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PREFACE

This thesis is a report of the investigations on
the dynamics of ‘He films carried out by the author wunder
the guidance of Dr. V.M. Nandakumaran in the Department of
Physics, Cochin University of Science and Technology,
during the year 1984-89. The wave propagation on thin and
saturated films of superfluid ‘He under varying degrees of

nonlinearity is studied.

The rapid developments that have taken place in
the field of nonlinear dynamics provide deep insight into
the properties of many physical systems. They have
significantly increased the number of exactly solvable
physical problems and have made possible a clear

understanding of certain other nonlinear systems, which do

nott have an exact solution. Of all the ideas that
revolutionised ‘nonlinear dynamics’, the concept of
solitons and their interactions have been playing

increasingly important. roles.



In superfluid ‘He films, small finite amplitude

localised density fluctuations can lead to the existernce
of solitons made up of superfluid condensate. This arises
essentially due to the balance between dispersion and the
nonlinearity arising from the Van der Waals potential of
the substrate. These nonlinear local density fluctuations
may travel unattenuated for large times, and they are
governed by the Korteweg de Vries (KdV)> equation when the

propagation was confined to a single direction.

In this thesis we study the propagation and

interaction of solitons on thin superfluid ¢

He films.
First the study is done on monolayer films of ‘He. Later
we take up the case of thicker (~10-6 cm > films, which is

known to support solitary waves of fluctuations in

thickness.

The thesis contains six chapters. An
introduction to the recent developments in the fields of
superfluid films and soliton dynamics are given briefly in
the first chapter.’ The first half of the chapter is
devoted to a discussion of the properties of helium films
and the propagation of linear waves on such films. The
nonlinear Schrodinger equation representing the dynamics
of monolayer films is also introduced. The latter half of

the chapter discusses the propagation and interaction of

it



solitons on superfluid films, after introducing the basic
concepts of soliton dynamics. The stability of solitons
in two space dimension and the chaos caused by the

collision of solltons are also examined.

In chapter 11 we present studies on the
propagation of weakly two dimensional solitons on
monolayer superfluld films wunder the lowest order of
nonlinearity. The properties of the Kadomtsev-Petvishvil
K-P> solitons and also the phenomena of soliton
resonances are discussed . Following these results we
study in this chapter the phenomenon of ‘“two soliton
resonance' of the K-P equation for the superfluid density
fluctuations and obtain the velocity of the resonant

soliton.

The dynamics of large amplitude local density
fluctuations on a two dimensional superfluid film Iis
considered in chapter III. The nonlinear Schrodinger
equation representing the superfluid density fluctuations
is reduced to a dimensionless form and solved numerically
for various arbitrary initial profiles. It is shown that
the initial profile would split into two ‘'quasi-solitons"
travelling in opposite directions, which have particle
like stability and keep their shape unchanged during
interactions with each other. The *“quasi-solitons" are

iid



asymmetric in shape, unlike the KdV or K-P solitons.

In chapter 1V, the chaos induced by the colision
of large amplitude one dimensional quasi solitons on a
very thin superfluid film is studied numerically. After
defining a suitable phase space for the system we have
shown that two initially close trajectories in this phase
space of the system separates exponentially in time with
the collision of the quasi-solitons. The instability at

the collision spot propagates spatially.

When the thickness of the superfluid film is
increased, the dynamics of the system is altered. This is
dealt with in chapter V. In this chapter we study the
dynamics of the thickness fluctuations on a saturated two
dimensional superfluid “He film and show that the equation
governing the system is the K-P equation with negative
dispersion. It is established that the phenomenon of
soliton resonance could be observed in such films. Under
the lowest order of nonlinearity, such resonances take
place only if two dimensional effects are taken into
account. The amplitude and velocity of the resonant

solitons are obtalned explicitly.

In the last chapter we present a summary of the

iv



investigations presented in the preceding chapters.
Important conclusions are highlighted and scope for future

investigations are indicated.

Chapter VI is followed by an appendix where all
the numerical codes used in evaluating different
problems in the thesis are given. The programme for the
three dimensional plot of temporal development of

solitons is also discussed.

Part of the investigations presented in the
thesis has provided materials for the following

publications.

1. Soliton Resonances in Helium films, Phys. Lett. 1124,
No.3,4 <{(1985) 168.

2. Solitons and their resonances on two dimensional
superfluid films, Pramana- J. Phys. Vol33, No.6,
1989> 697.

3. Two dimensional large amplitude quasi solitons in thin
Helium films, " Modern Phys. Lett.B, Vol4, Noi1
1990> 47.

4. Dynamics of solitons on ‘He Films, Proceedings of the
workshop on Symmetries and singularity structure
aspects on nonlinear dynamical systems, held at
Trichy, Nov.29 to Dec3, 1989 (to be published).

5. Chaos induced by soliton-soliton collisions in thin
superfluid films, submitted to J. Phys.C
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CHAPTER 1

SUPERFLUIDITY AND NONLINEAR WAVES:
AN INTRODUCTION



SUPERFLUIDITY AND NONLINEAR WAVES : AN INTRODUCTION

Recently, there has been an upsurge of renewed
interest in the study of superfluid helium, especially in
the dynamics of thin and thick superfluid films. This has
been boosted up by the exciting developments in the field
of nonlinear dynamics. In this chapter we give a brief
introduction to the basic concepts of superfluid films and
also to the dynamics of nonlinear waves. The phenomenon
of third sound, observed in superfluid films, is discussed
thoroughly. The possible nonlinear waves that can exist
on such films are examined in succeeding sections of this
chapter. The propagation and interaction of solitary
waves are studied in detail. Behaviour of these solitons
in two space dimensions and also under varying degrees of

nonlinearity are also discussed.

The scheme of presentation is as follows. This
chapter is divided into eleven sections. A brief
discussion of the properties of liquid helium in bulk is
given in the first section. The linear modes of wave
propagation that can exist on superfluid films are
examined in section 2. In section 3 the dynamics of very

thin superfluid films is considered. The  pseudospin



model, which gave a theoretical basis to the
phenomenological equation of motion of thin superfluid
films, is discussed in section 4. We discuss the basic
concepts of solitons in sections 6 and 7, so as to begin a
study of the nonlinear waves on superfluid films. Section
8 introduces the Reductive Perturbation method, which
provides a systematic procedure for reducing a given

nonlinear evolution equation into one which has soliton
solutions. The propagation of solitons on superfluid
films is discussed in sect.ion 9. The
Kadomtsev-Petviashvili equation and the behaviour of
solitons in two space dimensions are discussed 1in section
10. Chaos induced by soliton-soliton interaction is

studied in the last section of this chapter.

11 SUPERFLUID *He

Most of the diverse application of superfluid
helium have been due 1its peculiar nature, it displays
quantum effects on the macroscopic 1level and obeys
hydrodynamics on the microscopic level™. A striking
feature in the hydrodynamics of superfluid ‘He is its
ability to exhibit new types of wave propagations, not
found in other systems. We shall explore this and other
features of superfluid ‘He in the present and subsegquent

sections. Before going into the details of these, we



shall first examine some fundamental properties of liquid

4

He.

Immediately below the boiling point, “He behaves
like ordinary liquids with small viscosity. However at
217 K, called the ’A-point’, liquid ‘He undergoes a
phase transition. The A-point.,, characterized by an

anomaly in the specific heat, marks the transition between
two different forms of ‘He, known conventionally as He 1
above the A-point and He II below it. Under normal
pressure, He II remains a liquid even if the temperature
is lowered to absolute =zero. The reluctance of helium
atoms to condense stems from its low atomic mass and the

extremely weak forces between t,hem[m.

He II has many remarkable properties. The most
prominent one being its flow past obstacles with zero
resistance. The persistent current experiments of Reppy
and Depat,iem] suggests that the viscosity of He 1II |is
virtually zero for flow through a capillary. On the other
hand, experiments using oscillating disks"™’ N vibrating
wires™' and rotation viscometer'® shows the existence of
a viscous drag. These results show that HE II can be
viscous and nonviscous at. the same time. An explanation
for these apparently contradicting results was given by

71

Tisza'” and Landau' through the phenomenological theory

of He II - known as the ’two-fluid model’, in terms of



which many hydrodynamical properties of He II can be

explained.

According to the two-fluid model, He II is to be
considered as an intimate mixture of two lquids - the
normal fluid and the superfluid. The normal fluid is
ke an ordinary lquid having viscosity. But on the
contrary, the superfluid part 1is capable of moving without
friction. It has =zero-point. energy, momentum and entropy.
However, it is to be noted that the two fluids cannot be
separated physically. That. is, one can say that He 1II is
capable of two motions at the same time, each of which has
its own local velocity and mass density. Ir P, and e,
represent the mass densities of the normal and superfluid

parts respectively, then the total density p of He 1I is

e = p +p 11.1

] = p VvV +p ¥ A1.2>

where cnand 38 represent the local velocity corresponding

to the normal and superfluid parts respectively.

Because of zero viscosity, the superfluid part



can flow through very narrow channels, called
’superleaks’, without any resistance. If we choose the
state at absolute zero as a standard one for the purpose
of understanding the dynamics of He II and if we assign
zero entropy to this state, then we can say that the flow
of the superfluid part does not carry any entropy along
with it. The flow of a =zero entropy, zero viscosity

fluld explains the very high heat conductivity of He II.

Andronikashvili'® demonstrated experimentally
the validity of two fluild model by measuring the period of
oscillations, and thereby the drag, of a pile of equally
spaced plates suspended by a torsion fiber into He II,
maintained at a desired temperature. As the period of
oscillation would depend on the amount of He II that would
also oscillate with the disks, his experiments gave a
direct method of measuring variation of P, /e with
temperature. It was shown that He II is almost entirely

superfluid below 1K.

This approach, where the two fluids are treated
independently, is very useful in developing the complete
set of hydrodynamic equations of He II when the velocities
are small At higher velocities, the superfluid flow
becomes dissipative, the normal fluid exhibits turbulence,

and there is the possibility of interaction between the



two. When such interactions are to be taken care of, the

two - fluld equations become rather complicated.

The phase transition at the A-point and the
formation of the superfluid phase can be clearly
understood from the point. of view of the Bose-Einstein
condensation. An 1ideal Bose gas at the density of liquid
helium will undergo a sharp transition at 3.2!([9], which
is close to the A-point. This suggests that the A-point
marks the onset of Bose-Einstein condensation in liquid
r

He . However, the specific heat anomalies are quite

different for liquid helium and the ideal Bose gas.

Liquid helium is obviously a system in which the
attractive forces between the atoms play an essential
part. Hence, it is not surprising that the ideal Bose gas
model does not. give the correct value of the A-transition.
The effect of the interatomic interactions is to reduce
the number of particles condensed into the lowest. energy
level and to alter the nature of the excited levels of the
syst,emm. Thus, at absolute =zero, although a finite
fraction of the particles still occupy the lowest level,
some occupy slightly higher levels caused by the
interaction. The experimental evidence is that He il is a
pure superfluid at absolute zero. Hence, it appears that

the superfluid fraction comprises of both the condensate

and the particles occupying the levels caused by



interaction.

At all temperatures above absolute =zero the
thermally excited levels of the system are occupied to
some extent. These states do not correspond to
single-particle states. They are elementary excitations
of the whole system, which in the lowest order could be
treated as non-interacting quasi-particles. We can
identify the normal fluid part with these thermal

excitations.

He II can be described by a condensate wave
function. This is a complex quantity, which gives the
superfluid density when the absolute value of its square
is taken. Under steady state conditions, if we can write

the condensate wave function y in the form

w(;) -woexp[iS(;)] 1.1.3>

Then the condensate momentum P can be obtained by

operating the momentum operator on ¥y . Thus

p =h VS 1.1.4>

Also, if the superfluid velocity is VB » we can write



P = m Vv 115>

vs 1.1.6>

On taking the curl, we get the relation,

curl v = 0 Aa1.7>

which has immense use in developing the hydrodynamic

relations.

He 1II, like other fluids, admits the propagation
of sound waves. Here, the normal and superfluid parts
vibrate together to produce the ordinary longitudinal
pressure waves involving fluctuations in the total density
at constant temperature. This is called “irst sound’.
If the normal and superfluid parts vibrate out of phase
then we get what is called the second sound. In this
mode, the total density remains uniform throughout the
liquid. However, the local wvalue of the ratio ps/p- » and

consequently the temperature, undergo oscillations.

Firstt sound can be generated by any oscillating

material body immersed in the He II bath. On the other



hand, a heat source with 1its temperature undergoing
oscillations can generate second sound. Waves of second
sound are propagated with almost. Zero attenuation,
provided that the rate of heat supply is not too large and

the frequency is not too high.

1.2 THIRD SOUVND

In the early days of superfluid research it was
found that when two vessels were arranged one inside the
other and were filled with He II at two different levels,

some mysterious process led to a quick equalization of

[(10] [11)

levels It was Daunt and Mendelssohn ', who showed
that the equalization took place by a flow of the
superfluid through an adsorbed film of He II bridging the

two vessels.

The formation of the film could be discussed in
terms of the forces of attraction between the helium atoms
and the wall. Any solid body in contact with the vapour
of a substance has an adsorbed film on it due to the short
ranged Van der Waals force of attraction that exists
between the molecules of the solid body and the sﬁbstance.
The Van der Waals potential that. exists between a .heldum

atom and an atom of the wall can be expressed as

1.2.1




where m is mass of helium atom and a 1is a constant
depending on the strength of iInteratomic forces. It is
the contribution due to this term 1in the equation of
motion, that provides many interesting nonlinear effects

to the dynamics of the superfluid films.

The thick film studied in this type of experiment
has been called the ‘saturated film’, because it exists in
equilibrium with 1its saturated vapouruz]. Adsorption on
a surface In contact with any liquid or its saturated
vapour 1is very common, but He II films are unusually
thick. Optical measurements have reveaded"‘s;l that the
saturated films of He II would have a thickness of the
order of a few hundred X. It is also possible to study a
different case, where the film is in equilibrium with gas
at a pressure less than the vapour pressure. In both the
cases, the film thickness is small enough to prevent the
flow of the normal fluid, with the result that the film

acts as a kind of superleak.

For saturated films, with which we are primarily
concerned in this section, the two fluid hydrodynamics of
Landau could be employed to study the dynamics .in the
linear regime. A considerable amount of simplification
occurs to these equations due to the fact that the normal

component. of He II is practically immobile in such a film.

10



The problem 1is essentially similar to that of capillary
waves occurring on a fluid surface, but with the exception
that the fluid thickness is small. Since only the
superfluid part can flow, the resulting wave is different
from the usual capillary waves. The wave would be a
composite one of the superfluid thickness and an
assocliated temperature variation. The temperature
variation occurs due to the fact that the superfluid part
does not carry any entropy along with it. Such a wave,
known as the ‘third sound’, was first generated and
detected using a chopped infrared beam and a polarimeter
by Everitt et al'? . The most. accurate measurements of
these waves, which are similar to shallow water waves in
nature, are made through the use of thin aluminium films
evaporated onto the substrate. By imposing an external
magnetic field and biasing currents these strips could be
operated near their superconducting transition. Thus a
small change in temperature leads to a huge change 1n
resistance. In this way third sound is detected through

its assoclated temperature variations.

The linearised version of the two-fluid

hydrodynamics gives the velocity of third sound u, as“sl

P, d g N (D

u - v (1+ST

= 1.2.2>

11



where T is the temperature, d is the equilibrium thickness
of helium film, L is the latent heat per gram, Qv is the

potential due to Van der Waals attraction and 58 is the

equilibrium superfluid density.

The experimentally determined values of the third
sound for very thin fillms differs much from that given
above. This disagreement 1is primarily due to the fact
that in the derivation of equation <1.2.2), Van der Waals
force of attraction was not given due considerationua.
In such films Van der Waals force causes pressure which is
more than sufficient for the solidification of the helium
atoms close to the substrate™”. Thus the film |is

separated from the substrate by a solid layer, one or two

atomic layers thick.

The second reason for the difference 1In the
theoretical and experimental values of the third sound
could be qualitatively understood as follows. The
superfluid wave function must vanish at a boundary. Hence
P+ © smoothly as the boundary wall is approached. A
sudden change 1In P, at the wall is forbidden, since it
would violate the requirement that y should be single
valued everywhere. At a free surface the amplitude of the
wave function should also tend to zero. The distance over
which ps falls to zero from 1its bulk value is called the

‘healing length’ . Though the value of the healing length

12



is very small, of the order of atomic spacing, it plays a

crucial role in the dynamics of very thin films.

A recalculation of the third sound velocity,

after incorporating the above modifications, would

1472

yield
2 e e t.anhckDD

2= | FD> —p + B 1.2.3>
9 o fol kD

where k is the wave vector, D is the film thickness, FOD>
is the Van der Waals force and 3 is the surface tension.
In equation 1.2.3), the first term dominates for kd < 1

The second term, which is proportional to 3, dominates
for kd >> 1. In the second case, the surface wave goes
over to the bulk surface wave, and the elementary

excitations are called ripplonsmn

The third-sound 1is present only in the linear
approximation - that is when only small amplitude waves
are propagating on the helium film. When comparatively
large amplitude disturbances occur on the film, the
nonlinearities come into play. Many interesting
properties are seen when these nonlinearities ar€ taken
into consideration. For example, in the lowest order of
nonlinearity, the film supports localized travelling waves

which have particle lke stabilityup] and keeps their

13



shape even after collision with other such waves. In this
thesis we are primarily interested in such nonlinear waves

on helium films.

We have seen that the thickness of the films
considered in this section is typically of the order of a
few hundred X. There would be a radical change in the
dynamics of the film if the thickness 1is reduced to the
order of a few atomic layers. Such films have recently

1171

been studied experimentally and will be dealt with in

detail in the next section.

1.3 YERY THIN FILMS

Experiments on third-sound gave valuable

information on the properties of helium films'2%*,

Scholtz et a1 made measurements of third-sound
velocities for film coverages down to 21 atomic layer
thickness and at temperatures as low as 01K Their
measurements were interpreted within the frame work of the
Ginzburg -  Pitaevskii (GP>  theory " . These
measurements were made for thick superfluid films. For
very +thin films the G.P. theory, which predic':ts a
temperature dependant healing length, would fail This 1is
because for a monolayer film the concept of healing length

is not. applicable. For such very thin films, even the

14



concept. of film thickness is not an exact one. As the
superfluid surface density falls below a monolayer the

thickness clearly fails to describe the coverage.

Third-sound excitations have been Iinvestigated

with great accuracy in monolayer films by Rutledge et

17)

al They found positive dispersion for the surface

modes. The dispersion relation and the temperature
dependence of these modes were then derived in the linear
regime using a two dimensional gquantum hydrodynamics for
the superfluid condensate. This is essentially an
extension of the Landau’s superfluid hydrodynamics[?], the
proper approach when dealing with such thin and
inhomogeneous films. The essence of this phenomenological
theory, which aims in arriving at an equation of motion
for the macroscopic fluid flow, would be elaborated in

this section.

The macroscopic variables used in the discussion
of the wusual thick superfluid films are superfluid density
and velocity as well as the thickness. But, for very thin
films, we have seen that the thickness fails to describe
the surface coverage of superfluid atoms. Hence, for such
films, the only macroscopic variables definable a1;~e the
superfluid surface density p(*), defined in atoms per unit
area, and the tangential superfluid velocity 3s(x) . Note

that X is a two dimensional vector describing the position

15



on the surface. Here we assume that a condensate wave
function exists, and write down a phenomenological
equation of motion for the macroscopic superfluid flow

using surface quantities.

Let w(;:) be a complex order parameter, which lis
proportional to the condensate wave function. So at

absolute zero of temperature we can write
P> = | w (%) |7 A.3.1>

The energy of this quantum state consists of four

contributions. One kinetic term and three potential
terms, va » HCP and l-lsE R defined by equations
(1.3.3>-(1.3.5). The kinetic energy of the superfluid
film is
2 n? 2
H = Idx | ¥ v | €1.3.2>
KE 2m

where m is the bare ‘He mass. The integral is taken over
the physical surface areas. The Van der Waals binding of

the film to the substrate would be of the form

H - J‘ d%x A ) 1.3.3>
vw 2 (a+pgz

where a and A are constants. The chemical potential term,

16



which controls the equilibrium value of |w|2, is

2
H_ = f d'x pp_ 1.3.4>
The third term contributing to the potential energy is one
similar to the surface energy, which 1is written 1in the

form

2 I 2
H = I dx 2 B ( Vps) , 1.35>

where B if some function of the surface density. In the
limit of bulk helium, ﬂoa B(oo)p: would represent the

surface tension, where e, is the bulk superfluid density.

The total energy is the sum of the above four
terms. As y Is a wave function, the natural equation of
motion for the condensate wave function would be the

nonlinear Schroédinger equation,

-
ih _%LW_M - __6H , 1.3.6>

Syt Cx, LD

where the variational derivative 1is taken treating y and

w‘ as independent. quantities. Thus

ihgtw— - - 1y - Ay T~ H¥~ By Vz|w|2
Ca+ |¢]” )
ceres . €C1.3.7D

17



where B is treated as a constant.

If we search for a solution of the form
1/2 4 i¢(§,t)

v OLL) = o 00L) e ,

we would get the two dimensional continuity equation

=+ 9.3 = o0 , 1.3.8)

where 38(;;,1:,) = Re [(h/im)w*e'w ] is the gquantum mechanical
current. density. This expression is a consequence of the
fact that we have not included any dissipative processes.
During the actual experimental situation, one has to give
an 1nitial localized excitation to the two dimensional
system to observe the dynamics. After this is done,
equation (1.3.8) would be valid.

Rutledge et a1 evaluated the solutions of the
linearised version of 137> and obtained the dispersion
relation. They were also able to calculate the

third-sound velocity as

18



vee »...€1.3.9

where C is the velocity at absolute zero temperature.

Equation (1.3.7> would display many interesting
phenomena when terms of different degrees of nonlinearity
are retained. These would be dealt with in detail in

later chapters.

Though Rutledge et al™  derived equation

(13.7>) in a phenomenological manner, they were able to
describe satisfactorily the results of their experiments
on very thin films on the basis of this equation. One
interesting experimental result which they obtained was

that. the value of B was zero for monolayer films.

Recently, Radha Balakrishnan et al'*®? -obtained

the same equation for two dimensional superfluids, by
retaining the nonlinear terms in the pseudospin model of
Matsubara and Matsuda[z“. The details of this work,
which provided an insight into the microscopic origin of

the terms appearing in equation 1.3.7>, is the theme for

the next. section.

19



1.4 THE PSEUDOSFPIN MODEL

The phenomenoclogical theory of Rutledge et al"” was

quite successful 1in describing the dynamics of two
dimensional superfluid films. The experimentally observed
third - sound velocity and dispersion relation were quite
satisfactorily explained by the nonlinear Schrédinger
equation <(equation 13.7) representing the time evolution
of the condensate wave function. Recently, Radha
Balakrishnan et al'’? have derived this equation from a
microscopic theory of nonlinear dynamics in superfluid
‘He. This theory, which has provided a firm footing for
the phenomenological equation of motion proposed by

Rutledge et al, would be discussed in this section.

Matsubara and Matsuda'>> described the dynamics

of superfluid ‘He using a pseudospin (quantum-lattice
gas> model. This in essence is a treatment of a system of
bosons with hard cores plus nearest-neighbour interactions
being described by a pseudospin Hamiltonian on a lattice.
The hard core in the potential is incorporated by using
Fermi-like anticommutation relations for the field
operators at the same site and Bose-like commutation
relations for operators belonging to different - sites.
Only the linear terms in the formulation were taken into
(24)

consideration. A study of the ground state

thermodynamic properties and the nature of the elementary

20



excitations using this linearised equation in the random

phase approximation was able to reproduce the well known

low-density-limit results'?®’. The value of T, and the

A
quasi particle spectrum at T=0, evaluated using this model

have also been shown>® to be in agreement. with
experimental results.
Radha Balakrishnan et al??’ studied the problem

by retaining the nonlinear terms in the above formalism.
They were able to derive, using the spin coherent
representation, an evolution equation for the superfluid
order parameter for all T< T)\ without using a Hartee

approximation. The phenomenological GP equation(z" for

bulk helium and the equation of Rutledge et al™? emerge
as special cases of this formalism when certain terms are
neglected. They were able to show that the formalism
supports a travelling wave solution, as should be

expected. For a specific choice of parameters, a static

kink solution was also obtained.

1.5 SUPERFOLUVIDS - A PLAY GROUND FOR NONLINEAR PHENOM

Several experiments on third-sound propagation
have revealed finite amplitude effects that could not be
explained by a linearised theory[zm. This suggests the
need for extending the theories so as to include finite

amplitude effects and thereby study different nonlinear

21



phenomena taking place in superfluid films.

There is experimental evidence'®” for the
existence of an ordered pair of localized nonlinear waves.
These nonlinear waves, known as ‘solitary waves’, show
many unique and interesting properties. An introduction

to the properties of these waves is given in the following

section.

1.6 SOLITARY WAVES

It is customary to start any eiementary
discussion on solitons with the classic description by
John Scott Russel 90 of a new type of water wave,
travelling along a narrow channel, which continued Iits
course many miles down the channel without any apparent
change of form or speed. After this discovery in 1834,
Russell did many experiments on such “‘solitary waves’,
which led him to conclude™®’ that the momentum transfer

during the motion of a solitary wave remains local and the

velocity of propagation depends on amplitude.

In 1895 Korteweg and de Vries Kdv>®"'  derived

an equation for the propagation of waves in one direction
on the surface of a shallow canal. The equation of motion

in dimensionless form lis

22



uT+u + 12 u u, + u = 0 » 1.6.1>

g 4 444

where u denotes deviation from equilibrium surface and

subscripts denote partial derivatives.

This equation has a solution

um= i a® Sech % a¥t - CatadT + & »

e (1.6.2)

where a and & are arbitrary constants. This equation
represents a hump, exactly as described by Scott Russel,
which moves without change of shape and has an

amplitude-dependent velocity.

Now we shall slightly drift away form the topic
of solitons for a while and consider a problem
investigated by Fermi, Pasta and Ulam <(FPU> in 1955. They
studied®®’ the behaviour of certain equations which were
primarily linear but Iin which nonlinearity was added as a
perturbation. In particular, the equation which they took
as a model was

6‘=f(Qn+-Qn)-f(Qn-Q ) 1.6.3)

1 n—1
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where fd(Q) is a nonlinear function. Two cases which FPU

considered where

QO = y Q + oQf €1.6.4>

f«QQ=yQ+pa3Q> 1.65>

where o and {3 were chosen such that the effect of the
nonlinearity is small. In the absence of
nonlinearity(ie. omo and f3=0)>, the energy in each of the
normal modes of the system would be constant. It was
expected that. the introduction of the nonlinearity would
lead to the energy of the system being evenly distributed
throughout. all possible modes, in accordance with the
equipartition theorem. But a numerical evaluation of the
equation showed a quite different result. FPU integrated
equation(1.6.3> numerically with a sine-wave as initial
data and found that the energy does not spread through all
the normal modes but remains in the initial mode and a few
nearby modes. Over a large number of oscillations, the
energy in each normal mode was shown to be almost periodic
in time with no loss of energy to higher modes as time

increases.

For a decade the FPU problem remained as one

unrelated to solitary waves. In 1965, using high speed
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computers Zabusky and Kruskal® studied the Kdv equation

as a model for the FPU problem and reconfirmed the
recurrence phenomena. They chose a periodic wave as the
initial condition and a periodic boundary condition to
solve the problem and noted that the initial wave evolved
into solitary waves which travelled in opposite directions
and, due to the periodic boundary conditions, collided
with each other, while keeping their identity during
travel and after collisions. They coined the name

‘soliton” for these waves with particle like properties.

The fact that the numerical solutions of the KdV
equation were composed of solitons was so exciting that
the analytic method of integration was investigated. Thus
in 1967 Gardner, Green, Kruskal and Miura™* were able to
solve the KdV equation on the real line for solitons that
tended sufficiently fast to a constant value as |x| -+ o

The method of solution has now come to be known as the

method of Inverse Scattering Transform JIST).

After the discovery by Zabusky and Kruskal, a
number of equations were searched for soliton solution.
This showed that there are equations other than the KdV
which posses soliton solutions, some of which have a
functional form different from that obtained for the KdV
case. It is of interest to note that the method of IST

was extended by Ablowitz et al®™ so as to include some



of these nonlinear evolution equations. These equations

characterized different. physical systems.

The one soliton solution 1is easy to find by
simple integration. But.,, this won’t work if we wish to
have an analytical formula to describe the interaction of
two or more solitons. One way to do this would be the IST
method, which works in precisely the same way as Fourier
Transform does 1in linear problems. It transforms the
dependent. variable which =satisfies the given partial
differential equation to a set of new independent.
variables whose evolution in time 1is described by an
infinite sequence of ordinary differential equations. The
success of IST method rests in those class of partial
differential equations, for which these infinite sequence
of ordinary differential equations are separable and hence
trivially integrable.

Hirotamd's'n

developed a more direct and
systematic way of finding exact solutions of a certain
class of nonlinear evolution equations. In this method
the nonlinear evolution equation in question is
transformed, by changing the dependent variable(s), into

bilinear differential equations of the form -

(o] o] a 9
F (-O_t: T 90’ “ax ~ aw ) fOx,td> £ (e, t) L=t ™ 0
X=X’
ceeee. . €1.6.7D
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These bilinear differential equations were solved using a

perturbational approach, with the use of the D operators

(87)

defined by
m N a a m, & a n
Dt Dx fege = ( 3 Ot') ¢ > E‘) O, tigC,t ) e
t=t-
cee....1.6.8

The bilinear differential equation <1.6.7) can either be
obtained from the original nonlinear differential equation

by a Cole-Hopf transformation®®®’ or by the use of

INM1  Pade’ approx:lmant,sm?]. Hirota™® solved the Kdv

equation using this method and obtained the N-soliton

solutions.

For a given set of nonlinear evolution equation
representing a particular physical problem, it may not
always be possible to use the above methods to search for
N soliton solutions. However, Su and Gardner[“] have
shown that for a wide class of nonlinear
Galilean-invariant. systems, if the nonlinearity is weak
and if one makes the long-wavelength approximation, the

governing equation can be reduced to either of the

following equations.
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n_l_+nn + 46 n = 0 1.6.9

4 1444

+ -
Ny TR =V My = 0 €1.6.10>

More about. this method shall be discussed in section 1.8.

The different nonlinear evolution equations
presented in this section were restricted to one dimension
¢ 1 space dimension + 1 time dimension). The nature and
form of such nonlinear equations 1in two dimensions (2

space + 1 time) would be dealt with in section 1.10.

1.7 SOLITONS -~ A BALANCE BETKWEEN DISPERSION

AND NONLINEARDITY

We have seen iIn the last section that the
properties of the solitary waves having the form
Sech®k.x-wt> are different compared to those of linear
harmonic waves. Other than being a non oscillatory
motion, the solitary waves show the interesting character
of amplitude-dependent velocity. To wunderstand why the
solitons behave like this, let us take a closer iook at
the nonlinear and dispersion effects taking place, with

KdV equation as a specific exampletsm
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v + vv +v = O AU.7.1
t X XXX

Here the second term is the nonlilnear term and the third
one is the dispersion term. Now taking v m=u+l and

neglecting the dispersion term, we get

ut + Cu+d ux = 0 1.7.2>

The linearised version of 1.7.2), viz, ut+u°ux=o has the
solution of the form udx,t)=f (x-uot,). Hence, by analogy,

we try a solution of the form

us=sf ( x - udt ) 1.7.3>

To show that this solution is possible, we can check by

direct. calculation of ut and ux .

u --[tu +u+1]f'
t t

1.7.4>

u= (1-u t) £
which gives

(u + Cutdu) (1 + Ltf) = o0 A.75>
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Equation (1.7.5) is satisfied by solutions of {1.7.3).

It is easy to solve -~ (1.7.2> with the help of
(1.73> for a plece-wise linear initial data, in the form

of a triangle,

u x 0 < x <1
(=]
rix> = uo(e-x) 1 { x < 2 1.7.6>
otherwise

So (1.7.3) gives, after putting 7n=x-t,

uo(n-ut) 0<n-ut =<1
uin,td) = uo(z - 7N + utd 1 <y - ut < 2 «a.7.7>
otherwise

Now solving the linear equations in (1.7.7) gives
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[~}
uo(:e-n)
[~}
(4] otherwise
f u
_ﬁﬁ_t, 0 < n-ut. < 1
(o]
-uo
u = { — 1 £ p~ut = 2 a.7.9>
n 1 uo t
(4] otherwise
L

From 1.7.9) it can be seen that the gradient of the right
hand part of the triangle is slowly increasing with time
while that of the left hand side is decreasing. This is
shown schematically in Figi.1. It can be seen that
gradient of the right hand side of the triangle changes
from negative to positive as time Iincreases. At tmi /uo
this =side 1is vertical, after which the triangle turns

over.

It is clear from the above discussion that the
action of the nonlinear term in the equation is to steepen
any initial waveform. Now to study the effect of
dispersion, we can neglect the nonlinear term in <1.7.1).

This would give
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ut + ux + u = 0 1.710>

XXX

which can be solved straight away. The result would be

the harmonic waves.

The soliton solution of equation (1.7.1) shows a
different character from the two cases considered above.
As we have seen, in the numerical experiments of Zabusky
and Kruskal®®' smooth initial data in the form of a sine
wave evolved into a set of solitons. This can be
explained as follows. For very short times the first two
terms of equation <1.71) dominate and a steepening of
profile occurs at those points with negative gradient.
But this steepening won’t lead to a discontinuity, because

as the steepening progresses the third term becomes

important and stabilizes the sharp edge.

It is clear from the foregoing discussions that
the solitary wave 1Is a manifestation of both dispersive
effects and nonlinear effects. For the KdV equation one
can find*? a connecting link between solitary waves and
the linear harmonic waves. By setting v=i2f iIn 1.7.1D
and writing the steady state solution in the form fd{x-ct),

two integrations are possible. The resulting expression

is
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(r, ¥ = -4f’+ctP+af +b 1.7.11>

which can be written in the factored form

(f ) = -4 - adXf-oad - ad 1.7.142)>
x 1 2 - ]

2}

This equation has a solution™ in terms of the Jacobian

elliptic function Snd(z,k)> as

fOrct) = a - (ols - az) Sn? [/o&3 - a (x-ct),k]

U & W & )
The function has two limiting forms'*?
Sn (z,00) = Sin 2z A.714>
and Sn (z,1) = tanh 2z
Thus when a -»a
2 1
f(x-ct) = az-l- (a;az) Sechz [’/aa-az (x-ct)] 1.7.15)>

and when aa-oaz
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fOx-ct) = C a-a > Sin? [ a
2 3 s

-a (x-ct.> ] + a
1 8
e C1.7.16>

The nonlinear oscillatory solutions represented by
equation (1.7143> forms a bridge between purely linear

oscillations and solitary wave motions.
1.8 REDUCTIVE PERTURBATION METHOD

All nonlinear evolution equations representing
different. physical problems may not always be analysed
using the methods discussed in section 1.7. At times it
may be possible to reduce the equation, using suitable
methods, for the leading order of nonlinearity to some
known equation having soliton solutions. One such method
known as ‘Reductive Perturbation Method’ was devised and
applied to a wide class of nonlinear systems by Taniuti

(49,44)

and Weil A similar method was developed by Su and

Gardner™" to derive the KdV or Burgers equation for a
wide class ~of nonlinear Galilean-ihvariant systems under
the weak nonlinearity and long wavelength approximations.

In this section we discuss the method developed by Su and

Gardner.

We consider the governing equation for a set of state

variables n,u and f in the form
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n, + (nu)x = 0 » 1.8.1>

2

(nu)t + (nu” + P)x = 0 1.8.2>
4
P-P(f,n,u,fx,nx,ux,fxt,nxt,uxt, ..... ) .,
1.8.3>
F (f, n, u, fx m o, ,fxt ,nxt ,uxt R =0,
...... 1.8.4>

where we assume that both P and F can be expanded as
Taylor series around a uniform state. By a proper
choice™ of P and F different physical systems can be
considered. Equations {1.8.1) and (1.8.2> can be combined

to give

nu + nuu + P = 0 as85>
t x x

At equilibrium, all the derivatives in P and F will drop
outt and we leave out the dependence of P and F on u to

preserve Galilean invariance.
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P = P (f,nd and Fd,n) = 0 <1.8.6>

Hence equation <1.8.2> gives

u +uu +Xa*n =0 R A1.8.7>
t x n x

where

2

a’ = [Pn-(Fn/Ff)Pf]

In the limit of infinitesimal perturbations around a
uniform state, equations as1 and 1.8.7> can be

reduced to

-afu = 0 s 1.8.8>
o

which is the linear wave equation with the constant speed
of propagation a. Equation 1.8.8> gives solutions
which consists of two oppositely travelling
form-preserving waves. We change to a frame of reference
which moves with one of these waves. To account for this
and the slow variation of the waveform, we introduce a

scale transformation of the independent wvariables;
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r = (x-a_t) , 1.8.9>

T = € R 1.8.10)

where we assume o < € < 1 and a > o . The value of a is
to be chosen later in such a way that the time variation
of a state variable is balanced by both nonlinear and
dispersive or dissipative effects.

The derivatives are then related by

- ae 1811

In view of this, we can rewrite equations <18.1> and
187> as

3~a

€ nT +(u-a°)n + nu = 0 1.8.12>

4 4
%y w-ad>e. +LP. = o0 €1.8.13>
T o & n ¢

If we set f3~a = 1 then the perturbation series can be made
to proceed in integral powers of e. We will choose the

value of a in such a way that the evolution equation,
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under the lowest order of nonlinearity, is independent of

€ .

If we can expand n, f and u asymptotically as a
series 1In powers of € about an equilibrium state

represented by n=n , f=f and u=0 ; ie,

(¢ M 2 (2
€n

n = n°+ €n + + ... 1.8.14>
f =+ e? + &P+ L 1.8.15>
u = 0 + euw + ezu(Z) + ... (1.8.16>

We expand P and F about the equilibrium state with

equation (1.8.9> and (1.8.10> in mind; i.e,

P=P+P (f-f)+P (n-n)+P (u-u) +0(e?)

© (=] ©

cere...€1.8.17D

2. -
F = Fo + Ff ¢ fo) + Fn (n no) + Fu (u uo) +0(e™)

© o (=]

cere...€1.8.18

As stated earlier, to ensure Galilean invariance we must

have Pu =0 and Fu =0, Hence equation 1.8.17> and
o (=]
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(1.8.18) gives

Hence the leading approximation to (18.12> and (1.8.13)

can be written in view of the above expansions as

n'* = nu'? 1.8.19
o &

(D 2 (D
a u = (a_ / n) n, (1.8.20>

These two equations can be integrated with the boundary

conditions noted at ¢-+*w to obtain

(1)

u'? n 1.8.21>

9'00

o]

This reduces the leading-order problem to that of one

variable. Within the order of our approximation we can
write
® z2 (2 A_ (1) o1 (1 zo—1 1)
P X a n + An ' 'n + e Bn + € Cn N
4 o & 4 24 444
cee....€1.8.22>

where A,B and C are constants depending on the partial

derivatives P and F evaluated at the equilibrium. In the
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next. order of approximation, (1.8.12> and (1.8.13)> gives

a -
n“) +2 -2 nm n“) - a n(Z) 4+ n u(Z) = 0 (1.8.23>
T no 4 o & o ¥
and
a
o (1 A 1) (1) oa-1 B (1) 2o0-1 G (1)
nite Yo oM ? T P Y€ n Pees
o (=] (=] ©
2
(2> ao (2)
- n = 0 1.8.24>
o ¢ n 4

1

An evolution equation for n“’can be obtalined by

(2 (2

eliminating nf and u:. in the above two equations; l.e,

a
n‘:_” + [_é_g__ + no] LY ng(“ + Xt 2_2_ nfé”
© o o
_ (1)
+ L0 G =0 €1.8.25>
2a ILL

If B # o then the last term is neglected because it is of
higher order. Then equation (1.8.25> reduces to the
Burgers equation 1.69> with a choice of oa=1. Although
this equation does not possess soliton solutions, it,. is a

nonlinear equation of great importance.

If B = o; ie, if the system is not dissipative,

we can set a = 1,2 so that 1.8.25) reduces to the KdV
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equation.

(44,44)

This procedure has been applied to gas

dynamics, waves in shallow water, hydromagnetic waves, ion

14%5,46,47)

acoustic waves in cold plasma, etc. Recently »

this method has been successfully applied to nonlinear

wave propagation on superfluid films. We shall discuss

this in the next. section.

Finally, we note that a more general matrix

version of the above procedure has been developed by

{43] (48,49)

Taniuti and WVei Taniuti and Yajima developed

a reductive perturbation method suitable for nonlinear

wave modulation.

1.9 SOLITONS ON SUPERFLUID FILMS

During several experiments on third-sound

4

propagation in superfluid He, finite amplitude effects

that cannot be explained within the frame work of a

linearised theory have been observedZ®. In particular,

some evidence for the existence of an ordered pair of

solitons has been observed by Kono et a1’®™,

These
effects point. to the need for a study of the superfluid

condensate in its nonlinear form.
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Huberman™" was the first to study the problem

of nonlinear wave propagation- on a monolayer film of

superfluid ‘¢

He . It was shown that in addition to
third-sound modes, small amplitude effects can lead to the
existence of gapless solitons made up of superfluid
condensat.e. Starting from the phenomenological equation
of motion for superfluid condensate developed by Rutledge
et al"”, he was able to derive the KdV equation with
positive dispersion in a heuristic manner. He showed that
it should be possible to create superfluid solitons by
applying heating or cooling pulses to a locallzed region
of the film, thereby altering the superfluid density
locally. In the formalism he argued that in the thick
film limit, the KdV equation may still hold but with a

negative dispersion relation.

A systematic derivation of the nonlinear
evolution equation for the superfluid density fluctuations

on monolayer He 1II films was given by Biswas and

warke'*?. They applied the reductive perturbation method

to the phenomenclogical equation of Rutledge et alu'n and

obtained the following KdV equation

2 3
ap1 C.S'(p0 3a) ¢‘)p1 R O+ 4me° 4 P,

+ —_—
at 2p°(a + po) Py 3x

= 0

sm?c . ax’

R ¢ B2 b
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where P, is the equilibrium superfluid density, (Js is the
third sound velocity, m is the \mass of ‘He atom, a=1.2
atomic layers and P, represents the leading term 1in the
expansion of the density p as a series in € . Note that
P, is measured in units of atomic layers. Though this
equation was similar to the one investigated by Huberman,
the coefficient. of the nonlinear term was different. From

the condition that the width of a soliton should be real,

they derived the inequality,

Ao (po - 32a) >0 1.9.2>

where Ao is the amplitude of the soliton. Thus if p°>3a,
equation <1.9.2> would imply Ao > 0. This describes the
propagation of a local compression of the superfluid
density relative to its average density P, While if
p°<3a (l.e. A°<0) the corresponding solutions of 1.9.1
describe the propagation of a local rarefaction of the

superfluid density relative to P,

Biswas and Warke predicted that when P, >3a , it
is possible to create solitary waves by applying a cooling
pulse to a localized region of the film and 1if e, <3a
atomic layers, the application of a locallzed heating
pulse will generate solitary waves. It 1is clear from

(19.1> that when P, x~ 3.6 atomic layers the nonlinear
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term in the KdV equation vanishes and hence it is not
possible to create solitary waves either through a heating
or a cooling pulse, and only third sound waves can be

generated.

Nakajima et al'*® also obtained the KdV equation
for nonlinear wave propagation on very thin superfluid
films. The derivation was based on the Landau two-fluid
hydrodynamics. They have discussed the conditions for the

generation and detection of such solitons.

Since the wusual generators and detectors of
third-sound have much greater spatial and temporal scales
than the single soliton solutions obtained according to
the above theoriestsn, only a train of solitons can be
studied in an actual experimental situation. This led
Nakajima et al™ to study the nonlinear wave propagation
on saturated films of superfluid ‘He, whose thickness is
of the order of 10 ° cms. In such films the surface
tension, which can be neglected for the monolayer

b § ilmsu?], plays a decisive role. An estimation of

parameters shows™" that each solitary wave could be

studied separately.

In all the works cited above, only the Ilowest
order nonlinearity was taken Into account. Kurihara' >’
considered the effect of full nonlinearity on the

propagation of solitons on thin superfluid films. He
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studied the phenomenological equation of |Rutledge et
al’” in its fully nonlinear form. The analysis was done
numerically. He observed that an arbitrary initial wave
profile splits 1nto oppositely travelling waves, which
keeps 1its shape even after collision with each other.
These stable waves, or ‘quasi - solitons’™?’ were the

bound - states of localized excitations in amplitude and

phase of the condensate wave function.

A close examination of these quasi solitons
revealed > that they are asymmetric in shape, as against
the solitons observed in the weak nonlinearity limit.
Also at. very lar;e times the waves were not quite stable.
The finite life time and asymmetry in shape of these
quasi-solitons were essentially due to the effects of
higher order nonlinearity. Later, Kurihara  obtained

153)

analytically a travelling wave solut.ion for these

large amplitude fluctuations.

The studies of nonlinear wave propagation on
superfluid films discussed in this section are confined to
one dimension. That is, the wave was assumed to travel on
the superfluid films with a decay of wave profile along
the direction of propagation, but with no change along the
direction perpendicular to it. The question, whether such
waves can be detected experimentally or whether they are
stable or not needs a detailed discussion. The next

section throws light into the more general problem of the
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stabllity of the solitary wave solutions of KdV and other

such equations with respect to a transverse perturbation.

1.10 SOLITONS IN TWO DIMENSIONS

A soliton in one dimension (one space + one time
dimensiond> is fully stable by virtue of its one

dimensionalit,ym“.

It was observed in the study of
solitary waves in one dimension that a smooth initial wave
form would evolve into a sharp soliton profile due to the
nonlinearities present in the system. In the real world,
such solitons represent different physical phenomena .like,
for example, the surface wave propagation in shallow
water. In such a wave propagation it is assumed that
there is no change in the wave profile along the direction
(Y> perpendicular to its direction of motion QO. A
natural question that arises at this level is that whether
the one dimensional solitons would be stable if the pulse
sharpening effects due to nonlinearities take place along
the Y-direction also. In this section we study the
stability of solitons in two space dimensions. The

propagation of two dimensional solitons on thin superfluid

films is also considered.

The stability of solitons in two dimensions 2

space+l time dimension) was first studied by Kadomtsev and

(54}

Petviashvili They considered the case of weak two
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dimensionality - that 1s the dependence on y-coordinate
was assumed to be weak. For this purpose they studied the

KdV equation with an additional term

=
:
e

k- |
+ 2-1;- - g—y? 1.10.1>
x

The term on the right hand side is the extra term which
represents the weak y-dependence, where ¢ can be shown to
satisfy the following relation for positive and negative

dispersion.

3¢ _C &u
-5;‘- - + 5 —_— (1.10.2>

ay °’
where C is the velocity of motion of the coordinate frame
along the x—direction and the signs - and + correspond to
negative and positive dispersions respectively. Thus

combining (1.10.1) and (1.10.2) we get

ozu

- 1.10.3>
ox oy

2@
e
+
£
S
+
|
.
o

which is known as the Kadomtsev-Petviashvili K-P>

equation.

Equations <(1.101) and <110.2) were solved by
the Krylov-Bogolyubov method, 1i.e, by introducing ' slowly
varying parameters. Kadomtsev and Petviashvill came to
the conclusion that the solitons represented by equation

1.10.1> were stable with respect to long wave
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perturbations in the direction transversal to their motion
for negative dispersion and unstable for positive

dispersion.

We can write equation <1.10.3> in the standard

form as
(u + 6 uu +u ) + au = 0 R 1.10.4>
t x XXX X Yy
where we have chosen u+6u and c=2. a take the values +1

and -1 and determines the dispersive property of the

(55)

system. Using Hirota’s method, Satsuma obtained the N
soliton solution of the K-P equation <1.10.4). The one
155]

soliton solution is

u= I ki Sech? k x+k y-ot) €1.10.5>

where kx, ky, and w are real constants satisfying
ko + kx‘ +ak’ =0 <1.10.5a)>

Equation <(1.10.5) describes a wave propagating with the
velocity w/ /kz +x2 in the direction making an angle of
x y

t,an_’(ky /kx) with the x-axis. The N-soliton solution has
also been obtained by Ohkuma and Wadati™®, wusing the

trace method. The two soliton solution has the form
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u = 2 (log ) <1.10.6>
27 XX

where
fo=1+exp 2n +exp 2n, + A _ exp [ 2(n ) ]

....... (1.10.7>

3
]
N~

2 2 (o)
ki [ x + P; Y (ki + api)t, ] + n; <1.10.8>

2 2
3k, - k) -a(p, - PpP)

A, = . . (1.10.9>
3k, + k) -a(p, - P)

and ki and kipi are components of the linear momentum

along x and y directions respectively. The wvalue of sz

gives the nature of interaction. For Aiz-o or o we have
the phenomenon of ‘Soliton Resonance’. When this happens,
two interacting solitons create a third soliton. These

three solitons resonantly couple each other such that a
Y-shaped structure is formed by the three wave crests.
Details of soliton resonance of K-P equation would be
dealtt with in Chapter 1I, when we study the soliton
resonance in thin superfluid films.

Soliton resonance is not a phenomenon restricted

to just the K-P equation. This can be observed in the two

[57]

dimensional nonlinear Schrodinger equation™ ', the three
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dimensional ion acoustic systemlsm, etc.

The discovery of soliton resonance in two and
higher dimensional space led many in search of the
phenomena in one dimensional systems. Tajiri and

[59)

Nishitani showed that resonance is displayed by a

Boussinesq type equation,

u -~—u +(u) +u =0 €1.10.10)>
tt XX XX ARXK

Later, Hirota and It,owm were able to demonstrate that

the Sawada Kotera equation and the model equation for

shallow water waves also exhibited soliton resonance.

There is a noticeable difference in the
properties of soliton resonance occurring in one dimension.
As 1is obvious, a Y-shaped structure cannot form 1in one
dimensional space. Instead, two solltons interact each
other to form a single soliton or a soliton splits into

(1)
two .

The concept of soliton resonance was successfully
used to explain ‘mach reflection’ of soliton'*%°%,
Soliton resonance has been observed experimentally in the
interaction of waves on shallow beaches'” and in the
interaction of ion acoustic waves in unmagnetized

(65,66,67)
plasma .
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The result that the solitons of the K-P equation
with positive dispersion (¢ - sign in equation 1.10.4>

are unstable is due to the fact that in the derivation,
Kadomtsev and Petviashvii™* restricted the transverse
perturbations to the small k lmit dd.e. long wavelengthd.
Katyshev and Makhankov'® approached the problem from a
different point of view. They considered the K-P equation

in the form

¢, FT(o) +¢ - ¢, =0 (1.10.11>

XRHK Yy

Using the variation of Action Method, they were able to
establish that there is a -t,hreshold behaviour in the
instability. It was shown that the solitons are unstable
for transverse perturbations with wave number k,

satisfying the inequality
k < k 1.10.12>
where kc-ﬁ*r;2 and the parameter 7n follows from the soliton
solution for (1.10.11) in the form
¢ = 12 nz Sech’ n (x - x_ - 4nzt,) .

Zakharov'®” has presented a sufficient condition

for instability in the region
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k < Y% 3 (1.10.13>

It was later shown by Laedke and Spatschek''>’ that the

K-P solitons are indeed stable between the limits governed
by <(1.1012> and <{1.10.13). Thus the K-P soliton with
positive dispersion 1is stable outside the region governed
by (1.10.13D. Hence, as described by Ablowitz and
Segurwn, in the context of nonlinear water waves in
tanks , experimental observation of such solitons is
possible if the width of the system 1is small enough to

avoid the perturbations having wavelengths larger than the

critical value.

There are equations other than the K-P equation
which have two dimensional solitons. The two dimensional

cubic nonlinear Schrodinger equation is one example

iA +A +A +o |aA|°A =0 €1.10.14)
t nX Yy

The weakly two dimensional form of this equation was

(72}

obtained by Benney and Roskes for surface water .waves,

where the effects of gravity, surface tension and

arbitrary depth are included.
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iA+o A +A wmo |A|PA+E A,
t 1 XX 2 x

Yy
y (1.10.15)>
2
+ -
aéxx ny- b(|A| )x ,
where a, b , a‘, andaz depends on the depth and surface
tension. Oblique interaction of solitons on a two

dimensional surface has been observed experimentally, a
typical example being the one photographed by Toedtemeier

off the Oregon coast'’>. Recently, there are

indicationsr“] that two dimensional solitons could be

observed in thin superfluid films.

Biswas and warker“] extended their earlier

results of one dimensional soliton propagation to include
weak two dimensionality and obtained the K-P equation. Ve
shall discuss their work in detail in Chapter II, where \we
have extended their results to show that K-P equation can

exhibit soliton resonance in thin superfluid films.

1.11 CHAOS AND SOLITONS

We have seen in the earlier sections of this
chapter that there are systems with infinite degrees of
freedom which are completely integrable and whose time

evolution is completely described by nonlinear modes
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including solitons. On the other hand, there are many
simple systems, with hardly a few degrees of freedom,
showing chaotic behaviour. When one knows that even very
simple systems show chaotic behaviour, it seems not so
surprising if most of nonlinear systems with infinite
degrees of freedom show chaotic behaviour. Apparent

exceptions are the completely integrable systems.

By the term Chaos we mean ‘sensitive dependence
on initial conditions’. That. 1is, the dynamics of the
nonlinear system can be completely altered by an
infinitesimal change in the initial conditions. This can
also be viewed as a large C(or exponential) increase in the
distance between nearby trajectories in the phase space of
the system. Such an exponential divergence of nearby
trajectories would mean a ‘non-predictable’ behaviour of

the system.

In the recent developments of nonlinear physics,
the generation and characterization of chaos has been
receliving considerable attention. Several routes to chaos
have been found in some simple dynamical systems with only
a few degrees of freedom'”>’. One of the most important,
and the most widely used quantitative measure of chaos is
the Lyapunov characteristic exponentwa. It gives the
mean exponential rate of divergence of nearby trajectories
of a chaotic dynamical system in phase space. The chaos

is defined””’ as a state of exponentially growing
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separation distance, that is the state where the maximum

Lyapunov exponent is positive.

In energy conserved systems ergodicity is closely
related to the problem of chaos. Kolmogorov-Arnold-Moser
(KAM> theorem'’® gives a very important understanding in
the ergodicity theory. Roughly speaking, KAM theorem
discusses the fate of trajectories of systems with an
integrable Hamiltonian, but with a small perturbation
added. To be precise, let the system be described by the
Hamiltonian 960 and let a small perturbation be added to

ﬂfo, so that the new Hamiltonian is

9 = St’o + 7\981 » 1.11.1>

where A determines the strength of perturbation. Then KAM

theorem states t,hat.r?p]

"provided A 1is sufficiently small
and 96‘ is analytic in a given domain, the phase space can
be separated into two regions of nonvanishing volume, one
of which is small compared to the other and shrinks to
Zzero as A-+o". The larger region has a structure similar

to those of an integrable system.

The effect of perturbation on many completely

integrable systems has revealed °-%-%% many interesting

properties of soliton propagation in such systems.

Imada™®? studied the dynamics of solitons under an energy
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preserving perturbation to the wusual Sine - Gordon

equation. The Hamiltonian chosen was

g¢ = g + g 1.11.2>
© 1
where
b 4 2 2 2
% == (¢ +c.¢.)+1- Cosp €1.11.3>
and
s = 1-R>? 1 - Cos¢ - 1 - Cos¢d 1.11.4>

1 + R? + 2 RCosg

C: is a constant and R is a parameter which determines the
deviation from complete integrability. When R=0 the
Hami'ltonian ¥ reduces to Sine-Gordon Hamiltonian. Imada
investigated numerically the separation distance between
two trajectories 1in which the initial conditions are
slightly different. The local separation distance between

two trajectories in the phase space was defined s:stezj

2 2
6s<x,t,)=/[ & PCx,t) ] + [ & ¢,x,t> ] €1.11.5>

where &% and 6§t are the difference of & and §t between
the two trajectories. The initial conditions were chosen

in such a way that the initial values of &% and 6§t, ie,
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5P (x,0D and 6§l(x,o) were very small. The total

separation distance has the form®?

L
5 St = /E I [ 6s0,t> ) ax 1.11.6>
(=)

where L is the system size. Imada imposed a periodic
boundary condition for the system and chose the
soliton-antisolit.on pair solution as the initial
condition. During the numerical evaluation of the system,
it was observed that during each collision of the
soliton—-antisolit.on pair, the value of log(6S<LD)
increased ;ignif icantly. Also, the effect of the
collision was observed to propagate spatially so as to
increase log(6S(t)>) almost lnearly with time. Imada

calculated the maximum Lyapunov eXPOnent,mz'"’

A = lim % m[ A11.7>

S St ]
t+o

& S
and found that it is positive for positive R. The value
of N was zero, as expected, when the perturbation was made

zero (l.e., R=0).

A study of the quasi soliton propagation in a
nonlinear wave equation with fifth order dispersion has
183]

also shown chaotic behaviour . The equation had the

form
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u +uu - y> u = 0 1.11.8>

XXXXX

Similar studies have also been done for energy

nonconserving perturbations'®>"%**%,

In chapter 1II we present the studies of the

phenomenon of two-soliton resonance on thin ‘He films.

58



CHAPTER 2

SOLITON RESONANCES IN THIN SUPERFLUID
FILMS



SOLITON RESONANCES IN THIN SUPERFLUID FILMS

Of the rich variety of nonlinear phenomena
exhibited by very thin superfluid “He films, one of the
most interesting one is the phenomenon of “‘Soliton
resonance’. In this chapter we extend the results of
Biswas and Warke' 'Y and study the two soliton resonances
of the Kadomtsev-Petviashvill equation for the superfluid
surface density fluctuations in thin superfluid ‘He films.

The final form of the resonant soliton is obtained and the

expressions for their amplitude and velocity are derived.

This chapter is divided into three sections. The
nonlinear evolution equation describing superfluid
density fluctuations in the lowest order of nonlinearity,
as obtained by Biswas and Warke, is discussed in section
2.1. We examine the phenomenon of soliton resonance in
section 2.2. In the last section we study the =soliton

resonance in monolayer superfluid films.

24 K-P EQUATION AND THO DIMENSIONAL SUPERFLUID FILMS

The phenomenological equation of motion for the
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monolayer superfluid density fluctuations, proposed by

Rutledge et altw], is given by

. h A
ih gwt,— = - 1 ¢y - ¥ s~ H¥ - By Vz|w|2
Ca+ vl D

’

e €2.1.1D

where wix,tt) is the condensate wave function, m is the
mass of the helium atom, A and a (A=14k and a=1.2 atomic
layers) are constants of Van der Waals interaction, u is
the chemical potential and B is the surface tension. The

form of y was chosen as

1/2
wx,Ld = [ PCx, LD ] exp [ i PCX,tD ] 21.2>

so that the superfluid density is

PGt = | wk,t> |2 €21.3>

where p and ¢ are real functions. The reductive
perturbation method is applied to the resulting set of
equations. Then the solution that is being looked for
corresponds to a characteristic collective density
oscillation mode propagating along the x direction in the
two dimensional superfluid. The variation in density

along the y direction is made very small by choosing the
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expansion parameters in such a way that the power of the
parameter is greater for the y-coordinate transformation
compared to that for the x-coordinate. But. this choice of

parameters is made consistent with the equality

)
At g
@
<

4
2
2
3

The analysis gives the velocity of third sound as

3A p
¢’ = ——°—‘ , (2.1.4)
m(at+p )

where o is the equilibrium density.

The final equation which they arrived at was

- +
2 _ a‘o1 (:L__'(pc> 3a) ’ i’p1 . h 4me° o p
ax ot P2t e Tt 5 8m>G ox°
C3 azp1
- — = 0 215>
2 ~z2
ay
where ;(',; and t are the scaled coordinates. Equation

215> is the K-P equation. It was argued that in the

general case the solitons represented by the system would
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be unstable because the equation (215> 1is the K-P
equation with positive dispersion. But as has been
discussed 1in section 110, this K-P equation would have
stable soliton solutions if the width of the system is
chosen to be less than the critical wavelength. However,
the system admits stable ’lump solitons’ in the general
case. These lumps have properties similar to solitons,
but. for the algebraic decay of its talls In x and vy

directions.

2.2 RESONANACE OF SOLITONS

We have seen in the Chapter I that most of the
stable solitons are one-dimensional entities. Such one
dimensional solitons can interact two-dimensionally with
each other. This 1is because 1in any isotropic media,
solitons can propagate in all directions and interact
obliquely with each other. Such interactions could be
described"®” by the K-P equation, for weakly nonlinear,
weakly dispersive and almost unidirectional wave

propagations.

We consider the interactions of the K-P solitons,

which have the form

I 2 2
u, = > ki Sech ki [x + P,V W, (ki R pi)t' ] 221D
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when two such solitons interact a phase shift 6’2, which
depends on the interaction anglelss’ , Is caused due to
the mutual collision. Hence the structure of the solution
of the K-P equation during interaction of the solitons
would involve two wedges formed by the pair of

157
lines y =C » wz.(}z-fé‘2 and w{-C‘ﬂS‘z » sz-Cz, where

1 1

C1 and C2 are constants. This 1is illustrated in Fig.2.1.
If the phase shift is zero then the vertices of the two
wedges are coincident and the arms of each wedges are
simply continuation of the opposite arms of the other
(Fig.2.2). For a finite phase shift, the linear crest

Joining the two vertices is giventsw by the equation.

+ +
(k!. kz) X (kipi + kzpz) y + ((.0’. + wz)t' -Ci+cz+612

e ... €2.2.2)

{6z, 63
s

Mile noted that the two soliton of the K-P

equation breaks down at a certain critical angle. Based
on the frame work of the Zakharov-Shabat theorym-n of
integrable systems with more than one spatial dimension,
Newell and Redekopptsﬂ studied a general criterion for
strongly interacting solitons and found that the two

soliton solution breaks down at. the critical angle which

corresponds to the condition
© (Ei + Ez) = (Ei) + w (ic’z) 2.2.3>
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During such an interaction, the phase shift tends to
infinity'>”’ and the crest described by (2.2.2>, which
Joins the vertices of the interacting waves, becomes
infinitely long and it satisfies the soliton dispersion
relation. Hence in this process, called the ‘Soliton
resonance’, a third soliton is created by the collision of
two obliquely interacting solitons; the three solitons
resonantly couple each other, such that a Y-shaped

structure is formed by the three wave crests.

Ohkuma and Wadati™® showed that the phase shift
612 would become infinite when A12 (given by equation
(1.10.9>> takes the values zero or infinity. When this
condition is satisfied, resonance is possible among three
solitons; a coupled system of these solitons thus make a
phase locked system. When the amplitude of the third wave
is a function of the sum of the amplitudes of the

158)

colliding waves, it 1is called plus resonance . On the

other hand, when it is a difference it is called minus

resonance.

2.3 SOLITON RESONANCES ON SUPERFLUID FILMS

We make the following substitutions in equation
(215> to obtain it in the more familiar form as given by

equation (2.3.2)
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um= -6p1/7 R y = 2po(a+po)/(3a-po) R

X -kox » y-VZkoy, t-Cakot,
2 2 2 2
+
ko = 8 m Cg/ (h 4 mB po) b4 2.3.1>
Thus,
[ u- + 6 uu- + u--- ] - u-- = 0 2.3.2>
t x XXX - Yy

The K-P equation in the form given above has been

discussed in great detail in sections 1.10. The one

soliton solution has the fr orm0

u = g k? Sech? 7 23.3>
where
n = 2 Kk [ x + py - (K*-pHt ] 23.4>

and k and kp are components of linear momentum along the x
and y direction respectively.

The two soliton solution of equation (2.3.2> is given by
U = 2(log fz)-;; 235>
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where

+ +
fz = 1 exp 27’)1 exp an + A1z exp [2(771 + nz)] 2.3.6a)

x - = 2 2, T (o
N =2 k, [ x + P; ¥ (ki pi) t ] n; (2.3.6b>

2 2
3k, - k) +(p, - P

A, = > 5 (2.3.6c>
3k, + k) + (P, - P

As we have already explained 1in section 22,
there is an intermediate region during the interaction of
the solitons. It was shown that soliton resonance is the
special case under which the intermediate regime tends to

infinity. This would happen when A12=o or A1z=oo.

ie. for

2
+ -
3k, k) +(, -p) =0 237

The plus sign refers to the case A12=oo and
corresponds to plus resonance and the other case (A12=0)
is the minus resonace. The resonance phenomena can be
best understood by the asymptotic behaviour of the two

solitons under the above conditions.
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1) (2)

U= 1U + U -iszechzn +£k28ech2n,
2 1 1 2 2 2

y » -o©
(142) x 2 2
= U = > (k1 + kz) Sech (771 + 7)2) »
Yy =+ +00 (2.3.8a)
(1+2) X 2 2
- + +
U= U = > (k1 kz) Sech (*n1 772) »
y +» -0
= U + y'?

= L ¥ sech?  + L k% sech? 7
2 1 1 2 2

y -+ +m (2.3.8b)

The above two equations represents plus resonance and is

illustrated in Fig.23.

The minus resonances are given by

Uu=u* =L k?® sech?’n ,
2 1 1

y » -,
= U? =1 ¥ sech?y ,
2 2 2
y-0+®,

(1-2) I 2 2
=& - k) Sechi(n, - n)) ,

X -+ +0 2.3.9a)
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2 2
k 2 Sech nz »

NI~

y » ~o,

~
[
-~
|

2 2
k1 Sech L
Yy » +00 ,

rX 2 2
= 5 (k- k) Sech(n, n,)

X » - €2.3.9b>

In general, the resonant soliton can be written in the

form,

1¥2)

= !.. + 2 2 +
u u = 2 (, * k)* Sech®(n % n) €2.3.10>

From the form of the above solution we can calculate the
amplitude and velocity of the resonant soliton in the

laboratory frame as given below.
2
= - +
A [ 6o (a + po)/(po 3a) ] (ly(1 t kz) 2.311>

2 - 2 + 2 - 2 - +
[k,0d - oD 2 1,0 - B - 21
V =cC €2.312>
r 3 2 2 1/2
+ +
{(ki - kz) M 2(k1p1_ kzpz) }
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The interacting solitons and the resonant soliton form a
coupled system with a Y-shaped structure and travels with
the above velocity. We have shown that the phenomenon of
soliton resonances could be observed in very thin

superfluid “He films.

We can visualize equation (2.3.8a as the
formation of a single soliton as the result of a collision
of two solitons. Equation (2.8b)> could be considered as
the splitting of a soliton into two solitons. The process
of formation of a single soliton from two solitons, as
depicted Dby equation 2.8a is shown pictorially in
Fig.23.

Minus resonance could also be viewed in a manner
similar to the plus resonance - 1ie. equation (2.39a)
could be viewed as the formation of a single soliton from

two solitons and (2.3.9b) as the reverse process.

It should be possible to observe these resonant
solitons by measuring the velocities in the asymptotic
limits using sultable detecting devices. But, it should
be borne in mind that as explained in section 1.10, the
K~P equation with positive dispersion relation is unstable
with respect to transverse perturbations having
wavelengths greater than a critical value d(obtainable from
equation <1.10.13D. Hence the width of the film should

be limited to a value less than the critical wavelength as
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discussed by Ablowitz and Segurt7u in the context of

water wave experiments in tanks.

As has Dbeen suggested by Hubermantso], the
dispersion relation could change when the thickness of the
film is increased. Then it. might be possible to observe
the solitons without any restriction to the film width.

This problem is taken up in chapter5.

Since the whole formalism presented in this
chapter is based on the K-P equation, which holds for the
superfluid only when the lowest order nonlinearity Iis
taken into account, the amplitude of the solitons during
an experimental run should be carefully chosen. The
dynamics of the waves are different when higher

nonlinearities are taken into consideration.
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LARGE AMPLITUDE QUASI SOLITONS IN THIN
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LARGE AMPLITUDE QUASI  SOLITONS IN
THIN SUPERFLUID FILMS

The soliton dynamics on super fluid ‘He films are
not just confined to the small amplitude regime. It is
possible to obtain localized waves even under full
nonlinearity, though the KdV and K-P equations are able to
describe the dynamics of superfluid density fluctuations
only in the weak nonlinearity limit. In this chapter we
study the propagation of large amplitude quasi solitons in
thin two dimensional superfluid films. We have seen in
section 19> that such localized waves have asymptotic

(52,53)
when one dimensional wave

temporal stability
propagation is considered. The fate of these large
amplitude waves when a weakly two dimensional wave
propagation is considered is studied in this chapter.

This work is done numerically for a monolayer superfluid

film.

The chapter is divided into two sections. The
equation governing the large amplitude density
fluctuations on thin superfluid films 1is reduced to a
dimensionless form in section 3.1. In the second section
we numerically study the large amplitude soliton

propagation on such films.

71



3.1 LARGE ANMPLITUDE SOLITONS

We begin the analysis by starting from the
equation of motion for the superfluid density fluctuations

(equation (1.3.7)), reproduced below for convenience.

2 Ay
ih% - '%ﬁv‘%'_——e - wy - By Vy|? 3.1.1>
Cat|yp| 5T
where m,A,a,4 and B have their usual meanings. For the

monolayer films we are going to consider, we can take

B=0u7). If we search for a solution of the form

vyt = p _Pogyity PNV

where pS(x,y,t) is the
superfluid density, one would get the two dimensional

continuity equat,ionuﬂ

s & v.js =0 3.1.2>
at
. *
where }scx,y,o =  Rel¢h/im> g %) is  the

quantum-mechanical current density.

For the purpose of numerical analysis we
transform equation (311) to a dimensionless form. Ve
assume that yw depends only on the time coordinate t and
space coordinates x and y. The scale for y is chosen as

its equilibrium value ¥ obtained from the relation
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u o+ = 0 3.1.3>

We <can fix the equilibrium value of the

superfluid thickness as

d = y° sa 31.4>
o] o]

Scales for the space coordinates and time coordinate are

fixed by the characteristic wave vector k and frequency o :

/2

2mwW
k = [ h2 ] » w = W/h (3.1.5>

A

where W = —_— is the Van der Waals energy.
aZc1+d >3

Now we can rewrite equation (3.11) iIn the normalized

form

2 < 3

1‘;T_x=-i_?c_a_x- [1+do 2]-1;( €3.1.6>
1 +d x|

where x =y /7 ¥ = kx, n = ky, and 7 = wt. Since for
such a monolayer superfluid film we cannot have surface
deformations, we will be studying the superfluid density
fluctuations occurring in the two dimensional film. We
assume that initially the superfluid density is locally
altered. For example, this could be done by heating the

film locally. After this 1s done equation (3.1.2> would
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hold.

3.2 NUMERICAL STUDIES

In this section we undertake the numerical
study of equation (3.1.6). For the sake of simplicity we
lock for solutions propagating along ¥¢-axis. The size of
the superfluid film ¢ = 100 along the ¥¢-direction > is
chosen arbitrarily in such a way as to be larger than the
characteristic size of the localized excitations. Equation
(316> is treated as an initial value problem. It 1is
assumed that at t=o0 the whole superfluid is at rest - that
is we choose the initial value of the phase of the wave to
be constant through out the film. The dynamics of the

system is independent. of the actual value of this constant.

We study the time evolution of the superfluid
density fluctuation pCE M, > = |w(f,77,'r)|z - 1 . This
study is done for two different cases of the initial
profile,po(¥ ,n,0d> . First we study the dynamics when a
squared secant hyperbolic profile is used as the initial
condition. This has special importance - we are
essentially studying the fate of the K-P solitons under the
full nonlinearity. As a second case we take an initial
prdfile which is very much different from the squared
secant. hyperbolic profile. The rounded rectangular form is

‘chosen as a suitable wave form. For both the above cases
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we impose the periodic boundary condition,
p€100,7,T> = plo,n,Td 3.2.1

Since there is no surface deformation to the monolayer

film, we do not have to take +the kinematic boundary

conditions.

The numerical results for the first case are
shown 1in figures in Fig.31 and Fig.3.2. Fig. 8.1 shows

the time evolution of the superfluid density fluctuations

for the initial profile

P med = p_ sech® [ [<¢ - 25>,3] + [ <& - 50>/55 ] ]

c...03.2.2>
The parameters chosen are do=1 and p°=0.2 . The
superfluid velocity corresponding to the density
fluctuations are plotted in Fig. 3.2. The numerical

experiments carried out for several other values of the

parameters showed similar results.

Two solitons emerge from the single peak of the
initial profile and travel in opposite directions. These
solitons preserve their identity after interaction with
each other and are quite stable. Under close examination
these peaks are found to be asymmetric. These solitons,
"quasi-solitons"‘sz} are not completely stable as the

large time behaviour might suggest. The finite life time

of the solitons as well as the asymmetry arise essentially
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from the higher order nonlinearity.

Now we turn our attention to the second
case. Here we use as the initial profile the rounded

rectangular form,

(o]

2 2
P, 0> = p % {1-tanh[[(f - 25>/1-5]+[<n-50>/‘35]-4]}

...€3.2.3

Again, we choose the parameters as do-i and pO-O.Z. The
resulting temporal developments in amplitude and velocity

are plotted if Fig.3.3 and Fig.3.4.

As In the previous case, the Iinitial profile
splits into two. But as the resulting pair of waves travel
in opposite directions, they continuocusly emit secondary
waves. Even after a few interaction with each other, the
resultant waves keep their original identity - of a basic

wave profile continuously emitting secondary waves.

The emission of secondary waves could be viewed
as follows. As the original wave shape 1is quite different
from the actual travelling wave solution, which the

completely nonlinear system would admit, it emits Iits

excess energy 1In the form of secondary waves. This can
also be seen in the first case - the pair of oppositely
travelling waves emit secondary waves at large times. The
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reason for such a slow emission of secondary waves in the
first case is the fact that the initial wave itself is only
slightly different from an exact travelling wave solution.
These results have been generalized by taking as initial
profile other wave shapes like, for example, a narrow

gaussian profile.

We have shown numerically that even under strong
nonlinearity the two-dimensional ‘“He films admit stable
composite quasi-solitons of the superfluid density
fluctuations and the superfluid velocity. These solitons
are quite different from those obtained in the case of K-P
equation or the two-dimensional nonlinear schrodinger

equation.

We have also shown that any arbitrary initial
profile would decay into a stable soliton solution by the
emission of the excess energy as secondary waves. Hence
the two emerging solitons could be viewed in their early
stages of development as two dissipative waves. An
interesting property to discuss at this point would be the
dynamics of such a system in the phase space, as to the
predictability of the soliton solutions with respect to the
amplitude of the initial profile and the effect of

collision of the two waves on the phase space trajectory.
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CHAOS CAUSED BY SOLITON-SOLITON INTERACTION

The propagation of large amplitude quasi solitons
in thin two dimensional superfluid films was investigated
in the last chapter. The dynamics of these quasi solitons

would change noticeably with variations 1in the initial

profile.

In this Chapter we investigate in detail the
effect of changing the initial shape of the wave profile.
For this purpose we study the effect of very small change‘s
in the initial conditions of the wave profile on the
dynamics of the quasi solitons. In particular, we
consider the sensitivity to 1nitial conditions on the
propagation of these large amplitude waves. For this
purpose we try the squared secant hyperbolic, the gaussian

and the rounded rectangular waveforms as different initial

profiles.

This chapter is divided into two sections. In
section 4.1 the nonlinear evolution equation representing
the large amplitude local density fluctuations in a one

dimensional monolayer superfluid ‘He film 1is discussed.
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After defining a suitable phase space, we study in section

4.2 the dynamics of the system in the phase space.

4.1 NUMERICAL STUDIES

The equation of motion 1s described by the

phenomenological equation of Rutledge et al*”

2 Ay 2 2
Vy - —Z - puy - By V |yl 411>
Cat|y|5>F

ih

e
517

Here also we can take B=0, since only monoclayer films are

considered.

For the purpose of numerical analysis we
transform the equation (411> to a dimensionless form as
was done in Chapter 3, and consider only one space

direction for simplicity.

That, is,
> 3
ig{l = -2x _ [1*"0 z] -1 | x 4.1.2>
= 1+d |x|
o
where xy = w/wo », & = kx , T =wt and we assume that
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initially the superfluid density is locally altered.

Equation 4.1.2> is integrated numerically,
treating it as an initial wvalue problem. The size of the
superfluid film (= 100> 1is chosen arbitrarily in such a
way as to be larger than the characteristic size of the
localized excitations. We assume that at t=o the whole
superfluid is at rest - that is we choose the initial
value of the phase of the wave to be constant throughout

the film.

The time evolution of the superfluid density
fluctuation pC&,7> = |x(&,7)]| Z - 4 and the superfluid
phase @ ,m)=arg(x¥,7)) are studied for the rounded

rectangular form as the initial profile.

2
eled ,n,o)=p°%{1-t,anh [ [<€-25>-15] —4]} (4.1.3>

with ¢ ,0) = constant.

The actual value of this constant is not
important in the dynamics of the system. We impose the

periodic boundary condition ad100,7>=a(0,7) .

The numerical experiment is performed for two
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initial profiles differing only in the value of P, and
obtain a pair of data concerning the temporal development
of the amplitude and also the phase at each point on the

superfluid film.

Fig.41 and Fig.4.2 show the temporal development
of the amplitude and velocity of the superfluid density
fluctuations for the values of the parameters po=0.2 and
d°=1 . The second set of numerical experiment is done for
po=0.20001 and with the same wvalue for do. The initial
profile can be seen to split into two and travel in
opposite directions. Fig.41 shows that these waves
continuously emit waves of higher velocit,y" as they

propagate along the medium.

4.2 DYINAMICS 0N PHASE SPACE

In this section we study temporal development of
the initial separation distance in the phase space. For
this we define a phase space with variables p,¢,ptand ¢t.’
In this phase space the local separation between two
points (p,¢,pl,¢t) and (p+ép,¢+6¢,pt+6pt,¢t+6¢t) is given

by[BZJ

& S, = J (50 T3 Hbp,_CE, 1) K, T2) K¢ &, 7)°
... C4.2.1D
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As the system evolves in time, the point

(p,¢,pt,¢t) in the phase space traces a trajectory.

Different initial profiles would give different
trajectories. We study the time evolution of the
separation distance between two such trajectories

corresponding to slightly different. initial profiles.

The total separation distance of the trajectories

in the phase space has the form'®?

L 2
5 St = l % [ C6s¢&,m) da 4.2.2>
[o]

where L is the length of the film. We choose the initial
values of the parameters for the two sets of numerical
experiments as follows: p°=0.2 and ¢<¢,00=0 for the first

set and p°-0.20001 and ¢<f,0>=0 for the second.

The temporal development of &S{r)> is plotted in

Fig.4.3. It can be seen that the total separation
distance is increasing with time, and eventually
saturating to a maximum value after a collision. But the

next collision of the solitons would again increase the
separation distance exponentially <(the points of collision
are shown by arrows in Fig.4.3). The collision points

would be less evident from the figure after the second
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collision, because of the emission of waves from the

soliton.

To understand the increase in separation distance
caused by soliton-soliton collision we plot in Fig.4.4 the
temporal development. of (<SS)W’Lx » which 1s the maximum

value of the local separation distance at a given time.

It is seen that (6S)max would increase slightly
due to the initial splitting of solitons. Then it remains

almost constant. till the collision of solitons, at. which

instant. there is a sharp increase in &S) . W5SO is
max max

plotted for three successive collisions. For each

collision there 1is a marked increase in (cSS)max. This

increase becomes smaller and smaller after each collision,
because of the emission of waves by the "“quasi-solitons'.
It should also be noted that emitted waves collide with
each other much before the solitons, but this does not
produce any change in the phase separation, as can be seen
clearly from Fig.4.4. Thus it is clear that the collision
of the quasi-solitons are responsible for the increase in
the separation distance and this increase in local
separation distance propagates spatially with the
solitons, which explains the nature of the total

separation distance.

Next. we undertake a similar study with the
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Temporal development. of (6s)mu, the maximum

value of the local separation distance at any
given time. Each ’step’ in the curve
corresponds to a collision of the solitons.



squared secant hyperbolic profile for the initial wave

form.

oCE ;M0 = e, sech’ [c:-zsva ] ...... 4.2.3>

The results are plotted in Figures 45, 46, 47 and 4.8.
It is evident from Fig47 and 48 that the collision of
the quasi solitons do not produce any noticeable and
permanent increase 1in the phase space separation of
trajectories. This 1s because the initial wave profile
has a form almost similar to an exact soliton solution

under full nonlinearity.

A similar study was also taken up with a very
narrow QGaussian profile. It showed results similar to
that of the rounded rectangular form. However, when the
width of the Gaussian profile was increased, the dynamics
of the phas;a space trajectories showed characteristics
similar to that of the squared secant hyperbolic profile,
but. there were small jumps in the (6S)max curve at the
instants of collision. This 1is because there is only a

weak emission of waves.
To conclude we have shown that two initially

close trajectories in the phase space increases

exponentially with time. This separation is enhanced due
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to the collision of solitons taking place on the film.
Finally, we note that one should take into consideration
these chaotic phenomena before attempting to explain
experiments connect.ed with large amplitude soliton

propagations in very thin 4He films.
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SOLITONS AND SOLITON RESONANCES ON
SATURATED SUPERFLUID HELIUM FILMS



SOLITONS AND SOLITON RESONANCES ON SATURATED
SUPERFLUID HELIUM FILMS

In the earlier chapters we had focused our
attention mainly on the propagation and interaction of
localized density fluctuations on very thin superfluid
films. In this chapt.er we consider the localized

thickness fluctuations on the so called saturated films.

As we have discussed in section 1.9 , Nakajima et

(511

al were able to extend the analysis of one

dimensional surface wave propagation on very thin films
< 1077

~

Cm> to films whose thickness is of the order of
10°° cm. In such films, the surface tension plays a
decisive role in the dynamics of the system, which was
totally ignored for very thin films. The effect of
surface tension" 1is to increase the characteristic
length of the soliton, and to reduce the soliton velocity.
This makes the detection and generation of solitons using
conventional third sound apparatus easier. The analysis
done by Nakajima et al was restricted to one dimension.

It seems natural, therefore, to search for quasi two

dimensional solitons in such systems.

In this chapter we investigate the nonlinear
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waves propagating on a two dimensional saturated film of
superfluid ‘He. Here we are concerned with the temporal
evolution of the fluctuations in thickness of the
superfluid. This 1is iIn contrast to the Investigations
cited in the earlier chapters, where the surface
deformation was negligible and only the density
fluctuations were present, due to the very small thickness
of the superfluid film. In the small amplitude regime we
have been able to derive the K-P equation with negative
dispersion. It is shown that resonance of solitons can be
observed in such films as agalnst the one dimensional case

studied by Nakajima et a1

In the next section we derive the equations
governing the surface displacement. In section 5.2, we
consider the small amplitude regime, and obtain the K-P
equation. It is shown iIn section 53 that in the lowest
order nonlinearity, soliton resonances could be obtained
only if two dimensional effects are taken into account.

Last section is devoted to a discussion of the results.

5A4.FINITE AMPLETUDE SURFACE HWAYES

When saturated films of superfluids are considered
one has to iInclude the effects of surface tension, which

is generally ignored for very thin films. The Van der
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Vaals force is the nonlinear force acting on the
superfluid film. The acceleration of the superfluid due
to a temperature gradient, which acts as a very small
correction factor™” in our low temperature film |is
neglected in this work. We consider the x and y axes to
be lying on the substrate on which the superfluid of

equilibrium depth d exists. Geometrical configuration of

the system is shown in Fig5.1.

Since the superflow is irrotational, we can
describe it by the velocity potential &w,y.z,uL. If we
treat the system to be incompressible we can write the

equation of continuity in bulk as

2
+ + 2
x a3y 3z

‘: = 0 G411

There is the additional condition that the superfluid

would not flow into the substrate.

5.1.2>

NP
|

Z=0

The continuity equation at the film-vapour interface takes

the form
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a(x,y,t)

L
Liquid He

Substrate

Fig 51 Geometrical configuration of the saturated
superfluid film system. The x and y axes lie on
the plane surface of the substrate



The 1index 1 refers +to the film - vapour Iinterface
zi=d+a(x,y,t,), where a(x,y,t> is the departure of the film
surface from its equilibrium position. The equation of

motion at the surface ism”

()2 [ (R) (300 (2)]] -2 (22

a =0 G.1.4>

The last two terms appearing in equation (5.1.4) represent
the leading terms in the expansion of the Van der Waals
force term. €= 3a/d* and g2=12a/d‘ a is the Van der
Waals constant, 5 is the density of the superfluid and ¢
its surface tension. Equations 5.1.3> and 5.1.4>
represent finite amplitude surface waves propagating on

the superfluid film. We expand #(x,y,z,tD as“zj

a
B(x,y,z,t) = 2 z" ¢ Gyt 515>
n=0

Now by wusing equations (11> and .12, we get

comparing like powers of =z,

$(x,y,z,t> = CosCz ¢ > LR R S 5.1.6>

where ¥ is the two dimensional gradient having components
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along x and y axes respectively.

SIQ
SIQ

5.2.50L01TARY MWAVES

Using equations 5.1.3> and 5.1.4> we have
studied the dynamics of localized disturbances, of long
wavelength and small amplitude, in the superfluid film
thickness. VWe orient the horizontal coordinate system
such that the principal direction of propagation is chosen

as the x-axis. We make  the following coordinate

transformation.

X -+ %+ Cst » t o+t 5.2.1D

where Ca is velocity of the moving frame.

To transform the equations (5.1.3) and (5.1.4) into a wave

equation with respect to the superfluid surface

displacement,, the reductive perturbation method by Taniuti
t49)

and Wel can be applied using the scaling

transformation

12 32

X1

]
®
>
<
]
&
n
o
¢

ey , 5.2.2

We regard £ as an infinitesimal, however it disappears in
the final equation. We are essentially looking for
fluctuations 1in the thickness of the film which travel

with long wavelength along the x-direction and we assume
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that the y-coordinate dependence of the wave is weak. We

expand a and ¢o in powers of &.

a = ao + £ ai(x,y,t) + sz az(x,y,t) + ... G.2.3ad

¢ = Pk ¢;1)(x,y,t) + sa/z¢;2’<x,y,t> + ... (5.23b
Using equations ((5.1.3), Gi16dand G211 - 5.23> and
comparing coefficients of £??  and 5:5/2, we get the

following equations.

a2 az¢(1)
¢ —* +4 —z° =0 5.2.4>
3 % %
az¢(1) aai
C, — +g—m=0 5.2.5>
? % ‘ox
2 ,(2) 2, (D (1> (1) 2 (1
9 ¢o _ % c &2 o ¢o + 9 ﬁo + a¢o 4 ¢o
3 ax? 3 ax* ot | ox ax %2
aa aaz €, aa1
o ox ! oax d x

o1



da da a¢(I.) da 02¢( 1) 02¢( 2> a2¢( 1)
4+ 2y _° +a —° +4d4d ——° +4d4 —"°
ot ®ox  &x  ox Y oax X 3y
(1)
s
-2 o 5.2.7>
x

Using the boundary conditions that a and ¢:‘) goes to

zero as x-+w, equations (.24 and (5.25> can be solved

to get

G.2.8>

(o]

(2>
Now eliminating %¢ between (5.2.6) and (5.2.7) we get
ax

‘G.2.9
3 —2
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Equation (529> 1is the K-P equation, which can be

expressed in the more familiar form by the following

transformations.
ac?
1 9 1 -
a =-6yp , -=teg,- —Q3g|— » & = “kx >
v 2G
3
5.210
2 .2 2
- 1 = gg - Ei:i 1_ = Zko v T =k t
2 ~— " 73 2c. > " c_ Y o
k fo) ] 3
(=]
So equation (5.2.9> would become
a [ 2 o d°p a’p
== =— + 6pz + — + = 0 5.211
o/ a8t o] 3 2

The K-P equation represented by 5.2.11) is the

one with a negative dispersion and it is known to possess

[55,5061

N-soliton solutions. The one soliton solution can

. (68,89]
be written as

p = = k¥ Sech® [ (5.2.12>

where

h%ﬁ

(= [E +pn-(kz+é’)r]+£‘°’
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and k and kp are the components of the linear momentum
along the ¥ and 7n directions respectively. Equation
(5.212> describes a soliton propagating with velocity
(kz+pz)/'y’1+_pz in the direction making an angle tan-‘(p)
with the x-axis. This angle should be small because the
K-P equation holds wunder the assumption that the two

dimensional effect is small

53 SOLITON RESONANCES

The two soliton solution for equation 6.2.11) is

obi,ained from

= 2(log T <5.3.1D
P (og £ )y
2L 20 2<C +{ D
where f=1+e1+ez+Aue 12
1 2 2 (0)
(. =3 ki(f +pn - (K + pi)T] +
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2 2
3(k,~k,)* = (p,"P,)
and A12 = 5 5 (5.3.1ad
+ - -
3Ck, +k ) p,-P,)

. [0}
Soliton resonance occurs when A12= o or o ,

ie. for 3(k1 sz)z - (p;pz)z = 0 . The plus sign refers
to plus resonance and the other case is the minus

resonance.
As we have seen in Chapter2, the resonant soliton in

general can be written in the form

1 2 2
= + +
= > (k1_ kz) Sech ((1_ (2) 5.3.2>

The amplitude and velocity of the resonant soliton, in the

original coordinate system, can be written as

6C_d 2 g d
+
A = _'-‘___z kKD 6']‘— Gk * kz)"' (5.3.2a)
(g,d - 3C) (e3¢,
2 .2 172 2 2 2 2
+ —
v - [6Od + ng P] [k1(k1+p1)_k2(k2+p2)] - jgid

r 1,2
2 - 2 d 2 2,2-
{1203 p(kitkz) + z(k1p1tk2p2) (6od+C8d p)}

e.....¢5.3.2b>
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If the resonance is to be obferved in actual
experimental set up, the resonance conditions given by
equations{.3.1ad should be consistent with the
conservation laws. Tajiri and Nishitani®> showed that
this condition is satisfied for the K-P equation 5.2.11>
in the following sense. First a similarity transformation.
is applied to the K-P equation. Then the resonance
conditions of the resulting equation are shown to satisfy

the corresponding conservation laws. The  similarity

transformation has the formmo]

Q
. E 2
vt o= 32 *3 I Psxa‘" (5.3.3a>
2
x= E_ P 2 - Q £ - 2 ?._. - 1IR
P:/a 6P4/a 3P4/s 9 P7/3 3 P4/s
....... (5.3.3b>

+ > 4 - + 1 3u(x',t,') (5.3.3cD

where P,Q and R are function of 7 , P’ = dpsdr , P” =
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d’P/dr? and Q=dQ/dr Using equation ¢5.3.3)> in ¢5.2.11

we get. the Boussinesq type equation.

u - u ’+(uz),’+u = o 5.3.4>

Tajiri and Nishitani'>®’ showed that this equation

exhibits soliton resonance and the resonance conditions do
satisfy its conservation laws. This suggests that soliton
resonance may be observed in two dimensional saturated
films of superfluid “He.
Now we turn our attention to one dimensional wave
propagation in saturated superfluid films.. The governing
1511

equations in +this case, under weak nonlinearity, Iis

the KdV equation.

u + 6uu + u = O 5.3.5>
t x XXX

The one soliton solution for K-dV equation is

2

u = 2k Sechz(kx-{)t,) and its resonance conditions are
given by
- 3
- + - R
(k1+ kz) [01 Qz (k1 kz) ] = 0 5.3.6>

The first two conserved quantities of the KdV equation are
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fudx and qudx. For two soliton resonant interaction,

these conservation laws give

kK +k =K <5.3.7a>

K+ k=K <5.3.7b>

where k1 and k2 corresponds to the initial solitons and K
to the final resonant soliton. The plus and minus signs
corresponds to the two different types of resonance.
Equations <¢5.3.7 a&b) are not satisfied for any kil and kz
except for the trivial cases k1=o,kz=o or k1 =-kz . Hence
we can say that 11t 1is not possible to have soliton
resonance in one dimensional saturated superfluid films,

under weak nonlinearity.

5.4 DISCUSSIONS

Ve

We have reduced the hydrodynamics equations for
saturated superfluid films to the K-P equation with
negative dispersion in the small amplitude regime. This
is to be contrasted with the result of Biswas and

1741

Warke » who obtalned K-P equation with a positive

dispersion for wave propagation on a monolayer superfluid

o8



film. The two problems are, however, entirely different.
In ref 1(74), the superfluid density fluctuations in thin
films 1is considered, where as here we are discussing the

fluctuations in thickness of the superfluid films.

In the saturated films one is able to observe the
phenomenon of soliton resonances when two dimensional wave
propagation is considered. The amplitude and velocity of
the resonant soliton are given by equation (5.3.2). We
have shown explicitly that under the lowest order of
nonlinearity soliton resonance is observable only when two

dimensional wave propagation is taken 1into consideration.

o9



CHAPTER 6

CONCLUDING REMARKS



CONCLUDING REMARKS

Before concluding the thesis, we would like to
highlight some of the results obtained 1in the previous
chapters. In addition, we would also like to indicate the

scope for future work in the field.

In the study of +two soliton interactions on
monolayer superfluid films, we have obtained in chapter 11
the resonance of solitons on monolayer superfluid films.
These solltons are the localized density fluctuations
occurring on such films. The amplitude and velocity of
the resonant soliton are also obtained explicitly. The

whole analysis was done in the small amplitude regime.

The effect of higher order nonlinearity on the
propagation of large amplitude waves 1in two dimensional
monolayer superfluid f'ilms is studied in chapter III. The
nonlinear Schrddinger equation representing the superflui;l
density fluctuations 1is reduced to a dimensionless form
and solved numerically for arbitrary initial profiles. It
ils shown that the initial profile would split into two
"quasi~solitons"” travelling in opposite directions, which

have particle Hke stability and keep their shape
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unchanged during interactions with each other. The

"quasi-solitons” are asymmetric 1in shape, unlike the KdV

or K-P solitons.

It was  observed in chapter 111 that the
propagation of large amplitude waves on superfluid films
depended critically on the initial wave profile. This led
us to study the chaos caused by the propagation and
interaction of such waves. In chapter 1V, the chaos
induced by the collision of large amplitude one
dimensional quasi solitons on very thin superfluid film is
studied numerically. It is shown that two 1initially close
trajectories in the phase space of the system separates
exponentially with the collision of the quasi~solitons.

The instability at the collision spot propagates

spatially.

Following the arguments of Huberman™°’ that the
dispersion relation of the superfluid dynamics would
change from positive to negative as the thickness of the
film is 1increased, we have studied the dynamics of
saturated superfluid films under the lowest order of
nonlinearity in chapter V. Our calculations show that the
equation governing the system is the K-P equation with
negative dispersion. It is established that the
phenomenon of soliton resonance could be observed in such

films. Under the lowest order of nonlinearity, such
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resonances take place only if two dimensional effects are
taken into account. The amplitude and velocity of the

resonant. soliton are obtained explicitly.

The Iinvestigations presented in this thesis has
opened up a whole lot of new problems for future research.

Some of the important ones are discussed below.

Layered helium films - ie, spin polarised
hydrogen, e or a layer of electrons on superfluid ‘He
films - would provide interesting nonlinear systems for
studying soliton behaviour. The surface charged
superfluid films may provide a new mechanism for charge
transfer across such films, which could be used for

practical applications in delay lines.

A second problem which could be studied
analytically 1is the interaction of solitons on monolayer
superfluid films when the second order of nonlinearity is

taken into consideration.

A third, and perhaps a more interesting problem
would be to study the dynamics of the electrons
distributed on a superfluid film. This forms a very good
two dimensional electron system and the phase transitions
occurring on such two dimensional films could be studied

using the methods of nonequilibrium statistical mechanics
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as employed by Pratap and Sreekumar (931 in the study of

Hall conductivity.
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APPENDIX

All the programmes wused in this thesis are

discussed briefly in this appendix.

A1, NUMERICAL UNTEGRATION

For the numerical evaluation of equation 3.1.6>
and (4.1.2) we used the following method.

First the initial profile for the required size of
the superfluid film was generated using a straight forward
programme implemented in FORTRAN. The data thus obtained
was integrated according to equation (3.1.6) or 412> as

follows.

ad 1> Al the space derivatives were evaluated using
central difference scheme.
i1> Forward difference scheme was used to evaluate
the time derivative. <
111> The space step was given ”t,he value 01 and the
time step was fixed as 0.00002.
ivd Hundred iterations were done on the initial
profile. The dat.a so obtained was stored along
with the original data set for the next

procedure.

b> 1) Using the two data sets, we integrate as in <ad
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but. with a central difference scheme for time
coordinate integratiog. The value of the time
step is chosen as 0.06(2.

i1> The data set is stored at regular time intervals

(£=0,0.5,1.0,1.5,...D.

All the calculations were done in double
precision. To test the accuracy of the resi.llt,s, we
checked two conserved gquantities at regular intervals of
time. The two conserved quantities chosen were the total
mass and the linear momentum. These quantities underwent
only negligible changes during the entire period of the

numerical experiment. This shows the accuracy of the

results.

A2 THE THREE DIMENSIONAL FPLOT.

In the thesis we have used three dimensional
graphics to show the time evolution of large amplitude
solitons. The programme for this, which 1is written in

BASIC, uses the following algorithm.

i) The first data set 1is plotted along the x-axis,
with the y-axis showing the amplitude of the
quantity of interest. The spacing along the x
and y axes are chosen as 5 units. All the

successive points are connected by straight

105



11>

111>

ivd

lines.

The next data set is drawn above the previous
one, but with a displacement of 5 wunits along
the x and y axes. Drawing the curve is done as
in ). But curves are not drawn at those points
where a curve already exists.

This procedure 1is repeated till all the data
sets are plotted.

The curves so obtained are used to generate a
‘Printer data set’, to drive the printer. A
separate programme is used to take ‘hard copies’
of the three dimensional figures wusing this

printer data
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