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PREFACE

The work presented in this thesis was carried out at the
Department of Applied Chemistry, Cochin University of Science and
Technology, Cochin, Kerala. It is a theoretical investigation of
polymer chains in quenched random media and their adsorption on

chemnically random surfaces.

Statistics of polymer chains in random media has been a
subject of great theoretical interest because of their importance
in a wide variety of phenomena such as exclusion chromatography,
diffusion in porous media, transport across nembranes,
viscoelasticity of polymer solutions etc. The statistical
behaviour of polymer chains in random media and their adsorption
on random surfaces has been investigated both experimentally and

theoretically [1,2]. ’

The evaluation of statistical mechanical quantities for
polymer molecule in solution or in melt is a tough many-body
problem. Due to the free rotation about the single bonds in a
single polymer chain, usually they have a large number of
available conformations. Therefore a complete description of the
conformational statistics of a polymer chain is becomes extremely
difficult. There are powerful mathematical techniques, such as
the 'path integral techniques' [3] by which such many body
problems could be handled. Functional 1integrals and the

techniques of many body theory were first applied to polymers in



the pioneering work of S.F. Edwards [4]. Using the path integral
approach, it is possible to estimate the probability of finding a
particular chain conformation and hence the thermodynamic
properties of the polymer chain. The relation between the path
integral formulation for the distribution functions of polymer
chains and the general concepts of the theories of Brownian motion
and the random walks are also very interesting. This problem 1is

interesting because of its analogy to the binding of an electron

to a potential well.

There have been many theoretical attempts to find the
average end-to-end vector distribution (the size) of a Guassian
chain trapped in a random medium using the variational approach
for estimating path integrals [3]. Related, interesting problenm
is the adsorption of polymers on random surfaces. The basic
criterion of adsorption of polymer chains is the competition
between the gain in potential energy obtained by the monomers by
binding to the attractive surface and the loss in chain entropy
associated with the reduction in the number of possible chain
conformations of the adsorbed chains when compared to the free
chains. Most theoretical attempts on adsorption of polymers have
focused on the adsorption on a planar, uniform surface [5]. There
have been investigations on both physically and chemically random
surfaces [6]. Chemical and physical roughness are expected to

show distinctive effects on adsorbed polymers.

The work embodied in this thesis is an investigation of

the statistics of polymer chains in random media and their



adsorption on a planar, but chemically random surface, and is
based on the variational path integral approach [3] and the

replica formalism [7].

Chapter I gives an overview of the study of polymers in
disordered media. This chapter summarizes various theoretical
treatments such as scaling theories, renormalization group
techniques, numerical simulations etc. that have been carried out
in the past to investigate the size of polymer chains in a random
medium. Behaviour of polymer chains in both quenched and annealed

random media are also discussed.

A review of adsorption of polymers on various types of
surfaces (both regular and random) is presented in Chapter 1II.
Results of the theoretical investigations, done in the past
regarding the problem of adsorption of polymer chains on a planar
ané uniform, planar but chemically random, spherical, cylindrical
and physically random surfaces, with differing extents of
roughness, are discussed with special reference to the various
fheoretical investigations into adsorption on random surfaces.
This chapter also outline results of numerical simulations on the

adsorption on a corrugated surface.

In Chapter III the theoretical investigation that has
been carried out on the statistics of polymer chaing in random
nedia is discussed. The Chapter gives an outline of the replica
theory, used in the calculation, which was originally developed by
Edwards [7] to study the amorphous materials and the variational

formulation of the problem. A simple model of a flexible polymer



chain in quenched random media, where the obstacles to polymer
chain are kept fixed is considered. The difficulty that one
encounters while treating the quenched randomness around the
polymer chain is the averaging of the logarithm of the partition
function over the disorder. The replica method employed in this
investigation enables one to perform this averaging. The
investigation which include the study of behaviour of polyner
chain with randomness and the determination of the size of the

polymer chain are discussed in detail in this chapter.

In Chapter IV the adsorption of polymer chains on a
planar random surface is discussed with special emphasis on the de
Gennes'approach for the study of adsorption on planar surfaces.
It uses the variational path integral approach, to study the
problem. It discuss in detail the behaviour of the adsorbed
polymer in terms of the thickness of the adsorbed polymer on the
randon surface and the size of the polymer chain in the directions

parallel to the surface.

Finally in Chapter V of the thesis, we give a brief

summary of the results of our investigations.
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CHAPTER - I

POLYMER MOLECULES IN DISORDERED MEDIA

I.1. PATH INTEGRAL APPROACH TO POLYMER PROBLEMS

It is well known [1-3] that due to free rotation about
the single bonds in a polymer chain, it can have an infinite
number of conformations. 1In order to calculate the thermodynamic
properties of the chain molecules, 1t becomes essential to
calculate the probability distribution for the end-to-end vector
for the chain. This can be evaluated exactly only for a few
idealized models. Thus one encounters difficulty in completely
describing the conformational statistics of the polymer chain,
which is essentially a many body problem. The path integral

approach is an elegant way of attacking such problens.

A polymer chain is composed of monomers joined together
by single bonds. But if one makes use of the limit in which the
polymer chain becomes a continuous one, one can make use of the
mathematical analogies between polymers and other many body
problems in chemical physics. For example, one can think of the
polymer chain as being analogous to the path followed by a
Brownian particle. This leads to the introduction of functional
or path integral techniques [4,5] for the study of statistical

mechanics of polymeric systems.



The path integral techniques were first applied to the
polymer problems by Edwards [6], who studied the conformational
probabilities of polymer chains in thermodynamic equilibrium. One
of the first problems to be treated by these methods was the
excluded volume problem [6,7], which arises from the fact that two
different constituent atoms of a polymer chain cannot occupy the
same region of space (See Yamakawa [8] for a review of theoretical
approaches to the excluded volume problem). It has also been

applied to polymer chains in random media [9], stiff chains 110]

etc.

The basic idea of the path integral approach is the
following. If we consider a particle executing Brownian motion,
the path that it follows is analogous to the conformations of a
polymer chain. One imagines a Brownian particle, starting at the
origin at the time 0 and tries to calculate the probability
density of finding the particle at a position R at time Tf. This
probability or propagator is usually denoted as P(ﬁ,Tf|ﬁ,0). The
Brownian particle is free to move along any continuous path which
satisfy the conditions ¥(0)=0 and }(Tf)=§. The particle can take
an infinite number of paths, analogous to the the polymer chain
which can have an infinite number of conformations. Of these
paths some will be more probable than all the others and the

probability density P(ﬁ,Tf|ﬁ,0), has contribution from all paths.



In the path integral representation P(ﬁ,Tflﬁ,O) is given by
I-(tf)=§
-S[r(t)]
P(R,T.[0,0) = I DE(t) e (1)
r(0)=0
where S[¥(t)] is referred to as ‘'Action' or ‘Hamiltonian®'.

S Dr(t) stands for summing over the infinite number of paths. For

a free chain, the action is given by

N
+ 2
sir(t)] = 3 J ds [ggif’] (2)
21 0

where N is the contour length of the polymer chain and 1 is the
effective bond length between monomers in the chain. It is often

referred to as the Kuhn effective step length.

One can do a path integral formulation of the polymer
conformations by heuristically introducing the concepts of the
Brownian motion. For that first of all, one has to consider a
continuous chain representation for the polymer chain in which the
rigid bonds are replaced by fuzzy effective bonds. The end to end
vector distribution in such a case will be Gaussian. If we
consider a polymer chain with one end at the origin and the other
at R, then the end-vector distribution is given by the path
integral,

T(N) =R
P(R,N;D,0) = J D (s)exp [-[S[2(s)1}. (3)

$(0)=0



I.2. POLYMERS IN DISORDERED MEDIA - AN INTRODUCTION

The study of polymer chains in random media has practical
applications in important fields like transport across membranes,
gel permeation chromatography, diffusion in porous media,
viscoelasticity of polymer solutions, oil recovery etc. A large
nunber of experiments have been performed in this field [11-27].
Moreover, the statistical properties of a polymer chain surrounded
by a random medium is potentially relevant in the study of

adsorption of polymers on random surfaces, in chromatography and

also in the growth of an interface.

The randomness can be either quenched or annealed. In
the case of quenched randomness, the obstacles to the polymer
chain are fixed at their locations so that they are immobile
whereas in the annealed case, they are mobile. Trapped polymer
chains in a random medium is8 relevant to a large variety of
technologies [17-25]. Most of the experiments have concentrated

on the transport of polymers through porous media.

The experiments are of fundamental interest for testing
the scaling arguments developed for polymer solutions (28]. There
have been a large number of experiments performed for measuring
the diffusion constants of flexible polymers in porous materials
118,24,25]1. One of the goals of these experiments is to relate
the measurements to the size characteristics of the polymer as

well as to the parameters of the porous material such as porosity

and permeability [12,13].
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Many theoretical and experimental studies have indicated
that the transport of macromolecules in solution in a porous
medium is less efficient than the wunrestricted transport in an
unbound solution (i. e., in the absence of porous structure).
This reduced efficiency is referred to as hindered or restricted
transport [20] and was first pointed out by Renkin [29]. Bohrer et
al. [20] have studied the hindered diffusion of dextran and ficoll

in microporous membranes.

Theories based on s8caling concepts and continuum
hydrodynamics have been useful 1[28,30-36], for some of these
experiments, such as transport of polymers through membranes where
pore sizes are well characterized. However, for porous media
whose microscopic characterization is difficult, it 1is more
difficult to obtain simple theories that can be used to study the

properties of polymers trapped in such media.

The characterization of pore structures by experimental
techniques is extremely difficult. This makes the analysis of the
data and the use of theory to interpret them, complicated.
Experimental studies wusing scanning electron microscopy on a
variety of sandstones have suggested that pore structures are

fractals [37] having dimensions ranging from 2.57-2.87.

Thus the experimental situations described above
regarding the polymer chain in a random medium are extremely
complex and mean field theories [23,28,29,38] have been proposed
and a few computer simulations [39-43] has been performed to mimic

the experimental situation using well characterized models. . The
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statistical properties of polymer chains in quenched random media
have recently attracted renewed interest [9,39-64]1 due to their

importance in science and technology.
I.3. SELF AVOIDING WALKS ON A RANDOMLY QUENCHED LATTICE

The statistical mechanics of macromolecules has
benefited much from their analogy with the problem of a random
walker [28,65]. The statistics of linear polymer chains in random
media has been studied with great interest, employing a model
having self avoiding walks (SAW) on randomly bond dilute
(quenched) lattices [50-64,66-681, leading to conflicting
conclusions. SAW are very good models for polymer chains [28,65]1.
Such a walk consists of N+1 monomers, connected by N bonds of
equal length 1. The monomers are not allowed to intersect. The
major quantities of interest in such a problem are the mean square
radius <i'{2> and the radius of gyration <§g)2(r> of the polymer
chain. For very long chains (N +» o ), it is well known that,

B N and B2 >a N
gyr

where v is a universal exponent.

A very good estimate for » 1is given by Flory's mean
field formula {281, which gives v=3/(2+d), where d is the
dimensionality of the system. if d = 3, the above predicts a
value of 0.60, while new calculations based on scaling and
renormalization concepts give a slightly lower value : v = 0.59

[59,60]. Kremer [53] has performed a Monte Carlo study of SAW on
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randomly diluted lattice and found that the exponent » does not
change by dilution and »=0.59 as in the undiluted case, in
contrast to the original conclusion of Chakrabarti and Kertesz
[51]. Based on renormalization group ideas, they [51] proposed
that v=1/2 for SAW on dilute lattices and that the dilutions are
meaningful only up to the percolation threshold [69]. However it
was pointed out that their [51] original treatment is

inconclusive.

Kremer's result [53] was not in agreement with the
Harris criterion [70] (This suggest that the critical behaviour of
random magnetic systems depend upon the specific heat exponent a
of the pure system. If a 1is positive, then the phenomenon
exhibited by the random system differs from those of the pure
gsystem ; otherwise the randomness is irrelevant. Harris criterion
could be applied heuristically to the problem of polymer in
quenched random media. Thus one expects that » for a self
avoiding polymer in a quenched random medium should be different
from that for a polymer in a regular medium). Kremer [53] found a

higher exponent at the percolation threshold of the lattice,
v=2/3.

A scaling form of the crossover between these exponents
near the percolation threshold is also proposed and is found to be
consistent with the Monte Carlo results. There have been other
investigations [56] which is based on computer simulations to

study the statistics of the SAW. It was found that 1[56]1 the

critical behaviour remained unchanged below a certain dilution and
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a cross over to a higher order critical behaviour occurs beyond

that point.

A rigorous analysis of the problem was made by Harris
[52) who studied it directly and also by the use of replica
formalism [71-73]. He showed that dilution does not affect the
exponents and a careful use of Harris criterion [70] also leads to
the same conclusion. The statistics of the SAW in the presence of
dilution is found to be the same as that in the undiluted case and
therefore it is found that no modification 1is needed even for

concentrations near the percolation threshold.

This result [52] has been supported partially by the
field theoretical renormalization group study of SAW on a random
lattice carried out by Kim [54]. Using the replica trick, he [54]
noted that there is some sort of instability of the system as
randomness grows beyond a certain limit. This has also been
proved by other investigations [50,58]. Rammal et al. [56] gave
arguments for a change of the exponent v at the percolation

threshold.

Derrida [58) had argued that a change in all the
statistics of the SAW should occur for any amount of disorder.
Nadal and Vannimenus [57] considered a directed SAW on a dilute
lattice, using various approaches. They found that for any amount
of disorder, the mean value for the number of directed SAW is
different from its most probable value. There have been a few
recent investigations on SAW [66-68] on random lattices. The

results of Lee and Nakanishi [66) suggests that the exponent v
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will remain unchanged even at the percolation threshold. But
Monte Carlo calculations by Grassberger [68] found that <§2> scale

with a new, larger exponent.

Baumgirtner and Chakrabarti [74] recently investigated
the problem of polymer chains in annealed random media using Monte
Carlo methods. Their observations strongly lead to the conclusion
that any amount of unconstrained annealed impurities do not affect
the critical behaviour of strict self avoiding polymer chains, as
observed originally by Harris [52], due to the cancellation of the
disorder effects on the average polymer size. They also found
that the treatment made earlier [52] have been wrongly applied to
the quenched disorder case. With weaker self-avoidance they found
an influence of annealed impurities on the configurational
properties of the polymer chain. Their observations are 1in
disagreement with the theoretical investigations, which indicated
a tricritical theta point and collapse behaviour [75] for polymer
chains in a random medium with annealed impurities, whereas it 1is

in agreement with the early conjecture [70].

There have been several theoretical 1investigations on
the problem of a polymer chain in random media 1[23,28-64,76-90].
Most of them have concentrated on the study of diffusion and

transport of a polymer chain in porous media [(23,44,48,86,901}.

1.4. POLYMER CHAIN IN POROUS MEDIA

Diffusion of polymers through porous media controls a
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wide variety of experiments such as gel permeation chromatography,
membrane separations etc. Experiments have been carried out on
the transport of polymers into pieces of porous glass [15-17].
Porous media have in general very complicated, random
interconnected pore structures [12,37,94]. In fact the
experimental situations involving such media are extremely

complex.

Porous media are the best realizations of quenched
random media. The diffusion of a single structureless particle in
such media has been extensively studied using the +ant in the
labyrinth’ model [69,91-931. It has been suggested that the pore
structures in a wide variety of porous media are fractals [94].
It is possible to deduce the structure of the porous media by
experimentally [95]) monitoring the diffusional behaviour of a

particle present in the material.

The model problem of an isolated, flexible macromolecule
in a gquenched random environment has been suggested as a
caricature for experimental situations 1like polymer molecule
trapped in porous media. There have been several theoretical
investigations focusing on the static and dynamic properties of
polymer molecules in random porous media [9,44,86,87,96,97]. For
a review on polymer molecules in disordered porous solids see Ref
[45])]. From the theoretical point of view, Casassa [23,27] was the
first to calculate the partition coefficient (i.e., the ratio of
the solute concentration inside the pore to the solute

concentration outside) for both flexible chains and rigid rods,
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from a statistical analysis of the chain conformations. For an

ideal polymer chain trapped in a pore, the entropy and all related

thermodynamic properties have also been discussed.

Taking advantage of the scaling approach for polymer
solutions [28], Daoud and de Gennes [48] have investigated the
conformations of large flexible polymer chains in good solvent
trapped in to small cylindrical pores as a function of polymer
concentration. They have taken into account the repulsive
interactions between the monomers (i.e., excluded volume
interactions), by a scaling approach which goes beyond the usual
Flory-Huggins approach [28]. But their [48] results were found to

be weak, because of the lack of precise numerical coefficients.

Daoudi and Brochard [33] have later evaluated the
partition coefficient both in the dilute regime and in the high
concentration regime where the chains become highly entangled
inside the pore. Also, de Gennes and Brochard 1[30,32] have
calculated the diffusion coefficient of isolated chains inside a
cylindrical pore and Daoudi and Brochard [33] have studied the
transport under low concentration. Both approaches, static and
dynamic, predicted that large flexible polymer chains penetrate
small pores much more easily when the concentration is increased.
Available experimental data [16] were 1in good qualitative
agreement with this prediction, but quantitative comparisons were
difficult to make because of the difficulties with the experiments

such as polydispersity of the experimental sample.

There has been a scaling approach based on Flory-Huggins
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theory carried out by Daoud et al. [90). But several experimental
systems showed deviations from this theory. For a single ideal
chain trapped in a pore, the theory due to Casassa [23], explains
the behaviour very well. It was Daoud and de Gennes [48] who did
[90] the rigorous calculation of the same, including the repulsive
excluded volume interactions between the monomers, which are very
important in practice. They have considered both dilute
solutions, where different chains do not overlap, and semi-dilute

solutions where there is a significant overlap.

In their calculations, they [48] have considered, the
close relation that exists between polymer statistics and magnetic
phase transitions [98]. In fact there exist an abundant
theoretical literature on magnetic transitions 1in systems of
restricted dimensionality [99]. However, it is found that only a
small fraction of this work can be transposed immediately to the
polymer problem [(48].

Baumgi rtner and Muthukumar (BM) [44] have performed a
Monte Carlo simulation to study the behaviour of polymer chains in
porous media. They [44] have introduced a very simple, but well
defined model for a system of polymer in quenched random media.
The model describes the polymer as consisting of a Gaussian chain
in a medium where a large number of obstacles are frozen at random
locations. de Gennes [28,100] has used exactly the same model
(100] for proposing the reptation dynamics, for describing the
diffusional behaviour of polymer chains in polymer melts. These

authors [44] have also attempted to study the predictions of the
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reptation model and of the experimental results.

Dynamic and static properties of such a polymer chain
without excluded volume, which performs Brownian motion between
randomly distributed impenetrable fixed obstacles have been
simulated and the results [44] were analyzed using scaling

arguments [28].

BM [44] modeled the solid phase of the porous medium by
the site percolation algorithm [69]. In their simulation a given
volume was divided into a large number of equivolume cells. A
known fraction of these cells were randomly occupied by the
obstacles using this algorithm. The obstacles are frozen in their
positiong. Taking the cells unoccupied by the obstacles to
constitute a continuum, a Gaussian chain was introduced. New
chain conformations were created using the kink-jump technique,
subject to the constraint that the chain segments can not occupy
the cells of the obstacles. Both the equilibrium and dynamic
properties of the chain were followed by averaging over the chain
conformations and the conformations of the random medium for

different chain lengths and densities of the obstacles.

BM [44] found that the equilibrium size of the chain is
smaller than that in the absence of the obstacles and that the
radius of gyration of the chain shrinks to a size independent of
the chain length. They found a crossover from random coil to
"collapsed”™ chain configurations as the impurity concentration is
increased. This phenomenon was attributed to the effects of both,

the lack of self-excluded volume and the presence of an effective
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self attractive potential arising from random repulsion between
the polymer and the solid particles of the mnedium. For the
idealized random walk model that they considered, the limiting
collapsed chain dimensions are found to be independent of the
chain length and dependent in a universal way on the impurity
concentration. They have also analyzed the molecular weight
dependence of various quantities such as diffusion coefficient,
relaxation time, and radius of gyration etc. wusing scaling

arguments.

It is well known that the chain dynamics can be
adequately described by the Rouse Model [101] when the medium
contains only one chain free from any solid particles. For this
model, the diffusion coefficient of the center of mass of the
chain D and the chain relaxation time 7 depend on the chain length

1 and T - N2. The mean square displacement

N according to D . N
of a single monomer r2(t), relative to the position of the center
of mass of the chain depends on time t (for times smaller than the
configurational relaxation time 7) scales as rz(t) ~ t1/2.
Recently there has been an experimental check 1[102])] on the
reptation arguments, by following polymer diffusion over small

distances, using Neutron reflectometry and nuclear reaction

analysis. The results were in excellent agreement with the

reptation model.

For the entangled polymer chains it is found that
(38,401 D - N 2, = . N> and r2(t) - t¥% (for t ¢ 7). If a

polymer chain 1is confined 1inside a tube or slit-like pores
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{30,341, eg. in nuclepore filters [30,34] and entanglements with
different chains are negligible, then the chain dynamics is again

altered.

In this problem BM [(44] have found very strong

dependence of D on N. They found that D . N-2.9i0.3

N410.4

and T .
. Furthermore the mean square displacement of a single bead
does not scale as t1/4. Therefore it is clear that reptation is
absent in this problem, where the solid particles are randomly
distributed. This observed absence of the reptation dynamics has
to be contrasted with the case where the particles are arranged in

a regular array. 1In the case where the obstacles arranged in a

regular fashion reptation dynamics has been observed.

Therefore, their investigations clearly indicate that
the regular and random medium attribute different dynamical
features to the chain. It is interesting to note that even the
equilibrium properties of the chain are different in regular and
random media. The chain shows shrinkage in random media. The
diffusion in a random porous medium is slower due to the presence
of randomly distributed bottlenecks [44]. The polymer chain is
forced to squeeze through narrow channels to occupy positions
which are entropically favourable. The entropic barrier arising
from such bottlenecks s8lows down the dynamics significantly.
Therefore, the N dependence of D is much stronger in the random

mediun than in the case of a regular one.

Dynamic properties of a self avoiding chain which

performs Brownian motion between randomly distributed impenetrable
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fixed obstacles were also investigated by Monte Carlo simulations
{46] by BM. The chain dynamics was found to be slower than even

the reptation dynamics analogous to the case of a random walk.

They have also performed a Monte Carlo simulation on the
dynamics of polymer chains in random media (471. The
investigations revealed three distinct regimes for the time
evolution of the mean square displacement of the center of mass of
the chains. Classical diffusion occurred in the early and late
time regimes. The duration of the intermediate crossover regime
was longer as the chain length increased and the statistical
porosity of the lattice decreased. 1In this case also the data did

not support the reptation theory.

There has been a theoretical investigation of the role
of quenched random impurities in the statistical behaviour of
polymer chains by Douglas [83] whose results were 1in excellent
agreement with the simulations of BM [44]. He performed a simple
dimensional analysis to discuss the relevance of impurity
interactions on the molecular dimensions of flexible polymers in
the limit of high and low impurity densities. Scaling arguments
proposed by him [83] account for the universal behaviour of static
properties observed (for eg. the collapse transition) by BM [44]
in their Monte Carlo simulations. He introduced an approximate
model of the random impurity interaction by considering the random
impurities as being analogous to an "effective surface™ with which
the polymer interacts.

A close quantum mechanical analog of this problem is the
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gscattering of an electron in an array of randomly distributed
impurity centers. This has been studied extensively for the last
thirty five years and can be translated with little wvariation to
the polymer problem [103]. The polymer collapse transition due to
impurities in a quantum mechanical context corresponds to a change
from a free electron state to a localized state with increasing
impurity concentration. It was de Gennes [104] who first noted
the connection between the electron localization and the
localization of a network chain in rubber. He also proposed the

"tube model” for such localized chains.

Calculations by Edwards [7] indicate that such a
transition occurs because, the randomly distributed impurities
generate a net attraction, resulting in the localization of the
polymer chain. BM [44] give the same interpretation to the
polymer collapse. Edwards [7] and Touless{105] also noted the
close analogy between electron localization and polymer collapse

due to binary self-attractive excluded volume interactions.

These studies, which deal with effective interactions
generated by the random density fluctuations in the medium
surrounding the polymer provides a new perspective for
understanding some of the most basic polymer solution properties.
It was experimentally noted by Chu et al. {106] that many polymers
exhibited two critical solution temperatures, upper and lower,
above and below which the chain undergoes gradual contraction. It
ig difficult to understand on the basis of the usual two parameter

model of excluded volume [{8], why polymers frequently exhibit an
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upper critical solution temperature above which the molecular

dimensions of the chain begins to contract.

Douglas [83] has considered the density fluctuations of
the solvent as being 1impurities whose density grows with
temperature (i.e., as critical point of the pure solvent is
reached), and assumed the polymer collapse with increasing
temperature as a kind of localization transition due to random
impurities. But such a situation will correspond to collapse 1in

an annealed random medium.

A two dimensional analog of the model put forward by BM
[44], has been recently simulated by Chandler et al. [43]. They
performed a Monte Carlo simulation for two dimensional freely
jointed polymers, without excluded volume interaction, in
equilibrium with a gquenched random lattice of obstacles. The
equivalent problem of random walks in a field of random traps has

been extensively studied for the model on a lattice [107].

Their calculation (43] exploits an equivalence between
the quenched and annealed averages valid when the polymer may

equilibrate to the quenched material (i.e., a polymer is free to

wander in an infinite volume). In addition to the obstacle
density there are two additional parameters in the problem ; the
obstacle side length 'a' and the polymer step length '1°'. Their

calculations begin to exhibit standard Flory-Lifshitz scaling [87]
only at extremely large values of monomer polymer units, N. For

some choices of the parameters, a non-universal, inverted

behaviour is found. This behaviour includes a nonmonotonic
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mean-square end-to-end length §2 as a function of N.

There are many theoretical and experimental
investigations on the transport of polymer through small pores.
Useful static and hydrodynamic theories of macromolecular
transport in small pores have been developed by several authors
[{30,31] and scaling concepts have been used to study the same

[23,281.

Transport of macromolecules in porous media has been
recently investigated by Sahimi [85]. He has developed three
models for flow and diffusion of macromolecules in a porous
medium. The first model is fully deterministic and is exact for a
given pore space and molecular configurationgs. The second model
is stochastic in which the macromolecule execute a random walk in
the pore space. The third model is based on an effective medium
approximation. The porous medium is represented by a two or three
dimensional network of interconnected cylindrical pores and the
macromolecules are represented by hard spheres of a given
hydrodynamic radius.There has been a recent investigation on the
diffusion of polymer chains in disordered media performed by the
renormalization group (RG) techniques [108]. Below the critical
dimension of disorder, anomalous diffusion occurred and the
polymer chain followed the diffusion of a Brownian particle. The
results of the RG study of the anomalous diffusion below the
critical dimension were used to compute the renormalization

diffusion constant above the critical dimension.

A theory of the dynamics of a semi rigid polymer
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nolecule in a porous medium has been recently formulated [109] on
the basis of reptation theory. More recently Panyukov (110] has

derived a theory for localized states of polymer chains.

I.5. VARIATIONAL REPLICA THEORY CALCULATIONS

The analytical treatment of the effect of quenched
impurities on chain statistics is a difficult problem due to the
necessity of averaging the logarithm of the partition function of
the system over the disorder. This has been performed recently by
Edwards and Muthukumar (EM) [9] using the replica formalism
[71-73] and by the variational formulation of path integration
[4,5]. This formalism has been extensively used in the study of
amorphous materials. For example, it is used in the calculation
of the order parameter for spin glasses [111] (Spin glasses are
dilute magnetic alloys). The mean field theory for spin glasses
has been obtained in the framework of replica approach 1[112].
These studies revealed that replica theory could be used
effectively whenever there is problem of averaging over quenched
disorder. One can find reviews on disordered systems in Ref.

[113] where this formalism has been used extensively.

EM have [9] investigated the equilibrium behaviour of a
Gaussian chain trapped inside a quenched random medium. They have
given an analytical derivation of the size of the polymer chain.
It has been suggested [9] that the effect of localization of a

pelymer ( in a region where the attractive potential between the



26

monomers is strongest) can be mimicked by using a harmonic

potential. With this in mind, a variational estimate of the free

energy for this problem was made by them. The variational method

introduced by Edwards for handling the complex problem of the

interacting replica theory is quite powerful. They have made use
2

of the same to compute the size, <R >, for the polymer 1in a

guenched random medium.

It is found that, for long Gaussian chain in three
dinensions, the mean square end-to-end vector is proportional to
(upo)_z, where ue is the scattering power of the medium ; Po is
the number of density scatterers and u 1is the strength of the
pseudopotential between the chain segments. They [9] showed that
a long chain gets localized for sufficiently high impurity density
v and that the radius of gyration of the chain in the localized

state is proportional to u—l/d_d

in space dimensions d=2 and d=3.
They have been able to show that in the asymptotic regime of long
chain lengths and high density of obstacles the chain assumes, in
three dimensions an average radius which is inversely proportional
to the obstacle density and is independent of its length.

A simple extrapolation formula was found for the size at

intermediate values of (upo)z. It is found that

R 2> = (N1/z) [l-exp(-z)1, (4)

where N is the chain length, 1 is the Kuhn step length, and 2z =
su2p02N15 with £ being a numerical coefficient. When the obstacle
density is sufficiently high to allow the empty space to be below

its percolation threshold [69], they found that the chain will get



27

trapped in one of the "islands" of empty space and the chain size

is then determined by the size of the island [91].

These results of replica calculation were in excellent
agreement with the simulation results of BM [(44]. They found that
this problem differs from the Anderson problem of a random walker
in random potentials [69,91,114]. 1In the Anderson problem it is
well known that the mean square displacement of the particle is
proportional to the time for asymptotically long times if p is
above the percolation threshold. Since the trajectory of a random
walker is the same as the Gaussian chain in the absence of
impurities, one expects this equivalence to be valid even in the
presence of impurities. Thus one expects <R 2> to be proportional
to the chain length, R 2) -~ N, for asymptotically 1long chains.

But their [9] results were quite different.

They have also elucidated the difference between the
quenched and annealed situations. The problem of polymer in an
annealed state where the obstacles are mobile, is easier and is

well understood [74,75,115-118]1.

There have been some analytical investigations on the
problem of a polymer in a quenched random medium with excluded
volune effects [88], using the replica formalism 171-731 and
Feynman's variational procedure for calculating the free energy of
the chain [4,5]. Muthukumar [88] has calculated the size of such
a chain with excluded volume interactions. He [88] has
encountered the general phenomenon of shrinkage of the size of the

polymer chain as the density of the impurities is increased.
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He has also studied the consequences of the two-body and
three-body interactions, long-range interactions, and the
dimensionalities of both the object and the embedding space on the
collapse of the object. He has demonstrated that the collapse of
a polymeric system in a quenched random medium is a general
phenomenon due to the screening of the potential interactions
between monomers by the impurities. When the impurity density is
increased, the polymer chain is found to attain a theta state with
Gaussian statistics and then the excluded volume effects were

found to be screened.

The static properties of a polymer molecule in a porous
medium has been recently investigated by Honeycut and Thirumalai
[86], who simulated the problem using a site percolation model
[69])] in which various sites are occupied randomly. Using a
combination of scaling concepts, generalized Flory arguments,
computer simulations, and an approximate variational theory based
on replica formalism [9], they have investigated a number of
interesting static properties of polymers in random media.

Effects of excluded volume interactions have also been studied.

For the polymer chain in random media they have argued
that the density fluctuations leading to spatial inhomogeneity are
responsible for the localization of the polymer in obstacle free
regions. They have shown that the variational replica theory
developed by EM [9] gives reasonable qualitative predictions of a
number of properties of Gaussian chains in random media, but

breaks down in the details of its predictions.
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Using a generalized Flory theory, they have been able to
predict the scaling of <R 2> with N, when the effective attractive
interaction induced by the random medium is strong enough. It is
shown that when the strength of the disorder is large enough, the
mean square end-to-end vector scales as sz, where N i1s the number
of links in the chain and v = 1/(d+2) a value different from that
for a free chain. Under these conditions the polymer was found to
assume a compact, globule 1like conformation, due to shrinkage

compared to the obstacle free case for which » = 1/2,

This prediction is in contradiction with the variational
replica theory. For the polymer with excluded volume
interactions, they found that when the disorder is strong enough
to cause substantial shrinkage of the polymer, then » = 1/d. The
chain with excluded volume interactions is shrunk in the random
media where as it is found to be slightly stretched in the regular
media. But for sufficiently weak 1interactions, they confirmed
using simulations that v is unaffected by the presence of the
disorder and retains the value of » = 3/(d+2) within the accuracy

of the Flory theory.

They have also studied excluded volume effects and the
shape fluctuations that the polymer molecule undergoes in a random
environment and have argued that the shape fluctuations are
relevant to the transport mechanism of polymers in random media.
This argument have been established in a study of velocity

fluctuations in dilute polymer flow [119].

Various shape parameters that they had calculated from
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simulations indicate that polymers in porous media are
considerably more spherical (less anisoptropic) than random coils.
They bhave suggested that the diffusion of a polymer in a random
nedium occurs once the chain acquires the optimal shape. The
results that they obtained were 1is different from that of a
polymer chain in regular medium. The limitations and the general
validity of the replica variational theory has also been assessed
by an application to the directed polymer in a gquenched random
environment. This has already been established by Kardar 1120]
who applied the technique to the exactly solvable problem of a
directed polymer 1in a dquenched random environment in 1+1

dimensions, using the Bethe ansatz technique [121].

Honeycut and Thirumalai [86] found that the variational
technique gives a correct estimation of the bound to the free
energy of the quenched random system, but the prediction of the
exponent », which describes the scaling of mean square distance

with length is incorrect.

Honeycut and Thirumalai have continued their
investigations [87], on the effect of random environment on the
shape of polymer molecules. The effect of nonspherical cavities
which arise as a result of density fluctuations in fhe
environment, in determining the size of the polymer in random
media is studied with Monte Carlo simulations. This theory
predicts that when one end is anchored, v=2/3 which suggests a
certain similarity between this problem and that of the directed

random walk in a random environment [771.
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Using replica formalism [(71-731, there have been
theoretical studies on directed polymers in random systems [122].
Parisi [122] has applied the replica approach to study directed
polymers in two dimensional random medium with short range noise.
He has been able to show the predictions of the replica symmetry
theory and has compared it with the exact results. In the one
dimensional case, it is found that the replica symmetry is nearly
broken. This result is in perfect agreement to the one found for
the directed polymer with some minor differences. The possibility
of spontaneous symmetry breaking is also addressed in this paper.
In the two-dimensional model that he has considered, it is found
that replica symmetry is weakly broken. There has been other
investigations dealing with the effect of randomness on directed

polymers [77,78].

The replica calculation on quenched disorder has been
examined recently by Cates and Ball [49] using scaling arguments
and the essential results of EM [9] were recovered. They examined
the statistics of a Gaussian polymer chain in a gquenched random
potential, by mapping the problem into a nonlinear evolution
equation for a growing interface 1in the presence of a
time-independent random flux. Additional logarithmic corrections
depending on the size of the system have also been proposed by
them. They [49] have also analyzed the case where one end of the
polymer chain is fixed. According to their calculations the mean

end to end vector scale as
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L (1/d-4) (1/d-4)

R - (1n V] (5)

where V is the volume of the system containing the polymer chain.

Natterman and Renz [82] have mapped this problem of
polymer in random media onto the localization of a gquantum
particle in a random potential [123) and their results were in

good agreement with that of EM [9].

I.6. POLYMER MOLECULES IN RANDOM CONSTRAINT ENVIRONMENTS

There have been many investigations on the problem of a
macromolecule 1in topologically constraint environments. For
example, a computer simulation of the dynamics of a polymer chain
in the random constraint cage have been performed by Geurts and
Wiegel [42]. They have considered a model in which the cage
represents the average topological constraints on the motion of a
particular polymer, imposed by the other polymers in the systen.
Such a model of a random chain in a constraint cage has been used
frequently to model the complex equilibrium dynamics of highly
entangled polymer chains [40]. They have used an algorithm

described by Evans and Edwards [40] and Needs and Edwards [1241].

Edwards and Evans [40] were able to determine the center
of mass diffusion constant D and the chain relaxation time T of
the macromolecule moving through the regular constraint cage. It
was found that D « N—2 and 7 N3 when the lattice constant of the

cage ¢ is sufficiently small (¢c=2) where N is the total number of
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results obtained by Wiegel and Geurts could not derive much of
physical interpretation of the problem of a polymer chain in

random medium.

One of the recent investigations on the study of polymer
chains in random media is that of Gersappe and de la Cruz 1[125].
They have analyzed the effect of disorder on the statistics of a
ring macromolecule by computer simulation. They found that when
the size of the ring or the disorder concentration is increased,
the ring macromolecule will start obeying the 'lattice animal' or
highly branched polymer statistics. This result is in contrast to
that of the linear macromolecules, where a disordered medium does
not induce a change in the chain statistics, as 1long as the
impurity concentration is below the percolation threshold [122].
They also showed that this problem maps onto a related study on

two dimensional vesicles with a pressure difference.

There has been several investigations on the study of a
flexible polymer chain in a dynamically disordered medium [126].
The problem is analogous to a random walk problem in which a
single random walker moves on a lattice of finite extent with
dynamical bond disorder. Random walks on infinite lattices with
dynamical disorder have been the subject of several recent

investigations [127].



34

REFERENCES

10.

11.

12,

13.

14.

K.F. Freed, Renormalization Group Theory of Macromolecules
(John Wiley, 1987).

P.J. Flory, Principles of Polymer Chemistry (Cornell
University, Ithaca, 1979).

K.F. Freed, Adv. Chem. Phys. 22, 1 (1972).

R.P. Feynman and A.R., Hibbs, Quantum Mechanics and Path
Integrals (McGraw-Hill, New York, 1965).

R.P. Feynman, Statistical Mechanics - A Set of Lectures
(W.A. Benjamin Inc., Canada, 1972).

S.F. Edwards, Proc. Phys. Soc. 85, 613 (1965).

S.F. Edwards, J. Phys. C 3, L30 (1970).

H. Yamakawa, Modern Theory of Polymer Solutions (Harper and
Row, New York, 1971).

S.F. Edwards and M. Muthukumar, J. Chem. Phys. 89, 2435
(1988).

J.B. Lagowski, J. Chem. Phys. 95, 1266 (1991).

W.W. Yau, J.J. Kirkland and D.E. Bly, Modern Size-Exclusion
Liquid Chromatography (Wiley, New York, 1979).

F.A.L. Dullien, Porous Media, Fluid Transport and Pore
Structure (Academic, New York, 1979).

C.P. Bean, in Membranes, A Series of Advances edited by G.
Eisenman (Wiley, New York, 1972), Vol. 1.

J.D. Ferry , Viscoelastic Properties of Polymers (Wiley, New



15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

35

York, 1980).

M.B. Tennikov, B. Belenkii, V. Nesterov and T. Anaeva,
Colloid J. USSR 41, 526 (1979).

D.S. Cannel and F. Rondelez, Macromolecules 13, 1599 (1980).
G. Guillot, L. Leger and F. Rondelez, Macromolecules 18, 2531
(1985).

M.J. Bishop, K.H. Langley and F.E. Karasz, Phys. Rev. Lett.
57, 1741 (1986).

W.M. Dean, M.P. Bohrer and N.B. Epstein, AIChE J. 27, 952
(1981).

M.P. Bohrer, G.D. Patterson and P.J. Carrol, Macromolecules
17, 1170 (1984).

W. Haller, J. Chromatogr. 32, 676 (1968).

C.K. Colton, C.N. Satterfield and C.J. Lai, AIChE J. 21, 289
(1975).

E.F. Casassa, J. Poly. Sci. pPart B 5, 773 (1967) ; J. Poly.
Sci. Poly. Phys. Ed. 10, 381 (1972)

M. Tirrel, Rubber Chem. Technol. 57, 523 (1984).

H. Kim, T. Chang, J. M. Yohanas, L. Wang and and H. Yu,
Macromolecules 19, 2737 (1986).

C.N. Satterfield, C.K. Colton, and W.H. Pitcher, AIChE J. 18,
628 (1973).

E.F. Casassa, Macromolecules 9, 182 (1976).

P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell

University, Ithaca, 1979).



29.

30.

31.

32.

33.
34.
35.
36.

317.

38.

39.

40.

41.
42.
43.

44.

45.

36

E.M. Renkin, J. Gen. Physiol. 38, 225 (1954).

F. Brochard and P.G. de Gennes, J. Chem. Phys. 67, 52
(1977).

F. Brochard, J. Physique 38, 1285 (1977).

F. Brochard and P.G. de Gennes, J. Phys. (Lett.) 40, 399
(1979).

S. Daoudi and F. Brochard, Macromolecules 11, 751 (1978).

K. Kremer and K. Binder, J. Chem. Phys. 81, 6381 (1984).

J.L. Anderson and J. A. Quinn, Biophys. J. 14, 130 (1974).
L.J. Gaydos, J. Colloid Interface Sci. 58, 312 (1977).

A.J. Katz and A.H. Thompson, Phys. Rev. Lett. 54, 1325
(1985).

M. Doi and S.F. Edwards, The Theory of Polymer Dynamics
(Clarendon, Oxford, 1986).

A. Baumgirtner, in Applications of the Monte Carlo Method in
Statistical Physics edited by K. Binder (Springer, New York,
1984).

K.E. Evans and S.F. Edwards, J. Chem. Soc. Faraday Trans. 2
77, 1891, 1929, 2385 (1981).

J.M. Deutsch, Phys. Rev. Lett. 54, 56 (1985).

B.J. Geurts and F.W. Wiegel, Mod. Phys. Lett. B 1, 57 (1987).
D. Wu, K. Hui and D. Chandler, J. Chem. Phys. 96, 835 (1992).
A. Baumgirtner and M. Muthukumar, J. Chem. Phys. 87, 3082
(1987).

A. Baumgirtner and M. Muthukumar, Springer Ser. Chem. Phys.



46.

47.

48.
49.
50.
51.
52.
53.
54.
55.

56.

37.

58.

59.

60.

61.

62.

63.

37

51, 141 (1989).

A. Baumgirtner and M. Muthukumar, Macromolecules 22, 1941
(1989).

A. Baumgidrtner and M. Muthukumar, Polym. Prepr. 30, 99
(1989).

M. Daoud and P.G. de Gennes, J. Physique 38, 85 (1977).

M.E. Cates and R.C. Ball, J. Physique 49, 2009 (1988).

B. Derrida, Phys. Rep. 103, 29 (1984).

B.K. Chakrabarti and J. Kertesz, Z. Phys. B 44, 211 (1981).
A.B. Harris, Z. Phys. B 49, 347 (1983).

K. Kremer, Z. Phys. B 45, 149 (1981).

Y. Kim, J. Phys. C. Solid State Phys. 16, 1345 (1983).

A.K. Roy and B.K. Chakrabarti, Z. Phys. B 55, 131 (1984).

R. Rammal, G. Toulouse and J. Vannimenus, J. Physique 45, 389

(1984).

J.P. Nadal and J. Vannimenus, J. Physique 46, 17 (1985).
Derrida, J. Phys. A : Math. Gen. 15, L119 (1982).

J.C. Le Guillou and J. Zinn-Justing, Phys. Rev. Lett. 39, 95
(1977).

K. Kremer, A. Baumgdrtner and K. Binder, Z. Phys. B -
Condensed Matter 40, 331 (1981).

B.J. Hiley, J.L. Finney and T. Burke, J. Phys. A : Math. Gen.
10, 197 (1977).

A.K. Roy and B.K. Chakrabarti, Phys. Lett. A 91, 393 (1982).

B.K. Chakrabarti, K. Bhadra, A.K. Roy and S.N. Karmakar,



64.
65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

38

Phys. Lett. A 93, 434 (1983).

J. Rexakis and P. Argyrakis, Phys. Rev. B 28, 5323 (1983).
F.W. Wiegel, Introduction to path integral methods in Physics
and Polymer Science (World Scientific, 1986).

S.B. Lee and H. Nakanishi, Phys. Rev. Lett. 61, 2022 (1988).
D. Gersappe, J.M. Deutsch and M.O. Cruz, Phys. Rev. Lett. 66,
731 (1988).

P. Grassberger, J. Phys. A : Math. Gen. 26, 1023 (1993).

D. Stauffer, Introduction to Percolation Theory (Taylor and
Francis, London, 1985).

A.B. Harris, J. Phys. C. Solid State Phys. 7, 1671 (1974).
S.F. Edwards, in Critical Phenomena edited by M. S. Green and
J. V. Sengers, 225 (Natl. Bur. Stand. Misc. Pub. No.273, U.S.
GPO, Washington, 1965).

S.F. Edwards, in Fourth International Conference on Amorphous
Materials edited by R. W. Douglas and B. Ellis (Wiley
Interscience, New York, 1970).

S.F. Edwards, in Polymer Networks; Structural and Mechanical
Properties edited by A. J. Chompff and S. Newman (Plenum, New
York, 1971).

A. Baumgirtner and B.K. Chakrabarti, J. Physique 51, 1679
(1990) and the references therein.

B. Duplantier, Phys. Rev. A 38, 3647 (1988).

M. Kardar, G. Parisi and Y.C. Zhang, Phys. Rev. Lett. 56, 889

(1986) .



77.
78.

79.

80.

81.

82.
83.
84.
85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

39

M. Kardar and Y.C. Zhang, Phys. Rev. Lett. 58, 2087 (1987).
A.J. McKane and M.A. Moore, Phys. Rev. Lett. 60, 527 (1988).
D.A. Huse, C.L. Henley and D.S. Fisher, Phys. Rev. Lett. 55,
2924 (1985).

A. Engel and W. Ebeling, Phys. Rev. Lett. 59, 1979 (1987).
Y.C. Zhang, Phys. Rev. Lett. 56, 2113 (1986); Phys. Rev.
Lett. 59, 1980 (1987).

T. Nattermann and W. Renz, Phys. Rev. A 40, 4675 (1989).

J.F. Douglas, Macromoleules 21, 3515 (1988).

R.F. Loring, J. Chem. Phys. 94, 1505 (1991).

M. Sahimi, J. Chem. Phys. 96, 4718 (1992),.

J.D. Honeycut and D. Thirumalai, J. Chem. Phys. 90, 4542,
1989.

J.D. Honeycut and D. Thirumalai, J. Chem. Phys. 93, 6851,
1990.

M. Muthukumar J. Chem. Phys. 90, 4594 (1989).

G. Parisi, J. Physique 51, 1595 (1990).

M. Daoud, J.P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H.
Benoit, R. Duplessix, C. Picot, P.G. de Gennes,
Macromolecules 8, 804 (1975).

Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett. 50,
77 (1983).

S. Alexander and R. Orbach, J. Phys. Lett. 43, L625 (1982).
R. Rammal and G. Toulose, J. Phys. Lett. 44, L13 (1983).

U. Even, K. Rademann, J. Jortner, N. Manor and R. Reisfeld,



95.

96.
97.

98.

99.

100.

101.
102.
103.
104.
105.

106.

107.

108.

109.

110.
111.

112.

40

Phys. Rev. Lett. 52, 2164 (1984).

W.D. Dozier, J.M. Drake and J. Klafter, Phys. Rev. Lett. 56,
197 (1986).

J. Machta and R.D. Guyer, J. Phys. A 22, 2539 (1989).

E. Dimarzio, Phys. Rev. Lett. 64, 2791 (1990).

P.G. de Gennes, Phys. Lett. A 38, 339 (1972) ; J. des
Cloizeaux, J. Physique 36, 281 (1975).

M.E. Fisher and M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)
; K. Binder and P.C. Hohenberg, Phys. Rev. B 6, 3461 (1972).
P.G. de Gennes, J. Chem. Phys. 55, 572 (1971) ; 172, 4756
(1980).

P.E. Rouse, J. Chem. Phys. 21, 1272 (1953).

G. Reiter and U. Steiner, J. Phys. II 1 659 (1991).

S.F. Edwards, Philos. Mag. 3,1020 (1958).

P.G. de Gennes, J. Phys. 35, L1333 (1974).

D.J. Touless, J. Phys. C 8, 1803 (1975) ; 9, L603 (1976).

B. Chu, I.H. Park, Q.W. Wang and C. Wu, Macromolecules, 20,
2833 1987.

H. Meirovitch, Phys. Rev. A 32, 3699 (1985) and the
references therein.

S. Stepanow, J. Phys. I 2, 273 (1992).

I. Terakova, K.H. Langley and F.E. Karasz, Macromolecules 25,

6106 (1992).

S.V. Panyukov, JETP Lett. , 55, 61 (1992).
S.F. Edwards and P.W. Anderson, J. Phys. F 5, 965 (1975).

G. Parisi, Phys. Rev. Lett. 50, 1946 (1983) ; J. Phys. A :



41

Math. Gen. 13, 1887 (1980) ; J. Phys. A : Math. Gen. 13, L115
(1980) .

113. Illcondensed Matter Les Houches 1978 (Ed. by R. Balian R.
Maynard and G. Toulouse, World Scientific, N. Holland, 1983).

114. 1.M. Lifshitz, Adv. Phys. 13, 483 (1964).

115. Naghizadeh and A.R. Messih, Phys. Rev. Lett. 40, 1299 (1978).

116, D. Thirumalai, Phys. Rev. A 37, 269 (1988).

117. I.M. Lifshitz, A.Y. Grosberg and A.R. Khokhlov, Rev. Mod.
Phys. 50, 683 (1978).

118. C. Williams, F. Brochard and H.L. Frisch, Ann. Rev. Phys.
Chem. 32, 433 (1981).

119. J.A. Abernathy, J.R. Bertschy, R.W. Chen and D.E. Keyes, J.
Rheol. 24, 647 (1980).

120. M. Kardar, Nucl. Phys. B 290, 582 (1987).

121. See H.B. Thacker, Rev. Mod. Phys. 53, 253 (1981) for a review.

122. G. Parisi, J. Physique 51, 1595 (1990) and ref.l and 2
therein.

123. 1.M. Lifshitz, Zh. Eksp.Teor. Fiz. 53, 743 (1968) [Sov. Phys.
- JETP 26, 462 (1968)1.

124. R.J. Needs and S.F. Edwards, Macromolecules 16, 1492 (1983).

125. D. Gersappe and M.0. de la Cruz, Phys. Rev. Lett. 70, 461
(1993).

126. R. Zwanzig, Chem. Phys. Lett. 164, 639 (1989) ; R. 2Zwanzig,
Acc. Chem Res. 23, 148 (1990).

127. A.K. Harrison and R. Zwanzig, Phys. Rev. A 32, 1072 (1985).



42

CHAPTER - II

THE ADSORPTION OF POLYMERS ON SURFACES

II.1. INTRODUCTION

Adsorption of polymers on surfaces play a part in a wide
variety of natural, inorganic, biological and technological
processes and is also of major theoretical interest. The physics
of polymer adsorption has attracted much interest in the past 25
years due to its practical application to processes like colloidal
particle stabilization (1,2,12,131, polymer coatings [11,

adhesion, chromatography etc.

In many cases of practical interest, the polymer is in
solution and there is a surface with a lot of structure of its
own, for eg., the surface can be a cell membrane. In these cases,
attractive forces exist which favour the adsorption of polymer on
the surface (polymer can be attracted by a solid surface for egq.,
polystyrene on metallic chromium or by a limiting surface of the
solution). A general discussion of adsorption can be found in the
monograph of de Gennes [B8]. Rubin has given rigorous solutions to
certain lattice problems related to the adsorption of a pqumer to
a plane, line and a point [14]. Conformational states of
macromolecules adsorbed at solid-liquid interfaces has been
studied by Eirich [{15]. Adsorption isotherms and adsorbate layer

thicknesses of about 20 different dilute, polymeric systems were
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determined. Most of them were found to form monolayers on

surfaces where as a few remained as individual macromolecules.

The basic physical origin of the criterion of adsorption
of polymer chains on a surface 1is the competition between two
conflicting effects viz., the gain in potential energy obtained by
the monomers by adsorbing to the attractive surface and the loss
in chain entropy associated with the reduction in the number of

possible chain conformations of the adsorbed chains, when compared

with that of free chains.

When a surface is physically rough, it may be thought of
as consisting of "hills" and "valleys"™ made of protrusions of
spheres and cylinders. In such cases three major effects are to
be taken into account. (i) Entropy consideration alone will lead
to the preferential adsorption at the hills rather than at the
valleys, because the chain can assume a larger number of
conformations at the top of the hill than at the bottom of a
valley. (ii) The consideration of energy alone will lead to
preferential adsorption in the valleys, where a larger number of
contacts with the surface are possible. (11i) The potential
energy of interaction between the monomers and the surface 1is a
function of the local curvatures, which will modify the boundary
conditions used in determining the characteristics of adsorption
[60]. The effective result 1is that depending upon the local
curvatures and the nature of the surface potential, adsorption

will take place either on the valleys or at the hills.

The chemical randomness may be caused by impurities on
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the surface or because the adsorption is on the surface of an
alloy, which has a random distribution of its components on the
surface. Among the many mathematical formulations of adsorption
of polymer chains to a surface, the simplest is the propagator
method introduced by Edwards and later reviewed by de Gennes [41]

and Weigel [91].
I1.2. RANDOM WALK MODEL FOR ADSORPTION

Most of the early investigations on the problem of
polymer adsorption on surfaces make use of the analogy between
random walk paths and polymer conformations. The most important
problem in the statistical mechanical theories of polymer chain
adsorption at a surface is to enumerate the infinite number of
conformations of the polymer chain and to keep track on the number

of monomer units in each chain conformation.

Rubin [14] has done rigorous calculations for the
problem based on a lattice model in which there 1is one to one
correspondence between the random walk paths on the lattice and
the polymer chain conformations. These treatments have been later

reviewed by Barber and Ninham [16].

Silberberg ({17] has given an approximate treatment for a
variety of lattice models. He noted that if self excluded volume
interactions of the polymer chain is neglected and if all .surface
sites are equivalent, then the problem of determining the

dimensions of Lhe chain molecules in the direction normal to the
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adsorbing surface 1is essentially a one dimensional problem.
Polymer chains of sufficiently large size are found to be adsorbed
in a surface phase whose composition and structure are essentially
independent of molecular weight and of the concentration of the

macromolecule in the equilibrium bulk phase.

It was also found that the concentration of polymer
segments in the surface is high and the layer of polymer segments
held to the surface in loops is compact, even in cases where the

interaction energy between the adsorbate and the adsorbent is low.

DiMarzio and McCrackin [18], wusing a combinational
theorem and Monte Carlo calculations, have carried out a
comprehensive investigation of the distribution of polymer chain
units by considering a'one dimensional polymer molecule. The
end-to-end length and the distribution of segments with respect to
the distance z from the surface were computed as functions of the
chain length N of the polymer and the attractive energy of the
surface. They have shown that many of the results that they
obtained for the one dimensional case could be applied to real

systems.

Rubin 1[14] obtained an analytical solution to the
problem of determining the average number of polymer chain units
in the surface layer as well as the mean dimensions of the chain
in the direction normal to the surface for a class of lattice
models introduced by Silberberg [17]1. Rubin has also performed
calculations taking into account the excluded volume interactions

[14] in the polymer chain.
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A statistical mechanical treatment of a polymer chain
adsorbed on a surface when the surface coverage is very low has
been considered by Hoeve et al. [19]. Hoeve 1[20] and his co
workers [19] have also noted the similarities between the problens
"of adsorption and the DNA denaturation. Their results were in
contradiction with that of Silberberg [17]. Their theory predicts
large loops and few units adsorbed for small adsorption free
energies and small loops and more units adsorbed at large
adsorption free energies. But Silberberg predicted small loops

for all values of the adsorption free energy.

Silberberg has also done (211 a generalized
(approximate) statistical mechanical treatment of adsorption of an
isolated macromolecule, taking into account the self exclusion
effects. Monte Carlo simulations of the same have also been
performed 1[22,23]. The statistical mechanical problen of
adsorption from solution has also been discussed, taking into
account the critical importance of solvent-polymer and

solvent-surface interactions [24].

Another investigation which could properly account the
conformations of a polymer chain near the surface was that of
DiMarzio [25]. He found that the characteristic dimensions of a
polymer chain near the surface is larger than the polymer away
from the surface. His method was that of a random walk with a
reflecting boundary. Exclusion effects have also been taken into

account in a general equation.
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II.3. ADSORPTION - SCALING APPROACH

Scaling analysis has provided many useful theoretical
results for the adsorption of polymer chains at interfaces. In
flexible polymer solutions, the perturbation of the polymer
conformations due to the presence of a surface extends to a large
distance, the effect of which is solely due to the large size of
polymer chains. A diffuse polymer layer is then formed and this

is in close relationship with the existence of scaling laws for

these systems.

Such diffuse layers have been studied in the past [19].
Scaling laws were introduced for the study of polymer adsorption
on surfaces by de Gennes [26] and Alexander [27]. Scaling laws
have been discussed in detail in Ref [4] and the application of

the scaling theories to adsorption has been reviewed by Bouchaud

et al. [28].

de Gennes [26] had investigated the equilibrium
properties of flexible polymer chains adsorbed on a flat surface
using scaling theory arguments. He assumed very long polymer
chains whose adsorption on the surface is weak, resulting in a
large thickness 'D' for the adsorption layer and a good solvent,

so that the excluded volume effects become important.

The repulsion between the monomers were incorporated
through a scaling theory, which goes beyond the usual mean field
approximations. The central assumption in this investigation was

that the polymer concentrations in the first and in the next
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layers scale in the same way (although they do differ by a
constant factor). He was able to find out three regimes of

adsorption.

i. In the dilute limit (separate chains) D is independent of the
polymerization index N, and varies with the strength of the
effective monomer surface attraction (measured by a small

-3/2 1

parameter &) according to D~ & instead of D ~ & in mean

field.

ii. There is a semi dilute regime, where the coils begin to
overlap, but where D remains essentially the same.

iii. The most important case corresponds to the plateau in the
adsorption isotherm ; he showed that the correlations inside the
layer are similar to thése in a three dimensional system. Then D
~N S (1In CB)—l where Cp is bulk concentration. The dependence on

1/2

N ig8 stronger than in mean field D~ N but compatible with the

existent data.

de Gennes [29] had constructed the equilibrium
concentration profiles for a polymer solution near a solid wall
including all scaling exponents. He considered both the
adsorption and depletion layers (layer formed when the polymer
chains are repelled by the wall). Here he restricted the
investigation to weak coupling i.e. the situations where the sites

are not saturated with polymer.

In a later work [30] he has made use of the same scaling
arquments to analyze the concentration profiles and interaction

energy of flexible polymer chains and a solvent inside a narrow
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gap between two weakly adsorbing plates. He concluded that two
flat plates carrying irreversibly adsorbed polymer chains in good
solvents, repel each other. But in cases where the chains can
exchange reversibly with the bulk solution, the interaction is

always found to be attractive (this holds in good/bad solvents).

The influence of a hard wall on the conformations of
long polymer chain with one end fixed near the wall which exerts
short range attractive forces on each monomer has been
investigated by Eisenriegler et al. [31]. They have investigated
the problem with special emphasis upon the region aroﬁnd the
adsorption temperature Ta », below which the polymer becomes
adsorbed to the wall. They considered both ideal non-interacting
chains and chains with excluded volume effects. The dimensions of
the polymer parallel and perpendicular to the wall and their

probability distribution were also calculated.

The predictiongs of the scaling theory were well
confirmed by Monte Carlo studies of self-avoiding walks on the
tetrahedral lattice with a free surface and estimates for the
exponents were presented. A new sampling technigue 1in favor of
adsorbed polymer was also developed by them. This discussion of a
single polymer chain has been extended by Eisenriegler 1[32]1 who
generalized the above to dilute (weak 1interaction between the
chains) and semi dilute (strong overlap between polymer chains)

solutions of polymer chains.

Universal amplitude ratios for the surface tension of

polymer solutions [33] were also calculated. This has later been
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modified by evaluating universal amplitudes for a single chain,
fixed with one end at the surface (such a chain is referred to as
a surface chain) at the critical point of adsorption [34]. He has
calculated the ratios for mean square end-to-end distances of
surface and bulk chains as well as short distance amplitudes for

the end-to-end distance distributions of a surface chain.

Using scaling theory arguments Johner et al. 1[44] have
carried out a mean field calculation for the conformation of a
polymer chain with one end fixed at a distance 2z from the
adsorbing surface. For the single ideal chain adsorption, it was
previously noted that in addition to the thickness of the polymer
chain D, there exists a characteristic length Zo’ corresponding to
the capture distance by the attractive surface of a chain with an
end fixed. A polymer at a distance larger than Zo does not feel
the attraction by the surface. A chain at distance equal to or
smaller than this distance adopts a stretched configuration and it

is found that an external force has to be applied in order to keep

the fixed end at a given distance.

Using scaling theory arguments they [44] have
generalized these to the case of a good solvent, when the excluded
volume interactions are important. It is found that D ~ é_l where
6 is the energy for a monomer on the surface and Z0 ~ N6_2/3.
They have also studied the relaxation of the polymer chain when
the fixed end is released. It is found to be strongly attracted

by the surface and it adopts a stretched conformation.

Johner and Joanny [45] have investigated polymer
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adsorption in a poor solvent. The most important result that they
have obtained is that the adsorption of a polymer <chain can be
viewed as a wetting problem i.e., in the same way as wetting by

liquid drops.

The adsorbed chains are found to form a two dimensional
di%ute polymer solution which is either in a poor solvent or in a
good solvent at very low bulk concentrations. At a higher bulk
concentration the surface layer becomes continucus, its thickness
grows and diverges when the concentration is made even higher.
Their results could be applied to diblock co polymer adsorption in

a selective solvent.

Scaling prediqts a great variety of structures, all
characterized by a concentration profile. The most spectacular
predictions concern the variation of this structure with the
adsorption energy near the surface. Most of the experiments on
polymer adsorption have been carried in situations of strong
adsorption or depletion [13]). 1In these situations, scaling laws
has been tested, and the results were found to be in excellent

agreement with the predictions.
II1.4. SELF AVOIDING WALKS INTERACTING WITH A LATTICE

Most of the early theoretical investigations [14,17] of
polymer adsorption modeled the polymer molecule as a random walk.
One of the principal predictions of this model is that if the

polymer chain interacts with the interface via. a short range
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attractive potential, there is a critical value of the temperature

below which the polymer is adsorbed and above which it is

desorbed.

Whenever the repulsive forces between the monomer units
in a polymer chain are taken into account, the calculation of the
nynmber of conformations becomes much more difficult. The problem
then consists of calculating the number of self avoiding walks on

a lattice.

Theoretical attempts to include the excluded. volume
effects by considering a self avoiding walk (SAW) on a lattice,
interacting with a lattice plane which represents an interface has
also been studied [21—2},35~40]. There has been exact enumeration
studies [35-38] (on short walks ) to find the effect of excluded
volume constraints exactly on the conformational properties of
polymer molecules adsorbed on a planar surface which used

extrapolation techniques to obtain information on longer walks.

It has been found [37] that the excluded volume effects
have a marked effect on the conformational properties of the
adsorbed polymer molecule. Wittington [38] gave results on the
existence of some limits and bounds on the partition functions of
infinitely long walks using rigorous calculations. Most of these
studies of excluded volume effects were consistent with the

existence of a critical temperature analogous to that of a random

walk model.

Most of these treatments have been directed towards a

SAW terminally attached to an interface i.e., with the first
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vertex of the walk in the interfacial plane [35,36]. Torrie et
al. [41]1 have considered SAW which are attached, but not
terminally attached, to the interface. They have presented exact
enumeration data on the numbers of walks with various numbers of
vertices in the interfacial plane for three different lattices and

also rigorous results on the form of the partition function.
:

II.5. ADSORPTION ON COLLOIDAL PARTICLES

It is well known that adsorption of polymers can take
place on the surfaces of colloidal particles 1[131]. Colloidal
particles in non polar solvents are often maintained dispersed by
neans of adsorbed polymers [13]. Polymeric steric stabilization
against aggregation of colloidal particles requires 1[13,30]1 that
(1) the solid particle provides an adsorbing substrate for the
polymer. (2) the polymer is irreversibly adsorbed and (3) the
solvent is good for the polymer i.e., the solvent mediated polymer

segment-segment interactions are strongly repulsive.

When two colloidal particles approach, the reduction in
the number of available conformations of the polymer chains give
rise to an entropic repulsive force, stabilizing them. Some
interesting theories of stabilization of colloids by adsorbed
polymers with and without excluded volume interactions have been
proposed by Dolan and Edwards [42] and by Pincus et al. [431}.

Dolan and Edwards [42])] have modeled the polymer

stabilized colloidal particles by planar surfaces on to which the
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polymer chains are adsorbed by one end only. Interactions between
segments of the polymer were treated as excluded volume effect.
It is found that a positive value of excluded volume greatly
increases the repulsive free energy compared with that for chains
with zero excluded volume, particularly at large separation
diftances of the surfaces. It 1is therefore concluded that

excluded volume effects play an important part in the

stabilization of colloids by adsorbed polymer.

Pincus et al. [43] considered the adsorption of polymers
on colloidal particles, both spherical and cylindrical particles,
whose dimensions are comparable to the solution polymer radii of
gyration. They found that adsorption occurs if the sticking
energy per monomer exceéds a certain threshold and that for a
colloidal particle this threshold increases by an amount inversely
proportional to its radius. It 1is found that, the repulsive
interactions between the monomers limit the number which may be
attached to a given particle. There have been scaling laws

proposed [27] to describe the adsorption of polymers onto

micelles.
I1.6. ADSORPTION ON PLANAR, UNIFORM SURFACES

There have been studies on the ideal situation of
polymer adsorption i.e., adsorption on a planar, uniform surfaces.
The most interesting of these investigations is that of de Gennes

[81. He considered the problem of a long chain weakly adsorbed to
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a planar surface, a problem closely related to the ground state of
microscopic particles. The problem has been solved by de Gennes
by employing a Schridinger-like equation and the eigen values
(bound state) and the eigen functions were found [8]. (See

chapter IV for details of the de Gennes approach).

The conformational properties of a polymer chain
inté&acting with a surface were studied by Stratouras and Kosmas
177). New features for the cases of a chain free to move in the
whole space and for a localized chain fixed with one of its ends
at a point were also illustrated. The macroscopic behaviour of
these localized and non localized chains were studied as a
function of the molecular weight of the chain, the chain-surface
interaction parameter and the distance of localization z for the

localized or a perpendicular bound L of the volume for the non

localized chains, respectively.

The effect of adsorbed homopolymer on the elastic moduli
of impenetrable surfactant bilayers, considering adsorption on
both sides of the bilayer has been recently studied theoretically
by Brooks et al. [46]. They formulated the energy of adsorption
for both spherical and cylindrical surfaces. 1In the limit of weak
adsorption, analytic expressions for the polymeric contribution to
the mean and Gaussian elastic moduli of the bilayer were derived,
using both mean-field and scaling functional approach. For
stronger adsorption, numerical calculations has been made, and in

the limit of very strong adsorption, asymptotic functional forms

for the elastic moduli were found. They have arrived at the
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conclusion that the presence of adsorbed polymer can greatly

influence the elasticity of surfactant bilayers.

There have been a few recent studies on the adsorption
of star polymers at planar interfaces. Adsorption of star like
micelles has also been studied [47]. Recently Halperin and Joanny
[48] analyzed the adsorption of a star polymer on a flat surface
usgng scaling arguments. Equilibrium properties of linear polymer
chains grafted at one end to a repulsive cylindrical surface were
also studied using molecular dynamic simulation [491]. Adsorption
of branched polymers at surfaces have also been carried out and
exact results for the three dimensional case have been given by

Jansses and Lyssy [50].

Dill et al. [51] has reviewed the adsorption of
macromolecules at high densities at interfaces recently. The
general principles of interfacial constraints on highly
concentrated polymers are well described. The chain in such cases
has two different types of constraints. They are constrained from
penetrating to the surface. They are also constrained due to the
interaction between different chains, which is prominent when they

are at high concentration.

The formation of large loops in adsorbed polymer layers
when the concentration of the bulk, C is large has been discussed
by Daoud and Jannik [52]. They have introduced a new
characteristic length A corresponding to the extension of the

loops in the bulk. They found that A ~ N c3/%.

Shull [53] have used a detailed self-consistent field
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theory to calculate the properties of end-adsorbed polymer chains,
and polymer "brushes" in equilibrium with a blend of adsorbing B
polymer and non adsorbing A polymer. There have been studies on

Lhe adsorption of grafted polymer layers (polymeric brushes) on a

planar surface [54].

P There have been a recent study on the conformations of
chain molecules at an impenetrable surface [55]. They have
explored how the conformations depend on the distance of the
center of mass of the chain from the surface, by exhaustive
enumeration of short chains on three dimensional simple cubic
lattices. They found that the conformational ensemble becones
restricted as the chain approaches the surface ; hence there is an
entropic repulsion and fhe conformations become distorted as they
flatten to the surface. They observed that as the chain
approaches the surface, there 1is an enrichment of certain
conformations namely helices, turns parallel and anti parallel
sheets. They confirmed the well known results that the open

chains (chains with no intra chain attraction) undergo an

adsorption transition onto the surface.

des Cloizeaux [56] have considered polymer adsorption
near the attractive surface of a polymer solution in a good
solvent. He found that concentration profile is given by a
universal law. Stratouras et al. [57] have investigated the
average conformational properties of a free polymer chain

interacting with a surface and free to move 1in a space

perpendicular to the surface.
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Cattarinussi and Jug [58] have carried out detailed
investigations of a geometrical model of collapse and adsorption
of a polymer chain near an attractive surface. They have
estimated the size exponents by means of .cell renormalization
methods in d=2 and d=3 dimensions which provided some evidences
for. the surface induced enhancement of the collapse transition

temperature.

Recently, Adriani and Chakraborty [59] have investigated
the effect of chain architectures on the relaxation of a polymer
chain that is chemisorbed on a surface, wusing molecular dynamic
simulations. They found that strong and specific interaction of
the chemisorptive functional groups give rise to energy hyper
surfaces with deep enefgy minima separated by high transition

barriers between states.

They have examined two different polymer chain
architectures consisting of one and two chemisorbing functional
groups respectively. 1In both architectures, the adsorbed chains
were found to get trapped in local energy minima and there were
slow transitions between conformational states of the adsorbed
chain. The relaxation to equilibrium was found to be slow and
conformation of the trapped chains are found to relax with highly
cooperative dynamics. The two architectures were found to show

distinctive effects on adsorption.
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IT.7. ADSORPTION ON ROUGH SURFACES

In almost all practical problems of polymer adsorption,
surfaces are neither homogeneous in composition nor smooth.
Although the heterogeneity (chemical or physical) may strongly
influence the adsorption of polymer chains, these non-ideal
s?tuations have received relatively little theoretical attention
[60-66]. Experimental study is often very difficult due to the
difficulty in carrying out controlled adsorption studies on rough
surfaces. There has been some theoretical studies focusing on the
adsorption of polymers on rough surfaces [10,64-66] of which one

study decals with the adsorption on a fractal surface [64].

If we consider a rough surface with a root mean square
amplitude variation of order z and characteristic horizontal
length X for surface fluctuation, and if both of them are larger
in comparison with the size of the polymer chain, then the polymer
chain near the surface can be mapped into the problem of a chain

in two dimensional random media as discussed by several authors

[66-721].

This situation is similar to the case of chemically
rough surface where the impurities are non adsorbing. In such a
case, the locations corresponding to the chemical impurities or
the steep hills introduce an effective atiraction between monomers
by essentially denying the monomers to occupy the locations. This
can lead to the shrinkage of the polymer chains. Moreover one

expects the adsorption to be stronger due to the presence of the
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impurities with the consequent suppression of the critical

adsorption temperature.

If the randomness on a surface is not so strong, one can
study about the influences of surface roughness on the adsorption
behaviour by considering periodic fluctuations of the rough

surface from a flat plane as
P

z = 2z cos(2nx/N) cos(2ny/N) (1)

where z is the local héight of the surface with respect to the
reference plane and x and y are the coordinate axes in the plane
perpendicular to z. Such an attempt was first made by Hone et al.
[73] who modeled the rough surface as a sinusoidal grating
geometry, z = z cos(2ny/N), and performed detailed calculations
for the adsorption of an infinitely long, ideal Gaussian chain.
They have employed the ground state dominance approximation,
assuming that the periodically varying rough surface is
transparent allowing the chain to adsorb on both sides of the
interface. The effect of excluded volume between chain segmenté
on these results were studied by Ji and Hone [74]. They have
formulated a mcan field theoretical approach to study the effect
of surface curvature on polymer by considering the adsorption of a
polymer on the interior and on the exterior surface of a sphere
in a good solvent. Both perturbation expansion and the numerical
simulation shows that surface tension and monomer density tend to
be lowered when the surface 1is curved towards the polymer

solution. But when the surface is curved away from the solution,

it increases.
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For the polymer solution confined to the interior of a
sphere, it is found that there exists a critical radius, at which
the surface tension is minimized. A study of the surface excess
per unit area showed that it slowly decreases with surface
roughness. It remains to be seen how much of these predictions
get modified by the curvature dependence of the realistic

potentials from the surface.

Stimulated by the work of BM [75] and that of EM [66] on
the statistics of polymer chains 1in three dimensional random
media, Edwards and Chen [10] have studied a polymer chain adsorbed
on a rough surface. They have included the excluded volume
effects and suggested a model of how the statistics of a polymer

chain lying on a surface is affected by the roughness on the

surface.

It is shown that an appropriate equation for the mean
size of the polymer is derived from an entropy,

R2/N + N/R® + w (N/R)2 - uNIn R, (2)

where w 1is the excluded volume interaction and »» is a measure of
the concentration of the disorder and N is the length of the
polymer. It is found that for small w, the polymer localizes, but

for sufficiently large enough N, the excluded volume is dominant,

however small w 1s.

A recent theoretical study which deals with the
adsorption of polymers on a rough surface is that of Ball et al.

[76]1 who found that under certain circumstances, a surface which
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is curved, or corrugated, or rough, will adsorb polymer/trap
electrons when its flat equivalent does not. Qualitatively, when
the magnitude of the curvature exceeds that of the bare de Gennes

boundary parameter Cyr then the former will control the

adsorption.

They [76] found that the entropy/kinetic energy effects
alone favour adsorption at the protuberances of the surface, but
Lthey have to compete against the attractive potential. For a
range of pair wise additive power law interactions they found that
Lhe effect of potential dominates, but in the limit of a surface

of much higher dielectric constant than the solution, the entropy

effects win.

They have compared their results on the binding at
spheres, cylinders and flat surfaces with the earlier
investigations [73] and found that there is no quantitative

agreement with them for the curved cases.

A theoretical investigation on the disorder induced
adsorption of polymers has been carried by Baumgirtner and Renz
[72]. They have studied the competition between adsorption and
entropic repulsion of a single self avoiding polymer trapped 1in
quenched random media consisting of parallel, adsorbed rods,
distributed at random and in the perpendicular plane, by

simulations and by analytical arguments.

The chain undergoes an adsorption transition at finite
temperature which is not observed in a regular medium. Below and

above the transition temperature, the chain is found to be
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stretched parallel to the rods and shrunk in lateral directions.
These phenomena are based on two different mechanisms,
localization by adsorption at low temperature and localization by

entropic repulsion at high temperatures.

An interesting theoretical investigation was recently
carried out by BM [65], who studied the influence of both physical
and chemical roughnesses on the adsorption characteristics of
polymer chains wusing scaling arguments and by Monte Carlo
simulations. They investigated the problem using Edwards
Hamiltonian, representing the polymer chain as a random walk
statistics without any monomer-monomer excluded volume

interactions.

For the chemically rough surface they found that the
surface adsorption temperature 1is depressed by an amount
proportional to the concentration of the impurities. This result
was found to be supported by a Flory type argument and by Monte

Carlo simulations.

For the physically rough surface, the adsorbed state of
the polymer was found to be different and more complex as compared
to that in the case of a flat homogeneous surface. They have
nmodeled rough surfaces by checker board corrugations. The
adsorbed state of the polymer exhibited three different regimes.

At low temperatures the chain is localized in one of the wells.

At higher temperatures they found a diffusive regime,

where the chain units are diffusing and this regime was found to

be equivalent to the conduction band of the polymer analog model
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of a one-dimensional electron in a periodic potential. These
conclusions were supported by the Monte Carlo estimates of various
guantities 1.e., adsorption energy, specific heat, density
profile, parallel component of the radius of gyration and
diffusion coefficient. Bouchaud and Vannimenus {781] have
investigated the polymer adsorption on an impenetrable attractive
surface. They have considered a few models in which the polymer
resides on a fractal surface. 1In one of these models, they find a
multicrititcal point where a bulk collapse transition and a
surface adsorption transition coexist. They have also carried out
a simple real space renormalization scheme for the square lattice.
Recently much of the attention has been focused on the adsorption

of directed polymers on surfaces [79,80].
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CHAPTER - III

THE SIZE OF A FLEXIBLE POLYMER CHAIN IN RANDOM MEDIA

III.1. INTRODUCTION

There has been a lot of investigations on the problem of
polymer chains in random media [1-5]. The behaviour of polymer
chains in an annealed random medium, where the obstacles to the
polymer chains are mobile, is fairly well understood [6-81]. We
consider -a quenched random medium, where the relaxation time of
the medium is much larger than the thermal relaxation time of the
polymer chain. The simplest system one can think of in s8such a
case, is a Gaussian chain in a medium, where a large number of
obstacles to the polymer chain are kept fixed at random locations.

Such a system has been simulated by Baumgirtner and
Muthukumar (BM) [1] who found that the size of the chain is
decreased as one increases the randomness, finally resulting in a
limiting, collapsed configuration for the polymer chain. The
analytical treatment of the same model has been done by Edwards
and Muthukumar (EM) [2] whose results were in agreement with the

simulation results (11 of BM.

In this chapter, our investigation on the effect of
quenched randomness on the flexible polymer chain 1is discussed.

We study a generalization of the problem posed by EM [2] - we
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consider the randomness of the medium to be correlated on a length
scale Ro' We follow EM [2] and make use of the replica trick and
variational technique to estimate the size of the polymer. Our
study goes beyond that of EM in that we make use of a non-local
trial action to describe the polymer chain, which has the property
of being translationally invariant, unlike the 1local harmonic
oscillator action used by them. We also comment on the use of the

local harmonic oscillator for this problem.

I11.2. THE MODEL

The polymer chain is modeled by Edwards Hamiltonian
{9,101, which has been extensively used in the theoretical
investigations of polymer problems. One can derive the
thermodynamic properties from the partition function of the
polymer chain and can also relate the dimensions of the chain with
one of the most important quantities of experimental interest, the
molecular weight. For a flexible polymer chain, the probability
distribution P(R) describing the end-to-end vector R of the chain
will be Gaussian. For detailed description of configurational
statistics of flexible (with and without excluded volume) and

stiff polymer chains see in the monograph by Freed [111).

We consider such a Gaussian chain in a quenched system
of obstacles where the obstacles to the polymer are held fixed at
random locations. The problem addressed here is qguite different

from the Anderson problem of a random walker in random potentials

[12-14].
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The probability density functional for a polymer chain
T(t), 0St<N interacting with n random obstacles, located at ﬁa'
a=1,2,... n is determined by the the action [2]

N N
s - 3 as [ dEts) 2,8 w(t(s)-R )a (1)
ran 5z J S| 3 ; J LiS) =Kyt as8,
0 a=l

where W is the potential describing the interaction between the

obstacles and the polymer. Introducing the density of obstacles

as,
-+ n -+
P(E) = L S(T-R)) , (2)
a=1
we can write
N N

£ [wie- as = jd} th}(s)—})p(})ds . (3)
a=1

=

The density of obstacles p(;) is a random function of the position

Y. We can write,
plE) = Py * Sp(T), (4)
where Py is the average density of obstacles and &p 1is the

fluctuation. Introducing Eq. (4) into (3), we get,

N N

n
r [ws)-(& ))as = st Jd} WE(s)-T)p  +
a=1 ot (o]
0 0
N
Ids Jd} W(E(s)-E )sp(E). (5)
0

The first term on the RHS of Eq. (5) is just a constant term and
does not make any contribution to the probability functionals that

we shall be calculating. Therefore we shall omit this term from

now on. Defining,
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v(P) = Id}lw<}—}l)ap(}l), (6)

we can write Eq.(l) as,

N

S [¥(s)] = S [F(s)] + I v(2(s))ds. (7)
ran (o]
0

It is clear that <w(¥)> = 0. We shall, further take o(¥) to be
correlated on a length scale Ro and to be Gaussian, i.e., we take,
wlrlv (' )> = B(¥-F'). (8)

Usually, the potential W is a short range repulsion and hence, if

one takes

W(r) = woé(}). (9)
Then
o(T) = woép(?) , (10)
and the assumption in Eq. (8) means
w02<6p(?)ép(}')> = B(E-¥). (11)
If one lets,
B(-2) = wts@-, (12)

with u being dimensionless, we get the special case considered by
EM [2] (See Eq. 2.19). We consider a slightly more general case,

where we take,

-+ +, .2 2
B(E-2) = v2 e (FXI)/R (13)

Clearly, if we let V2 = (rrRoz)_:;/2 u£4 and let Ro* 0, then one

gets the limit considered by EM {2]. From the above analysis the

distribution function g(ﬁ,N;a,O) for the end-to-end vector ﬁ, in

e - .
the presence of randomness v (r) is given by,
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¢(R,N;D,0) = J Dr(s)exp {-S__ [%(8)11 &(F(N)-R) /¥ )
ran ran

$(0)=0 (18)

Here.lran is the normalization factor ensuring that,

I ¢(R,N;0,00ak = 1 . (15)

Therefore,

¥ = Jdﬁ I DE(s)exp (-S__ [¥(s)1} 6(F(N)-R) . (16)
r(0)=0

Our interest 1is in the calculation of the quenched average

G(®,N;0,0), defined by
G(R,N;0,0) = <g(§,n;6,0)>v , (17)

where < )v indicates the averaging over all random functions
v(t). As is clear from the Eq. (17), G(R,N;0,0) is the ratio of
two random quantities and hence calculating the average 1is

difficult, and one has to adopt the replica trick [15-171.

A modification of the work done by EM has been done by
Muthukumar [3] who incorporated the repulsive excluded volume
interactions between the monomers into calculation. He found that
collapse of the polymer chain is a universal phenomenon exhibited
by polymer chains in quenched random media and that the excluded
volume interactions were screened out. We do not, however,
investigate the effect of the excluded volume interactions in this

thesis.
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IITI.3. THE REPLICA FORMALISM

-
In presence of quenched randomness v(r), one can

calculate the free energy of the system as
BF = - 1nZ, (18)

where Z is the partition function and is a functional v(T). Now

the average value of the free energy is

KF> = - lnZ>. (19)

Calculating the average of 1lnZ is difficult. Therefore, Edwards

introduced the replica trick, which makes use of the fact that,

a z"
In Z = . (20)
an
n-0

[ ? <Zr5 ] (21)
an n*O'

Even now, one has the difficult job of calculating <Zn> for n-0.

Eq. (18) becomes

~KE> =

However, calculating (Zn> is easy, if n is an integer. Therefore,
one does the calculation, thinking of n as an integer and then one
analytically continues the result to n = 0! We now adopt the same

kind of approach to calculate g(R,N;0,0).

The distribution function in Eq. (14) could be written as,

. -+ -+ -
g(R,N;03,0) = r1,:1(1; J nrl(s)exp[-sran[rl(s)l]a[rl(m-i&]
$(0)=0
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n-1
I Drl(s)exp[—sran[rl(s)] ] .
r(0)=0 (22)
Imagining n to be an integer, we have,
N
. n . n
g(k,N;0,0) = iig [111 I Dra(sa) exp[-agl J Sran[ra(sa)dsd]
* (0)=0 0
[a
a[}lwn-ﬁ]]. (23)
Now the quenched average 1is,
G(R,N;0,0) = <g(R,N;D,0)> . (24)
On performing the average, we get,
n -+ -+
g(®,N;0,0) = lin |TT j Df_ (s dexp [-S)1| s1F (N -RI,  (25)
n+0 |a=1 R
r_(0)=0
ol
where S = E So[rd(sa)] - Sl' (26)
with
N R 2
S [F(s)1 = 3 J'ds [d”s’] (27)
O -2'2 ds
0
and
N N
1 n + -+
s, = T f ds J at B(2, (s)-F,(t)). (28)
2Bl o7

If there are now n polymer chains, they all will start at the
origin = 9. The first polymer will have its end at R while there
is no restriction on the remaining chains. As the path integrals
in Eq. (25) cannot still be performed, we adopt the variational

approach (see ref. (18 & 19)).



77

IITI.4. THE FREE ENERGY

Our approach to the calculation of the free energy of
the chain is the following. We consider F(n), the free energy of

the n replicas of the polymer chain defined by,

n
Fp [ m I D}a(sa)] exp(-S) (29)
al

=1 R
r(0)=0
and estimate F(n) using the variational method, wusing a trial
action. As we are interested in the n + 0 limit, we can think of
expanding F(n) as a series in n. In the n + 0 1limit, only the
term linear in n is8 important and so we consider

8 F(n)
ﬁFl = lim |——o—| , (30)

n+0 on

where Fl is the free energy of a single polymer chain.
We now proceed to calculate F(n) and choose our trial
action in such a fashion as to get the minimum value for Fl. The

trial action that we use 1is,

n
Sp = L S (% (s )]. (31)
a=1
St is defined by,
N W 2 N N
s [F(s)] = 3 J ds [ gr‘s’] + (g2/12eM) Ids Jdt [2(s)-2(£)12,
2 s o o
(32)

where q 1is a trial parameter that has to be variationally
determined. The choice of the above trial action is motivated by
the expectation that the chain might be bound inside some of the

potential wells created by the randomness and also in view of
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analytical solvability of the problem. The action in Eq. (32) has
a harmonic oscillator like non-local part. In comparison, the
trial action that has been used by EM is

N N
> 2
s [T(s)] = 3 j ds [ g;(s)] v (q2/62) J ds T(s)2, (33)
0

22 0

which is a local harmonic action. We prefer to use the non-local
action rather than the local one as the non-local one is
translationally invariant, while the local one is not. Note also
that this harmonic oscillator like trial action gives a special
status to the origin i.e., one end point of the polymer and there
is no physical justification for doing this. Our trial action
also has the advantage that, all path integrals that are needed
for our purpose can be analytically evaluated. To see how this

may be done consider the integral,

T(N)=R
I(%,N;0,0) = J Di(slexp {-IS [T(s)]}. (34)
¥(0)=0
St[}(s)l involves the non-local, quadratic term. Analytical

evaluation of path integrals involving such a general non-local
quadratic action is possible [20,21]. This particular action is

quite easy to handle, as one has the identity,

3/2 ® N S 2
exp(-S, ) = q3(N/6n£) J dy exp - [ 3_ J ds [ %§i§))
' -0 2¢ 0
N
2 + +.2
+(q2/62) I (F(t) - 3rlat ] . (35)
0
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(See Appendix Al for details of the derivation of Eq. (35)).

Therefore,
3/2 T(N) =R R
1(&,N;8,0) = q>(N/6r2) Id§ J p¥(s)exp {-[s, Y [F(s)1}
r(0)=0
(36)
where
§ N R 9 N
s, [F(8)] = 3 J ds [ g;(s)] + (q2/68) J ds (F(s)-3)°. (37)
2 9 0

So we see that the path integral having the non-local quadratic
action of Eq. (32) can be expressed in terms of path integral over
a harmonic oscillator type action, with the origin of the harmonic
oscillator being at § and subsequent integration over §. The
identity is quite easy to verify, for which one simply has to

perform the Gaussian integral over y. Now clearly,

T(N)=R R R
J DE(s)exp (~(sY(E(s)]} = ¢,Y (K,N:D,0), (38)
T(0)=0

-
where Ghz (R,N;0,0) is the propagator corresponding to a harmonic

oscillator action, with the minimum of the harmonic oscillator

potential being. at §, instead of the origin. If G (?,N;}',O) is
ho

the propagator corresponding to the wusual harmonic oscillator
(with minimum of the potential at the origin), obeying the

Schrddinger- like equation of the form,

2

[3/8N - (£/6)9+2 - (Q2/6)22] G, (T,N;2,0) = S(NIS(2=) , (39)
r ho

then
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To determine the trial parameter q variationally, we write

Eq.(29) as,

-F(n)B n >
e - |, J Df (s,)| exp(-S;) exp [-(S-S.)1. (47)

o=

r(0)=0

Introducing the notation QM>T for the expectation value of any

quantity M with respect to the trial action ST' defined by
n -+
o J D, (s, ) |exp(-s,) 4
r(0)=0
<|-M>T = -
n -+
[agl J Dra(sa)] exp(-S,) (48)
r(0)=0
We can write Eq. (47) as,
-F(n)f? _ _n e
e = 2 <Cexp [-(S ST)])T (49)
> oD - Q-
2 2 exp [-<S ST>T], (50)
where Z is defined as,
-+ -+
72 = I D¥_ (s lexp {-S_[¥ (s)} . (51)
-
r, (0)=0

Using the definition given in Eq. (36) for I(®,N;0,0), we find,

7 = J aR 1(&,n:0,0). (52)

Using the identity of Eq. (37), we get

@ -+
(g3 (n/6m2)37/2) Jd§ J DF(s) expi-sY(F(s)1} (53)
-0

T(0)=0

o o]
g3 (n/6ms)372) Jd§ I ak c, _(R+¥,8;3,0) (54)
—m
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gN/3 3/2
= . (55)

sinh (gN/3)

(See Appendix A2 for details of the derivation Eq.(55)).
In the ground state dominance approximation, i.e., when (gN/3) >>

1 this reduces to

z ~ 1298731372 exp (-qn/2). (56)

The integrals that occur in <S—ST>T can be evaluated as

follows. They are

n N N
(i) T q2/(12£N)J dsjdt <[;a(s)—}ﬁ(t)]2>t (57)
a,r=1 0 0
n
= —(q/2) a_ [ In {[TT I Df_(s_) ] exp [—sTl}} (58)
aq a=1 N
r(0)=0
gN/3
= ~(3nq/4) &_ 1n | — (59)
oq sinh (gN/3)
= -(3ng/4) + (ngN/4) coth(gN/3) (60)
% ngN/4, in the (gN/3) >> 1 limit. (61)
(i1) T,
N N
-+ -+
Lp = (1/2) I ds Jdt (B(E, (s)-1,(8))>, (62)
0

Using Eq. (48) we find
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N N :‘(N)=ﬁ -
2 - - -sY + + 2,.2
v J ds Jdt Idyjdﬁ I Dr(t)e "t exp [—[ra(t)—rﬁ(s)] /Ro]
2 00 T(0)=0
T(N=R o
> + —SY
Jdﬁ Idy j D (t)e St
T(0)=0 (63)

(See Appendix A3 for details of the evaluation of Iaa)

Iaa (where a=) and Iaﬁ

the proble analytically, we can make use of the ground state

can be calculated numerically. To attack

dominance approximation to get the following: I x (NV)2/ 2

[a'la ]
[l+2£/(qR62)l3/2 and I_, x (\W)2/ 2 [1+6£/(qR02)]3/2.

I

the above results and introduce the dimensionless variables N =

We combine

N/¢, 9 = g, ﬁo = RO/J and V = VZ to get the free energy,
1 1
®n? g2 ——2.3/2 ——723/72 | °
BFl(N) = (6 + R ) (2 + gqR7)
9 o o
q N/4 .
(64)
Now we define u = gq ﬁoz and Eq. (64) could be written as,
1 1 -
= =.2 3/2 uN
=, _ (NV})T u - + . (65)
FELN) = [ (6 + w32 (2 + w32 ] 4R 2
2 o
Oor
28F, () /(8 ¥)% = £(u) + pu (66)
_ 2 2
where p = 1/(2N V Ro ) and
f(u) = -/ (2+w 132 + /6w 1372, (67)

We now define ?1(u) = 2?1(N)ﬁ/(ﬁ V)z . In the above, pu
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represents the increase in free energy if one tried to localize
the polymer chain to a size . q—l/2’ while f(u) represents the
increase due to effective attraction between different segments of
the polymer, caused by the random potential. The size of the
polymer chain can be estimated using the equation (44) for

Gt(ﬁ,N;ﬁ,O) to be,

&2y = 6£2§02tanh[uﬁ/(6ﬁoz)]/u i (68)

(See Appendix A4 for the derivation of Egq. (68).)
II1.5. RESULTS

In the approximate case, we made a plot of ?1(u) as a
function of u for different values of p (See Fig. III.1l). For
small chain lengths or weak randomness such that the value of p is
greater than 0.1405, Fl(u) has its minimum at wu=0 and for this
situation, Eg. (68) gives <§2> = NZ, which is the value for a free
polymer molecule. But as one decreases the value of p and when it
becomnes less than 0.1405, the function ?l(u) suddenly develops a
new minimum at a non-zero value for u. This means that there is a
discontinuous change over from the free polymer like behaviour
(<§2> x N) to one that is not. 1In the limit where randomness or
the length of the chain becomes very large, we have p << 1 and the
first term on the right hand side of the equation (66) may be
neglected so that F,(u) = f(u). The best value of u is then given

1
by
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Fig. I11.1. Plot of F1{u) against u for different
values of p
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3 1

- ) (69)
6 + w>? (2 + w?’?

Eq.(69) can be solved to get u = 5.248. Therefore, the size of
the polymer chain for p >> 1 is given by, <§2> = 6§02/5.248,a

constant, independent of the length of the polymer molecule.

It is interesting to compare the above predictions with
what one would have obtained, if one used the trial action, given
in Eg. (33), used by EM in their calculations. 1In this case, 1in
the ground state dominance approximation, we find that Io = Iaﬁ,
even if a # 3. Therefore, the free energy would not have any
contribution from the interactions between the replicas and the
only contribution is the first term, pu in the equation (66). So

the minimum occurs always at u = 0 and thus the use of this local

action does not predict the collapse of the polymer.

It is quite easy to generalize our results in one and

two dimensions.

In one dimension we have,

2

28, /(R ) = —fu/(2+u) 1172

/2, (u/6N V2 R 2).

(o]

+lu/(6+u) 1t

(70)
It is interesting to analyze Eq. (70) in the limit when u + 0. 1In

this case Eq. (70) will reduce to

1 1 P

2, /(N )2 = ul/2
6 2

The term in brakets in Eg. (71) is negative so that there is

always a minimum at u > 0. As Vs o , it is found that the

2= 2

polymer is collapsed to a chain size of 2¢ ﬁo /1.7034.

In two dimensions we have ,
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2F, /(N 12 = —[u/(2+w) 1+[u/(6+u)] + (u/3N V2 ﬁoz). (72)

The first derivative Fl' is given by the expression

[ 3V

F.” = (N V)

L (-12/(2+w)21+16/(6+u) 21} + ﬁ/sﬁoz i (73)

In this case when the randomness 1is increased, we have minimum at

u= (1212, The chain size then becomes 2£2§02/V_.

We have also done the exact calculation of the free

energy by evaluating the integrals . and Iaﬁ' defined by the Eq.

(63) numerically (The derivations are given in the Appendix A3).

I could be written as an integral,

aa
N N _ -3/2
_ 5 —— 2 sinh(gt/3) sinh(g(N-t)/3)
I = (V%2 I t at| 1+(4/g B 2 ) —
0 sinh (g N/6)

(74)
and the expression for Iaﬁ is given 1in Appendix A3.

We have made plots of the value of g that makes the free
energy a minimum as a function of V, for different values of the
parameter N (See Fig. III.2). In the case of ground state
dominance, q = 0 remains the minimum for weak randomness but as
one increases randomness, there is a discontinuous change over of
the minimum to positive values of g. 1In the exact calculations,
we found that even for weak randomness, the minimum no longer

remains at q = 0, but at non zero values of q.

As the value of N increases, it is clear from Fig. III.2
that the curves for the exact and approximate cases are almost
identical for large values of q, as expeéted. For large values of
q, the curves for the approximate and the exact cases are almost

indistinguishable in the figure. But the two curves differ
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considerably in the small g region as clear from Fig. III.3 which
gives a plot of q as a function of V for N = 100. The curve for
the exact case show a smooth increase in g with randomness whereas
that for the approximate calculations show that q = 0 remains the
minimum for small valus of randomness. For both cases, it is
clear that the collapse transition occurs at a much lower

magnitude of randomness N increases.

In the exact calculations, we found that the minimum of
the free energy of the polymer chain always occur at a non zero
value for g, in contradiction with the prediction by the ground
state dominance approximation. This is not surprising, as the
ground state dominance approximation breaks down in the vicinity
of g = 0. In the approximate calculations, we have found that the
transition to the collapsed state is sudden where as in the exact

case, it 1is found to be smooth.

In order to confirm that the collapse transition 1is a
discontinuous one in the approximate case, we have made plots of
the free energy of the chain as a function of g in Fig. III.4. 1In
the case shown in Fig. III.3, the collapse occurs for V = 0.1890.
So in Fig. III.4, we plot the free energy as a function of q for V
= 0.1880 and 0.1890. For V =0.1880, g = 0 still corresponds to
the lowest free energy, while for V = 0.1890, one has a new
pinimum, at q@ = 0.7690. So as V is increased from 0.1880 to
0.1890, the best value of q jumps from 0 to 0.7690, showing that
the collapse of the polymer occurs suddenly. We have made a
gimilar plot for the exact case in Fig. III.5, and found that the

change of q with V is smooth, eventhough it is very rapid near V =
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0.1710.

We have made plots of the size [<ﬁ2>]1/2 as a function

of randomness V in Fig. II1I.6. In the approximate case, the
polymer chain does not show a reduction in the size with
randomness until it reaches a certain 1limit, and a sudden
reduction in the size as randomness goes beyond this limit.
Therefore, the approximate calculations predict that the chain
behaves like a free polymer initially followed by a sudden

decrease in size to the collapsed state.

However in the exact calculations, we found that as
randomness increases initially, there is a continuous reduction in
the size of the polymer chain which implies that the polymer chain
is no longer a free one. This has been made clear in Fig. 1II1I.6.
Here we found that as randomness increases, the size of the
polymer chain shows a smooth reduction, approaching a limiting N

independent value.
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Appendix Al

-St
Simplification of e

St[}(s)] is given by Eq. 32 as,

N N 2 N N
s (t)1 = 2 fas [dr‘s’} + (af/12mfas far -t
2¢ 0 . lds 0 0
(a1.1)
We note that
N N
exp[-(q2/12£N)st Jdt [?(s)-}(tnz]
o o
N N 2
- exp[-(q2/6£) Jdt [F(t)12 + (q2/6£N)[ Jdt 2(t) ] ] (A1.2)
0 0

N 2
exp[(qz/GCN)[ Jdt r(t) ] ] in Eq. (Al1.2) could be written as,

® N
(3¢N/2rg2) 372 J ay, exp[ ~13e8y,2/2¢%1 + Jdt By, ] (AL.3)

—0 0

where §l is a three dimensional vector. Therefore,

N N N
exp[-(q2/12ZN)J dsJ'dt [?(s)-?(tn?‘] - exp[-(qz/an Jdt [?(t)lz]
0 0 | 0
o N
(3¢n/2ng°) 372 J ay, exp[ -138y, 27291 + Jdt Ty, ] (Al.4)
—0 0

Hence exp(—St) can be written as

© N
5 2
(3¢N/2rg2) 372 J exp [-30Ny,2/29%1 exp [ _J’ [ 3 [dr(t)} .
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(@®/62) F()? - . .E(e) ] at ] a¥, . (A1.5)

Now we make a change of variables in Eq. (Al1.5) by defining,

§ = (3£§]/q2). Then Eq. (Al.5) becomes,

© N 2

Y
exp(—St), = (N/6rz£)3/2 q3 J exp [— J [37 [dr(t)]
¢ ldt ]

-0

2 2

s (g2/62) )2 - (g2r6n3% - (/30 F.3:(b) ] at ] ay (A1.6)

Eq. (Al.6) can be rearranged to get Egq. (35).



APPENDIX A2

Calculation of the propagator

Following Eq. (41), we can write,

-+

6,Y (®,N;0,0) = [a/2ns sinh (qn/3)1%7?
q [cosh(gN/3) (B+3)2+32) -2RF1
exp - .
2¢sinh(gN/3)

Integrating over §, we get,

J ay 6, (R+3,N;3,0) = [1/2(cosh(gn/3)-1)13/2

q coth(gN/6) 2
exp - R
{ 42 }

I ak J &y 6, (R+7,N;¥,0) = [2ns/q sinh (/31372 .

Taking the ratio of Eg. (A2.2) and (A2.3), we get

sdy G, (R+y,N;y,0)
ct(®&,N;0,0) - ho

sdR rdy Gho<§+§,m;§,0)

gcoth(gn/6)7 372 ait? coth(qN/6)
exp .
4nl

4¢

which is Egn. (44). We have,
o o}
z = [q>(n/6n2) 32 Jd§ J at o (R+3,N:3,0).
-

Substituting Eq. (A2.3) in (A2.6), we get,
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(A2.1)

(A2.2)

(A2.3)

(A2.4)

(A2.5)

(A2.6)



Z

|

gN/3

sinh (gN/3)

3/2
] which is Eq. (55).
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APPENDIX A3

Calculation of I and I
[ala ]

af3

1 can be written as
ool

N N T(N)=R
2 J dt st de J Dr(t)e t exp [-[r (t)- rﬂ(s)] /R 2]
2 0 $(0)=0
IQO( = -+
r(N)=R
Jd} I DE(t)e St
-
£(0)=0 (A3.1)
where § is three dimensional and St is given by Eg. (32) of

Chapter III.

T(N)=R }
Jd§ J D;(t)e_st = exp [-gN/2) in the 1limit (gN/3) »>> 1 limit

T(0)=0
(ground state dominance approximation).

The numerator in Eq. (A3.1l) can be written as

N N T(N)=R -
2 -sY
= (v2/2) J dt_ Idt Idr Jdr exp [ -[%,-%,] /R de J DE(t) e St
r(0)=0
-+ -+ -+ -+
6(r1-ra(ta)) 6(r2—rﬁ(tﬁ)). (A3.2)

Eq. (A3.2) may be written as a product of three propagators,

N N
_ 2 > > 2 2 42 2 -+ ; >
= (v /2)I at_ Jdtﬁ Jdrz Jdrl exp [ -[¥,~¥,1°/R_ de Y (RN[T,,t)
Y Y
x G (T,, ﬁlrl,t ) 6 (F,,t, ]0,0) (a3.3)
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N N

_ 2 -+ - i 2 2

= (v¥/2) J dt_ Jdtﬁ Jdr2 Jdrl exp [ -1#,-%,1%/R_
0 0

Jd§ Gpo (RAY NI T +¥,t ) G (Fovut [F 47,6 ) G (B i+7.t |7, 0).
(A3.4)
The propagators in Eq. (A3.4) correspond to harmonic oscillators
and are given by Eé. (41) of Chapter III. In the ground state
dominance approximation, the expression for the propagator reduces

to a simpler form and can be written as,

G (B N:F 0) x exp [~q 1#2 + ¥ 21/ - qw/21 1a/ma1 32, (a3.5)

We introduce Eq. (A3.5) in (A3.4), analytically evaluate the
integrals in the (gN/3) >> 1 limit to get
2,,3/2

T, ™ (§v) 2/ [ [2+2¢/(qr_*)1°7?) (A3.6)

In order to evaluate L S exactly, we have introduced the

exact expressions for the propagator in Eq. (A3.4). We have the

integral
N
I = (v2/2) J I(t) dt (A3.7)
[aTa}
0
where
1 = [at. (a2, 6, (2..%.;t) G (%, :N-t) [-12,-2.12/R 2
= J r J ¥y Gho'f2r¥yd ho ' f1-%2¢ exp r17r o °
(A.3.8)

Substituting the expressions for the propagators in Eq. (A3.8) and

after simplification, we get
-1/2
— _ 2 sinh(gt/3) sinh(g(N-t)/3)
I = 1+(4/q Ro ) - —— . (A3.9)
sinh (g N/6)

Therefore, we will have



95

N _ o -3/2
5 sinh(qt/3) sinh(g(N-t)/3)

. - =
I = (v2/2) J tdt [ 1+(4/3 R
0

sinh (g N/6)
(A3.10)
In the case of Iaﬁ’ instead of Eq.(A3.5), we will have a product

of four propagators,
N N
_ 2 ' + -+ 2 2 2
= 2/ J dtaJdtB J'dr2 Jdrl exp [ ~[%,-%,1%/R_
0 0
-+ -+ -+ + -+ + -
jdya deﬁ Gho(§+y’Nlr1+ya’ta) Gho(r1+ya'ta|ya’0)

e o - -+ ad nd
Gho(R+yﬂ,N|r2+yﬁ,tﬂ) Gho(r2+yﬂ,tﬁ|ya,0). (A3.11)

Eq. (A3.11) can be evaluated in the ground state dominance

approximation to get

2 2..3/2
s> W12/ [11+62/(ar )] /

To evaluate L SN and Iaﬁ exactly, we introduce the expressions for

] (a3.12)

the propagators in Eq. (A3.10) to get

N N
_ 2 -+ -
Iy = (V2/2) Idt st Idrz Jdrl
o 0

1

ch(gs/3)sh(qt/3)[th(gs/3)+[th(gs/3)+2th(qt/6) 1172

1

ch(gt/3)sh(gs/3) [th(qt/3)+[th(qt/3)+2th(gs/6)11/2
2

. 3
ep [ L [eothtatsa) _ th™(qt/6) 22
2¢ | [th(gs/3)+2th(qt/6)1 | 1
g th 2(qs/6) \
exp 4 - E_ coth(gs/3) _ . 2 2 (A3.13)
20 | [th(gt/3)+2th(qs/6)] | 2
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In Eq. (A3.12), the integrals involving ?1 and ?2 are Gaussian,
which can be easily performed resulting in a double integral
over t and s. This can be evaluated numerically using standard

procedures.
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APPENDIX A4

The size of the polymer chain

The size of the polymer is given by,

T(N)=R T(N) =R -1
CRN-R(O0HZ> = Jdﬁ &2 J pE(t) e St [Idﬁ J DE(t) e—st] .
T(0)=0 r(0)=0
(34.1)
- Jdﬁ 22 p(i) (A4.2)

where

sak rdy G (R+7,N;¥,0) B
P(R) = " — . (A4.3)
sdR srdy cho<§+y,N;y,0)

This gquantity has been evaluated to get Eq. (44) of Chapter III.

i.e.,

. (A4.4)

Y. ¥4 42

qcoth(gn/6)] 372 qit? coth(gN/6)
exp | -

Substituting this in Eq. (A4.2), we get,

<k%> = 6¢ tanhl[(gN/6)1/q . (A4.5)

This on introducing dimensionless variables and defining u = g R02

we get Eq. (68) of Chapter III.
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CHAPTER - IV

THE ADSORPTION OF POLYMERS ON A CHEMICALLY RANDOM SURFACE

IV.1. INTRODUCTION

The adsorption of polymers c¢n surfaces has been a
subject of extensive experimental and theoretical investigations
[1-3, 9-15]. 1In spite of this interest and of a wvast body of
experiments [2], the processes involved are only poorly
understood. Since such processes are important in both technology
and biophysics, a systematic theoretical investigation of the same
are desirable. Furthermore, since the adsorption of atoms and
molecules on solid surfaces has revealed a variety of interesting
phenomena [3], the study of adsorption of macromolecules also
merits further attention. Finally, since the statistical
mechanics of polymer conformations in the bulk of dilute, semi
dilute and concentrated polymer solutions has become well
understood [4-8] and a large number of experimental observations
on such bulk properties could be explained, it is of interest to

consider the effect of an interface.

The statistical mechanics of such an adsorbed polymer
chain presents a variety of novel and interesting aspects, and has
received considerable attention 1in the recent past [151.
Unfortunately, most theoretical attempts have been focused on

planar, uniform surfaces [9-11], which can only rarely be attained
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in practice.

In nature, adsorption of polymers takes place not only
at planar, regular surfaces but also at other kinds of surfaces,
viz., spherical and cylindrical surfaces, which are rough, with
differing extents of roughness. For eg., it is quite well known
that colloidal particles, which are mostly spherical in shape 1in
non polar solvents, are often maintained dispersed by means of
adsorbed polymers [16] and adsorption can also take place on
micelles [17], which can have any shape. Recently, attempts were
made to understand the effect of local curvature on the adsorption

characteristics [18-20].

In practice, the surface roughness is random unless
great care is taken to develop a planar, perfect surface. The
randomness on a surface can arise from either physical or chemical
origins. In the case of physical roughness, the 1local curvature
of the surface is a random variable. Such a surface can be
modeled as consisting of ‘'hills' and ‘'valleys', made up of
protrusions of spheres or cylinders of appropriate curvatures at
different spatial 1localizations. In the case of chemical
roughness, certain regions of the surface (either planar or
physically rough) have different affinities for the polymers

compared to the rest of the surface.

There have not yet been any controlled experiments to
study the effect of surface roughness, even though the adsorption
on rough surfaces can reveal a lot of information on the nature of

the surface. There have been a few theoretical investigations



102

focusing on the adsorption on a periodically rough surfaces and
also on a fractal surface [21]. There have also been some

investigations on the adsorption on both chemically and physically

random surfaces [151.

Adsorption of polymer chains on a surface is governed by
the competition between two conflicting effects viz., the gain 1in
potential energy obtained by the monomers by adsorbing to the
attractive surface and the loss in chain entropy associated with
the reduction in the number of possible chain conformations of the

adsorbed chains, when compared with that of free chains.

This chapter investigates a model for adsorption on a
planar, but chemically random surface. The chemical randonness
may be caused by impurities on the surface or because the
adsorption is on the surface of an alloy, which has a random
distribution of its components on the surface. Among the many
mathematical formulations of the adsorption of polymer chains to a
surface, the simplest 1is the propagator method introduced by

Edwards and later reviewed by de Gennes [5] and Wiegel [22].

IV.2. ADSORPTION ON A REGULAR SURFACE

We first discuss the de Gennes' approach [9] to the
adsorption of the polymers on a flat, uniform surface. His
approach is the following ;

G(T,T’ ;N) is the probability distribution function, for a chain of

length N, whose one end is at ¥ . G(¥,r ;N) obeys the diffusion
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equation,
2 2 -+ -+
{a/aN - (& /6)V_~} G(r,r' ;N) = &§(N)&(r-r') . (1)
r
We imagine that there is a surface at z=0. We adopt the
notation

r = (%,2) . (2)
The presence of the wall (surface), can lead to the attraction or
repulsion of the polymer segments to it. This, according to de

Gennes, is modeled by putting

-)—)"
[ éln G(r,r’';N) ] _ e . (3)
o
8z z=0
The sign of the constant <, depends on the temperature. At low

temperatures, the attractive interaction between the polymer and
the surface dominates, resulting in adsorption. In such cases, c

is positive whereas at higher temperatures when the repulsive
interaction increases, S will have a negative sign. It 1is
convenient to expand G in terms of the eigeﬁ functions of wm(}) of

the problem. Equation (1) has solution of the form,

G(E,F ;N = Ly (B) y_(¥) e 'n (4)
m
where wm(}) obeys,
+ >, .
[ 8ln yw(r,r’ ;N) ] _ - . (5)
o
8z 2=0
and are normalized according to,
(F) w (}) aF = 1 (6)
J v (e v (r r = .

z>0

de Gennes' prescription can easily be converted into a
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path integral one, in which the paths are not forbidden to the

region z < 0 and hence are unconstrained.
IV.3. MODELING ADSORPTION ON A RANDOM SURFACE

To model adsorption on a planar, but random surface, we

generalize Eq. (3)‘to

+ >,
[ 4ln G(r,r’' ;N) ] = -c - 0(X) (7)
8z
z=0

-+ . .
where v(x) is a random function of x.

IVv.3.i. A path integral representation for G(Ir,T’ ;N)

A path integral expression for G(I,T' ;N) is very
convenient to use, in our analysis below. To arrive at such a
representation, we consider 3(?,}’;N) defined by

{8/0N - (£/6)v42

r

- z(co+u(§))é(z)/3} €(T,T' ;N) = S(N)S(T-7').

(8)
3(;,}';N) has the path integral representation ,

TF(N)=T 3 N
€(3,3 ;N) = I DE(s) exp {- — J te)? at -
2
T(0) =3 0
N
(1/3) J Ze_+o (X)) 5(z(t)) dt} . (9)
0

Now consider
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Q(T,¥ ;N) = €(T,T' ;N) + &(T,PT' ;N) (10)
where Pr = (%,-z). Clearly Q(},;';N) is an even function of z.
Now

a Q(Y,T' ;N) _ | sk _
a8z az
z=+0 z=+0
+ 3+,
[ 8 g(r,r’' ;N) ] . (11)
az 2=-0

From Eq. (8) we get

z=+0
(8/8z) €(¥,* ;N) = ~2{c_+ v(X)} g(F,F ;N) . (12)
z="0 Z=0
But from Egq. (10)
Q(T,T' ;N) = 2 g(T,¥ ;N) . (13)
Z=0 Z=0
Combining Eq. (11), (12) and (13) we get,
+ -+
aQ(r,r' ;N) = _{co + v(-l.()}Q(-I",-I"' ;N)
@ z z2=+0 z=+0 (14)
or
21nQ = —{co + v(X)}
8z z=+0 (15)

Further, it is easily seen that Q(f,}';N) obeys the equation,

tasan - 2/609 % it im0 = s, (16)

r
for z > 0. Therefore, we conclude that G(Z,r* ;N) and Q(},?';N)
are identical.

Therefore,
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G(T,T ;N) = €(T,* ;N) + £(Pr,T’ ;N). (17)

We write Eq. (9) as

T(N)=T
>, _ -+ - -
(T, sN) I Di(stexp { -S__ [¥(s)] V/w (18)
T(0)=1"
where & is given by
T(N)=T
¥ = Jd? J DE(s)exp {-S__ _[¥(s)1} . (19)
ran
7(0)=1'
with
N
S [T(s)] = S_IT(s)] - (£/3) | dsv(x(s)S[z(s) (20)
ran 5
0
S; IT(s)] is defined by
N
s, [E(s)] = s _[E(s)] - (£/3) J c, 6lz(s)1ds (21)
0
and
R 3 ar(s)]?
s [F(s)1 = 3 I ds [ gris ] . (22)
v

It is quite interesting to note that the path integral in Eq. (18)

can enter the region z < 0 too.

We can take the random function to be Gaussian with
vanishing average and to have the correlation function w X))o (x>
= B(x-X'), where < ... > denotes averaging with respect to the
random function. In the following we consider randomness with a
correlation length R0 and take B(x) = V2 exp[—ﬁz/Rozl, where V 1is

the parameter describing the randomness. G(Fr,¥ ;N) is now a

functional of »(X) and is still given by the equation (17). Here
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we again employ the replica formalism [26-281. Introducing n
replicas, labelled with a = 1,2,...n, one can write
n
+ 3, - . -+ _ -

€(r,r ;N) iig 111 I Dra(sa)exp[ S anl¥s (8,1 ]

¥ (0)=

ol

&1r (N)-£]. (23)

On performing the average over the random function v(X), we get,

n
(¥, T ;N)> = lim [ T I D}a(sa)]exp{-s} &%, (N)-F] (24)
n-+0 a=1 N
r (0)=r'
ol
where
.’
S = E So[ra(sa)] - S1 (25)
with

) 2 N N
A
s, = 3 [—3] L J dsIdt B(%, (5)-%,(£))6(2,(£))8(z (). (26)
o371 o7

Our interest is only in the adsorbed molecules, for
which we would like to calculate the size <[}(N)—}(0)]2>. The
integral in Egn.(24) can not be evaluated analytically. So, as in
Chapter III, we aaopt the variational formulation of Feynman's
path integral technique, with the trial action,

sT[§(s>1 = cht[}a(sa)] (27)
where

N

5 [F(s)] s_[F(s)] - (c/3) J Slz(s)1ds
0
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N N
. (q2/12£N)J as|at [%(s)-%(t)1°. (28)
0 0

In the above, ¢ and q are trial parameters. Note that the action
in Egqn. (28) has a &-function attractive part as well as a
harmonic oscillator like non-local part (last term in Eq. (28)).
As in Chapter III we prefer to use this non-local action rather
than the one used in reference [56], as this action 1is wunchanged
by translations parallel to the surface, whereas the one in
reference [29] is not. With this trial action, all the path
integrals that are needed for the calculation of the size of the
polymer can be evaluated as earlier. For example, consider the

propagator for the trial action, defined by

.. I(T, T :N)
G, (r,xr ;N) = ~ — (29)
JSdr I(r,r’ ;:N)

with

I(F, 3 5N) = J DE(s)exp {~[S_[¥(s)1} SIE(N-F].  (30)
T(0)=r'
It is possible to write the above as
T(N)=D .
Id§ I D;(s)exp( - S{)

G (3.3 M) = BO)0 ' (31)
r(N)=r R
[Id} dy Jn}(s)exp(-s{[}(s)l)]

T(0)=0

where
u N N
sY(E(s)] = s_[#(s)1-(2c/3) Jé[z(s)]ds . (qz/ez)f’ds (X(s)-31°.

0
(32)
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The denominator in Eq. (31) is simply a normalization
factor which ensures that the propagator Gt(;,;';N) is normalized.

In the above equations, §=(yl,y2) is a two dimensional vector. As

the x and z are not coupled in the equations (31) and{(32), one
gets,
L. I,(r,x ;N)
Gt(r,r';N) = S o (33)
Sdr Il(r,r',N)
with
-5
11<},}';N): Gg(z,2' ;N) Id§ Y (X,% ;N). (34)

qé(z,z';N) is the propagatcr for Brownian motion in the presence

of a delta function sink and obeys the differential equation,

{0/N - (£/6)827022-2c5(2)/3} G (z,2' iN) = (N6 (z-2" ). (35)

>
G§O(§,§';N) is the propagator for Brownian motion in the presence

of a parabolic sink, having origin at § and satisfies,
-+
-

}Gi (X,% :N) = S(N)S(X-%"). (36)
O

(asan - (£/6)9% - (q?/60) (x-3)2

X
Y <+ &

Explicit expressions for both Gé(z,z';N) and Gﬁo(x,x';N) are
available. Hence the propagator Gt(},;';N) is known. If ¢ > O,
then the operator —(6/6)62/622-Jcé(z)/3 has one negative
eigen value, given by €, = -¢c2/6, with the associated eigen
function wb(z)= Yc exp(-c z ). This corresponds to the adsorbed
(bound) state of the polymer. As the paths are not restricted to

®
the region z > 0, the normalization that we can use is {mdz wb(z)2

1. In the limit where N becomes very large, the two propagators

-’
G.(z,2z' ;N) and GY (X,X' ;N)are dominated by the lowest possible
S ho .

eigen functions (ground state dominance) and hence one has
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Gé(z,z';N) 2 cexpi-c(jz|+|z"]) - ebN} (37)
and
v 2 5, 2.2
G§O(§,§';N) x expl-{q((X=-¥)“+(X -y)°)/(28)} - qiN/3]1 g/ (nl) (38)

Remembering that the variational parameters ¢ and g have
to be determined so as to best suit the description of adsorbed
polymers, we make use of the Feynman's variational procedure (See
references [30] and }31] ), for their determination. Thus, we
expect the integral

n r (N)=0

o
I(n) = 111 [ J o}a<sa)] exp [-S] (39)
¥ (0)=0
ol
to behave like exp[—nFl(N)] for n »+ 0 and large N. We estimate

Fl(N) variationally, in the limit n + 0 and choose ¢ and g so as

to get the best approximation for it. These parameters are then

used to calculate <[}(N)-}(0)]2>. Thus

n }a(N)=ﬁ
I(n) =[ 111 I D}a(sa)] expl-S,]1 <exp-(S-S;)>,
r (0)=0
n
z Zt exp(-(S—ST)>T (40)

where <....>T denotes averaging with respect to the trial action

S, and

T
e [ III I

-+

r (0)=0

ot

-+

ra(N)=6
Dra(sa)]exp[-st[r(s)]l
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T (N)=0
2 & V.o
lq N/(6nl)ljd§ J D¥_(s,) expl-si(#(s)]}

-

r (0)=0

[a}

. 2 oY .
N_ G4 (0,0;N) J ay Gho(ﬁ,ﬁ,N)

N, G,(0,0;N)/[2sinh(qN/6)1° (41)

(See Appendix Bl for details of calculation of Eq. (41).)
with No = qu/(Gnl). As our interest is in the description of the
adsorbed state, we take only the corresponding part from

Gé(0,0;N), which is equal to wb(O)2 exp(—ebN). In the 1limit of

large N, one gets

2 2
Z, = g wa(O) exp(—qN/3—ebN)/(6n£) (42)
from Eq. (41). The other integrals that occur in (S—ST> are,
N N
. 2 + -+ 2
(i) (q /12[N)J dstt TRs)-%(E) 1%,
0 0
n T, (N)=0
=@ a_ | W |T] J DE_ (s ) | exp [-s,
aq a=1 R
r (0)=0
ol
= nqg 8 [lnsinh(gN/6)]
aq
= (ngN/6)coth(gN/6)~
%~ ngN/6, in the gN/3 » 1 limit. (43)
N

(ii) <L{c _-c)/3 5 &(z (s)})ds> R which can be evaluated
o o fa] T

similarly to be t(co—c)cN/3.

n
(i1) ¢ I where
a,f3=1 af



N N

_ -+ _3
I J dstt (B(R, (8)-%,(£))5(2,(£))5 (2, (5)) >y (44)
0 0
(See Appendix. B2 for the details of the evaluation of I, and
Iaﬁ)‘
I can be evaluated analytically, and I (ax = f3)

o

numerically. As the results are tedious to analyze, we use the

ground state dominance approximation [29] to get the following:

2 2
L 2 (NVZc/3) 7/ {2[1+25/(qR0 )1 and Iaﬁ ~
{2[1+4J/(qR02)}. where Ro is the correlation length of the

(NVLc/3) 2/

potential. Combining the above results, and introducing the

dimensionless variables N = N/, ¢ = ¢, q = g, ﬁo = R_/¢, Eo =
col, V = ¥, we get

FF (w)/N = (€% - 2T T +q - 2 W £ 1/6 (45)

2 2 2

shere £(q) = 2V /13(2+3 ﬁoz)(4+a R )1, Eqn.(45) can be

N qRo
rearranged to get

2 2

— 5 _ = 2 o= = =2
ﬁFl(u)/N = [e 2c c, * u/R0 c "f(u)l/6 (46)

shere f(u) = pu/l (2+u) (4+u) 1, p=2N V 2/3 and u = gq ﬁoz. In Eq.
(46), Ezrepresents the effect of entropy ( in gquantum mechanical
sarlance kinetic energy), trying to spread out the adsorbed chain,

increasing its thickness, - 2c Cor the lowering of energy

resulting from adsorption, q effect 1localizing the chain to
limensions of q-'1 in directions parallel to the surface and - c 2
“(fu), the effect of the randomness, which results in a net
ittraction between the chains as is indicated by the negative
jiign. Note that this term has - ¢ 2, because of the lowering of

:nergy caused by adsorption. The size of the polymer chain in the
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adsorbed state can be estimated using the trial action. In the =z
direction, the thickness of the adsorbed layer is c_l. From the
trial action, we find,

RN -%(0)1%> = 4£2§02tanh[uﬁ/(6§02)]/u, (47)

using which the size of the chain parallel to the surface can be
estimated. (See Appendix A4 of Chapter III for the details of the
derivation of Eq. 47). We now find the best values of u and «c,

which make ?l(u) a minimum.

IV.4. RESULTS

IV.4.i. Ground State dominance Approximation.

Case I : p « po.

In the above, po = [6+ (32)1/2

] = 11.656. Finding the
value of ¢ such that fl(u) is a minimum gives c = EO/(l— f(u)).
Note that if ¢ is negative, there is no bound (adsorbed) state,
which violates our basic assumption in deriving the equation (46).
Therefore only ¢ > 0 are acceptable to us, and this is satisfied
if p < p®. Using this value of ¢, we get

6F, (WR_2/N = (@ R )% + u - pju /[(2+u) (4+u)-pul, (48)

o : o

fozagp. One can now analyze Eqg.(48) to find the

1/2

where Py =
following results; If Py < pl0 and p < [6+ (32-4pl) 1 , where
Py = 8, then Fl(u) has its minimum at u=0. The size of the chain

in the parallel direction is <[§(N)—§(0)]2> = 282

N/3, indicating
that the chain 1is unaffected by the randomness. Strictly

speaking, this is an artifact of our ground state dominance
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approximation, which breaks down if u=0 (i.e. when g=0). Along
the curve, p = [6+ 2 (8—p1)1/2], the value of u jumps
discontinuously, indicating a sudden change in the size of the
polymer in the parallel direction. Exact calculations, given
below show that the chain size is decreased in both parallel and
perpendicular directions by the randomness. If Py > plo, then the
minimum occurs at u > 0. As pl——>m, the minimum tends to be at u=

/2 oo that <[X(N)-%(0)1%> = 42%R 2

(8) R_“tanh[v 8 N/(6R_$)1/7v 8 —>
4£2§02/V_§ = 2 R~ indicating that the chain occupies only
regions of size % Ro.

Case II : p > p°.

In this case, f(u) 1is greater than 1 for a range of values of u
(or equivalently q). ﬁFl(u) has its minimum value for ¢ = ®», thus
indicating that the adsorbed state is collapsed, to a thickness
zero in the direction perpendicular to the surface. The chain is
now two dimensional.  To get its size, we make use of egn (47).
If ¢ + © then the important term in the equation is Ez(l-f(u))/G

and this has its least value when u = ¥ 8.

The Fig. IV.1l gives a plot of the value of u that
minimizes BFl(u), as a function of the variables p and Py~ and the
Fig. IV.2 summarizes our discussion above.

IV.4.i. Numerical Calculations

We have also done rigorous calculation of the the free
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energy by evaluating Iaﬁ and I, ©ona computer. I 1s given by
L (a+b)+(a 2-p 2 172 tanh(a'ﬁ76)]
2
I = ({cV) In
aa 2 ,2,1/2
(a™-b™) (a+b)-(a2-p*)1/2 tanh(aﬁ/s)J
(49)
where
a =1+ (2/qR % coth(g §/3) and
b = - (2/q B_®) cosech(g §/3).
and Iaﬁ by the integral,
2 2,1/2 - =
) 1 ds (a1+bl)+(a1 -b1 ) tanh(g N/12)
L
e I 2 Zp 5172 " 2 .2 1/2 .
0 1 1 (al+b1)-(a1 -b1 ) tanh(g N/12)
(50)
where
a, =1+ ((2/q ﬁoz)/[sinh (g N/6)1) [2coth(g N/3)-cosh(g Ns/6)
and
b, = - (2/3 R_°)/Isinh(g N/6)]

To verify whether this discontinuous change in u as a
function of V would occur in the exact case also, we did the
following calculation : we took N = 30, Cy = 1 and Ro = 1. For

this case, p = P, = 20 72

and u = g. Changing V means that one is
moving along the line p = Py in the Fig. IV.2. Simple inspection
of the figure shows that there is a discontinuous change in u (q)
from zero to a finite value, along this line. This is seen 1in the

Fig. IV. 3. This means that the polymer size 1in the parallel

direction would decrease suddenly. To find whether this 1is an
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artifact of the ground state dominance approximation, we made an
exact calculation of u(gq). It is seen that for small randomness,
the value of u is not zero but finite. However, the discontinuous
change in u is found to persist. This is clear also in plots of
the parallel and perpendicular sizes, shown in figures 1IV.4 and

Iv.5.
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APPENDIX B1

Calculation of Zt

_'
) : 3 oY :
Z, = N_ Gg(0,0;N) I ay & (8,8;8) (B1.1)

The propagator for a harmonic oscillator is well known
in the literature [See Eq. 41 in Chapter III]. Here we have a two
dimensional harmonic oscillator whose origin is not at zero, but

at some arbitrary point §. Therefore,

—q(cosh(gN/6)-1) y?2
(B1.2)
sinh(gN/6)

=Y
G§O<G,G;N) = [q/27n¢{ sinh (gN/6)1 exp [

Integration over § gives,

->
I dy G§O<U,6;N) = [1/2(cosh(gN/6)-1)1 = 1/02sinh(gN/6)1%.  (B1.3)

Now, Eq.{(Bl.1) could be written as,
Z, = N_ Gg(0,0;N)/[2sinh(qN/6)1° (B1.4)

t

which in the limit of large N gives Eq.(41).
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APPENDIX B2

Calculation of I and I
[ala} ol

£

I could be written as
a

N N T(N)=D

tevl? [ at. [ac [ay [ p2(tre St exp [ -1 (£)-% (s)12/R 4

L 3 al Y P a 3 o)

3|0 0 3(0)=D
I =
aa T(N)=0

2 Jd? J DE(t)e St
(0)=0

(B2.1)

where § is two dimensional and St is given by Eq. (32) of Chapter

Iv.
T(N)=0 -
Jd? [ DE(t)e St - exp [-qN/31 in the limit (gN/3) >> 1 limit
}}0)=ﬁ
(ground state dominance approximation).

The numerator in Eg. (B2.l1l) could be written as

2 N N

I at  [at. [at. [az [ -1%.-2.1%2/r 2 [d*

el i I " I 3 J r, J r, exp r,-r, o &Y
0 0

T(N)=0 -

_aY |
I DE(t) e St s(2 (). (B2.2)

2 7R

1—}d(ta)) St

(0)=0

Eq. (B2.2) can be written as a product of three propagators

I i i th zt ar. [az [ -T2, -2.1%/R 2
= _;_ _;_ J o J 3 J r, J r, exp r, T, °
0 0
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-+ -+ -+
Jd§ Gﬂo(ﬁ,n|}2,tﬁ) G{o(}z,tﬁ|}1,ta) G{ (1.t 18,00 . (B2.3)

As in the case of S in Chapter III (See Appendix A3), here also
the propagators are that for harmonic oscillators. Here we have
two dimensional integrals and the 1limits of integration are
different. It can be evaluated in the ground state dominance

approximation , i.e., in the (gN/3) >> 1 limit to get

N 2 2
I, > (NVLc)“/2 [1+2¢/(qR ] . (B2.4)

Similarly we evaluate Lo exactly as 1in the case of

polymer in random media to obtain,

2 2

Lo = ({c/3)" 2V

-1
N _ _ , sinh(gt/3) sinh(g(¥-t)/3)
J tdt | 1+(4/3 R — .
sinh (g N/6)

0

(B2.5)
The Eq. (B2.5) can be simplified to get Eq. (49) of Chapter IV.

In the case of Iaﬁ' instead of Eg.(B2.3), we will have a product

of four propagators,
l ch 2 N N -+ -+ - nd 2 2
LN farg fit, fity o ity g

0 0

- -+ -+ + + 3 -
Idya jdyﬁ Gho(y'N|r1+ya'ta) Gho(rl+ya'talya’0)
-+ -+ -+ -+ -+ e
Gho<yB'N|r2+Yﬁ’tﬁ) Gho(r2+yﬁ,tﬁ|ya,0). (B2.6)

Eq. (B2.6) can be evaluated in the ground state dominance

approximation to get

2 2
Iaﬁ ~ (NV)©/ [1+4€/(qR0 )]l . (B2.7)
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As in the case of polymer in random media, here also we evaluated

Iaﬁ using the exact propagators and obtained the Eg. (50) 1in

Chapter 1IV.
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CHAPTER V

CONCLUSION

There have been many investigations, both theoretical
and experimental, on the behaviour of polymer chains in disordered

media and their adsorption on random surfaces.

In the case of a polymer in quenched random media, a
simple model which consists of a Gaussian chain in a medium where
a certain number of obstacles are frozen at random locations was
used. The problem was investigated with the help of Edwards
Hamiltonian [1-3] that has been widely used in the theoretical
investigations of polymer problems. The quantity of interest is

= 2

<{R >, the mean square end-to-end vector (i.e., the size) of the

pelymer chain in the presence of quenched disorder.

The analytical treatment of the effect of quenched
impurities on chain statistics is difficult due to the necessity
of averaging the logarithm of the partition function of the system
over the disorder. The replica method employed enables us to
perform the averaging correctly. We have adopted the replica
formalism [5) and the variational formulation of path integration
[4] to calculate the size of polymer chains in random media. We
have studied the effect of randomness on the size of the polymer
chain in both cases, using a ground state dominance approximation

and also exactly.
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In the case of a polymer in quenched random medium, we
make use. of a non-local, quadratic trial action. In the
approximate case, we found the following. When the randomness 1is
small, <ﬁ2> = N1, which is the value for a free polymer molecule.
But as one increases the value of randomness there 1is a sudden
change over from the free polymer like behaviour (<§2> x N) to one
that is not. 1In the limit where randomness or the length of the
chain becomes very large, the size of the polymer chain is found
to be given by <§2> = 6R02/5.248, a value 1independent of the

length of the polymer molecule.

We have also compared the above predictions with what
one would have obtained, if one used the 1local trial action of
Edwards and Muthukumar [1]. 1In this case, in the ground state
dominance approximation, the free energy would not have any
contribution from the interactions between the replicas and thus
the use of this action does not predict the collapse of the
polymer.

We have also done rigorous exact calculation of the free
energy when the non-local action is used. The exact calculations
revealed that arbitrarily small amounts of randomness will reduce
the size of the polymer chain and it will no longer remain a free
polymer. We have also found in the exact case that the transition
to the collapsed state is smooth, in contrast to the prediction of
the ground state dominance approximation. We find that as the
length of the polymer chain 1s increased, the collapse happens at

a lesser magnitude of randomness.
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We have also investigated adsorption of a flexible

polymer chain on a chemically random surface [6]. For this
purpose, we have used a generalisation of the de Gennes' boundary
condition [7] to a random one, and path integral methods. For

weak randomness, it is found that the chain size is unaffected by
the randomness. But as one increases the randomness or the chain
length, the chain size becomes ~ Ro' where Ro is the correlation
length of the potential. It is found that when the chain length
or the randomness exceeds a certain critical wvalue, the chain
first undergoes a sudden collapse in the parallel direction,
followed by another sudden collapse in the direction perpendicular
to the surface, to a thickness zero, so that it becomes a two

dimensional object.

We have also done an exact calculation and found that as
randomness 1s increased, there is a reduction in the size of the
polymer chain compared to its value in the absence of randomness.
In this case also we have found a sudden, sharp collapse of the
polymer chain in the direction parallel to the surface, followed

by a collapse in the perpendicular direction.

On the experimental side of the adsorption problem,
there are complications because a single chain adsorption is never
observed. One always reaches a situation where many chains
conmpete for the same portion of the surface. Furthermore, the
single chain problem may be modified by the existence of long
range van der Waals forces between the surface and each mononer.

The condition required for the adsorption of separate chains are
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never attained in practice, but they may provide a very useful
framework for future investigations of many chain adsorption on

surfaces.
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