,
cg′′(t)

cg′(t)
=
λ′(t)

λ(t)

or,

λ(t) = cg′(t).

Then, from Block et al. (1998),

F (x) = ec(g(t)−g(b)), t ∈
(
g−1(−∞), b

)
, c > 0.

Hence the theorem.

Theorem 5.15 enables us to generalize the results obtained in Kundu et al. (2010)

which are given in Table 5.1.

It should be noted that the theorems through 5.8 to 5.14 holds for H(X; t) as α and

β → 1 reduces to Theorem 5.15. In particular we have the following.

Corollary 5.2. Let X be an absolutely continuous random variable. Then X has Type

3 extreme value distribution if and only if

H(f ; t+ t′) = H(f ; t); t, t′ ∈ (−∞, b)
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Table 5.1:
Characterizations

(Kundu et al.(2010)) g(t) λ(t) = cg′(t) Distribution
Type 3 extreme

H(f ; t) = 1− log λ(t) t c value distribution
F (t) = exp {c(t− b)},
t ∈ (−∞, b), c > 0.
Power function

H(f ; t) = c−1
c
− log λ(t) log t c

t
Distribution
F (t) =

(
t
b

)c,
t ∈ (0, b), c > 0.
Negative Pareto

H(f ; t) = c+1
c
− log λ(t) − log(1− t) log(1− t)−c Distribution

F (t) = (1− t)−c,
t ∈ (−∞, 0), c > 1.
Truncated extreme value

H(f ; t) = 1− log λ(t)−m(t) −e−t ce−t distribution (when c = 1)
F (t) = exp

{
e−b − e−t

}
,

t ∈ (−∞, b).

Corollary 5.3. Let X be an absolutely continuous random variable. Then X has the

power function distribution if and only if

H(f ; tt′) = H(f ; t) + log t′; t, t′ ∈ (0, b).

Corollary 5.4. Let X be an absolutely continuous random variable. Then X has the

negative Pareto function distribution if and only if

H(f ; t+ t′ − tt′) = H(f ; t) + log(1− t′); t, t′ ∈ (−∞, 0).



Chapter 6

Reversed Lack of Memory Property in

Discrete Domain

6.1 Introduction

The results in this chapter can be considered as an addendum to those discussed ear-

lier. All the same conceptual definitions in the discrete domains need to be addressed

with clarity. They are often overlooked or ignored in literature. However they find

application when considering group data, the underlying modeling assumption being

that of a continuous time distribution. Discrete models and their study has been con-

ventionally restricted to applications where failure process involves discrete trials. But

discrete time models are worth greater consideration. A number of problems which oc-

cur with continuous time models are overcome by using a discrete time model. Further

discussion on discrete concepts is found in Xekalaki (1983), Nair and Hitha (1989),

Adams and Watson (1989), Roy and Gupta (1992), Nanda and Sengupta (2005) and

the references therein.

Nanda and Paul (2006a) defined the past entropy for the discrete random variable

X with probability mass function P [X = i] = p(i), i = n, n+ 1, ...,m where n could

be −∞ and 0 < m < ∞. Now let P (k) = P [X ≤ k] =
∑k

i=n p(i), the distribution

107
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function, δ(j) = ln P (j)
P (j−1)

, the reversed hazard rate (Dewan and Sudheesh (2009)) and

m(t) = 1
P (t)

∑t
i=n P (i), the mean inactivity time (Goloforushani and Asadi (2008)) of

X . The discrete past entropy of X is now defined as

H (X; j) = −
j∑

k=n

p(k)

P (j)
ln
p(k)

P (j)
.

Note that, as j → m, H (X; j) becomes the Shannon entropy given by H(X) =

−
∑

k p(k) ln p(k).

The discrete generalized past entropy (Nanda and Paul (2006b)) is defined as

H
β
(X; j) =

1

1− β
ln

[
j∑

k=n

(
p(k)

P (j)

)β]
.

As in the continuous case, when β → 1, H
β
(X; j)→ H(X; j).

However these measures which consider only probabilities and ignore the value of

the random variable takes may in some situations not do justice to the literature and

practical notions of randomness or information. For any discrete random variable X ,

the entropy is computed solely using the probabilities P [X = t] and one interprets

the entropy as a measure of the randomness in X . However if X denotes the number

of components that has failed in a complex system, or time for the next scheduled

maintenance of a system or for that matter of any left truncated data, the appropriate

probabilities to be considered are P [X ≤ t] instead of P [X = t]. Accordingly we

define the cumulative past entropy as

H (X; j) = −
j∑

k=n

P (k)

P (j)
ln
P (k)

P (j)

= −
j∑

k=n

j−1∑
i=k

(
j−1∏
i=k

P (i)

P (i+ 1)

)
ln

P (i)

P (i+ 1)

=

j∑
k=n

j−1∑
i=k

δ(i)e−
∑j−1
i=k δ(i)
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Observe that

H (X; j)−H (X; j − 1) =

j−1∑
i=k

δ(i)e
−
j−1∑
i=k

δ(i)

= −P (j − 1) lnP (j − 1).

It hence follows that H (X; j) is increasing in j and also that H (X; j) takes values

in (0, ∞). This measure is the discrete analogue of the measure in (5.9) and hence

the appropriateness of this measure follow in a similar argument as for (5.9). Here we

study the behaviour of these discrete measures when X has the discrete reversed lack

of memory property.

In this chapter we discuss the notion of reversed lack of memory property (RLMP)

in the discrete set up and derive the discrete RLMP class. Similar to the continu-

ous case the discrete reversed lack of memory property has its implication on many

probability and uncertainty measures. It is further shown that the class of distributions

defined by Goliforushani and Asadi (2008) and Kundu et al. (2010) is the RLMP class.

All these results are discussed in Section 6.2. In Section 6.3 we consider the bivariate

analogue of the reversed lack of memory property and its implications on bivariate

reliability measures. The multivariate analogue of this property is included in Secton

6.4. Finally the thesis concludes by discussing future work to be carried out.

6.2 Discrete Reversed Lack of Memory Property

Definition 6.1. Let X be as in Section 6.1. Then X is said to possess the reversed lack

of memory property (RLMP), if for all t = 0, 1, ...,m with x+ t ≤ m,

P (X ≤ x|X ≤ x+ t) = P (X ≤ 0|X ≤ t) (6.1)

To interpret RLMP physically, let X represent the number of cycles of operation
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of equipment (interpreted as age) before it fails. Then the right side represents the

probability that new equipment fails before it completes the first cycle given that it

fails within t cycles. On the left side, the probability of the same equipment fails

before x cycles for any x ∈ {n, n+ 1, ...,m} and t = 0, 1, ...,m with x+ t ≤ m given

that it fails within an additional t cycles. Thus the expected time elapsed since failure

is independent of the age of the equipment whenever RLMP is satisfied.

The next theorem characterizes models with RLMP.

Theorem 6.1. Let X be a discrete random variable defined as above with m < ∞.

Then the following statements are equivalent.

(i) X has a distribution specified by

P (x) = p(m−x), x ∈ {n, n+ 1, ...,m} , 0 < p < 1 (6.2)

(ii) X has the reversed lack of memory property (6.1) which is equivalent to

P (x)P (t) = P (x+ t)P (0), (6.3)

for x+ t ≤ m.

(iii) The reversed hazard rate of X satisfies

δ(x+ t) = δ(x), x ∈ {n, n+ 1, ...,m} . (6.4)

(iv) The discrete generalized past entropy of X is satisfied by

H
β
(X; j + t) = H

β
(X; j).
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(v) The mean past lifetime of X is satisfied by

m(x+ t) = m(x).

(vi) The discrete cumulative past entropy of X is satisfied by

H(X; j + t) = H(X; j).

Proof. We first prove the equivalence of (i) and (ii). That of (i)⇒ (ii) is evident by

substituting for P (x) in (6.3) from (6.2).

Assuming,

P (x)P (t) = P (x+ t)P (0),

for all x ∈ {n, n+ 1, ...,m} with x+ t ≤ m, we have

P (x) =
P (0)

P (1)
P (x+ 1), x ∈ {n, n+ 1, ...,m} .

Or,

P (x) =

[
P (0)

P (1)

]m−x
.

Hence,

P (x) = p(m−x), where 0 < p = P0

P1
< 1.

Thus by the definition, δ(x) is a constant and hence (6.4) holds. Thus (ii) ⇒ (iii)

and since δ(x) uniquely determines the distribution function by the relation (1.26) it

follows that (iii)⇒ (i).

The equivalence between (i) and (iv) follows by Theorem 4.3 of Kundu et al.

(2010).

By assuming (i) and using m(t) = 1
P (t)

∑t
i=n P (i), we see that the mean past

lifetime is a constant. Conversely, by assuming (v) and applying Theorem 2.6 of
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Goliforushani and Asadi (2008), we get (i).

Thus, the proof is complete.

Corollary 6.1. H β
(X; j) = c, where c is a constant if and only if P (x) is of the form

(6.2).

Corollary 6.2. H(X; j) = c, where c is a constant if and only if P (x) is of the form

(6.2).

Corollary 6.3. δ(x) = c, where c is a constant if and only if P (x) is of the form (6.2).

Corollary 6.4. m(x) = c, where c is a constant if and only if P (x) is of the form (6.2).

From Kundu et al. (2010), we have

eδ(j) =
m(j − 1)

m(j)− 1
. (6.5)

Hence, by using the results in Nanda and Paul (2006b) we get

H
β
(X; j − 1) = log

{
m(j)− 1

1 +m(j − 1)−m(j)

}
.

In fact δ(x) uniquely determines the distribution through P (x) = exp
(
−
∑m

y=x+1 δ(y)
)

,

Corollary 6.3 can be generalized to get the following result.

Theorem 6.2. LetX be a random variable defined as above. Then the reversed hazard

rate δ(x) is of the form

δ(x) = lx+ k, l, k > 0 (6.6)

for all x ∈ {n, n+ 1, ...,m} if and only if X is distributed as

P (x) = p
(m−x)(m+x+1)
1 p

(m−x)
2 , x ∈ {n, n+ 1, ...,m}

for some 0 < p1, p2 < 1, where p1 = e−l/2 and p2 = e−k.
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Proof. Let δ(x) be as in (6.6). Then the definition

ln
P (x)

P (x− 1)
= lx+ k

implies

P (x) = exp

{
−

m∑
y=x+1

(lx+ k)

}

= p
∑m
y=x+1 y

1 pm−x2

= p
(m−x)(m+x+1)
1 p

(m−x)
2 .

The constants l and k in (6.6) are determined as l = −2 log p1 and k = − log p2. The

converse is straight forward.

In the next section we extend the concept of reversed lack of memory property to

the bivariate case.

6.3 Bivariate Characterizations

In this section, we extend the idea of discrete reversed lack of memory property to

the bivariate case and investigate its implication on bivariate reliability measures like

bivariate reversed hazard rate and bivariate mean past lifetime.

Definition 6.2. LetX = (X1, X2) be random vector with distribution function P (x1, x2)

defined on Im× Im, where Im = {n, n+ 1, n+ 2, ...,m} where the integer n could be

−∞, but m is finite and positive. Then the bivariate reversed hazard rate is defined as

δ(x) = (δ1(x), δ2(x)) (6.7)

where δi(x) = ln P (x)
P (xi)

, P (x) = P [X1 ≤ x1, X2 ≤ x2], xi = (xi − 1, x3−i), i = 1, 2

and x = (x1, x2) ∈ Im × Im.
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For xi = m, it follows from (6.7) that δi(m,x3−i) = ln P (x3−i)
P (x3−i−1)

, the univariate

reversed hazard rate (Asha and Nair (2004)).

Also,

P (x1, x2) = exp

[
−

m∑
y=x1+1

δ1(y, x2)−
m∑

y=x2+1

δ2(m, y)

]
(6.8)

or,

P (x1, x2) = exp

[
−

m∑
y=x2+1

δ2(x1, y)−
m∑

y=x1+1

δ1(y,m)

]
(6.9)

The bivariate reversed mean residual life function defined by ν(x) = (ν1(x), ν2(x))

where

ν1(x) = E (X1 − x1|X1 ≤ x1, X2 ≤ x2) (6.10)

=
1

P (x1, x2)

x1∑
t=n

P (t, x2) (6.11)

and

ν2(x) =
1

P (x1, x2)

x2∑
t=n

P (x1, t) (6.12)

is related to δ(x) as

exp [−δ1(x1, x2)] =
ν1(x1, x2)− 1

ν1(x1 − 1, x2)
(6.13)

and

exp [−δ2(x1, x2)] =
ν2(x1, x2)− 1

ν2(x1, x2 − 1)
(6.14)

6.3.1 Characterizations

Characterization of δi(xi) has been found in Asha and Nair (2004). A problem of natu-

ral interest is how far these characterizations can be extended to higher dimensions. In

this section we look into few characterizations of δ(x1, x2) and their functional form.

Theorem 6.3. Let X = (X1, X2) be a bivariate random vector defined as above with

m <∞. Then the following statements are equivalent.
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(i)

δ(x+ t) = δ(x), (6.15)

where t = (t1, t2).

(ii)

P (x1 + t1, x2 + t2)P (0, 0) = P (x1, x2)P (t1, t2), (6.16)

for all xi and ti such that xi + ti ≤ m, i = 1, 2.

(iii) X has a distribution specified by

P (x1, x2) = pm−x11 pm−x22 ;x1, x2 = n, n+ 1, n+ 2, ...,m (6.17)

where p1 = P (0,0)
P (1,0)

and p2 = P (0,0)
P (0,1)

.

Proof. Assume δ(x+ t) = δ(x).

This implies δ(x)= constant. Then by using (6.8) we get (6.17). The converse is

straightforward.

To prove the equivalence of (i) and (ii), first we assume that X is distributed as in

(6.17). Then

P [X1 ≤ x1 + t1, X2 ≤ x2 + t2] =
pm−x11 pm−x22 pm−t11 pm−t22

pm1 p
m
2

(6.18)

or,

P (x1 + t1, x2 + t2) =
P (x1, x2).P (t1, t2)

P (0, 0)
.

Thus, (i) implies (ii).

Conversely, let (ii) is satisfied.

Put x2 = 0 and t2 = m in (6.16), we have

P1(x1 + t1)P (0, 0) = P (x1, 0)P1(t1) (6.19)
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which implies
P (x1, 0)

P (0, 0)
=
P1(x1)

P1(0)
(6.20)

Similarly, x1 = 0 and t1 = m in (6.16) gives

P2(x2 + t2)P (0, 0) = P (0, x2)P2(t2) (6.21)

which implies
P (0, x2)

P (0, 0)
=
P2(x2)

P2(0)
. (6.22)

Again put t2 = 0 and x2 = m in (6.16) and using (6.21)

P1(x1 + t1) =
P1(t1)

P1(0)
P1(x1)

which implies

p
m−(x1+t1)
1 P (0, 0) = P (t1, 0)pm−x11 .

Thus,

p1 =
P (0, 0)

P (1, 0)
. (6.23)

Similarly,

p2 =
P (0, 0)

P (0, 1)
. (6.24)

By putting x1 = 0, t1 = x1, t2 = 0 in (6.16) and using (6.23) we obtain

P (x1, x2) = P (0, 0)p−x11 p−x22 (6.25)

x1 = x2 = m in (6.25) implies

P (0, 0) = pm1 p
m
2 . (6.26)
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Thus,

P (x1, x2) = pm−x11 pm−x22 .

Hence (ii) implies (iii).

Note that the statement (ii) is the analogue of the lack of memory property (LMP).

The LMP plays a pivotal role in modeling lifetime data and also forms the basis for

many results in theoretical and applied probability. For left censored data we define a

corresponding property, the bivariate reversed lack of memory property (BRLMP) as

P [X1 ≤ x1, X2 ≤ x2|X1 ≤ x1 + t1, X2 ≤ x2 + t2] =

P [X1 ≤ 0, X2 ≤ 0|X1 ≤ t1, X2 ≤ t2] (6.27)

for all xi and ti such that xi + ti ≤ m, i = 1, 2.

If x + t = (x1 + t1, x2 + t2) represent the number of cycles of operations of two

components before it fails, then the right hand side represents the probability that a

new equipment with two components fails before it completes the first cycle given

that the components fail before it completes t = (t1, t2) cycles. Thus the expected

time elapsed since failure is independent of the age of the components whenever the

reversed lack of memory property is satisfied. The next characterization discuss the

condition that t = (t, t).

Theorem 6.4. Let X = (X1, X2) be a bivariate random vector defined as above with

m <∞. Then the following statements are equivalent.

(i)

δ(x+ t) = δ(x) =


(

ln 1
p1
, ln p1

p

)
, x2 > x1(

ln 1
p2
, ln p2

p

)
, x1 > x2(

ln 1
p
, ln 1

p

)
, x1 = x2.

(6.28)
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(ii) X satisfies the reversed lack of memory property defined as

P (x1 + t, x2 + t)P (0, 0) = P (x1, x2)P (t, t), (6.29)

for all xi and t such that xi + t ≤ m, i = 1, 2.

(iii) X has a distribution specified by

P (x1, x2) =


pm−x2px2−x11 , x2 > x1

pm−x1px1−x22 , x1 > x2

pm−x, x1 = x2

(6.30)

where p = P (0,0)
P (1,1)

, p1 = P (0,0)
P (1,0)

and p2 = P (0,0)
P (0,1)

.

Proof. To prove the equivalence of (i) and (iii), first assume that (i) holds. Then by

using (6.8) or (6.9), we have (6.30). The converse is straightforward.

To prove equivalence of (i) and (ii), we assume that (ii) holds.

Put x1 = x2 = x in (6.29) implies

P (x, x) =
P (1, 1)

P (0, 0)
P (x+ 1, x+ 1)

= p−xP (0, 0),

(6.31)

where p = P (0,0)
P (1,1)

.

Hence,

P (x, x) = pm−x (6.32)

with P (0, 0) = pm.

Then (6.32) in (6.29) implies

P (x1 + t, x2 + t)pt = P (x1, x2) (6.33)
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Takingx2 + t = m, we get

P (x1, x2) = pm−x2px2−x11 . (6.34)

Similarly when x1 + t = m, we have

P (x1, x2) = pm−x1px1−x22 . (6.35)

Thus (ii) implies (iii).

The converse is straightforward.

We can define the bivariate reversed local lack of memory property as

P [X1 ≤ x1, X2 ≤ x2|Xi ≤ xi + t] = P [Xj ≤ xj|Xi ≤ t] , (6.36)

for all xi and t such that xi + t ≤ m, i, j = 1, 2, i 6= j

However, if the expected time is a local constant with respect to age we have the

following characterization.

Theorem 6.5. Let X = (X1, X2) be a random vector defined as above with m < ∞.

Then

δ(x) = (lx2 + k, sx1 + t) (6.37)

if and only if X is distributed as

P (x1, x2) = p(m−x1)(m−x2)pm−x11 pm−x22 , (6.38)

for all x1, x2 = n, n + 1, n + 2, ...,m where 0 < p = e−θ < 1, θ > 0, 0 < p1 =

e−A(m) < 1, 0 < p2 = e−B(m) < 1, A(m) and B(m) are constants and 1−pmp2
pmp1

≥

1− pm+1p2.
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Proof. Let δ(x) is of the form (6.37). Then from (6.8) and (6.9), we have

exp {− [(lx2 + k)(m− x1) +B(m)(m− x2)]} =

exp {− [(sx1 + t)(m− x2) + A(m)(m− x1)]} (6.39)

which implies
lx2 + k − A(m)

m− x2

=
sx1 + t−B(m)

m− x1

= θ, (6.40)

where θ is a constant.

Then,

P (x1, x2) = exp {−θ(m− x1)(m− x2)− A(m)(m− x1)−B(m)(m− x2)}

= p(m−x1)(m−x2)pm−x11 pm−x22

For p(0, 0) ≥ 0, we need 1−pmp2
pmp1

≥ 1− pm+1p2.

The converse is straightforward.

Corollary 6.5. Consider the vector of probabilities

λ(x) = (λ1(x), λ2(x)) ,

where
λ1(x1, x2) = P [X1 = x1|X1 ≤ x1, X2 ≤ x2]

= 1− P (x1 − 1, x2)

P (x1, x2)

(6.41)

and
λ2(x1, x2) = P [X2 = x2|X1 ≤ x1, X2 ≤ x2]

= 1− P (x1, x2 − 1)

P (x1, x2)
.

(6.42)

Then λ(x) can be viewed as discrete analogue of reversed hazard rate (Bismi (2005)).
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Since δ(x) and λ(x) are connected by

(λ1(x), λ2(x)) =
(
1− e−δ1(x), 1− e−δ2(x)

)
(6.43)

the above three characterizations can be proved using λ(x) also.

In the next section we discuss the multivariate analogue of the reversed lack of

memory property in the previous sections.

6.4 Multivariate Extension

The multivariate reversed lack of memory property is a straightforward extension of

the bivariate case. For completeness, we state the reversed lack of memory property

in the multidimensional case and derive the corresponding multivariate distribution

characterized by it.

Definition 6.3. Let X = (X1, X2, ..., Xk) be random vector with distribution function

P (x1, x2, ..., xk) defined on Im × Im × ... × Im, where Im = {n, n+ 1, n+ 2, ...,m}

where the integer n could be −∞, but m is finite and positive. Then the multivariate

reversed lack of memory property is defined as

P (x+ t)P (0) = P (x)P (t) , (6.44)

such that xi + ti ≤ mi, i = 1, 2, ..., k where x = (x1, x2, ..., xk), t = (t1, t2, ..., tk) and

(0, 0, ..., 0).

The distribution satisfying (6.44) is given by

P (x) =
k∏
i=1

p
(m−xi)
i , (6.45)

for xi = n, n+ 1, n+ 2, ...,m, i = 1, 2, ..., k where pi = P (0,0,...,0)
P (0,0,...,1,...,0)

.
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A meaningful relaxation of (6.44) is by considering t = (t, t, ..., t). Then the

multivariate reversed lack of memory property becomes

P (x+ t)P (0) = P (x)P (t) , (6.46)

such that xi + t ≤ mi, i = 1, 2, ..., k where x = (x1, x2, ..., xk), t = (t, t, ..., t) and

(0, 0, ..., 0).

The distribution satisfying (6.46) is given by

P (x) = p
m−xi1
i1

(
pi1i2
pi1

)m−xi2 (pi1i2i3
pi1i2

)m−xi3
...

(
pi1i2...ik
pi1i2...ik−1

)m−xik
, (6.47)

where xi1 ≥ xi2 ≥ ... ≥ xik for each permutation (i1, i2, ..., ik) of the integers from 1

to k. The parameters are such that

0 < pi1i2...ik ≤ ... ≤ pi1i2 ≤ p1, p2, ..., pk < 1,

pi1i2...ij = p123...j for j = 2, 3, ..., k and

1−
k∑
i=1

pi −
∑
i<j

∑
pij + ...+ (−1)k−1p12...k ≥ 0.

Let X = (X1, X2, ..., Xk) be a random vector and t = (t1, t2, ..., tk) defined as

above. Then the multivariate reversed local lack of memory property is defined as

P [Xi ≤ xi|X1 ≤ x1, X2 ≤ x2, ..., Xi ≤ xi + ti, ..., Xk ≤ xk]

= P [Xi ≤ 0|X1 ≤ x1, X2 ≤ x2, ..., Xi ≤ ti, ..., Xk ≤ xk] (6.48)

for all xi and ti such that xi + ti ≤ m, i = 1, 2, ..., k.

The distribution satisfying (6.48) is given by

P (x) =

(
k∏
i=1

p
(m−xi)
i

)(∏
i<j

p
(m−xi)(m−xj)
ij

)
...
(
p

(m−xi)(m−x2)...(m−xk)

12...k

)
,
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where 0 < pi < 1, 0 < pij, pijl, ..., p12...k < 1 and

1−
k∑
i=1

pi −
∑
i<j

∑
pij + ...+ (−1)k−1p12...k ≥ 0.

6.5 Future Work

In this thesis, the concept of reversed lack of memory property and its generalizations

is studied. The implications of this property on various statistical measures are also

investigated. A model characterized by this property is also presented. A detailed study

on distributional properties of the model characterized by the generalized reversed

lack of memory property remains to be looked up on. As a future course of work

we also intended to look upon the parametric and nonparametric estimation problems

associated with the generalized reversed lack of memory property class based on the

characterizations discussed here.
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