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Preface 

In this thesis quark-antiquark bound states are considered using a relativistic two­

body equation for Dirac particles. The mass spectrum of mesons includes bound states 

involving two heavy quarks or-one heavy and one light quark. In order to analyse these 

states within a unified formalism, it is desirable to have a two-fermion equation that lim­

its to one body Dirac equation with a static interaction for the light quark when the other 

particle's mass tends to infinity. A suitable two-body equation has been developed by Man­

deJzweig and Wallace_ This equation is solved in momentum space and is used to describe 

the complete spectrum of mesons. The potential used in this work contains a short range 

one-gluon exchange interaction and a long range linear confining and constant potential 

tenns. This model is used to investigate the decay processes of heavy mesons. Semilep­

tonic decays are more tractable since there is no final state interactions between the leptons 

and hadrons that would otherwise complicate the situation. Studies on Band D meson 

decays are helpful to understand the nonperturbative strong interactions of heavy mesons, 

which in turn is useful to extract the detai,ls of weak interaction process. Calculation of 

form factors of these semileptonic decays of pseudo scalar mesons are also presented. 



Chapter 1 
Introduction,and Overview 

1.1 Motivation 

A consistent and quantitative study ofhadrons as strong interacting particles still poses 

one of the most interesting and challenging problems of modem particle physics. Although 

the elementary constituents are known to be quarks and gluons, a quantitative analysis of 

the underlying theory viz. Quantum chromodynamics (QCD) is possible only with a per-

turbative treatment in the high energy region. For example, the so called jet events in 

electron-positron annihilation at energies larger than 1 OGe V at LEP results from the cre-

ation of a quark-antiquark pair and can be successfully described in terms of the fundamen-

tal quark-gluon interactions. 

The experimentally observable hadrons, however, have excitations with typical en-

ergies less than 1GeV. In this low energy regime the QCD coupling constant is large so 

that the theory becomes essentially nonperturbative. The fundamental equations can only 

be solved in lattice calculations with large numerical effort and crude approximations such 

as treating quarks as static. Satisfactory phenomenological models especially in the light 

quark sector therefore still attract considerable interest. 

Gellman and Ne'eman [1] introduced the u,d,s quarks as a fundamental represen-

tation of flavour - SU(3) symmetry in or~er to classify the known baryon ground state 

as three quark objects and the me sons as quark-antiquark (qq) states. The nonrelativis-

2 



1.1 Motivation 3 

tic quark model (NRQM) introduced bY' lsgur and Karl [2] showed that all hadron masses 

known at that time could be explained efficiently with nonrelativistic dynamics by means 

of constituent quarks being confined by a (linearly rising) potential. Thus quarks are the 

relevant degrees of freedom for the low energy hadron spectroscopy. Note however, that 

recently there have been evidences for glue ball candidates also from the proton anti proton 

annihilation events [3]. 

Despite its success in calculating mass spectra, the applicability of NRQM is ques-

tionable especially for light quarks. The large ratio of the level spacing as compared to 

the ground state energy shows that light quarks move with relativistic velocity because of 

their large 'binding energy'. Indeed a naive application of nonrelativistic decay fonnu-

lac leads to completely wrong results especially for the ground state meson octet. Beyond 

these low energy phenomena there is at present a considerable experimental interest in the 

domain of 'pre-perturbative' medium energy of hadrons. The facilities at CEBAF for in-

stance provide a large duty factor combined with high luminosity and allow for the precise 

measurement of meson electroproduction and therefore for the extraction of meson fonn 

factors. In the region of up to 6Ge V electron energy the meson will recoil with relativistic 

velocity. Therefore a theoretical understanding of transitions at high momentum transfer 

must certainly be based on a treatment of mesons as relativistic quark-antiquark bound 

states. 

In QED, the Bethe-Salpeter equation [4] provides a relativistic description of two-

body bound state systems. This equation is an exact formulation based on quantum field 

theory and is a relativistic covariant generalization of the Lippman-Schwinger equation. 
- -
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But in the ladder approximation, the Betlte-Salpeter equation does not yield the one-body 

Dirac equation, as one of the particles mass goes to infinity. 

The various features of QED and QCD can be compared to emphasize the basic con­

nections between these two theories. Both are relativistic gauge field theories with a gauge 

field and associated charge. Furthermore, both describe fundamental spin half particles (the 

various leptons and quarks) which can form a two-body bound state system, e.g. positro­

nium in QED and mesons in QCD. Thus by using a theory based on QED, we may be 

able to cast some light on QCD aspects of mesons. There are also fundamental differences 

between QCD and QED. QCD is believed to be confining and generally much more com­

plicated than QED due to the nonabelian nature of the local SU(3) color symmetry. It is the 

intractability of the nonperturbative aspects ofQCD which necessitate model studies. 

MandeIzwieg and Wallace [9] has developed a two-body relativistic equation for 

Dirac particles which was also motivated from QED. This two-body Dirac equation does 

indeed have the one-body Dirac equation li!nit as one of the particles mass goes to infinity. 

This is achieved by including the interactions with the negative energy states by incorpo­

rating Z graphs. 

In view of these we present this work a relativistic potential model for the mesons 

based on the two-body Dirac equation due to Mandelzwieg and Wallace. In order to avoid 

the complications of the full four dimensional equation, we use a covariant formulation 

based on the Equal Time formalism, by integrating out the time components of relative· 

momenta. This leads to a well defined eigen value problem for the meson masses and 
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amplitudes. The main task of this work is to combine the calculation of mass spectra with 

a study on form factors of the semileptonic decays of pseudo scalar mesons. 

1.2 Overview of thesis 

In Chapter 2, the basic two-body equation for two spin half particles interacting in a 

potential is discussed. The equation is comprised of two basic components: a kinetic and a 

potential, both of which will be discussed. The kinetic term was derived by Mandelzweig 

and Wallace, who obtained a propagator that has a number of desirable physical properties 

not present in the usual Bethe-Salpeter equation. The potential is obtained from a sim-

pIe phenomenological Cornell type potential which has the following r-space and Lorentz 

structure 

a 
V(r) = Kr + C + -/1'/2 

r 

Since the analysis is in momentum-space, the confining potential is highly singular at zero 

relative momentum. Indeed the Fourier transform of the KT goes as p-4. Particular care 

must be taken when treating such terms and we use the method developed by Spence and 

Vary [11, 12] to treat the singularity correctly. 

In chapter 3, a brief description of the structure of the wave function is given. While 

the solutions of the two-body equation have been determined numerically, there are some 

basic analytical properties that can be.obtained by using the symmetries of the equation, 

such as parity invariance, charge conjugation and rotational invariance. These analytical 

properties yield various relations between the wave functions and these relations offer a 

check of wave functions obtained numerically. 
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To test the numerical procedure for obtaining the wave functions and energy eigen­

values; first the Schrodinger equation describing the linear potential is solved as a nonrela­

tivistic limit of the two-body equation. This demonstrates that an accurate spectrum can be 

obtained using the linear potential for the non-relativistic case. Next the Coulomb potential 

is examined for the case of heavy quarkonium. Finally the solution of the heavy quark me­

son spectrum in just the ++ channels of the two-body equation is discussed and compared 

with the solutions for the same system that have been obtained by Spence and Vary[ll]. 

In Chapter 4. a covariant fonnulation of the two-body equation is discussed and is 

numerically solved in the centre of mass frame to obtain a description of the spectrum and 

wave functions of various mesons. In this thesis we employ a momentum space analy­

sis. The potential used in this work contains a short range gluon exchange interaction that 

is vector and a long range potential with tinear and constant terms that may be scalar or 

time-like vector. The numerical methods used in the analysis of these singular interactions 

are described. Meson mass spectra obtained in this work are compared with the experi­

mental values. Also included in our comparisons are the results oflsgur-Godfrey [13] and 

Tiemeijer~Tjon [18]. 

The study of semileptonic decay of hadrons has been of great interest to particle 

physics since it helps not only in probing the quark structure of hadrons but also provid~ 

ing means to measure the CKM parameters necessary to realize the CP violating effects 

within the minimal standard model picture .. In particular, the semileptonic decays of heavy 

flavoured mesons such as D and B have received considerable attention in recent years due 

to the emergence of new theoretical ideas such as heavy quark symmetries leading to many 
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interesting model independent predictio~s in this sector. Significant progress has also been 

made through the ongoing efforts to acquire relatively more precise experimental data for 

these semileptonic processes. The theoretical analysis of such decays usually requires a 

detailed knowledge of transition form factors with their explicit q2 (four momentum trans­

fer squared) dependence. The form factors are in fact manifestations of QCD bound state 

characters of the quarks involved in the process are yet to be solved from the first prin­

ciple. Although the Heavy Quark Effective Theory [37, 38, 39], which corresponds QCD 

in the limit of )...QCD/mQ ---+ 0, can relate different form factors to a single one called 

Isgur-Wise function, it is not possible to predict theoretically the q'2 dependence of this 

function except through an appeal to the nonperturbative techniques such as lattice QCD 

[40]. Therefore the weak decay form factors required to describe the semileptonic decays 

are usually obtained by various phenomena logical bound-state models. 

We therefore consider it is worthwhil~ to investigate the semiieptonic decay of heavy 

pseudoscalar mesons into pseudoscalar mesons in this relativistic potential model. In Chap­

ter 5, the first part provide a brief outline of the general fonnaIism [56, 57] adopted here 

for the analysis of the decay. We describe the model conventions and realize the invari­

ant transition matrix element as well as the relevant form factors with their appropriate q'2 

dependence directly from the model. In the second part the dynamical boost of the bound 

state wave function that is needed to evaluate the transition matrix elements is discussed. 

A boost rule for the bound states of two scalar particles of equal mass satisfying the re­

quirements of Poincare invariance was developed by WaIlace [44, 45] has been described 

in detail. This has also been extended to scalar particles of unequal masses[ 43]. The last 



1.2 Overview of thesis 8 

\ 

part of this Chapter embodies the results and discussions. The fonn factors obtained are in 

good agreement with the experimental results [36, 46, 51, 53,57, 58]. 

The study ofthese decays represents a significant part of the experimental programmes 

at the Proton-Proton Accelerators and at the B-factories at SLAC and KEK. 



Chapter 2 
Two-Body Dirac Equation 

• 

2.1 Introduction 

The study of mesons in terms of quarks and anti quarks requires a fonnulation of the 

bound state problem for two Dirac particles. The bound state formulation should have a 

clearrelation to quantum field theory in order to incorporate the relevant features ofQCD. 

As mentioned in the introduction there are a number of significant features shared by 

QED and QCD, so it is useful to start with the Bethe-Salpeter equation which has some of 

these common features built in. The Bethe-Salpeter formalism provides a consistent frame 

work based on relativistic quantum field theory. However some desirable properties do not 

emerge in a simple way. One example is the single particle Dirac limit. It has been shown 

that the one-body Dirae equation is the correct limit of the two-body problem in the limit 

that one of the particles mass approaches infinity. This limits depends on cancellations 

between crossed and uncrossed Feynman graphs to all orders. Such a cancellation to all 

orders is an impractical demand so usually·the BS kernel is truncated with the sacrifice of 

the one-body Dirac equation limit. A related inconvenience occurs in the high energy limit, 

where the sum of all crossed and un crossed graphs limits to an exponential fonn identical 

to the non-relativistic eikonal approximation. Again the limit depends on cancellations 

between crossed and uncrossed graphs to all orders in perturbation theory. Both of these 

9 
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k~ 
1 

Fig 2.1 Box and crossed box graphs 

10 

limits can be incorporated in the quasipotential approach discussed by Mandelzwieg and 

Wallace [10]. 

The Bethe-Salpeter equation for quark-antiquark system has the following fonn, 

J d4p' 
a-1(p,p)w(P,p) = i . (27r)4 V(P,p - p')w(P,p') (2.1) 

where P and p are the total and relative momenta respectively of the two particle system. 

Since it is a four dimensional formulation, V(P,p - p') and W(P,p) depend on the fourth 

component of relative momenta. In many' circumstances, it is convenient to reduce the 

four dimensional equation to a three dimensional quasipotential equation. Original work 

along this line has been done by Blankenbecler and Sugar[8] and by Or055[6, 7]. In this 

chapter a reduction ofthi5 equation to three dim~nsions is discussed and then the potential 

is analysed in momentum space. 
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2.2 Two-Body Dirac Equatipn 

The Bethe-Salpeter equation can be used to analyse the bound state of a two fermion 

system in terms of the interaction kernel specific to the field theory in question. The BS 

equation is the relativistic covariant generalization of the Lippmann-Schwinger (LS ) equa-

tion for a two particle system and can be written as follows: 

J d4p' 
\It(P,p) = iG(P,p) (271')4 V(P,p - p')\II(P,p') (2.2) 

where \It (P, p) is the momentum space wave function for qq system and 

1 
G(P,p) = ( '. )( . ) 

'YI·PI - ml + 'tTJ 'Y2·P2 - m2 + 'tTJ 
(2.3) 

with 

(2.4) 

For each quark there are now negative-energy states as well as the usual positive-

energy states. Thus, the number of degrees of freedom has been doubled and this increases 

the numerical complexity of the problem. Also the wave function 'If (P, p) and potential 

V(P,p - pi) depend on the fourth component of the relative momentum p. 

The quasipotential reduction amoun~s to assuming the qq potential, V(p,p'), does 

not depend on the relative energy in the centre of mass frame. This is equivalent to us-

ing a coordinate-space description in which the potential is calculated with the equal-time 

restriction, Xo = x~. Defining, 

1 100 \It (1J) = 271" -00 dp°\It (P, p) (2.5) 
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and neglecting retardations, the interaction' becomes V C-p, p') and from Eq.(2.2) we ob-

tain 

W (-+) = [i..lOO d °G(P' )] J d3p' V(-+ -+')\lI(P -+1) (2.6) 
p 271" -00. P ,p (271")3 p, P , P 

which can be written as 

(2.7) 

where 

(2.8) 

and Eq .2. 7 is the Salpeter equation. However the Sal peter equation does not yield one-body 

Dirac equation limit. Mandelzweig and Wallace analysed this problem and showed that an 

improved equation is obtained by including, an eikonal approximation to cross graphs. The 

resulting equation is, 

(2.9) 

where 

with 

and 

. 1 
GcrOS8 (Pt, q2) = ( , )( , ) 

Il·Pl - ml + '/,7] 12·Q2 - m2 + '/,7] 
(2.11) 

In the Mandelzweig and Wallace equation[10], V must be redefined to omit parts of 

cross graphs which are automatically obtained from iterating the equation with Gcrou. In 

the limit where V is the lowest elementary exchange, say one photon exchange, one obtains, 
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in the eikonal approximation, the cross graphs and the Dirac equation limit. Rewriting the 

Dirac propagators using the identity 

A- (=Pi) 
p? + fi - iT} 

(2.12) 

where 

(2.13) 

and 

(2.14) 

are the usual projection operators. On performing the integration of Eq .2.1 0, the following 

quasipotential propagator is found 

(2.15) 

At (IJ:) A; (-P;) Al (-pn A; (-P;) 
- El + B;, - 101 - f2 El + E2 + 101 + f2 

Here Eland E2 are energy parameters constrained by the condition Er - Ei = mt - m~ 

and their sum is the bound state energy of the two particle system. The ++ and - - terms 

in Eq.2.15 come from the un crossed graph. These terms are familiar from the Salpeter 

equation which is the limit of BS equation for instantaneous photon exchange. The +-

and -+ terms, which are essential to obtaining the one-body Dirac limits, come from 

Gcr".. term in Eq.2.10. The eikonal approximation used to include the crossed Feynman 

graph only affects the +- and -+ parts of G and these are small relative to the dominant 
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++ part. A calculation of a-I yields 

(2.16) 

where 

(2.17) 

The result may be checked by verifying that G-IG = GG-1 = 1. This leads to a wave 

equation which can be used for bound state calculations. Thus the equation for the two 

Dirac particles can be written as 

(2.18) 

A 0 0 
where V='l1'2V. 

Let us write the above equation in a convenient fashion 

(2.19) 

where Al2 is the operator corresponds to the kinetic and potential components. In general 

the operator A 12 has the form of a sum of products 

(2.20) 
n 

where rn (1) is a Dirac matrix in the space of particle 1 and fn (2) is a Dirac matrix in the 

space of particle 2. In the Eq.2.19 W (Tt) may be treated either as a 16 component spinor 

or a 4 x 4 matrix. Thus we can write 

(2.21) 
n 
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where Q:, a', {3, {3' are Dirac matrix indicFs. This is equivalent to 

(2.22) 
n 

or in matrix notation 

(2.23) 
n 

Here a matrix to the left refers to the particle 1 Dirac space and a matrix to the right refers 

to the particle 2 Dirac space and the particle 2 matrices are always transposed. 

The Eq.2.lS has the usual symmetries of parity invariance, time-reversal invariance, 

and it has solutions of good J provided the potential V commutes with the total angular 

--+ 
momentum J. For the bound state problem in the CM frame E = El + E2 is the eigen-

value and the subsidiary condition El - E2 = (m~ - ~) / E is used to define the energy 

difference. 

This is a more general equation than the usual Salpeter equation which does not 

involve the Z-graph terms, Al (-P 1) At eT! 2) and At eT! 1) A'2 ( - P 2)' Indeed the 

Salpeterequation can be further approximated in the case of heavy quark systems by drop-

ping the double Z-graph term, i.e. Ai ( - PI) A'2 (-P 2) . This is justified since by looking 

at the -- term in Eq.2.]5 above and noting El + E2 = 111, where M is just the mass of 

the state we have, 

(2.24) 

so we can drop the -- state compared to the ++. The double Z-graph terms are also 

strongly suppressed by retardations. Spence and Vary have solved the Salpeter equation for 

qq with just ++ channels. In the two-body equation written here the equation for the ++ 
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channel is 

(2.2S) 

2.3 Partial Wave Analysis 

The two-body equation can be written in the form, 

. 3-/ 

[(El - €Il)1)P2 + (E2 - €2P2)Pll q, (It) = ! ~2~3 VC;, p')\f!(p') (2.26) 

where, Pi = hi/€il i=1,2 has eigenvalues Pi = ±1. It is convenient to analyse the wave 

function by using two bases, one called the P basis and the other called the plane wave 

basis. In the p basis the potential tenn is t:asier to manage while in the plane wave basis 

the kinetic term is easier to analyse. We will use the p basis only to analyse and obtain 

the potential contribution to the two-body equation. Since the kinetic term takes a rather 

intractable fonn in the p basis we will solve for the wave function and energies using the 

plane wave basis. 

In section 2.4 the partial wave analysis is performed in the plane wave basis. In 

section 2.5 the p basis analysis is introduced. In this basis the potential tenn in Eq.2.26 can 

be easily evaluated. In section 2.6 the transformation linking the potential in the P basis to 

that in the plane wave basis is given and the equation which is a mixture of both the bases 

is obtained. A spline expansion is used to convert the momentum space integral equation 

to a numerically solvable matrix problem. 



2.4 Partial Wave Analysis in the Plane Wave Basis 17 

2.4 Partial Wave Analysis i~ the Plane '''ave Basis 

Since the two-body equation, Eq.2.18, describes two Dirac particles, each being rep-

resented by Dirae spinors in the space of particle 1 and 2 and their wave function will be a 

sixteen component matrix as mentioned earlier. We write this 16 component wave function 

in the plane-wave basis as 

w~{ (]i) = LLui1 (PI]i) yfsJ (p) U~2 (-P2]if G'if2 (p). (2.27) 
PJP2 LS 

The YL' S' J include the 2 x 2 matrices that· span the spin space of the two Dirac particles 

and are discussed in more detail in Appendix A. In the notation used here, the particle 

I operator in Dirac space, Ul is always written to the left along with any other operators 

acting on it and the particle 2 operator in Dirac space, uf is always written to the right and 

transposed as well as any operators acting on it. 

The plane-wave basis is a 4 x 2 matrix given by 

(2.28) 

with 

(2.29) 

(2.30) 

and they are orthonormal in the sense that 

(2.31) 
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this basis. The four sets PIP2 = {++, +-, -+, --} detennine four linearly independent 

matrices and together with angular momentum states ytb (p) the wave function' in states of 

good JM can be expanded as given in Eq.2.27. It can also be seen that we are multiplying 

a 2 x 2 matrix with a 4 x 2 matrix UI from the left side and with a 2 x 4 matrix which 

is the transpose of matrix U2 from the right side so that wr is a 4 x 4 matrix. The kinetic 

term is simpler to obtain in the plane-wave basis. Thus (El - €lPl)P2Wr (1t) becomes 

(El - €lPl)Wr (1t) pr where in the matrix Wr (11) the row index is the particle 1 label 

and column index as the particle 2 label. For example 

(2.32) 

Now inserting this into the two-body equati~n and using the orihononnality property of the 

plane-wave basis, 

(2.33) 

we obtain an equation for radial wave function G(p) as follows 

(27l")-3 L J dp'pf2Vts~l;~:U2 (p,p') Gi)~~ (p') (2.34) 
U1 U 2,L'5' 
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where 

V.PIP2,C11t1~ (- -') 
LS,L'S' p, P 

VA (_ -') t11 ( -') yM (A) t12 ( _,)T] P - P U 1 0"1 P L'S'J P U2 -0"2 P 

This equation will be solved numerically by introducing an expansion of the radial wave 

function G~1~~ (p) in terms of cubic splin~s[65]. However the potential is more conve-

niently treated using the p basis. 

2.5 Partial Wave Analysis in the p Basis 

The following four linearly independent p matrices are used as a basis 

(2.36) 

1(10) 1(10) 
P3 = V2 0 -1 ' p, = V2 0 1 . (2.37) 

It is easy to show they are linearly independent matrices and thus form a basis. Also they 

obey the following orthonormality condition 

(2.38) 

The 4 x 4 matrix wJ can be expanded in terms of a direct product of two subspaces of 

2 x 2 matrices. One of these will be just the 2 x 2 matrices that span the sp in space of the 

two Dirae particles and the other will be four matrices that span the other 2 x 2 subspace, 

the p spin matrices in Equations2.36 and 2.37. Therefore the wave function wJ for states 
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of good J2 = J (J + 1) and Jz. = M is expanded in the P basis as follows 

'lIY (It) = I>i ® Y~J (p) Fis (p) (2.39) 
iLS 

where Fls (p) are a set of sixteen radial wave functions. The 16 basis states Pi ® ytb 

satisfy the following orthonormality condition 

The potential in momentum space is written in terms of the usual Dirac matrices as 

(2.41) 

where v,. is the Lorentz scalar piece coming from the linearly rising potential in the r-space 

and Vl/r (q) is the Lorentz vector term coming from liT term in r-space. In the p basis V'lI 

is written as follows 

v Cp, p') 'lI (p) = LV; Cp, p') Pj ® Y~J (p) Fis (p) (2.42) 
iLS 

To obtain the partial wave expansion for the wave function we simply substitute the 

p basis expansion into the two-body Eq.2.18 

L 
iLS 

~ / ~~~~~ Pi ® L~ (/ df2pl ~i (p - p') Y1SJ (i/)) FIs (P'). (2.43) 

In this equation it is not very convenient to evaluate the left hand side, as it leads to a com-

plicated set of coupled equations in the P basis. However the potential term is much simpler 

because the angular integral in the potential term on the right hand side is straightforward 
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to evaluate and gives, 

(2.44) 

where 

vis (p,p') = 271" 1: dxV~ (l) PL (x) I 

7r J(p+p')2 2 i 2 (p2 + pl2 - q2) 
= - dq Vs (q ) PL 2' pp' (p_p,)2 pp 

(2.45) 

with q2 = p2 + pl2 - 2pp'x and PL (x) are the usual Legendre polynomials and the V~ (q) 

for i = 1, ... 4 in the p basis are, 

vi = -v,. + V1/ r (1 - Cs), vi = - v,. + Vi/r (1 + Cs) (2.46) 

(2.47) 

Here Cs = 25(5 + 1) - 3 and is +1 for S'= 1 states and -3 for S = 0 states. 

The wave function can be split into two sets of 8 radial functions, each with different 

parity. Using the orthonormality of the basis states, for either of these sets with different 

parity, we can project out the following 8 coupled equation for the radial wave function 

L KZS,L'S' (p) Ft,s' (p) = (~~)31°O dp'p12Vis (P,P') Fls (p') (2.48) 
j£'S' 0 

where the kinetic term is given by the expression 

Kfs,L'S' (p) = Tr J dO 

and Vis (p, p') have been defined above. 
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2.6 Partial Wave Analysis of the Two-Body Equation 

Since both the basis fonn a complete set we can expand the plane-wave basis states 

in tenns of the P basis states as 

PI ( ~) yM (~) P2 ( ---+)T ~ MPIP2,i (~) to\ yM ( ~) 
U1 PI P LSJ P Ul -P2 P = ~ LS,US' P Pi'O' L'S'J P (2.50) 

iUS' 

And this can be used to detennine the potential vts~i;;;172 in the plane·wave basis, from 

the potential Vls in the P basis. The basis transfonnation matrix M (p) is discussed in 

Appendix B. With this transfonnation the radial wave functions are related by the following 

relation, 

F i (~) "GP1P2 ( ) M P1 P2,i (~) 
LS P = ~ us' P LS,L'S' P (2.51) 

From Eq.2.35, and using the first tenn in Eq.2.50, we can obtain the following expression, 

" VPIP2,17171 (p I) G171172 ( ) 
~ LS,L'S' ,p us' P = 

j dnpdnplTr L (Mf::'l;~s,,(p)ytf,sI/J(j)pir V(p,p')W{pl)(2.52) 
iL"5" 

using equation Eq.2.42 and Eq.2.51 this becomes, 

L vtrl;~~1 (p,p') GL'{~' (p) = J dnpdnplTr [ L (AJf::'D~sll (p) yf,'SIIJ (5) Pi) t) 
qql,L'S' iL"S"ijLtltSIII 

vll1s11 (P,p') Pjytf,'SIIIJ(p' LN~~;~LtrlS/II (p') GL'{~' (P)] (2.53) 
1717',L'5' 

Using Eq.2.44 and Eq.2.40, we obtain the potential in the plane·wave basis in tenns·ofthe 

potential in the P basis as 

VPIP2 171172 ( ') ~ ~1.P1P:J,i . ( ) Vi ( ') ~I171172i (') 
LS,L:S' p, p = 0 lY. LS,L"5" P L"8" p,p "'L'S',L"5" P (2.54) 

iL"S" 
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Finally we have to solve the following equation for the wave function and eigenvalues, 

(2.55) 

which can be rewritten in the form 

(El + E2) p}P2G'2sP2 (p) - L J d(~;): vts'1;~~tr2 (p,p') G~}s? (p') (2.56) 
tr1tr2,L'S' 

where 

E2 T.'2 2 :2 
A = I - L2 = m 1 - m2 

El + E2 El + E2 
(2.57) 

Since analytic solutions are not possible we have to solve the Eq.2.56 numerically. 

For this the radial momentum wave function G'2P is expanded in a linear combination of 

N interpolating spline functions as follows, 

(2.58) 

where Bn (p) are cubic B-splines with continuous derivatives upto second order and eft; 

are the spline coefficients to be determined. Multiplying Eq.2.58 by pBn (p) and integrat-

ing over p yields a matrix equation for the spline coefficients as follows 

n,m 

~ [K CP1P2 + ~ VP1P2,tr]tr2 CP1P2 ] 
~ mn LSn ~ LS,m,L'S',n L'S'n 
n,m tr]tr2,L'S' 

(2.59) 
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where 
Pu 

Imn = J dpBm (p) Bn (p) (2.60) 

PI 

(2.61) 

PI 

pu 

Kmn = J dpBm (p) Bn (P) (El + 1:2) (2.62) 

PI 
and 

Pu P:' 

V P IP'l,U1a'2 J d J 'd'B () TrPIP2,a'1a'2 B ( ') LS,m,L'S',n = P P P P m P vLS,L'S' n P (2.63) 

PI P: 

This is a homogeneous matrix equation for finding eft;. and the condition for a nontrivial 

solution determine the mass eigen value El + E2• The potential vts (p, p') is defined by 

Eq.2.45. Eq.2.46 and Eq.2.47. This equation will be solved to obtain the wave functions 

and the mass spectrum of various particles. 



Chapter 3 
T\vo-Body Dirac Equation Properties and 

Solution' Techniques 

3.1 Introduction 

Two different sets of basis states are employed to solve the two-body equation. In the 

plane-wave basis the kinetic part takes on a very simple form. This basis is used to solve 

the two-body equation for the bound state energies and associated wave functions. In this 

section the plane wave-basis is used to expand the wave function and symmetry properties 

are established. 

3.2 Parity Transformation 

........ 
Along with the total angular momentum, J, the other operators that distinguish the vari-, 

ous states are the parity operator, Pp and the charge conjugation operator, Pc. These will 

be examined analytically so that the numerical solutions can be checked for consistency. 

The radial wave function G't; (p) describes the magnitude dependence on relative momen-

turn, p and ytb (p) describes the dependence on p, which denotes the spherical angles in 

momentum space. 

The action of the parity operator Pp on the state W~1 on is defined as 

(3.1 ) 

25 
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If the potential is invariant under parity transformation, various states of the two-body 

equation are split into those with parity ( - i)J and (-1 )J+l. Here 11' qqthe intrinsic parity of 

the bound state. For the quark-antiquark state we have 1I'qq = -1, due to the presence of 

particle as well as antiparticle in the meson bound state. 

For qq states of total parity (_1)J+l we obtain 

Using the plane wave expansion and the identity 

(3.3) 

we can evaluate the left hand side ofEq.3.2 as 

'Y~uf (-pp) yt1J (-p) u~' (p'p) i~ = pp' (_1)L uf (pp) yfsJ (p) u~ (-P'p) (3.4) 

This gives the following identity that must be satisfied by non vanishing radial wave func­

tions for states qq which have parity (_1)J+1. We get 

pp' (_1)L = (_1)J (3.5) 

3.3 Charge Conjugation 

To examine how charge conjugation affects.the solutions, we expand the wave func-

tion in the plane-wave basis as follows, 

W~f (p) = Luf (pp) yt~J (P) [u~' (_p'p)]T aZ; (p) (3.6) 
LS 
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Here ui (PI!) and u~' (p'p) are the plane-wave Dirac spinors introduced above and Gr; (p) 
I 

the radial wave functions. Yib (p) are angular functions which are discussed in appendix 

B. 

The charge conjugation operator, C, is defined as, 

(3.7) 

where K is the complex conjugation operator. We can define the charge-conjugate wave 

function by the relation 

(3.8) 

We can then write the two-body equation as 

(3.9) 

Since the potentials we are dealing with are charge-conjugation invariant we have 

CVC-1 = V (3.10) 

Then it follows that since ChiC-l = -hi (note p" u -... _ (z·"7t)" = - p ) the two-body 

equation under charge-conjugation operation becomes, 

(3.11 ) 

Thus WC is the negative-energy solution corresponding to an anti-particle bound state. To 

each positive-energy solution W, with energy E = El + E2 there is an associated solution 

WC with energy -E = -El - E2• thus the spectrum is symmetric about zero energy. 
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3.4 Solution of Two-Body Equation 

The two-body equation will be solved for check cases where results are known from 

other work. First the numerical procedure is discussed then we will compare the non-

relativistic limit of the two-body equation with only a linear potential and compare solu-

tions with the known solution of Schrodinger equation. This serves as a check on the most 

singular part of the potential. Next in the same non relativistic limit the Coulomb part of 

the potential is checked with positronium results. Finally the two-body will be compared 

with some results obtained by Spence and Vary[12] and for the Salpeter equation 

3.5 Numerical Methods 

As mentioned in Chapter 2, each wave function component is expanded in Eq.2.58 as 

follows, 

where Bn (p) are cubic B-splines with co?tinuous second derivatives and Cf~';, are the 

spline coefficients to be determined. Each spline function vanishes outside of a finite range 

of the argument, p, which is controlled by selecting a sequence of knot points. The choice of 

knot points and spline functions used in this work follows closely that used by Spence and 

Vary in a similar momentum space analysis. Since cubic splines has continuous derivative 

upto second order neighbouring splines overlap such that the superposition can describe a 

smoothly varying wave function of the type expected for bound states. 
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MUltiplying by pEm (p) and in\eg~ating over p we obtained a matrix equation 

Eq.2.59 for the spline coefficients as follows 

n,m 

where 
p .. 

Imn = J dpBm (p) Bn (p) 

PI 

PI 

p .. 

Kmn = J dpBm (p) Bn (p) (El + t2) 

PI 

and 
p" p~. 

VI~~;;.i,~~,n = J pdp J p' dp' Bm (p) VI~~l:~;o2 Bn (p') 

PI P; 

For Imn , Smn and Kmn the integration range WI,Pul is the overlap region where both splines 

are nonzero. Thus they are banded matrices with regard to m and n indices because only 

splines in the neighbourhood regions overlap. For the potential terms the integration ranges 

cover the range where both spline functions are nonzero. Given the smooth properties of the 

splines, the potential singularities at p = p' can be handled. The resulting matrix equation 

is solved using standard methods for the generalized eigenvalue problem to obtain the rest 

mass energy E which is the mass ofthe bound system. When the quark masses are unequal, 

the parameter 6 = (m~ - m~) /2E is nonzero and proportional to 1/ E. It is necessary to 
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solve the problem with an approximate vaiue of 6. and then to iterate using E from the 

previous solution. The iteration converges rapidly for all cases studied. 

The potential is transfonned to the plane wave basis from the p basis using the trans-

formation matrix Mf)?L~ (p) . To make the numerical computation simpler we combine 

the spline functions and transfonnation coefficients as follows, 

(3.12) 

Inserting specific fonns for the scalar and vector terms, the potential in the p basis takes the 

form 

llPIP2.U1U2 J d J 'd I ~ I PI P2•j ( ) [ iv;sc ( ') l.iv;vec (p ')] f U1U2,j () vLS,m,L'S',n = P P P P ~ LS,18;m pal P,P + US l IP J!s,L'S';n P 

(3.13) 

At this point, the labels for p-spin, spin and angular momentum are suppressed for clarity. 

The contribution of the scalar potential to Eq.3.!3, apart from the coefficient ai is written 

in the simpler fonn 

(3.14) 

and the contribution of the vector tenn, apart from the coefficient b= is 

v~~c = J pdp J p'dpllm (p) Vzvec (P,p') In (p) (3.15) 

A linear confining potential in coordinate space 

VSC (r) = Kli~ __ _e_ ( 8)2 -I'r 

1'-0 8J1, r 
(3.16) 
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and this corresponds in momentum space to 
\ 

VSC(q) = 47r/dim (_aa)2 ("_+2 1 2) 
. ~-+o J..l q + J..l 

(3.17) 

where q = p - p'.Partial wave projection involves Legendre functions of the second 

kind as 

where 

and 

v,sc(p ') 4 l' ( 0)2 QI (Z) I P = 1["11, lm -- --, ~-o OJ..l 2pp' 

= [pt2 + p2 + J..l2] 
Z 2pp' 

1 /Z + 1/ Qo(Z) = -in --
2 IZ-1 

along with the recursion relation 

( 2L+1) ( L ) Q£+dZ) = L + 1 ZQL (Z) - L + 1 QL-dZ). 

(3.18) 

(3.19) 

(3.20) 

logarithmic factors in Q I (Z) of the form in I (p - p') 2 + J..l2 1 become singular when p = pi 

and I-t = O. The resulting singularity of a&2~1 is ~( 1 ') in the limit J..l --+ o. When the splines 
~ p-p 

in Vmn do not overlap, the singularity at p ~ p' is not within the integration range and the 

integrations in Vmn may be performed directly. 

But when the singularity is encountered, the general form of the integral to be evalu-

Bted is 
pu P~ 

Amn = J dp J dp'Jm (p) A (p,pl) In (p') (3.21 ) 

PI P, 

where A(p, p') is symmetric with respect to interchange of p and p' and has a singularity at 

p = p' of the form 1/ (p - p')2 . The limits of integration are the range [PI, Pu] where the 

spline function fm (p) is nonzero and [Pi, p~) where In (p') is nonzero. Due to the symmetry 
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of A (P, pI) integral may be rewritten as 

b b 

Amn = ~J dp J dp' [Jrn (p) A (P,pl) In (p') + Im (p) A (P,p/) In (pI)} (3.22) 
a a 

Since the splines vanishes outside a finite range the new limits of integration a = min (Pe,P/) 

and b = max (Pu, p~) define somewhat larger integration region and at the integration Iim-

its, both spline functions vanish at least as fast as (p - a)3 or (p - b)3 . Thus the integral 

can be rewritten as 

b b 

Amn = ~J dp j dp' [/m (p) - Im (p')] A (P, pI) [In (p) - In (p')] 
a a 
b b 

+ jdPlm(P)/n(P) jdP'A(p,PI) (3.23) 

a 

Because of the symmetry the second integral cancels the two terms from the first integral 

and the remaining terms are same as in Eq.3.22. Two powers of P - p' arising from the 

differences of spline functions are sufficient to regulate the singularity in the first integral. 

For the potentials of interest, the second -integral involving J dp'A (P, pI) may be done 

analytically. 

First consider the linear potential for which A (p, pI) = 47rK IP~~JZ). The singular 

parts are isolated by the use of the identity QL (Z) = PL (Z) Qo (Z) - WL - 1 (Z) where 

Qo (Z) has logarithmic singUlarity at p = pI when J.L = 0 and 

(3.24) 



3.5 Numerical Methods 33 

L 

PL (Z) is the Legendre Polynomial, Wn-1(Z) = 2: (1/ L) Pm - 1 (Z) PL - m (Z) is also a 
m=l 

polynomial. It follows that 

where RL(p, p') is the nonsingular part, 

RL(p,p') I~=o= [PL (Zo) - 1] Q~(Zo) + [P~ (Zo) - PI, (1)] Qo(Zo) - WL-l (Zo) (3.26) 

and primes denote derivatives with respect to Z. Here Zo is Z evaluated at J.L = O. This 

leads to 

where the singular terms involving &2~:~Z) are evaluated in the limit J.L - 0 using Eq.3.23 

and we set 

b b 

V~n - -~J dp J dp' [fm (p) - fm (p')] [(p: pl)2 - (p ~ p')2] [fn (P) - in (p')] 
a. a 

Jb [2P 2P ] + dPfm (p) fn (p) 2 2 - 2 b2 p -a 'P-
(3.28) 

a. 

and the singular term involving just Qo (Z) yields 

b b 

-~JdPJdP' [fro (p) _ fm (pI)] ~ In (p + p,)2 [fn (p) _ fn (pI)] 
2 P p' 2 (p _ p,)2 P p' 

a a 

(3.29) 

a 
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where 

F(p,a,b) = (p+b)In(p+b)-(p+a)In(p+a)-

(tJ - p) In (Ib - pI) + (a - p) In (la - pI) (3.30) 

Explicit results for the f dp' A (P, pI) contributions have been inserted based upon evaluat~ 

ing them with finite J.L and then taking the .limit as J.L -- o. Owing to the vanishing of the 

spline functions at the limits of integration, the various integrals over p in Equations 3.28 

and 3.29 remains finite. 

The singularity in the case of l/x potential is logarithmic and the vector interaction 

involves A (p,pl) = 47raQo(Z) and the vector potential terms involves, 

v,vec (P,P') = 47f(~ Qo(Z) 
I 2pp' 

(3.31) 

The expressions discussed above allow all integrals to be performed numerically and we 

can determine the matrices required. Gaussian integration is used to evaluate integrals. 

This momentum space analysis reproduces the eigen values and wave functions for the 

case where the exact solutions are known. Typically our calculation use 40 spline terms for 

each component of wave function. 

The spline functions En (p) are defined by a recursion relation in tenns of N + 4 

(distinct) knots {Ti}' These were chosen to. be the zeros of a Chebyshev polynomial {x;} 

( (2 j - 1) ) x·=-cos 7r 
J 2N 

Now T, are defined by the following mapping 

[§,+x. 
Ti+4 = g __ J +0 

1-x, . J 

(3.32) 

(3.33) 
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and for j $ 4, 7j = 0 . The remaining kn,ots were chosen symmetrically so that 

T4-j = -Tj+4, j = 1,2,3 (3.34) 

The choices of 9 and ~ found to give numerically stable results in all partial waves, were 

9 = O.5GeV. and 6 = O.025GeV. 

3.6 Comparison with Exact Results for Linear Potential 

In momentum space linear potential has the form 1/ q4, which is very singular at q = O. 

In our momentum space calculation, we use the method of Eyre, Spence and Vary[11, 15] 

for this highly singular kernel. Since the Schrodinger equation with the linear potential has 

an analytic solution, the exact eigenvalues ~an be compared with the eigenvalues obtained 

numerically. 

The two-body Dirac equation can be written in the form 

(3.35) 

To obtain the non-relativistic limit of this equation, the negative energy components are 

excluded, i.e., we keep only the ++, channel where PI = P2 = +1. The bound-state 

energy for the non-relativistic case is 

ENR_E 
i -:- i - mi (3.36) 

When the following approximation is made, 

(3.37) 
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the non-relativistic limit of the two-body equation takes the following form 

This can be written as 

which is just the Schrodinger equation. Thus the coordinate-space equation is, 

(3.40) 

where EN R = El + E2 - ml - m2. Making the standard transformation to CM system 

and relative coordinates, we get the Schrodinger equation, 

(3.41) 

Letting V (r) = K.r and ENR = E, for brevity, we get the usual 3-D Schrodinger equation, 

For l = 0 it can be written in spherical coordinates as 

[ h2 (12 ] 
---. - K.r U (r) = -EU (r) 

21-' dr2 

(3.42) 

(3.43) 

Here the reduced wave function U (r) = r R (r). The standard linear potential boundary 

conditions for the reduced wave function are given by 

U(O) = 0, 

U (00) = 0 (3.44) 
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When the reduced equations are solved we obtain the usual Airy function solutions of the 
I 

linear potential[16]. To obtain the expression for the energy eigenvalues, let 

to obtain 

with the change of variable, 

'r 
~=-->. 

l 
'" 

we arrive at the non-dimensional form U (r) = U (~) 

with the boundary conditions 

'" 
U (->.) - 0 

'" 
U (00) = 0 

'" 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

The exact solutions are U (~) = Ai (~), where Ai (~) is the Airy function. The eigenvalues 

are given by, 
2 

En =.An (~) 3 (3.52) 

where >'n are the roots of the Airy function. In computation (see Table 3.1) we use typically 

'" = 0.29 (Ge V)2. Let J.L = ~mq we get 

2 

En =.An (;;) 3 (3.53) 
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Table 3.1 Comparison of exact and calculated energies for the Schrodinger eqUZIion 

with linear potential, using mq = 25 Me V and mq = 1250 Me V 

mq = 25MeV 
n An (Me V) I Exact En En (40 splines) 
I 2.338 I 3500 3505 
2 4.088 I 6119 6128 
3 5.521 I 8263 8276 
4 6.787 I 10157 10174 
5 7.944 I 11889 11909 
6 9.023 I 13504 13526 
7 10.040 I 15026 15052 
8 11.009 I 16476 16504 
9 11.936 I 17864 17896 
10 12.829 I 19200 19236 

n An(MeV) Exact En En (40 splines) 
1 2.338 951 951 
2 4.088 1662 1663 
3 5.521 2245 2246 
4 6.787 2759 2761 
5 7.944 3231 3232 
6 9.023 3670 3672 
7 10.040 4083 4087 
8 11.009 4477 4484 
9 11.936 4854 4888 
10 12.829 5222 5285 

3.7 Comparison with Exact Results for Coulomb Potential 

A test for precision of the eigenvalues for the 1/r part of the potential can also be 

perfonned in a similar manner. The situation now corresponds to positronium bound s:ate, 

but with the mass now referring to the quark masses. The exact energy is given by the 

fonnula[17] 

(3.54) 
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Here J..t is just reduced mass and Q in th~ coupling constant, which in QED is just the fine 

structure constant 1~7' In this case, quark masses of 250 Me V and 25 Me V are chosen. 

Table 3.2 Heavy mesonium with Coulomb Potential 

n mq{MeV) EUJ.eory 
n En 40 splines 

I 250 -6.320 -6.51 
2 250 -1.581 -1.627 
3 250 -0.702 -0.713 
4 250 -0.395 -0.400 
5 250 -0.253 -0.255 
6 250 -0.175 -0.160 
7 250 -0.129 -0.084 

n mq{MeV) Etn.eory 
n En 40 splines 

I 25 -0.6320 -0.651 
2 25 -0.1581 -0.161 
3 25 -0.0702 -0.0713 
4 25 -0.0395 -0.040 
5 25 -0.0253 -0.0255 
6 25 -0.0175 -0.0154 
7 25 -0.0129 -0.0084 

3.8 Heavy Meson Spectra using the Salpeter Equation 

The inclusion of positive and negative energy states is very important for the lighter 

meson states, for which the energy gap between positive and negative energy states is rel-

atively small. Now we are interested in heavy quark states for which we may ignore the 

negative energy states. This physical situation has been studied by Spence and Vary[12]. 

The basic equation Spence and Vary .solve is the three-dimensional reduction of the 

Bethe-Salpeter equation in the instantaneous approximation for ++ states. They obtain 

the spectra for this equation and compare it to the known meson spectra. The two-body 

equation we are using reduces to the same equation when only the ++ channels are included. 
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An important test of the present analysis is to reproduce the results of Spence and Vary, 

which are known to approximate the spectra of the heavy quarks. The two body equation 

for ++ states takes the simple form, 

Spence and Vary solve this equation using the Coulomb plus a linear confinement potential 

V ( ) - -47rQIOII' ® 1011' 4}' ~ 10 ® 10 ® 1 (1) (2) ( ~) 2 1(2) (2) 

q - (-+2) + 7rK, Im ~ (-+2 2) q . 1'-0 vI-' q + I-' (3.56) 

The eigenvalues from the present work are compared with those of Spence and Vary in 

Table 3.3 and Table 3.4. The parameters chosen are given below. 

v = ror+Q/r 
quark mass K, Q 

cc 1250 MeV 0.2Gev;': 0.25 
bb 4580MeV 0.2Gev~ 0.25 



3.8 Heavy Meson Spectra using the Salpeter Equation 41 

Table 3.3 Charmonium mass spectra based on ++ equation. Afsv represents Spence 
\ . 

and Vary's results. 

Charmonium Masses in Me V 
particle JF' N"/'::'+lLJ Expt Msv This work 

1]c 0 11So 2980 3049 3049 

1](; 0 21So 3594 3651 3651 
Jj1jJ 1 rssl 3097 3105 3103 

1jJ 1 2J S1 3685 3691 3687 
1jJ" 1- 1J DI 3770 3741 3736 
1jJ"I 1 3s SI 4030 4094 4102 
1jJ'1lf 1 2sD1 4160 4127 4128 
1jJv 1 4J S1 4415 4414 4404 

Xo 0+ 1Jpo 3415 3437 

Xl 1+ 1J Pl 3510 3462 

X2 2+ PP2 3556 3528 

Table 3.4 Bottomonium mass spectra based on ++ equation.Msv Spence and Vary's 

results. 

Bottomonium Masses in Me V 
particle JF' N"/':>+lLJ Exp Msv This work 

T 1 PSI 9490 9480 9478 
Y 1 2J S1 10023 10004 10003 

1 10099 10095 
T 1 1sD l 10356 10384 10413 

1 10448 10413 
Y 1 3J Sl 10573 10701 10800 

XbO 0+ 1Jpo 9860 9825 

Xbl 1+ 1aPI 9892 9842 9841 

Xb2 2+ 1.lp2 9813 9907 9965 

X~o 0+ Ppo 10232 10229 
I 

Xb2 1+ lJpl ]0255 10244 ]0247 

X~3 2+ IJp2 10268 10299 



4.1 Introduction 

Chapter 4 
Meson Spectra 

The relativistic properties of the quark-antiquark interaction potential play an impor-

tant role in the analysis of different static and dynamic characteristics of heavy mesons. The 

Lorentz structure of the confining quark-antiquark interaction is also of particular interest. 

For a long time the scalar confining kernel has been considered to be the most appropriate 

one[24]. The main argument in favour of this choice is based on the nature of the heavy 

quark spin-orbit potential. The scalar potential gives a vanishing long range magnetic in-

teraction, which is in agreement with the flux tube picture of quark confinement [26] and 

allows to get the fine structure of heavy quarkonia in accordance with experimental data. 

However the calculation of electro-weak decay rates of heavy mesons with a scalar confin-

ing potential alone yield results which are in worse agreement with data than with a vector 

potential[27. 28]. In this contest it is worth noting that the recent study of the qq interac-

tion in the Wilson loop approach [29] indicate that it cannot be considered as purely scalar. 

Moreover, the found structure of spin independent relativistic corrections is not compati-

ble with a scalar potential. A similar conclusion has been obtained by Szczepaniak et al. 

[30]on the basis ofa Foldy-Wouthuysen reduction of the full Coulomb Gauge Hamiltonian 

of QCD. There the Lorentz structure of the confinement has been found to be of vector 

nature. 

42 
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In previous chapters we have disc~ssed the two-body equation for the case of equal 

mass quarks. Here the more general case of unequal mass quarks will be considered. We 

discuss the covariant form of the two-body equation first. 

4.2 Two-Body Equation in Covariant Form 

A covariant form [10] is readily obtained by rewriting the two-body Dirac equation 

in terms of suitable four vectors. Using the notation Pi = (Ei , pr) the total momentum 

P = PI + P2 is a constant of the motion. Relative momentum P = ! (PI - P2) is a 

dynamical variable. The kinematical constraint, E? - E~ = m~ - m~, may be rewritten in 

an arbitrary frame as 

(4.57) 

or as 

1 (2 2) P.p = 2 mI - m2 (4.58) 

Thus the component of relative momentum parallel to P is fixed and the dynamics is re-

duced to three dimensions. Defining a unit four-vector parallel to the total momentum as 

1\ P 
p= --=== Jp.p 

(4.59) 

the relative momentum may be split into four-vectors which are parallel and perpendicular 

to the total momentum as follows, 

(4.60) 

(4.61) 
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Note that because of the constraint, PH is a constant of motion. Moreover pJ. is space like 

<Pl < 0) in all frames. The two-body equation rewritten in terms of these variables is 

The relativistic bound state of two fermions is analysed using the above two-body Dirac 

equation, which has the covariant fonn 

(4.62) 

The operators Ai are defined by 

(4.63) 

In the rest frame of the bound system, a simpler form of the equation is obtained, after 

multiplication by ,hg 

(4.64) 

where hi et) = Qi . P + {3imi is Dirac Hamiltonian for particle i and €; = ";m~ + In. 

The total energy is E = El + E2• Owing to the constraint the relative energy is fixed to 

El - £.}. == 2~ where b. = (mi - m~) /2E. 

4.3 Quark-antiquark Interaction 

The best understood part of the quark antiquark interaction is due to one gluon ex-

change at short distance. In this work, the confining interaction is modeled by a simple 

phenomenological potential that may be a scalar or time-like vector. For the case of scalar 
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confinement, the interaction is as follo\V~, 

V~ (--+ ~/) - VconJ (~ ~/) + vvec (~ --+/) p, p - p - P 11 ·'2 P - P (4.65) 

This yields 

(4.66) 

The coefficients ai and b! used above are given in the following Table. The subscript in ~ 

indicates that it depends on the spin quantum number 8 

J a) ~ & 
1 -1 4-28(s+l) +1 
2 -1 -2 + 28 (8 + 1) +1 
3 +1 -2+ 28 (s + 1) +1 
4 +1 4-2s(s+l) +1 

For the time-like vector confinement the first term of Eq.4.65 becomes 

(4.67) 

and Eq.4.66 is altered by the replacement of the coefficients aj by Cj as given in the table. 

An admixture of scalar and time-like vector confinement may be obtained by using a linear 

combination of aj and Cj. 

When parity is conserved by the interactions, half of the 16 partial wave components 

vanish in any given state. The parity of tbe basis function is PI P2 ( -1 ) L , where PI and 

P2 factors account for the intrinsic parity of Dirac spinors. For a fermion-antifermion pair, 

we treat antifermion as a positive energy antiparticle rather than as a negative energy state 

propagating backward in time. This convention assigns positive energies and an extra in-

trinsic parity factor of Pqq = -1 to each qq ~tate, i.e. the total parity is P1P2 (_I)L Pqq. With 

this convention, the qq states of parity (_I)L Pqq involve nonzero values for the following 
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eight components : 

GP!P7. - G++ G++ C+- G+- G-+ G-+ G-- G-­
L,S - J,O' J,I' J+l,l' J-l,l' J+l,l' J-l,l' J,O' J,I 

46 

Similarly states of parity ( -1) J+l Pqq invoLve nonzero values for the remaining eight com-

·ponents: 

GP1P2 - G++ G++ G+- G+- G-+ G-+ G-- G-­
L,S - J+l,l' J-l,l' J,O' J,I' J,O' J,I' J+l,I' J-l,1 

An exception is J = 0 states which have only four nonvanishing components that are 

obtained by omitting the L = J - 1 and L = J, S = 1 components. 

When an instant, scalar confining interaction is used in this two body equation, 

imaginary values of the energy[14] are possible. This is due to the couplings due to the 

~- -components of the relativistic wave functions. In our momentum space analysis, we 

use only ++ components of the wave function and we always get real and positive energy 

eigen values. 

Gaussian integration is used to evaluate the integrals. The momentum space analysis 

reproduces the analytical eigenvalues and wave functions. Typically our calculation use 40 

spline terms for each component of wave function. The results are compared with that of 

Gofrey and Isgur[13, 48] and Tiemeijer an~ Tjon(18]. 
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Table 4.1 GI represents parametelts used by Godfrey and Isgur and TT means corre-

sponding parameters by Tiemeijer and Tjon 

v = KT + a/T + C 
This Work GI TT 

mu (GeV) 0.230 0.220 0.250 
ms (GeV) 0.350 0.419 0.390 
me (GeV) 1.457 1.628 1.719 
mb (GeV) 4.730 4.977 5.096 

KGeV:': 0.219024 0.18 0.33 
a -0.333 -0.8 -0.8 

CGeV -0.529 -0.253 -1 

Table 4.2 Masses for Charm Mesons 

Charrn(masses in MeV) 
Particle JI' N:':~HLJ Expt this work Mrr MGI 

TJe 0 11So 2980 2954 2969 2970 

TJe 0 21So 3590 3693 3742 3620 
J /tP 1 1.JS1 3097 3108 3096 3100 

tP 1 23S1 3685 3720 3810 3680 
1jJ" 1 1;'D1 3770 3777 3873 3820 
'IjJ'" 1- 3;'S1 4030 4098 4370 4000 
'IjJ"" 1 2;'D1 4160 4190 4409 4190 
1jJv 1 4;'S1 4420 4467 4370 4450 
'ljJV1 1 23D1 4499 4520 
het 1+ PP1 3526 3540 3517 3520 

XcO 0+ PPo 3415 3514 3461 3440 

XcI 1+ PPl 3511 3573 3526 3510 

Xc2 2+ PP1 3556 3508 3572 3550 
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Table 4.3 Masses for Bottom Mesoris 

Bottom (Masses in Me V) 
Particle JP N 28+1LJ Expt This work MTT MCl 

rJb 0 1150 9470 9401 9400 
rJ~ 0 21 50 10067 9980 
Y 1 1J 5 1 9460 9489 9460 9460 
Y 1 2J 5 1 10001 10000 
Y' 1 1J D1 10023 10134 10099 ·10140 
Y' 1 3:551 I ~6'5~ 10654 10350 
YII 1 23 D1 1~55 10688 10206 10440 
YIII 1 4J 5 1 10654 10630 

1 3J D 1 10809 10556 10700 
Y"" 1 5:551 ;) 10885 10880 

1 3:5Dl i\.10870 10923 10629 11100 
yv 1 635 1 ~ 10999 
yv 1 3.lDl 1-11020 11354 10943 
hb1 1+ 1ipl 9888 9881 9880 
XbO 0+ Ppo 9860 9901 9862 9850 
Xbl 1+ f5P1 9892 9954 9890 9880 
X~ 0+ 13po 10232 10222 10363 10230 

Table 4.4 Masses for Mesons in 7r -:- p and <tJ families 

rr - p (masses in MeV) 
Particle JP N'I.:J+1 LJ Expt This work MTT lv/Cl 

7r 0 1150 135 137 439 150 
7r' 0 2150 1300 1349 1441 1300 
7r" 0 3.l50 1802 2246 1880 
p 1 1J 5 1 768 809 798 770 
p' 1 1J D 1 1498 
p' 1 2:551 1450 1509 1454 1450 
plf 1 23D l 1912 
plf 1 3.lS1 1700 1883 1653 1660 
pili 1 3<1Dl 2261 2185 2000 
pili 1 43 S1 2365 2367 2150 
bl 1+ 11 PI 1230 1193 1091 1220 
ao 0+ 13 po 983 1034 993 1090 
al 1+ l.lPl 1260 1278 1126 1240 
az 2+ 1<1P2 1318 1231 1297 1310 
7r2 2 IlD2 1670 1536 1524 1680 
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JI' N"I.:J+l LJ Exp this work JfTT Alcl 
<jJ 1 1"Sl 10·19 1049 
<jJ 1 1"D1 1728 
<jJ 1- 2,jS1 1768 
<jJ" 1- 2J D 1 2201 
<jJ" 1 3J S1 2788 
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Table 4.5 Masses for K mesons 

Kaon f~mily (Masses in Me V) 
Particle JjJ N'2::J+1 LJ Expt This work MTT lvlcI 

k 0 11So 493 541 593 470 
k' 0 21So 1478 1457 1450 
k" 0 3~So 1895 2069 2020 
k* 1 1~Sl 896 977 896 900 
k*' 1 2;JSI 1633 1584 1583 
k*" 1 2J SI 1714 1954 1680 1780 
kl 1+ 11 PI 1270 1282 1340 
k* 0 0+ 101 Po 1430 1305 1262 1240 
kl 1+ 101 PI 1400 1389 1333 1380 
k* 2 2+ 1;JP2 1425 1400 1376 1430 
k' 1 1+ 21 PI 1650 1809 1900 
k*' 0 0+ 2J Po 1945 1925 1890 
k' I 1+ 2J PI 1929 1930 
k*' 2 2+ 2:1P2 1975 1980 1940 
k2 2 11 D2 1765 1780 

2 1~D2 1792 1810 
k' 2 2 21 D2 1770 2120 1672 2230 

Table 4.6 Masses for D and B mesons 

D mesons(masses in MeV) 
particle JI' N:I.:;H1 LJ Expt this work Mrr Alc ] 

D 0 11So 1864 1879 1868 1880 
D* 1 1J SI 2007 2013 2015 2040 
DI 1+ 11 PI 2420 2322 2388 2444 
D* 0 0+ 1~Po 2384 2321 2400 
D~ 1+ 101 Pt 2411 2415 2490 
D; 2+ 101P2 2459 2456 2458 2500 
D. 0 11So 1969 1914 1952 1980 
D* • 1 1J SI 2156 2104 2130 
DsI 1+ 11 PI 2537 2301 2500 2530 
D;o 0+ 1J Po 2480 2427 2480 
D~I 1+ 1J PI 2532 2516 2570 
D;2 2+ 1;JP2 2493 2569 2590 
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B mesons (masses in Me V) 
Particle JI" N"I.::iHLJ Expt This work MTT MGI 

B 0 11So 5279 5286 5302 5310 
B* 1 1.jSI 5324 5408 5391 5370 
Bl 1+ 1J PI 5580 
B* 0 0+ 1JPo 5669 
B' 1 

1+ 1~PI 5709 
B* 2 2+ 1.jP2 5623 5800 
Bs 0 11So 5486 5371 5390 
B* s 1- 1J S1 5596 5434 5450 
BsI 1+ 1 J PI 5762 
B;o 0+ 1JPo 

B~l I-t- IJ PI 5872 

B;2 2+ IJP2 5880 

The calculated spectra are in good agreement with the experimental data. The para· 

meter values we have are reasonable and comparable to other models of similar type. 



5.1 Introduction 

Chapter 5 
Semileptonic Decays 

Today improvement in both theory and experiment have made semileptonic decays 

a main focus of attention. They provide an important tool to investigate quark dynamics 

and to detennine CKM matrix elements. Hadron dynamics is contained in fonn factors 

which are not yet calculated from the first principles of QCD. Thus various potential mod-

eIs, sum rules and lattice calculations have heen proposed. Recently considerable progress 

have been achieved in describing heavy meson decays by the use of heavy quark effective 

theory (HQET)[37, 38, 39]. So far there are many models[46, 57, 58, 51, 53, 55, 61, 64] 

giving wide ranging predictions on the exclusive semileptonic decays of heavy flavoured 

mesons. In the non-relativistic constituent quark model of Isgur, Se ora, Grinstein and 

Wise (lSGW)[46] all the weak decay fonn factors computed with the overlap integral of 

the nonrelativistic me son wave functions[13], have the same exponential q2 dependence 

which is not entirely compatible with the predictions of the heavy quark symmetry. Alta-

mari and Wolfenstein(AW)[56] in a similar non-relativistic approach,detennine the fonn 

factors at q2 = q~ax and extrapolate them down to q2 = 0 postulating the q2 de pen-

dence through monopole fonns. However in their calculation one of the fonn factors is 

found to be less trustworthy because' of the exclusion of the significant effects due to the 

quadratic and higher order terms involving the daughter meson momentum. Gilman and 

52 
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Singleton(GS)[58] use a modified quark model based on an approach similar to AW and 
I 

suggest rescaling the fonn factors in order to fit the available data. In a relativistic calcu-

lation of Bauer, Stech and Wirbel (BSW)[50] the form factors having the q2 dependence 

in the monopole ansatz with the- normalization at q2 = 0 are computed from the over-

lap integrals of light-cone wave functions[51, 52]. As an extension of this work Komer 

and Schuler (KS)[52] adopt a monopole or dipole ansatz for the q2 dependence of the form 

factors. But such relativistic treatments are not totally free from objections. Unlike the 

quark potential models, the phenomenology in this case is yet to be tuned. Second, the 

computation of these form factors normalized at q2 -t 0 , requires the knowledge of the 

infinite momentum frame wave functions n'ear the end points where they are usually small 

or least understood. Recently Barik and Dash[55] have studied the fonn factors of exclu-

sive semileptonic decays based on relativistic independent quark model. There exists some 

discrepancy between their prediction and currently available experimental data. Therefore 

it appears that a completely consistent calculation of the weak decay fonn factors in the 

framework of quark model has not been accomplished yet. This may be mainly due to the 

fact that in the calculation of the hadronic matrix element, the truly bound state relativistic 

character of the relevant hadrons has not been adequately represented. 

We therefore consider it worthwhile to investigate the semileptonic decay of heavy 

mesons D and B in our relativistic potential model. It is important to note that since B 

and D mesons contain light quarks, relativistic effects are quite significant. The first part 

provides a brief outline of the general formalism[52] adopted here for the analysis these 

decays. In the next section we describe the model conventions and realize the invariant 
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Fig 5.1 

transition matrix element as well as the relevant form factors with their appropriate q2 

dependence directly from the model. 

5.2 General Formalism 

We are interested in the exclusive semileptonic decay of heavy flavoured pseudoscalar 

mesons DOand BO into pseudo scalar mesons K and D respectively. Such a process is 

described in Fig. 5.1 through the decay of the heavy quark Q in the parent meson M 

into a less heavy or light quark Q' in the 'daughter meson NI' along with the virtual W 

boson which ultimately decays into a charged lepton and its neutrino, where the antiquark 

q remains as a spectator. 

A brief outline of the general formalism is described here. For the decay process the 

invariant transition matrix element is generillly written as 

(5.1) 
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where G F is the effective Fenni Coupling ponstant and VQq is the CKM parameter. The 

leptonic and Hadronic parts of the amplitude here are 

(5.2) 

where J; = VJL - Aw Here (P, Pi) the four momentum and (S M, S M') the spin projection 

of the parent M and the daughter M' meson respectively. The hadronic matrix element is 

conventionally expressed in tenns of the fonn factors. For the semileptonic transition of 

the type (0- --+ 0-) where the pseudoscalar meson is in the final state, only the hadronic 

vector current contributes, which is expressed as 

where ql' = (P - pit and f+ (q2) and f- (q2) are the fonn factors. For these quantum 

numbers, the hadronic current J; has no axial vector contribution and can also be written 

(M' (Pi) IVJLIM (P)) = Fl (q2) [(P + pIt _ M2 ~ MI2 qlL] + Fo (q2) M2 ~ MI2 qll 

(5.4) 

Here Fo (0) = Fl (0) . So that there is no singular behaviour at q2 = O. 

On the other hand, for transitions of ~he type (0- -4 1-) where a vector meson is in 

final state the corresponding matrix elements are given by 
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where E" == (EOI E*) represents the Vl!ctor meson polarization and E" • P' = O. 

In this work we concentrate on (0-.-- 0-) transitions. In general J~ in terms of 

quark operators is 

(5.7) 

Denoting our two-body wave function by 'Ij; o{3 and 'Ij;~{3 with Q index for quark Q the matrix 

element is 

(M' (P') IJ~IM (P)) J d3 P (-'/'Ij;') ~Ol r~, 0 'Ij; aJ3 

= J d3pTr {'Ij;'t,or~'Ij;} (5.8) 

The integration is over the relative momenta. If the initial meson is at rest its wave function 

-> -- .-is 'Ij; (p). We need the wave function of the daughter meson 'Ij;' at momentum P' = - q . 

Now the current matrix element can be written as 

(5.9) 

In order to calculate this matrix element we require boosted wave functions. 

5.3 Boost Transformations 

The two-body boost problem in the instant form of relativistic quantum mechanics is 

to constrain the interaction so that the Poincare generators satisfy the commutation rules 
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that are required for Poincare invariance. The central issue in boosting an instant form of 

--+ 
dynamics was identified by Dirac[4I] : the generator of boosts, K, and the Hamiltonian, H, 

both must contain the interaction, v. Such a boost is called dynamical and the commutation 

rule between the dynamical boost- generator and Hamiltonian involves v2 terms. 

In quantum field theory, the boost of a mass eigen state such as a Bethe-Salpeter ver-

tex function is kinematical. There is a linear relation between the interactions in different 

frames that depends upon the Lorentz transformation of momenta and spins. Also in this 

case the boost implicitly depends upon the interaction through the mass eigenvaiue, M, 

which enters the boost velocity f1 =.]5/ Ep where E-p = J M2 + P2. 

If the Bethe-Salpeter formalism for ~o particles is reduced to three-dimensions by 

integrating out the time-component of relative momentum the resulting formalism is quite 

similar to an instant form of relativistic quantum theory. Wall ace [ 44] show that use of an 

approximate boost generator is sufficient to derive a simple boost rule for the interaction, v, 

such that the instant two-body problem has. eigenvalue Ep corresponding to a fixed value 

of mass. The boost generator satisfies all but one of the required commutator relations. The 

analysis provides very simple and direct relationships of vertex functions, wave functions 

and t- matrices of the two-body problem in different frames. The results are applicable to 

calculations of matrix elements of an external current, for example form factor calculations 

based upon the ET formalism, where the initial state or final state, or both, must have 

nonzero total momentum. 

The basic requirement of Poincare invariance is that states must transform under a 

unitary representation of the Poincare group. The ten generators for translations in time, 
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translations in space, boosts and rotations are'respectively the Hamiltonian operator H, the 

--+ --+ 
operator for total linear momentum P, the boost operator K and the angular momentum 

--+ . 
operator J . They obey the well known commutations relations [42]. When there is no 

interaction, all the required commutation relations may be satisfied by taking each gen-

erator to be a sum of single particle generators. But with interaction there are additional 

constraints. The interaction must be translationally and rotationally invariant and also must 

satisfy additional nontrivial constraints from the commutation relations 

(5.10) 

--+ --+ 
[K,Hj =iP (5.11) 

(5.12) 

For spinless particles in the instant form of dynamics, total momentum and angular 

--+--+--+ --+--+--+--+--+ 
momentum operators are, P = PI + P 2 and J = T 1 X PI + r 2 x P 2. If the particles 

are of equal masses, the Hamiltonian is 

--+ --+ 
H = €l + €2 + V = Ho + v (5.13) 

where €i is the kinetic energy of the i th particle, 

(5.14) 



where 

S.3 Boost Transformations 

-+ 1 (-+ -+ P = - PI - P2) 
2 

Bakamjian and Thomas[66] have derived the free boost operator, 

S9 

(5.15) 

When the interaction v is present in the Hamiltonian, there is an interaction part of the 

boost operator that is given approximately by 

--+ 1 (--+ --+) Kt) = '2 Rv+vR (5.16) 

where R = ~(71 + "72). These expressions exactly satisfy Eq.5.IO but not Eq.5.12. In 

-+ 
that sense the boost generator K is approximate. However the interaction v take a form 

-+ 
consistent with Eq.5.11. Noting that the free-boost operator. Ko. and free Hamiltonian Ho. 

obey Eq. 5.11, the interaction-dependent terms in that commutation relation must sum to 

zero, i.e., 

(5.17) 

It can be shown that this constraint on the form of the interaction is equivalent to, 

-+ --+ 1 --+ 1-+ 1 -+ 1_ 
[R, Ho] v + vIR, Ho] + 2H[R, v] + 2[R, v]H + '2 (El - (2) r v - '2v r (El - E2) = 0 

(5.18) 

In the paper [44] Wallace has approximately determined H such that its eigenvalue 

equation is 

HIEp) = EpjEp}. (5.19) 
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After some algebra this is equivalent to determining the interaction v satisfying the equa-

tion 

(5:20) 

where 

- - ----( Ho) [R,HoJ [R,HoJ ( Ho) - p . p _ -" p . P 
Hint = 1 + E- 2E- v+v 2E- 1 + E- +[R, vJ+ E~ r v-v r E~ . 

p p p p p p 

(5.21) 

This equation can be solved in momentum space in order to determine the required form of 

the interaction. In momentum space the eq':lation takes the form 

PP-I ---+ -", -" - -+--! d3, d3 

(271'")3 (271'")3 (Epl P ; P)B( p , P; P)( P ; P IEp) = 0 (5.22) 

where 

(5.23) 

(5.24) 

(5.25) 

The form of this partial differential equation for v suggests that the solution should have 

the form 

(5.26) 
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-using 5.24 and 5.25 and making BCt', P; f) = 0 we can get 

_ - 1 _ - _,-
C(p; P} + __ 'DopJ.(p; P) +C(p ; P) + 

f( p ; P) 
(5.27) 

1 (-r -) 1 _ -1 _ -) ----::_=-'Dupf p ; P + _ 'Dopv( p , p ; P = 0 
f(pl; P) v(p', Pi P) 

(5.28) 

- -With the boundary condition v(p; P = 0) as the CM frame interaction and f(Pi P = 

0) = 1. We can write v as 

-(-' - -P) (-' - ) v p , p ; = Vc P Cl P c (5.29) 

where Vc is the interaction in the CM frame. Here 

- ---+ - - - (p . P)P 
Pc = P - Ep(Ep + M)' (5.30) 

and 

-1 ---I _ -, (p. P) P 
Pc = P - Ep (Ep + M) (5.31) 

In the CM frame, Pc - P and p~ - pi are the standard relative momenta. If the total 

momentum is in the z direction, the z-component of relative momentum is simply Pc:: = 

Pz/" where, = Ep/M. Thus. the relative momentum is Lorentz contracted along the -direction of P. The components of relative momenta perpendicular to the total momentum -are unaffected: 11 cl. = P.1. The same rule applies to p~. The form of f(p; P) can be -obtained by a consistency condition on the transformation of vertex function r(p; P) and 

it has the form 

(5.32) 
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where 

where 

and • 

(5.34) 

Thus for the two-body problem, if an arbitrary, rotationally and translationally invari-

ant interaction in the CM frame of the form vc(P;', P ,,) defines the mass eigenvalue M by 

solution of the CM frame equation, 

(5.35) 

then in another frame corresponding instant-fonn equation is 

--+, --+ --+, --+ --+, --+ P --+, --+ --+ --+--+ . J d3 
[Ep-€l(P ;P)-€2(P ;P)]w(p ;P)= (211")3v(P ,p;P)'l!(p;P) (5.36) 

where 

(5.37) 

--+ 
and the momenta Pc and p~ in this equation are defined in terms of total momentum P 

and relative momentum p in the arbitrary frame as in Eqs.5.30 and 5.31, while f(p; P) 

is defined as in Eq.5.33. 
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Now with the wave function in the CM frame as \If cC; c), the wave function \If (";; P) 

in any arbitrary frame can be written as 

(5.38) 

This shows that the wave function in an arbitrary frame is a factor times the CM frame 

wave function evaluated at the appropriate arguments. This is a simple form of unitary 

transformation that guarantees the preservation of the normalization in the following sense, 

(5.39) 

We have extended this formulation to scalar particles of unequal masses [43]. If ml 

and m2 are the masses of the particles Eq.5.30 is written as, 

- "- -Pc=p-(3P (5.40) 

where 

(3 (m~ - m~) rJ· P - +-~--~ 
- 2ME-p Ep (Ep + M)' 

(5.41) 

Then 

(5.42) 
iLS 

where Pc = IrJ cl = J p2 + (32 p2 - 2(3pP cos () and Pc = (Bc, <Pc) . Since P is along Z 

axis, <Pc = <p and cos (}c = (p cos B -lp) /Pc. 

Consider the decay process in which one quark remains as spectator. If we start in -the CM frame with total momentum P = 0 and absorb the momentum q by particle 1, 
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then pi = q and -pI = -p + G) q. Then'the expression for -Pc in Eq.5.40 is modified 

as 

- -I -Pe=p-f3P (5.43) 

and the corresponding 13 is 

(m2 _ m 2) -p' . p 
{3= 1 2 +_~ __ .........,.. 

2MEp Ep (Ep + M) 
(5.44) 

This can also be represented as 

- - I-Pc = P -13 P (5.45) 

where 

1 (m2 - m 2) (-p + ~) . p 
13' = - - + 1 2 + ....:....---:-_~---,... 

2 2MEp Ep (Ep + M) 
(5.46) 

Then Eq.5.42 is 

(5.47) 
iLS 

where Pc = IPcl = Jp2 + {3'2 p2 - 2{3'pPcos8 and Pc = (Bc, rpc). Since P is along Z 

axis, rpc = rp and cos Bc = (peas B - {3'P). (l/Pe) . 

Now we choose an approximate form for the boosted wave function as following 

(5.48) 

and it satisfies the normalization condition 

jfthe normalization in the CM frame is 

(5.50) 
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For the evaluation of the matrix element of the current given by Eq.5.9 ,now we can write 

it in the form 

(5.51) 

'We consider the following general expression for an arbitrary kp., 

1 and 2 labels on left hand side corresponds to parent and daughter me sons and considering 

++channel only. Pl,P2,P3,P4 are defined in Eq.2.36 and2.37. The Pauli spin matrices are 

(5.53) 

pI S expressed in terms of (5' S 

(5.54) 

Also we get the relations 

(5.55) 

(5.56) 
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(5.57) 

(5.58) 

right hand side ofEq.5.52 is 

(5.59) 

perfonning the trace operation and we get the following relations 

(5.60) 

(5.61) 

therefore right hand side of Eq.5.59 is 

= ko [Fl x Tl + F2 x T2] - [F3 x T3 + F4 x T4] (5.62) 
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where 

FI = (FJo (Pc) FJo (p) + Fgo (Pc) Fgo (p)) (5.63) 

F2 - (Ffl (Pc) Ffl (p) + Ftl (Pc) Ftl (p)) (5.64) 

F3 - (FJo (Pc) FA (p) - F50 (Pc) Ffl (p)) (5.65) 

F4 - (Ftl (Pc) FJo (p) - F;l (Pc) F~ (p) ) (5.66) 

and 

TI - Tr (Yo~ (Pc) Yo'bo (p) ) (5.67) 

T2 - Tr (Yl~~ (Pc) Y1010 (p) ) (5.68) 

T3 - Tr (Yo~ (Pc) d . k Yi~o (P) ) (5.69) 

T4 - Tr (Yl~~ (Pc) d . k Yo~o (p) ) (5.70) 

The trace TI, T2, T3 and T4 can be obtained out as follows 

TI - Tr (Yo~~ (Pc) Y~ (P) ) 

= T CU2.y/ C ) Yr (~) iU2 ) r v'2 00 Pc 00 P v'2 

= Yoo (Pc) Yoo (p) 

- 1/411' (5.71) 

T2 = Tr (Yl~~ (Pc) Yl~O (p) ) 

- Tr ( - ~ ~>~c;y,:_" (Po) ~ c;. Y,~-", (P) u <.::~ ) 
= ~ LYl~-J< (Pc) Yl.-J< (p) 

J< 
I 

= - (sinBcsinB + cos Occos 0) (5.72) 
411' 
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where C J.L = (1,1, -J.L, J.L I 00) are the Clebsch-Gordon Coefficients. We use the following 

properties to calculate T3 and T4 

(5.73) 

(1. k = L (-)I" (JI-'kl-' = L(J~I-'kl-" (Jt 
I-' 

= (_)1-' (J_I-' (5.74) 

I-' I-' 

Also 

T3 - Tr (Yo~b (Pc) (1 . kYl~O (p)) 

= TT [ ( - ~) Ye:; (fi<) -& . r;; C,Y,._, (p) ", ~ 1 
= ~ Yo'O (p) L kl-"C I-' Y1,-1-' (p) Tr [(J~I-',(J 1-'] 

= ~YOO (Pc) [Y1,-1 (p) k_ - Yi,o (p) k'z + Yil (p) k+l (5.75) 

kz 
(5.76) = Tcos B 

doing similar simplification 

T4 = Tr (Yl~~ (Pc) d . k Yo~o (P) ) 

- - ~ [Y;:-l (Pc) Yoo (p) k+ ~ Y;:o (Pc) ¥Oo (p) k z + Yl:l (Pc) Yoo (p) k_ ] 

kz 
- T cos Bc (5.77) 

From 5.62 the integral to be evaluated now (after <p integration) is 

+ [F3 ( k; ) cos B] + [F4 ( ~z ) cos Bc] } (5.78) 
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Expressing on a convenient way the above expression is 
I ' 

(5.79) 

where 11 corresponds to the above integral with the first two tenns without ko and 12 is the 

-+ 
integral involving only the last two tenns without kz . The integral 12 -+ 0 as P -+ O. Also 

---t 

Pc -+ p and Bc -+ f) as P -+ 0 

The integral can be evaluated numerically. Fonn Factors are obtained for semilep-

tonic decays of pseudoscalar mesons (0- -+ 0-). as explained below. The results are 

tabulated and are found to be in agreement with experimental values. 

5.4 Calculation of Form Factors 

Since the four momentum of the parent meson is P = (M,O) and that of the daughter 

meson is pi = (Ep , 0, 0, Pz ) we can write, 

From these relations we get 

(5.82) 

(5.83) 
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where 

c = [( p . pi _ MI2) (M2 + P . Pi) _ (M2 _ P . pi) (p . pi + M'2) ] (5.84) 

Also A and B can be represented in.simple form 

(5.85) . 

(5.86) 

We numerically evaluate f+ (q2) and f- (q2) using 5.82 and 5.83 and are expressed in 

terms of Fl (q2). 

5.5 Results 

The semileptonic decays investigated are DO - K-e+ve and BD - D+e-ve• Model 

parameters chosen are given in Chapter 4. On the basis of which we numerically evalu~ 

ated the form factors with their q2 dependence. The results obtained are compared with 

experimental values and also with the results predicted by other models. This is tabulated 

below in Table 5.1. Fl (0) is the form factor at q2 = 0 and Fl (q~uJ is the form factor at 

q2 = tTmax (zero recoil case). 
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;rable 5.1 
11 DO -4 K e+ve 11 This work I! ISGW[46JI! GS[58, 57] 11 BSW[501 !I WJ[53] 11 BD[55]11 Expt. 11 

11 Fl (0) 11 0.7911 11 0.80 11 0.70 11 0.75 11 0.70 11 0.80 11 0.75 I1 

Ft (q!aJ obtained in this work is 0.81 which agrees with the predictions ofHQET[39]. 

Table 5.2 

11 BD -4 D+e Ve 11 This work 11 ISGW[46] 11 GS[58, 57J 11 BSW[50J !! WJ[53] 11 BD!55] 11 Expt 11 

11 Fl (0) 11 0.7093 11 11 11 0.69 11 0.67 11 0.97 11 11 

Fl (q!"J obtained in this work is 1.22 which approximately agrees with the predic-

tions ofHQET[39J which is 1.13 

5.6 Summary of the Work 

In this thesis a quasipotential reduction of the Bethe-Salpeter equation is used to obtain 

a relativistic two body equation for a quark and anti-quark. This equation is solved in 

momentum space and is used to describe the spectrum of mesons .. We use a scalar confining 

potential of the fonn K-T + C and a vector potential of the fonn Q; j r. Wave functions for 

the various mesons are obtained and they obey charge conjugation, parity and time reversal 

symmetry. Varying the potential parameters K" Q; and C as well as the masses of the quarks, 

the masses of the light mesons such as 1f,'p, K etc.,as well as the D, B mesons and the 

heavy J jlI! and Y family of mesons are described quite well. The mass spectra obtained 

in this work is compared with other works. It can be seen that the model of Isgur and 

Godfrey has an additional six parameters for relativistic effects. We are able to include all 

relativistic effects a priori. This significantly enhances the predictive power of our model. 

For example, we predict new states in the present model. It seems that experiments may 

confinn these predictions in the near future. 
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This work opens up many avenues of Investigation. Of primary importance is the 

application of the model to decay processes of heavy mesons. In particular the calculation 

of form factors that describe the semileptonic decays,not only for decays to pseudoscalars 

and vectors, but also to excited states, are of great interest. In this work we considered 

only the case of pseudoscalar mesons in the final state. The results are encouraging. Other 

approaches of calculating form factors are QeD sum rules and lattice QeD. Each of the 

above methods has only limited range of applicability. QeD sum rules are suitable for 

describing the low q2 region of the form factors. The higher q2 region is hard to get and 

higher order calculation are not likely to give real progress because of the appearance of 

many new parameters. The accuracy of the method cannot arbitrarily improved because of 

the necessity to isolate the contribution of the states of interest from others. Lattice QeD 

give good results for the higher q2 region, but because of the many numerical extrapolations 

involved this method does not provide for a full picture of the form factors and for the 

relations between the various decay channels. Quark models do provide such relations and 

give the form factor in full q2 region. But relativistic quark models work surprisingly well 

for the description meson spectra and form factors. 
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Appendix A 
Angular Momentum Spin Matrices 

In this appendix the 2 x 2 matrix representation of the ytJ,..1 will be presented. First 

the usual spinor basis will be wri!ten in terms of four 2 x 2 matrices. Then the total angular 

momentum 2 x 2 matrix representation will be defined and finally we will then show that 

it is an orthonormal basis. 

A.I Spin Angular Momentum in 2 x 2 Matrix Representation 

The spin momentum functions for two spin half particles of total spin S functions are 

obtained. 

For S = I, Sz = 1 we obtain 

10,0) 
1 - .J2 (a} ®,82 - fil ® 0:2) 

10,0) - ~ [ (~) (0 1) ~ (~) (1 0)] = ~ (~1 10) (A.I) 

Thus the singlet spin state can be written in the 2 x 2 triplet matrix representation, 

(A.2) 

For S = 1, Sz = 1,0, -1 We obtain 
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11,0) 
1 1 

- y'2(Ctl®,62 +,61® Ct2) 2 . 

- ~ [(~) (0 1) + (~) (1 0)] = ~ (~ ~) 
11,0) 

1 . 1 . 
- y'2·l.(i1 = 0'3 v'2~0'2 (A.3) 

11, 1) - Cll ® Ct2 

11,1) = (~) (1 0) = ( ~ 1 ) _ 1 + 0"3 
0-2 

0"1 + 0"2 i0"2 i0"2 
-

J2 
-=0'+-
y'2 J2 

11, -1) - ·,61 ® {32 

= (~) (0 1) = ( ~ ~ ) = 1 ~ 0"3 

0"1 - 0"2 i0"2 i0'2 
- -=0' -J2.v'2 -y'2 

(A.4) 

So the triplet spin state can be written in the matrix representation, 

(A.S) 

A.2 Total Angular momentum in 2 x 2 Matrix Representation 

The usual orbital angular momentum spherical harmonics are as follows 

(P!LM) = YLM(P) 

J d0l'Tr (Yl~(p)'Yl~(p)) = t5ll'ass' 

(A.6) 

(A.7) 
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Then we define the total angular momeqtum spherical harmonics are as follows 

(A.8) 

(A.9) 

Here the wave function ~ is a matrix as indicated by the hat. 

(A. IQ) 

Thus the orthogonality condition for ytj.:J becomes 

(A.lI) 

To show this we note that the integration over the Yi,M-Sz YL',M-S~ = f>LL,f>szs'z' Also jf 

s = S' we must evaluate 

(A. 12) 

If S = S' = 0 we must evaluate 

(A.l3) 

and for S =1= s' 

Tr [(i0"2)t CJsz iCJ2] = Tr(us ) = 0 
J2 v2v2 z 

(A.14) 
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Therefore, 

J dnpTr (Yt~Afi)Y!JsIAfi)) = Ossl'OLL'L I(L,S; M - s,.,S:jJM)12 
s. 

Finally we must note S = 0 

1 (L.O; M, OJ) M) 12 = 1 (A.15) 

and for S = 1 

(A. 16) 
S. 

and with this we have shown our basis is or.thonormal. 

A.3 Potential in p basis 

(A. I?) 

o Ou 'V; v; 5- 5-= '1'12 VSc + Vc - Vc"YI 0' 112 0' 2 

and we obtain the following identities for the P matrices. 

15 105 10 1 
PI = -/2' ,PI = -/2" ,P3 = -/2' ,P4 = J2 (A.I8) 

The wave function is expanded as follows, . 

\{J~ (fi) = I>i ® yt1.J(fi)FLs (p) (A. 19) 
iLS 
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Then using the rule that particle 1 oper~tor acts on the matrix fonn of'l1 from the left and 

particle 2 operator transposed acts in 'l1 from the right, we find 

(A.20) 

Simple calculation shows that 

Here Cs = 28(8 + 1) - 3 and is +1 for S = 1 states and -3 for 8 = 0 states. 

V(p - p)'l1(p) = I:V{s (p - pi) Yt1.:r(P)Fls (p) (A.22) 
iLS 

the Vi for i=1, .... 4 in the p basis are, 

VI _ -Vsc + Vvc (1 - Cs)! V 2 = -Vsc + VVe (1 + Cs) (A.23) 

V 3 - VSc + VVe (1 + Cs)! V 4 = VSc + VVe (1 - Cs) (A.24) 

From chapter 3 we wish to find i~2Ytl.:r(pt (i~2)T for LSJ = 110 and LSJ = 000. We 

have 
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Now 

and noting 

(A.26) 

we find 

" 2 

ia2Y?1O(p)*{ia2)T = - L (l,l'-fL'fLIOO)(-ltYI'I'(p)(-lta_~~ 
1'= { -1,0,1} 

= - L (l;l,-fL,fLIOO)Yl:_I'(P) (al':;;) 
1'={-1,0,1} 

- -Y?10(P) 

For ygoo(p) we note that 

. 2"'1JO (A)*(" 2)T la .)'000 P la 

" 2 

- Yoo (p) ~ = Y800(p) 



Appendix B 
Basis Transformation Matrix 

I· 

The plane wave can be written in the following form, 

N. = JEi + mi i = 1,2 
• 2' Ei 

(B.I) 

The transformation matrix Mf~;:,LS (p) between the plane wave and p basis is defined by 

the following expression which also allows it to be evaluated. 

- 2: M (p)/ytb (p) (B.2) 
iLl Si 

Expanding this equation and using the following identities, 

--t -yM (P) a . p LSJ = vLff~YffS'J (p) 
L'S' 

M A _T -
YLSJ (p) a . p = VRffYf,S'J (p) 

L'S' 

- - M _T_ a . PYLSJ (p) a . p = 22:TSS' yM ( A) P LL' L'S'J P 
L'S' 

LOt LID Il L11 {T+l 
J,J+l = J+l,J = L J,J.-1 = J-1,J = -y V+1 (BJ) 
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£01 £10 £11 £11 ;-y--
J,J-l = J-l,J = - J,J+l = - J+l,J = V 2'J"+1 (B.4) 

£SS' _ (_1)s+s' RSs' 
LL' - LL' (B.5) 

~ 11 11 11 2.jJ(J + 1) 
J,J = -TJ,J = -1, TJ - 1,J+l = TJ+ 1,J-l = 2J + 1 (B.6) 

Tll Tll 1 
J-l,J-l = - J+l,J+l = 2J + 1 (B.7) 

. h 11 h £IJ$' Rsa' TSs' I L Wit a ot er LL', LL" LL' equa to zero. et 

[TtT ;-y-- 2y'J(J+1) 1 
a = V 2'J"+1' b = V 2T+i' c = 2J + 1 ' d = 2J + 1 

and 

we obtain for P = (_1)J Pqq case, we obtain for Mf1P);!s' (P) Vi/ (N1N2 ) the following 

matrix 

1 - PIP2 1- PIP2 -ap+ ap+ 0 0 bp+ -bp+ 
1 + PIP2 -1- PIP2 ap_ ap_ 0 0 -bp- -bp-

ap+ ap+ 1 -dPIP2 -1 + dPIP2 bp- bp_ CPIP2 -CPIP2 
-ap_ ap_ 1 +dPIP2 1 + dPIPl -bp+ bp+ -CPIP2 -CPIP2 

0 0 -bp_ bp....:. 1 + PIP2 1 + PIP2 -ap_ ap_ 
0 0 bp+ bp+ 1 - PIP)' -1 +PIP2 ap+ ap+ 

-bp+ -bp+ CPIP2 -CPIP2 ap_ ap_ 1 + dPIP2 -1- dPIP2 
bp- -bp- -CPIP2 -CPIP2 -ap+ ap+ 1- dPIP2 1 - dPIP2 
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For the case when P = (_l)J+l P,qq case, we obtain for Mf~{j.:!sl (p) .../2/ (N1N2) 

the following matrix 

1 - dPIP2 1 - dPIP2 -q.p+ ap+ CPIP2 CPIP2 -bp_ bp_ 

1 + dPIP2 -1- dPIP2 ap_ -ap_ -CPIP2 CPIP2 bp+ bp+ 
ap+ ap+ 1 - PIP2 -1 + PIP2 -bp+ -bp_ 0 0 

-ap_ ap_ 1 + PIP2 1 + PIP2 bp_ -a (PI + P2) 0 0 
CPIP2 CPIP2 bp+ -bp+ 1 + dPIP2 1 + dPIP2 -ap_ ap_ 

-CPIP2 CPIP2 -bp:.... -bp_ 1 -dPIP2 1 -dPIP2 ap+ ap+ 
bp_ bp_ 0 0 ap_ ap_ 1 + PIP2 -1- PIP2 

-bp+ bp+ 0 0 -ap+ ap+ 1 -PIP2 1 -PIP2 
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