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CHAPTER 1

| ntroduction

The purpose of this thesis is to combine several concepts from queuing theory and
inventory and use them in modelling and analysis. Until 1947 it was assumed, while
analyzing problems in queues with finite capacity, when the buffer is full any further
arrival is lost. However this is not the case in reality. A customer who could not get
admission into the system may keep trying until he succeeds or quits because a time
reaches when he does not derive any benefit out of the service, whichever occurs first.
This type of queueing problem was first analyzed by Kos&#f) in 1947 and such
type of queues are referred to as retrial queues. Retrial queues arise in a natural way
in communication systems, at enquiry counters attached with offices, in hospitals and
so on. Multiserver retrial queues are complex compared to single server queue. Still
more complex is the retrial multiserver queues where the servers are separated, which
arises as follows. Suppose there agervers who are separated so that neither a server
nor an arriving customer knows the status of the rest ofcthel servers. Thus if the
present arrival to a particular server finds that server busy then he has to retry to access
even other servers. This type of situation arises in, for example, at reception counters
where there are a few telephones with distinct numbers. This problem is analyzed in
Mushkov, Jacob, Ramakrishnan, Krishnamoorthy and Duglhih 2006.

Inventory system was formally investigated in the most simple situation by Harris
in 1915 which was subsequently analysed independently by Wilson in 1918 and the
famous Harris-Wilson EOQ formula was realized. Most of the initial work in inventory
theory were on deterministic models. Realizing the importance of uncertainty of the
demand process and of the lead time, probabilistic models started getting investigated.
Nevertheless the basic assumption in all these was that the time required to serve the

item(s) was negligible. So in case item is available at demand epoch it is instantly



served. Else a queue gets formed, provided backlog is pednikrishnamoorthy and

Raju in a series of paper89, 41, analyzed inventory with local purchase during stock
out period, whenever a demand occurs, to earn customer good-will. However these
were also restricted to the case of negligible service time. In practice a positive duration
of service, deterministic or random, is needed to serve the item(s). Thus Berman, Kim
and Shimshack in 1993, came up with the notion of inventory with positive service time.
Since then there are several developments in the analysis of such inventory models.

In this thesis we combine models in classical/retrial queues with inventory involv-
ing positive service time. In some cases we introduce local purchase during stock out
period, to improve the reliability of the system. This local purchase is assumed to be
instantly done so that customers are not lost on account of lack of availability of the
item. We also introduce disaster that removes all inventoried items instantly.

Next we provide a brief account of queues and inventory. In the sequel we also
provide a brief account of the matrix geometric solution. Then we proceed to provide
a brief review of the work that were done in the direction of the problems discussed in

this thesis.

1.1. Classical and Retrial Queues

Lining up for some form of service is a common phenomenon, be it visible or in-
visible, by human beings or by inanimate objects. It is more organized or, sometimes,
is made to be so in the modern world and therefore a systematic study of a line up or
equivalently a queueing process is instinctively more rewarding academically. A clas-
sical queueing system can be described as customers arriving for service, waiting for
service if service is not immediate and if having waited for service, leaving the system
after being served.

A gueue is formed when either there is positive service time or there are no sufficient
servers for the arriving customers. Some examples of a queue are customers arriving at
a bank and aeroplanes waiting for their turn to land in busy airports.

Queueing systems in which arriving customers find all servers and waiting positions

(if any) occupied, may retry for service after a period of time. Such queues are called



retrial queues or queues with repeated attempts. One of tisé abwious example is
provided by a person who desires to make a phone call. If the line is busy, then he
cannot queue up, but can try sometime later.

Retrial queues are a type of networking with reserving after blocking. The classical
queueing models do not take into account the phenomenon of retrials and therefore
cannot be applied in solving a number of practically important problems. Retrial queues

have been introduced to solve this deficiency.

1.2. Inventory Systems

In all business firms the system must keep a minimum amount of inventory at the
time of order placing of inventory for the smooth and efficient running of the firm.
The importance of inventory management for the quality of service of today’s service
systems is generally accepted and optimization of systems in order to maximize quality
of service is therefore an important topic.

There are several factors affecting the inventory. They are demand, life time of items
stored, damage due to external disaster, production rate, the time lag between order and
supply, availability of space in the store etc. If all these parameters are known before
hand, then the inventory model is called deterministic inventory model. If some or all
of these parameters are not known with certainty then we consider them as random
variables with some probability distribution and the resulting inventory model is then
called stochastic inventory model.

Efficient management of inventory system is done by finding out optimal values of
the decision variables. The important decision variables in inventory system are max-
imum capacity of the inventory, reordering point and order quantity. Several policies
may be used to control an inventory system. Of these, the most important policy is
the (s, S) policy. An inventory system may be based on periodic review (e.g., ordering
every week or every month), in which new orders are placed at the start of each pe-
riod. Alternatively the system may be based on continuous review where a new order
is placed when the inventory level drops to a certain level, called the reorder point. An

example of periodic review occurs in gas stations where new deliveries arrive at the start



of each week. Continuous review occurs in retail stores witenes (such as cosmetics)
are replenished only when their level on the shelf drops to the reorder point.

The time elapsed between an order and its physical materialization is termed as lead
time. If the replenishment is instantaneous then lead time is zero, otherwise the system
is said to have positive lead time.

Inventory models have a wide range of applications in the decision making of gov-
ernment military organization, industries, hospitals, banks, educational institutions etc.
Study and research in this fast growing field of applied mathematics, taking models
from practical situations, contributes significantly to the progress and development of
human society.

In most of the analysis of inventory systems the decay and disaster factors are ig-
nored. But in several practical situations these factors play an important role in decision
making.Examples are electronic equipments stored and exhibited on a sales counter,
perishable goods like food stuffs, chemicals, crops vulnerable to insects and natural

calamities like earth quake, rains, storms etc.

1.2.1. Inventory with positive service time.In all works reported in inventory
prior to 1993 it was assumed that the time required to serve the item to the customer is
negligible. As a consequence if the item is available at a demand epoch, the customer
need not have to wait; a queue can be formed only when the inventory level becomes
zero and lead time is positive.

We come across several real life situations where the service time is not negligible.
In this case a queue will be formed even when the item is available. Thus the problem
in inventory with service time may appear as a problem in queue. Nevertheless, this is
not the case. The server stays idle even when there are customers in the system in the
absence of inventoried items for processing.

Shortages of inventory occur in systems with positive lead time, in systems with
negative reordering points or in multi commodity inventory system in which an order
is placed only when the inventory level of at least two commodities fall to or below
than the reorder level. Shortage cost is the penalty incurred when we run out of stock.

It includes potential loss of income and moreover subjective cost of loss in customer’s



goodwill. There are different methods to tackle the stockpmrtods of the inventory.

One of the method is to consider the demands during dry periods as ‘lost sales’. The
other is partial or full backlogging of the demands.Lost sale causes a loss in the profit
and back logging results in the increase in the waiting time of the customer. In order to

avoid these two possibilities in this thesis we adopt the notion of local purchase. If a

customer enters for service when the inventory level is zero we make a local purchase
of the item at a higher cost. Thus we can decrease the waiting time of the customer and
thereby holding cost of the customer. Local purchases are made to improve the good
will of the customers with the system especially in a newly opened shop or where there

IS a competition between near by shops.

1.2.2. Quasi-Birth and Death process (QBD) Consider a continuous time Markov
chain on the two-dimensional state spg¢e, j), 1 < j < m'} U {(n,j),n > 1,1 <
j < m}. The first co-ordinate is called the level and the second co-ordinaicalled
the phase of the state, j). The Markov process is called a QBD if one-step transition
from a state are restricted to states in the same level or in the two adjacent levels: it is
possible to move in one step frofn, j) to (n’, j') only if n’ = n,n+ 1 orn — 1 (in the
last caser > 1). If the transition rate fronin, j) to (n’;’) does not depend anandr’,
but only onn’ — n then the Markov process is called a Level Independent Quasi-Birth
Death (LIQBD) process and the infinitesimal gener&jas given by

B, By, 0 0
By, A Ay 0
Q=10 Ay, A A
0 0 A A

whereB, is a square matrix of order’, By is anm’ x m, By isanm x m/ andAg, A;
and A, are square matrices of order.

If the transition rates depend on the level then the Markov Process is called a Level
Dependent Quasi Birth Death (LDQBD) Process and the infinitesimal genépator



then given by
A10 AOO 0 0 0

A21 A11 AOI 0 0
Q= 0 Ayp A Ap 0
O 0 A23 A13 AOB

(1.2.1)

o o O O

All models discussed in this thesis are either LIQBD or LDQBD

1.2.3. Matrix analytic method. A matrix analytic approach to stochastic mod-
els was introduced by Neut§3] to provide an algorithmic analysis fa¥/|G|1 and
GI|M]|1 type of queueing models. Matrix analytic methods constitute a success story,
illustrating the enrichment of science, applied probability by a technology, that of digital
computers.

The following theorem gives a brief description of Matrix Analytic Method applied
for solving Quasi-Birth Death Process (QBD).

THEOREM 1.2.1. A continuous time QBD with infinitesimal generaiQrof the
form (1.2.1)is positive recurrent if and only if the minimal non-negative solutibto

the matrix quadratic equation
R*Ay + RA, + Ay =0 (1.2.2)
has spectral radius less than 1 and the finite systems of equations
2oA10 + 11421 =0

i1 Agic1 + Ay + 241 A2, =0 (1<i<N—2)

Tn_2AoN—2 + Tn_1(A1n_1+ RAY) =0

has a unique solution fary, . . ., x_;. If the matrixA = A+ A+ A, whereAy; = Ay,
Ay; = Ay fori > Nisirreducible, thersp(R) < 1ifand only ifr Age < mAze wherer
is the stationary probability vector of the generator matf>and satisfies the equation

mA = 0andre =1 wheree = (1,...,1)".



If © = (x9,z1,...)Is the stationary probability vector @) thenz;’s (i > N) are
given by

TN4r—1 = l’NflRT forr > 1.

To find the minimal solution of (1.2.2) we can use the iterative formula given by
Ry = —(R2Ay + Ag) A7 n=0,1,2, ... with Ry = 0

1.3. Review of Related Work

1.3.1. Works on inventory. In 1915 Harris p4] started the mathematical mod-
elling of inventory problems and derived the famous EOQ formula that was popularized
by Wilson. A systematic analysis of tkie, S) inventory system using renewal theoretic
arguments is provided in Arrow, Karlin and Sca#].[] Hadley and Whitin 23] gave
several applications of different inventory models. Gross and H&fisdonsidered
the inventory systems with state dependent lead times. Sivag@arjalyzed the con-
tinuous review(s, S) inventory system with general inter arrival times and unit demand
in which he shows that the limiting distribution of the position inventory is uniform
and independent of the inter arrival time distribution. Saléi@] pnalyzed continuous
review (s, S) inventory with continuous state space and constant lead time. Srinivasan
[64] discussed afs, .S) inventory problem with arbitrarily distributed interarrival times
and lead times.

Manoharan et.al.4/] discussed the case of non-identically distributed interarrival
times. Krishnamoorthy and Lakshn84] analyzed problems with Markov dependent
re-ordering levels and Markov dependent replenishment quantities. Krishnamoorthy
and Manoharardle] modelled an inventory system with varying reorder levels and ran-
dom lead time. Krishnamoorthy and Varghedd][considered a two commodity in-
ventory problem with Markov shift in demand for the commodity. Krishnamoorthy and
Raju [39 introduced N-policy to the(s, S) inventory system with positive lead time
and local purchase when the inventory level is zero

Berman, Kim and ShimshacK 3] introduced positive service time in inventory
in which the service time is assumed to be constant. They determined optimal order

guantity () that minimizes the total cost rate using dynamic programing technique.



Subsequently, Berman and KimZ] extended that model to random service time.
Parthasarathy and Vijayalakshn&i7] discussed transient analysis of &8 — 1,.5)
inventory model with deteriorating items and obtained the solution using continued
fraction.

Viswanath et.al§6] studied an(s, S) inventory policy with service time by con-
sidering vacation to server and correlated lead time. They considered quite general
distribution for interarrival time, duration of service time and duration of a vacation.
Server goes on vacation whenever there is either no customer left behind in the system
at departure epoch or when the inventory level drops to zero or both occur simultane-
ously. Schwarz et.abfl] discussed\/|M |1 queueing systems with inventory where the
lead times are exponentially distributed. They analyzed the problem fohd@gh and
(r, S) inventory policies and derived stationary distribution of joint queue length and in-
ventory level in explicit product form. Also they discussed the problem of order place-
ments any where on the sfi, 1, ..., s} according to a given probability distribution.
Krishnamoorthy et.al.38] introduced theV-policy for commencement of service, once
the server is switched off in the absence of customers in the system. Here the service
time is positive and lead time is zero. They obtained analytical solution to this model.
They establish a product form solution to the system state and thus produce a decom-
position of the state space. Murthy and Ramanarag8hdiscusseds, S) inventory
system with defective items in the replenished items, where the lead time is positive
with arbitrary distribution. Krishnamoorthy and Varghed@][analyzed an inventory
model where the items are damaged due to decay and disaster. They assumed that the
lead time is zero and the service time is negligible. A detailed survey on inventory with

positive service time is given in Krishnamoorthy et.26]|

1.3.2. Works on retrial queue and retrial inventory. Retrial queues or queues
with repeated attempts have been extensively investigated (See the survey papers by
Yang and Templetorg[/], Falin [18] and the book by Falin and Templetotd]). Sub-
sequent development on retrial queues can be found in Arte8gjd e latest addition
to books on retrial queues is authored by Artalejo and Gomez-Cadirelr this they

discussed the algorithmic approach. Artalejo, Krishnamoorthy and Lopez-He®8tero |



were the first to study inventory policies with positive leatd coupled with retrial
of unsatisfied customers and their approach turns out to be algorithmic. Ushakumari
[65] obtained analytical solution to the above problem in 2006. Krishnamoorthy and
Mohammad Ekramol Islam3fl] analyzed an(s, S) inventory system with retrial of
customers. Here the lead time and inter-retrial times are assumed to be exponentially
distributed.

Krishnamoorthy and Jos&3] compared threés, S) inventory system with retrial
of customers where the service time and lead time are positive. They investigated these
systems to obtain performance measures and construct suitable cost functions for the
three cases. In 2002 Artelajo et.d&] [discussed anV/|G|1 retrial queue where the
server goes for an orbital search, when he is free. Thus the system can decrease the
idle time of the server as well as the waiting time of the customer. Neuts and Rao
[55] discussed ai/| M |c retrial queue in which the model is LDQBD process and they
suggested a truncation procedure, the idea is to make retrial rate to be constant when

the number of customers in the orbit exceeds some level.

1.4. An Ouitline of the Work in this Thesis

This thesis is divided into six chapters including this introductory chapter. Second
chapter contains investigation of two models. In the first model we consider a single
item, continuous reviews, S) inventory model with one server. Arrival of customers
form a Poisson process with rakeand service times of customers are exponentially
distributed random variables with paramejerone unit of item is needed for each
customer. Lead time is assumed to be zero. An arriving customer, who finds the server
busy, proceed to an orbit of infinite capacity and makes successive repeated attempts
until it finds the server free. The inter retrial times have an exponential distribution with
parameteif when there areé customers in the orbit. Here we get an analytical solution
to the model. We construct a cost function and numerical examples are given. In the
second model we consider a more general set up involving arbitrarily distributed service

time. All other assumptions are same as that in the first model. We consider the number



of customers in the orbit and the inventory level at the deparépoch of a customer.
Thus we have an embedded Markov chain. Here also we analyze a cost function.

In chapter 3, we consider five distinct inventory models with positive service time
and positive lead time.In all these it is assumed that customers arrive to a single server
system according to a Poisson process with da#é@d service times are exponentially
distributed random variables with parameterEach customer require one unit of in-
ventory. We follow an(s, S) inventory policy. When the inventory level depletessto
we place an order fof) = S — s quantity of inventory. The distribution of lead time is
exponential with parametet. In model 1 customers do not join the system when the
inventory level is zero. In model 2 customers join the system even when the inventory
level is zero. In model 3 and 4 we make a local purchase of ones amits of items
respectively, whenever a customer arrives to find the inventory level zero, at an extra
cost. In model 5 under the same situation we make a local purchaseioits, thus
cancelling the existing order for procurement of inventory as the maximum capacity of
inventory isS. Numerical examples are given to compare performance of these models
in terms of appropriate cost functions.

In chapter 4 we introduce retrial of unsatisfied customers into the models discussed
in chapter 3, with the assumption that there is no waiting space for the customers at the
service station other than to the one who is being served. An arriving customer who
finds the server busy, proceeds to an orbit of infinite capacity and makes successive
repeated attempts until it finds the server free. The inter retrial times can be modelled
according to different disciplines depending on each particular application.In telephone
systems the repeated attempts are made individually by each blocked customer follow-
ing an exponential law of rate& This is the classical retrial policy where the ratéds
when there aré > 0 customers in the orbit. Another retrial policy is the constant retrial
policy in which the probability of repeated attempts is independent of the number of
customers in the orbit. Here we assume that the inter retrial times have an exponen-
tial distribution with constant raté. Here also we compare the cost functions through

numerical investigations.
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In chapter 5 we considés, S) inventory systems with the possibility of destruction
of inventoried items due to disasters.Here we discuss two models. Customers arrive to
a single server system according to a Poisson process with paramebare service
times are exponentially distributed random variables with parameteWe assume
that disaster destroys all the inventoried items but not the customers. For example, in
godowns food items are destroyed by natural calamities. Here we assume the inter
disaster times to be exponentially distributed with paramé&ters assumed that lead
time is also exponentially distributed random variables with paranveterModel | we
assume further that customers do not join the system when the inventory level is zero.
However in Model Il it is assumed that customers join even when the inventory level is
zero. Thus stability in Model Il is affected by the lead time parameter. We compare the
two models through numerical examples by constructing suitable cost functions.

In chapter 6 we consider a multi server queue coupled with an inventory following
(s,.S) policy and retrial of customers. Customers arrive to the systemargdrvers ac-
cording to Poisson process with rateThe service times are exponentially distributed
with parametey:.. One item is needed for each customer. An arriving primary customer,
who finds all servers busy, will go to an orbit of infinite capacity and tries again for the
service. Inter retrial time follows exponential distribution with paraméterhe lead
time follows exponential distribution with raté. We assume that customers do not
join the system when the inventory level is zero. A cost function is constructed and

numerically investigated.
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CHAPTER 2

I nventory with Retrial and Service Time

2.1. Introduction

In classical queuing theory it is very often assumed that a customer who cannot
get service immediately on arrival (as the server is busy) either joins the waiting line,
and then is served according to some queue discipline, or leaves the system forever.
However, as a matter of fact, the assumption about the loss of customers who opted to
leave the system is just a first order approximation to a real situation. Usually such a
customer after a random time returns to the system and tries to get service again. Such a
queue is known as retrial queue (or queues with returning customers, repeated attempts
etc.). Inretrial queues an arriving customer, who finds the inventory level zero or server
busy, proceeds to an orbit and repeats his attempts. Retrial queues have been used to
model problems in telephone, computer and communication systems. For a detailed
discussion of retrial queues one can refer to Fdlj,[Falin and Templeton1[9], Yang
and Templetong7] and Artalejo [].

In most of the papers on inventory it is assumed that the service time is negligi-
ble.This means that at a demand epoch if the item is available,itis immediately served to
the customer. However,in real life situations this assumption is too restrictive. The first
attempt at analyzing inventory problems with positive service time was due to Berman
et.al [L3]. This was essentially a deterministic inventory model. Subsequently, Berman
and Sapnal4], Arivaringan et.al L], Krishnamoorthy et.al.38] have discussed inven-
tory with positive service time under various assumptions.

In this chapter we consider two models of inventory with positive service time and
retrial of customers. The difference between these two models is that, in the first we
assume the service times are exponentially distributed with paramatet in the sec-

ond model, service times have general distribution with distribution fun€tioh The

12



first one is analyzed as a continuous time Markov chain wheteasecond using the
embedded Markov chain technique. The inventory control is governed bistlie

policy. We assume that the lead time is zero. There is no waiting space for customers at
the service station, except for the one undergoing service. If at an epoch at which a cus-
tomer joins for service and if the inventory level turns out toshban order is instantly
placed forQQ = S — s units which is received immediately. Each demand is exactly
for one item. The system is manned by one server. If an arriving customer finds the
server busy it proceeds to an orbit of infinite capacity and makes repeated attempts until
it finds the server free. Primary customers arrive according to a Poisson process with
rate \. The inter-retrial times follow exponential distribution with linear rétevhen

there are customers in the orbit.

2.2. The Mathematical Model and Analysis of Model |

We consider a single item, continuous revi@ws') inventory model. Arrival of cus-
tomers form a Poisson process with rateService times of customers are independent
and identically distributed exponential random variables with paramet&rrival and
service process are independent of each other. Service times of customers are mutually
independent. Order is placed and immediately delivered at epoch at which customers
join for service, with the inventory level equal 1> 0). That is, lead time is assumed
to be zero. Further shortage cost is assumed to be infinity. An arriving customer who
finds the server busy, proceeds to an orbit of infinite capacity and makes successive re-
peated attempts until he finds the server free. The inter-retrial times have an exponential
distribution with parameteif when there are customers in the orbit.

Let N(¢) be the number of customers in the orbit ahd) is the corresponding

inventory level at time. Define

0 ifthe serverisidle at time

1 ifthe server is busy at time

Now X (t) = {(N(t),C(¢t),I(t)); t > 0} is a Continuous Time Markov Chain
(CTMC) with state spac&’ = U2,i(i) wherel(i) = {(:,0,j),s < 7 < S -1} U
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{(4,1,7),s+1 < j < S}. Since the demand is exactly for one unit and only one
customer is served at a time, the level (humber of customers in the orbit) increases or
decreases by one unit. Therefore it is skip free to the left as well as to the right. Further
the phase representing the inventory level decreases by 1 unit@mtbthen goes back

to S. Thus the model is a LDQBD (Level Dependent Quasi-Birth-Death process). The

infinitesimal generatof) of the process has the block tridiagonal:

Ap Ao O 0 0

Ay An Ao 0 0
0 Axp A Ay 0
0 0 Ay Az Ao

Qi
I

where Ay, Ay; (i > 0) andAy; (i > 1) are square matrices of the same or2lgf — s)

and they are given by

—(AN+10)Ig_ AE 0 0FE
Ay = ( O)s ;o Ay = Z
pulg_ —( AN+ )5 0 0
0 0 0 1
Ag = ,  WhereF =
0 Mg, Is_s1 O

and is of ordelS — s) x (S — s). Next we investigate the condition for stability of the

system.

2.2.1. System stability. When the number of customers in the orbit is sufficiently
large, majority of the customers fail to access the server and do not result in significant
change in the number of customers in the orbit. Under this condition, we can find a suf-
ficiently large N such that the retrial rate¥9 and (N + 1)6 do not differ significantly.

In other words we can find/ sufficiently large such thad,;, A,; can be approximated
by A;; = Ay, Ay, = As, respectively whenever> N. This results in the difference
between equilibrium probabilities corresponding2@nd( (given below) turning out

to be minimal. If the number of customers is restricted to an approximately chosen
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numberN, then the change on the equilibrium probability vector is minimal. This trun-
cation (see Neuts and Ras) modifies the infinitesimal generat@) to the following

form whereA;; = A, andA,; = A, fori > N.

Ao Ao
Ay A Ao
Ay A Ao
Q=
Aoy-1 Aiva1 Ao
Ay Al A
Ay Ay A

Define the generatot asA = Ay + A; + As. Then

S| TN (A NOE

,U[st _Mlsfs
. Let 7 be the steady state probability vector of the generator mdtrikhat is
wA = 0 andme = 1. The vectormr can be partitioned ag = («',«"), where
/

' = (71,2, .., Tg—s) ANAT" = (Tg_sq1, Ts—st2 - - -, To(s—s))- It iS €asily seen that

the solution tor A = 0 with we = 1 is given by

. 11 1

TN A S5 —5 5—5

" A+ N6 1 1 1

7 = ( , s )
A+NO+pu S—s S—s S—s

This leads to the following
THEOREM 2.2.1. The system is stable if and only\if< .

PROOF We have from the well known result (see Neui§]) for positive recur-
rence of(), the rate of drift to the left (in terms of level) has to be higher than that to the

right; i.e.,mAge < mAye for stability of the system and vice versa. After some algebra
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this reduces to

A+ NO - 14
A+ NO+ A+ NO+
which reduces to. < yasN — oo. U

2.3. The Steady State Probability Vector of)

To get a complete picture of the system itis essential to compute the long run system
state probability vector whenever it exists That is we have to calculate the steady-state
probability vector ofQ) under the stability condition. Let the steady-state probability
vectorx of () be partitioned according to the levelas= (z(0), z(1), z(2),...) where
the subvectors:(i), i > 0, contains2(S — s) elements. These subvectors satisfy the

equations

Again partition the subvectar(i), i > 0 as
z(i) = (z(7,0), z(i, 1)) where the subvectorgi, j), j = 0,1

containS — s elements each. That i8(i,0) = (Y;0s, Yi0.s+1 - - - Yi0,5—1) and
2(i,1) = (Yi1,s41,Yirs+2---Yirs). Equations (2.3.1) and (2.3.2) give rise to the fol-

lowing relations:

— Ax(0,0)Is_s + px(0,1)[s_s =0 (2.3.3)
[Az(0,0) + 0z(1,0)]E — (A + pu)z(0,1)Ig_s =0 (2.3.4)
— (A +10)x(i,0) + px(i,1) =0 (2.3.5)

Az(i—1,1) — (A4 p)a(i, 1) Ls—s + [Ax(4,0) + (i + 1)fz(i + 1,0)]E =0 (2.3.6)
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From equation (2.3.3) we have

A
z(0,1) = pz(0,0) wherep = :

Let 2(0,0) = n(1,1,...,1). Then equation (2.3.7) giveg0,1) = pn(1,1,...

From equation (2.3.4) we have,

A

Equation (2.3.5) gives(i, 1) = #m(i,O) fori > 0. Finally, (2.3.6) gives

;i1 1
2(i,0) = [z"pei [T+ #6)| n(1,1,.... Dyfori > 0.
k=0 J
Thus . i
pi+1 ¢
w(i,1) = [W, [T+ £6) [ n(1,1,.... 1) fori > o.
k=1 J

Now to findn we use the normalizing condition; ) z(i)e = 1. Then we get

n=g—(1—p)?*!. Hence

4 i—1
. pl A
2(1,0) = | e 75 (1 —p)e T [[A+ KO | (1,1, 1)
) k=0
That is,

1 pZ \ i—1
Yioj = (S—s) [ilei(l—p)?“H(AJrkH) fors<j;j<S-—1.

’ k=0

Hencey,; = P[N =i,C = 0,1 = j] = P[N =i,C = 0|P[I = j.

Also we have

17
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from which we get

i+1 i
(1—p)# JJ(A+k0)| fors+1<j<S.

k=1

L e
i =5

This tells us that
yinj = PIN=4,C=1,1=jl=P[N =i,C =1]P[I =j].

We sum up these results in the following.

THEOREM 2.3.1. The steady state probability vectoof Q) be partitioned as
X = (x(0),z(1),z(2),...) where eachx(7) is again partitioned as (i) = (x(7,0), z(i, 1)),
1> 0. Then

2(0,0) =n(1,1,...,1)

;i1

2(i,0) = % TTx+#6)

[ i+1 ¢
(i, 1) = [;'01' [T +#60) [ n(L.1,.... 1), i>0
L k=1
_ )3+L
where n:wandp:i
S—s

Thus we arrive at a product form solution for the system state distribution. This
naturally leads to the decomposition of the joint generating function.

2.4. System Performance Measures
Let x = (z(0),z(1),z(2),...) be the steady-state probability vector@f Each
x(i), © > 0 is partitioned as(i) = (x(7,0),z(i, 1)) wherexz(i,0) = (i 0.5, ¥i,0,s+1,
oy Yio,s—1) andx(i, 1) = (Vi1 s+1,Yi1,s+2---Yi1,5)- Then we have the following

expressions for the performance measures:
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a. Expected number of customers, EC in the orbit is given by
)\ + p0)
EC = Z.CL' =
Z —p)o
b. Expected inventory level, El is given by
> S —|— s—1
El _ZijZOJ_'_Z Z Jyzlg— +
1=0 j=s 1=0 j=s+1

o

Expected re-order rate, ER is given by

ER = )\Z%os +inyz‘os = %
i=0 i=1

d. Expected rate of departures, ED after completing service is given by
00 S
ED — > 3 =
1=0 j=s+1

e. Probability that the server is busy

f. Over all retrial rate, ORR is given by

p(A + pbd)

ORR=0) ixe = I,

=1

. Successful retrial rate, SRR is given by

0o S—1
SRR=0 i) yi; = pA

i=0 j=s

(@]

=y

. Probability of the number of customers in the orbit exceeding a given numbek, say
is

PIN > R] = (1—p)§+12{2'p; [i_[(A+k9 +pH (A +k0) ]}

>R k=0 k=1
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This measure is of great significance since systems are @égbsgmas to minimize
the expected waiting time of customers.

i. Since there is no queue formed in the orbit where the queue discipline is not first in
first out, it is not easy to compute the waiting time distribution. So we proceed to
compute the expected waiting time of a tagged customer.

Expected waiting time, EWT (excluding service time) of such a customer

__pr (11
-2 <u+9) (see L1])

J. Stochastic decomposition.
We haveE[N] = E[N,] + 22 where

1—p
E[N] = Expected number of customers in the orbity 2

E[N,] = Expected number of customers in the queue excluding the customer re-
ceiving service,if any in the standard queug?/1 — p.

E[Ny] =Expected number of customers in the orbit when the server is idle
=i (i, 0)= §

2.5. Cost Function

To construct the cost function we define the following costs as
C = fixed ordering cost
¢ = procurement cost/unit
¢o = holding cost of inventory/unit/unit time

In terms of these we define the expected total cost function as
ETC= F(s,Q) = [C + Q1] ER + ;El

That is
Q+2s—1

F(&Q):[C"‘ch]iﬂL@[ 5 + p].

Q

ThenF(s, Q) is a separable and convex functionsafnd@ namelyc, A+ co(s+p— 3)
and % + %. We note that” is linear ins. Since no shortage is permitted, the optimal

value ofs is zero. Again we notice that the optimal valueepfs given by % Hence
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the optimal value of is also % Thus the expected minimum cost of the system is

vV 2002)\+ 2p— 1) "—Cl)\

2.6. The Mathematical Model and Analysis of Model Il

We consider a single server queueing system to which primary customers arrive
according to a Poisson process with rate If an arriving customer finds the server
busy, it leaves the service area and joins the orbit to repeat its attempts from there.
The inter retrial time follows an exponential distribution with linear r#evhen there
are: customers in the orbit. We follow afs, .S) inventory policy. The lead time is
assumed to be zero. Service times are independently and identically distributed with
distribution functionG(-). Let 3(z) = [;° e *'dG(t) be Laplace-Stieltjes transform of
G(t). Br = (=1)*8%®)(0) be thekth row moment of the service time, = A3, is the
system load due to primary calls. The inter arrival times, the interval between repeated
attempts and service times are assumed to be mutually independent.

Let N(¢) be the number of customers in the orbit aiid) be the inventory level at
timet. Lett; be the time at which thé" service completion occurs and
N; = N(t;+) = Number of customers in the orbit immediately after ifledeparture
and I; be the corresponding inventory level. Th{&V;, I;),i > 1} forms a Markov
chain on the state spaéé= U,,_ol(n) wherel(n) = {(n, s), (n,s+1),...,(n,S—1)},

n > 0.

Let~; = Number of primary customers which arrive to the system during the service

time of the:"" customer and

knzP(%:n)z/Ooo G YU AG(t), n=0,1,...

n!

whose generating functiof (z) = > 7  k,2" = (XA — Az). Its mean value

E(vi) = >, g nkn = p.
We have
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where

B; =1 ifthe ™ customer is from the orbit
=0 ifthei™ customer is a primary customer.

Then the one step transition probabilities of the Markov chain

rmn = P{N; = n|N;,_; = m} are given by the formula

A mo

mn — 71{;71—771 EU
r R gy,

A+ mo kn—m-f-l? man:071727"'

andr,,, Z0onlyform =0,1,...,n+1

The transition probability matrix associated with the Markov chain is given by

[Agy Ag Ay -+
A A Ap
P = 0 Ay Agp
0 0 As
where
(TL,S) (TL,S-'-].) (TL,S—l)
(m,s) 0 0 0 A
(m,s+1) A 0 0 0
Amn = 0 A 0 0
(m,S—1)\ 0 0 A 0
A mo
dA = ——— ko + ——kp_m
an A+mb " +)\+m€ 1
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2.6.1. Ergodicity of {(N;, I;)}.

THEOREM 2.6.1. The embedded Markov chaitV;, I;)} is ergodic if and only if
p <1

PROOF To investigate the positive recurrence of the Markov chain we shall use
Foster’s criterion which states that an irreducible and aperiodic Markov Chain is pos-
itive recurrent if there exists a non-negative functit@’), s = (n,j) € S’,n > 0,

s <7 <S5 —1,ande > 0 such that the mean drift

Ny = Elf(Niv1, lig1) — f(Ni, L) |(Ni, I;) = (n, 7)]

is finite andny, < —e for all ' € S except perhaps a finite number.

Ns = E(Ni—H — NZ|NZ = n)

= E[—Bi_H + '7i+1|Ni = n], from (261)

—nb
A+ nb

+p

Allowing n — oo we getlim,, .o 1), ;) = —1 + p.

The limit is negative if and only ip < 1. Thusp < 1 is sufficient condition for the
positive recurrence of the Markov Chain.

To analyze the non ergodicity we use the Theorem 1 in Sennott e63l. The
Markov chain{(N;, I;)} is non ergodic if the mean drift is bounded belaw, < oo for
all s € S" and there exist an index, such that),, > 0 forn > ng. If p > 1itis clear
thatn, > 0 for n > 1. Further more, in this model the mean down drift is bounded

below sinceN;,; — N; > —1. Hence the proof. O

23



THEOREM 2.6.2. The system state distribution has a product form solution given

by

1—00

1
=yn@>nzo, s<j<S-1,Q=5-s

where N; = Number of customers in the orbit immediately after tAeservice com-
pletion and/; is the corresponding inventory level, is the stationary probability that

there aren customers in thd/|G|1 retrial queue.

PROOF Letx = (z(0),z(1),...) be the stationary probability vector associated
with the Markov chain where(n) = (Yus, Yn.st1s - - - Yn.s—1), n > 0. The stationary
probabilities are given by the unique solutionto= xP andxe = 1 wheree is the

column vector with all entries equal to 1. That is

2(0)Ago + (1) Ao = 2(0)
x(0)Ag; + (1) A1y + 2(2) A = z(1)
(2.6.2)
2(0)Age + (1) A1a + 2(2) Agg + x(3) Az = 2(2)

Substituting  z(n) = (Yns, Yn.s+1s -« - Yn,s—1), 7 >0,

1 1 1
_yn<§a@7" ’Q)
:yn%(l,.. )
= ynée wheree = (1,...,1)in (2.6.2)

we get the solution which turns out to be unique due to normalizing condition.iere

n > 0 is the stationary probabilities that there areustomers at a departure epoch and
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hence at arbitrary epoch in ai|G|1 retrial queue. Then the stationary probabilities of

the system at departure epoch is given/py= yné forn>0,s<j<S5—-1. U

THEOREM 2.6.3. For the M|G|1 retrial queue distribution of the number of cus-
tomers in the orbit at departure epoch is same as that of the number of customers at
arbitrary epoch. Hence we havén; ... P(N(t) = n,I(t) = j) = yné, n > 0,
s<j<S§S—-1.

2.6.2. Generating function. Let ¢(z, =) be the generating function gf,; defined
by

S—1 oo

o(z,z) = Z Z 22 Y

j=s n=0
1 S—1
== 270(2)
Q=
where ¢(z) is the generating function of the stationary distributignof the M|G|1

retrial queue.

2.7. System Performance Measures

(1) Average inventory size El is given by

oo S—1

Bl =303y = e

n=0 j=s

(2) Expected number of customers EC in the orbit is given by

EC= inx(n)e = inyn%e
n=1 n=1

- 1
= — ny, = — (Expected number of customers
32" g

in the M|G|1 retrial queue).
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(3) Expected cycle length from replenishment to replenishtnis is given by=
E[time for ) services]+ E [duration of time the server is idle in betweén

services]
1

A+ (EC)f

2.8. Cost Function

=5Q +| 1Q.

To construct the cost function we define the costs as follows:
Let ¢; = procurement cost/unit
co = holding cost of inventory/unit/unit time.
Then expected total cost functidf(s, Q) is
_Gtal
EG

C+01Q
1B + 3rEcs)@

F(S,Q) +CQE|

+ CQE'

2.9. Numerical lllustration of Model |

The following tables show the effect of parameters on some performance measures.

Variations in arrival rate\

ORR

SRR

EWT

2.0
21
2.2
2.3
2.4
2.5
2.6
2.7
2.8

5.333333
6.533333
8.066667
10.076190,
12.800000
16.666667|
22.533333
32.400000

52.266667

1.333333
1.470000
1.613333
1.763333
1.920000
2.083333
2.253333
2.430000
2.613333

2.666667
3.111111
3.666667
4.380952
5.333333
6.666667
8.666667
12.000000
18.666667,

TABLE2.1. n=3,0=1
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Variations in service ratg

ORR

SRR

EWT

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

5.333333
4.809384
4.375000
4.009324
3.697479
3.428571
3.194444
2.988871
2.807018

2.645074

1.333333
1.290323
1.250000
1.212121
1.176471
1.142857
1.111111
1.081081
1.052632
1.025641

2.666667
2.404692
2.187500
2.004662
1.848739
1.714286
1.597222
1.494436
1.403509
1.322537

TABLE2.2. A =2,0=1

Variations in retrial raté

0 ORR

EWT

15
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

6.000000
6.133333
6.266667
6.400000
6.533333
6.666667
6.800000
6.933333
7.066667
7.200000

2.000000
1.916667
1.843137
1.777778
1.719298
1.666667
1.619048
1.575758
1.536232
1.500000

TABLE2.3. A =2, u=3

2.9.1. Interpretations of the numerical results in the tables.In table 2.1, as the
arrival rate) increases the number of customers in the orbit becomes larger so that the
overall retrial rate, successful retrial rate and expected waiting time increase. As the
service rateu increases the customers will be served more rapidly so that the number
of customers in the orbit gets decreased and as a consequence the overall retrial rate,
successful retrial rate and expected waiting time will decrease (see table 2.2). Table
2.3 indicates that as the retrial rate increases the overall retrial rate increases and the

expected waiting time decreases.
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Maximum inventory level verses ETC
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770
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FIGURE2.1. A =5, u=6,C = 1000, ¢; = 50, co = 25

Arrival rate verses ETC
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ETC

358 b
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FIGURE2.2. S =25, = 1000, c; =50, p = 6,c9 =25

Service rate verses ETC.

771
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769.51-
ETC
769

768.5

768 -
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5.8

FIGURE2.3. S =25, C = 1000, ¢; = 50, A =5, co = 25
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2.9.2. Interpretation of the Graphs. The average cost per unittime, ETC is shown
in the figure 2.1 for various values ¢f and for the given input parameters. The cost
decreases with increasing values$fattains a minimum and then increases. Figure
2.2 shows that as the arrival ratencreases the cost also increases. From figure 2.3 we

conclude that as the service raténcreases the cost decreases.
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CHAPTER 3

Comparison of Some Inventory Models Involving Positive Service

Time
3.1. Introduction

In the previous chapter we discussed two retrial inventory systems with positive
service time and zero lead time. In this chapter we propose to compare a few classical
gueueing models with inventory where the service time and lead time are positive. This
is done by introducing what we call ‘local purchase’ at a demand epoch while stock is
out. In an inventory system if the lead time is positive shortages of item may occur.
At that time the newly arriving customer may or may not join the system. If he joins
his waiting time will increase which increases the holding cost of the customer. If he
leaves it is a loss to the system. In order to minimize the loss we adopt the method
of local purchase at a higher cost, if a customer arrives when the inventory is zero.
Krishnamoorthy and RajuBP] introducedN-policy to the(s, S) inventory system with
positive lead time and local purchase when the inventory level is zero. They assumed
that the service time is negligible.

The assumptions of this chapter are as follows: Arrival of customers to a single
server system form a Poisson process with vatend service times are exponentially
distributed with parametetr. Each customer demands one unit of commodity. When
the inventory level depletes towe place an order for fixed quantity = S — s. The
lead time follows an exponential distribution with parametetn Model I, we assume
that customers do not join the system when the inventory level is zero. In Model I,
customers are assumed to join the system even when the inventory level is zero. In the
following models we make local purchase of the commaodity, if a customer arrives when
the inventory level is zero in order to cut short the waiting time of customers. Local

purchases are made at a higher cost. Local purchase is assumed to be instantaneous. In
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models Ill and 1V local purchases are assumed to be made farrmohands units of
inventory, respectively, if a customer enters for service while the inventory level is zero.
Under the same situation in model V we assume that a local purch&seniifs is made
resulting in cancellation of the existing order as the maximum capacity of inventory is
S.

3.2. Mathematical Modelling of Model |

Customers arrive to the single server system according to a Poisson process of
rate \. Service times are exponentially distributed with paramgteiVe follow an
(s,.S) inventory system. The lead time is exponentially distributed with parameter
(. Customers do not join the system when the inventory level is zero. M(et
be the number of customers in the system d be the corresponding inventory
level at timet. Then{(N(t),1(t)),t > 0} is a LIQBD process with the state space
{(i,7),0 < j < S : 4 > 0}. The infinitesimal generatap of the process has the

following form.

AOO A() 0 0
A, A Ay O
0 Ay A A

(3.2.1)

Q|
Il

0 0 0 --- 0 0 0 0 0
0 A 0 - 0 g 0 -~ 00
Ag=10 0 X --- 0], Ap=10 p -~ 00
0 0 0 Al 0 0 p 0]
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0 - B
1 —(A+8)
_)\_|_
P (A+6) 8
s+1 -2
S -
0 1 s s+1 S —s S
0 Ry B
1 —w
A — S —w 15}
s+1 -0
S -0

wherew = A+ 5+ 1, Q = A+ p.

3.3. Mathematical Modelling of Model Il

The only difference of this model from the first is that customers join the system
even when the inventory level is zero. Here alsdv(¢),1(t)),t > 0} is a LIQBD
process on the state spafde, j), 0 < j < S,7 > 0}. Then the generator has the form
(3.2.1) where the blockd, Az, A1, Ay are square matrices of the same orger- 1)
and they are given by

—(A+ ) s Ey

Agy = whereE; = [0 S11](s+1)x(5—s)
0 _)\IS—S
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[0 0 0 0]
[ VI 0 0
0 u - 0 O
Ag = Mgi1, Ag =
_O 0 - pu O_
0 1 s s+1 S —s S
0 —-A B
1 —w
A — s —w 15}
s+1 Y
S -0

Withw = A+ B+, Q= A+, A =\ + .

3.4. Analysis of Models | and Il

3.4.1. System Stability.Define the generator matriA (for each model) as
A= Ay + A + Ay Letw = (m,m,...,7g) be the stationary probability vector
associated with the matriA wherewr A = 0 andwe = 1. Solvingm A = 0 we get

k-1
+
(%) g’/To, k=1,...,s

T =

(%) %To, k=s+1,...,5—5s

s k-1
(—u:ﬁ) _(—u:ﬁ) ]7‘(‘0, E=1,...,s

o can be evaluated from

TS —s+k —

p
0

me =1 andm, = [1 + (S —59) (#)S @} i (3.4.1)
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THEOREM 3.4.1. The system is stable if and onlylf< p for model | and\ <

u(1 — o) for model 11, wherg(3.4.1)givesny.

PROOF From the well-known result (Neut§3]) on positive recurrence @, which

states thatr Age < 7Aye, the result follows. O

3.4.2. Computation of the steady-state probability vector of).
Let X = (x(0),x(1),...) be the stationary probability vector associated wWjttwhere
(i) is the probability vector associated with levelThenX ) = 0 and Xe = 1.
It is well known that
x(i) = ()R fori>2 (3.4.2)

where R is the minimal non-negative solution of the matrix equatibn+ RA; +
R?A, = 0.
XQ = 0gives

The vectorse(0) andz(1) can be obtained by solving the above equations subject to

the normalizing conditiotX'e = 1.Thenx(i), ¢ > 2 can be obtained from (3.4.2).

3.5. System Performance Measures

Let X = (z(0),z(1),...) be the steady-state probability vector @f (for each
model) andz (i), i« > 0 is partitioned asc(i) = (vio, ¥i1,- - -, ¥is). Then we have the

following expressions for the performance measures.

(1) Expected number of customers, EC in the system is given by

EC = Z ix(i)e
i=1
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(2) Expected inventory level El is given by
o S
El =) g
i=0 j=1
(3) Expected re-order rate ER is given by
ER =u Z Yis+1
=1
(4) Expected rate of departure ED after completing service is given by
co S
ED =p) ) w
i=0 j=1
Model |

(5) Expected waiting time in the system EW is given by

_EC

EW .
A

Model Il
(6) Expected waiting time in the system EW is given by

EC
)‘[1 - Z;‘Zo ?/io] .

EW =

Model |
(7) Expected number of customers EJ not joining the system when the inventory

level is zero is given by
=0
3.6. Cost Function

To construct the cost function we define the following costs :
C = fixed ordering cost
(', = procurement cost/unit

C5 = holding cost of inventory/unit/unit time
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C5 = holding cost of customer/unit/unit time
C4 = cost due to loss of customer/unit/unit time
In terms of these we define the expected total cost function ETC for each model as
follows.
Model |
ETC=[C + QC,|ER+ CL,EI + C3EC+ C,EJ
Model Il
ETC= [C + QC1]ER+ CL,EI 4+ C5EC

3.7. Mathematical Modelling of Model 111

In addition to the assumption in second model, here it is assumed that a local pur-
chase of one unit of item is made at a higher cost, if a customer enters for service when
the inventory is zero. LelN(¢) be the number of customers in the system aft) be
the corresponding inventory level at time Then{(N(¢),1(¢)),t > 0} is a LIQBD
process with the state spa¢@, j),0 < j < S} U{(i,j),1 < j < S,i > 1}. The
infinitesimal generatof) of the process has the following form

0 Ay A A

Ql
I

(3.7.1)

where A is a square matrix of ord€S + 1). Ay, is of order(S +1) x S, A;, of order

S x (S+1). Ay, A, Ay are square matrices of ordérand they are given by

—()\ + 6)15 1 El
AOO — * WhGI’GEl - [O /8[5+1](s+1)><(s—8)
0 —AMg_

Ae
A1 = ! wheree; is a row vector with ‘1’ in thejth place and zeros elsewhere.
Mg
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—(A+ B+ u)is E
Ay = [MIS 0]§A1 = ( ) ?

0 _()\+M)IS—5
whereE, = [O ﬁ[s]sx(g,s); Ay = Mg and
[ 0 0 0]
0 0 0
0 0 0
A2 - ’u
0 0 ... p O]

3.8. Mathematical Modelling of Model IV

Apart from the third model here we make a local purchase ahits as a new
customer arrives for service when the inventory is zefdN(¢), I(t));t > 0} is a
LIQBD process on the state spafg®, j),0 < j < S} U{(4,5),1 <j < S,i > 1}.

The infinitesimal generatap of the process has the form (3.7.1) whergy, A,

e
A; ,Ap are the same as in Model lll, ant);, and A, are given byAy; = where

A
e; Is a row vector with ‘1’ in thejth place and zeros elsewhere, and ’
1 2 - s - S=-1 5
10 0 m 0 0
) U o --- o -.-- 0 0
Ay=31 0 pu 0 0 0
S\ 0 o .- o .- U 0

3.9. Mathematical Modelling of Model V

The main difference of this model from those indicated in Ill, IV is that, in the
present one we make a local purchase to bring the level batk whenever a cus-

tomer arrives to an idle server with no inventory or at an epoch of departure of a
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customer resulting in zero inventory, but one or more custsnrethe queue. The
existing replenishment order is cancelled. This is done so as to ensure that replen-
ishment does not take place until the inventory on hand again goes downat®
otherwise the on hand inventory may exceed the maximum permissible. Here also
{(N(t),1(t)),t > 0} is a Level Independent Quasi-Birth Death process on the state
space{(0,7),0 < j < S} uU{(i,j),1 < j < S,i > 1}. The infinitesimal generatdp

of the process has the form of (3.7.1) where all the matrices extg@nd A, have the

same form as in Model IlI.

e

Ag = ° wheree; is a row vector with ‘1’ in thejth place and zeros else-
Mg
[0 0 0 u]
w0 0 0
0 u 0 0
where, andd, =
U L P

3.10. Mathematical Analysis of Models Ill, IV and V

3.10.1. System Stability.Define the generator matrix (for each modélas
A= Ay + A + Ay, where Ay, A;, A, are the corresponding matrices of each model.
Let m = (w1, m,...,ms) be the stationary probability vector associated wAithThen

we haverA = 0 andwe = 1. SolvingmA = 0 we get the following values for each

model.
Model III.
k—2
(#) gﬂ-la k= 27 ) S
Tk = s—1
(#) O, k=s+1,...,Q+1
s—1 k—2
TQ+k — é (M) - (M) 1 k 2a 37 y S
[ 1 fu
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Model IV.

.l
(4 s+,
B + s M‘i‘ﬁ k—1

o= | (M07) - (50) ]

Model V.

Tk = ! s
<#> T, k=s+1,...,Q+1
\

k
TQ+k = <M+ﬁ) _§Z(M+ﬁ) ]m,sz,...,s

Using the noramlising conditione = 1 we getm; and hencery, 73...,71s. Here
Q=5-s

THEOREM 3.10.1. The system in each model is stable if and only 4 L.

PROOF. For the positive recurrence 6f we have the well known results of Neuts
(see p3]) which states that Aye < 7Aze; simplifying we geth < p. O

3.10.2. Computation of the steady-state probability vectors of).
Let X = (2(0),z(1),...) be the stationary probability vector associated wjtiwhere
(i) is the probability vector associated with levelThenX@Q = 0 andXe = 1. Itis
well known that
x(i) = x(1)R" ' fori > 2 (3.10.1)

where R is the minimal non-negative solution of the matrix equatibn+ RA; +

R*A, = 0. z(0) andz(1) are calculated from the equations
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with the normalizing conditiotXe = 1.
Thatis,z(0)e + z(1)(1 — R)~' = 1. Thenx(z), (i > 2) can be found from (3.10.1)

3.11. System Performance Measures

Let X = (z(0),z(1),...) be the steady-state probability vector @f (for each
model) andz(i), ¢« > 0, be partitioned as:(i) = (vio, vi1,---,¥s). Then we have

the following expressions for the performance measures.

(1) Expected number of customers, EC in the system is given by

(2) Expected inventory level El is given by
oo S
El = Z ijij
i=0 j=1
(3) Expected re-order rate ER is given by
ER =u Z Yis+1
=1
(4) Expected rate of departure ED after completing service is given by
co S
ED =u Z Z Yij
i=0 j=1
(5) Expected waiting time in the system EW is given by

_EC

EW .
A

(6) Expected rate of local purchase EL is given by

EL = Ayoo + szil.

1=2
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In expressions under (1) to (6) above, it may be noted thatd¢hebvalues differ for

the three models.

3.12. Cost Function and Numerical Examples

To construct the cost function we define the following costs :
C' = fixed ordering cost
(', = procurement cost/unit
C5 = holding cost of inventory/unit/unit time
C5 = holding cost of customer/unit/unit time
(1 + k)C,zE L=total local purchase cost afunits of inventory with a hike of times
C1/unit.
In model V as we make a local purchasetnits and thus cancelling the existing
order,the system losses the ordering cost already paid &®&d— F L)=the remaining
rate of ordering inventory.

In terms of these we define the expected total cost function ETC for each model as

follows.

Model Il
ETC= [C + QC1]ER+ CLElI + C3ECH (1 +1)CLEL

Model IV
ETC= [C + QC,|ER+ C2El + C3ECH (1 + m)s x C1EL

Model V
ETC= C ER+QC,[ER—EL]+ CsElI+ C3ECH (1+n)S x Cy x EL wherel, m, n are
proper fractions and > m > n > 0, as we know that when we make local purchase in

large quantities, the hike in price decreases.
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EC

| El |

EW

Models

S|

25(9.0
2719.0
29(9.0
31(9.0
33(9.0
35(9.0
37|9.0
391|9.0

19.
17.
15.
14.
14.
13.
13.
12.

5869
3797
9311
9078
1473
5599
0926
7120

14.4906
15.5136
16.5310
17.5442
18.5545
19.5624
20.5685
21.5732

13.1847 2.0
14.483% 2.0
15.679¢ 2.0
16.8153 2.0
17.9147 2.0
18.989q 2.0
20.047q¢ 2.0
21.0934 2.0

4.5294
4.0023
3.6558
3.4108
3.2288
3.0881
2.9763
2.8852

0.3189
0.2827
0.2539
0.2304
0.2108
0.1944
0.1803
0.1681

0.2915§
0.2653
0.2419
0.2219
0.2045
0.1895
0.1765
0.165¢

EC

El

ER

Models

S

v Vv

i v \%

v

25(9.0
2719.0
291 9.0
31|9.0
33(9.0
35(9.0
3719.0
39|9.0

9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0

9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0

12.1954
13.1151
14.0299
14.9412
15.8498
16.7563
17.6591
18.5628

12.6673 13.160
13.5736 14.074
14.4779 14.989
15.3806 15.894
16.2821 16.802
17.1826 17.708
18.0825 18.614
18.9817 19.519

70.2847
50.2527
60.2270
80.2061
40.1887
80.1740
40.1615
20.1506

0.2709 0.275
0.2417 0.245
0.2181 0.221
0.1988 0.201
0.1825 0.185
0.1688 0.170
0.1569 0.158
0.1467 0.148

TABLE 3.1. Variations in maximum inventory levsl A = 4.5, u =

6=1,s=10

Ol xS O O oo otro Y

EC

| El |

EW

Models

s
5 190
7 19.0
9 (9.0
11| 9.0
131 9.0
15| 9.0
17| 9.0
19| 9.0

16.
13.
12.
11.
10.
9.9293
9.6456
9.4529

8534
7409
0304
0033
3537

25.1432
25.8429
26.6504
27.5284
28.4517
29.4039
30.3741

31.3555

23.6914 2.0
25.0709 2.0
26.1997 2.0
27.248( 2.0
28.2692 2.0
29.2809 2.0
30.2889 2.0
31.295(Q 2.0

3.8814
3.1328
2.7224
2.4767
2.3217
2.2206
2.1532

2.1074

0.1067
0.1128
0.1192
0.1260
0.1333
0.1413
0.1501
0.1600

0.1019
0.1104
0.1179
0.1251
0.1327
0.1409
0.1499
0.1599

El

EL

ER

Models

v

Y

v

Y

v \%

5
5 |21.8936
7 | 224611
9 | 23.1466
11| 23.9098
13| 24.7234
15| 25.5693
17| 26.4354
19| 27.3138

22.3451
22.9327
23.5784
24.2756
25.0170
25.7953
26.6033
27.4348

23.425p0.1886 0.0532
23.77080.1338 0.0316
24.22340.0948 0.0202
24.77410.0671 0.0135
25.40820.0476 0.0092
26.110R0.0338 0.0064
26.86560.0240 0.0045
27.6610.0172 0.0032

0.034p
0.0243
0.0171
0.0121
0.008p
0.0061L
0.0043
0.003p

0.0953
0.1010
0.1069
0.1131
0.1197
0.1269
0.1349
0.1439

0.0936 0.096
0.0990 0.100
0.1048 0.106
0.1110 0.112
0.1178 0.118
0.1252 0.126
0.1334 0.134
0.1425 0.143

W OO OCONIN

TABLE 3.2. Variations inreorderlevel A =45, u=5,6=1,5 =50
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EC |

El |

EW

Models

16]9.0
1.8|9.0
20|90
2.2]9.0
2419.0
2.6]9.0
28|9.0
3.0/9.0

14.4953
12.6046
11.5167
10.8324
10.3754
10.0569
9.8266
9.6567

13.8410 13.3544
14.0933 13.811]
14.3020 14.1217
14.4773 14.3543 2.0
14.6266 14.5387
14.7551 14.6901
14.8670 14.8179
14,9650 14.9267

2.0
2.0
2.0

2.0
2.0
2.0
2.0

3.3229
2.8681
2.6063
2.4416
2.3316
2.2548
2.1995
2.1585

0.1335
0.1017
0.0787
0.0617
0.0490
0.0393
0.0318
0.0260

El

| EL

EW

Models

g

[l v \%

i v

\Y,

v

\%

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

11.6532
11.8616
12.0350
12.1815
12.3069
12.4154
12.5102
12.5937

11.9495
12.1112
12.2468
12.3624
12.4623
12.5495
12.6267
12.6952

12.413
12.486
12.561
12.627
12.689
12.747
12.801

12.851

10.1744 0.0570
50.1371 0.0470
D0.1094 0.0392
70.0883 0.0330
80.0721 0.0280
50.0594 0.0239
40.0494 0.0205
40.0414 0.0178

0.04542.0
0.038p2.0
0.03342.0
0.02882.0
0.024p2.0
0.02162.0
0.018p2.0
0.016p2.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

TABLE 3.3. Variations in replenishmentrate A = 4.5, u = 5,s = 5,
S =25

EC

EW

| El

ER

Models

" |

5.5| 4.5000
6.0| 3.0000
6.5] 2.2500
7.0] 1.8000
7.5] 1.5000
8.0| 1.2857
8.5| 1.1250
9.0 | 1.0000

6.
4.
2.
2.
1.
1.
1.
1.

383§| 1.0000
0148| 0.6667
9434| 0.5000
3330Q| 0.4000
9384| 0.3333
6628| 0.2857
45932 0.2500
3027 0.2222

1.4731) 13.7573
0.
0.
0.
0.4472| 13.7578
0.
0.
0.

9264 13.7578
6791 13.7578
5382| 13.7578

3839 13.7578
3369 13.7578
3004 13.7578

13.653¢
13.663(
13.661%
13.659(
13.6567
13.654]
13.652(

5 0.2655
0.2896
? 0.3138
0.3379
[ 0.3621
3 0.3863
0.4104
13.6498 0.4345

0.2667
0.2914
0.31671
0.3419
0.3669
0.3921
0.4177
0.4423

EC

EL

EW

Models

g [T

v

\Y,

v Vv

v

\%

5.5| 4.5000
6.0 | 3.0000
6.5] 2.2500
7.0| 1.8000
7.5| 1.5000
8.0| 1.2857
8.5| 1.1250
9.0| 1.0000

4.5000 4.500(
3.0000 3.000
2.2500 2.250
1.8000 1.800
1.5000 1.500
1.2857 1.285
1.1250 1.125
1.0000 1.000

0.1949 0.0622 0.048R1.00
0.1916 0.0611 0.04740.66
0.1888 0.0603 0.046[70.50
(0 0.1864 0.0595 0.046[10.40
(0 0.1843 0.0589 0.04560.33
r0.1825 0.0583 0.045p0.28
0.1808 0.0578 0.044B0.25
0.1794 0.0573 0.044410.22

00 1.0000
67 0.6667
00 0.5000
00 0.4000
33 0.3333
57 0.2857
00 0.2500
22 0.2222

1.000
0.666
0.500
0.400
0.333
0.285
0.250
0.222

N O NW OO NO

TABLE 3.4.
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Variations in arrival rate\

EC El | ED | EW
Models

A I I Il I [ I I

4.411.6923 2.1562| 13.8099 13.7164 4.4000 4.3999 0.3846 0.5077

4.6]1.9166 2.5298| 13.7060 13.6016¢ 4.5999 4.5999 0.4166 0.5720

4.8]2.1818 2.9996| 13.6038 13.487% 4.7999 4.7999 0.4545 0.6527

5.0| 2.4999 3.6059| 13.5031 13.3738 4.9999 4.9997 0.4999 0.7564

5.2|2.8888 4.4155| 13.4041 13.2597 5.2000 5.1991 0.5555 0.8944

5.4| 3.3750 5.5469| 13.3065 13.1419 5.3999 5.3963 0.6250 1.0874

5.6|3.9999 7.2323| 13.2103 13.0063 5.5999 5.5843 0.7142 1.3739

5.8|4.8333 9.9987| 13.1150 12.793( 5.7995 5.7330 0.8333 1.8419

EC | EL | EW
Models

A I \Y Vv I \Y I \Y V
44116923 1.6923 1.69230.1735 0.0559 0.04360.3846 0.3846 0.384
46]1.9166 1.9166 1.916f0.1997 0.0632 0.04860.4166 0.4166 0.416
48| 2.1818 2.1818 2.181$0.2279 0.0709 0.053[70.4545 0.4545 0.454
5.0| 2.4999 2.4999 2.49990.2583 0.0792 0.059[10.4999 0.4999 0.499
5.2|2.8888 2.8888 2.88880.2908 0.0878 0.06460.5555 0.5555 0.555
5.4|3.3750 3.3750 3.3750 0.3254 0.0970 0.07080.6250 0.6250 0.625
5.6|3.9999 3.99998 3.99990.3622 0.1065 0.076pR0.7142 0.7142 0.714
5.8 | 4.8333 4.8333 4.833@0.4010 0.1165 0.082R0.8333 0.8333 0.833

WO 0rTooro O

TABLE 3.5. u=7,4=15,s=5,5=25

3.12.1. Numerical interpretation of the tables.

1. Effect of the maximum inventory levebn various performance measures

Table 3.1 shows that &@sincreases inventory level increases in all models. Due to
the presence of more inventory the number of customers and hence the waiting time,
decreases in Model Il. Number of customers and waiting time is same in Model |
as customers do not join when the inventory level is zero. In Models Ill, IV and V,
due to local purchase there is no change in the number of customers. In all models

the time interval to reach the reorder point increases due to more inventory and thus

reorder rate decreases.

From table 3.2 we realise that the behaviour of the system performance measures
ass increases is similar to that correspondingStoexcept that the reorder rate in-

creases, the time interval to reach the reorder point decreases and so more orders are
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placed. The rate of local purchase in models lll, IV and V daseawvhers increases
due to the availability of more inventory with the system.
. Effect of the replenishment rateon various performance measures.

When 3 increases as we expect the inventory level increases in all models. In
model Il the number of customers and the waiting time decrease as inventory is
available more quickly. In model I no change for number of customers and waiting
time, while the number of customers do not join when the inventory level is zero
decreases due to the availability of more inventory with the system. The same rea-
soning can be given for the decrease in the rate of local purchase in models 1lI, IV
and V. In model 111, IV and V, the waiting time is not affected by the replenishment
rate, as we make local purchase if a customer arrives when the inventory is zero (see
table 3.3).

. Effect of the service rate on various performance measures.

Table 3.4 shows that as the service rate increases the number of customers and
their waiting time decreases in all models. Re-order rate increases and the inventory
level does not change in models | and Il. Local purchase decreases in models IlI, IV
and V.

. Effect of the arrival rate\ on various performance measures.

As the arrival rate increases the number of customers and their waiting time in-
crease in all models. Inventory level decreases and the expected number of departure
increases aa increases in models | and Il. Expected number of local purchase in-

creases in models Ill, IV and V due to increased arrival (see table 3.5)
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Maximum inventory level verses ETC.
190 T T T T \

T
'model-1" —*%—
'model-2" —%—

185

180
ETC

175

170 N

165 N

160 ! ! ! ! ! ! !
24 26 28 30 g 32 34 36 38

158 T T T T T T

T
'model3’ —%—
‘'model4’ —>—
157 'model5’ —&—

156
155
ETC
154
153 -

152 -

151

150
24 26 28 30 g 32 34 36 38

FIGURE3.1. A =45, 0 =5,0=1,s = 10, C = 100, C; = 20,
Cy=1,03=3,C4=7

3.12.2. Interpretation of the graphs. The objective is to compare the five mod-
els and identify the one which is more profitable. For this, we compute the expected
total cost per unit time by varying the parameters one at a time, keeping others fixed.
From figure 3.1 we observe that &sincreases the expected cost decreases, this can
be attributed to the decrease in reorder rate. Figure 3.2 shows that the cost function is

convex ins for model Il, for all other models it increases @agicreases. Ag increases
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Reorder level verses ETC

176 X

174
172
170
168}

ETC
166 |-

164 'model-1" —x—

‘model-2" —¥—
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160 -

158 | | | | | | |

160 T T T T T T T

158 -

156 -

154 -

ETC
152

‘'model3’ —x—
‘'model4’ —>— -

'model5’ —5—

150

148 -

146 \ \ \ \ \ \ \
4 6 8 10 12 o 14 16 18

FIGURE3.2. A = 45, u=5,0=1,5 = 50, C = 100, C; = 20,
Co=1,03=3,Cy=7

the expected cost for all models, except model Il increases (see figure 3.3). Figure 3.4

shows that as the arrival rate increases the cost also increases in all models.
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Replenishment rate verses ETC.
176 \ \ \ \

I
'model-1" —%—
'model-2" —&—

1744 N
172
170

ETC
168

166 - 3
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1.6 1.8 2 224 2.4 2.6 2.8

152 T T T T \ \ h
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149 \ \ \ \ \ \
16 1.8 2 22 g 24 2.6 2.8

FIGURE3.3. A = 4.5, u =5,s =5, 5 = 25, C = 100, C; = 20,
02:1,03:3,04:7
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Arrival rate verses ETC
206 T T T T

T
meE
204 mode

202 - 1

200 1

196 - 1
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‘'model-4’ —*—
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e

\
4.4 4.6 4.8 5 )\ 5.2 54 5.6

FIGURE3.4. n =7,3 = 15,5 =5,5 = 25, C = 100, C; = 20,
Co=1,05=3,Cy=7
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3.13. Conclusion

We can compare the models by checking their total expected cost for different pa-
rameters. Between models | and Il the cost of model | is less. That is, it is better not to
allow the customers to join the system, when the inventory level is zero. Among models
[, IV and V, the expected total cost of model IV is least, that is, it is best to make a
local purchase of units of inventory if a customer enters for service when the inven-
tory level is zero. Again among all models model IV is more profitable. We compare

all models with the given cost function and for given values of parameters.
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CHAPTER 4

Analysis and Comparison of Some Retrial Inventory Models

4.1. Introduction

Retrial queues (queues with repeated calls, returning custosh@ysare a type
of network with re-servicing after blocking. Inventory systems in which arriving cus-
tomers who find all items are out of stock, may retry for the items after a period of time,
are called retrial inventory. Artalejo, Krishnamoorthy and Lopez-Herr@yavgre the
first to attempt to study inventory policies with positive lead time and retrial of customer
who could not get the items during their earlier attempts. In 2007, Parthasarathy and
Sudheeshd6] obtained transient solution using continued fraction approach to a single
server retrial queue in which arrival and retrial rates are state dependent.

This chapter is an extension of the last chapter. Here we introduce retrial of unsat-
isfied customers into the models discussed in chapter 3, with the assumption that there
IS no waiting space for the customers at the service station except the one under going
service. Customers arrive to a single server system according to a Poisson process with
rate A and service times are exponentially distributed with parametedne unit of
item is demanded by each customer. An order for replenishmeptofS — s quantity
of goods is placed when the inventory level depletes.td’he lead time follows an
exponential distribution with parametgr An arriving customer who finds the server
busy, proceeds to an orbit of infinite capacity and tries its luck to access the server from
there. The inter-retrial times follow an exponential distribution with constantraie
Model I, customers do not join the orbit when the inventory level is zero. In Model
[I, customers join the orbit even when the inventory level is zero. In Model Il and IV
it is assumed that a local purchase of one unit anaits of the item, respectively, at
a higher cost if a customer (orbital customer or primary customer) enters for service

when the inventory level is zero. In Model V, under the same situation a local purchase
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of S units of the item is made cancelling the existing order. The time required to make
a local purchase is assumed to be negligible. Local purchase is made to decrease the

waiting time of the customers thereby earning the goodwill of the customers.

4.2. Mathematical Formulation of Model |

Problem | is described as follows: Arrival of customer to a single server system
forms a Poisson process with rate Service times are identically and independently
distributed exponential random variables with paramgte¥When the inventory level
depletes tos due to demands, an order for replenishmentdor= S — s quantity is
placed where5 is the maximum capacity of the system. The lead time is exponentially
distributed with parametet. An arriving customer, who finds the server busy, proceeds
to an orbit of infinite capacity and tries its luck from there. Customers do not join the
orbit when the inventory level is zero. The inter retrial times follow an exponential
distribution with parametef.lt is assumed that retrial rate is the same,independent of
the number of customers in the orbit. This is possible, for example, by assuming that a
gueue of customers is formed in the orbit (see Gomez-Caz} |

Let N(¢) be the number of customers in the orhit) be the inventory level and

C'(t) , the server state at tine

1 if the server is busy
HereC(t) =

0 ifthe serverisidle
Then{(N(t),C(t),I(t)),t > 0} is a Continuous Time Markov Chain (CTMC) on the
state spac€(i,0,5),0 < j < SyuU{(i,1,5),1 < j < S}, i > 0. The above model
can be studied as Linearly Independent Quasi-Birth and Death (LIQBD) process. The

infinitesimal generatof) of the process has the following form
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Apw Ay O 0 0
Ay A A 0 0
@ =10 Ay Apn Ao O (4.2.1)
0 0 Ay Ap A

where Ay, A1, Ao, Az are square matrices of ordéxS + 1) and they are given by

0 O 0
Ay = , Ay = where
0 Mg 0 O
0
E1 =
QIS (S+1)xS
(M, 0 My My 0 0]
0 M, 0 0 M;s 0
0 0 Mg 0 0 M .
Ali = 1= 0, 1 (422)
Mg 0 0 Mg 0 MlO
My, My 0 0 Mz 0
L 0 M14 M15 0 0 M16_

where M, is a square matrix of ordefs + 1) whose non-zero entries are given by
M,(1,1) = =pandM;(j,j) = —(A+ B +1i0),j =2t0s + 1,

M, is a square matrix of ord¢s+1) whose non-zero entries are givenkl(j, j) = £,
j=1tos+1,

Ms is of order(s + 1) x s whose non-zero entries are given bf(; + 1,5) = A, for
j=1tos,

M, is a square matrix of ord€iS — 2s — 1) where the non-zero entries are given by
My(j,5) = —(A+i),j =1t05 — 25 — 1

Ms5 is a square matrix of ordefS — 2s — 1) whose non-zero entries are given by
M;(j,j) =X\ j=1t08 —2s—1,

Mg is a square matrix of ordefs + 1) where the non-zero elements are given by
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Ms(j, 7) = —(A +10),

My is a square matrix of ordé€s+ 1) whose non-zero entries are givenkhit(j, j) = A,
Ms is of orders x (s + 1) whose non-zero elements are given by

Ms(j,j) = p, j =110s,

My is a square matrix of orderwhose non-zero entries are given by

My(j,j) = —=(A+np+p),j=1t0s,

M, is of orders x (s + 1) where non-zero entries are given by
Mio(j,j+1)=p8,j=1tos,

M, is of order(S — 2s — 1) x (s + 1) whose non-zero entries are given by
Mi(1,s+1) =p,

M, is a square matrix of ord€IS — 2s — 1) where non-zero elements are given by
My(j+1,5)=pj=1108 —2s -2,

M3 is a square matrix of ord€IS — 2s — 1) whose non-zero entries are given by
Mis(j,7) = —(A+p),j=1t08 —2s — 1,

M, is of order(s + 1) x (S — 2s — 1) where non-zero elements are given by
Miy(1,8 =25 — 1) = p,

M5 is a square matrix of ord€r + 1) whose non-zero entries are given by
Mis(j+1,7) =p,j=1tos,

M is a square matrix of ordé€r + 1) where non-zero entries are given by

Mig(4,7) =—A+u),j=1tos+1,.

4.3. Mathematical Formulation of Model Il

The only difference of this model from the first one is that customers join the orbit
even when the inventory level is zero. Here af$&/(¢), C'(t), I(t)),t > 0} isa CTMC
on the state spacf(i,0,5),0 < j < S} U{(i,1,5),1 < j < S},i > 0. Then the
generator has the form (4.2.1) whe#fg,, A1, Ay, A, are square matrices of order

. E2 0 )\61
(25 + 1) and they are given byl = where £, = :

0 A
. . . 5 (S+1)x(S+1)
wheree; is a row vector with 1 in thgth place and zeros elsewherd; is the same

54



as in the problem [, andly;, = = 0,1 have the form of (4.2.2) where all the sub-
matrices, excepd/; is same as in the first model and herg(1,1) = —(\ + ) and

M (j,j) =—( AN+ p+1i0),j =2tos+ 1andM; is of order(s + 1) x (s + 1)

4.4. Analysis of Models | and Il

4.4.1. System stability.Define the generator matu(for each model)ad = Ay+
Ay + Ag andrm = (7(0,0),7(0,1),---,7(0,S5),7(1,1),n(1,2),---,m(1,S)) where
7 IS a the steady state probability vector4f From the relationtA = 0 we get the
following solution:
a8+0 ) T sy F1
(222) (539)" 2r(0,0).

fork=1,2,...,s

AB+0\° (ptB\* 8
(X2£2)" (52)" 27(0,0),

(1, k)

fork=s+1,...,Q

\

m(1L,Q+k)=n(1,Q) —m(Lk), k=1,2,...,s

NNy
( m ) (557) &m(0,0),

fork=1,2,....,s

(0, k) = .
A+5+6 s g8
(22)" (522)" 25m(0,0),
fork=s+1,...,Q
\
ﬂQQ+@=AiQﬂL®—W@ﬁ%k=LZHqs

7(0,0) can be obtained frome = 1

THEOREM4.4.1. The system in model I is stable if and onlgif< 6(x — \). The

system in model Il is stable if and only if
1 ’ B4 p\° o A
/\(A+ﬁ+6) <Q(A+9) ﬂ(/\+9 u)'
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PROOF. For the positive recurrence 6f we must haverAge < mAse (see Neuts
[53]). Simplifying this we get the indicated results. O

4.4.2. Steady-state analysisLet X = (z(0),z(1),...) be the steady state proba-
bility vector of Q. ThenX Q = 0 together withXe = 1 result inz (i) having the matrix
geometric solution:

z(i) = z(1)R" ' fori > 2 (4.4.1)

where R is the minimal non negative solution of the matrix equatin+ RA;; +

R*A, = 0. z(0) andz(1) are calculated from the equations
2(0)Ayg + 2(1)A2 =0 (4.4.2)

subject to the normalizing conditiokie = 1,
thatis,z(0)e + z(1)(1 — R)~' = 1.
Having foundz(1) we can findz(z), i > 2 from (4.4.1).

4.5. System Performance Measures

Let X = (2(0),2(1),...) be the steady-state probability vector @ffor each
model) andz(:), i > 0, be partitioned as

(i) = (Yioo, Yiot, - - - » YioS, Yit1, Yi12, - - - Yi1s)-

Then we have the following performance measures.

(1) Expected number of customers in the orbit EC is given by

EC= Z ix(i)e
i=1

(2) Expected inventory level El is given by

o S
= Z Z ysz + yzlj



(3) Expected re-order rate ER is given by
ER = p Z Yi1,5+1
=1

(4) Overall retrial rate OR is given by
OR=14 Z x(i)e
=1

(5) Successful retrial rate SR is given by

oo S
SR=140 Z Z Yi0,j

i=1 j=1

(6) Probability that the server is busy is given by

Model |

(7) Expected waiting time EW is given by EW5=.
Model Il

(8) Expected waiting time EW is given by EW

. EC
A1 =377 yioo]

Model |
(9) Expected number of customers EJ not joining the orbit when the inventory

level is zero, is given by

EJ= A Z Yioo
i=0

4.6. Cost Function

To construct cost function we define the costs as follows:

C = fixed ordering cost
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(', = procurement cost/unit
C5 = holding cost of inventory/unit/unit time
(5 = shortage cost of inventory/unit/unit time

The total expected cost function ETC is given as follows:

Model |
ETC= [C + QC1]ER+ C:EI + C5EJ

Model Il

4.7. Mathematical Formulation of Model Ili

In addition to assumptions in problem II, here a local purchase of one unit of the
commodity is made if a customer enters for service when the inventory level is zero.
Let N(t) be the number of customers in the orlitt) be the inventory level an@'(t)

be the server state at time

1 ifthe server is busy
C(t) =

0 ifthe serverisidle

Then{(N(t),C(t),I(t)),t > 0} isa CTMC on the state space.
{(3,0,)),0<j<S}U{(i,1,5),1<j <5} i=0.

Then the generator has the form (4.2.1) wheig, A,;, Ay, A, are square matrices of

order(2S + 1) and they are given by

6 0 0
6 0 0
0 0 0 Ey
Apg = , A= , wherebls = (0 6 .. 0 ;
0 Mg 0 0
0 0 9
- = (S+1)xS
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Ay, i = 0,1 1is given by (4.2.2) in which all the sub-matrices excépt and M; are
same and they are given as followd; a square matrix of ordér + 1) whose non-zero
entries are given by/,(j,j) = —(A+[+i0),j = 1tos+1; Msisoforder(s+1) x s
where non-zero entries are given bfs(1,1) = AandM;(j +1,7) = A, j =1t0s.

4.8. Mathematical Formulation of Model IV

In this model we make a local purchasesafnits of inventory if a customer enters
for service when the inventory level is zero. Here af$&/(t), C(t), I(t)),t > 0} isa
CTMC with the state space

{(4,0,7),0<j < SFU{(i,1,4),1<j <5}, i >0.

The infinitesimal generatap has the form of (4.2.1) wherg,,, A1, Ay, A, are square

matrices of orde(2S + 1) and they are given by

0 O 0 Ey
Ay = , Ay = where
0 Mg 0 O
1 2 S S
0[0 O 0 0
116 0 0 0
210 6 0 0
E4 - )
S\0 O -+ 0

(S+1)xS

Ay, i = 0,11s given by (4.2.2), where all sub-matrices excéfitand M3 are same in
the first model and they are given as follows.

M, is a square matrix of ordés + 1) whose non zero entries are given by

M (j,j)=—-A+F+1i6),j =1t0os+ 1.
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M3 is of order(s + 1) x s whose non zero entries are given by
Ms(1,8) =X, Ms(j+1,7)=\,j=1tos.

4.9. Mathematical Formulations of Model V

The main difference of this model from third and fourth model is that here we make
a local purchase of maximum capacity of inventéhunits, if a customer enters for
service while the inventory is zero, which results in the cancellation of the existing
order,as the maximum capacity of the inventorgisThe infinitesimal generat@p has

the form of (4.2.1) wherely,, Aq1, Az, Ap are square matrices of ordgxS + 1) they

. 0 0 0 E;
are given byA, = , Ao = where
0 Mg 0 0

[0 0 0]
6 0 - 0
0o 6 - 0

Es =

0 o --- 60

- - (S+1)xS

My 0 My My 0 My

0 M, 0 0 M; 0

0 0 Mg 0 0 M
Mg 0O 0 My 0 My
My M 0 0 Mgz 0

0 My Mz 0 0 Mg

where all the sub matrice&/, to M5 iSs same as those in Model M, and M, are
given as follows:

M, is a square matrix of ordés + 1) where the non zero entries are given by

M, (j,j) = —(A+B+i0),j=1t0s+ 1.
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M is also a square matrix of ord¢s + 1) whose only non zero entry is given by

M17(1, S+ ].) =\

4.10. Analysis of Models 11,1V and V

4.10.1. System stability.Define the generator matriA (for each model) as
A = Ap+A;+Ar andr = (7(0,0),7(0,1),---,w(0,5),7(1,1),n(1,2),---,m(1,95))
wherer is the steady state probability vector 4f From the relationrA = 0 we get

the following values for each model.

Model IlI.
w(1,1) = 220 0.0),
]
( k-1 k—2
()" (59 16 229 - r(0.0)
i k=2 ...,s
w(l, k) =
S s—1
() (67 (65 (44) = 1] s,
k:3+17---aQ
7(1,Q + k) = 7(1,@) + *r(0,0) ~7(1, )
k:1,27 787
k-1 k-1
() (5 ) (M) - ] w00
(Ok k:l,Q,...,S
m(0, k) = (A20)* (s ! (418) (A28 — 1] 7(0,0)
¥ m A0 o ),
kzs_'_]-,”'aQ
__H — = B
m(0,Q+k) =71, Q) +7(0,0) =7 (0, k), k=1,2,...,5 -1
p— M -
7(0,5) = )\_'_‘97(17@) (0, s)
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Model IV.

( k
A+B+0 k-1
(222) (529)" " 70,0,
fork=1,2,....,s
A+B+0 B\S (A+8+60)°
(224) [(552)" (>2+2) - 1] =(0,0),
fork=s+1,....Q

m(1,k) =

A+0

m(1,Q+ k) =7n(1,Q) +

k k
w(o,k)z(MLﬁJFQ) (’;i?) 7(0,0), fork=1,...,s—1

7(0,0) — w(1, k), fork=1,...,s

W
B pt+B AFB+HON
w0.5) = | (GEDETEED) -1 w00
W(O,k)z)\—;if;_eﬂ(o,s), k=s+1,...,0Q
7(0,Q + k) = )\Lwﬁ(l,Q)—i—w(O,O)—w(O,k), k=1,...,s—1
n(0,8) = 315 m(1,Q) = 7(0,5)
Model V.
[(22) (622) m0.0),
fork=1,....s
(1, k) =

s+1 s
(2229)™ (422)" x(0,0),

fork=s+1,...,Q

\

r(1L,Q+ k) =7(1,Q) + 217

7(0,0) —w(1, k), k=1,...,s

<A+5+9) (5% ) 7(0,0), k=1,...,s

(0, k) = L </\+ﬁ+0) ;;\ig 7(0,0),

fork=s+1,...,Q
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1
A+6

7(0,9) = 5 i 5(1,Q) = 7(0,5)

7(0,Q + k) = ©(1,Q) +7(0,0) —w(0,k), k=1,...,s—1

We can findr (0, 0) from the equationre = 1. Here@ = S — s.

THEOREM4.10.1. The systems in models 3 to 5 are stable if and only if
A2 <O —N).

PROOF. For the positive recurrence ¢f we must haverAge < mAse (see Neuts
[53]). Simplifying this leads to the above condition. O

4.10.2. Steady-state analysid-et X = (z(0),z(1),...) be the steady state prob-
ability vector of Q(for each model). TheX @ = 0, Xe = 1 andx(i) are given by

z(i) = ()R fori > 2 (4.10.1)

where R is the minimal non negative solution of the matrix equatibn+ RA;; +

R%*A, = 0. x(0) andz(1) are calculated from the equation
2(0)Ap +2(1)Ay =0 (4.10.2)

subject to the normalizing conditiokie = 1,
Thatis,z(0)e + z(1)(1 — R)~'e = 1. Then we can find:(:), : > 2 from (4.10.1)

4.11. System Performance Measures

Let X = (2(0),2(1),...) be the steady-state probability vector @ffor each
model)and:(i), ¢ > 0 partitioned as

x(z) = (3/i00> Yiols - - - YioS, Yi11s Yi12s - - - Yi1s)-

Then we have the following performance measures:
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(1) Expected number of customers EC in the orbit is given by
EC = Z ix(i)e
=1

(2) Expected inventory level El is given by

o S
El=> "> s + varj)

i=1 j=1

(3) Expected re-order rate ER is given by
ER=pu i Yil,s+1
i=1
(4) Overall retrial rate OR is given by
OR=14 io: x(i)e
=1

(5) Successful retrial rate SR is given by

oo S
SR=0 >

i=1 j=0

(6) Probability that the server is busy is given by

.. . . . EC
(7) Expected waiting time EW is given by EW==.

(8) Expected rate of local purchase EL is given by

EL = )\Zyz‘oo +‘92yi00
i—0 i—1
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4.12. Cost Function and Numerical Examples

To construct the cost function we define the cost as follows:
C' = fixed ordering cost
(', = procurement cost/unit
C5 = holding cost of inventory/unit/unit time
(14 k)C,zE L=total cost of local purchase efunits of inventory with a hike of times
C1/unit.

In model V as we make a local purchaseSofinits and thus cancelling the existing
order,the system losses the ordering cost already paid /&®&d— F L)=the remaining
rate of ordering inventory.

The total expected cost function ETC is given as follows.

Model I
ETC= [C + QC]ER+ CLEl + (1 +1)Cy EL

Model IV
ETC=[C + QC,|ER+ CLElI + (1 +m)C} x sx EL

Model V
ETC= C ER+ QC,|[ER—EL]+ C5El+ (14 n)Cy x Sx EL, wherel, m, n are proper
fractions and > m > n > 0, when the local purchase is made in higher quantity the

hike in price decreases.
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EC

El

| ER |

EW

Models

25
27
29
31
33
35
37

3.0796 8.04071
3.0774 7.078(
3.0750 6.4241]
3.0729 5.9514
3.0710 5.5944
3.0694 5.3155

3.0680 5.0914

8.3948
9.0775
9.7462
10.4061
11.0643
11.7220

12.3794

12.7346 0.0508
13.8438 0.0454
14.9201f 0.0410
15.976¢ 0.0373
17.020Q1 0.0342
18.0544 0.0315
19.0821} 0.0292

0.066Q 3.0796
0.0583 3.0774
0.0524 3.0750
0.0474 3.0728
0.0434 3.0709
0.0399 3.0693
0.037Q 3.0679

8.5173
7.4424
6.71643
6.1938
5.8005
5.494(
5.2487

EC

El

| EL

Models

S

v \%

v Vv

[l v

\%

25
27
29
31
33
35
37

3.0481
3.0481
3.0481
3.0481
3.0481
3.0481
3.0481

3.0481
3.0481
3.0481
3.0481
3.0481
3.0481
3.0481

3.048]
3.048]
3.048]
3.048[l 10.57
3.048]
3.048]
3.048]

| 8.552
| 9.229
| 9.903

1 11.24
] 11.90
| 12.57

4
8

3

37
20
85
38

13.3693
14.3772
15.3688
16.3502
17.3346
18.3228
19.3135

14.01300.0110
15.01670.0097
16.01010.0087
16.99630.0079
17.98470.0072
18.97610.0067
19.96930.0062

0.0440
0.0391
0.0352
0.0320
0.0293
0.0270
0.0251

0.009
0.008
0.007
0.006
0.006
0.005
0.005

N O F NFAF N

TABLE 4.1. Variations in Maximum inventory levél. A = 1, u = 1.7,
f=.2,0=3s=10

EC

El

| EW |

ER

Models

3.0888 8.97571
3.0794 6.8547
3.0720 5.6123
3.0662 4.8274
3.0618 4.3097
3.0584 3.9564
3.0557 3.7118

12.1534
12.4594
12.8708
13.3651
13.9257
14.5391
15.1721

18.175( 3.0888
18.9329 3.0794
19.743¢ 3.0720
20.6148 3.0661
21.5322 3.0618
22.481¢ 3.0584
23.4521 3.0557

9.6208 0.0508
7.2119 0.0454
5.8244 0.0411
4.9604 0.0337
4.3962 0.0342
4.0154 0.0315
3.7528 0.0292

0.066(0
0.0585
0.0524
0.0475
0.0434
0.0399
0.037¢

El

EL

| ER

Models

v \%

v Vv

[l v

\%

16

12.2697
12.6075
13.0518
13.5697
14.1375
14.7386
15.3615

19.0075
19.5254
20.1237
20.8027
21.5643
22.4107
23.2966

20.424
20.659
20.997
21.46]
22.051
22.763
23.553

10.0549
30.0409
00.0304
50.0201
10.0169
60.0126
00.0095

0.0215
0.0125
0.0081
0.0056
0.0040
0.0029
0.0022

0.011{0.0202
0.00850.0217
0.00630.0235
0.004{70.0256
0.00350.0279
0.002[70.0304
0.00210.0330

0.0203
0.0220
0.0236
0.0254
0.0274
0.0297
0.0323

0.026
0.028
0.030
0.032
0.035
0.039
0.042

OO0 OO HFWN

TABLE 4.2. Variations in re-order leved. A = 1, u = 1.7, f = .2,
0 =3,5 =140
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El | EW [EJ ] EC
Models
B[l Il [ Il [ [ Il
0.3]9.4650 14.6231] 3.0580 3.8882 0.0124| 3.0580 3.8286
0.4|10.0335 15.4863 3.0516 3.278Q| 0.0042| 3.0517 3.2615
0.5]10.3793 15.995(] 3.0494 3.1256| 0.0016| 3.0494 3.1194
0.6] 10.6103 16.3313 3.0486 3.0774| 0.0006| 3.0487 3.0751
0.7] 10.7755 16.570¢f 3.0483 3.0601| 0.0003| 3.0484 3.0591
0.8 | 10.8995 16.749¢ 3.0482 3.0533 0.0001| 3.0482 3.0529
0.9|10.9960 16.8887 3.0481 3.0504| 0.0001| 3.0482 3.0503
1.0| 11.0733 16.9999 3.0481 3.0492 0.0000| 3.0482 3.0491
EL [ EW | El |
Models
g [ Y Y Il WY Y Il Y Y
0.3]0.0138 0.0043 0.004{) 3.0481 3.0481 3.048[L9.5748 14.5876 14.797
0.4] 0.0049 0.0018 0.00183.0481 3.0481 3.048110.1216 15.3125 15.386
0.5| 0.0019 0.0008 0.00083.0481 3.0481 3.048110.4565 15.7839 15.811
0.6 | 0.0008 0.0003 0.000%3.0481 3.0481 3.048[10.6814 16.1110 16.122
0.7|0.0003 0.0001 0.000[ 3.0481 3.0481 3.048[L10.8427 16.3496 16.354
0.8|0.0001 0.0000 0.000() 3.0481 3.0481 3.048[L10.9639 16.5307 16.532
0.9| 0.0000 0.0000 0.00003.0481 3.0481 3.048111.0584 16.6727 16.673
1.0| 0.0000 0.0000 0.000fp3.0481 3.0481 3.048[111.1341 16.7870 16.787
TABLE 4.3. Variations in replenishmentrate A\ = 1, p = 1.7, 0 = 3,
s=105=25
EC | EW | ER | EJ
Models
A Il [ Il [ Il [
0.4] 0.1408 0.1494| 0.3522 0.3744| 0.0079 0.0264 0.0003
0.5|0.2535 0.2865| 0.5083 0.5763| 0.0126 0.0333 0.0012
0.6 | 0.4304 0.5293| 0.7215 0.8923| 0.0185 0.040Q 0.0034
0.7]0.7124 0.9750| 1.0291 1.4201| 0.0255 0.0464 0.0078
0.8]1.1851 1.8618| 1.5101 2.3977|0.0336 0.0533 0.0152
0.9] 2.0653 3.9763| 2.3646 4.6104| 0.0428 0.0599 0.0265
1.0| 4.1094 12.3876 4.2925 13.0882 0.0531 0.0643 0.0426
EC | EW | EL
Models
A WY Y Il Y Y I Y Y
0.4] 0.1401 0.1401 0.1401 0.3503 0.3503 0.35030.0004 0.0004 0.0004
0.5] 0.2513 0.2513 0.25130.5027 0.5027 0.502[70.0014 0.0011 0.001p
0.6 | 0.4253 0.4253 0.42530.7088 0.7088 0.70880.0037 0.0022 0.0020
0.7|0.7027 0.7027 0.702ff 1.0038 1.0038 1.00380.0083 0.0038 0.003%
0.8]1.1692 1.1692 1.16921.4615 1.4615 1.46150.0161 0.0058 0.0051
0.9]2.0420 2.0420 2.042()2.2689 2.2689 2.268p0.0281 0.0081 0.0071
1.0| 4.0784 4.0784 4.07844.0784 4.0784 4.07840.0453 0.0107 0.009

TABLE 4.4. Variationsinarrivalrate. A\ =1,y = 1.7, =.2,s =10

S = 25.
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4.12.1. Interpretations of the Numerical Results.

1. Effect of the maximum inventory levebn various performance measures:

As S increases in all models considered, expected inventory level increases. The
number of customers and hence the waiting time decrease in model | and Il. As more
inventory is with the system the time interval to reach the re-order level increases, so
re-order rate decreases in model | and Il. Due to the same reason local purchases in
models I, IV and V decreases. The number of customers in Ill, IV and V is same
due to local purchase. (see table 4.1)

2. Effect of the re-order level on various performance measures.

From table 4.2 one may conclude that the behaviour of system performance mea-
sures as increases, is similar to that of, except that the re-order rate increases, the
time interval to reach the re-order point decreases and so more orders are placed.

3. Effect of the replenishment rateon various performance measures.

As we expect whem increases the inventory level increases in all models. In
models Ill, IV and V, as replenishment takes place at a higher rate the rate of local
purchase decreases. Due to local purchase the waiting time of customers do not
increase. The number of customers who do not join when the inventory level is zero,
also decreases in model I. The number of customers and their waiting time decreases
in models | and Il agl measures (see table 4.3)

4. Effect of the arrival rate\ on various performance measures.

Table 4.4 shows that when the arrival rate increases the number of customers and
their waiting time increases in all models. Reorder rate increases in models | and
[I. The number of customers who do not join when the inventory level is zero also
increases in model |. Due to more arrivals, the rate of local purchase also increases

in models I, IV and V.
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Maximum inventory level versus ETC.
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50 Re-order level versus ETC.
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Replenishment rate versus ETC.
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Arrival rate versus ETC.
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4.12.2. Interpretation of the graphs. In order to find the most profitable model,
we compute the expected total cost per unit time for each model by varying the param-
eters one at a time keeping others fixed.

Figure 4.1 shows that as the maximum inventory level increases the total expected
cost increases, this is primarily due to the increase in the holding cost of inventory.
When the re-order level increases then also the cost increases as the inventory level
increases (see 4.2). As the replenishment rate increases, here also cost increases due
to the same reason (see figure 4.3). Figure 4.4 shows that the cost function is directly

propotional to the arrival rate.

4.13. Conclusion

From all the graphs we understand that comparing models | and I, the cost is less
in model I. Comparing models Ill, IV and V the cost involved in model Il is least.
That is local purchase by one unit is profitable. Among all the models the cost is least
for model Ill. So model Ill is the best with the given cost function and given values of
parameter. However, the input parameters do influence the total expected cost. Hence

the models are sensitive to input parameters.
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CHAPTER 5

I nventory Systems with Disasters

5.1. Introduction

In all inventory models discussed earlier in this thesis we have not brought in the
role of perishability and disasters.In several practical situations,these factors play im-
portant roles in decision making. For example in a firm where there is a possibility of
occurrence of disaster, it is to be decided about the maximum quantity that can be kept
so that the inventory lost due to disasters is minimum and at the same time efficient
running of the system is ensured.

Krishnamoorthy and Varghesd3 analyzed an inventory model where the items
are damaged due to decay and disasters.They assumed that the lead time is zero and the
service time is negligible. Arivarignan et.dl][discussed a continuous revigw, S)
inventory system with perishable items, where lead time and life time of items are ex-
ponentially distributed. They obtained both steady state and transient solutions. An
extensive survey on perishable inventory can be seen in NahbBfihsubsequently
there followed several further investigations. Nevertheless these were all on with neg-
ligible service times. Krishnamoorthy and Anbazhagd@ pdiscussed a system with
finite capacity for waiting space where the inventory is served according to an exponen-
tially distributed time. Further they assume perishability of items on stock.

In this chapter we consider two models(ef S) inventory systems where the com-
modities are destroyed by disasters. Customers arrive to a single server counter accord-
ing to a Poisson process with rate Service times of customers are independent and
identically distributed exponential random variables with parametdread time fol-
lows an exponential distribution with parameterThe interval between disasters have
exponential distribution with paramet&r Each customer requires one unit of item. As

a result of service, when the inventory level reachege place an orderfo) = S — s
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quantity of the item. If disaster occurs when the inventomgelas between 0 and

there is no need to place the order again, and we place an order if the inventory level is
betweens + 1 andS. That is only one existing order is allowed. We assume that cus-
tomers register their names for the product. Since there is a chance of disasters physical
presence of customers at the service station is thus avoided. In Model | we assume that
customers do not join the system when the inventory level is zero: whereas in model Il

customers are assumed to join the system even when the inventory level is zero.

5.2. Mathematical Description of Model |

Let N (t) be the number of customers in the system Afigibe the inventory level at
timet. We assume that disaster destroys all the inventoried items present at that epoch;
however it is assumed that the customers are not affected by disaster. Customers do not
join the system when the inventory level is zero. Those who are already present stays
there. It follows that the ((N(¢), I(t)),t > 0} is a LIQBD process on the state space
{(i,7);i > 0,0 < j < S}. The infinitesimal generatap of the process is a block

tridiagonal matrix having the following form:

Q|
I
o
&
~
E
o

(5.2.1)

o o O O

by
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0 —p B

1 o -0 I}

S ) —Q 15}
Ago =

s+1 1) —w

S 1) —w

whereQ = A+ 3+ 0, w = X+ 6.

0 1 s s+1 S —s S
0 -3 B
1 6 = 3
A= g 5 —qQ 3
s+1| 6 —u'
S ) —u'

With Q' = A+ B+0+ o =\+0+p

5.3. Analysis of Model |

5.3.1. System stability.Define the generator matrit asA = Ag + A; + A,. Let
7w = (m,m, - ,ms) be the steady state probability vector4f Then we haver A = 0

andre = 1. Solvingr A = 0 we get

It +5
To = T
T B+ T B+0
B+0+p

Vel fork=2,...,s+1

7Tk:(

0
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) )
Topk = ( +M)k_1(ﬂ+ +M)S7T1 fork=2,...,5—2s
Y Iz
)
TQ+k = - M?TQHH - évrk,l, where@QQ =S —s, k=1,2,...,s,
il
Hereng, ms, ..., s are all expressed in terms of. Fromzre = 1 we can findr; and
hencery, ma, ..., 7g.

THEOREM 5.3.1. The Markov chain described by the model is stable if and only if

A< U

PROOF From the well known results (see Neu&S]) on positive recurrence a

which states that Ape < mA,. Simplifying this we get\ < O

5.3.2. Steady state analysisLet X = (z(0),z(1),...) be the steady state proba-
bility vector of the Markov chain. Since the model considered here is a LIQBD process,
its steady state distribution has a matrix-geometric solution to the equations- 0

andXe = 1. Thenz(i) has the matrix geometric form
x(i) = x(1)R" ! fori > 2, (5.3.1)

where R is the minimal non-negative solution of the matrix equatibn+ RA; +
R%?A, = 0. XQ = 0 gives

Solving the above equations we can find vectgf® andz(1) subject to the normaliz-
ing conditionXe = 1.

That isz(0)e + x(1)(1 — R)~! = 1. Having foundx(1), z(4), « > 2 can be found from
(5.3.1).
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5.4. Performance Measures

Having computed the system state probabilities, we proceed to find out how the

system performs. LeX = (x(0), z(1),...) be the steady-state probability vector@f

wherex(i) = (yio, Yir; - - - Yis)-

(1) Expected number of customers, EC in the system is given by

EC =) ix(i)e
=1

(2) Expected inventory level El is given by
co S
El = Z ijij
i=0 j=1
(3) Expected waiting time in the system EW is given by

_EC

EW .
A

(4) Expected re-order rate ER is given by

00 00 S
ER = szi,sﬂ + 52 Z Yij
i=1

i=0 j=s+1

(5) Expected number of inventory ET, lost due to disaster is giveA’Dy= §F 1.

(6) Expected number of customers EJ not joining the system when the inventory

level is zero is given by

=0

(7) Expected rate of departure ED after completing service is given by

oo S
ED =p) > uy

i=0 j=1
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5.5. Cost Function

To construct the cost function we define the following costs as

C' = fixed ordering cost
(', = procurement cost/unit
C'y = holding cost of inventory/unit/unit time
C5 = revenue from service/unit/unit time
C, = disaster cost/unit
(5 = shortage cost of inventory/unit/unit time
Then the total expected cost is defined as
ETC= [C + QC,|ER+ CL,EI — C5ED 4 CLET + C5EJ

5.6. Mathematical Description of Model Il

The only difference of this model from the first model is that customers join the sys-

tem even when the inventory level is zero. The infinitesimal gene€atfithe process

has the form of (5.2.1) where the blocKs,, Ay, A1, A, are square matrices of order

(S + 1) and they are given by

0 O
AOZ)\IS+17 A2: )
,u]s 0
0 1 - s s+1 - S—s5
0 —A B
1 o -0
A = s ) -0
s+1 ) —w
S )

WthA=XA+3,Q=A+08+0,w=A+0.
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0 “A 3
1 5 3
5 —q
A= g
s+1 ) —w'
S ) —w'

whereQY = A+ 0+5+pu, ' =A+5+u, A=A+ 7.

5.7. Analysis of Model Il

5.7.1. System stability.Define the generator matrit asA = Ag + A; + A,. Let

™= (7T0,7T17"'

, s ) be the steady state probability vectoraf Then we haver A = 0

andre = 1. Solvingm A = 0 we get

T =

T —

Ts+k =

TQ+k =

Hel’e7r0, Ty ey

hencery, 79, . ..

P n 0

T
B+ B+
(w)kflmfork:2,...,s+l

I
(5+M)’H(ﬂ+5+“)smfork:2,...,S—2s
1 p
o+ p

TQ+k—1 — éﬂk,l, whereQ)Q =S —s, k=1,2,...,s,
I

s are all expressed in terms of. Fromz7e = 1 we can findr; and

, 5.

THEOREM5.7.1. The Markov chain is stable if and onlyXf< (1 — m) where

B O+ p+ oM
T G a8+ 6+ M
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and

:(ﬁ+(5+,u

T )@ =D+ LS - )+ B[ - 1) - ()

o

Withxzw,y:‘s%‘

PROOF. From the well known results (see Neu&S]) on positive recurrence a
which states that Aqe < 7 Ase. Simplifying this we get\ < u(1 — )
O

5.7.2. Steady state analysisLet X = (z(0),z(1),...) be the steady state proba-
bility vector of the Markov chain. Here again the model is a LIQBD process, its steady
state probability distribution has a matrix-geometric solution to the equal@ps- 0

andXe = 1. Thenz(i) has the matrix geometric form
z(i) = ()R fori > 2 (5.7.1)

whereR is the minimal non-negative solution of the matrix equation
Ay + RA, + R?A, = 0. XQ = 0 gives
Solving the above equations we can find vectgfs) andx(1) subject to the normaliz-

ing conditionXe = 1, thatisxz(0)e + x(1) (1 — R)~! = 1, thenz(i), for i > 2, can be
obtained from (5.7.1).

5.8. Performance Measures

Having computed the system state probabilities, we proceed to find out how the
system performs. LeX = (z(0), z(1),...) be the steady-state probability vector@f

wherex(i) = (yio, Yi1, - - - » Yis)-
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(1) Expected number of customers, EC in the system is given by
EC =) ix(i)e
=1

(2) Expected inventory level El is given by
co S
El =) s
i=0 j=1
(3) Expected waiting time in the system EW is given by

EC
)‘[1 - Z;‘Zo ?/io] .

(4) Expected re-order rate ER is given by

[es) [es) S
ER = szi,sﬂ + 52 Z Yij
i=1

i=0 j=s+1

EW =

(5) Expected number of inventory, ET lost due to disaster is given by:-EBTEI.

(6) Expected number of departures, ED after completing service is given by

S

ED =u) > ui

i=0 j=1
5.9. Cost Function and Numerical Examples

To construct the cost function we define the following costs as
C = fixed ordering cost
(', = procurement cost/unit
Cy = holding cost of inventory/unit/unit time
C5 = revenue from service/unit/unit time
C, = disaster cost/unit
Then the total expected cost is defined as
ETC= [C' + QC,|ER+ CLEI — C5sED + CLET
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S

EC I

El

ER I

ET

Mod

els

25
26
27
28
29
30
31

2.4999
2.4999
2.4999
2.4999
2.4999
2.4999
2.4999

4.09271
4.0925
4.0923
4.0921
4.0924
4.0919
4.09171

14.6654
14.9948
15.3514
15.7344
16.1429
16.5761
17.0333

14.699
15.037
15.395
15.774
16.173
16.594
17.034

1.1973
1.1343
1.0742
1.0169
0.9624
0.9105
0.8612

1.3005
1.2384
1.1785
1.1208
1.0653
1.0120
0.9609

1.4665
1.4994
1.5351
1.5734
1.6142
1.6576
1.7033

1.4699
1.5037
1.5395
1.5774
1.6173
1.6594
1.7034

TABLE 5.1. Variations in maximum inventory levsl

B=1,0=01,5=10

X=1,p1=14,

EC |

El

I ER

ET |

Models

S

8

9

10
11
12
13
14

2.4999
2.4999
2.4999
2.4999
2.4999
2.4999
2.4999

4.0934
4.0924
4.0919
4.0915
4.0913
4.0911
4.0910

16.36773
16.39407
16.57617
16.93898
17.51132
18.32643
20.33167

16.2627
16.3545

16.59414

16.9996

17.5892;

18.3797
19.3801

D 0.6888
50.7911
10.9105
D1.0495
11.2114
?1.3997
D1.6186

0.7769
0.8864
1.0120
1.1557
1.3194
1.505(0
2.0847

1.6367
1.6394
1.6576
1.6939
1.7511
1.8326
2.0331

1.62628
1.63541
1.65941
1.6999¢
1.75892
1.83797
1.93801

TABLE 5.2. Variations in reorder leved. A = 1,
0=0.1,5=30

=14, 3 = 1,

EC [ El | ER [ EW |

I

Mod

els

15
1.6
1.7
1.8
1.9
2.0
2.1

2.0000
1.6666
1.4287
1.2500
1.1111
1.0000
0.9090

3.0921
2.4918
2.0914
1.8057
1.5913
1.4244
1.2917

14.6654
14.6654
14.6654
14.6654
14.6654
14.6654
14.6654

14.7139 1.1973
14.7260 1.1973
14.7367 1.1973
14.7461 1.1973
14.754% 1.1973
14.7619 1.1973
14.7686 1.1973

1.3020
1.3034
1.3045
1.3055
1.3065
1.3073
1.308(

2.0000
1.6666
1.4285
1.2500
1.1111
1.0000
1.0000

3.4014
2.7417
2.3009
1.9865
1.7504
1.5677
1.4205

TABLE 5.3. Variationsinservicerae A =1,8=1,6 =0.1, s = 10,
S =25
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EC | ER | EW | EJ
Models

A Il [ Il [ Il [

1.7]1.3076 2.078Q 1.8584 2.0267 0.7692 1.3463 0.1557

1.8| 1.5000 2.4432 1.9505 2.1269 0.8333 1.4954 0.1653

1.9| 1.7272 2.8995 2.0423 2.2268 0.9090 1.6823 0.1750

2.0|2.0000 3.4860 2.1336 2.3266 0.9999 1.9224 0.1849

2.1|2.3333 4.2672 2.2246 2.4262 1.1110 2.2425 0.1949

2.2|2.7500 5.359¢ 2.3152 2.525Q 1.2500 2.6903 0.2051

2.3|3.2857 6.9943 2.4054 2.6206 1.4285 3.3602 0.2156
TABLE 5.4. Variations in arrival rate. =3, 5=1,0 = 0.1, s = 10,
S =25

EC | El ER | ET
Models

s |1 Il [ Il [ Il [ Il
.05]/2.0000 2.4929|15.7786 15.8006 1.1225 1.1735 0.7889 0.790(
10| 2.0000 3.0921 | 14.6654 14.71391.1973 1.302Q 1.4665 1.4713
15| 1.9999 3.8463 | 13.6755 13.7484 1.2297 1.3910 2.0513 2.0622
20| 1.9999 4.8356 | 12.8101 12.900% 1.2291 1.4484 2.5620 2.5801
25| 2.0000 6.2035 | 12.0604 12.1556 1.2052 1.4824 3.0151 3.038¢
.30 2.0000 8.2363|11.4124 11.48141.1670 1.4971 3.4237 3.4444
.35/ 2.0000 11.6023 10.8508 10.78631.1210 1.6471 3.7977 3.7752

TABLE 5.5. Variations in disaster raie A\ = 1, u = 1.5,
s=10,5 =25

g

EC

El

EW

[EJ

1,

Models

g

11
13
15
1.7
1.9
2.1
2.3

2.4999
2.4999
2.4999
2.4999
2.4999
2.4999
2.4999

3.8735
3.57171
3.3751
3.2375
3.1363
3.0589
2.9979

14.8726
15.2012
15.4498
15.6446
15.8013
15.9300
16.0377

14.9154
15.253]
15.5054
15.701(
15.8571
15.9844
16.090%

12.4999
1 2.4999
12.4999

2.4999
| 2.4999
b 2.4999

b 2.4999

4.2258
3.8465
3.6001
3.428(
3.3014
3.2044
3.1283

0.0833
0.0714
0.0625
0.0555
0.0500
0.0454
0.0416

TABLE 5.6. Variations in replenishmentrate 4 =14, A = 1,6 =
0.1,s =10,5 =25

5.9.1. Interpretation of the Numerical results.

1. Effect of the maximum inventory levebn various performance measures
From table 5.1 we conclude that &sincreases, inventory level and thus the

inventory lost due to disaster increase. Due to the availability of more inventory,
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reorder rate decreases as the time interval to reach theerelenet| increases. The
number of customers do not change in model | as customers do not join when the
inventory level is zero, while in model Il it decreases.
. Effect of the reorder level on various performance measures

Table 5.2 shows that the changes on various performance measuresages
is similar to that ofS, except the reorder rate. Here wherncrease reorder rate
increases as the time interval to reach the reorder level decreases and more orders
are placed.
. Effect of the service rate on various performance measures

When service rate increases as we expect the number of customers and hence the
waiting time of customers decrease in both models. Reorder rate and hence inventory
increase in model Il as customers join even when inventory is zero, while in Model
| both remain the same, as customers do not join when inventory level is zero (see
table 5.3).
. Effect of the arrival rate\ on various performance measures

When arrival rate increases as we expect the number of customers, the waiting
time and the reorder rate increase in both models. The number of customers who do
not join when the inventory level is zero also increases (see table 5.4).
. Effect of the disaster rat&on various performance measures

Table 5.5 shows that asincreases the inventory lost due to disaster increases
and so the inventory decrease in both models. Number of customers and reorder
rate increase in model Il as customers join even when the inventory is zero, while in
model I, number of customers is same as customers do not join the system when the
inventory level is zero. In Model | reorder rate increases first and then decreases as
customers do not join when the inventory level zero. (see the formula for ER)
. Effect of the replenishment rateon various performance measures

From table 5.6 we can understand thatiascreases inventory level increases in
both models. The number of customers and hence the waiting time of customers in
model Il decrease as the replenishment rate of inventory increase, while in model |

no change as customers do not join the system when the inventory is zero. As more
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inventory is with the system, in model I, the number of custamwveho do not join

when the inventory level is zero (EJ) decreases.

Maximum inventory level ver
I

ses ETC.

580 \ \

5700

560

I I
‘'model-1" —%—
'model-2" —&—

500 | | |

FIGURES.1. A =1, u=14,6=1,6d = 0.1, s

Ch1=20,0,=1,03=5,C4, =27,C5=5

= 10, C

TC.

Reorder level verses E
1000 ‘ ‘

900
800
700

ETC
600

I I
'model-1" —>—
'model-2" —%— 4

FIGURES.2. A =1, pu=14,3=1,6 =01, 5 =

01:20,02:1,03:5,04:27,05:5
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575 Service rate verses ETC
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525 \ \ \ \ \
14 15 1.6 17 18 19 2

N

FIGURES.3. A =1, =1,0 = 0.1, s = 10, S = 25 C = 100,
C;=20,C=1,C3=5,C,=27,C5=5
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FIGURES.4. =3, =1,0 = 0.1, s = 10, § = 25, C = 100,
C,=20,Cy=1,C3 =5,Cy =27,C5 = 5.
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Disaster rate verses ETC
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FIGURES.5. p=1508=1,s =10, S = 25, C = 100, C; = 20,
Cy=1,03=5,C4=27,C5 =5

Replenishment rate verses ETC.
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FIGURES.6. p =14, A =1,6 = 0.1, s = 10, S = 25, C = 100,
C1=20,C,=1,C3=5,C,=27,C5 =5.
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5.9.2. Interpretation of the graphs. Figure 5.1 shows the variation of the cost
(ETC) with the maximum inventory leved. WhenS increases the cost decreases, it
may be due to the decrease in the reorder rate. The cost increases witesases
as the reorder rate increases (see figure 5.2). From figure 5.3, we can understand that
service rate does not affect the cost function in model | as the reorder rate and inventory
is same, in model Il the cost slightly increases. Total expected cost increases as arrival
rate increases (see figure 5.4). Figure 5.5 shows that when the disaster rate increases in
model Il the cost increases as the reorder rate increases. In model | as the reorder rate
first increases and then decreases, the cost function also behaves like that. Figure 5.6
shows that when replenishment rate increases the expected cost increases. This may be

due to the increase in the reorder rate.

5.10. Conclusion

From all the graphs we may conclude that the expected cost of model | is less than
model Il. So model | is profitable with the given cost function and parameters. That is

it is better for the system to not allow the customers to join when the inventory is zero.
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CHAPTER 6

I nventory with Positive Service Time—Multi-Server Retrial Model

6.1. Introduction

Compared to single server retrial queue the study of multiserver retrial queue is
more involved and needs much sophisticated tools. Artalejo dt.& pnalyzed both
single server and multiserver retrial queues. Artalejo ef]atudied the numerical so-
lution of the multi-server retrial queues where the retrial rate is assumed to be constant.
Krishnakumar et.alg8] discussed a multi-server retrial queue in which the server takes
a Bernoulli vacation and obtained the solution using matrix-geometric technique. In
2002 Artalejo and PozdlP] modelled a multiserver retrial queue in which inter retrial
times follow an exponential distribution. They introduced a new approximation tech-
nique by assuming that the retrial rate depends on the systenfisigterherei denotes
the number of busy servers apdthe number of customers in the orbit.

In this chapter we consider a multiserver inventory model with retrial of customers.
Customers arrive according to a Poisson process with xat&here arec identical
servers and service times are exponentially distributed with parameté/e follow
(s,.S) inventory policy and lead times are exponentially distributed with paranieter
When the inventory level depletes4d> 0) we place an order fo) = S — s quantity
of inventory. We assume that there is no waiting space in the system except for those
undergoing service. If an arriving customer finds all servers busy it proceeds to an orbit
and makes repeated attempts until it finds at least one efskevers idle. We assume
that customers do not join the orbit when the inventory level is zero. The inter retrial
times follow exponential distribution with constant réteEach demand is exactly for
one item of the inventory. The number of serveiis assumed to satisfy the condition
¢ < s. The purpose is to ensure that at the beginning part of the lead time itself a few

servers should not be forced to be idle for want of item for service.
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6.2. Mathematical Model and Its Analysis

Let
N(t) = number of customers in the orbit at time
C'(t) = number of busy servers at tinie
I(t) = Inventory level at time.
Then{(N(t),C(t),I(t)); t > 0} isa CTMC on the state spa¢é&, k, j),i > 0,0 <
k <e¢ k <j < S} The system can be studied as a LIQBD. The infinitesimal generator

@ of this Markov chain is a block tri diagonal matrix and it has the following form

By A4 0 0 0
Ay A A 0 0
0 Ay A Ay O
0 0 Ay A A

Q|
I

where the blocks3,, Ay, A, A, are square matrices of ord&f* [{2(S+ 1) —c}]; these

are given as follows

Elo BOO
BQl Bll BOl
By By B
BO _ 22 12 02 ’
BQ c—1 Bl,cfl BO c—1
L BQ,C Bl c |
[0 ] [0 K, 0 0 ]
Ml 0 0 K1 0
AO = M2 ’ A2 = ’
0 0 0 K.
I M, | 0 0 0 0 |
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Ay

Asg
A21 AOl

A12 AOZ

A2,c— 1 Al,c— 1 AO,C— 1

| AQC Alc
Next we describe the entries in the above matrices
0 1 S s+1 S —s
0 -0 B
1 —(A+05)
Elo = S8 _()‘ + ﬂ)
s+1 -\
S
3 s s4+1 S —s S
i o) 3
—Q
By = ° &
s+1 —w
S _

(S+1)x(S+1)

(S—i+1)x(S—i+1)

whereQ = A+ip+pG,w=A+iu, 1 <i<ec

0
Mg

By =

for0<i<e-—1.

(S—i+1)x(S—1)

By = [ipls—iv1 O)(s—it1)x(s—i+2) forl <i <c.
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Ae : .
M, = ' wheree; is a row vector with 1 in thg®" place, and zeros

(S—i+1)x(S—i+1)
elsewhere, fot <37 < c.

M, = )\Ischrl-
0 .
Furtherk,; = for0<i<e-—1.
0ls_;
(S—i+1)x(S—i)
0 1 s s+1 S—s S
0 —p p
1 —A
A= s —-A I6]
s+1 —)
S =1

(S4+1)x(S+1)

i ++1 -+ s s+1 -+ S—s5 -+ S
i —-Q I5]
141 -0
A= s = B
s+1 —¢
S —¢

(S—i+1)x (S—i+1)

fori<i<c—1withQ=A+ip+8,0=A+iu+06+0,0=\+iu+0.
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c ¢+1 -+ s s+1 .-+ S—-s5 --- 8

(S—c+1)x(S—c+1)
whereQ) = A +ipu+ B, w = X+ ipu.

Ai:[' , ] fort <i<e.
2 ls—iv1 0 (S—it1)x (S—i+2) ==

0
AOi: forOSZSC—l
Mg
(S—i+1)x(S—1)

6.2.1. Stability condition. The matrixA = Ay + A; + A, is the generator matrix
of the Markov chain

Letm = (0,00, T(O,1)s - - - » T(0,8)s T(U,1)s « + - > T(A,S)s W(2,2) - - - T(2,8) - - - W(ene) - - - W, S))

be the stationary probability vector af. By solving the equation A = 0 andre = 1
we getr. The system is stable if and only if it satisfies the drift condittolye < 7Ase

(see Neutsq3]). After some calculations this reduces to

c S c—1 S
MG+ Y wle )| <> D ()
=1 j=c+1 =0 j=i+1

Let X = (x(0),2(1),z(2),...) be the steady-state probability vector@fuch that
XQ =0andXe = 1. (6.2.1)
Using the matrix-geometric theorer®d we have

x(i) =z(0)R", i>1, (6.2.2)
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whereR is the rate matrix which is the minimal non-negative solutionlgft RA; +
R?A, = 0. Then equation (6.2.1) becomes

z(0)(By + RAy) = 0andz(0)(I — R) ‘e = 1. (6.2.3)

R can be obtained using the successive iterative method:
R(n+1) = —(Ag + R%(n)A3)A;Y, n = 0,1,2,...; with R(0) = 0 and R(n) are
computed until

max[R;;(n+1) — Rij(n)] <€
27‘7

wheree > 0 and sufficiently small. Then(i), ¢ > 0 can be uniquely determined from
(6.2.2) and (6.2.3).

6.3. System Performance Measures
We partition the stationary probability vectdrof Q as X = (z(0), z(1), .. .) where

eachz (i) is further partitioned as

1’(2) = (yiOOa Yio1, - - -, Yios, Yi11, - - -5 Yi1s, Yi22, - - -, Yi2S, - - - s Yicey - - - >yicS)-

Then we have the following performance measures.

(1) Expected number of customers EC in the orbit, is given by
EC = Z ix(i)e.
=0

(2) Expected inventory level El is given by
oo ¢ S
El =) > > Ky
i=0 j=0 k=j
(3) Expected waiting time of a customer in the orbit EW is given by

_EC

EW .
A
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(4) Probability that an arriving primary customer goes toiorb

(5) The overall retrial rate OR is given by
OR=06> (i

(6) The successful retrial rate SR a given by

o c—1 S
SR=0) "> > i

i=1 j=0 k=j+1

(7) Probability that all servers are idle

(8) Expected re-order rate ER is given by
ER =cu Z Z Yij.s+1
i=0 j=1
(9) Expected number of departures ED after completing service, is given by
c© ¢ S
ED =cp) > > i
i=0 j=1 k=j

(10) Expected number of customers EJ not joining the systems when the inventory

level is zero is given by
EJ= A Z Yi00-
1=0

(11) Mean number of busy servers ES is given by

© ¢ S
ES= Z Z ijijk-

i=0 j=1 k=j
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6.4. Cost Function and Numerical Examples

To construct the cost function we define the following cost

C' = fixed ordering cost

(', = procurement cost/unit

C5 = holding cost of inventory/unit/unit time

C5 = revenue from service/unit/unit time

C, = shortage cost of inventory/unit/unit time

C5 = server cost/unit/unit time

¢ = the number of servers

The total expected cost ETC is defined as

ETC= [C + QC1]ER+ C,EI — C5ED + C4EJ+ Csc

EC

|
c=95

El

ER

c=3

c=4

c=3

c=4

c=95

c=3

c=4

c=95

22
25
28
31
34

2.3064
2.0852
1.9480
1.8547
1.7872

0.7316
0.6142
0.5402
0.4898
0.4532

0.506
0.402
0.336
0.291
0.259

75.2436
45.8656
56.4989
07.1373

77.7785

1.9675
2.0937
2.2472
2.4132
2.5861

1.070
1.058
1.078
1.114
1.157

10.4134
30.3200
70.2625
20.2227
50.1934

0.2376
0.1547
0.1165
0.0934
0.0780

0.186
0.093
0.058
0.040
0.030

OO O &

TABLE 6.1. Variations in maximum inventory levél. A = 6, u = 4,
6=1,0=4,s=10

EC

c=4
1.3136
1.1230
0.9769
0.8618

ENB
c=4
0.5328
0.4626
0.4044
0.3557

EW

c=4
0.2189
0.1871
0.1628
0.1436

c=3

9.5283
5.7130
3.9978
3.0301

c=5 |c=3
0.831p1.0796
0.74600.9532
0.67550.8394
0.616p0.7425

2.4126 0.7691 0.566[70.6599 0.3147 0.21080.4021 0.1281 0.094

1.9868 0.6930 0.52390.5891 0.2799 0.189P0.3311 0.1155 0.0878
TABLE 6.2. Variations in servicerate. A =6, =1,0 =2,s =5,
S =25

c=5 |c=3
0.34101.5880
0.29900.9521
0.264R20.6663
0.23500.5050

c=5
0.138
0.124
0.112
0.102

4.2
4.4
4.6
4.8
5.0
5.2

<N oTw o
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EC

EW

EJ

c=3

c=4

|
c=5

c=3

c=4

c=25

c=3

c=4

c=25

5.0
52
54
5.6
5.8
6.0

0.9451
1.1823
1.4898
1.8990
2.4631
3.2809

0.3118
0.3756
0.4506
0.5387
0.6425
0.7654

0.209
0.249
0.295
0.347
0.407
0.475

30.1890
20.2273
10.2759
50.3391
50.4246
00.5468

0.0623
0.0722
0.0834
0.0962
0.1107
0.1275

0.041
0.047
0.054
0.062
0.070
0.079

80.1810
00.2136
60.2499
00.2901
20.3343
30.3827

0.1661
0.1952
0.2274
0.2629
0.3017
0.3440

0.162
0.190
0.221
0.255
0.292
0.333

S O N 01T 01T

TABLE 6.3. Variationsinarrivalrate. =4, 5 =1,60 = 3, s = 10,
S =25

EC

EJ

EW

c=3

c=4

c=5

c=3

c=4

c=25

c=3

c=4

c=25

1.0
1.2
1.4
1.6
1.8
2.0

3.2809
2.8933
2.6420
2.4734
2.3572
2.2755

0.7654
0.6139
0.5139
0.4463
0.3996
0.3668

0.475
0.346
0.260
0.203
0.163
0.135

00.3827
10.2378
70.1515
10.0987
50.0655
70.0443

0.3440
0.2144
0.1371
0.0897
0.0599
0.0407

0.333
0.207
0.133
0.087
0.058
0.039

40.5468 0.1275
80.4822 0.1023
00.4403 0.0856
10.4122 0.0743
20.3928 0.0666
60.3792 0.0611

0.0793
0.0576
0.0434
0.0338
0.0272
0.0226

TABLE 6.4. Variations in replenishmentrate A =6, u = 4, 0 = 3,
s=10,S5 =25

SR

EW

EC

c=3

c=4

|
c=9

c=3

c=4

c=95

c=3

c=4

|
c=95

2.0
2.1
2.2
2.3
2.4
2.5

1.1838
1.1990
1.2059
1.2099
1.2126
1.2168

0.5042
0.5049
0.5056
0.5062
0.5069
0.5075

0.283
0.284
0.284
0.284
0.284
0.284

81.8608
01.4708
11.2207
21.0468
40.9188
50.7430

0.1882
0.1785
0.1701
0.1626
0.1559
0.1500

0.106
0.102
0.098
0.095
0.092
0.089

18.8248
57.3246
26.2809
35.5129
64.4580

111.1653 1.1295

1.0715
1.0207
0.9758
0.9358
0.9000

0.637
0.612
0.591
0.571
0.554
0.538

O O O~ W0

TABLE 6.5. Variations inretrial raté. A =6, u =4, 5 =1, s = 10,
S =25

6.4.1. Interpretation of the Numerical Results.

1. Effect of the maximum inventory levebn various performance measures.
Table 6.1 shows that &@sincreases the inventory level increases; it is least when

¢ = 5 and most inc 3. The number of customers decreases as the number

of servers increases. Whehincreases the time interval to reach the reorder level

increases and so the reorder rate decreases.
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2. Effect of the service ratg on various performance measures
Expected number of customers and the waiting time decrease as the service rate
increases. As the service rate increases the number of busy servers decreases (see
table 6.2).
3. Effect of the arrival rate\ on various performance measures
From table 6.3 we can understand that\ascreases the number of customers
and the waiting time increase. When the number of servers increases:(fodrto
¢ = 5) the number of customers and their waiting time decrease. As the arrival rate
increases the number of customers not joining the orbit when the inventory level is
zero also increases.
4. Effect of the replenishment rateon various performance measures
Table 6.4 shows that whehincreases the number of customers and the waiting
time decreases as the system get the inventory quickly. The number of customers
who do not join when the inventory level is zero, also decreases as the system has
more inventory.
5. Effect of the retrial rate& on various performance measures
As retrial rate increases successful retrial rate increases, so the number of cus-
tomers and waiting time decreases. When the number of servers increas8dq

¢ = 5) the number of customers and their waiting time decreases (see table 6.5)
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Maximum inventory level verses ETC
150 T \ \ \ \

ORw-
|
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FIGUREG.1. A\=6,u=4,6=1,0 =4,s =10, C = 100, C; = 20,
Cy=1,03=5,0,=5,C5=6

Service rate verses ETC
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FIGUREG6.2. A=6,8=1,0=2,5s=5,5 = 25,C =100, C; = 20,
Cy=1,03=5,0y=5,C5=6
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Arrival rate verses ETC
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FIGUREG.3. pu=4,3=1,0=3,s=10,5 = 25.C = 100, C; = 20,
Cy=1,03=5,C,=5C5=6

Replenishment rate verses ETC
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FIGUREG.4. A\ =6,u=4,0=3,s=10,5 = 25,C =100, C} = 20,
02:1,03:5,04:5,05:6

101



Retrial rate verses ETC
I I I

200

180
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140 N
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FIGUREG.5. A=6,p=4,8=1,5s=10,5 =25 C = 100, C; = 20,
02:1,03:5,04:5,05:6

6.4.2. Interpretation of the graphs. Figure 6.1 shows the changes of the total
expected cost (ETC) with the maximum inventory lessebnd ETC decreases &5
increases. From figure 6.2 we observe that as the serviceuratereases the total
expected cost decreases. As the arrival Patecreases the cost increases (see figure
6.3). Figure 6.4 shows that as the replenishmentfaterease the cost decreases. The
cost decrease when the retrial rate increases (see figure 6.5). From all the figures we
can understand that the total expected cost is minimum when the number of servers is
5 (¢ = b), for the given cost function and parameters. So it is better for the system to

have more servers.
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