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PREFACE

The work embodied in this thesis was carried out in the
Department of Applied Chemistry, Cochin University of Science and
Technology. The study was confined to theoretical investigation

of the dynamics of electrochemical charge transfer reactions.

The charge transfer reactions in condensed
media-electron or proton transfer- between a solvated molecule
and a macroscopic solid body such as electrode or membrane, has
attracted the attention of many scientists, since the beginning of
this century. A large number of papers related to theoretical as
well as experimental investigations 1in this field, have been

published during the past few years.

In the introductory chapter of this thesis, the work
done on the charge transfer processes 1is reviewed. In this
emphasis is given to the theoretical work done on the charge

transfer reactions at a metal electrode-electrolyte interface.

The ﬁnderstanding of experimental observations in the
electrochemical charge transfer reactions needs a knowledge of the
theory for the process. Various theoretical approaches have been
given for the electrochemical electron and proton transfer

reactions. A brief account of this is given in chapter II.



The dynamics of the electrochemical electron transfer
reactions have been studied by many authors. 1In this process the
solvent has an important role in determining the dynamics of the
process. In chapter III, a theoretical treatment developed for
studying the dynamics of an electrochemical electron transfer
reaction in the adiabatic limit is presented. It is argued that
in the adiabatic limit, only the shift of the ionic orbital, due
to its interaction with solvent molecules is important, and hence
the shift may be taken as the reaction co-ordinate. Using the
path integral technique, it is shown that the shift obeys a
stochastic integral equation. This integral equation is converted
into a random differential equation and this is then anlaysed to

find the rate of the process.

Another process 1investigated 1is the electrochemical
proﬁgn transfer reaction. The dynamics of this process has also
been a subject of several papers. In chapter IV, theoretical
approach for calculating the rate of the process, in adiabatic and
non-adiabatic iimits, is presented. Non-adiabaticity 1s accounted
for by taking electronic excitations in the metal into
consideration. As 1s.well known, these electronic "excitations
obey boson statistics approximately. Therefore we make use of a
bosonisation technique to map the problem of proton transfer, to a
problem involving harmonic oscillators, after which the rate is
calculated using the usual guantum transition state theory.

In the concluding chapter, brief summary our work is

presented.
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CHAPTER I

CHARGE TRANSFER REACTIONS IN CONDENSED MEDIA

(1) INTRODUCTION

An understanding of <charge transfer reactions in
condensed media, particularly that of electron transfer and proton
transfer -~ be it homogeneous or heterogeneous, 1is of great

chemical and biological interest1-17.

Electron transfer is
important in reaction mechanisms and photosynthesis, 1in disease
control and energy transduction, in catalysis and copy machines,
whereas proton transfer 1is important in acid-base catalysis,
corrosion, electrocatalysis and industry (e.g.industrial
production of heavy water). of —éarticular importance to the
chemist 1is the <charge transfer at the =electrode-electrolyte
interface. The kinetics of homogeneous and heterogeneous charge
transfer reactions have a number of common characteristics.
These include, the activation (Arrhenijus) dependence of the
process rate on the temperature and the presence of the
corre]ation.between the energy (or free energy) of activation and
heat (or free energy) of reaction. Likewise, there are
differences between these two, the reason being the involvement of
the continuous electronic energy spectrum of the electrode in the

heterogeneous charge transfer reactions.
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Even though electrochemical charge transfer processes
have been investigated for a long time, there still remain many
things that are not understood properly. The role played by the
solvent in determining the dynamics of the process is still a
field of active 1investigation, even though 1its role in the

energetics of the process is fairly well understood.

Another important aspect of the process, on which there
have been very few investigations is the fact that if the charge
transfer is at the surface of a metal electrode, the electronic
system of the metal, with its continuum of allowed energy levels
may play an important role in the process. This is particularly
true of proton transfer reactions where there is significant

interaction between the proton and the metal.

Thus, the characterization of non-radijative,
heterogeneous charge transfer process involving the electrode
{metal, semiconductor) and a solvated microspecies {ionic,
molecular, inorganic/organic complexes) is currently one of the

lTittle understood problems in electrochemistry.

(2) ELECTROCHEMICAL ELECTRON TRANSFER REACTIONS

(2.a) HISTORICAL SURVEY

An essential aspect of electron transfer reactions is

the change in the equilibrium nuclear configuration of an ion or
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molecule that results from its gain or loss of an electron. In
the case of a metal complex in a polar solvent, this 1involves
change in the metal-ligand and intraligand bond lengths and angles
as well as changes in the vibrations and orientations of the
surrounding solvent dipoles. As first noted by Libby in 195218,
the coupling of the electron transfer to these nuclear
configuration changes 1is governed by energy and momentum

conservation requirements as expressed in the Frank-Condon

principle. According to this principle, internuclear distances

and nuclear velocities do not <change during an electronic
transition; 1in other words, electron transfer occurs at
essentially constant nuclear configuration and momentum. This

requirement is central to <classical as well as quantum mechanical
electron transfer theories. In the <classical theories, wuse 1is
made of an activated complex formalism 1in which the electron
transfer occurs at the intersection of two potential energy
surfaces - one for the reactants and the other for the products.
The Frank-Condon principle is obeyed since the nuclear
configuration and energies of the reactants and products are the
same at the intersection. In the quantum mechanical theories, on
the other hand, the intersection of potential energy surfaces 1is
deemphasized, nuclear tunneling from the initial to the final
state is allowed for, and the electron transfer is treated as a
radiationless transition between the reactant and product states.
The fitness of a particular nuclear configuration for electron

transfer is related to the square of the overlap of the
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vibrational wave functions of the reactants and products (i.e.to

the Frank-Condon factors of the transition).

The early electron transfer theories were
non—adiabatic18-21, that is, the rate constant depended explicitly
on the electronic interactions of the reactants and the nuclear

configuration change was not specifically ca1cu1ated19’21.

A few
years later Marcus published the first of a series of papers on
classical (activated-complex) electron transfer theory. In his
paperszz-zs, the electron transfer was assumed to be adiabatic;
that is, the electronic interaction was taken to be 1large enough
so that it no Tonger determined the rate of the reaction. The

reaction would occur as soon as the <c¢ritical configuration is

attained. éo the rate is independent of electronic 1interactions.
Intramolecular configuration changes were neglected and the
solvent configuration change was treated classsically, using

concepts developed for discussing charge transfer spectra26

Reactions with and without free energy changes were treated. This
model did not account for the important fact that despite the
similarity of the solvent configuration changes, the rates of
electron exchange between +2 and +3 jons spanned many orders of
magnitude. This result indicated the importance of the detailed
electronic configuration of the reactants and products in

determining electron transfer rates.
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In 1957, Marcusz7 gave the results of a numerical
calculation of the electron transfer barriers in the Co(H20)§+—
Co(HZO)g+and Fe(HZO)g+-Fe(H20)2+ exchange reactions, which
included contribution from intramolecular configuration changes.
Calculations involving the intramolecular <configuration changes

28

were published by George and Griffith in 1959. Such expressions

were extended to reactions with net free energy changes by

Marcuszg-32 and Hush33’34

25,35,36

and were generalized to include

and mixed-valence systems34. A

electrochemical
semiclassical formalism, in which the classical expression for the
intramolecular configuration changes were <corrected for nuclear

tunneling effects, was introduced in 196237. In parallel with

these developments, Levich38“40 and Dogonadze41’42

published a
quantum mechanical description’o? the solvent configuration change
in which first order time-dependent perturbation theory was used
to describe the time evo1ufion of the initially prepared zero

order states. This represented the first detailed treatment of

non-adiabatic electron transfer reactions.

In the 1970s various quantum mechanical aspects of the

43-52

electron transfer problem were treated in detail and ab

initio molecular orbital calculations of exchange rates were
.. 53,54 . . . .
initiated . Major advances in the application of
radiationless transition formalism to electron transfer process
were made, culminating in an elegant treatment 1in which the

electron donor, electron acceptor and the surrounding solvent were
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treated as a ‘supermo]ecu1e'55. Much of the theoretical work of
this period was directed towards explaining the distance and
temperature dependence of electron transfer processes in
biological systemsss-ss. At the same time, experimental evidence
indicated the need for the revision to the classical and quantum
mechanical treatment of highly exothermic reactions. Although,
there has been much discussion of this problem and much progress
has been made46’55’66-68 some questions vregarding the theories
remained unsolved. A major shortcoming of the gquantum mechanical
treatment is that it does not account for 1large entropies of

reaction. To overcome this, the solvent reorganization (free

energy) expressions of Marcus are generally used.

Despite the shortcomings of the theories in “the highly
exothermic region, there 1is general agreement concerning the
treatment of thermoneutral and moderately exothermic electron
transfer reactions. Sutin69 has given a description of this type
of reactions in weakly interacting systems, taking Fe(H20)§+

-Fe(H20)2+ exchange reaction, as anh example.

Recently, the dynamical role of the solvent for the

electron transfer reactions occuring in the solution, be it

homogeneous or heterogenous, has been the subject of many
papers70-116. Much theoretical as well as experimental
investigations of the solvent effect on etectron transfer

processes have been made. Towards the theoretical approach,
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/73,80,81,84,86,113,130,131

Marcus et &l , Levich, Dogonadze and

Kuznetsov (LDK)75’79’86’89’90, Sutin et 3772, Jortner et

a796’99’109, Zusmanlls, Calef and WO1ynes70’71’92’93, Mikkelsen
78.83,124

and Ratner have made contributions whereas experimental

91,96,97,99-107,109-111

investigations were made by Weaver et al

87,115 83

and Foss et =21 Mikkelsen and Ratner ~, in their review,
have clearly given the important differences between the

solid-phase and solution-phase electron transfer reactions.

During the course of these theoretical investigations a

number of stimulating qualitative proposals of a more chemical

hature were made. One of the major developments was the
demonstration by Taube and Myers117 and by Ha1pern118 and their
coworkers - that in certain cases, electron transfer from the

initial to final state occurs in multiple steps, 1involving
intermediate states belonging to a bridged species.. Such a multi-
step process hecomes important when the coupling between the donor
and acceptor orbitals is vanishingly small or when the direct
transition is forbidden due to symmetry constraints. In the
former case, the bridging orbitals may <couple more successfully
with the acceptor and.donor orbitals and thus provide a favourable
path for electron transfer reaction to occur. The resulting
catalytic effects of bridging species have been observed in both

. 119
homogeneous and heterogeneous electron transfer reactions .



8
A theory for bridge assisted electron transfer
reactions, both homogeneous and heterogeneous, has been developed

by Dogonadze et 37120_123

for a case where bridging species has a
continuous distribution of energy 1levels. Two mechanisms for
electron transfer viz (i) push~pull, in which the electron is
first trasferred from the initial state to bridge and thereafter,
from bridge to the final state and (ii) pull-push, wherein the
transfer of electron from bridge to final state create a vacancy
in the bridge which is filled at a later stage by an electron
occupying the initial stage, have been investigated by these
authors. A detailed account of theoretical treatments of
homogeneous and heterogeneous bridge assisted electron transfer

has been given by Mishra and Rangarajan77.

Recently, Hush et 3’125~129 has made theoretical and

experimental investigations of bridge-assisted electron transfer

on a series of metal complexes. A nonsuperexchange coherent
mechanism for homogeneous bridge-asssisted electron transfer
reactions has been proposed by Marcus and A1meida130’131. The

authors assume a strong electronic coupling between the bridge and
donor species so that the entire transfer from the donor to
bridge-acceptor couple systems occurs coherently rather than
incoherently, in two successive steps and the transfer is treated

non-adiabatically.
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(2.b) ADIABATIC AND NON-ADIABATIC REACTIONS 30,77,132

A reaction is said to be adiabatic when the vreacting
system moves during the whole course of the reaction along the
same potential energy curve corresponding to the given <electronic
state (curve a in Figure I.1). A non-adiabatic reaction is one in
which the reacting system undergoes transitions during the course
of the reaction from one potential energy <curve to another
corresponding to a higher energy electronic state of the activated

complex (curve b in Figure I1.1).

POTENTIAL ENZRGY

NUCLEAR CONFIGURATION

Fig. I.1. Profile of potential energy surface of reactants (R) and
that of products (P), plotted versus nuclear configuration of all
atoms. Arrow a represents adiabatic and b represents
non-adiabatic motion in the region of closest approach of two

potential energy surfaces.
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According to the transition state theory (1ST)
formalism, these two types of reactions influence the value of
transmission coefficient, », which is a part of the
pre-exponential term in the absolute rate expression. The value
of » is unity for an adiabatic reaction and less than unity for a

non-adiabatic reaction.

In the adiabatic case, due to the strong interaction of
the reactants at their closest approach the gap between the 1lower
and higher potential energy curves will increase. So during the
course of whole reaction, the system will follow the Tlowest
potential energy surface and the probability of transition to the
upper curve will become small. The reverse is the <case for the

non-adiabatic reaction.

The distinction between the adiabatic and non-adiabatic
reactions can be clarified by applying semiclassical Landau-Zener

133,134
theory

for the transition probability of the reacting
system from the lower electronic state to the  upper ohe.
According to them, the probability of transition from the reactant
to the product state is determined by the factors 1like relative

velocity of approach of the one reactant to the other during the

reaction and the electronic interaction between them.
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This is the <case of homogeneous reactions. For
heterogeneous electron transfer reactions, the mechanism of
electron transfer is the same, but the potential energy surface is
135,136

to be modified. For e.g. for electrode reaction , the

potential energy surface is as shown in figure.Il.2.

POTENTIAL ENERGY

NUCLEAR CONFIGURATION

Fig.1.2. Profile of potential energy surface of reactants (R) and
that of products (P), plotted versus nuclear configurations of all
atoms, for an electrode reaction. Only three of the numerous

electronic energy levels of this system are indicated.

Each surface in the figure 1.2 is a many electron energy
level of entire reacting system and is a function of nuclear
co-ordinates. The different R - surfaces differ only in the
distribution of these electrons among the “one electron quantum

states'in the metal. The different P - surfaces differ in a
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similar way from each other. The unperturbed surfaces are drawn
parallel since their energy differences are relatively unaffected
by many of the wusual changes of nuclear co-ordinates (those
related to bond-lengths of the reactants and solvent
orientation). It has been a difficult problem to treat the
dynamics on such a continuum of surfaces, and a solution to this

is the bosonization technique135.

(2.c) OUTER AND INNER SPHERE ELECTRON TRANSFER REACTIONS

Electron transfer reactions can be classified as outer

. ) . 136,137
sphere and inner sphere reactions

depending on (i) changes
occuring in the reactant configuration during electron transfer
process and (ii) the time constants associated with these changes

viz a viz charecteristic time scale for electron transfer step.

Quter sphere electron transfer reaction occurs with onily
1ittle distortion of chemical bonds during electron transfer step,
though there <can be subsequent relaxation in the reactant
configuration. The theoretical analysis of this type of reaction
is easy, since in the time axis, the elementary electron transfer
step can be decoupled from the accompanying relaxation 1in the
reactants. Also, assuming the electron transfer step to be the
rate determining step, one can concentrate on the theoretical
description of this step alone, with due consideration to the

modulations caused by the longitudinal polarization modes of the
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solvent medium. On the other hand, elementary electron transfer
step and the change in the bond characteristics of reactants can
occur “simultaneously' in an inner sphere mechanism, and
therefore, dynamics of these two processes cannot be separated,

thus making the theoretical analysis of inner sphere processes

difficult.

Basically, in the inner sphere electron transfer
reactions, in contrast to outer sphere reactions wherein the inner
shell constituents are considered to be frozen, intramolecular
dynamics 1leading to changes in bare, reactant-1igand and
intraligand boﬁd tengths, and bond angles need to be considered.
These configurational changes are expected to manifest1 as (i) a
higher experimental activation energy 1in comparison to outer
sphere processes (ii) a marked temperature dependence of
activation energy (iii) a deviation from the Gaussian dependence
of the rate expression in endothermic and exothermic reactions and
(iv) a contribution from inner sphere modes to both
pre-exponential (i.e. quantum tunneling factor) and activation
part of the rate expression whenever there is strong distortion
and displacement in the 1intramolecular vibrational potential

137,138

energy surface The theoretical treatments of inner sphere

dynamics have been done by various

30,35,37,44,47,119,139-149
authors : .
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A well known example for a homonuclear outer sphere

electron transfer reaction is

2- - - 2-

MnO4 + MnO4 _ MnO4 + HnO4 (1)
which can be followed by isotopic substitution or by NMR 1ine
broadening of the central manganese atom. During this process the
coordination sphere remains intact and the overall process is

controlled by electron transfer.

An example of a heteronuciear outer sphere electron

transfer reaction is
[Fe(Ch) 1% + 11rC11°7 ———  [Fe(em) 177+ 11rc1 1Y (2)

which is thus accompanied by a net chemical change.

A heteronucliear inner sphere electron transfer reaction
is
2+ 2+ 2+
[(NH3)5C0C1] + [Cr(H20)6] + 5 H20  —— [Co(H20)6]
+ [0 Cr(HZO)SJ + 5 N H3 . (3)

Here reaction proceeds via an intermediate binuclear compiex of
the form [(NH3)5 Co C1 Cr(H20)5]4+. The actual charge transfer in

the above equation (3) is thus preceded and succeeded by 1igand

substitution.

A case of inner sphere electron transfer reaction
without 1igand transfer is the reduction of hexachloroiridate(lV)

by acquochromium(I)
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2-

5 + Cr(aq)2+

IrCl > [C1

3+
Ir C1 Cr(HZO)S] > IrC]6 + Cr(aq)”.

5
(4)

(3) HOMOGENEOUS VS ELECTROCHEMICAL CHARGE TRANSFER REACTIONS

The reaction with charge transfer include the transport
of electron or proton. An example for homogeneous electron
transfer reaction is the redox reaction,

[Fe(cu)6]3'+ [r:e(CN)GJ4~ —>[Fe(CN)6]4' + [Fe(CN)6]3- (5)

<
and for heterogeneous electron transfer reaction is the redox

reaction at an electrode
[Fe(cu)6]3'+ e (metal) —"> [Fe(tN)G]“’ : (6)

Similarly for the homogeneous proton transfer reactions

the acid-base reaction

AR+ B —> A+ BH (7)

whereas for the heterogeneous proton transfer reaction, the

hydrogen jon discharge at an electrode

H3o+ + e (metal) ——> H + H.0 (8)

ads

illustrates the examples for these types of reactions,. In
equation (8), Hads indicates that the hydrogen atom chemisorbed on

the metal surface.
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There are several relations of fundamental importance

that characterize the difference between chemical and
electrochemical processes. In the electrochemical case, the
reaction rate or the corresponding current density is

experimentally variable not only through change of <concentration
or temperature as for an ordinary chemical reaction, but can
additionally be modulated over a wide range by variation of
electrode potential. In the chemical reactions, the velocity is
determined by the probability of formation of an energetically
activated state of the reactants, from which products are formed
by redistribution of atoms or molecular arrangements which depends
on the free energy of activation through Boltzmann's distribution
function and Arrhenius law of <chemical kinetics. Electrode
reactions involve similarly a free energy of activation which,
unlike chemical reactions, depends on the potential and so their
rate also depends on the potential.

For homogeneous proton transfer reactionslso, the
Br@Onsted relation is valid while in the electrochemical case, the
corresponding relation 1is the Tafel equation. In the
electrochemical proton transfer reactions, the -electronic energy
can be varied by varying the potential whereas in the <chemical
reactions the acidity is varied. Both these relations have been

verified experimenta11y201.
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(4) ELECTROCHEMICAL PROTON TRANSFER AND HYDROGEN EVOLUTION

REACTION

(4.a) HISTORICAL SURVEY

Since the early days of electrochemistry, the
electrochemical proton transfer and hydrogen evolution reaction
(HER) has been one of the most comprehensively studied
electrochemical processes. The HER provided the basis for the
first report of Tafel 1aw151 at the beginning of this century,

which gave the relationship between rate (current density, i) and

the departure of the potential from the equilibrium, »n as
i = A exp (-aFn/kT) . (9)

Rowever Tafel's assumption was that the combination of hydrogen
atoms on the surface was the slow step of HER and his neglect of
consideration of the electron transfer step as rate determining
has 1led to the <calculation -of incorrect value of transfer
coefficient, o.

152

Smits in 1922 suggested that slow discharge could be

a rate determining step in HER. The first quantum mechanical

theory of charge transfer was that of Gurney153

in 1931. In the
Gurney model, the product formed by the transfer of an electron to
a proton was considered to be a hydrogen atom in water rather than

a hydrogen atom bonded to the electrode. Calculation of the heat
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of activation on this basis gave values that were too high.

154

Butler modified Gurney's mechanism to take into

account bonding (chemisorption) of the product hydrogen atoms (in

ds ) to the metal. Horiuti and Po1anyi155

H30++ electron —> H

a
had pointed out the effect of metal-hydrogen bond wupon the
reaction rate., They did not consider the quantum mechanical
aspects of electron transfer whereas Butler's model took both
Gurney's ion quantum mechanical transfer and the effect of
metal-hydrogen bond strength into account.

Parsons and Bockris156

developed Butler's extension of
the Gurney theory, with the assumption that the probability of
electron transfer to'ihe proton was unity at the crossing point at
the col of the potential energy surfaces. They made rough

numerical estimate of the rate of the proton discharge reaction

under adiabatic electron transfer conditions.

The above developments of Gurney's model had not taken
into account the quantum mechanical properties of the discharging

proton. However, the quantum properties of protons at interfaces

had been considered at early stages, by Bawn and Odgen157 who

calcuiated the rate of transition of a proton and deuterium across

an Eckart Barrier. In homogeneous system, the quantum mechanical

effects of protons have been considered by Bernal and Fow1er158

159 160-163

and Conway, Bockris and Linton Later, Christov



19
developed a detailed picture of quantum mechanical transfer of
protons in several mechanistic interpretations of data on
separation factors. Conwayl64 showed that given certain
assumptions concerning barrier width, proton tunneling 1in the

hydrogen discharge reaction could affect markedly the Tafel slope

and gives a potential dependence of separation factor.

Some calculations of the quantum mechanics of electrode
reactions involving protons were carried out by Bockris and
Matthewslss. They calculated the effect of quantum mechanical
penetration of protons through the cliassical barrier from the H30+
ion (interacting with the surrounding water molecules) to the
electrode. Neutralisation was asssumed to take place upon
penetrat{gn of barrier.

Marcus166 and Marcus and Cohen167, discussed the
possibility of calculating the chemical part of the energy of
activated state for homogeneous'proton transfer reaction by the

bond energy-bond order (BEBO) meth0d168’169.

43,170-172

Levich, Dogonadze and his co-workers have

applied their electrostatic model to proton discharge173 and

homogeneous proton transfer174. German et 37175 has discussed the
H/T separation factor on the basis of this model. In order to

obtain a sufficiently high value of the separation factor, they

find it necessary to abandon the adiabatic proton (or tritium)
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transfer and adopt a nonadiabatic model. The proton jump distance
is considered potential dependent, as it involves an jon-electrode
interaction. No quantitative calculation of separation factors

from this approach have been published.

The LDK quantum mechanical mode1173

for the proton
transfer assumed the hydrogen atom in the adsorbed state s
neutral. But detailed analysis of the dependence of the symmetry

factor on the temperature and potential has led to the development
181

of a new model, charge variation model (CVHM) in which the
variation of the <charge of the adsorbed hydrogen atom was
assumed. Much theoretical and experimental work on

electrochemical proton transfer reactions were done for the 1last

few years75’176'221. TJowards this, the contributions of Bockris

ot 57191,216,

67189,190,192-196,198,200,201,203,205,207,208,211-213’ Krishtalik

ot 37177—179,206,220’ Kuznetsov75’181’182’187’188’210. U1strup183,

Frese Jr.204, Schmick1er215e

review201, gives the important theoretical as well as experimental

Conway et

tc. are noteworthy. Conway in his

observations on electrochemical proton transfer reactions.

(4.b) PROTON TUNNELING IN ELECTROCHEMICAL HYDROGEN EVOLUTION

REACTION

The 1ight particles such as electron, proton and to a
certain extent deuteron can transmit through energy barriers by

tunneling, in addition to their <classical transition over such
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barriers by means of thermal activationlsg’zzz.

Much kinetic work
has been conducted to identify the process, but only a few
examples have been found at sufficiently low temperatures where
the rate through the <classical thermal activation pathway is
relatively much diminished in comparison with the rate of proton

tunneling pathway. So the latter <can be identified, when

significant.

Experiments at low temperatures are therefore preferred
for detection of proton tunneling since the classical and quantunm
mechanical tunneling process of proton transfer always occur as
parallel reactions, with the relative contributions being
determined by temperature and mass of the particle being
transferred. Usually, the classical, thermally assisted transfer

becomes the dominant process at elevated temperatues.

Attempts were made to find out the possibility of proton

tunneling in HER223

by conducting direct electrode kinetic and H/D
kinetic isotopic effect measurements on the HER down to about 173K
in methanolic HC1 solutijon. Unfortunately, the experimental
indication of proton tunneling in HER have been Tlargely negative
while special kinetic effects e.g. large and potential dependent
Tafel slopes were shown to be expected theoretically if a proton
tunneling pathway dominated. However, in some homogeneous
159,224

chemical reactions inveolving proton transfer , evidence for

significant proton tunneling has been found out.
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The electrochemical H/D isotopic separation factor, S,
is another quantity that has been examined with regard to proton
tunneling effects. High values for S are expected on some models
for significant proton tunneling, due to negative exponential
dependence of tunneling transfer rates on mass of the particle.
Again, clear indication of S being determined principally by
tunneling are not foundzzz. Theoretical study of proton tunneling
in the electrochemical HER has been carried out by many authors.
The difference in their analysis is mainly in the models of the
potential barrier for proton tunneling, that they

160-163,165,225-229
used .

(5) ACTIVATIONLESS AND BARRIERLESS PROTON -DISCHARGE REACTIONS

The activation energy of an ‘electrochemical reaction

such as the H30+ jons discharge depends onh overpotential as

A = Ae- an F (10)
where A is the real activation energy at overpotential mu, and A is

the same quantity at the equilibrium potential.

Experiments show that the transfer coefficient o is
constant in a certain range of potentials. In many cases it has a

value close to 1/2.

The above equation (10) shows that the activaton energy

of the discharge process decreases with an increase in the
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overpotential; On the other hand for the reverse reaction i.e. for

the ionization reaction it increases.

A= Ae'+ fnF (11)

It follows from thermodynamics that at a given potential for a one

electron process, a + 3 = 1,

For a cathodic proton discharge reaction, since the
activation energy at a given potential is finite and decreases
with increasing overvoltage, it vanishes for a sufficiently high
overpotential. In this case, the reaction rate is the highest and
a further increase in the potential will not lead to an increase
in the current. 1In other words, « = 0 for such an activationless

process. For the reverse ilonisation reaction at these potentials,

= 1.

In the other 1imiting case, i.e. decrease of overvoltage
leads to an increase of the discharge activation energy, but at
the same time also to a decrease in the actvation energy of
jonisation. At a sufficiently low cathode potential, i.e. at a

sufficiently high anode potential, the activation energy of

jonisation vanishes. In this <case 8 = 0 and a = 1, The

possibitity of such a process was shown by Krishta1ik230 in 1960.
Unlike the activationless processes, the processes

corresponding to o« = 1 (or {3 = 1) requires a considerable

activation energy. But in contrast to the relationships for an
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ordinary discharge, this activation energy is equal to the heat of
an elementary act of the reaction, since the activation energy of
the reverse process is equal to zero. The potential diagram of
the process does not contain the usual hump, activation barrier,

and therefore such processes are called barrierle$$230.

A detailed discussion of experimental and theoretical
observations and explanations of these two processes is given by
Krishta1ik23l. So far as theoretical treatments are concerned, no
existing models can give a satisfactory explanation for the sharp
change of symmetry factor (transfer coefficient) between normal

and barrierless regijons, in the range of potentials in which

hydrogen evolution occurs.
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CHAPTER II

THEORY OF ELECTROCHEMICAL ELECTRON TRANSFER AND ELECTROCHEMICAL

PROTON TRANSFER REACTIONS

(1) ELECTROCHEMICAL ELECTRON TRANSFER - DIFFERENT APPROACHES

Common to the most theoretical approachesl-s to the
calculation of reaction rates are three assumptions. They are: (i)
the microscopic states of configurations from which the system may
undergo reaction (classically or quantum mechanically) are assumed
to be in thermal equilibrium with the remaining states, (3ii) the
interaction of the e1ectronﬁé orbitals of the reactants and
electrode is weak and (iii) a system having just undergone
electron transfer goes on to form stable configurations of the
products. For example, in classical calculations based on the
crossing of surfaces in phase space, the rate is equated to the

rate of first passages.

Common to all treatmentsl-3 is the discussion 1in terms
of potential energy surface and the importance of the <crossing
point of the reactant's surface with product's surface in

determining the electron transfer probability.
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The differences among the treatments range from minor to
major. Some are developed from fundamental considerations, while
others are 1less rigorous. Levich and Dogonadze1 treat the
polarization dynamics macroscopically but in an elegant fashion.
They ignore, dielectric dispersion and any changes in the inner
coordination shell. Hush4 has formulated the problem in such a
way that he could calculate the contribution of inner coordination

shell from ion-dipole and ligand-field arguments.

The treatments may be classified, in part, with respect
to the effects they include 1in their calculation of the
probability of reaching the intersection surface. The probability
appears via a free energy of reorganization term or via some
equivalent term. These free energy terms may have contributions
from (i) energy and entropy <changes in the inner <coordination
shell due to changes in bond lengths and angles, (ii) <changes 1in
jon size due to changes in bond 1lengths causing thereby small
changes in the solvation free energy of the medium outside the
inner coordination shell and (iii) for any given size of dons in
the activated complex, a change in the vibrational and orientation

polarization at each point in the medium.

Based on these effects, various theoretical treatments
have been given for the =electrochemical electron transfer

reaction.
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(1.a) The Marcus Treatment for Homogeneous and Heterogeneous

Electron Transfer

Marcusz’s-10 uses a genera) classical statistical

mechanical approach with the rate constant given by

K = = Z exp(—AGt/RT) (1)

where # is the electron transmission coefficient in the activated

¥

state, Z is the collision number for the reaction and AG is the

free energy of activation. For the homogeneous <case Marcus

11 -1 -1

typically takes Z = 2.5 x 10 M sec and for the heterogeneous

-4 1

case Z = 10 cm sec

The free energy of activation includes

the following contributions.

Agt = AG* + Agt + AG* + AG: (2)
i ) W e
where AG? and AG? are the reorganizational free energy

contributions from the outer and inner solvation spheres. AGf is

the work term associated with bringing the reacting jons together

*

e

or to the electrode surface and AG” corresponds to an entropy term
associated with any change in the electronic multiplicities in the

initial and final states.

Marcus assumes the electron transfer process to be only
moderately adiabatic to the extent that the transmission
coefficient = is approximately unity but not so strongly adiabatic
that the activated state has appreciable resonance stabilization.

He uses non-equilibrium dielectric polarization theory involving
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continuum concepts to calculate AGf. The term AG? is expressed in
terms of vibrational contributions of the inner-solvation sphere
to the partition function of the activated complex and the
corresponding zero energies. The principal configurational
changes in the inner sphere are the changes in bond 1length from
the inner sphere solvent molecules to the central ion, and
therefore AG? is approximately equal to the difference of the
zero-point energy of the breathing mode in the activated and
initial states. The difference can be estimated from the force
constants for breathing mode of the inner sphere in the initial
and final states, as has been done by Harcu56 and Sutin11 or from
the potential energy functions for the initial and final

states4’12.

For electrode reaction involving metals, Marcus assumes
that the electronic energy levels of the metal contributing to the
reaction are confined to within k7 of the Fermi level. He then
considers the distribution of activated complexes corresponding to
radiationless electron transfer to or from various electronic
energy levels in the metal to be equivalent to a single activated
complex corresponding to the Fermi level. Contributions to AGt
arising from the action of the image forces in the metal on the

solvent polarization are also taken into account.

One of the more important outcomes of Marcus treatment

ijs the relationship between the heterogeneous electron transfer
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rate constant ke] and homogeneous homonuclear electron exchange
rate constant kh' Following the assumption that the free energy
of activation of the homogeneous reaction is double the free

energy of activation of the electrode reaction, he obtained

1oz 2 _ -
(ks/Zs] = (kel/zel) or ke1/ks = Ze1/2S = Constant (3)

This relation, known as "Marcus Cross relation”, can be

written in a form, k = { k 2

12 K11Ko9Ky2)

equilibrium constant for the electron transfer reaction, k,, is

11and k22 are the self

where K12 is the

the rate constant for the cross reaction, k
exchange constants of the couple. The advantage of cross relation
is that, in contrast to the <calculation of the rates which
requires data on equilibrium bond lengths and force constants (as
wé11 as the work required to form the precursor and successor
complexes), the only information required to calculate the
electron-transfer rate constant is the self-exchange rates of the
two coup{es and the equilibrium constant for reaction. This has
greatly facilitated the testing of various aspects of the model.
The cross-relation is widely used for interpreting
electron-transfer rates in both homogeneous and heterogeneous
(electrochemical) systems and is finding application in a variety
of other reactions, including excited state processes, atom and

proton transfers, group transfers, hydride transfers and gas-phase

jon-molecule reactions.

The Marcus treatment also predicts a transfer
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coefficient of 0.5 for heterogeneous outer sphere electron
transfer at relatively 1ow and moderate overpotentials, with

deviations from this value at high overpotentials.

The various assumptions involved in Marcus treatment
impose significant limitations. The estimation of inner sphere
contributions by Marcus in the classical 1imit, considering only
symmetric breathing modes is probably a substantial over

simplification. However, efforts by several authorsl3’14

to
consider the inner sphere quantum mechanically have met with only
1imited success. Particularly questionable is the separation of
the reorganizational contributions into inner and outer solvation
values, with one handled in terms of discrete vibrational states
and the other with dielectric continuum theory. Sacher and

Laidleri®»16

have avoided this rather arbitrary division of the
inner-outer solvation contributions by considering changes in the
total sovation energy as the radius of the 1inner coordination

sphere changes, but this approach involves continnum concepts.

The collision number in the Marcus treatment of both the
homogeneous and heterogeneous electron transfer has been estimated

rather crude'ly17

The assumption of negligible resonance stabilization in
the activated state 1imits the Marcus treatment to redox systems

in which the interaction between the reacting ions and electrode
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is weak. The Marcus treatment is more appropriate for outer
sphere electron transfer electrode reactions in which the reacting
central ion is separated from the electrode surface by 1its own
inner coordination sphere as well as by a 1layer of adsorbed

solvent molecules on the electrode surface.

An important prediction of the Marcus theory in the case
of homogeneous electron transfer reaction is that electron
transfer rate constants should decrease with absolute value of
free energy change of the electron transfer step, i.e. both in the
endothermic and exothermic regions in a series of reactions of
constant reorganization energy6-8’18—21. . This prediction was
orginally greeted with <considerable scepticism. Fortunately
experimentalists could report striking confirmation of iﬁis
predictionzz. Much work has been devoted to finding cases where
one canh observe the descending part of the Marcus curve %n the
exothermic region which is known as Marcus inverted regian or

simply inverted region. Explanations have been advanced23’24

to
explain why it has been difficult or even impossible to find
examples of such behaviour for intermolecular electron transfer
reactions in fluid media. Another manifestation of the inverted
region is the energy gap law of radiationless transition theory.

In his extension 20,25,26,27

Marcus has considered the effect of
nuclear tunneling corrections and has shown those to be small for
any cases of interest. Other extensions include the effect of

separation distance and the mutual orientations of the redox sites
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on electron-transfer rates and application to biological systems.
The redox centers in biological systems are frequently far apart.
As a consequence the electronic transmission factors are generally
less than unity i.e. the reactions are electronically
non-adiabatic and the magnitude of the transmission factors are
sensitive to the distance and orientation of the two redox sites.
For further details of <contributions of Marcus to electron

transfer theory, see reference 28,

Marcus has taken the dynamical effect of solvent on
electron transfer rates in many of his recent papers. Marcus and
Sumi29 showed that the intramolecular vibrational effect can
modify the effect of solvent dynamics on the <electron transfer
rate. Marcus and Nad]er30, have derived a reaétﬁon diffusion
equation for the description of the electron transfer reaction in
a solution, which takes into account of Both solvent and
intramolecular vibrational contributions.

Recently, Marcus‘jl-33

has extended his theory to the
electron transfer reaction between a reactant in one liquid and a
second reactant in a second immiscible liquid, across an sharp
interfacial boundry. Actually this is an extension of TMarcus

Cross relation™ earlier he derived for one phase electron transfer

reaction (equation 3).
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(1.b) Hush's Approach

Marcus has assumed negligible resonance stabilization in
the activated state so that his approach was 1limited to redox
systems in which there is weak interaction between the reacting
ions and electrode. In contrast, Hush4 has assumed that the
resonance stabilization is sufficient for the transferred electron
to become delocalised and distributed between the reacting jons in
the homogeneous case or between the reacting ions and the

electrode in the heterogeneous case.

(1.c) The Levich, Dogonadze and Kuznetsov (LDK) Approach

In their initial pub]icationss’34, Levich, Dogonadze and
Kuznetsov considered the reacting ion with its inner coordination
sphere as a frozen system, which does not contribute in any way to
the activation process. The potential energy of the electron in
this frozen system, however, depends on the polarization of the
solvent near the ion. Since the molecules of the solvent are in
continuous thermal movement, the polarization of the solvent
surrounding the ion fluctuates with time wuntil a state of
polarization i1s reached where a2 radiationless electron transfer
can take place between the jon and electrode by tunneling. After
the electron transfer, the polarization of the solvent surrounding
the ion is the same as the polarization prior to the transfer and
then decays as the system reverts to the equilibrium polarization

of the final state. The transition probability of the system
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from the initial state to the final state 1is calculated wusing
first order perturbation theory, assuming the Frank-Condon
principlte to apply to this system and using the Born-Oppenheimer
approximation. The authors also calculate the transition

probability in different temperature 1imits35.

The LDK treatment considers the solvent to be dielectric
continuum and they do not include any contribution from the inner

47 14

solvent sphere. Schmickler and Vielstich ', Kestner et &l "have

pointed out the importance of taking such effects into account.
Kuznetsov36 has proposed a generalised model for
electrochemical charge transfer reaction in the adiabatic limit.
A11 the former models for the process considered only the <change
of the solvent polarization as the reaction <co-ordinate whereas

36 had emphasized the significance of

the author in his new model
the motion of reacting jon and described the new model in terms of
two reaction co-ordinates -~ change of solvent polarization as well

as the motion of reacting ion.

Kuznetsov et 5737 put forward a theoretical model to
describe the effects of ionic atmosphere of the 1iJon on the
dynamics of the electron transfer process. He found that the
jonic atmosphere will effect the e]ectrostatic part of the free

38

energy of activation. He used a variational principle to

estimate the rates of a non-adiabatic <charge transfer reaction
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occuring in a polar 1iquid. He39

also developed a two-mode
configuration model to describe a adiabatic electron transfer
process between a donor and an acceptor molecule. The motion was

found to be stochastic and overdamped and a Langevin equation was

used to describe the motion.

Kuznetsov has reviewed40 the different theoretical

treatments for the effects of medium polarization on the dynamics
of charge transfer reactions occuring in adiabatic and diabatic

41

Timits. He has extended the theory to electron transfer at a

superconducting electrode.

The energetics of thermal and optical electron exchange
reactions was studied by Kuznetsov et 3742 using extended
Debye-Huckel model, taking Ferrocenium-Ferrocene system as an
example. They found that the activation free energy associated
with the reorganization of the 1ionic atmosphere for the two
processes increases with increasing internuclear distance between
the ractants as a result of diminjshed sharing of the ionic cloud

surrounding the donor and acceptor molecules.

Kuznetsov43 has extended the solvent polarization model
to describe an adiabatic SN2 substitution reaction proceding in a
polar solvent. The expression for the transition probabilty have
been derived in the slow and fast relaxation regimes and he showed

that Frank-Condon barrier for the transition is «created by the
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solvent polarization.

The activation energy for the charge transfer process in
solution is wusually given by reorganization of the solvent
following the process. Kuznetsov and German44 have given a brief
account of the recent methods and models for calculating the
reorgnization energy. They have also discussed the experimental
data of structural and optical properties of the metal complexes
in relation to the charge transfer process and the method of
calculating the inner sphere reorganization energy resulting from
the change of oxidation state of the central metal atom.

Kuznetsov and Izotov45

have discussed the important
effect of electrode potential on the reorganization energy of the
solvent for the charge transfer process taking H20/M9 system as an
example. The authors46 also considered the effect of electrode
potential on the image forces of the point charges near an
electrode-electrolyte interface, describing the solvent as

dielectric continuum and calculations were carried out using

linear response theory.

(2) OTHER TREATMENTS

Schmickler and Vie1stich13’47, Kestner, Logan and

48-50

Jortner14 and Schmidt have examined the theory of outer

sphere electron transfer reactions, using essentially the LDK
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model. Different formalisms have been attempted and improvements

in the orginal model have been made.

(3) COMPARISON OF THEORY AND EXPERIMENT

Ha]e51

has made a comparison between theoretical and
experimental values of free energy of activation for outer sphere
electron transfer reactions using Marcus treatment and showed that

there is good agreement between these two.

(4) ELECTROCHEMICAL PROTON TRANSFER REACTION - DIFFERENT

APPROACHES

The various treatments 1include different models for
activations. Until 1967, the process of activation for

electrochemical proton transfer event to take place was thought of

52 om which OH bond stretching in the H30* ion

leads to transfer of the proton to an adsorbed state on the metal

in terms of a model

electrode surface, coupled with transfer of an electron and
dehydration of proton. Later treatments recognige that some
reorganised state of the hydrated proton must arise by <classical
thermal activation and to this state an electron is transferred in
a radiationless transition producing H- interacting both with the
metal surface and with neighbouring HZO molecules. The system

then relaxes to the lowest energy state at temperature T of H
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adsorbed at the metal and of water molecules nearby, in the

interface.

In 1967, another approach53 was considered, in which the
hydration shell of H30+ becoming thermally activated and not the
O0H bond itself in H3O+. Proton transfer then occurs by a
non-classical quantum-mechanical tunneling step from H30+ in its

thermally activated hydration envelope to a state on the surface.

Pioneering theoretical contribution towards the
54

electrochemical proton transfer reaction was made by Gurney
Following his treatment another important model, activated complex

model, was put forward by Bockris and Matthews60’61.

(4.a) Activated Complex Approach

Since pioneering work of Horijuti & Polanyiss, various

authors>22°6759

have used the activated complex approach involving
the stretching of OH bond in H30+ to form transition state of the
form O-H-metal. Bockris anq Matthews60’61 have proposed a model,
in which the initial state of the system is a solvated H30+ ion at
the outer Helmboltz plane (Fig .II). One of the protons
associated with H30+ jon then transfers.to one of the solvation
water molecules situated at a distance 6r, estimated by Bockris

60

and Matthews to be 3.8 A%, Further transfer of a proton to a

water molecule immediately adjacent to the surface is not
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considered because these authors believe that the strong negative
charge of the electrode surface preferentially orients the water
molecules on the electrode surface and further transfer of the
proton to the surface water causes the break down of normal water

structure at the electrode surface.

|
|
[}
}
3
'
]

P

Fig.II1. Bockris-Matthews model for the electrode interface in
proton discharge from H30+.

Bockris and Hatthew360’61

consider the electron to be
transferred by tunneling 1in the activated state because the

barrier height is otherwise too high for classical transfer.

The authors60 also considered the probability of proton
tunneling through the barrier, as an alternative to proton
transmission over the barrier. They have examined the problem of

proton tunneling using various potential energy barriers.

(4.b) The Non-Equilibrium solvent Polarization model

(Solvent Reorganization model)

The first quantum-mechanical model of a proton transfer
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taking into account the dynamical role of the solvent polarization
was suggested in 1967, by Dogonadze, Kuznetsov and Levich53’62.
According to this model, the discharge of H30+ ion located at some
fixed distance occurs in the following way53. In the 1initial
state the proton vibrates in the H30+ ion in various vibrational
states according to the thermal distribution. In the initial
equilibrium configuration of the medium molecules, the vibrational
energy levels of the proton are not equal to those for the proton
in the adsorbed state at the electrode. A <classical fluctuation
of the molecular surroundings lead to matching of a given pair of
proton energy levels. In this configuration, a quantum,

+

sub-barrier, proton transition from the vibrational level in H.,O

3
ion to a corresponding vibrationa1 level of the adsorbed state
occurs. A change in the state of the electrons in the metal takes
place when the proton goes under the barrier in the region of
values of 1its co-ordinate near the point of intersection of the
potential energy curves for the proton in the initial (proton in
the H30+ jon) and final (adsorbed hydrogen atom) states. This
change in the electron state results in a redistribution of

electron density and formation of a chemical bond between the

proton and the metal.

With respect to the electrochemical reaction of hydrogen
jons where the transfer of two particles, electron and proton
occurs, the problem of whether electron transfer and the process

of breaking or formation of the chemical bond are simultaneous or
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sequential, was discussed by Kuznetsov63. He arrived at the
conclusion that the electron transfer and rearrangement of the
chemical bond may be unified step. The character of the process
depends on the potential energy surface of the system after the
change of electron state. He treats the proton as well as
electron as part of a fast subsystem with solvent being the slow
system. The model assumes the activation can arise only due to
non-equilibrium solvent polarization. By using a double adiabatic
approximation, this approach separates the electron and proton
wave function from the solvent wave functions and treat the
electron and proton as a quantum sub system and the solvent as a
classical subsystem. Thgn he <calculates the proton transition
probability using first order perturbation theory.

Within the framework of this approach German et 3764
have estimated the potential dependence of the isotopic separation:
factor. They concluded that the proton and deuterium approach
distances to the electrodes are different as well potential
dependent and this causes the potential dependence of separation
factor. Although this approach has not béen developed to the
extent where a quantitative <comparison with the experimental
results can be carried out, the shape of the separation factor -
potential curve obtained from this approach is analogous to the

one experimentally observed.

Further development of basic LDK model and the detailed
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analysis of the dependance of the symmetry factor on the potential
and temperaturess, have shown that there are additional factors
which can affect the elementary act of this reaction. These
investigations led to the formulation of a new model for

electrochemical proton discharge i.e. charge-variation model of

(cvm)y 82,

(4.c) Charge-Variation Model (CVM)

In the basic model, it was assumed that the hydrogen
atom in the adsorbed state is neutral and weakly influences the
state of the medium molecules. This model (CVM)65 takes into
account the variation of the charge of adsorbed hydrogen in the
activation-deactivation process. A model for proton transfer in
weakly polar solvents was suggested recent1;67.

The importance of the double layer towards the proton
discharge has been considered, for the first time, through ¥q

potential, by Frumkin®®. Krishtalik®?

tries to explain the
experimental observations in the electrochemical hydrogen

evolution reaction in terms of effect of ¥y

A comparison of two models for electrochemical proton
transfer reactions, i.e. the bond-stretching model and
medium-reorganisation model, was made by Krishta]ik70, with

respect to the experimental data. A11 the experimentally
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observed relationship are at variance with the conciusion of the
bond stretching model and in full agreement with the prediction of
the medium reorganisation model. Finally Krishtalik summarizes
the results of the experimental studies on the mechanism of proton
discharge as (i) the barrier for proton tunneling is not directly
related to the activation energy and proton co-ordinate is not the
only reaction co-ordinate and (ii) reorganization of the mediunm

exerts a significant influence on the activation energy.

So a unified treatment, which takes into account of both
contributions, bond stretching and medium reorganization, beconmes
necessary to treat the problem of electrochemical proton transfer

reaction.

(5) TEMPERATURE DEPENDENCE OF THE SYMMETRY FACTOR,/3 FOR THE HER

For a variety of =electrode reactions, the symmetry
factor, /3, that expresses the dependence of the electrochemical

Gibbs energy of activation, AGt, on potential, V, viz. AG*V=

AG§=Ot 3VF, was taken to be independent of temperature T and a

constant value of = 0.5. But recent experiments on

R7l-80

electrochemical HE showed that it is not a constant, but

rather have a temperature dependence as {3 = ﬂH + 13 where (3, and

s’ H
ﬁs are the enthalpic and entropic components of symmetry factor,

respectively.
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Various theoretical explanations for this experimental
observation have been given. Attempts by Kuznetsov66 and by
U1strup81 to provide theoretical basis for the temperature
dependence of {3 have resulted only in rather negative findings,
viz. that only a small effect 1is predictable, based either on

transition from nuclear tunneling to <classical proton transfer

with increasing temperature T or on. dielectric polarization

behaviour.

An explanation given by Yeager82 was the possibie role
of potential in changing the extent of electron "spil1—over"83’84
in the double 1lavyer. This effect could influence solvent
orientation in the double layer or is equivalent to a change of
thjckness79 of the inner double-layer charge distribution, but it

is wunclear if there would be any significant temperature

dependence of the spill-over effect involving metal electron.

Recentiy, Bockris and Gochev85 have investigated
theoretically, several possibilities for explanation of wvariation
of 3 with temperature including the <change of effective double
tayer thickness with temperature but no consideration was given to
the solvent dipole orientation which could be an important reason
for this dependence.

Schmick1er86 has taken into account the effect of

electric field at the metal surface on the potential energy
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surface of the initial state (H30+ + Metal(e )) and has given a
theoretical explanation for the temperature dependence of (3, using

LDK model for the proton transfer reaction.

(6) THE REORGANISATION ENERGY OF MEDIUM DURING PROTON DISCHARGE

REACTIONS

The reorganisation energy, », measures the work expended
in the organisation of atoms and molecules in the environment of
the reactant from their positions at equilibrium to the position
occupied abput the product species when it is at equilibrium.

In their derivations of formulae for X, Hush4’87 and

l*larcuss—10

treated seperately, the behaviour of dielectric
surrounding the reactant and that of the molecule or coordinated
ion within the “charged spheres '. This enables a microscopic
treatment to be made of changes of bond lengths and angles within
the molecule and microscopic electrostatic treatment of the
unsaturated dielectric outside the sphere. These separate
contributions are represented as inner sphere and outer sphere
reorganization energies respectively. In the <charge transfer
reactions in the solutions, the estimation of the reorganisation
energy, of the medium during the reaction is very important, for
the calculation of the activation barrier of the reaction,
exchange current densities of one electron reactions at metal

51,88
c .

et There are experimental reports of values of X for many
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aquo and other complex ion systems89 from studies of the kinetics
of one-electron outer sphere redox reactions. Reorganisation
energies have also been derived from exchange current densities51
by means of theory due to Marcus. Furthermore there have been
many theoretical estimates of reorganisation energies of ion based
on the dielectric continuum theory with inner sphere activation88
taken into account. However there has been 1ittle report on the
magnitude of the reorganisation energy for discharge of the
aqueous proton. Krishta1ik90 using the dielectric continuunm
theory, has estimated a value of about 1.0eV¥. This result may be
too low because of the neglect of contribution from finner

coordination sphere of water molecules. In this <calculation, he

has considered the hydronium ion with larger radius and so with

smaller A value. Bockris and Khan91 have stressed the importance
of inner sphere contributions. A description of the proton
discharge reaction emphasizing inner-solvation sphere bond

breaking and metal-hydrogen bond forming is presented in the works

of Bockris and co-workersgl’gz.

Recently, Frese Jr93 has determined the reorganisation
energy of aqueous proton by analysis of experimental values of
exchange current densities for the proton discharge reactions of
various metals. For all these systems he got a constant value of

2.0 eV indicating a <constant value for the electrolyte
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contribution of the activation Gibbs energy for proton discharge.
This reported value for reorganisation energy of 2eV is in

agreement with the value given by Levich et 3794.
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CHAPTER I1I1I

DYNAMICS OF ELECTRON TRANSFER REACTIONS AT

METAL ELECTRODES

(1) INTRODUCTION

In the preceding chapters we have given the different
theoretical approaches of =electrochemical electron transfer
reactions. In this chapter we investigate the dynamics of an
electrochemical electron transfer reaction, in the adiabatic
1imit. We make use of a path integral approach to the problen.
‘In the adiabatic 1imit, the dynamics 1is governed by the
instantaneous value of the energy of the acceptor orbital. Due to
the coupling with the solvent, this energy 1is changed, by an
amount that we refer to as the shift and dencte by Q(t). The
problem then reduces to analysis of the time dependence of Q(t).

Recently, Schmick]er1

has suggested an approach to
adiabatic electron transfer reaction at metal electrodes. His
treatment is similar to that of the Levich and Dogonodze2 theory
for non-adiabatic reactions. However the rate is not calculated
perturbatively. He uses an earlier model of Schmick]er3 and

Kornyshev and Schmick1er4, suggested for the study of the statics

of electrochemisorption for the description of the dynamics of the
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electron transfer.

a

Schmickler's Hamiltonian is an extension of the

5,6 Hamiltonian to the electrochemical context. It

Newns-Anderson
has the continuum of one electron state of the metal coupled to an
ionic orbital, which in turn is coupled to the solvent, the
solvent being represented as a collection of harmonic oscillators.
The harmonic oscillators are treated classically. The sum of the
electronic energy and potential energy of the harmonic oscillators
is looked at and for certain values of the parameters, it 1is a
double well type. Schmick1er1 calculates the height of the
barrier to be overcome in going from one minimum to the other and
writes the rate as A exp(-barrier height/kT}. An explicit
expression for the barrier height is obtained in terms of the
parameters occuring in the Hamiltonian. The pre-exponential

factor, A, is not derived explicitly, but plausible forms for it

are suggested.

Dur aim is to look at the dynamics that this Hamiltonian
leads to. We treat the harmonic oscillators quantum mechanically
also and derive the classical result therefrom as an
approximation. The Hamiltonian is very interesting in itself as
one can easily integrate out the harmonic oscillator part and
arrive at a description of the dynamics of the variable Q(t),
which is the only variable of importance in electron transfer.

Within certain approximations, we show that this variable obeys a
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stochastic integral equation. In certain cases, this equation can
be solved by converting it into a stochastic differential
equation. The rate of electron transfer can be obtained fron
this. Thus, we obtain an exiplicit expression for Schmickler's
pre-exponential factor A. The expression contains certain
correction factors to the one suggested by Schmickler (see our

eqn.>53)

(2) THE HAMILTONIAN

The Hamiltonian of Schmickler and Kornyshevland

Schx%ck]er4 is,

+ +

H =&.n_ ¢ T e.n * r (VakCa Ck + Vka Ck Ca) + nB(Z' G.,9,,)
k k ; v
<L (P2 /om, v 172wl d2) . (1)
We have not included spin in the description at all.

The ~eglect of spin means that each orbital can take up only one

elezzron. The solid is described in a one electron model and &£

k

are the energies of the one electron states, which have associated
- - - - - - +

witr them the creation and annihilation operators Ck and Ck. £

represents the energy of the orbital on the ion, which can take up
one ejectron, and Ca and C; are the associated annihilation and
crezzion operators. Vak and vka are the hopping matrix elements,

cavsing the electron transfer. As will become obvious later, the
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restriction to a spin-less Hamiltonian and the neglect of
electron-electron interactions are assumptions that can be removed
easily in the adiabatic Timit. The'solvent is represented as a
collection of harmonic oscillators, the wvth harmonic oscillator
having position q,, mass m_, momentum P, and frequency W . Notice
that Schmickler writes the interaction between the =electron and
harmonic oscillators as (Z-na)z hw g9.q. and that his definition of
P, and q, are different from ozrs. As the term involving Z can be
easily got rid of by a redefinition of the <co-ordinates of the
harmonic oscillators, we do not include Z in the Hamiltonian in
equation (1). The physics of our Hamiltonian, of <course, is

completely equivalent to that of Schmickler's.

In the fo110w1ing;> it 1is <convenient to define an

electronic Hamilttonian, He(Q) as a function of a variable Q, by

+
H (@) = (e +Q)n_ + E e + L (v CC+v CC. (2)

H = He(Q =L G . q )+ H (3)
v

where

H = z ( pg /2n + 1/2 m wzqu ). (4)

(3) STATICS OF THE ELECTRONIC SYSTEM
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For any value of Q, it is a simple problem to solve for

5,6

the ground state of the Hamiltonian He(Q) We shall quote the

relevant results here. The important quantity is
|2

A(w) =nm % IVak S(w - Ek) (5)
k

in terms of which the density of states on the ionic orbital,
pa(w) can be found. We shall indicate the dependence of pa(w) on

Q by writing it as pa(w,Q). It is defined by

p_(0,0) = El<alm>|? 8(s - &) (6)
m

where |m> stands for one electron eigen functions of H,(Q) having

energy £ . Pa(w,Q) can be written as

Ya> .

p (@, = -1/m Im <al(w + fo - H_(Q))"

Assuming the metal band to extend from -© to ® and A{(w) to be

independent of w (the wide band approximation), one can obtaﬁnS’6

p_(w,Q) = . (8)
a 7 ((w -sa-Q)2+A2 )

The occupation number of the ionic orbital, if the system is in

its ground state, is

F
<n > = J do p_(w,0) (9)
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1

= 1/n tan ((ep -£_-Q)/4) + 1/2 (10)

where £ denotes the Fermi level of the metal. The brackets in
<na> indicate taking expectation values with respect to the ground
state. We shall also make use of the following results of the
application of the Hellmann-Feynman theorem to the Hamiltonian

He(Q)' If E(Q) denotes ground state energy of He(Q) then

JE(Q)/2Q = <aHe(0)/60 > = <n_> (11)

the last step following easily from the definition of He(Q) in

equation (2).

(4) DYNAMICS OF ELECTRON TRANSFER

(4.a) The Shift and its dynamics

We are interested in the adiabatic 1imit of the electron
transfer reaction. This means that the width of the jonic orbital
has to be much larger than the quantunm hwm, of the harmonic
oscillator of highest frequency. In this 1imit hwm/b % 1 and then
the electronic system adjusts instantaneously to the positions of
the harmonic oscillators. Looking at the <coupling term between
the oscillators and the electrons in the Hamiltonian 3in equation
(1), we realise that it may be combined with the term £.n and

a

written as (ea+z quv)na. This means the effective energy of this
v

orbital is shifted because of the interaction with the harmonic
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oscillators. So, we introduce the shift of the ionic orbital at

time t by Q(t) = E 6,9,(t).
v

The fact that the electron transfer is adiabatic implies
that one is interested only in the dinstantaneous value of the
shift Q(t), since a knowledge of this would enable us to calculate
the electronic structure. Thus, the shift 1is our reaction
co-ordinate and the problem reduces essentially to a study of its
dynamics. We make use of path integral techniques to do this. To
understand our approach, consider a system which needs only one
co-ordinate to specify it, which we denote by q. If the system is
known to be at q; at the time ti then the probability of finding
it at the time tf at the pqsition 9¢ is given by

q(tel=q, 2

P(qe, telq,, ti) = | Iq(t . Dq(t) exp{i/h S{ql} |
795

q(t )=q.=q(t) . . .
= T T T bqeed [ pa(t) exp[E-(sTal-staD].
q(t,)=q.=q(t.) :

(12)

The path integration in equation (12) are over all paths q(t) and
q(t) obeying q(ti) = q(ti) = qiand q(tf) = q(tf) = q. S[ql s
the action, which is a functional of the path q(t) (we indicate
functional dependences with square brackets). In a similar

fashion, for the electron transfer problem, we wish to calculate
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the probability that Q(t) will have a value Qf at the time tf
given that it had a value Qi at the time ti' Our aim is to write

this probability, P(Qf, thQi, ti) as a double path integral over

paths of the shift variable, as is done in equation (12).

As the system is at a temperature T, and as the shift is
taken to have a value Qi’ we represent the state of the system at
the time ti by the density operator7

-~ "ﬁHe(Q) -~
p(t., q., q.) = N_ e (e .(a., 4.)) ~
' LSS I 0 os 1’ G q =¥ qu .= Q.
v

v Ui vj !
v

(13)

with # = 1/kT. 1In the above, we have used a mixed representation.
Thus the density operator for the electronic system is written as
an operator itself, while for the harmonic oscillator part, we
have written the matrix element of the operator, so that the
condition that the shift has a value Qﬁ can be easily 1imposed.

p(tﬁ, qss Eﬁ) is better referred to as a density operator-matrix,

but we shall simply refer to it as density operator. In equation

(13)

~ - -f3H
P (a;, ?i) <?i|e

0s lEi> (14)
os -

where q; stand for the positions G595 G39sveees Qipsenesn of the
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harmonic oscillators and |qﬁ> is the associated eigen vector.

Nois a normalisation factor, which guarantees normalisation of the

density operator.

In order to calculate the probability P(Q,, tf|0i, t.),

we have to evolve p(ti, g qf) from ti to tf. This gives

_ 3 9(tf)=?f ?(tf)=?f _
q(t:l)zqi q(ti)zq:l

< exp i/h (S, [0 1-5,.1 1) oy (a5, 95) S(R;E 6,,06(0;°L 6,4,

, -BH_(Q.) . Ta
x Ug(te tys [a(t)] e e N1l U (b, tys [a()D) (15)

vy’

where dqi =1 dquiand dai = 1 dq

S [q] is total action for
» i, os

the harmonic oscillators, given by

t L]
f m 2 2 2
- v (q % - w q )
S03[9 )= 2 J dt_f_ v b b
v t"l

qv=dqv/dt. q(t) and q(t) are paths for the harmonic oscillators
that start at q; and s> respectively, at the time ti and end at

Q¢ and qf at the time te. Ue(tf’ tes [q(t)]) 1is the time

development operator for the electronic part, which is wunder the

influence of harmonic oscillators, following the trajectory qft)
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(see Pechukas8 for this type of describing the time deveiopment of

a system). The required probability is

(16)

Tre denotes a trace operation over the electronic part. The above

may be written in more detail as

) _ q(tf)=qf q(tf)=qf -
x 6(Q.-E6,,q,:) 8(Q.-E 6.9,.) P, (q:,q:)| Dq(t) | ~ Da(t)
v v T (t.)=q q(t.)=q. _
9 707 A R
- -ﬁHe(Qi)
x exp i/h {Sos[q]~SOS[q 13 Tre{Ue(tf, ti; [q(t)]) e
+
X Ue (tf, ti; [?(t)])} . (17)

We now introduce two continuous functions Q(t) and Q(t) with tiﬁ t

I

tf. Also we divide the time iJinterval (ti’ tf) into N

subintervals, each of length At such that N &t = tf-ti'

We may write
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N-1 -~
1 =Nll$m J ...... J n. {do(t,) dact,) 5(Q(ta)—§ 6,9, (t))
X S(Q(t_)-L 6,q_(t_))} (18)
k)
where ta = ti+ abt , aa = 1,2,3,..... , N-1.

So P(Of, tfloi’ ti) may be written as

= 1in - - | -
N o J d?f J d?f 6(?f-?f) é(Qf-E quvf) J d?i I d?i

) . q(tf)=qf ;(tf)=af _
x 6(Q.-L 6,q,.) 6(Q.-L 6,4,.) | ~ T oDbq(t) | T T opq(t)
v v -

q(t.)=q. - - .
_ 1 _1 ?(tﬁ)-?i

xexp i/h {5 1q 1-5, [a 1} o Tar, a5 TrodU(te, tis [a(t)])

-AH_(Q) - N-1

X e U (ter i3 LaODI T dQ(tG)JdQ(ta)é(Q(tG)-Equv(tQ)
X 8(Q(t )L 6_a,(t)) . (19)
v

The time development operator Ue(ti’ tf; [q(t)]) depends only on
ZGqu(t) which because of the delta functions in equation (19), is
k)

equal to Q(t). So we can write the above equation as
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= N J da¢ I dag olag.a¢) J 40 J 40350070 J 995 J 995

9(tf)=3f ?(tf)=3f 3 ;
X Dag(t) Dq(t) exp i/h {Sos[q]-Sos[q 1}
q(t.)=q. - o ) )
_ h] _1 ?(ti)-?i
N-1 N

x 1im J dg(t.) J 40 (t.) T 6(Q(t )-F 6.q. (t ))
N >c0 (?Dl 3 f3 o&g[] a’ T ovivia

* (00t -E 6,0, (8,00 Poc(432a) TrofU (te,tiilalH)D) e e (Ty)

X Ug(tes i3 [QCODY . (20)

In the above, we have defined Q(t.) = Q., a(ti) = aﬁ, Q(t,)=Q, and
0te)=0Q,.

Now the delta functions in equation (20)  may be

expressed in terms of Fourier integrals, 1. e.,
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N - -
1S E 60, (1)) S(0(E) L 6,9, ()

-~

N ;i N
= {_755__) J ....... J an dp, dp, exp {—g— ZOPO{O(ta)

=0 a=

-~

. N -~ -
- E6,0,(t)) - 5 E b, 100t - E 6,0,(t)3) (21)
v = v

N
Defining tO = ti+10, tN=tf-iO and P(t) =a§0paé(t-ta), we can write

the left hand side of equation (21) as

2(N+1) N te
1 - i
[ 2nh ] j ----- I agodp“ dp_ exp [—g— { J dt(p(t)Q(t)-p(t)
ty
¢ L 60,00 - P(8) E 6,8,(0) - p(t) Q0] - (22)

In the 1imit N —> @ we write this symbolically as
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t

. . f ~ ~
I Dp (1) J op () exp [ j dt( (AL -p()AH)-p (LG a,, (1)
v

t.
3

+ p(t) [ Gv;v(t)] ] ]

v

Adopting a similar notation for the integrations over the Qs, we

get

P(Qc, telQss ty)

=N, Jd?f Jd?f 5(?f"?f) Jde dei 5(01'01)J d?i Jd?i

. . . . £
X I Dq(t) J Dq(t) J Dp(t) J Dp(t) I DQ(t) J DQ(t) exp [—%— J dt

h

. . ) .oty
« [poowrpaw ) v [ 5gsfa 1-spgta 1) + 4 f dt
: - - t

x[ - Eequ(t)p(t) + E 6,9, (t) p(~t)]] pos(c_‘i’?i)

“AH(Q.) .
X Tre[ U (te, tos [QCED) e 1wl (e, t. [Q(t)])] . (23)

1

Following the arguments in the appendix A, we obtain
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Tre[Ue(tf, tos [0(H)]) e M (Q3) U;(t Lt la(t)])]

t

= exp [ J dt (EQ(D) - E(e)] Tr e e Q)

t.
3

So

P(Qes te]Qy, ty)

r~

= No | d9¢ J dag Slag-qc) J dQ, I dQ;5(Q,-a;) I da; I da;

t
- - - . f
X J Dq(t) | Dq(t) f DQ(t) J DQ(t)JDp(t)JDp(t) exp[—%— j dt
: | .

:
q| p(t)O(t)-E(O(t))—;(t)a(t)+E(6(t))+§ euav(t)ﬁ(t)-g 6,9, (t)p(t)]

= [spefa 1- 5. ta 1] ] ey ey ap)

—BHe(Q'.I)

We have absorbed Tree into the normalisation constant No'
Changing over from path integral to operator notation, the above

can be written as

P(Qp, tc|Qy, t) = N J dofj doié(Qi-Qi)J DQ(t)J DQ(t)J Dp(t)

t
. . Ry _ _ )

X _[Dp(t) exp ——; J dt {p(t)Q(t)-E(Q(t))- p(t)Q(t)+ E(Q(t)}

t.

:
el .
os + .

X Tros[ U (te, tos [p(DD) e Ul (te, tis [p()D) ]

u (t

os (tgs ti; [p(t)1) is the time-development operator for the
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harmonic oscillators, when the »th oscillator is subjected to the
force -va(t). Tro‘3 denotes trace operation over the harmonic

oscillators. This can now be done exactly. The result is (see

reference 9)

P(Qf’ tfloi’ ti) ~ ~

i ) Q(te)=0, Qlt)=Q
= N, J dOfJ d0.5(Q,~Q.) J DQ(t) J~ _Dpa(t) [ppt)
Q(t.)=q, Q(t.)=q,
. LY ! .. . i
X J Dp(t) exp[—;—,—J dt {p(t)Q(t)-E(Q(t))-p(£IQ(LI+E(Q(t))) -—
2h
ts
te e ) ) i te t
" J dt J ds (p(t)-p(t)} {p(s)-p(s)} R(t-s) + — J dt J ds
t. t. t. t.
3 1 A | 1
x {p(t)-p(t)} (p(s)+p(s)} I(t-s) ] : (24)
In equation (24), R and I are defined by
2
G, fhe
R(E) = b E coth(—5—= ] cos(o,t) (25)
v ZmUmv
and
6, >
I(t) = £ — sin(w t) . (26)
v v ow

We now change over to a new set of variables for the path

integrations in equation (24) by defining the centre of mass and
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relative co-ordinates by

Pe(t) = = (p(1)+p(1)) Q1) = —— (Q(1)+Q(1))
P(t) = p(£)-p(t) Q(t) = Qt)-Q(t) . (27)
Then

P(Qe, tc]Q,, t2)

Qo (te)=0,
= N, J dg (to) J dQp(t.) 8(Qp(t:)) DQ (1) J00R<t)
Qp ()=,

-

i

f Q
R
X JDPR(t)JDPC(t) exp[—J dt [Pc(t)QR(t)+PR(t)QC(t)-E( U + —— )

t.
;
QR tf ) tf
1
rE(QQ - —— ) ¢ J PR(t)I ds I(t-s) Pc(s)] - 5 J dt
' 2h
t. t.
1 1
te
X J ds Po(t) R(t-s) P.(t) ] . (28)
t.

j
We now introduce a Gaussian, stationary random function 3(t),
having mean zero and autocorrelation R(t-s). For such a random

function, < f3(t)R(s) >, = R(t-s) and

e}

t
. f
< exp [ —_ J dt B(t)P,(t) ] >
3! R I3
t.
:

t t

_ f f
= exp [ ——17 J dt J ds PR(t)R(t-s)PR(s) ] . (29)
2h
t. t.
j i

In the above <"">B denotes averaging with respect to the random
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function 2(t). We make use of this in equation (28), to obtain

P(Qg, te|0y, t)
Qc(te) =0, i
= N0 DOC(t) J DOR(t)J DPR(t)J DPC(t) <exp -—g—
Q. (t;)=0, 0, (0)=0

t

( 0
x j dt [ PetIUR(E) + PLtIQ (1) -PL (DA -E( Q¢ + —5— )

t.
3

Qg

t.
f

P E(Q - —5— ) - Po(t) J ds I1(t-s) P.(s) ] > (30)
t.

p

1

The integration over PR(t) can now be performed, to obta

- i
Q(0)=0

te Qg (t)
X j dt[ Pt 0 (£)-E(Q (1) +Qp () +E( Qp(t) - —— ) ]

t.
3

t
X <& [ Q. (t) - A(t) + I ds 1(t-s) P.(s) ] > (31)

t.
1

t
5 [QC(t)~B(t)+ItQS I(t-s)PC(s)] is the delata functional (i. e., a
i

product of an infinite number of Dirac delta functions). To make

further progress, we expand E(Oc(t)+0R(t)/2)-E(Qc(t)-QR(t)/Z)
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in the exponent, as a Taylor series in QR(t) to obtain

t
Y.
P(Qps t 0., to) = N, J DQ. (t) J DP(t) J DQ,(t) exp —— I dt
t.
:
\ oo 0 ()’
[ PO - BT Q) - () ——— )
t
x <6 [ - AL +J ds 1(t-5) P(s) | >, (32)
t.
1
with £ () = SELO g7 gy - _23%__ ete
a(Q aQ

Neglecting terms involving the third and higher derivatives of E
in the exponent, we can carry out the integration over QR(t) too,

to get

al

P(Qf, tf|Qi’ ti) = N DQC(t) J DPC(t)é[PC(t) - E (Qc(t))]

Om
"t
X < 6[ Qe (t) - B(t) + | ds I(t-s) Pc(s)]>ﬂ
Tt
:
0p(t D=0, t '

- N, D, (t) <5[ Qc(t) - B(t)+J ds I(t-s)E (oc(s))] >
(33)

This expression tells us that the probability of finding the shift
to be Qf at the time tf, given that it had a value Qi at ti’ can

be calculated from the stochastic integral equation

t
QL) + J ds I(t-s) E (Q(s)) = p(t) . (34)

t.
]
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Equation (34) is a non-linear, Volterra type integral equation,
with an inhomogeneous term, that is random. In arriving at this
equation, we had to neglect terms involving higher derivatives of
E(Q) than the second. This approximation becomes exact in the

1imit h —> 0 as discussed in Section 5.

(4.b) Solving the stochastic integral equation

In this subsection, we discuss the solution of eqn. (34)
obeyed by the reaction coordinate Q. The expressions for R(t) and
I(t) given in equations (25) and (26) indicate that solving the
non-Yinear integral equation, in general, would be a difficult
problem. In certain special cases this can be done. In the high

temperature limits, fhw « 1 and cot(3hw /2) = 2/3hw. Then

sz
R(t) =~ kT ¥ —5— cos(w t) (35)
Voom W
v v
Hence
N S«
I(t) = T at R(t) . (36)

Case 1: 3(t) modelled as white noise. A model that immediately

comes into mind is the one in which 3(t) 1is taken to be white

hoise, 1.e.
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R(t-s) = 2ErkT S(t-s) (37)
where Er is a constant, which may be taken to be equal to
EGS/mvwg.

v

Then

I(t) = -2E.6 (t) (38)

and the integral equation becomes

2.
oty v £ T L acr) = ac) . (39)
aQ

This is the equation for Brownian motion of a particle, with mass
equal to zero, having position dependent'friction, and moving in a
potential 1/202, the coefficient of friction being Er(azE/BQZ).
As this R(t) is a 1imiting case of the R(t) considered below, we

shall not discuss it further.

Case 2: 3(t) is coloured noise. A more realistic model would be

to take

R(E) = 26 kT e ™ |t (40)
Then

I(t) = 2E ® sgn(t) e © |t (41)
where sgn(t) is the sgn function, defined by sgn(t) = -1 if t < 0,

sgn{(t) = 1 if t > 0 and sgn(t) = 0 at t = 0.
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Equation (40) is equivalent to approximating

Gﬁ2 2 o
T —— &(w - wv) o ~ (42)
v m, ., n(w” + w7)
with
26 = E 6, /n, o’ (43)
v

w determines the width of the function ¥ (sz/mvwvz) S(w - w )
v

and may be approximated by

sz 2 GS
L 2 © L m
_2 v mku v v (44)
= 2 = .
Gv 2 E
v n (4)2 r
v v

The definition of ZEr is identical to that of Schmickler, It is
the reorganization energy. With the above choice for R(t), the
integral equation (34) can be converted exactly into a
differential equation. For this we differentiate equation (34)

with respect to t, to obtain

t

. di(t-s) .
Q + J ds—— F (Q(s)) = 3 (45)
. d(t-s)
j

As T1(t) obeys the differental equation

dI(t)

—r— * w sgn(t)I(t) = 4Er w &(t) (46)

we get
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t
Q - @ J T(t-s)E (Q(s))ds + 26 © E (QCt)) = 3 . (47)
0

In deriving equation (47), we have taken the physically plausible
value of 1/2 for ft dsé(t-s). Using equation (34) in equation
i

(47) to eliminate the term involving the integral, we arrive at

Q0+ G0+ 26BE(Q =6p+ 0 (48)

The above can be written as

6 ﬁ + w3

V() ———— (49)

2E w 2E w
r r
where
02
vio = L g @ = B e (50)
r

As (3(t) is Gaussian with mean =zero and autocorrelation 2kTE

e eltl

X , 1t obeys the differential equation

R+ wp = V/'4 E kT o L(t)

with £(t) being white noise with autocorrelation &(t-s). So,

(51)

- — A F (1)
r E w
r

This is the equation for Brownian motion of a particle of mass

zero, and friction coefficient 1/(2Er5), moving in a potential
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V(Q) subjected to a force which is delta correlated. One can

easily derive the Fokker-Planck equation, for the associated

distribution function rF(Q, t). It 1310

3£(Q, t) @ a2

_— — = ZErw [ —— V(Q) F(Q, t) + kT — 3 f(Q,'t)] . (52)
a t aQ a(Q

For certain values of 2Er and A, the potential V(Q) has a double
well structure. The expression for the rate of climbing over the

barrier is well knownlo. it is

Rate = —2 Jv(a)|v(a)| e AV/KT (53)
where
a%E(Q)
v(Q) =1 + 2E ——— (54)
r 602
and

01 is the value of Q at which V(Q) is a minimum and near which the
particle is located initially. At 02. V(Q) is a maximum and the
rate in equation (53) is the rate at which the particle jumps over

the barrier.

In the rate given in eqn. (53), w/2n is the
pre-exponential factor, suggested by Schmickler, in reference 1

(equation 24). Our expression differs from his, in that it has

the factor Yo(Q[v(Q,)] multiplying o /2m. This may be
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thought as modifying the activation energy, by writing the rate as

Rate = (@ /2m) exp(-U/KT) (56)
U =av - X1 9 ) viay) |3 (57)
7 1 2 y

(4.c) The rate for large bandwidth Timit

This subsection is included mainly for the sake of
completeness. Most equations here are equivalent to those
obtained by Schmickler, though occasionally, our expressions are
different. If the bandwidth B of the metal is large (B » A) and
if A(w) is independenf of w, then, as indicated in Section 3, we
have the expressions given in equations (8) and (10) for pa(w, Q)

and <na>. Because of our eqn. (11), we can write

Q
B(Q) = J <n,> da (58)
Performing the integration, leads to
Q _ .- _ -
F0) = o ¢ (0 ey e tan (5]

A
The constant C is in fact infinite (as 1indicated by Schmickler)
but that does not worry us as we are Jinterested only 1in energy

differences. Thus,



2 (Q + 2_ - &_) e_. - £_-(Q
_ 1 a F -1 F a
V(Q) - 4Er [0 + Er- ] + n tan ( tl ]
+ ZAn Tn [ (aa + Q —.E:F)2 + AZ ] + C (60)

With € = C - E_/4.

Now we define two new variables, R and by R = Q¢ + E

-
and n = Ec - £ + Er' Then the potential V is a function of these
two, and is given by
2 R-mo =TT Ry A (Remy2s a2) 4 ¢
V(R,m) = + : 2 J 7= n
4E n
r (61)

The extrema of this equation, considered as a function of the
reaction co-ordinate R, are given by

av _ n - R
— (R, M = gf v = tant [ ——] = 0. (62)

R 2Er &

Equation (62) is equivalent to equation (10) of reference 1 and
may be derived therefrom. It has at lTeast one solution. If the
following two <conditions are satisfied, then it has three

solutions, corresponding to two minima and one maximum.

2€ 2E i 7E 7€
= > 1 and —— tan — -1 - A — - 1 > |n]

(63)

v(Q) can easily be calculated to be
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2Er
v(Q) = 1 -
n[(sF - .e:a-Q)2 + A2 ]
=1 - 28 p (s, Q) . (64)

Hence our correction factor to the rate involves density of states
at the Ferwm? level for both the minimum (initial state) and the

maximum (transition state).

When n(=£F - e, Er) is zero, the potential is V(R,0)
and it i1s symmetric in R. So the wells have equal depth in this
case and the rate of jumping from one well to the other is exactly
equal to the rate of jumps in the reverse direction. This is the
equilibrium situation. m measures the deviation of the Fermi
level from this situation. Hence, 7m may be identified with the
overpotential., Let R1 and R3 be the two minima and R2 the maximum

of V(R, m) and 1let nys Ny and s be the associated values of <na>.

Then AY for going from R1 to R3 over R2 is

AV = V(RZ) 77) - V(ng 77) (65)

The symmetry factor is then given by

. 3 _ BV(RZ, ") i 6V(R1, ") KT
on on P 2
an

In the above, terms involving aRi/én (i = 1, 2) are absent as
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(8V(R, n)/aR)R. = 0. This leads to

kT 8
an

Tn {]v(0,) [v(Q)3 (67)

a is obviously n dependent.

The white noise 1imit can be obtained by 1letting both
2Er and @ in equation (40) become infinite, with the ratio 2Er/5
kept constant. In this case AV = » and then the rate is equal to

zZero.

(5) DISCUSSION

What we have carried out is an explicit demonstration
that the Hamiltonian of equation (1), 1leads directly to a
stochastic integral equation, in appropriate Timits. Such a
demonstration is interesting in itself as it can be done in rare
cases only. Further, we have arrived at an expression for the
rate of electron transfer, which has a correction factor to the

one given by Schmick1erl.

(5.a) Approximations made in the derivation

Two approximations have been made 1in arriving at
equation (34). First, of course, is the adiabatic approximation.
The second is the neglect of terms involving third and higher
derivatives of E(Q). This means that 3if E(Q) 'is a quadratic
function of Q, then equation (34) is exact. For such a potential,
all quantum effects, including tunnelling, are accounted for by

the stochastic equation; If the behaviour of E(Q) near its
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maximum is parabolic, then the equation is expected to be a good

approximation.

Neglect of the third derivative in equation (34) can be

justified when |E'(0)/ E!!'(Q)I » 2E_ x maximum of (hw, KkT).

(5.b) Inner sphere reactions and other possible extensions

(i) In the above, we considered only the case in which
the coupling between the ijonic orbital and the solvent 1is Tinear
in the harmonic oscillator co-~ordinates. This approach can easily
be extended to the case where the coupling term has the form
f(Q)na where f(Q) is an arbitrary function of Q. f(Q) ~can be
taken to be quadratic, or perhaps a Morse type of function, and
may represent the fact that a local mode is strongly coupled to
the electron in the jonic orbital. This can be a model for inner
sphere reaction. Equation (51) remains unaltered, but V(Q) is now

given by
V(Q) = 0%/4E_ + ECAQ)) (68)

so that the only modification is in the potential in which the

particle moves.

(ii) An interesting possibility is the case where one of
the Gvs is very large compared to others. This mode is then
strongly coupled to the electron. 1In such a situation, one can

take
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- |t 2 3t
R(t) = 2E kT e L I 6, coth[ °]h cos (e t)

2

@ is the frequency of the mode and G, its value for G .

(71i) When R(t) is taken as an exponential, its Laplace
transform @(s) = fmdt R(t)e-St = 2ErkT/(s+5). A more general R(t)
for which the L2p1ace transform is given by ¢(s) =
ZErkT/(s+5+al/(s +b1)), a; and b1 being constants, can also be
hand1ed11. In this case, however, the number of stochastic
differential equations to be solved is two. In general, if @(s)
can be approximated at the nth step in a continued fraction

expansion for it, then one can convert the integral equation (34)

to (n + 1) differential equations.

Since the pubHcatﬁon12 of the work described above,
extensions of it have been made. Using a bosonization technique,
13

together with quantum transition state theory, Sebastian showed
how the continuum of potential energy surfaces (PES) may be
accounted for. The calculations of overpotential dependence of
the rate have also been presented. 1In a recent paper14, Matyushoyv
et @8] have further developed our work, such that the Gibbs energy
of an electrochemical system has been calculated from the
Hamiltonian over a wide range of electrode potentials and the rate
constant of adiabatic electron transfer has been found for high
and low activation energies. In the following chapter, we  apply

the methods of Sebastian to proton transfer to an electrode, where

one expects the continuum of PES to play an important role, as the
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interaction of nuclear motion with the electronic system is

stronger than in electron transfer.

APPENDIX A. Evaluation of a term in equation (23)

Here we consider the evaluation of

-AH (Q) -
I = Tr U (t, t.; [Q()]) e U (te, tas [Q(E)1)

The equation obeyed by Ue(t, ti; [Q(t)1) is

., 8 _ )
ih g U (t, ti3 [Q(8)]) = H_(Q(t)) U_(t, ti3 [QCOD) . (A1)

We introduce an "adiabatic basis” Iwn(Q(t)) > which obeyes
He(O(t)) Iwn(O(t)) > = En(Q(t)) Iwn(Q(t)) > ., (A.2)
It is reasonable to assume that electronic excitation in the metal

displaces the potential energy surfaces upwards, by an amount

which 1s independent of Q(t), i.e.

b
m

E_(Q(t)) = E(Q(t)) + (A.3)

where E(Q) 43is the oground state electronic energy and AEnis
independent of Q(t). In the 1imit mm/A <« 1 the motion 1is

adiabatic and this means

i

t
. f
. - _ 1
Ug(tes tos [QCEIT) lwn(Qi) > = exp[ - J dt En(O(t))]Iwn(Qf) >
t.

! (A.4)

with correction terms of order (wm/A). Using equations (A.3) and
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(A.4), we obtain

i —ﬁHe(Q:I)

[ = exp[- —;;-J dt CEQ@(E) - Q) 3] Tr (e
which is the result used in the text.

APPENDIX B

(1) THE TRANSITION STATE THEORY

It was found possible to formulate a satisfactory theory
by focussing attention on the activation complexes, which are the
molecular systems whose configurations correspond to the saddle
point region on the potential energy surface. In particular this
theory arrives at an expression for the concentration of activated
complexes through an equilibrium formulation; in a special sense,
activated complexes are regarded as being at equilibrium with the
reactant molecules. This theory of rates which focusses attention
on the activated complexes and calculate their concentrations on
the basis of the equilibrium hypothesis 3is referred as activated
complex thecry. Various other names, including T"abseolute rate
theory™, "the theory of absolute reaction rates” and transition
state thearyls, are also used. A& clear formulation of the
approach was made in 1935 by Eyring16 and somewhat similar
approach leading to the same rate equation was made by Evans and

Po]anyil7’18.

The basic rate equation derived by Eyring and by Evans

and Polanyi, has been applied to a vast number of chemical
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reactions of all types and to a number of physical processes such
as viscous flow. By and large, it has proved to give very

satisfactory interpretation of reaction rates.

(2) Quantuwm Transition State Theory

It is well recognised that transition state theory
provides an extremely wuseful description of chemical reaction
rates. Transition state theory, however, is based inherently on
classical mechanics e.g. its "fundamental assumption™ is that no
classical trajectory crosses the dividing surface that separates
reactants and products more than once ji.e. the reaction dynamics

is direct.

The transition state theory, within the realm of
classical mechanics, describes a threshold region which 1s the
energy regime important for determining the thermal rate constant,
for chemical reactions with significant activation energy, But
the success of classical transition state theory is hollow because
quantum effects are also 1important in the threshold region,
particularly so if the reaction dynamics involves 1light atoms e.g.

H atom transfer.

Thus for the reactions involving the 1light atoms 1ike
hydrogen, where barrier over crossing and sub-barrier tunnelling

are important, the classical transition state theory has to be
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modified by including the quantum effects. This version is known
as quantum transition state theocry (QTST) has been discussed by
20-28

many authors . Recently, a interesting simple version of QTST

has been applied very successfully in the electrochemical

contextzs.

In this version an analytical expression can be obtained
for the rate, with the approximation that the barrier is well
represented by an inverted parabola, along the reaction

co-ordinate, x, as

Incident flux —m8 ——> —_— > flux due to

(thermal) tunneling and

overcoming of barrier

The potential is given by - 1/2m02x2 and one takes a

thermal distribution for the incident flux. The flux <coming out

on the right hand side due to tunneling and passing over the

barrier can be obtained as19
RO/ 2KT
ro- ‘;T (70)

Sin (hQ/2KkT)



104

In the multidimensional version, this would become,

¥

Q hQ/2kT
r = [ kT
h

} (71)
Sin(hQ/2kT)

where Q would now be the frequency associated with the reaction

co-ordinate in the vicinity of the saddle point.
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CHAPTER IV

DYNAMICS OF PROTON TRANSFER REACTIONS AT

METAL ELECTRODES

(1) INTRODUCTION

In the chapter II, we gave the various theoretical
methodologies followed by different authors for studying the
dynamics of electrochemical proton transfer reactions. In  this
chapter we present the method that we have developed for the
calculation of the rate of the electrochemical proton transfer
reaction. Here we study the two 1imiting cases, adiabatic as well
as non-adiabatic. In the case of proton transfer, which 1s an
inner sphere reaction, the interaction of nuclear motion with the
electronic system is strong which causes the electron-hole pair
excitations to occur in the metal which in turn cause
non-adiabaticity. We make use of quantum transition state theory,

along with a bosonization technique, for the calculation of the

rate.

The role of electron-hole (e-h) excitations in dynamical
processes occuring at surfaces has been investigated in the recent
past by several authorsl—s. As the operators corresponding to the
creation and annihilation of these obey boson commutation
relations approximately, they have been treated as bosons, which

makes the analysis of the problem easy. An important conclusion

of these investgations is that any process taking place at a metal
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surface is necessarily non-adiabatic, irrespective of how slowly
it is carried out! See reference 6 for a review. Following the
procedure of Schédnhammer and Gunnarsson4’5, Sebastian7 has applied
the bosonisation technique to account for e-h excitations in
electron transfer. In the case of proton transfer reactions, the
problem is more complex (see figure IV ). The orbital on h (H;O)
which accepts the electron, |a>, is coupled to the solvent
polarization. Fluctuations in polarization would change the
energy of the orbital, by an amount Q. Further, in the reaction,
the H' ion moves towards the metal, and its position is given by
the co-ordinate gq. The orbital energy of |a> also depends on gq,
due to the image interaction, as well as H-H,0 interaction, as is

2
discussed in more detail later.

1 €a(q)+Q

€.(2)

I

Mgl

|

%

Fig.IV. The electronic energy level of the H3O4, £,» as a function
of the distance from the metal, q. Q represents the shift of the
jonic orbital due to the interaction with the solvent. & is the
width in energy of the ionic orbital. &_ is the Fermi level of

F
the metal.



109

Calef and MWolynes (CH)S, have analysed homogeneous
electron transfer reactions. According to them, the reaction

co-ordinate is
—>—> =>1,—> -2 -
x = [ dr B (ENG) - EL4FI) (1)

x represents the relative shift of the acceptor orbital's energy
with respect to that of the donor orbital, due to the fluctuations
in the solvent polarization, 3%?>) is the polarization of the
solvent at the point T and E;l(F>) and EZZ(F>) are “bare' electric
fields when the electron is located on the donor and acceptor
respectively. CW assume x to obey a Langevin equation (LE). This
type of problem may also be attacked using an approach in terms of
a Hémi1tonian, as shown by several authors (see Pollak et 579 and

the references therein and Sebastian and Ananthapadmanabhan10

).
The problem of electrochemical proton transfer is more complicated
than electron transfer, and correspondingly, the Hamiltonian also

is more complex.

(2) THE HAMILTONIAN

We consider a modified version of the Newns-Anderson

Hami]tonianll’lz

Ho= H_(Q, @) + 1/2 g[pz vwlal] v pfram ¢ v () (2)

which accounts for all the points raised in the introduction. In

this Hamiltonian, the solvent is represented as a collection of
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harmonic oscillators, the vth oscillator's position being denoted
by q,,> momentum by P, and frequency by W, . He(Q, q) 1is the
Hamiltonian for electronic system. It depends on positions q, of

the harmonic oscillators through Q, defined by Q = Equv, C. being
v

v
constants. Q is the shift of the energy of the jonic orbital, due
to its coupling to the harmonic oscillators. It also depends on

the distance, q of the H" ion from the metal electrode surface.

Explicitly,

+

He(Q’ Q) = L Ea(Q) Nao > “k "ko > [ vak(Q) Cao Cko ¥ vka(q)
o k,o k,o
+
X Cyo cao] *EQn, U@ ng o, (3)

The solid is described in one <electron model and =, are the
energies of one electron states of the solid. Vak(q) is the
hopping term causing electron fransfer and Vka(q) is its complex
conjugate. U(q) stands for &electron-electron repulsion and o

+ +

(C and Ck } are annihilation
&

stands for spin . C and C
ao ko ao

(creation) operators for one electron states [ao> and |ko>
respectively. Noo and N are corresponding occupation number
operators. The term Qnao accounts for the fact that the

equilibrium positions of the harmonic oscillators are changed by

transfer of the electron.

We adopt the Hartree-Fock (HF) approximation, as this is

expected to describe the reaction satisfactorily.. The two
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i i i < >
electron interaction term naTnal is now replaced by naT nal +

<naT>nal - <naT><nal> . This gives

He’HF(Q’ 9 E [ sa(Q) 0 Ua) < Nao > ] Nao +kzo “k ke

+ +
* L [ Vak(q) Cao Cko ¥ vka(q) Cko Cao ] - U(q)<naT><nal> (4)

k,o

+
R e [ Vak(® Con Chq

k,o

+
+ Vka(q) Cka Cao ] - U(q)(naT><nal> (5)
where
.50 q) =2 (q) + Q + U(q) <n = > . (6)

Further, we shall put the <condition of restricted Hartree-Fock

. 5 = 5 - . . .
viz. <naT <nal so that saT sal sao(o, q) is the effective

energy of |30>, which may take up one electron from the metal.
The change of the distance between the ion and the electrode, gq,
will also change € due to image interaction. So €, is a function
of q. The explicit dependence of £, 0n g will be given later (see
equation (85)). The metal is now described by &a one-electron
Hamiltonian. For the electron transfer to occur, the value of Q
has to change so that the quantity &£_ (Q, gq) which 1is the

aoc

effective energy of the orbital |ao> crosses the Fermi level

\)

Vo(q) is a potential energy term, (which has no dependence on

electronic co-ordinates (see equation {100)) of the H+ ion and

p“/2m is its kinetic energy.
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(3) THE LOWEST POTENTIAL ENERGY SURFACE

If the electronic system is in the ground adiabatic

Hartree-Fock state with energy E, HF(Q’ q), which obeys

He,HF(Q’ q) |W > =

)
then nuclear motion will take place wunder the influence of a

potential V(g, q) which is the sum of the harmonic woscillator

. 2 2 .
potentials 1/2 va q, the electronic energy Eo,HF(Q’ q) and the

v
potential in which ion moves, Vo(q).

- 2 2 ’
V(g, q) = 1/2 E w oqn Eo,HF(Q’ q) + Vo(q) (8)
where q = (ql, Gosvores qN). We now find the the extrema of this

potential. They are determined by

aV(g, Q) 2 ' .
53:—————— = w)oq, t Eo,HF(Q’ q) Cv = 0 (9)
. JE (Q, q)
with B fe (€, q) = gt
and
av(g, q) aVO(q) an HF(Q’ q)
aq : aq ¥ aq = 0. (10)
V(g, q) is an extremum at g = (qla’ Qogs *roree qNa) where a =

(1, 2, ... ) takes as many values as there are extrema.
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Equation (9) may be rewritten as

E (0., q.)
- o,HF al a
qva - 2 (11)

w
v

which when substituted into

Qa = L Cv U (12)
v
gives
Qa '
—E—r' + EO,HF (Qa, qa) = 0 (13)
where
CU2
ZEr = ¥ > (14)
k%) Q)_U

with Er being the reorganisation energy. Equations (10) and (13)

may be rewritten as

au(qQ, q) au(Q, q)
[—-——-—— ] = 0 and [ ] =0
. 5 - 8
q q = qa Q Q = Qa
where
2
u(Q, q) = 405 Y Ey (@) + V() (15)

One can easily orove that the potential at the extremum is -equal

to the value of U(Q, q) at its extremum.

The expression for Eo HF(O’ q) may be evaluated

numerically, as discussed later. Our interest is only 1in cases

where U(Q, q) has three extrema corresponding to (01, ql), (02,



114
q2) and (03, q3). Here (01, ql) and (03, q3) correspond to minima

of V(q, q) while (02, qz) corresponds to the saddle point. We

take the occupation numbers of the orbital | ac> corresponding to
(Ql; ql)’ (st qz) and (Q3s Q3) Obey <nao(01’ q1)> < <nao(02’
q2)> < <nao(03, q3)>. We identify these as the reactant, the

saddle and the product, respectively.

(4) THE ADIABATIC DENSITY OF STATES paa(s, Q, q)

Inh the following we shall make extensive use of

adiabatic one electron state | > of the Hamiltonian
me,Q,q

Hl,HF(Q’ q), having eigen values £ o which obey

W > (16)

e (@ @ ¥ae, g, g7 F o, Q, q

E I
me N q me
where

+ +
e @) = B, (0 i, +kza[ MotV ak (D€ gLy Vi, (Do)
(17)
A very useful quantity is p:(s, Q, gq), the adiabatic

density of states of the orbital, |ao>, which is defined by

Pz, 0, @) 126 (e - 2e) (18

21 <o, g,
N | . o
= - Imaginary part of Gaa(s) (19)
where
1
I

6,2(8) = < ao |(e+ da - Hy (0, @) 7| ao> (20)
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where a is an infinitesimal positive quantity which tends to zero.
ol {(£) can be easily determined, as H (Q, q) is a one electron
aa 1,HF

Hamiltonian. Defining

- 2 -
A(e, q) = = E P v @]® 6 (e - &) (21)
to be a weighted density of states function, one can obtain12
6.7¢ = - - ) + Al ) (22)
aa £) = [5 saO'(Q’ Q) n(s, q 1 £, Q} s
where
1 &(=q, q) dey
né, q) = - principal value of J
(e - sl
(23)
If the metal is taken to have a finite band width, then QZ(E, Q,

q) is obtained as13

A(e, q)

o
P e, O, q) = >
n((e-2, (0, @)- (s, 9))) 7+ 4% (=, Q)

(24)
(5) RATE IN THE ADIABATIC LIMIT

We now calculate the rate of electron transfer using the
quantum transition state theory, (QTST), assuming that the motion
takes place on the lowest potential energy surface V(g, q). In
order to evaluate the rate using QTST, we expand the potential
energy as a Taylor series in the vicinity of each extremunm. Thus

we have

"
<
+
O

v(g, q) v (25)
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where
v = E (Q ) + 1/2 Tw 2q 2+ Vv (q.) (26)
o o,HF "o’ Qo g ° Yo o' 9
and
2 _ 2 2 ve 2
& No = M2Ee 800 ¢ 12 E (0 a,) 80
2 2
a y (q.) 3 (Q., q.)
N 1/2[ - ]éq2 v 1/2[ 0,HF "o’ a ]6q2
8q aq
2
3°E (Q., 9.)
v 1/2 { 35 gaHF @’ o ] 5Q 5q (27)
where
. a%E_(Q,, a,)
64, =4, -~ qQ,, 3 %0 =0 -0Q, and E_ (Q, q,) = 602

The Hamiltonian for solvent oscillators may be approximated as Ha

where

] 2
fo = L2 ERS vV, v 8 (28)

[a] o
H. is the Hamiltonian for a collection of harmonic oscillators.
For « = 1 or 3 all the modes are stable as 9, g corresponds to a
minimum. As « = 2, corresponds to the saddle, one mode is
unstable. This is the reaction co-ordinate. We shall denote its

-

frequency by Qa, a' standing for adiabatic. The frequency of the
normal modes are denoted as @ and we take w9 to be the unstable
mode and put Wiy = ana. Qa is determined by the -equation, (see

Appendix B for details)
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. 9Q g 3B Qe 9y)
2 2 -
6q2 :3q2 -

o)

2 w J(w) dw
X = ] (29)

g J @ %+ w?)

0 a

where we have defined the solvent spectral function, J{(w) by

J(w) = _%_ T Cuz/“v S(w - @) . (30)
The QTST expression for the rate is 14
[
. wl
o n swnh[ KT ]
- - a v )
roo= [ Qa ] : 5, exp (-AV/kT)
2r Sin |—m— n sinh[ ]
_2kT 9) L 2kT

(31)

¥
where AV = V2 - Vl. The prime in J] indicates that the unstable
v
mode has to be left out. In equation (31) we have put Hh = 1. The
products of sinh functions are simply partition functions for the

initial and transition states. Using the infinite product

representation for the sin and sinh functions

© 2
sinhx = x| 1+ =2 (32)
n=1 ( n2 n2 ]
2
sinx

"

x
u1 8
[EY
(e

[UY
N X
NI
L — )

(33)
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we write Fa as

3 5 | p,l [ ne, ] exp (-&V/kT)
n=1 (34)
where

mn?s 2% w2
v

v

(35)
(n2—22 Qg ) g'(n2+22wvg)

Z = 1/2nkT7. 1n P, can be written as a trace and analysed to obtain
(see Appendix B)

; : Xl(n)
n Xz(n)
with
X (n) =1+ E_ . .(Q., q.)—2 dew 0 3@ L (f L b2y
a o0,HF "o a’ n A w2+(nz'1)2 a
e 2
x Eg pp(Qgs 95 C (36)
where
2 [ B(Qy» q) ]2
C = v
o
Eo,HF(Qa’ qa)
2 2 2
N2 : a Vo(qa) \ a Eo,HF(Qa’ q,) i B.an, q,)
. 2q° 2q* RTIER
and 2
d°E (Q., q.)
B(Qa’ qa) - o,HF "« o
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Further progress can be made only if one assumes a model

for J(w). If we give a Drude form for J(m)7

-1

CON K“? (1 erep? ] (37)
we get
28 7 w 2
_ X e “p . -1,2
)= 1B e 9 Gy [F, + mz™hH? ]
'y _2
X Eo,HF(Qa’ 9,0 C, . (38)

Carrying out two differentiations of E_,.(Q, q), we get
1

. a<naa>
o nF Qe 80 F § aQ

The expression for Py is

o 2, . 1/2
1 - 26 € pe(Qg, - [ €y i, ) Eoonr ey q1)|
Po ~ » 7 25 (3%
1= 26 B ey ap) - [(Ey /4y ] By L0y, 0y
The rate becomes
T 1/2
o | 1-26€E (0 - (B ) e )
- . _.a rio,HE Y1 91 - J o, HFF1r N1
2 7w A 7 2
1 - 26 E 2 (Qys Q) - [ 2% , = X
rEo,nr (82 92 [ ¢, / A, ] £ pe (s 4)
[a3)
X [ n pn] exp (-AV/kT) . (40)

n=1
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The infinite product can be evaluated . © can be found to obey a

cubic equation if one takes the Drude form for J(«). The equation

is
3 -1 2 a%v (q.) 8% . (q y 8% (0., q.)
Q 0 o 0, HF ‘o Ya o, HF Y 94
mD + O + — + > +
a a aq aq aQ aq
2 2 2 2
. 1+[a Vo(a,) O%E, e (8, qa)]a Eo hr Qo) °F up (00 a,)
apb aq2 aq2 _302 2Q aq
= 0 . (41)

Thus the rate for the proton transfer reaction in the adiabatic

1imit becomes

¥ 2 2 LN ]

v - -
- Y 1o 268y yecays ap) -(By/ Fy ) Eg yecops ap)
a 2 n ' _ 2 _ 2 '
/ L S PO PRI (PP IS PRRCPY
r(1-iziy) Tz 3 ra-zk? )
X n T exp (-AV/kT) . (42)
r(1-izf,) r(siziy TH T2
(e 0]
In the above [j p_ has been rewritten in terms of Gamma function.
n=1
Kia are the roots of the equation Xa(ZK) = 0. This equation
written out in detail gives
2 _2 vy _2 vy
(K ol v e @ 0 By ] [(Kor ey ] 2 B e, e

X [ K o+ ) = 0 (43)
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This is a cubic equation in K and its roots <can be found out

analytically, So the rate Fa can be evaluated.

In a metal there is a continuum of allowed energy levels
in which the electrons can occupy. Muller-Hartmann, Ramakrishnan
and Toulose (MHRT)3 have showed that the switching on of a
localised potential will always leave the metal in an excited
state, irrespective of how slowly it is done, thus indicating that
processes occuring at metal surfaces have to be nonadiabatic.
Schotte and Schottel, Tomonagaz, Sch®nhammer and Gunnarssonq’5
have shown that these <electron-hole (e-h) excitations <can be
treated as bosons. This approach is justifiable in
electrochemical reactions 1like electrochemical proton transfer.
because the probability of creating any boson (e-h excitation) is
« 1 as the dynamics of the nuclei are much slower than- the

dynamics of electronic motion in the metal.

We have derived an expression for rate of »proton
transfer reaction, accounting for non-adiabaticity: in the
transfer, wusing an extension of a procedure followed by

Sebastian7.

(6) THE BOSONISATION

The basic idea is to replace He HF(Q’ q) in equation (2)

by an operator for a collection of bosons. So following MHRT3 and
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Schdnhammer and Gunnarsson4’5 we replace He HF(Q’ q) by Hb(Q’ q) +

Eo,HF(Q’ ql),
where
Hb(Q, q) =L e=.b * b = ¥ =, b.'=> b. => . (44)

jh0 3 196a "Jel,a 5T ) 3ol o0

. . . . 4 .
For convenience, we introduce a two dimensional vector Q with

components Q and gq. bt > (b. =>) creates (annihilates) jth e-h

JjeQ JeQ
excitation for spin o in which an electron has been excited from
" =>> 3 < _> 3 . j
""m<00 with Em< £r to Iwm>00 > having £m>> e j stands for a
. +
e. = - . L = . =>
pair (m>, m<) and 3 £m> sm< Here bJOQ and bJOQ are Q

dependent as |wm06>> are adiabatic states. They will not commute

+

with p . So Hb(Q, q) is written in terms of b. => and b. =>,

5o, joq,
=> . . => : +
. . > . =D
where Qo is a fixed value of Q We shall denote bJOQO and bJa00
. + ) . .
simply as bjo and bjo' This will commute with Py, and Q,- The

relationship between b. => and b._can be found using a procedure
JeQ Jo

4,5

due to Schdnhammer and Gunnarsson Differentiating He HF(Q’ q)

with respect to Q, we obtain [3He HF(Q’ Q)/30] = Enao(Q, Q).
’ - o

. . + . i .
Expressing n in terms of w —=> and w_ -> which are annihilation
ao merQ mo

Q

and creation operators for | &>,

oQ
we obtain

=>

E’He,HF(Q )_ < w N > < : > > @ o> g, = (45)
ER S B <¥negrlam r el vy ¥iog ¥nvog

In the spirit of boson approximation, we replace the above by
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> >
8H (Q ) 43 (Q)
e, HF = T F.a(6>) [ b‘aﬁ> + btaﬁ> ] + o, HF
aQ j,o? J 7R aQ
(46)
Similarly
aH (T ds  ( ) JE @)
e, HF Q) - >, %5500 g + o, HF ¢
= LF._@) (b0 * blep)*
aq jro d aq J IR aq
(47)
where
=> _
Fja(o ) = < wm<06> | aco> <ac] z'"m>o§> > (48)
Combining the two equations (46) and (47) we can write
aE @)
—_—> -> => + o, HF
v = ' F. . => . => >
(0 1_»[50':30(0 ) (bJO'Q " PjeT )+ aQ ]
>
8z __(Q,q) 8E (Q )
—> + ao o, HF
- . . =2 . =>
.y [ngJa(o ) (557 * Piog )]aq -~
(49)
_ = => + >
TI P Ubyeg v Piogn )t VEg (0D B0
where we use the notation
> 9 > &8
Vv =3 3q + ] a—q
and
e __(Q, q)
=> ,=> - —> - —> ac
F._(Q") =31 F. (Q°) + 37 F. (Q7)
jo jo jo 2q
Now differentiating Hb(5>) with respect to Q and q, we get
—_> _ _ + _ _ + _ c _ >
WH, (@) = E = [Vbj00> b0 * Do 7bj00>] TE L e (T

Js@

(51)
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Comparing the result with equation (49), we obtain

—> =>
Fja(Q )
Vbjo—o-> = = (52)
J
so that
—>
_ _ -1 — L, => =
N J_) Flo (T dT (53)
o
—=>

It is easy to prove that I_>?§o(5>) dﬁ> is independent of the path

)
connecting ﬁ: to . So we put
—>
—> -1 => =>. >
S. = =, F. d s
5o (T J f_) (0@ dl
q,

and the expression for bjaﬁ> becomes

bj06> = bja + Sjo(o ) . (54)
If we use this expression for bj06> in the equation (44) we obtain
2
H(T) = bt b, + 5. (T b. +b + Sja(0>) (55
p () -J_zo(ej jo Pio * S5e@) (bsorbse ) v & ] 59

Thus the bosonised version of total Hamiltonian may be written as

=172 02 + o2 + (g, @ + H (T (56)
v
where
- 2 2 =>
Vg, 4) = 1/2 B w g + V (q) + E . (Q7) . (57)

v
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Introducing "position™ and "momentum™ for the e-h bosons as

] -1/2 '
Xjp = (255 ) ( by * 55y ) (58)

and

1/2

ke
"

-1 Ce72 7% (b, - by, ) (59)

jo

we obtain

H=1/2Ep2+p%2+1/2Ep 2 + V(x, g, @) - 1/2 L =, (60)
v jro Yo j,o )
where
X = (xla, Xogs X3gserres xmo)
and
2 —_>
Vix y =172 8 2 x.2 v 1728w q g AN LS. (@)
o3 30 3 T3 T RS jye 99

>
X /2ej Xjp * Vo (a) + Eo,HF(Q ) . (61)

Since -1/2 £ €. is a constant, we omit this term.
jyo

(7) RATE IN THE NON-ADIABATIC LIMIT

We now find the extrema of the potential V(x, g, q).

The coordinates q. , q_ and x: of the extremum o obey,
va jo

o 23
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—_>> =>
as. _(Q_) as. _(Q.) -
2 2 > jo o jo ta 2 . C. x.
“v Yo ? ) =, SJU(Qa) 8q Cv > q 3ovoJee
3, ] v J,o v
=>
gt (Q))
L LA (62)
aQ
—> > 8y (q_)
. 2 (6>) aSJo(Qa) . p aSJa(Qa) / 2 Ej XJoa + 0o A
j,0 ej jo ' ta aq i, 8q éq
=>
ot Q)
s —2HE 2 . (63)
aq
and

=2 Ty / =
=5 Xioa t 550000 2 & = 0 . (64)

If we substitute the equation (64) in equations (62) and (63), hé

get
—>
2 an,HF(Qa) )
w” q + C = 0
v o v (65)
aq
v

and
8V (q ) 8E_ (T

°o = , _©o.HF o = 0 (66)
éq aq
which are identical with equations (9) and (10). So the extremum

of V(x, g, q) occurs at the same values of q as the extremum V(g,

=> . _ /. 3 =>
q). Further, once QOI is known, xjoa = - (2/=j) Sjo(oa)' Also

the value of V(x, g, q) at the extremum « is
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¥ = V(X5 9q0 9)
- _—%_ E wlz) q'UCZI ¥ VO(qa) ¥ EO,HF(-Q_;) (67)
= vV, . i (68)
The equation (67) is obtained when expressions for xjaa’ A and
9, @F€ put in the equation (61). The equation (68) implies that

the height of the barrier is not changed by the <coupiing to e-h

bosons.

We approximate V(x, g, q) in the vicinity of each of its

2
extremum by Wﬁ + & W& where

Wa = vo(qa) + E

2 .2
8 __(Q_, q.) 8Q oq

—-> ac: o o 2

+ F. / =. &q & + + W

R R 2 B T e Tt T2 2
2 => 2
"k (Q.) F.2(Q.) @¢__(Q_., q.)

. [ 1 o.HF @’y pde a Teo o o ] 5Q 8q (69)
8Q 2q jso T3 aq
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Sx. = X._ - X.
Jo Jo Joa
2 => 2 =>
3"E (Q.) F. _(Q.)
Za - o,HF ' “a s 2§ éa a ’
aQ jro 7]
2 > 2 = 2 2
% aq jo Sj aq - aq*
>
F. (T = 750
jo ' ta 8Q }
and
as. (T 3s. (T) & 3 )
jo(Qa) _ jo(Qd) SaU(Qa, qa) _ . (_)) -‘«‘aa(Qa, qa
aq T aq - jo % aq
It s convenient to introduce a new Hamiltonian by
.1 2 2 2 - 2o
Hna,a v [.Z Py, * LP, *p ] ARV S SV (70)
-}, " Jo v

~

L]
The subscript na stands for non-adiabatic. For & =1 or 3, all
the normal modes of the Hamiltonian are stable. For &« = 2, one
mode is unstable. We denote the corresponding frequency by O

Analysing H with o« = 2 shows that Q obeys the equation
na,ao na,a



129

=-> 2 2 o
] an,HF(Qa) 8%e__(Q,, a,) ] 87V _(a,) 2 J do © I (w) .
2 T L2 2
aQ aq aq gle™+ )
(71)
Da(w) is the electronic spectral function , defined by7
—_> 2
Do) = B | Fo (@) | 6w - =) (72)
J,o
Spte
_ o => o, >
= 2.[ de Pa(s’ Qa) Pa(s w, Qa) . (73)
“F
See Appendix C for details. The expression for the rate is
a T Sinh(mvl/ZkT) 1 Sinh(e.1/2kT)
r - na v j )
na . Y .
27 Sin (Ona/ZkT) D S1nh(uv2/2kT) ? S1nh(Ej2/2kT)
x exp(-AV/KkT) (74)

where and €. are the frequencies of the normal modes of
va ja

Hna,a' Just as in the adiabatic case,
Qna ®
Foa = om ars [ nglpn) exp(-aV/kT) . (75)

Now P is given by



n(n2+22wU12) n(n2+zze.12)
b= 2 : 1.2 ” (76)
n (n2_22n 2) n(n2+22w 22) n(n2+22€'22)
n v j.o
_ Xl(n)
Xz(n)
where
2 . => 2
F. _(Q.) o
Yy — 2.-2 jo ' ta v
X (n) =1 + E (Q)) + 2n"Z ° L - z -
a [ 0,HF ' “a j,o e.(n22 2+E.2) ] o (nZZ 2+w 2)
J J v
2 ., =>
F. _(Q.)
vy —_> 2 _2 Jo o
+ E (Q) + 2n°Z °L =
[ 0,HF ' “a 5o ej(nZZ 2+eg) ]
x 23 e (77)
5 -2 a Vo(qa) an,HF(Qa) a EaéQa, qa)
n“7 + 2 + 2
aq aQ aq

(see Appendix C). Using the definitions of J(w) and D_(w) the

equation (77) can be rewritten as
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X (n) =1+ [E PGSR 2n2‘z'2-[ 1 o™ ] 2 dem J ()
o ol )

0, HF o, (@ 2+n22—2 n (m2+n22-2)
0 1'1 0
o
dw D (w,)
'y => 2,-2 1 a1
* [EO,HF(Qa) v 2n7Z _[ VY, ]
0 wl(w1 +n“Z %)
2
asaa(Oa. qd)]
« [ aq . (78)
2 => 2
2 -2 a Vo(qa) an,HF (Qa) a Saa(Qa, qa)]
n z + > +
éq a(Q 8q
Thus to calculate Xa(n) one has to know Da(w). An approximation
to Da(w) can be written as
£ _+tw
D = 2 F d o > 24 _ —_>
a®) = £ p_ (=, Q) pa(s w, Q)
“F
- , o, —_> [= _ => o -
= W pa(°F’ Qa) ( pa(sF w, Qa) + Pa(EF+w, QG)] (79)

(see Appendix C). This the trapezoidal approximation to ‘the
integral. Using this approximation Da(w) and Drude form of J(w),

Xa(n) can be evaluated as
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4E 7 w o => n{n+Z4a)
- D [ =/ (S s Q ) "1"'
X (n) =1+ 2 a “F* “a 2. 2(. 2
2 (me i) [ (n+28)242% (2, (0, q,)+2¢] }
asao(Qa’ qa) ? o =>
2[5 ) e5tep, T
¥ - 7 S
g2, Ve | O (T 9%e (0 o)
aq? 3Q aq?
_ n(n+zZ4)
x 1+ B 7 (80)
(n+z8)? + 7 [sac(oa,qa)-eF]
N oc (0 9,0%0 0. Ty7?
| ey AR T 2[—52 1Pa‘r Y
(n + Zap) (n+ 22 9%
[ - zatneze 22 (e, (0, a) - ep)° o1,
(n+za)? v 2% (e (0, a) - ep)?

where



2 >y 52
2 e o @) ot L ay)
> aq2 302 aq2
Xu(n) =
(n+ze) (n?+2200) [(nezar 2oz e (0, 0 -=p)?) -4E 207 (2, T

x (220, 5) (@atnaam) ¢ 2 e (0, a0 - 227

e o (0 G052
aq ]

x B30 T (n+28) [zatneza)+z?(e, (0, a0 -2 ]

na

[

n

Aa(n)

2

(n+z8) (n?+2202) [(ne283%4 22 (e, (0, a0-20)7 )

(82)

Then the expression for the rate becomes
N 1 - 2ErE;:HF(6;) - [6230(01’ q1>}2 E;:HF(EE) v’
i 1= 28 €] e (@) - [GZZU(QZ’ qz)]2 B wr (@) ¥,

As(n) © S,(m) ® ¥, ()
L A ) ( T 5, ) ( v ] expt-av/kn) (83)

where Aa(n), Sa(m) and Ya(l) are given by
=n? s 22§ 2 (84)
= mz8)? ¢ 22e (0, ag)- £p)? (85)

Sa(m)

and
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o > 2 N2 2.,252
- 4ErZpra(sF, Qa) [ZA(1+ZA)+Z (an(oa’ qa)- LF) ] (] +7 va)

3z (Q_.,q9 )2
2 s , ,
T [aqao — ] PZ(EF’ Qa)[zA(]+ZA)+Z Esaa(Qa’ qa)-EF) ][1+ZmD).

(86)

Each of the infinite products in equation (83) may be expressed in

terms of Gamma Functions. Thus we obtain

2

' ec (Qy, q94) vy 2

' => ao 1 1 =, T

- - Qna 1 - ZErEo,HF(Ql) - [ aq ] Eo,HF(Ql) V1

na 2n

2
vy > _ [3530(02, QZ)] qu > _2
r-o,HF

r(i-izvy) rQa+izvy) r-z2-i2¢e, (Qq, ay) -=p))
r1-izv,) r(i+izv,) T(1-2a-12(s_(Qy, q5) -2£))

. F(1-za+iZ(2__(Qq, 99) -2.)) ;
F(1-78+3Z(e_(Q,y, qy) -2()) i=

ra-za; )

1 r(A-77; )

exp(-AV/kT)

(87)
Ai o a7e the roots of the equation Ya(ZA) = 0. This equation,

’

written out explicitly, is

(48" ¢ (ap e a2)- 2p)7) (2405 (o) - 48 Zapel (s T

. B 8z (Q_, q.)\2 _
% [A(Am)+(sao(oa, ay) -sF)z] R 2[ L "} P (e, T

(B (e, 0 0 e (e = 0 (88)
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This is a polynomial equation in A of order five and its roots can
be found out numerically. Thus the equation (87) is the final
rate expression for the proton transfer reaction, taking 1into

account of non-adiabaticity.

(8) EVALUATION OF DIFFERENT TERMS IN THE RATE EXPRESSIONS

[EQUATIONS (40) AND (83)]

In the following, we discuss briefly how simple minded
calculations may be done using the above formulae. Calculations
need knowledge of the electronic energy, Eo,HF(Q’ q). This
requires the density of states function, A(e, q). A suitable form
for this is a semielliptical one13. As the H' is in vicinity of
the metal atom, there would usually be a metal orbital interacting
most strongly with it. Let us denote it by |M>. |M>, could, for
example a 3d§ orbital on the Nickel (Ni) atom, for hydrogen

discharge on the surface of Ni. This orbital would form a band of

width “473' due to its dinteraction with neighbouring orbitals. We
take the band to extent from (-273) to (+2/3). It is wusual in
chemisorption theoryll’lz, to adopt (equation (21))

ae, @) = L |V, (@] 6(e-z))
k

'2
2 3 “(q)
/mz(q) ~ .2 (89)
2R ‘

¥
2 (q) is the hopping integral ©between a> and |M>,
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defined by
L
B (q) = <a|H|MW> . (90)
A semi-empirical evaluation of ﬁ'(q) would lead to15
'
B (q) = [<a|H|a> + <M|H|M>] <M]a> (91)

where <M|a> is the overlap integral and, hence is q dependent.

Using this semielliptical form for A(e, q) and following
Newnsl3, adopting a system of units in which energy is measured in

units of 23, the occupation number of |aT >, may be found to be
1 F o
LRSI IS AT NS (92)

From the equation (24), we get

L CF A(s, q)
(naT> = TJ\ & 2 2
o mlle-e 0, @) (e, a))) 7+ A%(s, Q)
(93)
Note that we are making use of the restricted
Hartree-Fock approximation so that <naT> = <nal>. The above

equation may be integrated to give
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_ ' 2
<naT> = 2n 1 [ 3 (Q)) {[1' R}Rc[(R%—l)l/z - (szl)l/Z ]]]

X [ArcSin(sF)+ z ] (94)

where

v -1 Y ' Y
R = 1-4" 2(q) 1-2 2(@))e._(Q, q)+2ip 2(q) (1-47 2(@)
K ac

- el )t

ao

and Rc is the complex conjugate of R, The bracket in the <naT>
indicates taking expectation values with respect to the ground
state, which may be iteratively solved on a computer, to obtain

self consistent values of <naT> for any aa(q) and U(q).

The above expression for the occupation number (equation
(94)) has been obtained assuming the absence of localised states.
When a Tocalised state exists below the band , we have to add a
term <naT>] to the equation (92), <naT>1 being the occupation
number of a localised state, which is obtained in the

> - v
semielliptical approximationt> as  (1-47 2(q) 1[(1-Zﬁ 2Zeq)y

ZE'Z(q)EaO(Q, Q)(4B'2(Q)+535(01 q) —1)-1/2], and the equations

will get modified correspondingly.

From equation (94), it is <clear that <naT>, the
occupation number of the orbital |aT> depends on the position of

the Fermi level, £ The overpotential, v measures the deviation
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of £ from its equilibrium value. So <naT> is dependent on 7n.
Since the rate depends on the electronic energy, Eo,HF(Q’ q) which
in turn depends on <naT>, the rate of the proton transfer reaction

will depend on n. The n dependence of the rate can be calculated.

(8.a) Estimation of sa(q) and U(q)

An analytical expression for the dependence of £, ©on g

is (see Appendix A)

sa(q) = -1+L(q +R(q)~eVH+(q) (95)

where

I = Ionization potential of proton, equal to 313.6 kcals.

L(qg) 1is the hydration energy, which is taken as theMorse

molecular potentialls’17,

1

L(q) = LO[Zex (—a(qe—q))—exp(—Za(qe-q))] kcals mole (96)

where L0 is the hydration energy at q = q_ , equal to 275.79 kcals

e

mo]e-1 and q, is the equilibrium distance of H from the metal

LY

surface, q and 9e measured in R, a is a quantity, measured in

(R)—l, related to the force constant k of the bond H+-H20 and the

reduced mass u of the system
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R(g) is the H~H20 repulsive potential energy, which is taken as
16,17

exponential core repulsion and written as

R(a) = 14.4 (56.7 exp (-24.9(5-0) %) +21.5(5-q) exp (-2.4(5-0) 7] (97)

kcals mole
& is the distance of closest approach of water molecules to the
metal surface, which is taken to be 3.77R.
VH+(q) is the electrostatic potential at H® which depends on q as
2
eVyr(a) = —4o— . (98)

Due to 1image interaction, U 1is shown to have a functional

dependence on the position with respect to the metal surfacele, as

U(q) = U0 - e2/2q, where U0 is the asymptotic value, equal to U0 =

297.47 kcals.

Our Hamiltonian (equation (2)) describes only the
valence electrons. But, inorder to calculate the total eltectronic
energy, we have to add the core-core (hydrogen-metal atom)

repulsion energy, Vo(q), to the electronic energy, E0 HF(Q, q)

calculated from the above Hamiltonian . The nuclear repulsion
between ith atom in the solid and the hydrogen atonm, vHi may be
taken as18

vooe el (-aq,:) (99)
Hi a,; Pl-ady,

where S ijs the H distance from the atom i of the metal, Z is

valence charge per atom and e 1is the electronic charge. The
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equation (99) is the Thomas-Fermi screened coulomb interaction and

-

a' is the corresponding screening constant.

To get the total repulsion energy, the sum of vHi is
taken on the atom i of the crystal. Such a sum is performed on
the metal lattice near the adatom, by increasing the number of

sites until good convergence is obtained. Thus
V(@) = ? Vs (100)

The so obtained total energy will have all the electronic and
nuclear contributions. Thus the quantities in our rate expression
for electrochemical proton transfer reaction can be <calculated

easily.

APPENDIX A. Expression for sa(q)

An explicit expression for sa(q), the original energy of

|a> on the H 0+ jon, is found as follows. < is the difference in

3
the energies between two states, defined below. (1) The state
M-H+—0H2 and (2) A state with electron occupying the orbital of

H,0' so that the species 1s M—H-OHZ. The energy of state (1) s

3
-L(q) + eVH+(q), where L{(q) is the hydration energy which is taken
as Morse molecular potential, the explicit expression for which is
given in the text (see equation (96) ) and eVH+(q) is the

electrostatic potential at H' ion (see equation (98)), while that

of state (2) is given by -1 + R(q), where I is the ionisation
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potential of proton and R(q) is H—H20 repulsion energy which is
taken as exponential core repulsion and the expression for this
is given in the text (see equation (97)). Then the expression for
sa(q) becomes, energy of state(2) - energy of state(l) = -I+R(q)
+L(q)—eVH+(q), which is the expression wused in the text (see

equation (95) ).

APPENDIX B. ADIABATIC CASE

(1) Normal mode analysis

We wish to determine the frequencies of the normal modes
of H, given in equation (28). Writing the classical equations of

motion for 6qv gives

2 2 2
d“&q, R SO a Eo,HF(Oa’ Q) ¢ sa 3 Eo,HF(Qa’ qQ,) ¢ 50
7 99% ° v YT |B] aq 79 2 v°
dt aqQ
(B.1)
and
2 2 2 32
E’_-éi - tsc']‘ ] . a Vo(qa) ) a EO,HF(Qa’ qa) 5q_[d EO,HF(QO’ qa)]rso
dt2 aqz ﬂqz 9Q dq
(B.2)
Now we put 6qv = «‘J‘q,}_}o'eimt and &q = 6q°eiwt, where w is the

frequency of a normal mode of H01 and éqvo and 6q° are independent
of t. Substitution of these expressions for 6qU and &q 1in

equations (B.1) and (B.2) leads to the following equations.



85q. % = - ¢ [a E O,HF(Qa' qa)]é o v Cu [ 2 Eo,HF(Qa’ qa)]
v v (W v-wZ) aq adq v(wg_wz) 802
x 6q,° (B.3)

Substituting this equation in 600 =¥ Cchqv0 and rearranging the
v

resultant equation leads

2 2
C 9°E (., 4q.)
v o,HF ' "¢ o 0
[ 1+F : [602 ]] 5Q

v (wvz-w )

2 2
- ‘[a Eo,HF(Qa’ qa)]z Cv 5q°
3q aq 72 9

v (wv -w)

(B.4)
and the equation for 6q° becomes
2
] [a Eo.nr Qe qa)](500
5q° = BQZaQ 5 (B.5)
2 9V la) TR ue Qs ay)
-+ 2 + 2
aq dq

Substituting the equation (B.5) in equation (B.4), we get

22 2
C 2 0 Eo,HF(Qot’ qa) 625 (q )
5 v 3q dq _ [ o, HF “Ha? 9 )
v (o, 2-w?) (2 a%v (ay) 0% c(a,, qa)] aq?
- + 4 3
q2 842
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Using the definition of J(w) in equation (B.6), this becomes

2 2
2 J wJ (@) dew [ 3Q aq ] 3 [ 0,HF “a? o ]
n z 2
o (@ -0%) 2 3V tay)  @TE e (Q,, ay) aQ
[-m — - ]
aq a4q
=1 . (B.7)

0f special interest to us is the unstable mode, whose frequency

is purely imajinary, which exists for a = 2. Putting mz = —Qa

into equation (B.7) gives equation (29) of the text.

(2) Evaluation of P,

The definition of Ph in equation (35) may be written as

g (n2+22wv12)

p =
n 2..,2 2
g (n"+Z mvz

)

2

(remember w = -0 2

). So

Tn pn = T ]n(n2+22m012) - L 1n(n2+22wv22) . (B.8)
v

v

As wvmz are the eigen values of (6

(d)),

where

6 =6 + 6 ) (8.9)
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1np, = Tr Inn?1r + 226Dy — 1r 1nn?1 + 2262
= 1r Intn?1 + 226 +61))y - 1 1nn?r + 226 +6(2)y)
o 1 o 1
I is the NxN matrix. TJTr stands for trace. We define matrices 6

and G(a) by

w 2(5 0 ]
v 'U'Ul
_ 32 2 2
G, = . 3V _(a,) . 37E | wp(Q,a,) ] B~ (Q,, a,)
2 2 LB
3q dq Eo,HF(Qa’ qa)-
(8.11)
and
™ C C [] B(Qal qa) ha
vov vy CU
() vy EO,HF(Qa’ qa)
17 7 Fonr%e % 0| 8o, ay) i [B(Qa, 9 ]2
[ v [}
| EO,HF(OQ, qa) EO,HF(QC" qa) ]
(B.12)
which can be written ia simpler form
6 = o 26 , v o= 1,2 3,..0.0.00... N+1, where
[s] ) ‘le
2 2 2
2 a7V _(q,) a EO.HF(OQ, q.) B~(Q,, a,) 13
TS B M T (8.13)
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and
G(a) - E Ve (0 ) A A " v - 1 2 3 N+1 (B 14)
1 o, HF o’ qa v v ? 2Ly dp e .
where
Ay
= [ ] =
AN+l
B0y 9) 0% (0, ay)
o o o0,HF ' “a’ “a
A = vy and B(Q_., q_ ) = L]
N+1 £ (0 ) a a 20 o
o,HF o’ da q
Then

Tn p, = Tr 1n(1+y—122651)) - Tr 1n(1+y-122552)) (B.15)
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y = n21 + 2260 is a diagonal matrix. Expanding the logarithmic

function, we get

o
Troin(1ey12%6{%) - 22" tr(ylelH . (8.16)
m=1 m
But
N+1 -1
-1 (o) \m 2.,2_ 2 v 2
Tr(y G1 YU o= [vgl(n +7 w, ) Eo,HF(Oa’ qa) Av ] (B.17)
as can be easily seen from the definitions of vy, Go and Gl(a)
above. Equations (B.16) and (B.17) give
i N+1 -1 v
Troinciey 12760 = (1 +v§1(n2+22w3) 226 e (O 9,04,7]
(B.18)

Using this in equation (B.15), and taking the exponentials, we

obtain
N+1 -1
2,,2. 2 2 v 2
1 +v§1(n +Z%0, ) z Eo,HF(Ql’ ql) A
p, = =
n N+1 -1
2,,2. 2 2 v 2
1 +U51(n %0, %) Z Eo,HF(QZ' q2) A,
-1
2,,2. 2, 2. v 2 2,52 2 \=1,2."" 2
Lrinme2%ey™) 278, ety adhy oo liog ) P208, wr(Qpaa) ANy
2,,2. 2,-1,2, " 2 2,,2, 2 \-1,2, '" 2
1+(nTeZ%;™) TZTE, yp Qg ax)hy oo (nmrZloyq) TZE G wp (00090 AN 4
N -1 -1
2,,2 2 2 v 2,252 2 12 2
l+v§in 10w ) I Eo,HF(Ol’ ql)Av +(n"+2Z wN+1) z Eo,HF(Ql’ ql)AN+1
N -1
2,522,712 v 2,002,522 \-1,2_"" 2
DR+ 2%)) 278 (0 agdhy, H(nmeZleniy) 278, yp(Qps ap)fyyy

v=1



: Xl(n)

X2 n)

where X (n) is given by
N -1
Xo (M) = 1+ L (n?+7%2) 7

v=1

2

' -1
+ (n2+22wN31) Z2 E

Using the definition of J(w) in equation (B.20), we get

(36) in the text.

APPENDIX C. NON-ADIABATIC CASE

vy
o, HF (022920 Ayig

(1) Normal mode analysis

The Hamiltonian H
na

L]

equations of motion.
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E

2

Teads to the
[a

following

(B.19)

(B8.20)

equation

classical
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2 >
9°E (Q.)
c oy 2 e e g : ) (1 0,HF "o
P T T O j?aria(oa)/; =5 C%e "Zaly0 [2 aq aq
2 >
2F Q) @8s__(Q_, q_)
s+ T EJo a aao a o ]cv 5q (c.1)
joo 53 9
2 >
. . _ 8e__(Q_, q.) a"E (Q_)
jyo J d J 3Q 3q
2 ,=>
X z ZFjO(QG) asad(oa’ qa) ] 50 (C.2)
. £ . 2q
J,“ ]
.. c_ _(Q_, q
.2 _ => _ => aoc’ "o a
T A N L T j
(C.3)
Putting 6qv = c’iqvoew)t ; éq = 6q°e1wt and 6xj°e1wt, where w is the

frequency of a normal mode of Hn

Sq
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j,o
2 > 2,
o“E (@) F.2Q3 o=_(Q_, q.)
+ [ 1 0,HF ~ "a” T ;JU b ag 2 ] Cv 6q° (C.4)
aq aq jeo 5 aq
w°sq- = F.O(Qa) 2 = Sx.0+w 5q°+[ > O
j,o J - aq c « aQ aq
2 >
ZFja(Oa) 3£ao(00. qa) o
+ L — ] Co 9% (C.5)
Jyo ] dq y

X 3 5q (C.6)

Solving for 6x§o from equation (C.6), substituting it in
equation (C.5) for 6q° and substituting this in equation (C.4) and

finally solving for 6q° from the resultant equation, we get
v

(o}

C._ 58Q 2F (Q) e, s
6qg - ‘37“‘_7“ [ Za +.E jo az J K(Qa, w, ej) ] (c.7)
(w W, ) jro (w™~e.7)
where
2, => 2
2F, _(Q ) =, 9« (Q_, q_ )
> _ _ 2 _ 2 _ jo "o 3 ac A fa]
K(Qaa w, '=j) = oW wa E 2) [ aq ]

j,o (W -=,
J ( 3

Substituting for wi In equation (C.7), we get



) 2 5>
5q o _ C, <0 7+ 0§ 2Fja(0a) EJ 1 - [ asaa(oa’ qa)]
Y (wlew 2 * o (wh-ed) 24
> 2 . 2
aEO,HF(Oa) 9 bao(oa’ qa) I Vo(qa)
2 i . (C.8)
aq aq” aq
Substituting this equation in [ Cchqu0 = &Q° leads to
v
2 2, => 2
C, 2Fj0(0a €5 9e _ _(Q_, qa) 2
) > Z, * L > 1 - [ 33 ] + W
v (wT-w 7)) j,o (w —ej )
=> 2 2
an,HF(Qa) a an(Oa, q_) a Vo(qa) .
- 2 = (C-g)
aQ aq aq
For @« = 1 or 3 all the normal modes of Hamiltonian are stable.
For a = 2, one mode is unstabile. We donote the <corresponding
frequency by Qna' Putting wz = —Qnaz in the -equation (C.9), we
obtain the frequency of the unstable mode. By using the

definition of J(w), solvent spectral function, equation (37) and

Da(w), electronic spectral function, defined by

D («) = L | Fjo(ﬁ;) | &(w - ej)
J,
e tw
o e e T e T
- e p (e, Q) P (s-w, Q (C.10)
&=
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in the equation (C.9) we can show that nna obeys the equation,

o 2
e N dw, D _(w,) s (Q_, q.) 2
E (@) - 2 1 "1 1 _[ ao ‘o o ] a
o,HF ' "o na w (wZ +0 2 ) dq na
c "1'1 na
=> 2 2 w
) aEO,HF(Qa) a Eaa(oa’ qa) _ a Vo(qa) 2 J‘ d(JO w J((l.)) - 1
2 2 n 2 2
aQ aq aq gle™*a ")
(C.11)

Using the definitions of J(w) and Da(w), we get the equation (71)

in the text.

(2) Evaluation of Pn

Just as in Appendix A,

G(a) = 6_ ¢+ G(a) and defining
o 1
.2 -
wvévv 0 0
1
6 = 2
o 0 W, 0 (C.12)
2
| ° ° 5%y
and s __(Q_,q.) .
' ao o’ a /
[ Zacvcv Za[aq ] Cv Fjo(Qa’ qa) 2ej Cv
1> (Q s q ) de 50 s q )
(o) _ ac ~a’ o ao e’ a
Gl - za[aq ]Cv 0 Fjo(oa’ qa) zejaq
asaa(oa’qa)
| Fiol0 907255 €, F3(0,,9,72%] 55 ] o

(C.13)
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we can write

Tnp = Tr 1n[1+(n21 . zzeo)'lzzeim] - Tr 1n[1+(nZI+Go)-122G§1)].
(C.14)

To evaluate Tr 1n[1+(n21+226 )_1226(0)] we adopt the following

procedure.

We introduce an (N+2M+1) dimensional inner product space
9 spanned by orthonormal set of vectors |h1>, |h2>,

T LA LIS LIPREN L PSR SRR Iby,> - ealby,>» and  |h>

(a), 80 and E{a) such that G(a), 6 and

and introduce operators G o

G{a) are matrix representation of these operators in the above

basis. For example,

<h 169 b, > = 1611 . .
v jo vjo
Now we define
lo> = Lo lh>
v

|Rc7> = ? FjO‘(Qa’ qa)|bjg> 'zej (C.15)

and

-1/2

|o> = <qfe> Q>

~1/2

|Re> = <Reo|Re> |Ro> . (C.16)

|@> and |Re> span a four-dimensional subspace of % and the

projection operator on to this space is

P = |9><Q| + L |Ro><Re} + |h><h]. (C.17)
o



It obeys P2 = P, Inspection shows that the operator G(a) can be

written as

fs _(Q ,q_)
o

-~ Oc (Q s q )
() _
61 =10>z,<0] +|o><h|z, [HE——]

s (Q_,q.) de_ (Q_,q_)

+ L|Ro><q| + E|R0><h|[ az_a 4 ] + [ h><R0[ az o 4o ] .
o' o 8q Ul aq (C.18)

This operator, obviously has the property that

~a

(o) _ (o) 5
6,7’ = P6 P

Expanding the logarithmic function, we get

Tr 1n[1+(n21+2260)'1 2 (a)]

7%}
o m+1. ~ ~n m

-t p SR 2?2 ez ) tee, () (C.19)
m=1

Putting Gia) = PGia)P and using the cyclic invariance of the trace,

Wwe get
Tr 1n[1+(n21+2260)'12251(“)]

m+1

[0 3)
5 (-1) ¢

-~ ~ ~a m
22" 1r[Pn?+z% ) trey™]
m=1 m (s}

2E’(n2+2

= Tr 1n[1+Z 26 y71p A(a)]

Gy) P 6y (C.20)
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Defining Xa(n) by

Tn Xa(n) = Tr 1n[1+225(n2+2260)_1561(a)] , (C.21)

we obtain

) Xl(n)
P, = —— >
X2(n)

where

0}

~ 9 27 17 (a)
Xy (n) exp[Tr]n (1+p(n?+2% ) "1PG, ]

det[1+B(nz+2280)'1561(°‘)] . (C.22)

To calculate the determinant, we have to find the matrix of the

operator [1+P(n2+2260)-1PG{d)22]. This is conveniently done in a
new orthonormal basis with |Q@>, |h> and |Re> as the first four

vectors, the remaining being orthogonal to them. Then we get
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Xy(n) =
2=-1 2 -1/2=-1 2 -1/2= -1
1426 4 2, Z°<aje> T i<l TR ot 2
1/2
7 [asaa(oa’qa) X <Ro|Ra>
X a | aq ]
22571 725 1 2 a0 Yo %o Z
oh "« 1 oh {dq
¢ (Q_, q ) 1/2
ao " o o 1/2
x[aq ]<Q|Q> X <Re|Re>
s (Q_., q)
1/2 = - 1 ao” "o a
x <qje P )
22<R0|R0>_1/2 Eo&l Z2 <R0|Ra>—1/2 0
oz __(Q_, q )
1/2 = -1 ac "o o
x <eje X BoR [aq ]

which is a 4x4 determinant.

where

= =1 2..,2 -1
GoQ = <Q|(n"+Z G,) | Q>
= -1 2.52 -1
Goh = <h|(n +7 GO) |h>
and

= -1

2,,2, -1
6.r Re|(n+27°6 ) " |Ro>

2<Q|Q>

-1/2¢

-1

oQ

1/2

X <Ro|Ra>

2 _1asao(Oa,qa)

GOh aq

1/2
X <R0|Ro>

(€.23
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The matrix elements can be evaluated to obtain

2 2 ,=>
C F.Z(Q_ )

_ ey _ 2_-2 jor ' S
X (n) =1+§% v E (@) +2n’z7%g
ot ” (nzz 2+w 2) [ 0,HF " " i, E.(n22-2+e.2)

v J J
2 >
0y Sy SO V-T- o, HF Q) *2n" 2 & -7 7. |"
(n~Z +Wa ) j.o ej(n 7 “+&.9)

(C.24)

This is the equation (77) in the text. Using the definitions of

J(w) and Da(w) as

. ¢ c,’ Y J(w)de
Je) = 5 B —f5—— S(we,) 3 L —s—5—3= = J 2,-2,,2
v v v (N1 “tw %) (n®Z "+w™)
v 0
and
2 F.2@) ¥ D () do
_ ) Slomw.) ; p 490 - e 1 1
D_(w) = L Fja(Qa) & (w wj) 3 L 7.-2 2. J 2,-2, 2
ier j,o Ej(n 7 +Ej ) 0 wl(n z +m1)

we have arrived at the equation (78) in the text.
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(3) Expression for D_(w)

. => .
Putting the definitions of Fjo(oa) and ej ihnto the one

for Da(w), we get

2 2 '
D (w) =L ¥ |<¥ => jao> <y =>lao>| " S(w-& +&£ )
@ m>m<| LIPS | . m(aoal | m, M
o
® EF
(=4 => o =>
= 2J€ dsl J d€2 pa(zl’ Qd) pa(szs Qa)é(wnsl*'sz)
F -
5F+w
R o => o N =>
- 2L dey P2 (e, Q) P (-0, T)) . (C.25)
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CHAPTER V

CONCLUSION

We have studied the theory of electrochemical <charge

transfer processes.

The focus of our study of outer sphere electrochemical
electron transfer reactions is the shift of the idonic orbital,
caused by its interaction with the polarization of the surrounding
solvent. In the adiabatic 1imit, using a path integral approach,
we show explicitly that the shift obeys a stochastic integral
equation. In certain cases, this may be converted into a
stochastic differential equation. This may then be analysed using
standard methods to obtain an expression for the rate. The
expression so obtained 1includes <correction factors to that
obtained by Schmickler. Extension of this work reported here have

beeen madel’z.

We have also analysed electrochemical proton transfer
reaction. Here, in addition to the shift Q, q the distance of the
proton from the surface, also plays an important role in the
dynamics of the process. There is a fairly strong interaction
hetween the nuclear motion and the electronic system and hence the
dynamics of the system has to be thought of as taking place on a
continuum of potential energy surfaces. A bosonisation technique
has been used for this purpose and an expression for the rate has

been derived.
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