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Chapter 1

Introduction

This chapter gives a brief introduction to the topic of research work undertaken. The

importance of signal processing in this digital era is presented followed by a brief iniro­

ductuni to one of the modern non-stationary signal processing tools, viz. the wavelet

analysis, and its computation. Other relevant areas such as the linear predictive coding

and the signal compression technology are also introduced. Finally the motivation for

the research work carried out is presented along with a brief layout of the thesis.

1



3

Over the past several decades, the field of Digital Signal Processing has been sig­

nificantly contributing to the different areas of technology. Among the latest tools in

DSp1, the wavelet analysis has gained much attention due to its capability in non­

stationary signal processing. The concept of wavelet analysis has been in place in one

form or another since the beginning of 20 th century. However, the wavelet theory at­

tracted particular attention in the 1980s through the work of several researchers from

various disciplines - Stromberg, Morlet, Grossmann, Meyer, Battle, Lemarie, Coifman,

Daubechies, Mallat, Chui - to name a few. Because signal compression had been con­

sidered as a major application of wavelets, in many cases, the application of the WT2

was regarded synonymous with data compression. Later, DSP has shown a fast growth

phase, through its widening applications in various areas of technology.

Wavelet techniques enable us to divide a complex function into several simpler

ones and study them separately. This property along with fast wavelet algorithms,

makes these techniques attractive in analysis and synthesis problems. Wavelets have

gained popularity in different areas like signal/image analysis, medical diagnostics,

boundary-value problems, geophysical signal processing, statistical signal processing,

pattern recognition, signal/image compression, and many others.

Since most of the man-made and natural signals are non-stationary in nature, unlike

Fourier-based analysis, wavelet analysis offers much more compact and easier imple­

mentation. Since DWT3 is essentially a sub-band coding system and since sub-band

coders have been successful in speech and image compression, it is clear that wavelets

find immediate application in compression problems.

In this thesis, the problem of non-stationary signal processing and the techniques for

compression of the pseudo-periodic regions in it have been investigated. The compu­

tational issues in wavelet analysis have been examined and the development of a novel

1Digital Signal Processing
2Wavelet Transform
3Discrete Wavelet Transform
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structure for DWT computation has been presented.

1.1 Signal Processing

Chapter 1. Introduction

A signal is defined as a physical quantity that varies with time, space, or any other

independent variable. Signal processing is any operation, that changes the characteristics

of a signal.

Conventional signal processing methods mainly include the Fourier techniques named

after Jean Baptiste Joseph Fourier (1768-1830), a French mathematician and physicist.

It transforms the signal in the time or spatial domain to the frequency domain in which

many characteristics of the signal are revealed. Most of the signals encountered in the

field of science and engineering are functions of a continuous variable such as time or

space. Until World War II, analog methods played a dominant role in signal processing.

The development of the theory of sampled data systems began in 1940's which lead to the

development of digital signal processing. Eventually, due to the advances in integrated

circuit technology, achievements in software engineering and improved algorithms in

numerical analysis, the field of DSP experienced rapid expansion. There are several

advantages in going for the digital processing of analog signals. These include flexibility,

accuracy, storage considerations etc. A good majority of signals associated with physical

phenomena are quasi-periodic in nature and has considerable processing advantages over

totally non-periodic or random signals.

Depending on whether the signal is continuous, discrete, periodic or aperiodic, four

categories of Fourier Transforms exist, viz. the FT4, the FS 5 , the DTFT6 , and the

DFT7 . These apply respectively to aperiodic-continuous, periodic-continuous, aperiodic­

discrete and periodic-discrete signals [1J. Practically the only type of FT that can be

4 Fourier Transform
"Fourier Series
eDiscrete Time Fourier Transform
7 Discrete Fourier Transform



1.2. Tile Wavelet Analysis 5

used in DSP is the DFT.

Although unquestionably the most versatile method, Fourier analysis becomes inad­

equate when the local frequency contents of the signal are of interest or when the signal

is non-stationary in nature. To overcome this, a local analysis is needed combining the

time and frequency domain techniques, by means of which one can extract the local fro­

quency content of a signal. An elementary scheme in this line is referred to as STFT8 .

By this method, an approximate frequency content of a signal f(t)in the neighborhood

of some desired location in time, say t = b can be obtained. This is achieved by first

windowing the function using an appropriate window function ¢( t) and then taking the

FT of fb(t), where fb(t) = f(t)¢(t - b) is the windowed function. This transform is also

referred to as the windowed FT or running window FT.

Although STFT and its variations are widely used to resolve events in the frequency

and time axis, the fixed time-frequency resolution of the STFT poses a serious constraint

in many applications. The WT is an advanced time-frequency transform that overcomes

the above constraint.

1.2 The Wavelet Analysis

Wavelet Analysis is a powerful concept that has highly influenced the field of applied

mathematics and different areas of engineering research. It is the state-of-the art signal

processing tool whenever a signal is dominated by transient behavior or discontinuities.

Wavelets help in hierarchically decomposing functions. They allow a function to be

described in terms of a coarse overall shape and details that range from broad to narrow.

They offer an elegant technique for representing the various levels of details present in

the signals. Signal characteristics can be efficiently located in the space and frequency

domains. Thus, unlike the STFT, wavelets are adequate for the study of non-stationary

8Short- Time Fourier Transform



6 Chapter 1. Introduction

and unpredictable signals with both low frequency components and sharp transitions.

The WT is a multiresolutional, multiscale a nalysis technique which has been shown

to be well suited for music processing as well, due to its similarity to the processing of

sound by the hum an ear.

In contrast to a Fourier Sinusoid, which oscillates for ever, a wavelet is localized

in time. They are functions which lasts for only a few cycles, and hence the name.

They are basically oscillatory functions, which satisfy certain properties. Each wavelet is

associated with a scaling function. They serve as excellent mathematical tool in the time­

frequency analysis of both one-dimensional and two-dimensional signals. In practical

wavelet analysis, this is achieved by rcpresenting the signals as a linear combination of

scaled (durations) and shifted (positions) versions of the wavelet and scaling functions.

Fine-scale wavelets are narrow and brief, and coarse-scale wavelets are wide and long­

lasting.

There are various kinds of wavelets. Accordingly, to suit the application, one can

choose from among smooth wavelets, compactly supported wavelets, symmetric and non­

symmetric wavelets, orthogonal and biorthogonal wavelets etc. It is often a complex task,

since there are so many properties like the smoothness, temporal/spatial localization,

vanishing moments, frequency localization, symmetry, orthogonality etc., which are to

be considered.

A Fourier Transform represents a signal in terms of superposition of sinusoids with

different frequencies, the coefficients being a measure of the contributions of these sinu­

soids at these frequencies. Similarly the WT represents the signal as a sum of wavelets

with different locations and scales. The wavelet analysis results in a set of wavelet co­

efficients, which indicate how close the signal is, to a particular basis function. The

wavelet coefficients essentially quantify the strength of contribution of the wavelets at

the corresponding locations and scales. The technique has been applied in such diverse

fields as digital communication, remote sensing, audio signal processing, biomedical sig-
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nal processing, medical imaging, astronomy, entertainment electronics, and numerical

analysis.

1.2.1 The Continuous Wavelet Transform

The WT is computed as a correlation measure between the signal and a prototype

wavelet function, also called the mother wavelet, at different scales and shifts. When

the scale and shift parameters are continuous and the signal under consideration is a

function of a continuous variable, the corresponding transform is called the CWT9

Specifically, if we choose the set of dilated and translated functions of ,p(t) defined as

Q = {(,pa,b(t), (a, b) E (0,00) x R},then the CWT (Wv,f)(a, b) of the signal j(t) E

L2(R) will be

(Wv'/ )(a, b) = lal-1
/

21:j(t),pa,b(t)dt (1.1)

where, 1jj is the complex conjugate of,p, and ,p(t) E L2(R) whose FT must satisfy [2]

(1.2)

Since the scale factor a is the inverse of the frequency w, the value (W",f) (ao, bo) exhibits

the frequency content of j(t) in a frequency interval centered around Wo = ail1 at a time

interval centered around boo The CWT is highly redundant and in a strict sense, it is

impossible to compute CWT using a digital computer

1.2.2 The Discrete Wavelet Transform

The CWT maps a signal of one independent variable t into a function of two independent

continuous variables a,b. From a computational point of view, this transform is not

efficient as it is highly redundant and we have to work on continuous variables. Although

the discrenzed/sampled CWT enables the computation of the transform by computers,

the CWT in true spirit is not achieved. The redundancy problem still exists in this

"Continuous Wavelet Transform. Sometimes referred as Integral Wavelet Transform (IWT)
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sampled version of the CWT. One way to solve this problem of redundancy is to sample

the CWT on a two dimensional grid (aj, bj,k), such that aj = », and bj,k = e» to

adapt to the scale factor aj' For this choice of grid, the WT is called the DWT10 [2],

[3], defined as:

(1.3)

DWT is still the transform of a continuous time signal, the discretization being only in

the a and b variables. In this sense it is analogous to the Fourier Series and hence it has

also been referred to as a continuous-time wavelet series [4], [5].

The DWT is often a tight and non-redundant representation of the signal. It is clear

that this transform is not shift-invariant. If we select a redundant and shift-invariant

transform, it has several advantages over its decimated counter parts. This type of WT is

designated as the UDWTll The UDWT has been independently developed, for different

purposes and under several names, viz. SIDWT12
, SWT13

, RDWT 14 etc [6], [7], [81. The

key point is that it is redundant, shift invariant, linear and is a better approximation to

the CWT. The first and obvious way of computing a UDWT is by simply evaluating the

DWT for all shifts. Therefore UDWT calls for increased storage space and computational

complexity.

1.3 Wavelet Transform Computation

Processing in the discrete wavelet domain is generally carried out on the DWT co­

efficients, which are computed using multiband filtering operation. Both sequential and

parallel computational structures are in use. The key points of consideration in imple-

10 Discrete Wavelet Transform.
11 Undecimated/non-decimated Discrete Wavelet Transform
12Shift Invariant Discrete Wavelet Transform
13Stationary Wavelet Transform
14 Redundant Discrete Wavelet Transform
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menting computational algorithms are the structural complexity, storage requirements,

number of arithmetic operations, and elimination of redundant computations.

1.3.1 The Pyramid Structure

For practical computation of DWT coefficients, a fast pyramid algorithm also called the

Mallat's algorithm, which relates the wavelet function to a set of QMF15 bank [9J, [3J

is popularly used. This is a recursive algorithm. It is sometimes referred to as the

two-channel sub-band coder as it involves filtering the input signal based on the wavelet

function used. This algorithm basically follows a sequential structure and the computa­

tion of transform coefficients at any level is achieved by going through all the interme­

diate levels. Other algorithms in this category include the aTrous algorithm, Vetterli

algorithm [4J, etc.

1.3.2 Alternate Structures for WT Computation

There are certain applications in which we need not have to go for the WT coefficients

at all levels. In such cases the sequential structure as above is not advisable and hence

parallel implementations are often sought. This is a necessity in huge data processing

applications as well. In parallel structures, the WT coefficients at each level is computed,

as far as possible, directly from the original data itself. The specific structure of these

algorithms greatly depend on the nature of the problem addressed and they vary in terms

of the degree of parallelism, inter-processor communication, memory requirements etc.

1.4 Wavelet Transform for Pseudo-Periodic signals

A large class of signals that arise from physical systems are oscillatory in nature, though

they arc not periodic in a strict mathematical sense. Examples include voiced regions

in speech/music signals, musical tones, EeG signals etc. Moreover, it has been ostab-

15Quadrature Mirror Filter
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-

lished that images can also be treated as pseudo-periodic signals [10]. This reveals the

importance of pseudo-periodic signal processing.

In the case of pseudo-periodic signals,the WT can be applied in a modified way

making use of the periodicity property. This transform called the Pitch-Synchronous

Wavelet Transform was first introduced by G. Evangelista in 1993 [11]. Here the signal

is first arranged in the PS16 form as a 2D17 data by making use of the local period

information. The pSWT18 is computed using the PS data. It has got several advantages

over the conventional DWT viz. rate-reduction coding, better feature extraction and

noise suppression, bandwidth reduction, etc.

The usefulness of the PSWT technique always depends on the accuracy with which

,i the local periods are evaluated. When no local period is detected, it turns out to be the

ordinary DWT. When the local periods are same, the PSWT will turn out to be the

"
":<

1.5 Linear Predictive Coding and Signal Compression

1.5.1 Linear Prediction

Linear prediction is a particularly important topic in DSP, with application in a va­

riety of areas such as speech signal processing, image processing, noise suppression in

communication systems, biomedical signal processing, data rate reduction coding, etc.

Predictive coding systems make use of the waveform redundancy to realize straightfor­

ward reductions in bit-rate for a specified quality of quantization. Any prediction system

involves the evaluation of the optimal predictor, which reflects the signal/source charac-

16pitch-Synchronous
17Two Dimensional
18 Pit.ch-Synchronous Wavelet Transform
\9 Multiplexed Wavelet Transform
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teristics, followed by a scheme to predict the signal in terms of the predictor itself. This

results in a compact representation of signals for the purpose of efficient transmission

and storage.

Predictors based on recent waveform history and time-invariant predictor coefficients

leads to a class of coders which constitutes oue example of low-to-medium complexity

designs. On the contrary, high complexity predictors are characterized by the use of adap­

tive predictors matched to short-time input spectrum and/or distant-sample-memory for

utilizing waveform periodicities.

1.5.2 LPC Technique for Data Compression

LPC20 is a popular method employed in data compression applications. These coders

usually belong to the analysis-synthesis type. Such coding systems utilize a compact

set of parameters in the analysis stage, which are used to encode the original data

efficiently. This results in considerable data size reduction for transmission and storage

purposes. In the synthesis stage, these parameters are decoded and used in conjunction

with appropriate inverse mechanism to reconstruct the original signal. Analysis can

be open-loop or closed-loop. In closed-loop analysis, the parameters are extracted and

encoded by explicitly minimizing a measure (usually the mean square) of the difference

between the original and the reconstructed signals.

The above Parametric representations can be speech or non-speech specific. Non­

speech specific coders or waveform coders are concerned with the faithful reconstruction

of the time-domain waveform, whereas, speech specific coders or voice coders (vocoders)

rely on speech models and are focussed on producing perceptually intelligible speech

without necessarily matching the waveform. Hence vocoders are capable of operating at

very-low rates whereas waveform coders generally operate at medium rates.

20 Linear Predictive Coding
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1.6 Motivation for the Work

There has been outstanding contributions from various research groups towards transform­

domain-based signal processing as reviewed in chapter 2. LPC based waveform coding

is understood to be the best in waveform coding under medium-rate systems. The WT

based systems are also found to give superior performance in sub-band coding systems.

In the case of pseudo-periodic signals, once the signal is represented in PS form, data Se­

quences across periods are noticed to be very much identical except for minor variations.

Due to this, thc PSWT, is proved to result in superior performance over conventional

WT. This research work combines the relative advantages of LPC techniques in wave­

form coding and the WT techniques in sub-band coding along with the data reduction

capability of PSWT in WT based sub-band coding.

In any transform domain system, computational issues deserve special attention.

It is not an exception in WT based signal processing systems also, as state-of-the-art

computational structures have the drawback of redundant computations. Hence in this

work, reduction of computational burden and complexity in the evaluation of DWT and

PSWT coefficients have also been taken up. Development of an efficient computational

structure was aimed at to make the coding system attractive for implementation.

The motivating factor is that, this work could contribute considerably to a number

of practical systems. Examples include speech processing systems, entertainment and

multimedia systems, telemedicine and other modern biomedical systems, signal process­

ing systems handling large volume of data like geological systems, weather forecasting

systems etc.

1.7 Layout of the Thesis

This thesis is organized into two major sections. The first section describes a novel

compression scheme in which the PSWT technique is uniquely combined with the 1'01'-
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ular Linear Predictive Coding technique. The second part deals with the computational

issues of Discrete Wavelet Transform and the development of a new structure for its

efficient implementation.

The remaining portion of the thesis is divided into 5 more chapters.

Chapter 2 gives the literature review. Here, an account of the previous research

work that has been carried out in the related field by peer researchers is presented. The

present work is related to various fields in signal processing including \VT based signal

analysis, period estimation methods, PSWT based signal processing, Linear Predictive

Coding a~d compression, computational structures for 1D and 2D DWT, etc. Hence

an elaborate account of the recent developments and state-of-the-art in such topics and

related areas have been incorporated in this review chapter.

In Chapter 3, a brief description of the introductory theory is given. Topics included

are Non-stationary signal processing, theory of MRA21 in discrete domain, basic theory

of various types of WT, multi-rate techniques in DSP, theory of PSWT and LPC, com­

putation of ID and 2D wavelet transform etc. This chapter serves as a background for

the work presented in chapters 4 and 5.

Chapter 4 describes the PSWT based method developed for the Linear Predictive Cod­

ing and Compression of pseudo-periodic signals, and its typical applications. Initially,

the method has been presented in detail for general pseudo-periodic signal processing

applications. Subsequently, the application of the compression scheme on typical sig­

nals have been presented as case studies. Some techniques for feature enhancement and

source dependent noise suppression in PSWT domain also have been explained. The

method has been evaluated in terms of standard performance measures. The chapter is

concluded highlighting the results and discussing the important findings of the study.

The development of the new computational structure called the Parallel Multiple

Subsequence (PMS) structure has been presented in chapter 5. It has been systemat-

21 Multi Resolution Analysis
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ically derived for 1D and 2D DWT computation. This is followed by the analysis of

results and a description of its effectiveness in different signal processing applications.

The performance of this structure for variations in data size, level of decomposition, and

wavelet size are analyzed and compared with that of the popular pyramid structure. To

highlight the computational efficiency of the PMS22 structure, Cases of complete wavelet

decomposition and that of direct decomposition to arbitrary levels are separately pre­

sented. Application of the structure in practical situations like PSWT computation of

ECG data, and edge detection in mammogram have been described as case studies.

Important results and conclusions drawn thereof in using the PMS structure are given

at the end of this chapter.

A brief summary of the research work conducted and the important conclusions

thereon are highlighted in chapter 6. The scope for future work, as an extension of the

present study, is mentioned towards the end of this chapter.

This thesis includes two appendices which describe some works of the author in the

related field.

Appendix A deals with the results of a general study conducted on WT based data

compression. The effect of wavelet length, type of wavelet, and level of decomposition in

signal compression is presented and compared with that of Wavelet Packets for the same

application. Audio data recorded at different sampling rates and storage resolution has

been taken up for the study.

In Appendix B a study on WT based segmentation of 1D signals is presented. In

order to apply the PSWT technique in general signal processing tasks, the signal has to

be segmented into different regions and the pseudo-periodic ones are to be identified first.

A preliminary study in this direction, employing the WT technique has been performed,

taking vocal music as example. The signal could be automatically segmented into voiced,

unvoiced, silent and transition regions as depicted in this appendix.

22Parallel Multiple Subsequence
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Literature Review

A detailed account of the previous work in the field of WT based signal processing,

particularly on the topic of PSWT based signal processing is given in this chapter. A

brief description of the general work in this field is included. Some important published

works in the allied areas such as Linear Predictive coding and WT based signal compres­

sion, period estimation techniques etc. are also briefly outlined. Developments in the

field of PSWT based signal processing and techniques for period estimation of selected

quasi-periodic sumals are reuieuied. Finally, significant contributions on alqoritlvms and

structures for WT computation are accounted.

15
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The field of signal processing has always benefited from a close coupling between

theory, applications, and technologies for implementing signal processing systems. The

growing Humber of applications and demand for increasingly sophisticated algorithms

goes hand-in-hand with the rapid pace of device technology for implementing digital

processing systems. In practical systems it is quite natural that one may want to enhance

some signal component or some parameter of a signal model. In communication systems,

it is generally necessary to perform preprocessing operations such as modulation, signal

conditioning and compression prior to transmission over a channel and then to carry

out the corresponding post-processing at the receiver.

An important area in OSP is non-stationary signal processing. Almost all practical

signals can be assumed non-stationary when considered for reasonably long duration.

Hence conventional signal processing tools such as the Fourier techniques have been

replaced by more efficient WT based methods. It is basically a time-frequency method

employing multirate techniques. In the WT based processing of pseudo-periodic signals

pitch-synchronous analysis, linear predictive analysis and computational issues playa

significant role. Almost all solutions developed for 10 signals have a direct counterpart

in multi-dimensional systems also, especially in 20 signal processing.

The first book devoted to digital signal processing was written by Gold and Rader

[12]. A partial list of books on fundamental concepts and applications that followed

include [13], [14], [15], [16], [17], [18], [19], [20] and [21]. More information concerning

image analysis can be found in [22], [23], [24], [25] and [26], where as [27] and [28] are

devoted for geophysical and seismic applications. The important field of speech analysis

and synthesis is the subject of [29], [30] and [31]. Feature enhancement is one among

the common applications of signal processing [32], [33], [34), [35], [36].
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2.1 Linear Predictive Coding and Signal Compression

The goal of any compression scheme is to achieve transparent compression, where the

output signal is as perceptually similar to the original signal as possible. Many of the

compression algorithms are similar, with variations existing primarily in the method of

implementation. A fundamentally new approach to dynamic range compression based

on a critical band multichannel structure, incorporating the attack and release rates,

a level estimate mode control, and a normalization of the level estimates across the

frequency bands is presented by Schmidt et al [371.

A CELP1 based audio coding system which uses filter banks to decompose in the

frequency domain, into constant width sub-bands is described in [38]. In order to

obtain a high audio quality, they have used psycho-acoustic models. They could achieve

excellent audio signal quality at bit rates of 50-60 kbitjs. Eternoglu et al. has recently

presented a sinusoidal speech model for low bit rate speech coding, where parameters

of the modcl are extracted by a closed loop analysis based on matching pursuits [391·

The sinusoidal modelling of the speech LP residual is performed within the general

framework of matching pursuits with a dictionary of sinusoids. The authors claim to

have achieved a quality exceeding the 6.3kbps G.723.1 coder with a 4kbps matching

pursuits sinusoidal speech coder.

The need for compressing biomedical signals is important due to the tremendous

amount of data that need to be stored efficiently at low cost. As an example, consider

an ambulatory or Holter EeG recording system [40]. The recent technological devel­

opments have made possible the recording of ambulatory ECG signal in digital form

into solid state memory. However, memory requirement for say 24 hours of ECG mon­

itoring arc prohibitive (i.e., about 52 megabytes for two-channel, 12-bit resolution and

250 Hz sampling rate). For efficient storage of such large data records, effective data

compression methods are of interest. The desired objective is to provide a high quality

1Code Excited Linear Prediction

-
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reconstruction of ECG signals at low bit rates and acceptable distortion levels. Solutions

to the compression of ECGs resulted in different techniques, roughly two categories can

bc identified.

• Dedicated techniques: These are mainly time-domain techniques and were devel­

oped only for the compression of ECG signals. They include the following:

Heuristic algorithms, like the amplitude zone time epoch coding (AZTEC)

[41],turning point (TP) [42], coordinate reduction time encoding system [4:3],

FAN algorithm [44] and improvements to time-domain algorithms such as

SLOPE [45J and AZTDIS [461·

Optimization algorithms, like long-term prediction (LTP) [47J, [48], analysis

by synthesis ECG compressor (ASEe) [49], and the cardinality constrained

shortest path technique [50], [51] .

• General Techniques: These can be used on a wide range of signals including speech,

image, and video signals. They include differential pulse code modulation, sub­

band coding (SC) [52], [53], [54], transform coding [49], [55], [56], and vector

quantization [57].

A novel application of SVD 2 in data compression of ECGs is presented in [581. Here,

the quasi-periodic analysis of SVD was exploited to decompose an ECG sequence into

a linear combination of a set of basic patterns with associated scaling factors. As done

in [59], the beat information is obtained first, followed by period normalization. Con­

sequently, the set of ECG segments are rearranged into a two-dimensional matrix and

it is decomposed using SVD transformation. It has been shown that the information of

the ECG signals will mostly be concentrated within a few dominant singular triplets, so

that the balance can be suitably discarded resulting in compression. The performance

"Singular Value Decomposition
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of this scheme is claimed to be superior in comparison with the existing schemes [55],

[59], [60], [61], [62], [63].

A new type of ECG data compressor is presented in [64). By differentiating the

ECG signal and using proper thresholding, the ECG is first segmented into a sequence

of straight lines, whose vertices are used to encode the signal. The decoder part applies

the FOS3 method to reconstruct the signal from the partial data generated by the

encoder. The compression ratio achieved using this method is very high compared to

other methods, whereas the reconstructed signal quality is slightly inferior. The authors

claim that this method preserves the diagnostic information contained in the original

signal even after the transformation. A time domain algorithm based on the coding of

line segments which are used to approximate the signal is presented by Nygaard ei "I [651.

Though applicable to any type of signals, the authors have illustrated the compression

of ECG, and have compared the compression performance with other methods.

An analysis by synthesis ECG compression method has been developed by Zigcl ci

"I [66]. This scheme consists of a beat code book, long and short-term predictors,

and an adaptive residual quantizer. A distortion measure has been defined in order to

efficiently encode every heartbeat. The algorithm has been validated with the MIT­

BIIf4 Arrhythmia Database and it has been reported that they could achieve a moan

compression rate of approximately 100bits/s (compression ratio of about 30:1), with a

good reconstructed signal quality (WDD5 below 4% and PRD6 below 8%). They have

conducted a MOS 7 test also to validate the performance of the algorithm, in which the

testers selected were expert cardiologists. It has been reported that for good diagnostic

quality, each ECG lead should be sampled at a rate of 250-500 Hz with 12 bits resolution.

"Korenberg's Fast Orthogonal Search
·1Massachusetts Institute of Technology- Beth Israel Hospital
5Weighted Diagnostic Distortion measure
"Percentage Root Mean Square Difference measure
"Mean Opinion Score
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A family of CPBC8 has been described by Barlas et al [67]. This is found to be capable of

encapsulating other template-matching algorithms and thus unify all similar compression

approaches,to a certain extent.

The performance of a speech processing system is normally evaluated using MOSH,

which is a formal subjective measure of received speech quality [68]. Generally, coding

quality with MOS higher than 4 is considered as toll-quality, between 3.5 and 4 as com­

munication quality, between 3 and 3.5 as professional quality, and below 3 as synthetic

quality [69], [70]. Low rate speech coding and compression attempts to provide toll­

quality speech at a minimum bit rate for digital transmission or storage. The trade-offs

which depend on the particular coding technique and the application, are coding delay

and distortion, and increased cost of equipments, The early years saw the standardizu­

tion of 64 kbitsjs PCM 10, but research into more complex lower bit rate coding schemes

was initially inhibited by practical implementation considerations imposed by the semi­

conductor technology of the day. As a consequence, research into sophisticated low bit

rate algorithms were delayed and it was in 1984 that the first world-wide lower bit rate

coding standard was achieved. This standard was the CC1TT11 G.721 recommendation

for 32 kbitjs ADPCM l2 . Since that time, the major advances made in microelectronics

and DSP 13 technology have spurred research into increasingly complex speech coding

methods. Accordingly, low bit rate speech coders came into existence.

Recent research show that speech interpolation combined with noise masking speech

coding techniques can achieve toll-quality performance at 4kbitsjs [711. When coding

speech below 4 kbitjs, a representative waveform segment can be extracted regularly

and efficiently coded; the signal between the coded segments can then be regenerated

"Cycle Pool Based Compression
9 Mean Opinion Score

lOPulse Code Modulation
11 International Telegraph and Telephone Consultative Committee
12 Adaptive PCM
13Digiial Signal Processing
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via interpolation. Among the techniques actively studied in recent years for very low

bit rate speech coding arc STC14 [72], [73], MBE15 [74], [75], and pwr l 6 [76], which

use time-domain interpolation.

2.2 WT based Signal Processing

The beginning of the WT as a specialized field can be traced to the work of Grossman

and Morlet [77]. The early works were related to the CWT. The term wavelet can also

he found in the seismic signal processing literature in a context other than the WT [781.

A historical account of the WT is found in [79] and [SO]. A tutorial presentation of

theory and applications of WT is found in [5], [SI], [9], [S2], [S3]and [S4]. [S5) and

[2] arc some of the good references for a rigorous mathematical analysis of wavelets.

The contributions of WT in the field of electrical engineering is remarkable. Other fields

also have equally benefitted from this field. Study of matter in universe [S6], study of

tropical convection [S7], transient study in underwater acoustics [SS], geo-acoustic data

compression application [S9], turbulence study in fluid mechanics [90] etc., arc a few

interesting general application areas. A number of works in the field of seismic signal

processing is seen in the special issue of IEEE [91].

The field of Electrical engineering has already marked wide scope for WT based

signal processing related to many of its allied application areas. One among them

is the processing of pseudo-periodic signals like biomedical signals, speech, music etc.

Due to the wide variety of signals and problems encountered in medicine and biology,

thc spectrum of applications of DWT has been extremely large. The main difficulty in

dealing with biomedical objects is the extreme variability of the signals and the necessity

to operate on a case by case basis. The application ranges from the analysis of the more

traditional physiological signals such as the ECG, to the very recent imaging modalit.ic-

JIlSinusoidal Transform Coding
15Mult.iband Excitation Coding
16protot.ype Waveform Interpolation
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including the PET17 and MRI18 The various uses of the WT and the corresponding

research efforts in the biomedical area has been reviewed by Unser et at [92]. The wavelet

properties that are most important for biomedical applications, and an analogy between

the WT and some of the biological processing that occurs in the early components of

the auditory and visual system have also been presented.

The most important biological signal showing pseudo-periodicity is the ECG. Earlier

works of wavelet-based studies of ECG signals have focussed mainly on examinations

of heart rate variability, the classification of ECG waveforms, or ECG data compres­

sion. But in present studies WTs are being utilized also for diagnostic purpose, feature

enhancement etc. Detection of VLp19 [93], [94], [95], [96], wavelet-based feature ex­

traction for discriminating between normal and abnormal cardiac patterns [97], study

of heart rate variability in humans [9S], [99], [100], [101] etc. are a few important

works on ECG. A few promising applications of WT are described in the work [102]

by Provaznik et al. It has been observed that cardiac dysfunction can be better dis­

criminated based on study using the scale-dependent WT standard deviation and the

corresponding spectral measures [100], [101], [103], [104]. It has been reported [105J as

an exciting observation that previously unsuspected coordinated mechanical activity in

the heart during ventricular fibrillation may be made visible in the surface ECG using

the WT.

The use of WT in speech signal processing is manyfold. Signal enhancement, period

estimation, signal compression.signal classification, noise suppression etc. are important

tasks in this field. It was in 1995 that the wavelet thresholding (shrinkage) was intro­

duced as a powerful tool in denoising signals degraded by additive white noise [106J.

Later on several works are reported for speech enhancement applying the principle of

wavelet shrinkage [107], [IDS], of course with many problems to be resolved for its sue-

17Positron Emission Tomography
lSMagnetic Resonance Imaging
19Ventricular Late Potentials
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cessful application in various stages. Removing the noise components by thresholding

the wavelet coefficients is based on the observation that in many signals (like speech},

energy is mostly concentrated in a small number of wavelet dimensions. The coefficients

of these dimensions are relatively large compared to other dimensions or to any other

signal (especially noise) that has its energy spread over a large number of coefficients.

Due to the threshold adaptation, the modified method proposed in [1091 is able to cope

better with colored and non-stationary noise types.

The task of music signal processing demands more stringent requirements for TF20

distributions when compared with the weaker requirements found in speech analysis.

The major time and frequency methods that have been applied to musical signals are

traced and the application areas are described in [llO]. The techniques are examined

in the context of Cohen's class?' [in]. In this paper, the impact of different analy­

sis methods on pitch and timbre examination is shown which spans the Fourier Series

and Transform, Pitch-Synchronous analysis, Heterodyne filter, STFT, Phase vocodcr,

constant-Q and Wavelet Transforms, the Wigner distribution, and the modal distribu­

t.ion. Some of the interesting works on WT based music signal processing are seen IU

[112], [1l3].

In general WT based signal processing applications, time-variance characteristics

of non-redundant wavelet transforms causes serious limitations. Addressing this issue,

potential applications based on shift-invariant wavelet transform is suggested in [89],

[1l4], [8], [115], [1l6].

2.2.1 WT based Signal Compression

Signal compression is vital in massive data processing environment and WT has been

extensively used in this application with different types of signals, due to its multircso-

20Time-Frequency
21 named after L. Cohen, one of the pioneers in this field, who has realized an infinite class of Ti me

Frequency distributions, that could be obtained from the Wigner- Ville distribution by linear transfor­
mation
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lution capability. An elementary study on audio compression using orthogonal wavelets

and wavelet packets using simple thresholding technique has been presented in [117].

A number of works are seen in this field making use of the perceptual characteristics of

the auditory system [118], [119J. Painter et al. [119J reviews several different classes of

audio coders and remark that all the current algorithms and the standards in particular

are either high-resolution or low-resolution sub-band coders. They give a good collection

of resources for research in this direction. An analysis-synthesis method of audio com­

pression has been presented by Sathidevi et al [120]. The authors have made use of the

perceptual characteristics of the human auditory system and its resemblance with WT,

in developing a scheme for audio compression using WT and WPT. A comparison of

WT based amplitude compression with other conventional audio compression schemes

has been presented in [1211.

A compression scheme employing vector quantization with WT has been developed

by the Georgia Institute of Technology, Atlanta [122J. It is a hybrid subband-transform

coding scheme which employs the perceptual masking properties to achieve an efficient

reduction in bit rate. The coder has been applied with speech, music, and more diverse

signals consisting of speech in the presence of eventful background sounds. Another

wideband speech coder using WT in which each of the wavelet based subbands are

separately coded using ADPCM22 technique and CELP with dynamic bit allocation has

been presented by Li et al. [123J resulting in a bit rate of 12.8 kbits/s.

The WMWJ23 technique as suggested in [124], achieves an accurate representation

of speech evolution by extracting consecutive pitch-periods of a time-warped, constant

pitch residual. This pitch track optimization technique is found to ensure that the

critically sampled pitch periods can be effectively decomposed into a slowly evolving

and rapidly evolving waveforms, allowing efficient quantization. These type of We"

22 Adaptive Differential Pulse Code Modulation
23Waveform-Matched Waveform Interpolation
24Waveform Interpolation
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coders are able to achieve high quality speech at low bit rates by using a decomposition

motivated by human perception [125]. In this method, the warping operation removes

the pitch variations of the linear prediction residual signal to enforce a constant pitch

period. An unwrapping procedure is performed to reconstruct the residual, where a

perfect reconstruction is said to be possible if the pitch track is accurately transmi tted.

Bradie [60] has made a preliminary investigation of a wavelet-packet based algorithm

for the compression of single lead ECG. This algorithm combines the flexibility and

efficiency of WP expansions with the methodology of the KLT25 . For selected records

from the MIT-BIH database, this algorithm could achieve a compression ratio of 21.4:1.

Wavelet and wavelctpacket-ba.sed compression based on the EZW26 coding is presented

by Hilton [63). The author has analyzed the suitability of differcnt types of wavelets

for this application. An application oriented ECG data compression scheme for desired

reconstruction quality has been developed by Miaou et al [126]. They make usc of the

SPIHT27 compression technique proposed by Lu and team [127].

The compression performance and characteristics of two wavelet coding compression

schemes of ECG signals suitable for real-time telemedical applications is presented in

[128]. The two methods proposed are OZWC28 method and the WHOSC29 method. The

WHOSC method employs higher order statistics and uses multirate processing with the

autoregressive higher order statistics model technique to provide increasing robustness to

the coding scheme. The OZWC algorithm used is based on the optimal wavelet-based

zonal coding method developed for the class of discrete Lipschitizian signals. Both

methodologies were seem to have evaluated using the NRMSE 30 and the average CR

and the bits per sample criteria, applied on abnormal clinical ECG data samples selected

25Karhunen-Loeve Transform
26Embedded Zerotree Wavelet
27Set Partitioning In Hierarchical Trees
280ptirnal Zonal Wavelet Coding
29Wavclet Transform Higher Order Statistics-based Coding
:IONormalized Root Mean Square Error
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from the MIT-EIH database and the Creighton University Cardiac Center database.

A work in the similar line, but employing 20 transforms is presented by Lee et

al [129]. This method utilizes the fact that ECG signals generally show two types of

redundancies - between adjacent heart beats and between adjacent samples. So heart­

beat data sequences are cut and beat-aligned to form a 20 data array and 20 OGr'll

method of transform coding is employed to achieve compression. This could exploit the

sample-to-sample and beat-to-beat correlation. The study was based on the liUT-nIH

arrhythmia and Medtronic databases. They claim to have achieved superior perfor­

mance in using 20 transforms compared to 10 methods in general and the performance

of 20 method is more superior for higher compression ratios. In comparison with earlier

works reported in this direction [47], [130], in this work the beats are normalized to en­

hance the intercycle correlation. The type of preprocessing used in this method converts

the ECG data into a near-cyclostationary sequence and enables the uniform choice of

wavelet coefficients to be retained in each beat. The earlier wavelet based compression

schemes proposed by Thakor and Bradie [60], [131], have not attempted this. They

claim to have achieved a mean transmission rate of 180 b/s (for the tested data) wit.h

no compromise on t.he fidelity of reconstruction.

Rajoub has proposed a WT based ECG data compression algorithm [132] to claim

a compression ratio of 24:1 for MIT-BIH record 117 wit.h a root mean square difference

as low as 1.08%.Another work combining the LPC techniques' and OWT technique for

coding high quality digital audio signals is seen reported in [133]. In this method, a

linear predictor is first. used to model each audio frame. Then the prediction error is

analyzed using the OWT. The LPC coefficients and OWT coefficient.s are quantized

using a novel bit, allocat.ion scheme which is claimed to be capable of minimizing t.he

overall quantization error with respect to the masking threshold. They have claimed

a near-transparent audio signal quality at encoding bit rates of 90-96 kb/s, which is

3lTwo Dimensional Discrete Cosine Transform
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comparable to that of the MPEG32 layer II codec operating at 128 kb/s. The codec has

been designated as LPC-DWT33 codec. The objective measurements used for evaluating

the performance were the Seg-SNR34 and the GBSD35 measure [134].

2.2.2 PSWT based Signal Processing

WI' has shown outstanding contributions in the field of pseudo-periodic signal process­

ing. The signal can be represented in the pitch-synchronous form based on the local

pitch-periods, which can be considered as a 2D representation of the ID signal [135]. A

new wavelet representation for this class of signals, called the PSWT has been explored in

detail by Evangelista [11]. This is a noteworthy work on this topic. The transformation

is applied on the pitch-synchronous vector representation of the signals. Compared to

more classical representations, the author claims several potentia! advantages of PSWT.

In this exploratory paper he has offered a panorama of prospective applications and

reported the results of a few experiments performed on speech and music signals. As an

extension of wavelet theory to pseudo-periodic signals, Evangelista has introduced yet

another class of wavelet transform, called the MWT [1361. This transform has inter­

esting extension in the field of image processing also. This transform is applicable for

signals whose period is constant for the duration under consideration.

An efficient and accurate pitch-synchronized spectral analysis scheme to obtain the

Fourier coefficients of a harmonic signal, sampled at an arbitrary rate above the Nyquist

critical rate, has been outlined by Medan et at [137].

Speech coders based on the WI36 paradigm allow efficient compression of signals

by exploiting the perceptual importance of speech characteristics [138]. In state-of-

32Moving Picture Experts Group
33Unear Predictive Coding-Discrete Wavelet Transform
3'ISegrnental Signal-to-Noise Ratio
35Gencraliz;ed Bark Spectral Distortion. This is a perceptually motivated objective measure which

compares the spectral difference between the original and coded signals using the Bark scale.
J6Waveform Interpolation
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the-art WI coders, pitch-cycle waveforms [CW37] are extracted from the Lp:lR residual,

aligned, and then filtered in the evolution domain to decompose the signal into a SEW:'"

characterizing the voiced speech and a REW40 representing noise-like unvoiced speech.

Chong et al [1391 has described a PSWT based CW decomposition method for tho

WI paradigm. This method has the feature of providing additional scalability in quan­

tization than the other WI decomposition to meet desired quality requirements. Th«

CW surface is decomposed into a series of reduced time resolution surfaces, which <ire

quantized cxploiting their perceptual importance and inherent transmission rate require-

ments.

Chong et al. has proposed a scheme in which the PSWT is used as an alterna­

tive characteristic waveform decomposition method for the WI paradigm. To meet de­

sired quality requirements, this method provides additional scalability in quantization.

Here, the PSWT is implemented as a quadrature mirror filter bank and decomposes the

characteristic waveform surface into a series of reduced time-resolution surfaces. The

quantization of these surfaces are made efficient by the perceptual importance of these

surfaces and inherent transmission rate requirements. This method is established as one

among the best for high quality speech storage applications. The exploitation of the

perceptual importance of speech characteristics has been studied by Kleijn et al [138],

[140]. The PSWT when applied to WI has offered significant advantage due to its perfect

reconstruction properties and multi-scale decomposition of the evolving CW surface.

Another technique for the analysis and synthesis of pseudo-periodic signals based Oil

a special kind of multiwavelet transform, the harmonic-band wavelet transform, has been

introduced by Polotti et al [1411. The idea is inspired by the fact that pseudo-periodic

signals from many physical and biological systems as well as man-made phenomena such

37 Characteristic Waveform
38Linear Prediction
39Slowly Evolving Waveform
40 Rapidly Evolving Waveform



3D Chapter 2. Literature Redew

as music signal, variations in traffic flow, economic data and fluctuation of pitch in music

etc. show 1/f behavior [142], [143]. The technique presented in [141] allows one to

control a highly complex stochastic process by means of relatively few parameters. Tho

presence of non 1/f noise components due to external sources restricts the usefulness of

this technique.

Even though the general signal compression studies have gone a long way, the COI11­

bined potential of WT and LPC in signal compression is not much exploited. The only

noteworthy work in this field is the work by Ramakrishnan et al [591. In this the authors

could achieve considerable gain in signal compression, than state-of-the-art compression

schemes. They have applied LPC techniques on PS data after taking the WT for each

period wise normalized data. To enhance the compression ratio, they have suggested a

method to identify the significant coefficients which alone need to be transmitted to the

decoder end. Information regarding the period and amplitude information of each beat

also have been suitably transmitted. This is a reasonably complex method comprising of

amplitude normalization, period normalization, DWT computation, LPC compression

etc. Aliasing effect may occur due to improper design of interpolation filter and selection

of sampling rate.

2.2.2.1 Local Period Estimation

The success of PSWT based methods highly depends on the accuracy with which the

local periods are estimated. Unfortunately it is difficult, as testified by the hundreds of

different pitch tracking algorithms that have been developed [1441. It plays an important

roll in many speech and signal compression schemes [145]. Pitch detection algorithms

can be classified in to two separate categories.

• Spectral-domain pitch detectors, which estimate the pitch period of a signal directly

using windowed segments of speech, applying a Fourier-type analysis to detcrminc

a pitch average. They include Cepstrum [146], Maximum Likelyhood [147], and
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Autocorrelation methods [148] .
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• Time-domain pitch detectors, which estimate the pitch period by determining the

GCl11 and measuring the time period between each event [149], [150J.

• Time-frequency based pitch detectors, which is a combination of time-domain and

frequency-domain methods. Wavelet based pitch detectors fall in this category.

One of the best known pitch tracking algorithms, and one against which other methods

are often compared, is the Gold-Rabiner Scheme [151J. This algorithm was designed

for speech applications, and performs over a range of input frequencies from 50Hz to

600Hz. McNab et at. [1521 has used this scheme for implementing a pitch determina­

tion algorithm for Melody Transcription in music signal processing applications. They

have modified the Gold-Rabiner scheme for faster implementation and also for higher

frequency applications (up to 1000 Hz) like music signal processing. A comparison of

seven popular pitch detection algorithms is given by Rabiner et al [153J. The general

problems in pitch detection highlighting the importance of the subject also is given ill

this literature.

Kadambe et al [1M], has proposed a wavelet based pitch determination algorithm,

based on Mallat's work on images [155]. Mallat showed that when analyzing images,

the use of wavelet functions with derivative characteristics produces maximums in the

wavelet transform across many coincident scales along sharp edges. Kadambe ct al used

the assumption that when a GCI occurs in a speech waveform, maximums also occur ill

the adjacent scales of wavelet transform. In contrast with this, which chooses maximums

if they occur in two adjacent wavelet coefficient scales, a DWT based pitch detectiou

and speech segmentation method has been presented by Wendt et al. [156J, in which a

single derivative filtering function is defined to contain a specific bandwidth of voiced

speech. They have shown that this wavelet function when convolved with a speech

41 Glottal Closure Instant
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signal will produce a filtered signal containing well defined local maxima wherc GCl

occur in the speech signal. This method provides a dramatic simplification in processing,

utilizing one convolution only to analyze and is claimed to be robust to noise. [157] also

presents more or less a similar approach for pitch determination, giving more emphasis

OIl musical signals, where there arc some difficulties in estimating the pitch period as

musical signals have broader range of frequencies [158]. This algorithm is based on

DyWT42
. A comparison with the autocorrelation method also has been given in this

papcr. Another pitch estimation work using the GCI detection based on WT has been

presented by Limin et al [159].

Dctccting the QRS complexes in the ECG is one of the most important tasks that

need to be performed in any ECG processing environment. This information, which

is similar to the pitch in speech signals, will help in performing accurate beat-by-beat

processing. Li ei al has presented a wavelet based approach for the dctection of QRS

complexes [160J. The interval measurement from digitized ECG usually contains an error

due to the finite sampling frequency which may jeopardize the beat-to-beat analysis of

the signal. Mario et al [161], has attacked this issue and have developed a modcl

to describe and quantitate this error. The accuracy of the model has been tested by a

simulation procedure. It has been shown that the statistics of the error are only function

of the sampling frequency of the ECG. Closed form equations have been obtained for

the variance, the autocorrelation function, and the power spectral density of the total

error. They have proved that, for a good quality ECG which should be standard for any

lab, the error duc to the sampling frequency substantially contributes to the overall one,

and it becomes dominant in case of a very low sampling frequency like 128 Hz which

usually gives an acceptable SNR for various biomedical applications.

[162] and [163J describes some initial works on the subject of ECG beat detec­

tion. A new algorithm based on multirate DSP technique to detect beat periods in

42 Dyadic Wavelet Transform
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ECG signal has been developed by Valtino et al [164]. This algorithm incorporates a

subband filtering technique. It is claimed to have a sensitivity of 99.59% and a posit.ive

predictivity of 99.56% against the MIT/BIH database which is comparable with other

algorithms reported in the literature. This can be categorized as a real-time algorithm

since it has a minimal beat detect.ion lat.ency.

An algorithm based on WT has been developed by Cuiwei et al. [165] for detecting

ECG characteristic points. Using this method the authors claim that the detection rate

of QRS complexes is above 99.8% for the MIT/BIH database, even with serious baseline

drift and noise.

A dyadic WT based QRS complex detector which is robust to time-varying QRS

complex morphology has been developed by Kadambe et al [166]. The performance of

the method has been illustrated with 70 hours ECG data from AHA 43 dat.a base and

has concluded that this method compared well with all standard techniques.

The applicat.ion of the fuzzy neural network for ECG beat detection is dealt in [167].

The hybrid fuzzy neural network applied in the solution consists of a fuzzy self-organizing

subnetwork connected in cascade wit.h the multilayer peroeptron, working as tho final

classifier. The method could be used for the classification of different types of heart.

beats.

Friesen et al [168] gIves an exhaustive comparison of the noise sensit.ivities for

nine different QRS detection algorithms. Synthesized ECG corrupt.ed with five different.

types of synthesized noise including electromyographic interference, 60Hz powerline in­

terference, baseline drift due to respiration, abrupt baseline shift, and a composite noise

comprising all ot.her type of noises, has been used for the st.udy. Different algorithms

performed iu different style for different noise types. The results of this study is found

to be helpful in the development. of robust clinical instruments.

43 American Heart Association
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A class of algorithm based on nonlinear transforms derived from multiplication of

backward differences have been developed and evaluated with AHA ECG data base [1691.

In comparison with other state-of-the-art methods, the authors present this algorithm

to have desirable accuracy vs response time tradeoff for real-time microprocessor-based

implementation.

The usc of WT for ECG characterization in general has been presented in the tutorial

paper by Sahambi et al [170]. It describes a real-time system that uses WT to overcome

the limitations of other methods of detecting QRS and other important time domain

features of ECG.

The design and test results of an ambulatory QRS detector is descri bed in [171] .

The QRS detection timing accuracy and reliability of this system was tested with an

artificially generated ECG corrupted with various noise types and they could achieve a

timing accuracy of less than Irns,

2.3 WT Computation

Many of the WT based methods use complex procedures and needs stringent compu­

tations. To exploit the maximum benefit out of these methods, efficient comput.atioual

structures and algorithms also have been developed. The CWT is often evaluated at

dyadic scales. The Shcnsa algorithm [7] is a fast algorithm to compute CWT. This al­

gorithm is defined by a pair of filters. An iterative and efficient method for the design of

optimum filters has been presented by Chan et al. [172] to implement CWT computation

using the Shensa algorithm.

2.3.1 ID DWT Computation

Several efficient algorithms have been derived for the implementation of OWT. Many

researchers have addressed comparison of these algorithms based on computational com­

plexity. The most popular algorithm for the computation of OWT is the filter hank tree
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algorithm suggested by Mallat [3], [9J. This algorithm has its root. in tho Pyramid

algorithm of Burt. and Adelson [173J. Chapter 3 of [79J present.s the pyramid algorithm

from a historical perspective.

It is customary to view the DW'!' as a prediction error decomposition which has

lead to a new framework for DWT design under the name lifting scheme [174], [175].

Claypoole et al. [176J use lifting to design cust.omized DWTs t.hat adapt to mat.ch the

signal under consideration. This has result.ed in two adaptive lifting construct.ions which

arc invertible - scale-adapted iransjorms and space-adapted transforms. These schemes

have proved their potential in various wavelet t.ransform based applications including

signal compression [177].

The pyramid scheme has been compared against the lifting scheme by Daubochies [178].

Rioul and Duhamel [4] discuss several other schemes to improve the st.andard algorithms,

They suggest an FFT based algorithm known as Vet.terli algorithm [179J for filters hav­

ing large support and a "Fast. Running FIR" algorithm [180] for short filt.ers. Vet.t.erli

has suggest.ed a method for mapping long running convolut.ion int.o smaller ones by

using multirat.e filter banks based on aperiodic convolution algorithm and STFT. This

approach gives good tradeoffs among computational complexity, system archit.ecture and

input-output. delay.

Viswanath et ol. has given a VLSI44 architecture for DWT implementation [181].

An efficient. scalable parallel implementation of the DWT based on the pipeline proces­

sor methodology has been presented by Sava et. ol. [182], [183J. It is found attractive

for large dat.a size and long filters. According to Westenburg et al. [184], a Fourier

domain implementation of the wavelet transform is more efficient. than the direct. COm­

putation, especially when the decomposition/reconstruction filters have large support.

The single-rate VLSI archit.ecture developed by Denk et al. [185J for the one dimensional

orthonormal DWT makes two cont.ributions. It. is shown that t.he architectures t.hat. arc

44Very Large Scale Integrated Circuit
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based on the QMF lattice structure require approximately half the number of multipli­

ers and adders than corresponding direct form structures. Also, they have developed

techniques for mapping the ID orthonormal architecture to folded and digit-serial archi­

tectures which are based on the QMF lattice structure. Chandran et ol. [186] present an

FHT"5 based implementation of the filter bank structure for DWT and show that no­

ticeable overall computational savings can be obtained over the conventional FFT-based

implementation. This method claims other advantages like identical forward and inverse

transforms, and also minimum storage requirement, as the outputs are all real-valued.

In real-time signal processing applications, the WT computation need to be per­

formed on a frame-by-frame basis. In such cases, employing the above algorithms per SiC

results in undesired artifacts at the ends of each frame. To resolve this difficulty, many

researchers have come out with BDWT46 algorithms [187], [188). These algorithms

are found to have difficulties related to large storage buffer requirement and frequent

inter-processor communication, making it less optimized in real-time applications.

Parallel computation is particularly helpful for applications where wavelet coeffi­

cients at selected levels alone are required [189], as we need not perform unnecessary

computations by way of evaluating some or all of the lower level coefficients. In a sequen­

tial structure, the delay associated with the implementation grows exponentially with

the number of levels [182]. Parallel solutions have been proposed by Krishnaswamy

et a1. [190], Yang et al. [191]' Fridman et al. [192] etc. for traditional message

passing comput.ing paradigms and most of them do not adapt effectively to the irregular

comput.ational structure of the WT.

The DWT, WPT, and M-band wavelet techniques are often implement.ed as a cas­

cade of critically sampled filter banks. Many applications apply these techniques to

finite frames of samples, leading to distortion in the filtered coefficients near t.he frame

boundaries. In many-a-case, some assumptions are made about the signal characteris-

15 Fast Hartley Transform
46 Block DW1'
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tics beyond the frame boundaries. Signal extension techniques include zero and periodic

extension [9], [193], and symmetric extension [9], [193], [194]. Muramatsu et al [195]

formalized the oso« technique for boundary elimination in single level multirate filter

banks. Recently, Ncaland et al. has reported [196]an application of wosc" technique

for cascaded filter banks, eliminating boundary distortion in the frame-based application

of the DWT, WPT, and M-band wavelet techniques. wase eliminates boundary dis­

tortion with the exception of the first and last frames. A similar technique has already

been developed for WPT [197]. A novel method to eliminate all edge artifacts in block­

wise computation of DWT has been developed by Mini et al [198], [199]. This method

effectively makes use of the overlap-add and -save method simultaneously in the DWT

computation to achieve computational advantage as well as reduction in computational

memory requirement.

In many of the DWT based data compression applications, compression is achieved

making use of the sparsity of the quantized wavelet coefficients. Guo [200] proposes a

mapped IDWT algorithm that takes advantage of this sparsity, and significantly lowers

the complexity of IDWT to the level that is proportional to the number of non-zero

coefficients.

It is noticed that many of the algorithms as presented in the literature do not provide

sufficiently detailed exposition to expedite their use in practical applications by those not

specializing in the theory. Moreover, these algorithms have been presented in general,

for finite duration discrete-time signals restricted to a length equal to a power of 2. Also,

most often, the issue of errors, periodization, redundancy, etc. are not well documented

to relate algorithms to specific tasks and requirements. Taswell et ol. [201] addresses

these issues and relate to wavelet transform for finite-duration discrete-time signals of

arbitrary length not restricted to a power of 2. They consider algorithms based on the

pyramid structure.

47 Overlap-Save Convolution
48Wavelct Overlap-Save Convolution
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2.3.2 2D DWT Computation

The 20 OWT computation basically depends on whether separable or non-separable

wavelets are used for its implementation. For computation with non-separable wavelets,

the 20 data is directly convolved with the 20 wavelets and scaling function which arc

derived as the tensor products of the 10 wavelet and scaling function. When separable

wavelets are used, the algorithms developed for 10 OWT can be adapted to 20 OWT

computation as well. In such cases the computation is performed by separate row-wise

and column-wise convolutions followed by multirate techniques.

The need for massive computation in 20 OWT, coupled with the demand for real­

time operation in many image-processing tasks, has motivated the use of parallel pro­

cessing to provide high performance at a reasonable cost. Parallelization of the 20

OWT has been described by Lu [202] based on the conventional pyramidal algorithm

suggested by Mallat. Recently, multithreaded architectures have been promoted, as the

semi-irregular computation structure of the WT and the embedded fine-grained par­

allelism is well suited for multithreading [203]. Marino et al. [204], has proposed a

method for 20 OWT computation in standard form on parallel general-purpose com­

puters in which the intermediate data transposition is reduced and the inter-processor

communication is minimized. Since it is based on matrix-vector multiplication, thcre is

no restriction on the size of the output data.

The VLSI architectures based on linear systolic arrays, proposed by Viswanath et

al. [181) has an ext.ension for comput.ing t.he 20 OWT also. Here the separable wavelets

arc used to compute the OWT in real-time using the recursive pyramid algorit.hm aIH!

it is found to be suitable for single chip implementation. The authors also discuss the

adaptation of the architecture for M-band OWT computation.



Chapter 3

Review of Basic Theory

The backqrourul theory closely related to the research work carried out, is briefly

presented in this chapter, The topics include the basics of wavelets, wavelet transforms,

the concept of multiresolution analysis, linear predictive coding, DWT computation etc,

The theory of PSWT and LPG are slightly elaborated,

39
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Wavelet functions serve as excellent mathematical tool in the time-frequency analysis

of both one-dimensional and two-dimensional signals. In practical wavelet analysis, this

is achieved by representing the signals as a linear combination of scaled and shifted

versions of a single wavelet function called the mother wavelet.

There are various kinds of wavelets. Accordingly, one can choose from among smooth

wavelets, compactly supported wavelets, symmetric and non-symmetric wavelets, or­

thogonal and biorthogonal wavelets etc. It is often a complex task since there are so

many properties to be considered, like the smoothness, temporal/spatial localization,

vanishing moments, frequency localization, symmetry, orthogonality etc. In general, a

wavelet function 7/;(t) will satisfy the following properties [82].

J: 7/;(t) = 0 (3.1a)

I: 17/;(t)1 2dt < 00 (3.1b)

0< Joo 1\lJ(w)1
2
dw < 00 (3.lc)

-00 Iwl
The condition in equation 3.1c is known as the admissibility condition on 7/;(t) [2]. \lJ(w)

is the Fourier Transform of 7/;(t).

One of the important classes of wavelet system is the Orthogonal wavelets. They

satisfy the following orthogonality relationships [205].

J¢J,k(t)¢J,k' (t)dt = °k,k'

J7/;j,k(t)¢J,k' (t)dt = 0

J7/;j.k(t)7/;j,k' (t)dt = OJ,j'Ok,k'

(3.2a)

(3.2b)

(3.2c)



42 Chapter 3. Review of Basic Theory

where <Pi,j(t) and ,pi,j(t) are the scaling and wavelet functions at the i th scale and lh

shift respectively. The following are some of the orthogonal wavelets which have been

considered in this study.

Haar: The haar wavelet, discovered by Alfred Haar [206], is a square wave. It is the

only compact, orthogonal wavelet, which is symmetric [205]. However, unlike others the

haar wavelet is not continuous.

Daublets: The daublets were the first type of continuous orthogonal wavelet with

compact support. There are quite a large number of wavelets in this group viz. db2,

db4, etc. all named after the discoverer Ingrid Dnubechies, who is one of the pioneers

in wavelets research [2]. The support and smoothness of these wavelets increase as

the wavelet order number increases. These wavelets are all asymmetric and have the

highest number of vanishing moments! among wavelets with similar properties, for a

given support.

Symlets: The symlets also were constructed by Daubechies [2). The wavelets in this

family are nearly symmetric. The moment properties of these wavelets are similar to

that of daublets.

CoifJets: These wavelets are nearly symmetric and possess additional desirable prop­

erties. The scaling functions of this family also have vanishing moments similar to the

wavelets and give rise to near-linear filters. The coillets were constructed by Daubechies

in association with Ronald Coifman [2].

3.2 The Continuous Wavelet Transform

The CWT is the wavelet transform of a continuous signal for continuous values of the

dilation and translation parameters as given by equation 1.1. The transform is basically

reversible and the signal f(t)can be recovered from its transform using the inversion

lThe nth order moment of a function f(t) is defined as Mn = J~= tn j(t)dt,
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formula:

f(t) = C
1 roo ( a-2(W",f) (a, b)1/J(t - b)da db (3.3)
'" Jo In a

where 1/J(t) is the mother wavelet function, and W",f)(a, b) are the CWT coefficients for

dilation a and translation b. Using the inner product notation in L 2(R), the CWT can

also be written as:

(W",f) (a, b) = lal- l
/
2U(t), 1/J(a,b) (t)) (3.4)

where
t-b

I/J(a,b) = 1/J(-a-)' (3.5)

and (".) is the inner product in L2(R). Since the scale factor a is the inverse of the

frequency w, the value (W",f) (ao, bo) exhibits the frequency content of f(t) in a frequency

interval centered around Wo = a(jl at a time interval centered around boo The CWT is

highly redundant and in a strict sense, it is impossible to compute CWT using a digital

computer.

It is not always possible for the CWT to resolve practically all events in frequency

and time [82]. Quantitative metrics for time and frequency resolution are based on the

duration and bandwidth respectively of the mother wavelet'. A measure of the duration

and bandwidth indicating the spread of the wavelet in time and frequency domain is

given by
J~oo(t - to)211/J(t)J2dt

J~oo 11/J(t)J2dt
(3.6a)

(3.6b)6w=
J~oo(w - wo)2I\[1(w)1 2dw

roo I\[I (w)J2dw

where to and Wo are respectively the first moment of 1/J(t) and \[I(w) given by the following

equations. They define the location of the wavelet in the time-frequency plane.

(3.7a)

2Also called the Root Mean Square (RMS) duration and RMS bandwidth
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(3.7b)
eoowlw(wWdw

WQ == 1""00 Iw(wJl2dw

The product of the RMS duration and bandwidth is invariant to dilation and remains a

constant which depends on the wavelet used. If its value is smaller, that wavelet provides

better simultaneous localization in the time-frequency plane compared to the one with

higher value. The translation parameter b affects only the location of the wavelet and

not the duration and bandwidth, which are affected solely by the dilation parameter a.

3.3 The Discrete Wavelet Transform

DWT as defined in equation 1.3 is devoid of the problem of redundancy that exists in

CWT. The time-scale parameters being discrete, it has been recognized as a natural

wavelet transform for discrete time signals [207], [208]. The DWT of a discrete-time

signal x(n) E Z2(Z) with respect to a set of analysis wavelets (~n,m)n~1,2, ..;m integer is

defined as the set of coefficients

Xn,m = LX(k)~~,m(k)
k

(3.8)

~n,m(k) is obtained by translating ~n,o(k) by a scale dependent amount that mono­

tonically increases with m at each fixed scale. Therefore the index m represents the

time-shift. Mathematically,

(3.9)

Unlike the continuous-time case, in DWT, the scale-invariance may be only approxi­

mately satisfied. As a result, dilation and translation operations are defined in DWT on

a time-scale grid. The most common grid is the regular dyadic grid given by the set of

points (2n, 2nm)n~1,2, ... ;m integer. On the dyadic grid, the wavelet ~n+l,o(k) is obtained

by upsampling ~n,o(k) by a factor of two.
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The transform 3.8 is invertible [207], [209], [210] if, on the same time-scale grid,

one can determine a dual set of synthesis wavelet sequences (vJn,m)n=1,2, . .;m integer that

satisfy the completeness relationship

(3.10)
n m

{
l S = p,

where Os p is the Kronecker delta, that is Os p =
, , 0 otherwise.

In that case one can recover the signal x(n), obtaining the following expansion

(3.11 )
n m

The equations 3.8 and 3.11 define the wavelet decomposition of x(k).

For bandlimited signals, a finite-level expansion will be quite sufficient. Hence such

signals can be defined by the following finite sum.

where

and

N

x(k) = L L Xn,mvJn,m(k) + 'YN(k)
n=l m

m

f3N,m = LX(k).\N,m(k)
k

(3.12)

(3.13)

(3.14)

Here, .\N,n,(k) is the analysis scaling sequence at Nth level, q'N,m(k) being the corre­

sponding synthesis dual. The sequence 'YN(k) represents the residue of the expansion

over the finite wavelet set. As N -> 00, one must ensure that the residue converges in

norm to zero for any arbitrary finite-energy input signal.
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3.4 Wavelets and Time-Frequency Analysis -Concept of
MRA

MRA3 forms the most important building block for the construction of scaling functions

and wavelets, and for the development of algorithms for the time-frequency analysis of

signals. MRA is something which helps us in viewing a function at various levels of

approximation or resolution. Using this concept, a complicated function can be divided

into several simpler ones and study them separately.

To achieve an MRA of a function x(t), we must have a finite energy function ¢(t) E

L2(R), called a scaling function, that generates a nested sequence {Aj}, namely {OJ <­

... C A-I C A o CAl C ... --> L2, and satisfies a dilation equation ¢( t) = Lkgo[k]¢(at­

k) for some a > 0 and coefficients {go[k] E 12}. In DWT we consider a = 2, which

corresponds to octave scales. The function ¢( t) is called the scaling function. The

space A o is generated by {¢C - k) : k E Z} and in general As> by {¢k,s : k;« E Z}.

Consequently, we have the following obvious results.

x(t) E As ¢} x(2t) E A S+I

x(t) E As ¢} x(t + T S
) E As

(3.15a)

(3.15b)

These dilation equations are unique to MRA.

For each s, since As is a proper subspace of A,'+l, there is some space left. in A,,+ 1,

called Ws> which when combined with As gives us A s+I ' This space {Wsl is called tho

wavelet subspace and is complementary to As in A s+I , meaning that.

s E Z (3.16a)

"Mult.i-Resolution Analysis

(3.16b)
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Subspaces {Ws} are generated by ·Ij;(t) E L2 , called the wavelet, in the same way as

{As} is generated by </J(t). In other words, any xs(t) E As can be written as

xs(t) = I>k,s</J(2St - k),
k

and any function ys(t) E W, can be written as

Ys(t) = L wk,s1fJ(2S t - k)
k

for same coefficients ak S 1 'Wk s E [2.

Since we have

= W s EB W s - 1 EB A s - 1

= W s EB W s- 1 EB W s- 2 EB ....,
we have

s-1

A s = EB WI
l=-oo

(3.17)

(3.18)

(3.19)

(3.20)

Observe that the {As} are nested while the {Ws} are mutually orthogonal. Conse­

quently, we have

WI ow, = {O},

m> I

I :c; m

(3.21a)

(3.21b)

(3.21c)

The hierarchical nature of As and W s can be shown by the schematic representation

in figure 3.1. In the case of an orthogonal decomposition, in addition to the wavelet space

W s being complimentary to As> they are mutually orthogonal also, such that W s 1- As.
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A 3 :::> 12 :::>; Al :::> Au
r

// ,/

"i

i

Figure 3.1: Schematic of MRA decomposition

3.4.1 Discrete multiresolution analysis

Similar to the MRA in L2(R), a DMRA4 for 12(Z) has been developed [5], [211],

[212]. Accordingly any discrete-time sequence f(n) of finite energy can be expressed in

terms of the discrete-time basis functions 'lj;j,k(n) as:

f(n) = 2::>j(k)'lj;(2jn - k)
j,k

(3.22)

This is in parallel to equation 1.3. If the expansion basis functions form a tight frame,

the expansion coefficients from an inner product by

n

4Discrete Multi Resolution Analysis

(3.23)
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Now there are two ways of looking at signal processing using the WT at dyadic

scales. Thc first is analogues to the usc of Fourier Series where a continuous function

is transformed into a discrete sequence of coefficients. The second is analogous to the

DFT where a discrete function is transformed into another discrete function. The former

is generally referred to as the DWT and the latter is designated as the DTWT5 [811.

The difference in these views comes partly from the background of various researchers

(i.e.,whether they are "wavelet people" or "filter bank people"), however, thcre arc subtle

difference between using the series expansion of the signal and using a multirate digital

filter bank on samples of the signal.

3.5 DWT computation

For practical computation of DWT coefficients, a fast pyramid algorithm, also callcd

the Mallat's algorithm is popularly used, relating the wavelet function to a sct of QMF"

bank [3], [91. This involves successive filtering and multirate operations.

3.5.1 The Basic Multirate Operations

The basic operations involved in sampling rate conversion of digital signals by digital

means are the sampling rate reduction by an integer factor D called the decimation, and

the sampling rate increase by an integer factor I, called the interpolation.

3.5.1.1 Decimation by a factor D

Decimation or downsampling a signal x(n) by a factor of D simply means selecting every

Dth sample of x(n), thus resulting in an aliased version of x(n), with a folding frequency

of Fs/2D where F; is the sampling frequency of x(n). If x(n) was bandlimited to

50iscrete-Time Wavelet Transform
6Quadrature Mirror Filter
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Fm ax = Fs/2D, there won't be any aliasing. Hence before the process of downsampling,

usually a lowpass filtering is performed, which is characterized by the frequency response,

Hn(w), which ideally satisfies the condition

HD(W) = g Iwl:S1r/D
otherwise

(3.24)

The downsampled signal Xd(m) can be expressed as

Xd(m) = x(mD) (3.25)

The downsampling operation results in a time-variant system.

The frequency domain characteristics of the output sequence xd(m) can be shown

to be [17]
D-l

Xd(Z) = ~ L X(e-j2nk/D zl/D)
k~O

3.5.1.2 Interpolation by a factor I

(3.26)

An increase in the sampling rate by an integer factor of I can be accomplished by

inserting I-I samples between successive values of the signal. If the sequence x(m)

is to be interpolated, it is first upsampled by putting I-I zeros between successive

samples followed by a stage of filtering to remove the image frequencies. The upsampled

sequence can be expressed as

xu(m) = {~(m/I)

In frequency domain, it can be expressed as

m = 0, ±I, ±2I, ...

otherwise
(3.27)

(3.28)

whose spectrum is an I-fold periodic repetition of the input signal spectrum. The new

sampling rate will be I Fs . Since only the frequency components of x(n) in the range
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o:S: ws = 27fF; :S: 7f / I are unique, the images of X (w) in Xu (w) beyond this range

should be rejected by passing the sequence xu(m) through a filter of frequency response

Hu(w) that ideally has the characteristics

Hu(w) = {~ Iwl:S:7f/l
otherwise

(3.29)

where C is a scale factor required to normalize the output sequence.

3.5.1.3 Sampling rate conversion by a rational factor liD

This type of sampling rate conversion is of frequent application in multirate systems as

in the case of PSWT based Linear Predictive Coding described in chapter 4. Sampling

rate conversion by a factor of 1/D can be achieved by first performing interpolation by

the factor I and then decimating the output of the interpolator by the factor D. The

cascaded operation is illustrated in figure 3.2(a). The two cascaded filters in fig. 3.2(a)

can be combined to a single filter as shown in fig. 3.2(b), which possess an ideal frequency

response of

H(w) = g Iwl:S: min(7f/D,7f/I)

otherwise
(3.30)

, l' indicates down sampling operation and' i' denotes upsampling operation.

In the time domain, the output of the upsampler is the sequence

v(l) = {~(l/1)
1= 0,±1,±21, ...

otherwise
(3.31)

and the output of the linear time-invariant filter is

00

w(l) = L h(l ~ k)v(k)
k=~oo

00

= L h(l- k1)x(k)
k=-oo

(3.32)
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x(n~ 11 ~I ~ ~ % ~ 10
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(a) Cascaded Interpolation and Decimation

p(m)

...

x(n) I
-____.... tI IV(k).,.1 h

p(m)
.,.

(b) Combined filtering

Figure 3.2: Fractional sampling rate conversion by multirate techniques

Finally the output of the sampling rate converter is the sequence {y(m)}, which is

obtained by downsampling the sequence {w(l)} by the factor D. Thus

00

y(m) = L h(mD - kI)x(k)
k=-oo

3.5.2 The Mallat's Pyramid Structure

(3.33)

The OWl' is generally computed using the Pyramidal Tree structure, as shown in fig­

ure 3.3 for a 2-level wavelet analysis on a discrete-time sequence x(n). This algorithm

is sometimes referred to as the two-channel sub-band coder as it involves the QMF fil­

tering of the input signal based on the wavelet function used. The filters h, g, h, and

,ij characterize the wavelet system. This is basically a sequential structure employing

multirate digital filtering.

One can look at the Mallat's algorithm either as a way of calculating expansion

coefficients of a continuous time signal at various scales or as a filter bank for processing

discrete-time signals. The wavelet analysis coefficients are obtained at the output of

each leaf of the tree structure. The sections are numbered from left. to right in the
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Figure 3.3: Pyramid structure for 2 level DWT Computation (a) Decomposition (b)
Reconstruction

analysis structure and from right to left in the synthesis structure. The set of transform

coefficients at j'h level are computed from the scaling output of the lower or previous

stage of the analysis structure as

(3.34a)

j = 1,2, ...,J (3.34b)

where f3o(k) = x(k), h(k) = 'i)o,o(k), and g(k) = <Po,o(k).

In the frequency domain, the first stage divides the signal spectrum into two equal

parts. The second stage divides the lower half into quarters and so on. This results in a

logarithmic set of bandwidths as illustrated in figure 3.4. Correspondingly the tiling of

the time-frequency plane will look as shown in figure 3.5. Each horizontal strip in the

tiling corresponds to each channel, which in turn corresponds to a scale j. The span

covered by each of the translations are marked along the horizontal axis. It is obvious

that at lower resolutions (higher j), the translations are large and at higher resolutions

the translations are small. The residue of the finite scale wavelet representation is then

a low-pass signal that reproduces the trend of the input signal. The remaining terms in

the expansion represent the fluctuations of the signal over this trend at several scales.

Similarly, employing the synthesis scaling and wavelet sequences of upper levels,

the scaling coefficients at each of the immediate lower levels are computed using the
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multirate filtering operations.

3.6 The Wavelet Packet Transform

Wavelet Packet analysis is an important generalization of wavelet analysis [213]. Wavelet

packet basis functions comprise a rich family of building block functions which are still

localized in time, but offer more flexibility than wavelets in representing different types of

signals. The elassical wavelet system results in a logarithmic frequency resolution. The

low frequencies have narrow bandwidths and the high frequencies have wide bandwidths.

:: The WP is an extension on this to allow a finer and adjustable resolution of frequencies

at high frequencies. The cost of this richer structure is a computational complexity of

O(Nlog(N)), in contrast to the classical WT, which is O(N). A wavelet orthonormal

basis decomposes the frequency axis in dyadic intervals whereas the wavelet packets

,,;' generalize this fixed dyadic construction by decomposing the frequency in intervals of

varying bandwidth. Wavelet packet functions are generated by scaling and translating

a family of basic functions denoted by, say Wb(t). These functions are uniquely char­

acterized by the oscillation index b. The fundamental scaling and wavelet functions

correspond to b = 0 and b = 1 respectively. Larger values of b points to wavelet packets

with more oscillations and higher frequency. The translated and scaled wavelet packet

functions related to the oscillation index b, at any level j are generated from the following

equation.

(3.35)

where m is an integer and

(3.36)

The wavelet packet Wj,b,m(k) has scale 2j and location 2Jm .
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Figure 3.4: Frequency bands for the analysis tree of the pyramid structure
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Figure 3.5: Time-Frequency tiling in wavelet decomposition
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Figure 3.6: Tree structure for 2-level WP analysis (a) decomposition (b) reconstruction

The Mallat algorithm can be extended to WP7 analysis also. In WP decomposition,

the high pass wavelet branch as well as the low pass approximation branch of the tree arc

successively decomposed. The resulting analysis tree and synthesis tree for a two-stage

decomposition is shown in figure 3.6.

Figure 3.7(a) pictorially shows the vector-space decomposition for wavelct packet

transform. Figure 3.7(b) shows the corresponding frequency response of the filter bank

scheme.

A signal x(n) can be expressed as a sum of orthogonal wavelet packet functions

Wj,b,k(n), at different scales, oscillations, and locations using the expression

wherc

x(n) = LLLWj,b,mWj,b,m(n)
j b k

Wj,b,m = L Wj,b,m(n)x(n)
n

(3.37)

(3.38)

The range of the summation for the levels j and the oscillations b is chosen so that the

wavelet packet functions are orthogonal.

7Wavelet Packet
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Figure 3.7: Decomposition using Wavelet Packet

3.7 2D Discrete Wavelet Transform
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In order to apply wavelet decomposition to images, 2D extension of the wavelets arc

required. This can be achieved by the use of separable or non-separable wavelets. In this

thesis, the case of separable wavelets only is considered. A 2D separable wavelet, basis can

be constructed from 1D using four basis functions viz. one scaling function <t>J.k.t(l;,:'})

and three wavelet functions 1/Jj,k.t(:£, u). TEl, 2, 3,j, k, IE Z, defined as follows [184].

(3.39a)

(3.39b)
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(3.39c)

(3.39d)

where <p and 1/J are the ID wavelet basis defined earlier. These basis functions span

the four j-levcl linear vector spaces rather than just two as in the ID case. The first

one spans the approximation subspace '0, whereas the other three spans each of the

details space Wj l , Wj 2 and Wj 3 respectively. It may be expressed making use of the

MRA concept as

(3.40)

I where '0-1 is the next high resolution approximation subspace. An analogous definition
~~

holds for the dual scaling function ¢~,k,l(X, y) and wavelet functions ,J,Ik,l(x,y).

The M-level wavelet representation of a 2D-function f(x, y) is given by

M

f(x, y) = L ct;1<P~1,k,1(X, y) +L L L d~~1/Jj,k,b, y)
k,l j=l rET k,l

(3.41)

The approximation and the detail coefficients in the above expression are c~,11 =

(.f, ¢~I,k,l) and dt~ = (f,1/Jj,k,l) respectively, where (., .) denotes the inner product in the

[2(Z2) space.

3.7.1 Computation of 2D DWT

For fast DWT computation using the Mallat's pyramid algorithm, the sub band filtering

scheme as in the case of ID is used. The 2D wavelet basis may be represented by the

four possible tensor products gg, gh, hg and hh of the ID filters 9 and h. Let d and dj,T

denotc the 2D sequences 0.,1 and d{',;; k, IE Z and T = 1,2,3. The scaling and wavelet
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transform coefficients at a coarser level j are computed from d- 1 by convolution followed

by downsampling [184]as:

d = (11 2)(gg*ci-l)

dj
•
1 = (112)(gh *CH )

dj
,2 = (112)(hg * cH )

dj
,3 = (112)(hh *CH )

(3.42a)

(3.42b)

(3.42c)

(3.42d)

for j = 0, 1, .., M - 1. Here * denotes 2D convolution and (112) denotes downsampling

by a factor of 2 in both x and y directions. The given image is treated as co.

To perform the 2D DWT computation as above, instead of using the 2D filters,

one can employ a separable extension of the 1D decomposition algorithm. The rows of

the data are convolved with the first 1D filter in equation 3.42 and alternate columns

are retained. The resulting data is then convolved column-wise using the other 1D filter

and every alternate row is dropped. Further stages of 2D decomposition are obtained by

recursively applying the procedure to the low-pass filtered output of the previous stage.

Following the terminology found in the literature, the coefficients given by equation 3.42

may be denoted as LLj, LHj, H L j and H H j respectively as shown in the layout of

figure 3.8.

The wavelet reconstruction is performed recursively, starting at level M by upsam­

pling in both directions (denoted by n 2) followed by convolution using the 2D dual

filters. The signal reconstructed at the jth level from coefficients at the (j + l)th level

may be expressed as

Here also, separable wavelet filters can be employed as in the case of decomposition.

Figure 3.9 shows the block diagram for a 2-level decomposition and reconstruction

of an image using the pyramidal algorithm employing separable filters.
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Figure 3.8: Coefficient layout of a 3-level DWT of an image.

f
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f

Figure 3.9: Pyramid Structure for 2-level 2D DWT computation (a) Decomposition
(b) Reconstruction. (The shaded blocks represent row-wise operation, the rest being
column-wise)
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3.8 The Pitch Synchronous Wavelet Transform
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By means of ordinary DWT the signal can be represented in terms of a low-pass trend

plus fluctuations at several scales. However, pseudo-periodic signals may be better

represented in terms of a periodic trend plus period-to-period fluctuations. The periodic

trend may be obtained by averaging the homologous samples B, while period-to-period

fluctuations are differences of the homologous samples. Looking from the frequency

domain, the trend lies in narrow bands centered on the harmonics while the fluctuations

consist of sidebands of the harmonics. In a perfectly periodic signal these fluctuations are

null and the homologous samples are identical to the samples in any arbitrary period.

Homologous samples in a pseudo-periodic signal are strongly correlated and may be

slowly varying. By means of PSWT one can better analyze these changes at several

scales.

The PSWT is based on a pitch-synchronous vector representation and it adapts to

the oscillatory characteristics of pseudo- periodic signals. A lot of information is conveyed

in period-to-period variations. These signals have a lot of redundancy between periods.

The PSWT rests upon the PS representation of the signal. It is nothing but the

ordinary WT applied to each of the row vectors of the signal in PS form. For a quasi­

periodic signal, the local pitch periods P(r) for r = 0, 1,2, ... N may vary, which makes

the column vectors in the PS matrix to be of different size. Hence the PS matrix is

modified by inserting Pm - P(r) zeros at the end of each column vector vq(r) for any

fixed value of r. Here Pm stands for the maximum value of P(r). Mathematically we

define the new column vectors as sequences:

where
q = 0, 1, ... ,P(r)-1

otherwise

"samples that are spaced one or more periods apart.

(3.44)

(3.45)
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Obviously vq(r) extends vq(r) as zeros, for q outside P(r).

Now, if we try to represent each row in the PS signal matrix in terms of its DWT

coefficients, the resulting matrix will constitute the PSWT of the signal represented by:

l0,k,q = L vq(n)7f;j,k(n)
n

(3.46a)

where l0,k,q are the PSWT coefficients of the qlh row of the signal vq(r) at jlh scale and

kth shift. Signal reconstruction is possible using the equation:

vq(n) = L l0,k,q7f;j,k(n)
j,k

(3.46b)

The above PSWT coefficients car: be expressed in terms of the original sequence x(n)

and the PS wavelet sequence as given below.

Considering a finite level decomposition of the signal, the PSWT may be expressed [11]

by the following equations:

and

l0,k,q = L x(r)Oj,k,q(r); j = 1,2, ... J
r

CrJ,k,q = Lx(r)'PJ,k,q(r); k,q E Z
r

(3.47a)

(3.4 7b)

where CrJ,k,q are the PS scaling transform coefficients of the same section of the signal

at Jlh scale and kl h shift. This is the residue of the signal after J levels of PSWT

decomposition. IIj,k,q(r) are the PS wavelet sequences generated from 7f;j,k, and 'PJ,k,q(r)

are the PS scaling function sequences generated from 1>J,k using the equations:

and

n-l

IIj,k,q(r) = L o(r - q - L P(U))7f;j,k(n)Xq(n)
n u=O

n-l

'PJ,k,q(r) = Lo(r - q - L P(U))1>J,k(n)Xq(n)
n u=O

(3.48a)

(3.48b)
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where

,pj,k(n) = ,pj.o(n - Zjk)

<PJ,k(n) = <PJ,o(n - ZJk)

Here ,pj,O and <PJ,O are the impulse responses hj and gJ respectively, defined by

gJ+I(n) = Lgj(r)g(n - Zr)
r

and

hj+l (n) = L hj(r)g(n - Zr)
r

63

(3.4ga)

(3.49b)

(3.50a)

(3.50b)

(3.51)

where, gl (n) = g(n) and hI (n) = h(n), are the impulse response of the analysis low pass

and high pass filters respectively.

From the finite level PS wavelet and scaling coefficients, the original signal is recon­

structed using the following relationship:

J

x(n) = L wj(n) +"1J(n)
j=l

where wj(n) = I:k,q Vj,k,q8j,k,q(n) is the PS wavelet partial at the jth level

and "1J(n) = I:k,qaJ,k,q'PJ,k,q(n) is the PS scaling residue at the Jtb level.

It may be noted that wj(n) corresponds to the extend of fluctuations at scale zj local

pitch periods, whereas 'YJ(n) represents the asymptotic average behavior over several

pitch periods.

After representing x(n) in the PS form, the computation of the PSWT and its Inverse

(IPSWT), can be performed by taking the DWT and lDWT of each of the q channels,

one at a time using the PS wavelets and scaling sequences given by equation 3.48. In

a parallel processing environment, the DWT and IDWT of all the channels may be

computed concurrently, as they are independent of each other. The implementation

structure for the above computation is given in figure 3.10. The DWT and IDWT

blocks shown in the figure can be implemented using the same structure given in figurc

3.3.
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Figure 3.10: Implementation structure for the computation of PSWT and its inverse.
('D' corresponds to the delay in the computation of the forward and inverse transform

"

I blocks) ...

3.9 Period Estimation

Period detection algorithms can be classified in to two separate categories, viz. the

spectral-domain based and the time-domain based period detection, Spectral period

detectors such as Cepstrum, Maximum Likelihood, and Autocorrelation methods, esti­

mate the fundamental period of a signal directly using windowed segments of the signal,

applying a Fourier-type analysis to determine average period, A time based detector,

however, estimates the period by determining the events such as zero crossing or GCe

and then measuring the time period between each event.

"Clottal Closure Instant
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3.9.1 Autocorrelation-based Period Estimation

This method employs the autocorrelation function [29] defined by

00

R(k) = 2::= x(m)x(m + k)
m=-oo

65

(3.52)

where x(m) is any discrete-time deterministic signal. If x(m) is periodic R(k) also will be

periodic with the same period. It is shown that, regardless of the time origin of the signal

under consideration, the period of the signal can be estimated by finding the location

of the maxima of the autocorrelation function and measuring the distance between

the successive peaks. The autocorrelation function contains much more information

about the detailed structure of the signal and hence we often consider the short-time

autocorrelation function which is defined as

00

Rn(k) = 2::= x(m)w(n - m)x(m + k)w(n - k - m)
m=-oo

For finite duration sequences this expression can be modified as

N-l-k

Rn(k) = 2::= [x(n+m)w'(m)][x(n+m+k)w'(k+m)
m=O

(3.53)

(3.54)

where w'(n) = w'( -n) and N is the block length selected. An important issue here is

how N should be chosen to give a good indication of periodicity. Here the requirements

are conflicting. Since the signal is basically non-stationary, N should be as small as

possible. On the other hand, it should be clear that to get any indication of periodicity

in the autocorrelation function, the window must have a duration of at least 2 periods

of the waveform. It has been shown that [214], for best results, the block length has to

be selected as 4M for voiced signals and as 2M for transient segments of signals, where

M is the period.

Because of the finite length of the windowed signal segment involved in the computa­

tion of Rn(k), there is less and less data involved in the computation as k increases. To
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take care of the difficulty due to this roll off, sometimes samples from outside the interval

from n to n + N - 1 are also involved in the computation. Strictly speaking, this leads

to the cross-correlation computation rather than the autocorrelation and this is gener­

ally designated as the modified autocorrelation function. There are much more variants

proposed [148], [215] on the basic scheme of period estimation using autocorrelation

function to make it more adapted to different types of signals.

3.9.2 UDWT based Period Estimation

3.9.2.1 The Undecimated Discrete Wavelet Transform

One well-known drawback of wavelet transforms is their sensitivity to translations. This

causes serious problems in some applications of wavelet methods. An immediate solution

to this problem is the UDWT. This is a redundant type of shift-invariant WT which can
"..,
~, be viewed as the DWT in which the multirate operations are eliminated. Hence as the

number of levels of decomposition increases, the number of UDWT coefficients increases

considerably, increasing the computational complexity as well. Although the UDWT is

linear and shift-invariant, it has got the drawback of lack of orthogonality.

In discrete domain, the UDWT is implemented using the two QMF filters corre­

sponding to the wavelet under consideration. The coefficients corresponding to the level

j is computed using the following convolutions.

(3.55a)

(3.55b)

where j = 1,2, J, So(k) = x(k), lu: = h, go = g. Here hj(k) and gj(k) are obtained by

inserting (2j - 1) zeros between each of the two consecutive coefficients of the two filters

h(k) and g(k), and J corresponds to the maximum level of decomposition.
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3.9.2.2 Application of UDWT in period estimation
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The UDWT can be used for period estimation, when special type of wavelets are used for

analysis, as it exhibits local maxima at points of discontinuity Or zero-crossing [155]. In

order to detect a zero-crossing or Gel, a derivative function can be used as the wavelet.

If the signal is filtered by a derivative function (such as Daubechies filters), a maximum

will occur at each zero-crossing. Thus the time period between each maximum represents

the pitch period of the signal at that moment. Let </J(t) be the mother wavelet with

derivative properties. The functions

(3.56a)

(3.56b)

represent both the wavelet and scaling functions respectively at each scale. <p(t) is

a low pass function and is the conjugate mirror filter of </J(t) , which is a high pass

function. Since the range of period or fundamental frequency in any digital signal is

between frequencies, say it and 12 Hz, the UDWT coefficients corresponding to levels

contributing to this frequency band will show consistent peaks across successive levels.

Therefore, the distance between these peaks can be measured as the period information.

One can compute the scale parameters jl & i; corresponding to the frequency band

of interest by selecting the nearest integer value of the parameters from the following

expressions [154].

. Fs2Ju =-
12

where Fs is the sampling rate of the signal.

(3.57a)

(3.57b)
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The Linear Predictive Coding

"'I
"II
"

As applied to ID signal processing, the term Linear Prediction refers to a variety of

essentially equivalent formulations of the problem of modelling the signal. For ID signal,

the various formulations of linear predictive analysis have been:

• The Covariance method

• The Autocorrelation formulation

• The Lattice method

• The inverse Filter formulation

• The Spectral Estimation formulation

• The Maximum Likelihood formulation

• The Inner Product formulation

In each case the basic idea is that a signal sample can be approximated as a linear

combination of past signal samples. By minimizing the sum of the squared differences

(over a finite interval) between the actual signal sample and the linearly predicted ones,

a unique set of predictor coefficients can be determined.

Because of the time-varying nature of signals, the predictor coefficients must be

estimated from short segments of the signal, the segment (frame) size being dependent

on the extent of non-stationarity of the signal and also its frequency characteristics.

When the signal is transformed to another domain before the prediction is applied and

transmitted, such schemes are called TClO. The signal in a TC is processed frame-by­

frame and each frame is transformed using a discrete unitary transform. ie. S = Ts.

Thc inverse transform is used for signal synthesis. ie. s = T-1S.

10 Transform Coders
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Figure 3.11: Linear Predictor of order p

Sen)
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Predictive Coding systems utilize the data redundancy to realize straight forward

reduction in bit rate for compression applications. The basic problem is to determine a

set of predictor coefficients CY.k directly from the signal in such a manner as to obtain a

good estimate of the spectral properties of the signal being predicted. Because of the

time-varying nature of non-stationary signals, the predictor coefficients must be esti­

mated from short segments of the signal. A linear predictor with prediction coefficients

Cik is defined as a system whose output is

p

S(n) = I>kS(n- k)
k=l

(3.58)

where p is the order of the predictor. The system function of the predictor is the

polynomial P( z), given by 2:Ll CY.kZ-k. The structure of a pth order linear predictor is

shown in figure 3.11.

On using a linear predictor, the prediction error is defined as:

p

e(n) = S(n) - S(n) = S(n) - L CY.kS(n - k)
k=l

(3.59)



70 Chapter 3. Review of Basic Theory

Similarly, the short-time average prediction error i! is defined as:

p

= 2)Sn(m) - L akSn(m - kW
m k=l

m m

(3.60)

where Sn (m) is a segment of the signal that has been selected in the vicinity of sample

n. To minimize the MSE, the values of ak that minimize En by setting

BEn/Bai = 0, i = 1,2, ...p,

thereby obtaining the equations

p

L Sn(m - I)Sn(m) = L ak L Sn(m - i)Sn(m - k); 1 :c; i :c; p
m k=l m

(3.61)

(3.62)

Now, if we define <Pn(i, k) as L,m Sn(m-i)Sn(m- k), equation 3.61 can be written more

compactly as
p

L ak<Pn(i, k) = <Pn(i, 0); i = 1,2, ... ,p
k=!

This set of p equations in p unknowns can be solved in an efficient manner for the

unknown predictor coefficients {oj}, that minimize the average squared prediction error

for the segment S,,(m).

There are two basic approaches [29] to proceed with the solution. One is the au­

tocorrelation method and the other is the covariance method. In this thesis, only the

former is discussed.

In the autocorrelation method it is assumed that the waveform segment Sn(m), is

identically zero outside the interval 0 :c; m :c; N - 1. i.e. Sn(m) = S(m + n)w(m),

where w(m) is a finite word length window that is identically zero outside the interval

o < m :c; N - 1. It is clear that, the error is large at the beginning of the interval

o < m :c; p - 1 because we are trying to predict the signal from samples that have

11 To obtain the average, a division by the length of the data segment is necessary, but being irrelevant
at this context, it is omitted.
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arbitrarily been set to zero. Likewise the error can be large at the end of the interval

N:'O m <:; N +p-l because we are trying to predict zero from samples that are non-zero.

For this reason, a window that tapers the segment Sn(m) to zero is generally used for

w(m). It is shown [29J that

p

L akR,,(li - kl) = R,,(i); 1 :'Oi :'0 p
k=1

(3.63)

L;~:~-1 Sn(m)Sn(m + k). In matrix form the equation 3.63 can be

expressed as

Rn(O) Rn(l ) Rn(2) .. .. Rn(p - 1) al Rn(1 )
R,,(I) Rn(O) Rn(1 ) .. .. Rn(p - 2) a2 Rn(2)
Rn(2) R,,(I) Rn(O) .. .. R,,(p- 3) a3 Rn(3)

(3.64)=

R,,(p - 1) Rn(p - 2) Rn(p - 3) Rn(O) ap Rn(p)

These equations are called the normal equations, Yule- Walker Prediction equations,

lr the Wiener-Hop! equations. The pxp matrix of autocorrelation values is a Toplitz

natrix and can be efficiently solved to derive the values of ak. The most efficient of all

nethods for solving this system of equations is the Durbin's recursive procedure [216J.
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Chapter 4

PSWT Based Linear Predictive
Coding

This chapter describes the Pitch-Synchronous Wavelet Transform based method devel­

oped for the Linear Predictive Coding and Compression of pseudo-periodic signals, and

its typical applications. Initially, the method has been presented in detail for general

pseudo-periodic signal processing applications. Subsequently case studies have been pre­

sen ted on the application of the compression scheme on typical signals. Some techniques

for feature enhancement and source dependent noise suppression in PSWT domain have

also been briefly introduced. The method has been evaluated in terms of standard per­

formance measures. The chapter is concluded by highlighting the results and discussing

the important findings of the study.
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4.1 Introduction
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Conventional LPC methods and WT techniques have been in use for various signal pro­

cessing applications. A noteworthy work combining the application of these techniques

have been carried out by Ramakrishnan et al [59]. They have applied the LPC tech­

nique on the DWT of period-wise data for ECG data compression. In this chapter, a

new method which is more beneficial for the analysis and compression of pseudo-periodic

signals has been introduced. It combines the advantages of the LPC techniques and the

WT methods with the inter-beat correlation of this class of signals.

The study has been presented for general pseudo-periodic signals, and case studies

are presented on practical signals towards the end of the chapter. Practical signals may

contain unwanted disturbances like random noise, harmonics, powerline interference etc.

To reduce the effect of such disturbances, some feature enhancement techniques, which

are exclusive to PSWT domain have also been developed and the details are briefly

presented.

4.2 PSWT based LPC

The distinct steps involved in the PSWT based LPC system are listed below:

Step 1: Estimation of the local beat periods

Step 2: Organization of the data segment in the Pitch-Synchronous form

Step 4: Normalization of the PS data matrix

Step 5: Computation of the PSWT coefficients

Step 6: Estimation of the predictor coefficients

Step 7: Encoding the relevant information for transmission.
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All the above operations are performed at the encoder end. At the decoder end all

the inverse operations are performed in succession so that the signal is reconstructed.

4.2.1 Period Estimation

The effectiveness of PSWT based signal analysis techniques depend a lot on the accu­

racy with which the local periods are evaluated. For the PS representation, the local

periods are to be evaluated for the whole signal continuously. In this work, two meth­

ods for period estimation have been adopted depending on the nature of signal under

consideration, viz. the autocorrelation method and a WT based method. Suitable mod­

ifications have been made in the conventional algorithm to make the period estimation

more adaptive for signals distorted by harmonics, noise, de offset, etc.

4.2.1.1 The Autocorrelation based Period estimation

Autocorrelation based method is the most popular method for pitch determination of

speech signals. Hence in this work, this method has been used to find the pitch period

of signals like speech, vocal music etc. Modifications have been incorporated in the

standard method so that even hard-to-detect periods could be estimated.

The signal was segmented into different frames, the size of which was selected to be

roughly about 4 times the approximate local period. The autocorrelation function of

each frame was computed using the simplified autocorrelation relation given by:

N

R(K) = L x(m)x(m - K); 0 ~ K ~ N
m=k

(4.1)

When the signal is devoid of much disturbances, the period can be easily estimated

as the distance between the successive peaks of the above autocorrelation function. But

when the signal is contaminated by unwanted noise components, the period estimation

becomes difficult and alternate techniques are to be employed. Some of the identified

difficulties along with the proposed solutions are presented below.
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Figure 4.1: A distorted signal creating difficulty in period estimation (a)A segment of
Original Signal (b) Autocorrelation Plot (c)Thresholded Autocorrelation plot

Consider one segment x(n) of a signal as shown in figure 4.1 (a). As seen from the

autocorrelation plot (fig. 4.1(b)), many of the spurious spikes are smoothed out during

the autocorrelation operation. But there are certain predominant intermediate peaks,

which are still regular, making the period estimation difficult.

To get rid of this difficulty, a threshold T = aRpeak was experimentally selected and

IR(K)I :c; T was made zero for all values of K, where a is the threshold factor and Rpeak

is the maximum value of the autocorrelation function. The resulting function R'(K) is

shown in figure 4.1(c). It may be noticed that, in this plot, the regions containing each

local peak lies between two sets of zero-valued samples. The local peak from each of
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these regions which are separated by sets of zero-valued samples are estimated and the

distance between the consecutive local peaks are taken as the local pitch period. This

method helps in partially eliminating the acceptance of the intermediate peaks which

are not spaced by local periods.

Another difficulty in pitch estimation results from the unsymmetry between the

positive and negative half cycles of the signal. One such case pertaining to a musical

instrument tone produced by an electric guitar, is shown in figure 4.2. The corresponding

autocorrelation plot is shown in (b). Here, if the negative peaks are considered for the

period estimation, it gives almost double the actual period count. To take care of such

situations, the peak detection is done for both positive and negative half cycles and the

one with minimum peaks is further processed for detecting the local periods.

•• ..

, 0.02

;
~ 0

i 02

J
< ..

00 ~ '00 _ ~ ~ = _ ~ ~

lag IM)---->

(a) Original signal (b) Autocorrelation plot

Figure 4.2: A music note produced by an electric guitar and its autocorrelation plot.

On estimating the period as the difference between the successive local peaks in

the autocorrelation plot, a common difficulty encountered is the presence of multiple

dominant peaks within the same period. So is the case with the female voice signal

shown in figure 4.3. To avoid the contribution from the non-predominant peaks, the

detected periods are compared with the local maximum. All detected peaks which are

closer than by a preset percentage of the maximum period are discarded while selecting
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the final periods. If the current one is less than a preset percentage of the previous, the

current local peak is discarded and the succeeding peak is selected.

..

~ 100 ,~ _ ~ ~ ~ _ ~ _

L.oQ(KI~_· ->

(a) Original signal (b) Autocorrelation plot

Figure 4.3: Signal showing multiple dominant peaks in the Autocorrelation plot.

Yet another difficulty in local peak detection is posed by the linear decrease of the

magnitude of the successive peaks in the autocorrelation plot of a frame. As shown in

figure 4.1(b), all local peaks after the point 'A' in the frame under study, are below

the threshold and hence they could not be detected as such. For the PS representation

of the signal, the local periods of the whole signal are to be determined. Therefore in

the original signal, the sample corresponding to the peak 'A' is taken as the beginning

. of the next frame and the process is repeated. This procedure ensures that the local

peaks of the entire input signal is detected irrespective of the selected frame size for the

autocorrelation plot.

In rare occasions the signal may contain de shift which also creates difficulty in

period estimation. The presence of de shift will distort the autocorrelation plot as

depicted in figure 4.4. By subtracting the mean value of each segment before taking the

antocorrelation plot, the undesirable effects of the de shift could be eliminated.
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Figure 4.4: Distortion in the Autocorrelation plot due to dc shift in the signal.

4.2.1.2 The WT based Period estimation

For signais with large bandwidth, the autocorrelation based method of period estima­

tion often results in inaccurate results. Musical sounds are one such category. They are

harmonically rich and can contain inharmonic partials as well. For a minimum delay,

the pitch has to be determined during the attack of a note, where the sound is noisiest

and most harmonically complex. The pitch can also vary constantly without the onset

of notes. Many ambiguously pitched sounds exist, such as multi-phonics, key clicks or

unpitched sounds, which must be dealt with in a consistent manner. The wavelet based

pitch tracker introduced in this thesis is able to estimate the pitch trajectory much

more precisely and quickly than many classical techniques. This is mainly because,

WT is a more natural way for windowing large bandwidth signals. Moreover, since the

wavelet partials at different levels being dyadically related, the successive elimination

of harmonics is possible without affecting the information content related to the fun­

damental period. The general transients that are present in the musical notes contain

wide frequency components, making the smoothing operation difficult.

Another class of signals where the WT method is found superior is the ECG. The



4.2. PSWT based LPG 81

frequency of EeG signals is small, whereas the QRS complex, being transient in nature,

contains large bandwidth components.

In this method, the peaks corresponding to the fundamental period are made promi­

nent by decomposing the signal in the UDWT domain using an appropriate wavelet

filter. The level to which the decomposition is performed is dependent on the frequency

content and sampling rate of the signal, making the technique to be signal dependent.

When the successive levels show consistent peaks so that the position of these peaks can

be uniquely determined, the decomposition is stopped and the period is computed as

the distance between such peaks. For example, consider the signals shown in figure 4.5.

The peaks corresponding to the fundamental period is not made uniquely detectable by

even 8 levels of filtering in the case of the tambum note whereas it is achieved by 2 levels

of filtering for the flute signal.

..

..

~, I~II~

(a) Tambura signal

....
••.,
~.

_0.4

(b) Flute signal

Figure 4.5: Signals showing wide variation in UDWT levels for period estimation.

Even after performing the filtering operation to the desired level, due to irregularities

in the signal there can be other peaks in the near vicinity of the actual local peak.

This can result in wrong period estimation. Hence the techniques employed along with

autocorrelation method is adopted in this method also.
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4.2.2 Pitch-Synchronous Representation

Once the local periods are estimated, any 1D data could be arranged in the PS form [135].

The details of this PS representation is given below.

Assuming P(k) to be the sequence of integer local pitch periods extracted from a

typical segment of the signal x(n), the segment under consideration can be expressed in

PS form as:
k-I

vq(k) = 'Lx(i)8(i-q- 'LP(r)), i E Z
r=O

(4.2)

where q = 0,1,2, ... , P(k) - 1, and k = 0,1, ... , N - 1. Here the index q is the inter­

period-count index and k is the period-count index. N is the total number of pitch

periods that make up the segment under consideration. vq(k) gives a 2D representation

of the 1D signal.

The signal x(n) is now demultiplexed into q channels, the pth channel being consti­

tuted by the p'h sample of each of the N pitch periods. The surface plot of a typical

pseudo-periodic signal in PS form is given in figure 4.6.

The original signal can be reconstructed back from the PS form using the expression:

P(i)-I i-I

x(n) = 'L 'L vq(i)8(n - q - 'L P(r))
q=O r=O

4.2.3 Normalization

(4.3)

To achieve maximum interbeat correlation of the WT coefficients, beat normalization is

carried out as done by Hamakrishnan et al. [59]. This has two stages, the period normal­

ization and the amplitude normalization. Each beat in the PS data matrix is normalized

separately. For period normalization, multirate techniques [2171 are employed. This in­

volves sampling rate change by different fractional factors for each period of the PS data

matrix, employing equation 3.33.
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40

q-

Figure 4.6: Surface plot of a signal represented in PS form (Tambura note).

The period normalization is achieved by first upsampling each period data by a factor

L, which is an integral multiple of the maximum cycle period, Pm. This is followed by

downsampling by the respective beat period.

After the period-normalization, equation 4.2 gets modified as

P(r)-l

vq(k) = L vq(r)hk(kP(k) - rL)
r=O

(4.4)

where vq(k) stands for the kth column of the PS data and vq(k) is the correspond­

ing period normalized data vector. hk(Z) is the impulse response of the smoothing

filter. This converts the cycles of differing periods into cycles of a constant period, thus

eliminating the cycle variability as shown in figure 4.7.
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Figure 4.7: Surface plot of the signal shown in figure 4.6 after Normalization (period
normalized to 3 times the maximum period)

The fixed period is selected based on the maximum local period of the signal under

consideration. The modified sampling rate is selected still satisfying the Nyquist crite­

rion. Since a sampling rate higher than the existing one is selected, there won't be any

signal distortion provided the alias frequencies are eliminated by proper filtering using

Amplitude normalization brings further similarity between the consecutive periods.

Each sample of each period is divided by the magnitude of the largest sample of the

corresponding period data. This makes the highest amplitude samples of each period

equal to unity. Thus, the variations between the magnitudes of different cycles are
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minimized. It can be seen that PAN l does not introduce any distortion in the signal

whereas it will enhance the inter-period correlation.

4.2.4 Computation of PSWT Coefficients

For computing the PSWT, the method of DWT computation is utilized. Since after

normalization, the PS data resembles a truly periodic signal, the PSWT computation

reduces in effect to MWT computation. Here the DWT is computed row-wise on vq(k)

for each q = 1,2, ..., L, q E N. The scheme for computation is given in figure 3.10. The

PSWT coefficients are arranged in a matrix in the following format:

a1 dl dL dl dl
J J 2 1

a2 d2 dL d§ d2
J J 1

a3 d3 dL d3 d~J J 2

aL dL dL .. dL dL
J J 2 1

where aj and dj are row vectors corresponding to the approximation and the details

respectively of the WT of the pth row of the data matrix at the jth level.

In a parallel processing environment, the DWT and IDWT of all the channels may

be computed concurrently, as they are independent of each other with absolutely no

data dependency.

4.2.5 Computation of Predictor Coefficients

In this work, the predictor coefficients for the prediction of PSWT data are chosen

according to the minimum error criterion. They are determined by minimizing the sum

of squared differences (over a finite interval) between the actual PSWT coefficients and

the linearly predicted ones using the autocorrelation method. The block schematic of

the predictor estimation system is shown in figure 4.8.

The optimized set of predictor coefficients depend on both the order of predictor

and the logical selection of the data input. The PSWT coefficients which form the data

1Period and Amplitude Normalization
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PSWT
Coefficients q Autocorrel ation

method Predictor

Order of
. Coefficients

Predictor --.

Figure 4.8: Block schematic of the predictor estimator.

input contain groups of varying spectral characteristics corresponding to different levels

of decomposition. Hence different alternatives like separate predictors for prediction of

each level-wise data, single predictor for complete data prediction etc. were tried out.

Finally level-wise prediction, i.e., different sets of predictors for predicting each level of

transform coefficients, was selected.

Since the PSWT acts on homologous points of the normalized data, the average

information contained over different beat periods get well localized in the scaling residne

of the PSWT. Hence most of the energy contained in the signal appears in the scaling

residue itself. This ineludes all the spectral components centered on the fundamental and

its harmonics. On the contrary, the wavelet partials carry other informations, which lie

near to the harmonics, indicating the degree of period-to-period fluctuations present in

the signal. This is obviously different from the result of DWT on the same signal, as the

wavelet coefficients in a DWT are indicative of intra-period variations, independent of

the global changes in the signal. Taking advantage from the above facts, the prediction

of the PSWT coefficients is performed with a minimum order linear predictor. Due to

the strong correlation of successive beats, this method of prediction yields better results

when compared with prediction of DWT coefficients of each beat of the signal as done

in [59].
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4.2.6 Signal Encoding and Decoding Scheme
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After estimating the predictor coefficients, they are encoded for transmission to the

decoder end. Along with these, the first few rows of the PSWT coefficients and other

auxiliary information like mean beat period Pmean, the AASF 2
, deviation of each beat

period from Pm ean and AASF, order of the predictor p, level of decomposition J, wavelet

used for the study etc. are also transmitted to the decoder end.

Assuming the data transmission to be undistorted, at the decoder end, the PSWT

coefficients of the data are extracted using the predictor coefficients and other auxiliary

information, which were transmitted along with the predictor. The PS data is recon­

structed using IPSWT methods. This is the normalized data which are denormalized

employing the multi-rate techniques. The ID signal is now obtained back from this

denormalized PS data using the local period information. The block schematic for the

PSWT based linear prediction along with the associated encoding and decoding scheme

is shown in figure 4.9.

For different class of signals, the parameters for coding were optimized by changing

the following variants.

1. order (support) of wavelet used for decomposition

2. level of decomposition

3. number of columns used for evaluating the predictor coefficients

4. without/with normalization

5. with and without transmitting the residue of prediction

6. order of predictor

2 Average Amplitude Scale Factor
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Figure 4.9: Block schematic of the PSWT based predictive coder.

4.2.7 Performance Evaluation

The performance of the coder was evaluated for all practical combinations of the above

variants in terms of both objective and subjective measures depending on their appli­

cability. The objective measures include, SNR, CR, NRMSE, NMAE [59]etc. whereas

the important subjective measure used was the MOS [2181.

SNR is one of the common objective measures for evaluating the performance of a

compression algorithm. This is expressed as:

SNR=lOlog 2:~-,-ol[S(n)-SI2
10 ",N, II ( ) _ -]2

L.m=O en e
(4.5)

whore S(n) is the original data while S(n) is the reconstructed data, e(n) = (S(n) -
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Sin)), and N; the length of the data segment. The SNR is long term measure for the

accuracy of reconstruction and as such it tends to hide temporal reconstruction noise

particularly for low level signals. Temporal variations of the performance can be better

detected and evaluated using the segSNR, which is a short-time Signal-to-Noise ratio.

i.e. by computing the SNR for each N-point segment of the data. A performance

measure that better exposes a weak signal performance is the segSNR, which is given

by:

. 10 [,-1 E N .::-1 s2(iN + n)
segSNR=r:LIoglO{EN liSt:; )-SCN )J2} (4.6)

i=D n~D' + n ,+ n

In the above expression, since the averaging operation occurs after the logarithm,

the segSNR more penalizes the coders whose performance is variant. L is the total

number of data segments in the original data.

NRMSE, N MAE and the GR were evaluated using the following formulae.

NRMSE= (4.7a)

NMAE = 1=l __m-,-a_x7.lv~q7-(k-,-)_-_V:-,q,-;,r(,--k-,-,)I~X _10_0
k=D max(vq(k)) - min(vqr(k)) Nb

(4.7b)

~= M~ (4.k)
NbnsP + prj + l)np + Na

Here Sand e represent the mean of the sequences Sin) and ern) respectively. Ni,

Ni; p, n., np and J stands for the number of samples in the original signal, number of

beats, order of predictor, bit size of original samples, bit size for coding the predictor

coefficients and the level of decomposition respectively. N a is the auxiliary data to

be sent to the decoder end which include the wavelet information, mean beat period,

difference of each period from the mean, AASF, and the period-wise amplitude scale

factor.
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For signals having importance to perceptual characteristics, NMAE and NRMSE are

not considered significant. Instead, it is customary to conduct subjective evaluation. For

this listening tests [2181 were conducted using ten subjects. Special care was taken to

eliminate external interference, background noise, and echo-effects. Training sets were

used to familiarize the subjects participated in the listening test. They were asked to

rate the quality as excellent, good, fair, poor, or bad. These ratings were allotted grade

numbers 5, 4, 3, 2, and I, respectively. The MOS value was calculated by taking the

arithmetic mean of the grades voted by them.

4.3 Case Studies

Three general classes of pseudo-periodic signals are considered for case study viz, ECG

signal of both healthy and pathological subjects, vocal sound from both male and female

speakers, tones produced by musical instruments.

As data samples for the study, both the research data available in the web for public

usc, and also local data from nearby institutions and recorded in our own laboratory

were used. MUMS 3 are one such standard set used for the study of instrument tones.

For study on ECG data, other than samples arranged from local multi-speciality hospi­

tal, selected records from MIT-BIH data base also have been used. In all the cases it was

observed that, the compression based on PSWT decomposition followed by prediction

along beats gives better results compared to period-wise DWT followed by prediction

across beats. The residue was totally discarded, as the SNR values obtained even with­

out them are found good enough for the purpose. The application of separate set of

predictors for the PSWT coefficients at each level is found to perform better compared

3McGill University Master Samples: This is the brain-child of Frank Opalka and Joel Wapnick. They
released 11 CDs containing the sounds of most standard classical and popular musical instruments, which
has a unique feature that every note of every instrument is included in this sampling CD set. All sounds
are recorded at 44.1kHz. MUMS sounds are used for teaching and research in over 100 universities
world wide as these samples are recorded in ideal environment with high precision recording set up to
ensure that the special timbrel personalities of each instrument are retained without any recognizable
distortion.
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to one set of predictor for the whole data.

4.3.1 Case Study 1: ECG signal

91

State-of-the-art medical technology in the field of modern medicine aims at a truly re­

mote patient care by focussing on issues like telemedicine, tele-surgery etc. [219], [2201.

This requires the simultaneous transmission and monitoring of huge data pertaining

to various biomedical signals. Besides, signals like ECG, being very vital in patient

monitoring, need to be continuously transmitted to the doctors' desk with a high de­

gree of accuracy, retaining the critical morphological information in the signal. In due

consideration of the importance, the developed method has been applied for ECG data

compression and the results of study are presented in this section.

ECG data from the MIT-BIH data base -both the compression data base and the

arrythmia database- and a few data records collected from a local super specialty hospital

pertaining to normal and pathological subjects have been used for this case study. The

details of the signals are given in the table 4.1.

Sl. no. Data base Signal details
1 MIT-BIB Sampling rate =250Hz

compression data base Resolution =12 bit
Number of samples =5120 each

2 MIT-BIB Sampling rate -360Hz
arrythmia data base Resolution =11 bit

Number of samples =10000 each
3 Local data base Sampling rate =250Hz

Resolution =16 bit
Number of samples =7500 each

Table 4.1: ECG Records used for compression study

The method of signal coding on one of the data records is illustrated below. The

ECG considered is of 11 - bit resolution sampled at 360Hz bearing record number 101

of the MIT-BIB arrythmia data base, which is shown in figure 4.10.
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Figure 4.10: Original ECG data segment at lead 1 of the arrythmia data record no.101

The local beat periods are evaluated using the UOWT based method. The UOWT

partials are successively computed till the coefficients at consecutive levels have shown

identical peaks. Here it is seen that the peaks in level 2 and 3 are identical as depicted

in figure 4.1l.

The local periods are estimated as the distance between the successive peaks in the

3r d level UDWT coefficients, which are given by the following row vector:

P(k) =[314315321336344324313312311 329330

329322 327318313 328 330 324 305 302 313

320 323 320 309 307 304 295 308 324]

(4.8)

The data segment is now arranged in the PS form using equation 4.2, the surface plot

of which is given in figure 4.12.

The maximum local period of the whole segment under consideration is seen to be

344 samples. Each beat was period normalized to this maximum period. The MBp4

4 Mean Beat Period



4.3. Case Studies 93

0.8

0.6

004

0.2

(a) 0

-0.2

-0.4

-0.6

-0.8
0

1.5

1

0.5

(0)
0

-0.5

1

-1. 5

-2
0

1000

1000

2000

2000

3000

3000

4000

4000

5000

5000

6000

6000

7000

7000

BODO

8000

9000

9000

10000

10000
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Figure 4.12: Surface plot of the ECG data shown in fig. 4.10
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was found to be 318. The surface plot of a section of the normalized ECG segment is

given in figure 4.13.

A 3-level PSWT decomposition was performed on the PS data matrix using the

'Haar ' wavelet. The resulting PSWT coefficients are arranged in a matrix form, whose

surface plot is given in figure 4.14.

0.5

o

-0.5

-1

350

50 o o

25

Figure 4.13: Surface plot of the amplitude normalized ECG shown in fig. 4.10

For prediction purpose, a 4t h order predictor was chosen. The predictor coefficients

were separately estimated for the approximation and details at each level of decomposi­

tion. They were estimated using the PSWT coefficients corresponding to five columns
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Figure 4.14: Surface plot of the PSWT coefficients of the ECG in fig. 4.10

at that level. The predictors in this case are given by the following row vectors.

"'d! = [ -1.8083 0.7042

"'d2 = [ -1.2993 0.3309

"'d3 = [ -1.2664 0.3352

"'a3 = [ -0.9859 0.0651

0.3803 -0.2643 ]

0.0846 -0.0747 ]

0.0757 -0.1029 ]

0.0758 -0.1121 ]

(4.9a)

(4.9b)

(4.9c)

(4.9d)

where "'dJ,j = 1,2,3 stands for the predictor related to the jth level details and "a3,

that for the 3r d level approximation.

The first 4 rows of PSWT coefficients are used at the decoder end along with the

predictor and other auxiliary information to reconstruct the original signal.

The PSWT coefficients were reconstructed back using the inverse LPC techniques.

The PS data matrix is recovered using the IPSWT computation as given in figure 3.10.
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Employing the multi rate techniques, the PS data were denormalized using the MEP and

the period difference information. Equation 4.3 was then used to regenerate the original

10 signal. Figure 4.15 shows the reconstructed signal the error in reconstruction. It

may be noted that the error of prediction is very insignificant.
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Figure 4.15: Reconstructed ECG and the error of prediction

The variants as discussed in section 4.2.6 were separately analyzed to optimize the

parameters used for the encoding process. Tables 4.2 - 4.6 show the effect of change of

these variants on the performance of the coder with respect to an ECG segment from

the local data base.
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DATA WLT .J PNF NB p SNR NRMSE NMAE CR
dbl 43 0.75 0.90 72.0
db2 43 0.75 0.90 66.0
db3 43 0.74 0.90 63.0

Local db4 2 5 5 2 42 0.75 0.90 58.0
db6 42 0.78 0.91 51.0
db8 42 0.77 0.91 46.0
dbl0 42 0.80 0.91 42.0
db20 42 0.81 0.91 29.0

Table 4.2: Wavelet Optimization for ECG data compression.

DATA WLT .J PNF NB p SNR NRMSE NMAE CR
1 42 0.76 0.90 73.0
2 43 0.75 0.90 72.0

Local dbl 3 5 5 2 42 0.76 0.91 71.0
4 42 0.77 0.91 70.0
5 42 0.78 0.91 69.0

Table 4.3: Optimization of level of decomposition for ECG data compression.

DATA WLT .J PNF NB p SNR NRMSE NMAE CR
0 17 14.44 9.08 94.0
1 20 10.42 6.37 82.0
2 31 2.76 1.63 82.0
3 38 1.32 0.85 82.0
4 41 0.89 0.84 82.0

Local dbl 2 5 5 2 43 0.75 0.90 82.0
6 43 0.70 0.95 82.0
7 43 0.69 0.99 82.0
8 43 0.69 1.02 82.0
9 43 0.70 1.04 82.0
10 43 0.70 1.05 82.0

97

Table 4.4: Optimization of the Period normalizing factor for ECG data compression.
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DATA WLT J PNF NB p SNR NRMSE NMAE CR
1 42 0.77 0.90 72.0
2 42 0.77 0.90 72.0

Local dbl 2 5 3 2 42 0.76 0.90 72.0
4 42 0.75 0.90 72.0
5 43 0.75 0.90 72.0
6 43 0.75 0.90 72.0

Table 4.5: Optimization of the number of beats needed for computing the predictor for
ECG data compression.

DATA WLT .J PNF ND p SNR NRMSE NMAE CR
1 24 6.33 4.86 108.0
2 43 0.75 0.90 72.0
3 43 0.71 0.92 54.0
4 43 0.70 0.93 43.0

Local db1 2 5 5 5 43 0.69 0.94 36.0
6 43 0.68 0.94 31.0
7 43 0.67 0.94 27.0
8 44 0.67 0.94 24.0
9 44 0.67 0.94 22.0
10 44 0.66 0.94 20.0

Table 4.6: Optimization of the predictor order for ECG data compression.

Parameter Abbreviation Value

Wavelet WLT dbl

Level of decomposition J 2

Order of prediction p 2

Period normalizing factor PNF 5

Number of beats for evaluating

the predictor coefficients NB 5

Table 4.7: Optimized parameters for ECG data compression
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Based on the observations on different signals as given in the table 4.1, the opt i­

mal parameters for the predictive coding of ECG data were selected which is given in

Table 4.7. Wherever the improvement in the performance measures on variation of a

parameter is not much appreciable in comparison with the computational burden, the

one with minimum computation is selected. Table 4.8 summarizes the results obtained

with the optimized parameters for the encoder, on a few ECG signals including that of

pathological subjects.

The values of NMAE and NRMSE are high for pathological subjects due' to large

variation in period-to-period ECG. In such cases, the quality of reconstruction is found

to have increased with the order of prediction. For normal subjects the CR went even up

to 72 with SNR greater than 40 with NRMSE and NMAE less than unity, which is well

acceptable reconstruction quality. Even higher rates of compression could be achieved

by logically eliminating the less significant coefficients from the PSWT coefficients.

4.3.2 Case Study 2: Vocal sound

Speech and music signals comprise of voiced, unvoiced, silent and transition regions.

The voiced region, which forms the major part in such signals is of pseudo-periodic in

nature. Hence such regions were identified and segmented out to apply the compression

technique. An automatic method that has been developed for this application is pre­

seuted in Appendix B. Both male and female sounds were used for the study. The signals

were sampled at different frequencies like 44.1kHz, 22.05kHz, 16kHz, and 8kHz.

The optimum parameters for the compression study has been experimentally ob­

tained as in the case of the ECG compression. The effect of different variants on the

performance of the compression scheme is shown in figures 4.16- 4.19.

It may be noted that, the SNR values in almost. all cases are greater than 15 resulting

in very good perceptual quality for speech. Hence in the case of speech, a MOS evaluation

turns out to be irrelevant. For musical signals, slightly higher SNR is required for to
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Wavelet used: Haar Level of Decomposition: 2
Order of Predictor: 2 Period Normalizing factor: 5
Data base Record No. Signal details SNR NRMSE NMAE cn

db (%) (%)
Record 1 43 0.75 0.90 72.0
Record 2 42 0.76 0.89 72.0

Local Record 3 250 Hz, 16 bit 3] 2.R4 3.09 59.0
Record 4 39 1.12 1.59 60.0
Record 5 30 3.03 6.43 59.0

101 28 2.18 6.74 84.0
103 30 2.51 5.85 84.0

MIT-BIH 102 360 Hz, 11 bit 29 2.30 8.19 68.0
-ADB 104 32 2.01 5.54 76.0

105 32 2.08 6.51 no
13420_06 30 3.13 3.67 70.0
13420_10 28 3.29 6.46 65.0

MIT-BIH 13420_02 250 Hz, 12 bit 30 2.53 5.74 89.0
-COB 13420_03 33 1.75 2.88 87.0

13420_07 38 1.15 1.95 85.0

Table 4.8: Summary of compression study on different ECG records
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Figure 4.16: Performance of PSWT based LPC on a segment of male voice sampled at
16kH,-variation with Normalizing factor
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Figure 4.18: Performance of PSWT based LPC on a segment of male voice sampled at
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rank the MOS as excellent. The parameters optimized for voice compression study are

summarized in table 4.9.

Parameter Value

Wavelet db1

Level of decomposition 1

Order of prediction 2

Period normalizing factor 5

Number of beats for evaluating

the predictor coefficients 5

Table 4.9: Optimized parameters for compression of human voice at 16kHz sampling
rate

This case study is presented on a typical voiced segment of 4000 samples at 16kHz,

a part of which is shown in figure 4.20, taken from a carnatic music sung by a female

artist. For period estimation, the autocorrelation method was used. The frame size was

selected as 220 samples. The frame-by-frame autocorrelation function for a few frames

is given in figure 4.21.

The local period information was extracted as the distance between the successive

local peaks of the function. The frames were repeatedly updated to get continuous

information about the local periods. The extracted period information is given in the

following row vector.

P(k)=~~590000~59585859005858~~58~

59 58 57 5758 5758 58 57 57 58 57 57 58 57 57 58
(4.10)

~595858595959~595958~OO57~OO57

590057~58~~OO~59005859595858~
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Figure 4.21: Frame-wise autocorrelation plot of the segment shown in fig. 4.20
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Type of Signal Sampling rate & bit size Performance
SNR CR

8kHz, 16bit 24 24
16kHz, 16bit 28 47

Male Voice 22.05kHz, 16bit 34 65
44.1kHz,16bit 36 124
8kHz, 16bit 20 11
16kHz, 16bit 26 23

Female Voice 22.05kHz, 16bit 29 31
44.1kHz, 16bit 30 59

Table 4.10: PSWT based LPC performance on voiced segments of human voice at
constant pitch sampled at different frequencies.

Using this period data, the signal was arranged in the PS form. The rest of the

procedure for this study was exactly the same as that followed for ECG data compression

discussed in the previous section. Figures 4.22 shows the reconstructed signal and the

error in reconstruction in comparison with the original.

The result obtained in applying the compression scheme on a few signals including

male and female voice at a constant pitch period (Pitch corresponding to the 0, note.

in the musical scalo) sampled at different rates is given in table 4.10. From the table

it is obvious that, both the compression ratio and the signal reconstruction quality are

better for signals sampled at high rates. Moreover, the compression achieved for male

voice is considerably higher than that for female voice at the same pitch frequency.

4.3.3 Case study 3: Instrumental Music

PSWT is quite appropriate for musical signal processing, as musical notes comprise of

a number of frequency components, all harmonically related to the fundamental. Every

musical instrument has its own characteristic tone qualities often called the timore or

tone colour. It is this attribute which enables the listener to identify the instrument

producing the tone.

A musical signal is non-stationary in nature, and it is an ordered set of isolated
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frequencies, {fa, ft, h h··· fM} where fi < fi+1, i E Z, and i > 0 [110]. Here 1\1 is the

highest perceivable harmonic present in the instrument tone and is different for different

musical instruments. The constituent harmonic frequencies are called the instrument

partials. In most of the cases, these partials are harmonically related to the fundamental

fo as in the relationship, fi = i * fo. The partials in a harmonic set are integer multiples

of the fundamental. For a monochromatic signal, the term pitch is identical to the

frequency itself. But in the case of musical instruments producing polyphonic sound,

the fundamental, rather than the wideband set of partials, determine the pitch.

Basically musical instruments fall into different categories like Reed-type woodwind,

Blow-type woodwind, Plucked string, Bow-type string etc. Typical cases from each of

the above classes of instruments as listed below have been considered in this study and

the results arc summarized.

Violin: Bow-type string instrument

Guitar: Plucked string instrument

Harmonium: Reed-type woodwind instrument

Flute Blow-type woodwind instrument

In all the cases, the UDWT based method has been used for the pitch determination.

The parameters optimizd for the PSWT based coding of the instrument tones are given

in table 4.11. All the signals were sampled at 22.05kHz at 16 bit resolution.

Figures 4.23-4.26 illustrate the details of predictive coding and compression on typ­

ical violin, guitar, double reed harmonium, and flute tones. Based On the observations

011 a number of musical instrument tones, the values of SN R and compression achieved

for some of the signals with the optimized parameters used for the compression study

are tabulated in table 4.12. In all the cases the SNR values are high enough to rate the

reconstructed signal quality as excellent.
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Parameters Value
Violin Guitar Harrnoniurn Flute

Wavelet dbl dbl dbl dbl
Level of decomposition 1 2 2 1
Order of prediction 2 2 2 2
Period normalizing factor 5 5 5 2
Number of beats for evaluating 5 5 2 2
the predictor coefficients

Table 4.11: Optimized parameters for the PSWT based LPC of few musical signals
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Figure 4.23: PSWT based LPC of a typical segment taken from a Violin tone (a) Original
(b) Reconstructed (c) Error
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Figure 4.26: PSWT based LPC of a typical segment taken from a Flute tone (a) Original
(b) Reconstructed (c) Error

4.4 Feature Enhancement considerations in PSWT domain

The PSWT based LPC technique presented in the previous section could be employed

with any pseudo-periodic signal in general. The LPC technique is basically a lossy

scheme and the error introduced in coding is inversely proportional to the order of

the predictor. The irregularity in the signal, like the noise contamination, demands a

higher order predictor to get acceptable reconstruction quality. This noise part has to

be removed at an appropriate level, earlier if possible, the better. Since this noise part

will get reflected more in the PSWT coefficients, the presence of noise will result in

relatively high energy fluctuations at lower levels of PS wavelet decomposition. In view

of this fact, some techniques are introduced here, which can be applied in the PSWT

domain to enhance the signal quality.

Assuming Ulj(n) to be the signal component which gets decomposed into the j'h level

of details, and "Y.J(n) be the residue signal getting transformed into the approximation
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Instrument Signal Characteristics Mean period SNR (db) CR
(samples)

Violin 65 23 23
Guitar 22050 Hz, 16 bit 114 32 38
Harmonium 83 30 28
Flute 68 28 23

(4.11)

Table 4.12: Summary of compression study on different musical instrument tones

space at a finite level .J of the PSWT decomposition, the original signal x(n) can be

expressed in terms of the wavelet and scaling partials as:

J

x(n) = L wj(n) + "u(n)
j=!

It may be noted that wj(n) corresponds to the extend of fluctuations at scale 2j local

pitch periods, whereas "o(n) represents the asymptotic average behaviour including the

melodious harmonics over several pitch periods.

Due to the inter-period similarity, most of the energy contained in the music signal

appears in the scaling residue itself. This includes all the spectral components centered

on the fundamental and its harmonics, which forms the vital melodious part of the

music. On the contrary, the wavelet partials carry other information, which lies near

to the harmonics. They also contain other non-melodious, unwanted side bands. Such

information gets pushed more into the details spaces, indicating the degree of period-to­

period fluctuations present in the signal. Hence the PSWT coefficients at different levels

can be suitably thresholded or amplified to get rid of the noise components and enhance

the melodious components. Being in the PSWT domain, in addition to enhancing the

signal quality, it will improve the efficiency of the predictor as well, as we need to use

lower order predictors only, for the same degree of reconstruction quality. Even though

this method is sometimes not effective for low frequency noise components like power

line noise etc., it is quite suited for instrument-dependent noise removal.
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4.4.1 Method of Noise suppression and Feature enhancement
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Musical instrument tones are often prone to noise contamination and peculiar character­

ization. This include the striking noise in the case of string instnunents, deterioration of

tonal quality due to immature playing, personal jesters used while playing, mechanical

sound of any moving parts, etc. These are mainly instrument dependent and in many

cases they contribute to unpleasant effects in the musical tones. Mutilated signals from

four different instruments are considered in this study, where the proposed method is

applied to separate the disturbance part from the melodious instrument tones. The

signals were of 16 bit resolution, sampled at 22050Hz, the details of which arc given in

table 4.13.

Sl. no. Instrument nnder study Disturbance present

1 Violin: Unpleasant noise due to bow movement
Bow type String

2 Acoustic Guitar: Spurious oscillations due to eccentric striking
Plucked string

3 Harmonium; Blow noise produced by the bellows
Reed type woodwind

4 Flute: Shrill oscillations due to change of
Blow type woodwind blowing air pressure

Table 4.13: Details of mutilated music signals considered for illustration.

The results shown are that of a study based on a 3 <level PS wavelet decomposition

using the db2 wavelet. After the decomposition, the PSWT coefficients are thresholdcd

by a factor dependent on the energy content in each of the wavelet subspaces. As the

noise components gets transformed mostly into these subspaces, this operation consid­

erably suppresses the noise part in the signal. Since the melodious portions are mainly

sieved into the approximation subspace, the scaling coefficients are amplified by a factor
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Figure 4.27: 3-Level PSWT of a Violin signal mutilated by Bow noise (a)-(c): Wavelet
partials at level 1-3 respectively. (d): Scaling partial at level 3 (e): Original signal.

dependent on the total energy of the signal. This method is found to enhance the music

quality.

Figures 4.27- 4.30 demonstrate the details of this study. In all the above cases,

it is observed that the non-melodious instrument-dependent disturbances are mostly

sieved out into the wavelet subspaces during the first and second levels of decomposi­

tion. The PSWT scaling partials at the third level is found to contain the melodious

components present in the signals without appreciable loss of energy. This is clear from

the figures 4.27 doe, 4.28d-e, 4.29d-e and 4.30d-e.

The trailing end of the violin signal is contaminated by heavy bow-noise and hence

the wavelet partials corresponding to this region contain morc energy which if' 111lCX-

pcctcd in melodious signals. In the case of the guitar signal, the wavelet partials contain

significant energy (fig 4.28a-c). It is attributed to the enormous distortion present in

the signal. Similarly as the agitation in the flute signal is sustained throughout. t.hc

note, the lower level wavelet partials contain a near-to-uniform distribution of the 11011-
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Figure 4.28: 3-level PSWT of a Guitar signal mutilated by eccentric striking noise (a)-(c)
: Wavelet partials at levels 1-3 respectively. (d): Scaling partial at level 3 (e): Original
signal.

Figure 4.29: 3-level PSWT of a Harmonium signal mutilated by bellows blow noise
(a)-(c): Wavelet partials at levels 1-3 respectively. (d): Scaling partial at level 3 (e):
Original signal.
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Figure 4.30: 3-Level PSWT of a noisy Flute signal (a)-(c): Wavelet partials at level 1-3
respectively. (d): Scaling partial at level 3 (e): Original signal.

harmonic signal components. The disto.rtion in the harmonium signal is well localized

and is almost transformed in the highest frequency wavelet partial.

4.4.2 Effect of Feature Enhancement in PSWT based Predictive Cod­
ing

The effectiveness of the PSWT based coding scheme, to a large extend, depends on the

quality of the signal and the level of periodicity present in the signal. Almost all PSWT

coefficients of a polluted signal are found significant for a true reproduction of the signal

at the reconstruction end, whereas for a pure signal, quite a good number of them

are insignificant or can be coded with less number of bits, enhancing the compression

efficiency. As a result, the application of PSWT based feature enhancement techniques

before t.hc compression, improves the compression as well.
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4.5 Conclusions
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A new method for the analysis and compression of general psoudo-periodic signals has

been introduced. In addition to making use of the periodicity property of the signals

this method uniquely combines the advantages of LPC technique with the popular WT

methods. The scheme includes various tasks like identification of pseudo-periodic regions

in signals, continuous estimation of the local periods, sampling rate conversion, PSWT

computation, predictive coding of the PSWT coefficients, and the corresponding inverse

operations. It has been observed that predictive coding of PSWT coefficients has greater

potential in signal compression compared to the ordinary DWT based methods. Thc

proposed method has been validated with different classes of practical signals like ECG,

human voice and musical instrument tones. The various parameters for the compression

such as the type of wavelet, order of prediction, level of decomposition, etc. were

optimized for each of these classes. The UDWT based methods are found superior

in period cstimation of signals like ECG and musical instrument tones, compared to the

autocorrelation based methods. The period normalization is found to have improved the

beat-to-beat correlation, contributing to better compression. The effectiveness of the

method is largely dependent on the accuracy with which the local periods are estimated.

The noise contamination in the signals is found to reduce the efficiency of compression.

The PSWT-based feature enhancement techniques proposed in this chapter has resulted

in better compression and reduction in bit size for coding the coefficients.
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Chapter 5

The PMS Computational
Structure

In the present chapter the P MS computational structure developed for D Wl' computation

is presented. A brief introduction. to the computational issues in WT implcmenuuion is

given followed by the development of the PMS structure. The computational efficiency

of this structure is compared against the popular pyramid structure. The case of PSWT

based ECG data compression is taken as a case study to highlight the cfficiency of the

new scheme. Subsequently a description on the 2D extension of the PMS structure arul

a case study on edge detection. is given. The chapter is concluded with the importa.nt

results and observations regarding DWT computation employing the PMS structure.

117
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5.1 Introduction
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Signal decomposition studies using WT is an active research topic which finds extensive

applications in science, engineering and technology. Development of new algorithms

and the issues related to the computation of different types of WT are among the areas

that gained primary importance. The competency of computational algorithms depends

on various factors such as the number of multiplications, number of additions, number

of data interchange operations, data dependency, computational delay, parallelism in

computation, simplicity in algorithm, possibility of direct computation of intermediate

results etc. As a result, all these became topics of interest to the research commu

nity. Several efficient algorithms have been derived for the implementation of wavelet

transform. Many researchers have made comparison of these algorithms based OIl corn-

putational complexity as mentioned in chapter 2.

In the present work, the computational complexity of the pyramid structure] has

been analyzed and the PMS structure is proposed as an efficient alternate scheme for

real-time computation of DWT and IDWT. The underlying idea is to reduce the number

of computations, incorporate parallelism computing coefficients at different levels of

computation maintaining a regular computational structure, enable direct computation

of transform coefficients at any preferred level and perform block wise computations after

segmenting the signal based on an optimal selection of the frame size for any specific

application. The PMS2 structure is shown to be advantageous for PSWT computation

as well as for various ID and 2D signal processing applications.

5.1.1 Issues in Wavelet Transform Computation

In most of the algorithms developed so far, the DWT computation is performed based

on the filter bank tree structure. The main disadvantage of using this serial structure

1Interchangeably used as filter bank structure and tree structure
"parallel multiple subsequence
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lies in the fact that, dctermination of the wavelet coefficients at the j'h level requires

(j - 1) times of successive low pass filtering followed by one high pass filtering. The

delay associated with the implementation grows exponentially with the number of lev­

els [182]. Further, for applications where wavelet coefficients at chosen levels alone arc

required, one has to perform unnecessary computations by way of cvaluatiug the lower

lcvel coefficients.

In real-time signal processing applications, the WT computation need to be per­

formed on a frame-by-frame basis. In such cases, employing the above algorithms per

sc results in undesired artifacts at the ends of each frame. To resolve this difficulty.

many researchers have come out with BDWT3 algorithms [187], [188). These algorithms

arc found to have difficulties related to large storage buffer requirement and frequent

inter-processor communication.

In many applications like the functional neuro-imaging, feature enhancement and

uoise removal, period estimation, computer-assisted mammography etc., there arc sit­

uations in which the information contained in the WT coefficients at a few selected

levels only are essential to deduce the results. Consequently, in such applications, the

WT coefficients at these desired levels only need be computed [189], [221]. Here the

conventional Mallat algorithm proves to be an inappropriate choice as it is a sequen­

tial implementation, which essentially goes through all intermediate levels, whether it

is ultimately required or not. Hence a parallel computational structure would be an

ideal choice for this type of applications. The efficiency of parallel algorithms highly

depends on the extent of inter-processor communications that the process demands and

the intermediate storage requirements. In massive computational environment, the par­

allel computation of the WT coefficients with minimum inter-processor communication

is much appreciated.

:lBloek Discrete Wavelet Transform
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5.2 Development of the PMS Structure for ID Signals
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The DWT of any signal :r(n) may be expressed [11] as the ensemble of projections Xi.k

and (3J,k of x(n) over the wavelet sequences 'ljJi,k(n) and the scaling sequences <PJ,k(n)

respectively, where the forst index i = 1,2, ... J represents scale and the other index

k = 0, 1, 2, ... is associated to time shift. Using mathematical notation,

and

Xi,k = Lx(n)'ljJi,k(n)
n

(3J,k = L x(n)<pJ,k(n)
n

(5.1a)

(5.1b)

where 'ljJi,k(n) = 'ljJi,O(n - 2ik) and <PJ,k(n) = <PJ,o(n - 2Jk).Corresponding equation for

lOWT computation will be:

J

x(n) = L L Xi,k'IjJi,k(n) + L(3J,k<PJ,k(n)
i=l k k

(5.2)

Here the wavelets and scaling function at each level are iteratively updated using the

relations [41:

and

<PI,o(n) = g(n); 'ljJ1,o(n) = h(n)

<pi+I,o(n) = L <Pi,O(q)g(n - 2q)
q

'ljJi+I,o(n) = L 'ljJi,O(q)g(n - 2q)
q

(5.3a)

(5.3b)

(5.3c)

where hand 9 are the impulse responses of the high pass and low pass filters respectively

of the QMF4 bank corresponding to the wavelet. The wavelets in equation 5.3 can easily

be shown to be a set of band pass filters with impulse response hi for i of 1, and a high

pass filter of response hi for i = 1, where hi stands for the analysis discrete wavelets and

"quadrature mirror filter



122 Chapter 5. The PMS Computational Structure

x(n)

yen)

Figure 5.1: Simple structure for the parallel computation of DWT & IDWT.

gJ stands for the corresponding scaling sequence. The associated reconstruction filters

17.; and g~ can be obt.ained by putting the associated reconstruction filt.ers hand 9 in

place of 17. and 9 in the above equat.ion. The filters 17., g, hand 9 are related one another

which depends on the t.ype of wavelet. system selected, as derived in Burrus et at [81].

It can be easily understood from equations 5.1, 5.2 & 5.3 that, the process of decom­

position and reconstruction are multi-band filt.ering operat.ions as shown in figure 5.1, in

agreement to the usual filt.er bank structure. In contrast, as allleve1s of decomposition

and rcconstruct.ion can be performed independently, this is more suitable in parallel

processing environment. From the figure it. may be observed that a number of comput.a­

t.ions performed during each of the convolution operat.ion is irrelevant. as fa.r as the final

output of t.he stage is concerned.

5.2.1 Eliminating Irrelevant Computations

The Xi.k in equation 5.1 can be viewed as a convolut.ion operat.ion between the input.

signal :r(n) and the wavelet. filter hi (-n) followed by down sampling by a fact.or of 2'.
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It can be mathematically expressed as

Xi.k = (:r(n) * h;( -n)) 12"
Similarly,

(5.4a)

(3.1,k = (x(n) * gA-n)) 1 2.1 (5.4b)

(5.5)

Here the' l' represents the downsampling operation. The synthesis equation 5.2 accord­

ingly gets modified as:

J

x(n) = L X i ,n/ 2i * h,(n) + (3J,n/2J * i'/J(n)
i=l

Here it is clear that, for each transform coefficient being added at the i t h level

during decomposition, the downsarnpling operation following the convolution simply

removes 2; -1 samples from the output of convolution immediately after its computation,

without being used anywhere else. Similarly, during reconstruction, the upsampling

operation prior to the convolution increases the length of the sequence being convolved

by 2' - 1 samples per final output sample without adding any new information. For

an efficient implementation of the computation scheme, these unsolicited computations

arc to be eliminated. If the subsampling is performed before the convolution operation,

the data length at the i th level convolution is reduced by a factor of 2'. Similarly,

during reconstruction if the convolution is performed before the upsampling operation,

considerable reduction is achieved in the length of the sequence being convolved. These

modifications as done in the case of lifting scheme [178], along with the principle of

polyphase splitting [217] could be made to advantage in the elimination of undesired and

redundant computations.

5.2.2 The Proposed Structure

Consider the computation of the scaling and wavelet transform coefficients using tho

expression 5.4. The sequences involved in the convolution are x(n), hi(n), and [J.i(n).
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Taking the first level, to get the transform coefficients, the convolved result is downsam-

pled by a factor of 2. Using the polyphase splitting, the same result can be achieved in

a different way. The original sequences x(n), hl(n) and 91(n) are first split into the even

indexed samples

Xl e = x(2k), hIe = hl(2k), 91e = 91(2k)

and the odd indexed samples

:rl0 = 1:(2k+ 1), h10 = hi (2k + 1), 910 = 91 (2k + 1); k E Z.

These sequences can be separately convolved as per the following formula to get the

transform coefficients at the first level.

(5.6a)

(5.6b)

In the case of a multi-level decomposition, the above procedure can be extended to

all the parallel branches in figure 5.1. Following a similar argument, each of the even

and odd subsequences in equations 5.6a and 5.6b. is again split into their even and odd

samples, resulting in 2i subsequences at the i'h level. These multiple subsequences can

be mathematically expressed as",

hip(k) = hi(2 ik +P - 1)

(5.7a)

(5.7b)

(5.h)

where p = 1,2, ... , 2i . The signal subsequences are convolved with the relevant wavelet

or scaling subsequences as the case may be, and the partial results are then added

together to get the transform coefficients at the corresponding level. In view of this,

5I-Iere it is assumed that the sequences are multiples of 2i
, else they may be zero padded to t.his

length
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x

Figure 5.2: A PMS Comput.ational block for decomposit.ion (N = 2J )

expressions 5.4 can be written as

2'

Xi.k = L xip(k) * hip(-k)
p=l

(5.8a)

2 J

(1./.k = L:I:.1I'(k) * 9.11'( -k) (5.Sh)
1'=1

These computations arc all independent and hence can be performed in parallel en-

vironment wit.hout. any intor-proccssor communicat.ion except. for the final addition of

t.he partial results. Figure 5.2 shows the configuration of one such block of the Parallel

Multiple Subsequence computational st.ruct.ure applicable for the j'h level decomposi­

tion. Here t stands for t.he filt.ers h or 9 as the case may be. Qj represents the transform

coefficients XJ or (3j'

A similar argument. can be followed in the case of reconstruction t.o eliminat.e the

unwant.ed comput.at.ions. The upsampling operations shown in figure 5.1 could be per­

formed aft.er t.he convolution wit.hout affecting the end result. This also is achieved by

a level-dependent subsequence decomposition of the wavelet and scaling sequences at.

each level as described below.

Considering the first level wavelet. partial reconstruction, the filter sequence is divided
- -

into the even sampled sequence hIe and the odd sampled sequence hID' Both of these
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subsequences arc convolved with the WT coefficients Xl(k). The partial results arc

upsampled by 2 and added with one unit delay for the sequence Xl (k) * h. 1e (k). The

first level wavelet partial be now expressed as

(5.9)

This procedure is extended to all the partial sums by incorporating a level dcpondcnt

division of the wavelet/scaling coefficients as

(5.IOa)

(5.IOb)

These subsequences are convolved with the transform coefficients at the approprial e

level. These convolved partial results at each level i arc upsampled by 2i and theu

added resulting in the i'k level wavelet or scaling partial given by

where,

and

2i

Yi(n) = LYip(n - p + 1)
p~l

2J

I.J(n) = L I.Jp(n - p + I)
p~l

(5.11a)

(5.11b)

(5.12a)

(5.12h)

Here the' T' denotes upsampling operation. The PMS computational structure perform­

ing the j'k level reconstruction is shown in figure 5.3. Here qj stands for the wavelet

partial Yj or the scaling partial Ij as the case may be.

The reconstructed signal can then be expressed as the sum of all the wavelet par­

tials and the scaling partial corresponding to the l'h level as expressed by the final

reconstruction equation,
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Figure 5.3: PMS Computational block for j'h level reconstruction.

J

Yin) = LYi(n) + 1J(n)
i=l

127

(5.n)

The remodelled computational structure for a two level DWT-IDWT implementation

as per the new algorithm is shown in Figure 5.4. This being a regular structure, can be

easily extended to any level. As evident from the figure, this structure has parallelism

both within and between levels, making it suitable in parallel processing environment.

5.2.3 Analysis of Computational Complexity

In this section, the computational complexity of both the pyramid structure and PMS

structure are estimated in terms of the real arithmetic operations involved in the com­

putation of the transform coefficients. Expressions arc derived for the number of multi­

plications and additions required to perform the decomposition and reconstruction.

5.2.3.1 Estimation of Computational burden for pyramidal structure

In of the DWT computation using the pyramidial structure, each level require two con­

volution operations followed by downsampling. The convolution between two sequences

of length 11 and 12 requires 1112 multiplications and (11 - 1)(12 - 1) additions. The re­

sulting sequence will be of length 11 + 12 - 1. In using the pyramid structure, though
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,,(n) x, y(n)

Figure 5.4: The Complete PMS structure for 2-level DWT and IDWT Computation.

the filter length remains the same for all levels, the input sequence length get.s sucr-es­

sively modified due to the increase in length resulting from convolut.ion operation at

t.he previous level, and the decrease in length resulting from downsarnpling opcration.

Assuming Ix is the length of the input sequence at level i = 0 and Iw , the length of the

wavelet filter, input sequence to the i th level will be of length''

For a J-lovel decomposition, the total computational burden is

~f~1 2[lx + (2i--l - 1)(lw - 1)/2i
-

11Iw multiplications

and ~f=1 2[(lx + (2i - 1
- l)(lw - 1))/2i - 1

- I](lw - I) additions.

This is simplified to

"Here the length of wavelet and scaling filters are assumed to be the same. The fact that the Iengt.h
of the resulting sequence thus evaluated may not be an integer, is not of much concern at this point. as
it will not affect the discussions to follow
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2/",[J(I'll - 1) + 2(1 - 2-.I)(lx -I'll + 1)] multiplications

and 2(I 'll - l)[J(l'll - 2) + 2(1- 2-J)(l
x -I'll + I)] additions respectively.

It is shown [4] that for ID\VT, the number of arithmetic operations required is exactly

the same as that of D\VT.

5.2.3.2 Estimation of Computational burden for PMS structure

In the PIvlS structure, the length of both the inpnt sequence and the filter sequences

are varying depending on the level of computation. At level i, the input sequence

and wavelet/scaling sequences are split into 2i subsequences, each of length lx/2
i and

[(I'll - 1)(2i - 1) + 1]/2i respectively. For a .I-level decomposition the total number of

multiplications required is

.I
2,)lx [(l 'll - 1)(2 i

- 1) + 1]/2 i
} + Ix[(l'll -1)(2 J

- 1) + 1]/2.1.
i=l

This may be simplified to l x [l + J(I'll - I)].

The number of additions is

This gets simplified to [(I'll - l)(lx - 1) + l]J.

During the reconstruction phase, the wavelet/scaling filter coefficients are reor­

ganized into subsequences as in the case of decomposition and then convolved wit.h

wavelet/scaling transform coefficient.s before upsampling. The resulting sequence is re­

quired t.o be finally truncated to a lengt.h of Ix. The operat.ions t.hat. are needed for

computing the t.erms being thus removed, are eliminated at each level during t.he con­

volution itself by modifying the convolution operation for Yip(n) and "f.lp(n) given in

equation 5.12 as:
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and

!.J;.+~-1
21 21

Yip(n) = { L X i(r)l'ip(k - rn t 2i

r=~-l
2'

(5.14a)

(5.14b)

~,

.
,~

•

~+~-l

IJp(n) = { L (3J(r)gJp(k - rn t 2J

r=~-l

where lWi = (lw -1) (2i -1) +1. This implies that the number of multiplications required

for reconstruction is the same as that of decomposition.

Finally, the number of additions needed for a J level IDWT computation can be

expressed as

p1 {l [(lw-l)(2
i-l)+1

_ I]}+ l r(lw- 1)(2J-l)+l - 1] + l J
Lt=1 -z 21 X 2) z

which gets simplified to lxJ(lw - 1). The operations required for adding the 2i subse­

quences in each of the i th level are ignored, as they are all null additions .

5.2.4 Comparison of PMS Structure with Pyramidal Structure

In order to visualize the computational advantage of the PMS algorithm over the pyra­

mid scheme, a comparison of the computational burden is made for both decomposition

and reconstruction based on the number of real multiplications and additions.

Figure 5.5 shows the performance in two typical cases. The arithmetic operations for

different data lengths (lx) and wavelet lengths (lw) are plotted as a function of the level

of decomposition. Fig. 5.5(a)-(b) show that the PMS structure is best suited for OWT

computation when the number of levels is less than 4. It is independent of the signal

length and applicable for wavelets whose support is 2: 4. A good majority of practical

applications of time-scale analysis need only few levels of wavelet decomposition [217].

For such applications the proposed computational structure is seen to be advantageous

over existing schemes. Fig. 5.5(c)-(d) show the comparison for smaller wavelets like Htuir.

In such cases the number of multiplications required for the PMS implementation is
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considerably less than that for the corresponding filter bank method even up to 6 levels.

The Haar wavelet has been identified as the best wavelet for a number of applications

like speech processing, cosmological studies etc. [9], [156], [222].

Figures 5.6 & 5.7 are drawn to show the relative performance of the two algorithms

on simultaneous variation of the signal length, wavelet length and level of decomposition.

For each level of decomposition, the Ix -lw plane (fig. 5.6) can be split into two regions

- one in which the PMS method performs better and the other in which the Filter Bank

method is better, in terms of the total number of multiplications. For example the

region to the left of the curve (marked J=4) indicates the area where the PMS method
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Figure 5.6: Relative performance of the PMS and Filter Bank Structures for variable
signal and wavelet lengths for a 4-level decomposition.

outperforms the filter bank scheme for different values of signal and wavelet lengths

corresponding to a 4-level decomposition.

The curves in fig. 5.7(a) show the boundary between the two regions for different

values of J. The portion of the plot related to wavelets of smaller support is redrawn

in fig. 5.7(b). It is observed that the PMS structure is more advantageous for signal

processing applications where smaller data sequences are involved. One typical example

would be the PSWT based signal processing. The PSWT computation of a long sequence

can be interpreted as a collection of DWT computations on smaller sequences. Hcuco

the PMS structure helps in faster computation of PSWT.

Another remarkable observation that eould be made from fig. 5.7 is that, once the

wavelet system and the level of analysis are finalized, the input frame length can be

suitably selected, so that the computations are reduced considerably. This is typically
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the requirement for real-time signal processing applications, where the input data is

always taken in small frames, whose size depends on the extend of computations involved

and also 011 the nature of application under consideration [223], [2241. In such cases, the

DWT computation has to be performed bloekwisc [1981. The best value of block size

for a PMS implementation can be selected using fig. 5.7 so that the total computational

burden for long-time processing is minimized.

. The computational advantage of the PMS scheme is further amplified for applications

in which the transform coefficients corresponding to selected levels alone arc needed.

This is illustrated in figure 5.8. Here the PMS and filter bank structures are compared for

the direct computation of transform coefficients at the selected levels. The PMS method

is always superior for such applications. It is because that, for directly computing

the transform coefficients at any arbitrary level using the filter bank structure, the

computation of approximations at all the preceding levels also are to be performed.

5.2.5 Case Study: PSWT Computation

The PMS structure developed in the previous section can be adapted to any ID signal

processing tasks. Different applications employing DWT based MRA techniques like

noise separation, transient detection, ECG signal analysis etc. were carried out to

establish the suitability of the structure in DWT computation. In this section, the

PSWT computation in the PSWT based Linear Predictive Coding and Compression of

ECG signals discussed in subsection 4.3.1 is presented as a typical case study.

PSWT can be interpreted as the DWT of points on the ID signal which are one pitch

period apart. Once the signal is written in the PS form, the signal samples separated

by one period will appear as the adjacent points in each row sequence. Hence, a row­

wise DWT computation performed on all rows of the PS matrix results in the PSWT

computation of the ID data. Since these row sequences are small in length, the PSWT

computation becomes much better if the PMS structure is used instead of the pyrami-
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Figure 5.8: Comparison of PMS structure with filter bank for computation of coefficients
at selected levels (for Iw = 40, Ix = 1000).

dal structure. To get a quantitative measure of the computational advantage, a 10000

sample ECG data taken from the MIT/BIH database as shown in fig. 4.10 is considered.

The number of beats contained in the ECG segment was 31 and each beat was normal­

ized to five times the maximum, making all the beats of period 1720. The normalized

data matrix is now of size 1720 x 31. To compare the computational advantage of the

PMS structure, the PSWT computation of this data matrix is performed using different

wavelets at different levels, using both pyramid and PMS structures. The computational

burden in each case has been tabulated in table 5.1. Table 5.2 is the results of similar

study on the signal with double the length. It can be noted that in the case of smaller

input signals, the PMS structure is more efficient. Also, the computational efficiency is

seen to be more in the case of higher levels of decomposition and for smaller wavek-t

lengths.
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Signal:10000 samples of MIT-BIH ECG data(Record no.lOl)
No. of multiplications(x10000)

wavelet level-3 level-4 level-5 level-6 level-7
.;; .;; :;; .;: :8
S (f) S (f) S (f) S (f) S
oj oj oj oj oj (f)... :::E ... :::E ... :::E ... :::E ... :::E>, 5: 5: 5: 5:0- o, c, il-< c, c,

dbl 39 22 42 27 44 32 45 38 46 43
db2 80 54 89 70 96 86 101 102 106 118
db3 125 86 142 112 156 139 168 166 179 192
db10 226 150 266 198 302 246 335 294 367 342
db20 537 310 678 411 814 512 937 614 1079 715

Table 5.1: Comparison of computational efficiency on ECG data of length 10000 in
PSWT computation on a small ECG segment.

Signal:20000 samples of MIT-BIH ECG data(Record no. 101)
No. of multiplications(x10000)

wavelet Icvel=3 level-ed level=5 level=6 levele-?
.;; .;; .;; .;; .;;
S (f) S (f) S (f) S (f) S (f)oj oj oj oj oj... :::E ... :::E ... :::E ... :::E ... :::E5: 5: 5: 5: >,

il-< c, c, c, 0- c,

db1 76 43 82 54 85 64 87 75 89 86
db2 155 107 169 139 178 171 185 203 190 235
db3 237 171 262 224 280 278 294 331 306 384
db10 412 299 466 395 509 491 545 587 579 683
rlb20 910 619 1078 822 1227 1024· 1367 1227 1503 1499

Table 5.2: Comparison of computational efficiency in PSWT computation on longer
ECG segment.
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Computation of WI' for 20 data finds manyfold applications in various tasks including

image compression, biomedical image processing for diagnostic purposes, edge detection,

texture analysis, finger print analysis, pattern recognition, signal coding etc. Since these

are prohibitively costly from a computational perspective, many researchers have ad­

dressed the computational complexity and implementation issues. The need for massive

computation in 20 OWT, coupled with the demand for real-time operation in many

image-processing tasks, has motivated the use of parallel processing to provide high

performance at a reasonable cost. Hence, the PMS structure developed for 10 signal

processing tasks has been extended for real-time computation of the OWT and 10WT

of images also. The details are included in this section.

In addition to the general objectives as in 10 OWT computation, for efficient implo­

mentation of 20 OWT, the minimization of intermediate data transposition operation

also play an important role.

5.3.1 Development of PMS Structure for 2D DWT Computation

20 OWT computation using the pyramidal structure has been illustrated in figure 3.9,

where separable filters are employed. This scheme of computation requires a transposi­

tion of data after each stage of convolution, as horizontal and vertical convolutions arc to

be performed alternately. This sequential structure can be converted into an equivalent

direct parallel structure by redefining the wavelet and scaling sequences at each level

using the following equations [4].

gj+l(n) = Lgj(r)g(n-2r)
r

hj+! (n) = L hk)g(n - 2r)
r

(5.l5a)

(5.15b)

where gl(n) = g(n) defines the scaling function, and h!(n) = h(n) defines the wavelet

function. This is equivalent to a multi-channel filter bank decomposition with one low
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Figure 5.9: Multichannel Filter bank structure for a 3-level 2D DWT Decomposition.
(Shaded blocks are row-wise operations)

pass filter, one high pass filter, the rest being band pass filters of appropriate bandwidth

and center frequency, as illustrated in figure 5.9. It can be viewed as a 2D extension of

the direct parallel structure shown in figure 5.1. A similar structure for reconstruction

also has been developed by replacing the analysis filter sequences h(n) and g(n) with

the corresponding synthesis filters "(n) and g(n).

An attraction of the above parallel multichannel structure is that the number of

transpose operations has been reduced to a minimum of two, independent of the number

of levels of decomposition. In the forthcoming paragraphs, the reconfiguration of the
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above multi-channel structure into an efficient 2D PMS structure is described for both

decomposition and reconstruction of images.

Data
In

j",3

Figure 5.10: PMS structure for M-levcl 2D DWT decomposition. Dj , denotes the
structure shown in figure 5.2 for level j with filter hj when s = 1 and gj when s = 2.
(Shaded blocks are row-wise operations, the rest being column-wise)

Each of the convolution cum downsarnpling block in fig. 5.9 can be replaced with

the PMS block as done in the case of ID (fig. 5.2). Similarly for reconstruction, each

of the upsampling cum convolution block can be replaced with the single PMS block

of figure 5.3. Introducing these fine-grained parallelism, the direct parallel structure of
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cI";J~..RM]

J>a RM2

cI".1

Reconstructed Data

Figure 5.11: PMS structure for M-level2D DWT reconstruction. RJ8 denotes the struc­
ture shown in figure 5.3 for level j with filter itj when s = 1 and .9j when s=2. (shaded
blocks are row-wise operations)

figure 5.9 gets modified as a 2D PMS structure as shown in figures 5.10 and 5.11 for

decomposition, and reconstruction respectively. Here, cM denotes the u» level approx­

imation and dj,T denote the details at j'h level. T = 1,2,3 for horizontal, vertical and

diagonal details respectively. Similar to the lD structure, this also has parallelism both

within and between levels making it highly suitable in parallel computing environment.

5.3.2 Comparison of 2D PMS Structure with 2D Pyramidal Structure

In this section, both the conventional pyramidal structure and the PMS structure are

separately analyzed in terms of the computational complexity.
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Consider an image of data size X x Y. Each level of DWT computation involves two sets

of convolutions, one being row-wise on all rows and the other being column-wise along all

columns (Fig. 3.9). Recall that the convolution between two sequences of length I, and

"2 requires 1]12 real multiplications and (11 - 1)(12 - 1) real additions, and the resulting

sequence will be of length 11 + 12 - 1. Here, eventhough the filter length remains t.ho

same throughout, the length of input sequence to each level gets successively modified

due to the following reasons:

• increase in length resulting from convolution at the previous level

• decrease in length resulting from downsampling operation, and

• row-column transposition between each horizontal/vertical convolntion.

Hence, at the j''' level, the input to each block in which convolution is carried out

row-wise, will be of size XJow x ~row, where,

Xj"W = [X + (2j
-

1- 1)(lw - 1)1/2j - 1

Yjrow = [Y + (2j - 1 - l)(lw - 1)1/2j - 1

(5.16a)

(5.16b)

j = 1,2, ... , IvI; l-» is the length of the filter h or g. Similarly, for column-wise convolu­

tion, the data size at the input of the j'h level is Xjl x Yjcol where",

xtl = [X + (2j
-

1 - 1)(lw - 1)1/2j - 1

Yjcol = [Y + (2j
- 1)(lw - 1)1/2j

(5.17a)

(5.17b)

Taking consideration of the change in data size during successive convolutions, the

computational burden for an M-level pyramidal2D-DWT decomposition can be derived

7The fact that the evaluated data size may not be an integer, will not affect the discussions to follow.
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and

!vi

Md = "(2Xrmllyrow + 4xco1ycol)1
FH L J J J J W

j~1

!vi

A = "(2Xrow(y:ow - 1) + 4(Xcol - l)ycol)(1 - 1)dP B L J J J J 111

j=1

(5.18a)

(5.18b)

where A1dpH is the number of real multiplications and AdFB is the nurnber of real addi­

tions during decomposition. Note that the decomposition at each level consists of two

row-wise convolutions and four column-wise convolutions.

5.3.2.2 2D PMS structure

In the PMS structure, corresponding to the lh level, each row of the input data and

the wavelet/scaling sequence are split into 2j subsequences (Fig. 5.2), each of length

X/2 j and Iw)2J respectively, where IWj = (lw - 1)(2j - 1) + 1. The number of multi­

plications required for the lh level row-wise convolution is 2XYlw)2j. Hence for au

AI-level decomposition, the total number of multiplications required for the row-wise

convolution becomes 2XY L::J:! Iw)2j. After the row-wise convolut.ion and downsam­

piing by a fact.or of », the number of columns on which the column-wise operation is

to be performed becomes ljcol. Considering all the t.hree column-wise convolutions at

each level, the number of multiplications required for the jth level convolution would be

3Xyco1l
w.r». Therefore, the total number of multiplications required for an NI-levcl

J J

decomposition will be 3X L::J!=1 ljcoll wjr». Hence the total number of multiplications

required for the complete Mvlevel 2D DWT decomposition becomes:

!vi

MdpMS = X(YfflwM/2!v1 + L(2Y + 3yr)lw)2j)
j~1

(5.19)
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Proceeding similarly, the number of additions can be estimated to be:

M (I
Adp M ", = L { 2~j - 1)[2X(Y - 2j

) + 3ljcol(X - 2j )1
j=1

. Y+l. X+l+ (2J _ 1)[2X( . w) _ 1) + 3ycol( . Wj - I)]}
2J J 2J

+ YM'I[(X _ 2M)( (~~f _ 1)) + (X ;~WM _1) (2M _ 1)]

(5.20)

The computational burden during reconstruction has been estimated and is found

to be more or less the same.

5.3.2.3 Comparison of the Computational complexity

A comparison of the complexity at different levels, between the PMS structure and t.he

filter bank structure, has been performed for different data sizes and wavelet lengths.

The results shown are based on t.he number of real multiplications needed for dccom-

position. Similar results have been obtained for addition operation also. During re­

coustructiou, the number of multiplications remains unaltered, although the nurnbor

of additions changes slightly. It is observed that the PMS structure is better for 2D

DWT comput.ation, independent. of the data size for levels less than 4 and for wavelet.s

of support. less than 5. Figure 5.12 is an illust.rat.ion of a typical case, which shows it

comparison of t.he number of multiplications required for a 2-level decomposit.ion wit.h a

wavelet of support. 4. Here it is worth ment.ioning that., being t.he only known orthogonal

symmetrical wavelet, Haar has been identified as one of the most suit.able wavelets lor

a number of applications in image processing [9], [222]. Moreover, a good majority of

practical applications of scale-space analysis require only few levels of wavelet decom­

posit.ion [3], [9], [189], [221]. For such applications, the PMS computational struct.ure

is found to be advant.ageous over all existing schemes. The computational advantage of

the PMS structure for directly estimating the transform coefficients at selected levels

is more prominent in 2D case. Figure 5.13 gives a comparison of the same with the
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pyramid filter bank scheme, against different levels of decomposition for an image of

size 512 x 512, using db4 wavelet. Irrespective of the level of decomposition, it is found

that the PMS structure shows superior performance.

Next a pictorial representation of the region based on the data size and wavelet

length is given in figure 5.14, where the PMS method is superior to the filter bank

method against variation in data size, wavelet support and level of decomposition.

Corresponding to different values of M; the complete wavelet decomposition is per-

X10'
2.5r---~-------,

~ 2
.f!
iii
u 1.5:g-

o;
E­o
,g 05

Figure 5.12: Comparison of the number of multiplications between t.he PMS and pyra­
midal structures for 2D DWT decomposition (lw = 4, M = 2)

formed and two regions are identified - one in which the PMS method performs better

and the other in which the Filter Bank method is superior. For example in fig. 5.14(a),

the shaded region indicates the area where the PMS method outperforms the filter bauk

scheme for M = 3. Fig. 5.14(b) shows the boundary between the two regions for differ­

ent values of M in the case of wavelets of larger support. Such wavelets arc extensively

used in various image-processing applications like texture analysis, finger print analysis,

etc [225J, [226). A remarkable observation is that, once the wavelet system and the level

of analysis are finalized, the input data size can be suitably selected for a frame-by-frame



5.4. Conclilsions 145

processing, so that the computations are reduced considerably and the available parallel

resources are fully utilized.

5.3.3 Case Study: Detection of Micro-Calcification in Mammograms

The performance of the algorithm has been studied for different applications especially

with biomedical images. As a case study Oll edge detection, detection of micro calci-

fication in mammograms is presented in comparison with the Mallats algorithm. A

typical mammogram from the MIAS [227] database" bearing record number mdb241 is

used for the study. On analyzing the mammograms it is observed that, the resolution

level 1 shows mainly the high frequency noise included in the mammograms, whereas

levels 2 and 3 contained the data corresponding to microcalcifications. Higher levels

contained a large correlation with the non-uniform background. Hence for detecting the

microcalcifications, levels 2 and 3 were sufficient.

Figure 5.15 shows the the region of micro-calcification thus detected (withont apply­

ing enhancement techniques) from the mammogram using the PMS structure employing

db4 wavelet. The locations of micro-calcifications are clearly identified (marked in cir­

cle) in the processed image given in fig. 5.15(b). It is found that the PMS structure

could reduce the arithmetic operations considerably.

5.4 Conclusions

A novel parallel multiple subsequence computational structure has been presented in

this chapter as an alternative for Pyramid scheme. This could eliminate all t.h« uu­

necessary computations that arc present in the pyramid structure. The PMS structure

being parallel, it is found better for directly computing the transform coefficients at any

"Mammographic Image Analysis Society data base which is freely distributed digitized mammograms
from the University or Essex, England. The images in the database are digitized at 20D-micron pixel
edge. The accompanied 'Ground Truth' with each image contains details regarding the character or the
background tissue, class and severity of the abnormality and coordinates of the centre and radii or the
cluster.
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arbitrary selected level of docornposition without going through the intermediate leve-ls.

The expressions for the computational complexity of the PMS structure has been de,­

rived and compared with the pyrumid tree. The efficiency has been shown to be inoro ill

the case of lower levels of dccomposition and is dependent on the length of wavele-t ulso.

The efficiency of the scheme is still better for computations using the [[a.a..,. wavolc:..

The computational structure has been extended for the 2D wavelet system also. Cases

of PSWT computation and edge detection in biomedical images have boon presented

as case studies to highlight the advantage of the structure in both lD and 2D signal

processing applications. For 2D applications it has the added advantage that the data

transposition operation to be performed is made the minirnum,

Figure 5.15: Detection of
ture.(aJ Original image.
calcifications

micro-calcification in Mammogram using the PMS st.ruc­
(b) Processed image showing clear locations of micro-
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Chapter 6

Summary and Conclusions

A brief summary of the research work conducted and the important conclusions thereon

are highlighted in this chapter. The scope for further work in this field as an extension

of the present study, hos also been discussed.

149



6.1. Summary of the Work and the important Conclusions 151

6.1 Summary of the Work and the important Conclusions

The work presented in this thesis mainly concentrates on two important inter-related

topics in time-frequency analysis.

The first topic of interest has been the methods for signal coding and compres­

sion. A new compression scheme has been developed for pseudo-periodic signals in

which the Pitch-Synchronous Wavelet Transform technique is uniquely combined with

the popular Linear Predictive Coding technique. The local periods of the signal under

consideration are estimated and using the period information, the signal is represented

in Pitch-Synchronous form. After normalizing the PS data, the PSWT is computed.

The LPC parameters are estimated for the PSWT coefficients corresponding to each

level of decomposition. The predictor coefficients are suitably encoded and packed with

other relevant information for transmission to the remote location where it is decoded for

reconstructing the original signal. Case studies on typical pseudo-periodic signals have

been carried out and the performance of the scheme has been evaluated using standard

measures. The PSWT based LPC technique results in better compression and higher

reconstruction quality.

It has been observed that the predictive coding of PSWT coefficients has greater

potential in signal compression compared to the ordinary DWT based methods. The

method has been validated with different classes of practical signals like ECG, human

voice and musical instrument tones. The various parameters for the compression such ilS

the type of wavelet, order of prediction, level of decomposition, etc. were optimized for

each of these classes. The UDWT based methods are found superior in period estimation

of signals like ECG and musical instrument tones, compared to the autocorrelation

based methods. The period normalization is found to have improved the beat-to-beat

correlation, contributing to better compression.

The effectiveness of the method is largely dependent on the accuracy with which
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the local periods are estimated. The noise contamination in the signals is found to

reduce the efficiency of compression. Another shortcoming of this method is that the

COInpression is computationally intensive.

The second topic of consideration has been the computational issues of Discrete

Wavelet Transform. The most popular algorithm for DWT computation employs thc

'pyramid structure' developed by S.G. Mallat. It basically follows a sequential structure.

For a number of applications, this structure is found to be inefficient in terms of the

number of computations. As a better choice in such cases, a novel Parallel Multiple

Subsequence structure has been developed by uniquely combining the noble ideniiiu:»

in multirate systems with the principle of polyphase splitting. The input data and

wavelet/scaling filter sequences are divided into a level-dependent number of parallel

subsequences resulting in a highly parallel environment especially at higher levels. The

complexity involved while employing this PMS structure for DWT computation has been

analyzed in detail and compared with that of the pyramid structure. The PMS structure

could eliminate all the irrelevant computations that are to be carried out while using

the pyramid structure. The PMS structure being parallel, it is found better for directly

computing the transform coefficients at any arbitrary selected level of decomposition

without going through the intermediate levels. The efficiency of the PMS structure has

been shown to be more in the case of lower levels of decomposition and is dependent 011

the length of wavelet also. The scheme is still better for computations using the Hiuir

wavelet.

Both lD and 2D computational structures have been derived. Typical signal pro­

cessing applications have been presented as case studies wherein the PMS structure is

idcntified to bc advantageous, both computationally and algorithmically. Case studies

include the PSWT computation and the edge detection in biomedical images. This

structure is shown to be better for PSWT and Block DWT computation. For 2D ap-
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plicatious it has the added advantage that the data transposition operation has hccn

reduced to the minimum.

6.2 Scope for Further Investigations

The PSWT based compression schemes are highly dependent on the accuracy of local

period estimation. The methods for period estimation are found to be dependent on the

signal characteristics and none of them are found universally acceptable. Eventhough

lot of research has been carried out in this field, accuracy demands are still not met.

A signal dependent adaptive period estimator is necessary to enhance the compression

scheme.

The PSWT based compression scheme is applicable only for the pseudo-periodic

regions present in the signal. Practical signals comprise of other regions also, which have

to be separately dealt with in a real-time processing environment. This necessitates the

use of a signal adaptive segmentation scheme at the preprocessing end.

The PSWT based feature enhancement technique proposed in this thesis is based on

simple thresholding of PSWT coefficients. Application of energy dependent hard/soft

thresholding can be attempted for signal enhancement by eliminating the instrument

dependent noise part without any loss in the instrument tonal quality.

The compression scheme has concentrated on optimization of the variants used for

signal coding only. Since majority of the PSWT coefficients of pseudo-periodic sig­

nals are insignificant, especially for noise free signals, dynamic bit allocation can be

attempted thereby achieving higher levels of compression. The possibility of totally

avoiding the insignificant coefficients also can be attempted. This will be of special

importance in the case of signals where a good number of samples are insignificant. For

example, in the case of ECG, the diagnostic information contained is in general localized

to the QRS complex. Moreover by sending the residue part along with other information.

the signal quality can be further enhanced, eventhough at the cost of compression.
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The PlvlS structure developed in this thesis has been validated for ID and 2D DWT

computations. It is expected to give still better performance with Wavelet Packet Trans­

form computation, which can also be taken up as an extension of this work.



Appendix A

WT Based Signal Compression

A.I Introduction

Efficient coding and compression is vital in compact digital representation of signals.

For high quality applications, signals are sampled at high frequencies and quantized

at high resolution. This necessitates high storage space and increased transmission

rate/bandwidth. For efficient data transmission and storage, the signals need to be rcp­

resented with a minimum number of bits while achieving excellent signal reproduction,

fully retaining all perceivable attributes in the signal. To accomplish this, one should

eliminate the redundancies present in the signal. This is particularly significant in the

case of audio signals, where one can exploit the human auditory perceptual characteris­

tics also. Studies on human sound perception show that sound pressure at a particular

frequency and time instant masks the sound below a threshold at nearby frequencies

and time instants, a phenomenon known as auditory masking [119], [228]. Making usc

of this perceptual property, considerable reduction of data rate could be achieved.

Being a highly flexible means of signal analysis, the WT and the WPT1 arc very

effective in audio data compression, feature extraction, signal source modelling etc. WT

and WPT have been well established as a mathematical tool for non-stationary signal

1Wavelet Packet Transform
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analysis [118], [l1J [229J. It has been remarked [205J that, there are no hard and

fast rules for selecting the best wavelet for various applications. The central measure

in choosing a wavelet lies on its match with the signal itself, in terms of its statistical

characteristics. The choice of a particular wavelet basis to suit a specific class of signal

is a major topic of interest to research community.

In this appendix, a comparison of the efficacy of the WT and the WPT in audio

signal compression is presented. A study on selection of the best wavelet basis for

this application has also been considered. Compression using the simple thresholding

technique only has been carried out for this comparative study.

A.2 Implementation

Wendt et al. [156J has proved that Haar wavelet is the best in segmentation and pitch

determination of speech signals. The study in this direction has been further extended by

analyzing the performance of different wavelets for general audio processing applications.

A calledion of speech data at 16-bit resolution, from both male and female speakers

sampled at 8 to 44.1 kHz was used for the study. Vocal music and instrumental tones

also have been considered. The presenting the results, the following signals have been

considered.

1. F1: Female voice ('Your Complaint Number is'), 8kHz, 16 bit, 10832 samples.

2. F2: Female voice ('The Pipe Started Rusting, While New'), 22kHz, 16 bit, 79792

samples,

3. F3: Female voice (,The Pipe Started Rusting, While New'), 44.1kHz, 16 bit,

105248 samples.

4. F4: Female voice ('The Pipe Started Rusting, While New'), 8kHz, 16 bit, 21728

samples.
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5. VI: Violin tone (Natural Scale), 44.1kHz, 16 bit, 213856 samples.

157

6. M'l: Male voice (Music-Shankarabharana Raaga), 8kHz, 16 bit, 64000 samples.

These signals were decomposed to 4 levels and reconstructed back using the pyramid

structure shown in fig. 3.3 and fig. 3.6. It is seen that majority of the transform coeffi­

cients carry negligible information and hence they can be discarded without much loss

of intelligibility. Moreover, for certain class of audio signals like speech, the information

content is mainly concentrated in a narrow band. Hence, by decomposing the sampled

speech into different sub-bands, irrelevant components in the signal conld be eliminated,

thereby achieving compression. The study was condneted using WT and WPT tech­

niques with and without compression. To achieve compression, the coefficients below

the specified threshold with respect to the maximum value of the transform coefficients,

were made zero before attempting reconstruction. The objective evaluation of the re­

constructed sound was done by calculating the SNR. For subjective evaluation, listening

tests [218] were conducted using ten subjects. Special care was taken to eliminate

external interference, background noise, and echo-effects. Training sets were used to

familiarize the subjects participated in the listening test. They were asked to rate the

quality as excellent, good, fair, poor or bad. These ratings were allotted grade numbers

5, 4, 3, 2, and 1, respectively. The MOS value was calculated by taking the arithmetic

mean of the grades voted by them.

A.3 Results and Discussion

Table A.l gives of the results of the objective evaluation based on a 4-1evel wavelet and

wavelet packet analysis using different wavelets. The signals were reconstructed from

the transform coefficients without applying any compression. In each case, the SNR was

computed using equation 4.5.

Though the SNR is different for different wavelets, the subjective quality of recon-
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SNR obtained (dB)

-;;; a '" 00 '"
.., '0 00

.c 0 '" 00 III ~ N M ..; "i '£a 0$ :; '"' .., ~ 8 8 c " " " " ~.!!' • .0 .0 .0 '0 '0 .2 a a ,2 0
A >. >. .s .s .s :i3en .c "0 "0 "0 00 00 u c .0 .0

1'1 WT 308 236 231 220 246 249 232 157 307 307 305 232 230 2,15
WPT 305 2:13 228 217 243 249 228 155 305 304 302 229 22H 242

VI WT 305 245 234 228 258 250 243 167 305 304 303 238 231 25;J
WPT 305 244 234 228 257 250 242 167 304 304 303 238 2:31 2rl;J

MI WT 306 236 229 220 247 246 232 156 305 305 303 2:11 229 2<15
WPT 305 234 228 219 246 245 231 156 304 304 303 230 228 2H

F2 WT 305 235 229 220 246 247 232 156 305 304 303 231 22D 2,15
WF"1" 305 234 229 219 246 247 231 156 304 304 302 230 229 2,11

Table A,I: Objective performance of wavelets on audio signal processing.

structod sound was found excellent in all the cases, This is justified, since the high

values of SNR make the error in reconstruction well below the ATH2
. The tabulation

shows that, for both wavelet and wavelet packet transforms, Htuu: and Bior1.x / 2.x

/ S. x wavelets give better performance in respect of speech, music, instrumental tones,

male voice and female voice, irrespective of the sampling frequency. In all the cases

Haar wavelet was found to be the best.

To probe in to the possibility of low complexity signal compression using wavelets,

simple thresholding technique was attempted. The signals were analyzed using the Haar

wavelet. The corresponding results are summarized in table A.2. It is observed that.

for female voiee sampled at 8 kHz, very good quality audio is possible for a CR of up to

5.5 and good quality is attainable for a value of even 10. Due to data redundancy, better

compression could be achieved for signals sampled at higher rates. For the same Clt,

though the objective quality of the reconstructed male voice is better than the female

voice, the subjective quality is less.

Table A.3 gives a comparison on the effectiveness of different wavelets for speech

compression, based on simple thresholding. The signal under consideration is 'F4'.

Though Haar wavelet was identified as the best for audio signal analysis, the above study

suggested that 'Db4' and 'Bior5.5' wavelets are more suitable for speech compression.

2 Auditory Threshold of Hearing
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Signal Wavelet method WP method
and Threshold Compression SNR MOS Compression SNR MOS

sampling rate (%) Ratio (dB) (1-5) Ratio (dB) (1-5 )
0 1.0 308 5 1.0 305 5

Fl I 1.3 31 5 1.3 32 5
3 2.0 20 5 2.1 20 5

8kHz 5 2.9 15 5 3.0 15 5
7 3.8 13 4.7 4.0 13 4.7
10 5.5 10 4 5.8 10 3.5
15 9.5 7 3 9.8 7 2.7
0 1.0 305 5 1.0 305 5

F3 1 4.9 23 5 5.0 24 5
3 11.8 15 4.2 11.7 16 4.2

44.1kHz 5 19.0 12 3.2 18.8 12 3.2
7 26.0 10 2.5 26.0 10 2.5
10 37.0 8 2.2 36.7 8 2.2
0 1.0 305 5 1.0 305 5

Ml 1 2.3 22 4.5 2.3 22 4.5
3 4.9 13 3.5 5.1 13 3.5

8kHz 5 8.2 9 2.2 8.4 9 2.0
7 12.3 7 1.0 12.8 7 1.0
10 21.7 5 1.0 22.3 5 1.0

Table A.2: Effect of simple thresholding on audio signal compression.

CR and MOS obtained (Signal used: F4)

~
'0

'0 '0
0 .c

00

-5 """ .c:; f-< haar db4 db10 symS coifS bior3.9 biorS.S

ec 0 ec 0 ec 0 ec 0 ec 0 '" 0 '" 0
:?: :; :; :; :; ~ :;U U U U U U '"' U

0 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5
1 2.7 5 2.7 5 2.7 5 2.8 5 2.8 5 3.4 5 2.6 5
3 3.5 4.5 4.3 5 4.3 5 4.6 5 4.5 5 5.7 5 4.0 5

WT 5 4.9 3.7 5.9 4.5 5.8 4.5 0.2 4.4 6.1 4.4 7.7 4 5.4 4.6
7 6.3 3.5 7.5 4.2 7.3 4.0 7.9 3.6 7.6 3.5 9.7 3.2 7.0 4.4

10 8.6 3.0 10 3.0 9.6 2.7 11 2.5 10 2.5 13 2.5 9.6 a.o
15 14 2.5 17 1.7 16 1.7 19 1.7 17 1.5 18 1.0 16 2.0
0 1.0 5 1.0 5 1.0 5 1.0 5 1.0 5 1.0 .5 1.0 5
1 2.6 5 2.~ 5 2.9 5 3.0 5 3.0 5 4.3 r, 2.D 5
3 3.4 4.5 4.1 5 4.5 5 4.8 5 4.7 4.7 7.7 3.5 t1.(j 5

WPT 5 4.5 3.7 5.9 4.2 6.1 4.2 6.5 4.2 6.4 4.0 11 2.5 6.4 -1.2
7 5.7 3.6 7.5 3.7 7.7 3.5 8.4 3.2 8.2 3.0 14 1.8 8.4 4.0
10 7.9 3.1 10 2.8 11 2.5 12 2.2 12 2.2 21 1.2 13 2.5
15 l:l 2.5 18 1.2 18 1.0 22 1.0 20 1.0 44 1.0 22 1.0

159

Table A.3: Effect of change of wavelet on speech compression using simple thresholding.
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A.4 Conclusion

Appendix A. WT Based Sign»! Compressio1l

The application of different wavelets for audio signal processing has been explored. It

was found that the Haar wavelet is best suited for general time-frequency analysis of

audio signals, irrespective of the sampling frequency. But for compression applications

based on simple thresholding techniques, Db4 and Biol'5.5 wavelets were found to be

even better.

Simple thresholding strategy could be efficiently applied for audio compression em­

ploying wavelet-based decomposition. For speech signals sampled at 8kHz, good quality

speech output was obtained at a compression ratio of the order of 10. The value went

even above 50 for a sampling rate of 44.1kHz, still maintaining the same audio quality.

Compression achieved for male voice is comparatively less.

Though wavelet packets decompose the signal in both high frequency and low fre­

quency bands with better resolution, noticeable difference is not perceived in comparison

with wavelet transform. However, since wavelet packets are computationally more in­

tensive, for audio signal processing applications the WT method is preferred over WPT.



Appendix B

WT based Signal Segmentation

E.I Introduction

Accurate segmentation of signals into different distinguishable regions like pseudo-periodic,

random, transition etc. is very important in signal processing and compression applica­

tions in particular, as the processing methods and strategy is highly dependent on the

signal characteristics. Most of the classification methods that exist today [230], [231],

[232], [2331 as applicable to ID signals are pertaining to speech as it has tremendous

application in entertainment electronics. Moreover, these methods classify speech sig­

nals into unvoiced jvoiced, or unvoiced jvoiced j silent regions only. The regions of

transition between any of the above have distinct characteristics when compared with

voiced, unvoiced and silent regions [29], [224]. The characteristics of the transition

region depend on the nature of the preceding and succeeding segments. Work has becn

recently reported [214] about a novel method of classification of speech signals into the

above four distinct regions, in which the autocorrelation method was employed for pitch

identification. It has been proved that codecs based on such a classification has better

efficiency compared to other state of the art codecs [2341. Even though the features of

music signals are quite different from that of speech signals [235]' a classification of mu­

sic signals into Voiced, Unvoiced, Silent and Transition regions exploiting the exclusive

161
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characterist.ic features of music is not yet seen attempted. Segmentation and classifica­

tion of audio signals could be made using moderately simple parameters derived from

the audio signal such as RMS energy or ZCR1. But such a method can achieve only

limited accuracy. The voiced/ unvoiced/ silent classification is traditionally tied to 1.1",

determination of periodicity (pitch period) [236J. Audio signals being quasi-periodic,

accurnto determination of periodicity always raised problems resulting in wrong classifi­

cation. Threshold based classifiers like the conventional Cepstrum and autocorrelation

methods [153J are typically used for voicing decisions.

Although encouraging results have been obtained for speech, the autocorrelation

based method of pitch determination is not often satisfactory when applied to music

signals [157], [110]. This is primarily because of the large range of fundamental fre­

quency and the variety of spectra encountered in music signals. It may be noted that

a musical signal is a logarithmic organization of pitch based on the octave, which is

tho periodic dilation bet.ween two pitches, when one is twice the frequency of the other.

Hence wavelet based pitch estimation [154], [156] is found to be a more natural choice

for musical applications.

In t.his appendix, a WT based method for audio signal classification and segmenta­

tiou in which signals are classified into Transition regions also in addition to the conven­

tiona] classification into Voiced, Unvoiced and Silent regions, is presented. Appropriate

t.hresliold values for the statistical features such as SZR2 , STE3, the ZEp4, and the

pitch correlation factor are utilized in the classification process. The UDWT techniques

are employed for period estimation. The proposed method is made computationally

attractive by restricting the WT computation only to a few selected levels.

1 Zero Crossing Rate
"Short-Time Zero Crossing Rate
"Short-Ttmo Energy
"Zero-Crossing-Energy Product
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B.2 The Classification Algorithm

1G3

The first step in the classification process is the statistical feature extraction. The signals

under study are normalized and segmented into blocks of size corresponding to 20 ms

of data approximately. It is assumed that the pitch of vocal music has a dynamic range

of five octaves. Following statistical parameters are estimated for each segment of the

signal.

B.2.1 Short-Time Energy

A measure of the energy for each segment is a convenient parameter that reflects the

variations of the amplitude of the signal and has been widely used in classification

problems. The STE of the i th block of the signal, xi(n), is defined as:

N-l

STEi = L IXi(n)1
2 (B.1)

n=O

where N is the block size.

B.2.2 Short-Time Zero Crossing Rate

A zero crossing occurs in a discrete time signal if successive samples have different

algebraic signs. Although the procedure needs only a comparison of the signs of two

successive samples, the signal has to be preprocessed to eliminate noise, offset, etc. to

ensure accurate measurement. The sampling frequency of the signal also determines the

time-resolution of the zero-crossing measurements. The SZR corresponding to theil/'

segment is:

N

SZRi = L Isgn[xi(n)l- sgn[xi(n - 1)11
n=l

(B.2)

If the SZR exceeds a given threshold, the corresponding segment is likely to be

unvoiced, and it is too Iowa value for silent regions. It is observed that the median of
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the SZR is an appropriate value to be nsed as a signal-dependent threshold.

B.2.3 Short-Time Zero-Crossing Energy Product

Since different elasses of music segments may have comparable values of STE or S Z R.

their product ZEP has been defined as yet another discriminating parameter in the

classification process. The Z E P of the i th block is computed as:

ZEPi = STEi · SZRi (B.3)

The value of ZEP will be considerably high for Transition from/to Voiced segments.

For other Transition regions, its value is comparatively less.

B.2.4 Pitch Correlation Factor

The Pitch Correlation Factor f3 will be of use in the detection of Transition from

Voiced/Unvoiced regions giving a marked discrimination when the signal energy is rea­

sonably high giving a wrong notion of the block to be Voiced/Unvoiced. The f3 parameter

for the i"' block is computed using the equation:

(BA)

where Pi, is the value of the first pitch period of the i'h segment. For highly voiced

segments, f3 approaches unity as evident from equation B.4. During voicing Transitions

also, especially in the case of vocal mnsic, the value of f3 will be reasonably high and

hence ample care should be taken to fix up the threshold of f3 in the decision making

process. Moreover, during Transition phase from Voiced to Unvoiced/Silent regions,

the successive pitch periods will show a gradual change which is strongly dependent on

the Thnla (Rhythm) of the music. The pitch identification is performed using UDWT

coofficionts as described in section 4.2.1.2.
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The overall flowchart used for the segmentation followed by classification is given ill

figure B.l.

B.3 Results and Discussions

The proposed classification scheme has been applied on a wide range of classical music

signals sung by a ~roup of artists including both male and female. The sampling rales

for the test signals were 8 kHz and 22.05 kHz. Using the experimentally selected values

of the statistical parameters, accurate classification of the signals into Voiced, Unvoiced,

Silent and Transition regions could be achieved. The results were verified by manual

classification of the signals. The validity of the classifier was also tested with different

test signals mutilated by noise. Except in occasions where the transition region is

insignificant, the algorithm resulted in the exact segmentation of the signals. One typical

case is illustrated in figure B.2.

BA Conclusions

An efficient scheme for classification of audio signals into Voiced, Unvoiced, Silent and

Transition regions after segmenting into blocks of fixed frame size, has been developed.

The conventional classification method based on audio features such as Short-Time

Energy, Zero-Crossing Rate, measure of periodicity etc. are combined with the state­

of-the art Wavelet Transform methods. The proposed method gives better recognition

score for classical vocal music when compared to auto-correlation based classification

methods. The statistical parameters used for the classification process is required to

be adapted to the signal properties. The classifier works well with wavelets, which

arc the first derivative of smooth functions. All the drawbacks of classical methods in

classification of vocal music due to discriminative characteristics of music, are well t.akcn

care of in this method.
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ReadSignal andNormelize
Initialize variables

Read the current Block and compute
STE SZR ZEP

Compute UDwr and estimate local pitch
periods if exist :

NO

Periocicity
exists?

ES

NO

STE<O.002
&ZEP<IO ES

Estim ate initial Periods P 1,P2
and Evaluate,8

YES
STE;::0002
&ZEP <I 0 o

NO
I(P l-P2)I<3

ES

y
EOO of
Signal ?

NO YES

200~SZ~3500

NO

Figure B.1: Flow chart showing segmentation and classification of vocal music using WT
techniques. V,U,S and T stands for Voiced, Unvoiced, Silent and Transition regions
respectively
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Figure B.2: Classification of a piece of Classical music sung by a female artist (a) Original
Signal (b) Classifier Output
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