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Preface 

This thesis is devoted to an investigation of the Physics of high temperature 

superconductors based on many body theoretical models. The methods adopted 

for studying the microscopic Hamiltonians can be grouped as follows. 

1. Double time Green's functions and equation of motion method for the eval­

uation of Green's functions. 

2. Funcl.ional integral technique for Fermi and Bose systems. 

3. SlaVE boson technique to take care of occupancy constraints in the Hamilto­

nians when some of the parameters assumes large values. 

4. Evaluation of functional integrals using saddle point approximation and fluc­

tuation corrections using ~ expansion: techniques. 

Ever since its discovery in 1986, few problems in Physics have occupied as many 

man hours of experimental and theoretical research as the problem of high temper­

ature superconductivity. Experimental efforts are directed towards the synthesis of 

better samples, preparation of single crystals of the existing high Tc compounds, 

synthesis of new materials with higher Tc values and preparation of superconduc­

tors with desirable physical and chemical properties. Theoretical efforts are directed 

towards 

(1) Understanding the normal state of these materials, (the normal state be­

haviour of these ceramic oxides are anomalous in several respects). 

(2) The mechanism of sllperconductivity in these materials. 

The thesis consists of six chapters. References are given at the end of each 

chapter. Equation numbers contain information regarding the chapter. 

In the introductory chapter various experimental constraints on theoretical in­

vestigation., are discussed. Towards the end of the chapter, the relevant orbitals 

and types of excitation which can possibly play a role in superconductivity have 

been suggested. 

In chapter 2 one of the techniques of analyses adopted for the study - functional 

integral technique is discussed. A brief discussion on the algebra of anti commuting 

Grassmann variables is given. 

Then we discuss how the partition function and Green's function can be set up 

as a functicnal integral over complex variables and Grassmann variables. Then how 

such functional integration are performed is given for the fermi case. The role of 

slave boson III taking care of constraints in various Hamiltonians is discussed. The 
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original slave boson techniques introduced by Bames and reinvented by Coleman 

is given briefly. To throw light on its application in functional integral formalism, 

the partition function for the single impurity Anderson model is worked out in 

detail. Th{~ slave boson formalism introduced by Kotliar and Ruckenstein and its 

reformulation in a manifestly spin rotation invariant form is briefly discussed. 

To illustrate the power of functional methods, the BCS reduced Hamiltonian is 

studied tising functional integrals. It is shown that the energy gap naturally emerges 

at the saddle point approximation. Then we briefly discuss variable transformations 

in functional integrals. 

In Chapter 3, an investigation on a microscopic model is discussed. Here the 

electron-phonon interaction is considered within the frame work of the fluctuating 

valence of copper atom. 

Anderson's lattice Hamiltonian is suitably modified to take this into account. 

Using Green's function technique, the possible quasiparticle excitation are deter­

mined. The energy gap expression is calculated and compared with experiments. 

In Chapter 4, taking into account the clearer picture that has evolved regarding 

the microscopic models of high temperature superconductors, we consider a 2D ex­

tended Hubbard model which includes both copper and oxygen orbitals. The direct 

hopping from oxygen to oxygen is also taken into account. On site repulsion at 

copper sites is very large. In the low energy sector of the problem, this imposes 

constraints on hole dynamics. The density of states and hence the low temperature 

specific heat capacity of high Tc superconductors are calculated in a functional inte­

gral formalism using slave boson techniques. The effective single band description is 

arrived at by obtaining the quasiparticle dispersion relations. The calculated values 

of density of states are compared with experimental results. 

In Chapter 5, the possibility of reducing the extended model to a t - J model 

Hamiltonian in the large but not infinite U with tp = 0 is emphasized. Previous cal­

culation of the thermodynamic parameters in tilis model using functional integrals 

and slave bosons is discussed. Adopting a nonmliform saddle point (periodic one) 

approximation in the Bose variables, the thermodynamic parameters and density of 

states at the fermi surface are calculated. The results are compared with previous 

calculation using a uniform saddle point approximation and also with experimental 

results. The ground st.ate energy evaluated at the periodic saddle point is compared 

with that in a mliform saddle point approximat.ion. The much lower ground state 
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energy value in the periodic saddle point case shows that the system is describable 

in terms of the periodic (nonuniform) saddle point approximation scheme. 

In Chapter 6, we give a brief survey of the various ideas which are currently in 

vogue in the area of high temperature superconductivity theory. Then we discuss 

the possibiiity of studying the extended model using a manifestly spin rotation 

invariant slave boson technique adopting functional integral formation in a periodic 

saddle point approximation. Parts of the thesis have been previously published in 

the following journals. 

1. Title: Electron-phonon interaction within the framework of the fluctuating 

valence of copper atoms - A theoretical model for high temperature superconduc­

tivity. 

Authors: Suresh V. Vettoor and V.M. Nandakumaran 

Journal: Modern Physics letters B, VolA, No.5 (1990) 325-331. 

2. Title: Density of states in high Tc superconductors 

Authors: Suresh V. Vettoor and V.M. Nandakumaran 

Journal: Physica C 191 (1992) 277-281 
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Chapter 1 

Introduction 

1.1 

Superconductivity has been one of the challenging subjects since its discovery by 

Kammerlingh Onnes in 1911. The very low temperature at which this is realised 

made its large scale technological application economically nonviable except in some 

special circumstances. The explanation of the phenomenon had remained as a chal­

lenge to the ingenuity of many of the leading physicists of the present century. It 

evaded a correct description for a long time until this was done by Bardeen Cooper 

and Schrieffer. Thus superconductivity research was directed at the fundamen­

tals and its application progressed at a great pace. There have been speculation 

regarding high temperature and perhaps room temperature superconductivity. 

Signs of realization of this long s~bjective appeared in 1986 when Bednorz 

and Muller discovered new copper oxide ~perconductors with a Tc "V 30k. This 

was a great breakthrough. Intense search for higher Tc materials started leading 

to the synthesis of YBaCuO and Thallium based compounts with Tc as high as 90 

K or 125 K. The transition temperature was taken much above the liquid Nitrogen 

temperature. This is a promising development with far reaching consequences as 

far as the application side is considered. But the high Tc mechanism still remain as 

a great challenge to the theoretical community. Even the normal state behaviour 

of these materials are anomalous in several respects. 

In this chapter we present a brief summary of the significant experimental facts 

about high Tc superconductors and discuss their role in the construction of a proper 

theory for these systems. We will first have a look at the dominant experimental 

results in high Tc materials and compare them with conventional low Tc metallic 
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superconductors where necessary 

The high Tc superconductors occur in several classes of materials, with Tc vary­

ing with doping for each class of materials. The major groups are the 214 Lan­

thanam, Strontium/Barium Copper Oxide family with Tc =40K and YBa2Cu307-6 

family with Tc=90K and ThSr2Ca2Cu301O with Tc=125K. 

All these materials show the following important features. 

• They show very small isotope effect 

• All of them have Cu-O planar subsystem 

• Their Tc is much higher than the conventional strong and weak coupling 

supercond uctors. 

• They all have related compounds which are antiferromagnetic insulators with 

rather high Neel temperature. 

• The nuclear relaxation rates below Tc in these materials are unusual 

• They have extremely small coherence length 

• Their dc electrical resistivity is anisotropic with a linear temperature depen­

dencE: for the a-b plane resistivity. 

They have the following features in common with conventional low Tc supercon­

ductors. 

• Electron pairing is the mechanism for the superconducting transition. 

• They have an energy gap in the excitation spectrum with the 

2~ 

KBTc 

value assuming a larger magnitude compared to the BCS value of 3.52 

• The pairs do exist in the singlet spin state and an S-wave orbital angular 

momentum state 

• They show Josephson tunneling and vortex structure found in type-II super­

conductors. 
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1.2 Structure and stoichiometry 

Compared to the crystal structures encountered in metallic solids , the structure 

of high Tc materials are complicated. Cu-O planar structure is a conunon feature 

of all these high Tc materials. Figure (1.1) shows that these planes, were charge 

carriers reside are separated from others of similar kind by isolation planes which 

act as charge reservoirs. These isolation planes contain positive ions La, Ba, TI, Bi 

etc. 

A single Cu-O plane is shown in figure (1.1.a) where square planar bonding of Cu 

to four Oxygen atoms can be seen. Figure (LLb) shows La2Cu04 crystal structure. 

In La2_zSrzCu04 the Cu-O planes are relatively far apart - 6.6A, with two La­

o planes between Cu-O planes. In figure (1.1.c) the structure of YBa2Cu307-6 is 

shown. For these materials there are two immediately adjacent Cu-O planes which 

are nearly 3.2A apart. In all high Tc materials the Cu-O distance - 1.9A is the 

shortest compared to the other interatomic distances. 

In YBa2Cu307-6 the Cu-O plane groups are separated from each other by - 8.2.4.. 

The metal Oxygen isolation planes that separates the two immediately adjacent Cu­

o planes in YBa2Cu307-6 are indicated by dashed planes in figure (1.1.c). 

For the high Tc crystal TI2Sr2Ca2Cu3 010 , there are three Cu-O inunediately 

adjacent planes separated by Ca planes. These planes are separated from each 

other by ~ 3.2A. These three planes are separated from the next set of three by 

,...., 11.6A, with four metal Oxygen isolation planes and (2 TI-O, & 2 Sr-O) in between 

such sets. 

The high Tc materials are either orthorhombic or tetragonal. For theoretical 

discussions they can be regarded as tetragonal. Table (1.1) shows the list of high 

Tc materials, their Tc values and the number of adjacent planes of Cu-O in them. 

From the table it can be noted that Tc doesn't scale with the number of Cu-O 

planes. Since the 1-TI(n) & 2-TI(n) materials with n > 3 have been synthesised 

but often their Tc values are not proportionately high. However in each group Tc 

is correlated with the number of Cu-O planes. 

Electrical conduction in these oxides is taking place in the Cu-O planar struc­

tures. Superconductivity also seems to have a crucial dependence on their planar 

character. The crystal structure of La2Cu04, YBa2Cu307-6 TI2Sr2Cu301Ocompounds 
• 

are shown in figure(1.2), figure(1.3), and figure(1.4) respectively. 

3 



--Q 

fig(1.1.a) 

fig(1.1.b) 

./ 
./ 

./ 
./ 

-" ----_ . ./ J' _ _ ____ _ 

./ 

./ 
./ 

./ -------­~----7-
./ 

./ 
./ 

,./ --------...c:. ___ ?_ 

./ 
./ 

./ 

./ 

./ 

~- -- ------_/ 

./ 
.....-

./ 

" 

" " " 

L~ _________ ,," 
,., ---.L _____ _ 

fi 9 (1.1.c ) 

./ 
./ 

./ 
./ 

./ 

./ 
./ " ./ 

" ./ 
./ 

./ 

./ 
./ 

Cu. - 0 

./ Ba.. 
./ 

./ 
. C U. 

Ba.. 
./ 

" ./ 

ClJ..-O 

" 
Y 
Cu.-o 



DJ 

01 

fig(1.2 ) 

figO.3) 

3b 



3c 

e Ba 

o 0 

® Ca 

• 
o 

Tl 

Cu 

fig ( 1.4. ) 



Compared to the high Tc materials, most elemental superconductors have the 

bcc, fcc or hcp structures. Two structures which are more complicated than the 

metallic structures are those exhibited by Nb:3Ge (Type II superconductors) and 

CeCu2Si2 (Heavy fermion superconductors). Nb:3Ge and related materials have the 

so called A-15 structure shown in figure (1.5). The material is cubic (Space group 

Pm3n-~) with two formula units per unit cell (Z=2). Nb:3Ge belongs to a class of 

materials denoted generally as A3B where A can be any of the elements Nb, V, Ti, 

Zr or other transition metals, and B can be Sn, AI, Ga, Ge, In or Si. Tc is sensitive 

to the 3/1 stoichiometry with maximum Tc obtained for this ratio. It is generally 

believed that this sensitivity of Tc to stoichiometry may be associated with a sharp 

peak in the density of electronic states and near the 3/1 stoichiometry fermi level is 

close to the peak. 

1.3 The normal state properties 

There is a general consensus among theoreticians that a proper understanding of 

the normal state properties of high Tc materials is a necessary step in constructing 

any theory for explaining its superconducting behaviour. This is because these 

materials are showing several unusual normal state properties in the metallic state. 

1.3.1 The charge state of various elements in these com­
pounds 

In La2Cu04, the formal valence states of various atoms have the following values. 

La exists in +3 valence state. Copper has its outer orbitals 3d104S1. When in +2 

valence state, the outer orbital of copper is 3d in character. There is a hole in these 

3d orbitals. Hence we have the 3cf outer configuration. This is the case with the 

insulating state. When hole doped, these additional holes go to the oxygen rather 

than the Copper orbitals. There are no compounds in which Copper exist in +3 

valence state. La2Cu04 is an insulator. When La atoms are substituted by Sr it 

becomes a metal and below the transition temperature Tc, a superconductor. The 

La atoms exist in +3 valence state whereas Sr is in +2 valence state. This doped 

compound is a metal in which the charge carriers are holes. Spectroscopic studies 

[1] show that the holes reside in oxygen 2p orbitals. Simple band theory calculations 

for the parent compounds show that they should behave as metals. This is because 
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they have a half filled band. The insulating behaviour thus suggests the presence 

of strong correlation in copper orbitals. 

1.3.2 Molecular orbitals 

The short Cu-O distance "" 1.9..4. in the plane indicates a covalent bonding instead 

of an ionic bonding. Out of the plane Cu-O distance is rv 2.4..4.. This brings us 

to the conclusion that Cu-O covalent bonding is largely non bonding along the C 

axis compared to the ab plane Cu-O bond. The ligand fields lift the degeneracy of 

Cu 3d orbitals.The Cu orbital which is most affected by the ligand environment is 

the one with x 2 -11 symmetry. Therefore the relevant orbitals are copper 3d:r:Ly2, 

and oxygen Px and Py orbitals in the planes. They have considerable overlaps and 

hence are the bonding orbitals. 

Figure (1.6) shows a Cu-O plane with d:r:Lyl of eu and Px and Py orbitals of 

oxygen atoms. Bonding between charge lobes of the orbitals occurs when the or­

bitals have the same phase. Anti bonding occurs between orbitals of opposite phase. 

For the molecular orbital shown in figure (1.6.c) there are as many bonding orbitals 

as there are anti bonding orbitals. Since the bonding and anti bonding energies are 

approximately the same but opposite in sign, the molecular orbital configuration is 

non bonding in Figure (1.6.b) shows anti bonding orbital configuration. The energy 

vs k diagram at the special points on the Brillouin zone are shown in Figure (1.7). 

When we consider a unit cell of La2Cu04 we find that for every copper atom, 

there are four Oxygen neighbours in a plane. There are five copper d orbitals-d:r:Lyl, 

d;il , d:r:y, d"z and d:r:z. There are 3 Oxygen orbitals- 2px, 2py and 2pz. This can 

account for the total number of electrons. The number of orbitals are given by 

3X4+5 = 17 

. Each orbital can accommodate two electrons and hence there will be 34 electrons 

for the closed shell structure. But we find that there is a deficiency of 1 electron per 

formula unit. This deficiency resides in the topmost band-that is the anti bonding 

bands. 

In the atomic state, the ionization energy of an electron from the P orbital of 

oxyg~n is larger than that from a Copper 3d orbital. Thus the P orbitals of Oxygen 

are lower ill energy (larger binding energy) than the d orbital of Cu. Therefore 
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the bonding orbital B of figure (1. 7) is mostly oxygen p like and the anti bonding 

orbital AB is mostly eu dx2 _y2 like. 

1.3.3 Electrical resistivity 

When discussing the variation of resistivity with temperature in normal metals, it is 

useful to define the reduced temperature which is the ratio of the temperature to the 

Debye temperature. The relationship between resistivity and reduced temperature 

for some simple metals is shown in figure(1.8). For simple metals the resistivity 

can be divided into a high temperature and a low temperature part. The high 

temperature part is 

p=A+BT 

where T ~ .28D .ln this region the quantization of lattice vibrations which causes 

resistance is not important. Here the Einstein phonon description is applicable. 

The electron scattering is proportional to the square of the amplitude of lattice 

vibrations about their equilibrium position [2,3]. 

The low temperature part of the resistivity is more complicated and it cannot 

be analysed in classical terms. One has to take into account the quantization of 

lattice vibration (phonons). The electrical resistivity arises from the scattering of 

electrons by phonons of the type 

where k and It are the initial and final wave vector and q is the phonon wave vector 

. The requirement that q be small and wave vector conservation in the interaction 

reduces the possible ways the scattering can take place. At low temperatures 

pc< T 

where T« O.28D 

Gruneisen-Block formula extrapolates between the low and high temperature 

limits. The electrical resistivity is due to deviations of the lattice from perfect 

periodicity. This deviation can be either due to the lattice vibrations or due to the 

presence of the impurities or defects. 

The deviations from the perfect periodicity due to impurities and defects are 

static and hence they make a temperature independent contribution to resistivity. 
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Thus the low temperature resistivity has the form 

1.3.4 Electrical resistivity of high Tc superconductors 

The electrical resistivity of single crystal YBa2Cu307-6 in the C axis direction and 

in the a-b plane are shown in figure (1.9). Pab measured in YBa2Cu307-6 shows 

an approximately linear temperature dependence. The c- axis resistivity shows a 

semiconductor / non metallic behaviour. However there are measurements that 

suggests that the C axis resistivity is metallic [4J. 

In YBa2Cu307-6 the ratio &. = 2.2. This shows that chain like structures in these 
A 

materials make a large contribution to the a-b plane conductivity. YBa2Cu307-6 

has a highly anisotropic resistivity. Anderson and Zou [5J have proposed that the 

Pc data of Tozer etal [6] can be fitted to a functional form. 

A 
Pc(T) = T + BT (1.1) 

Usually in metals, the low temperature resistivity has a temperature dependence 

given by Block-Gruneisen 'Jfl law. In transition metals and other alloys with two 

species of fermions interacting via s-d type coupling we expect the resistivity to 

have a'P dependence given by Baber's law. 

Thus we find that the resistivity behaviour in high Tc materials fits into neither 

of the above schemes. In addition it shows a highly anisotropic behaviour. 

The inplane resistivity of high Tc materials have the form Pab = A + ET. Most 

of the high Tc materials have B "" 1.01'0 - crn/k. This suggests the possibility 

of a common scattering mechanism for the charge transport in the a-b plane. For 

ordinary metals a linear temperature dependence of resistivity exists for T ~ .28D 

Where 8 D is the Debye temperature. 

1.3.5 Hall effect 

Hall measurements enables us to know the nature of charge carriers in a material. 

These measurements yield parameters specific to the material called Hall coefficient 

RH' This is determined by the magnetic field, electric current in an orthogonal 

direction and the induced voltage in a direction perpendicular to the other two. For 
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carriers in a. parabolic band, the free electron model with a band effective mass for 

the carriers work and the Hall coefficient is given [7J by the relation 

1 
RH =-­

nee 
(1.2) 

Where e is positive by definition and n is the carrier density. Instead of the Hall 

coef.we can use the Hall density which is infact the carrier density. For metallic 

copper this takes the value", 5 x 1022 /em3• If both electrons and holes are present 

in a parabolic band, the Hall coefficient assumes a much more complicated form. 

For materials with complicated band structures even for a single carrier, the 

Hall coefficient cannot be written in terms of the carrier concentration. Rather it 

involves a complicated integral over the fermi surface. The above discussion points 

to the difficulty regarding the interpretation of Hall measurements. This is the case 

with high Tc oxides especially YBarzCU307-6 compound. Still, for a given material, 

the Hall Coefficient can point to the effectiveness of doping . 

Ong et al [8J studied the change in Hall Constant with Sr doping for the 

La2-zSrzOu04 system. The positive sign of RH and Ri/ ,-...; x contradict the band 

model. The fact suggests the importance of strong correlations in the problem. 

Fukuyama and Hasegawa[9J have calculated the Hall Constant in a two dimensional 

Hubbard model based on strong correlation. Temperature dependant Hall constant 

is observed in single crystal samples of YBarzCU307-6 [lOJ. 

When La2Cu04 is doped with Sr, for each substituted Sr one hole will be added 

to the system. Upto x = .1, the Hall number is equal to this number. This value 

is consistent with that obtained from chemical methods (redox titrations) used to 

determine the hole concentration. Polycrystalline YBa2Cu307-6 have revealed the 

following properties [llJ. 

• the Hall constant RH is +ve. That is hole like. 

• RH is very sensitive to the Oxygen content and increases rapidly with increas­

ing Oxygen deficiency 6. 

• RH exhibits a significant temperature dependence. 

For 90 K high Tc oxides, the temperature dependence is such that the apparent 

carrier density ~~H varies linearly with T extrapolating to nearly 0 at T = O. (The 

Hall constants of La2-zSrzCU04 samples are relatively temperature independent). 
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In 123 single crystals also a temperature dependence similar to that obtained in 

polycrystalline samples has been reported [12]. 

The temperature dependence of RH is one of the puzzling problems. One may 

jump to the conclusion that the carrier concentration diminishes at low tempera­

tures. However it has been established by measuring superconducting penetration 

depth by muons [13] that there is no drastic reduction in the carrier concentration. 

A two band model is proposed to explain the temperature dependence of RH. 

(ie. RH '" r-l. But in this model several adhoc assumptions are to be introduced 

to explain the lack of pressure dependence of RH [14]. 

The value of Hall coefficient in Thallium compounds and Bismuth compounds 

are similar to YBa2Cu307-6. But their temperature dependence is less and the signs 

are all +ve (Hole like carriers). 

The temperature dependence of RH found in 123 compounds appears to be an 

exception rather than a rule. The reason may be the presence of Cu-O chains. 

1.3.6 Magnetic order in high Tc materials 

. All high Tc compounds have related compounds (Parents) which exists in the 

insulating phase. In these insulators the Cu ion magnetic moments have three di­

mensional antiferromagnetic order with rather high Neel Temperature [15]. There 

are evidences that the antiferromagnetic spin ordering in the ab planes persists 

above the Neel temperature for three dimensional antiferromagnetic order. Mag­

netic susceptibility measurements indicate a temperature independent susceptibility 

in the insulating phase [16]. YBa2Cu307-6 has a Neel temperature TN ~ 500K and 

La2Cu04 has a Neel temperature TN ~ 340K. Figure (1.10) shows the phase dia­

grams of these materials [17]. 

In section (1.1) we emphasised the quasi two dimensional behaviour of CU02 

sheets. The Heisenberg Hamiltonian with nearest neighbour spin-spin interaction 

has the form. 

H = L JSi .Si +6 (1.3) 
i,b 

With S = b. Where the sum is over nearest neighbour pairs. When we have antipar­

allel spin orientation on neighbouring sites,J will satisfy J> 0 condition. From the 

crystal structure one expects that the interplanar interaction with any anisotropic 
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terms will be orders of magnitude smaller than inplane interaction. 

Mermin and Wagner theorem shows that a pure two dimensional system de­

scribed by Heisenberg Hamiltonian cannot exhibit long range order at any non 

zero temperature [18]. For classical spins the correlation length should diverge ex­

ponentially as T -t 0 [19]. Whether this holds for spin ~ systems is not quite 

well understood. According to P. W. Anderson as T -> 0 a pure 2D spin ~ Heisen­

berg system would evolve into a paired stage with short range order (the so called 

"resonating valence bond state") rather than a long range ordered Neel state [20]. 

Experimental results show that such a situation is absent in the insulating parent 

materials. In La2Cu04 antiferro magnetic order develops as we go below 195K. De­

tailed measurements show that the three dimensional order is due to the interplanar 

coupling [21]. 

Doping the insulating materials considerably reduces the Neel temperature and 

finally the order becomes short range [22]. In the high Tc materials the co-existence 

of antiferromagnetism at temperatures below Tc is observed for example in YBa2Cu307-6. 

When Y atoms are replaced by rare earth atoms (with local f shell magnetic mo­

ments) they have little effects on superconducting Tc. In fact Tc slightly increases, 

probably due to ionic size effects. This should be contrasted with the conventional 

superconductors, where magnetic fields tend to destroy superconductivity. The 

close proximity of antiferromagnetism and superconductivity may be indicative of 

a common origin. 

In BaBi03 type of superconductors, there is no local magnetic moments and 

no antiferromagnetism is present. In these materials the Tc is always below 3OK. 

These materials differ from copper oxides in their crystal structure, energy gap 

behaviour, isotope effect, and coherence length. Thus the fundamental mechanism 

of superconductivity may be different in these two classes of materials. 

1.3.7 Structural phase transitions 

In La2-xS1"cCU04 there is a structural phase transition from a high temperature 

tetragonal structure to a lower temperature orthorhombic structure around 180K. 

The relationship between structural phase transition and superconductivity is not 

clear. 

In 1-2-3 compounds YBa2Cu307-6 there is no structural phase transition in the 

conventional sense as one that occurs at constant composition. But when the ma-
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terial is oxygen deficient it exists in the tetragonal insulating phase. When the 

material hCls more oxygen it is an orthorhombic metal and a superconductor. Fig­

ure (1.11) ~;hows the variation of cell parameters with doping [23]. 

1.3.8 Thermoelectric power 

In conventional metals the thermoelectric power (Seebeck coefficient) has a linear 

temperature behaviour. But in La2-xSrxCu04and YBa2Cu307-6 large +ve (hole 

like) value of temperature independent thermoelectric power has been observed 

[24,25]. The thermoelectric power in these systems have little magnetic field de­

pendence [26]. This observation could not be explained by some strongly correlated 

models. The magnitude of the thermopower is very sensitive to oxygen stoichiome­

try. Anisotropy of thermoelectric power has been observed. In plane thermoelectric 

power is nearly temperature independent where as the C-axis thermo power is close 

to a linear T behaviour. 

1.3.9 Photo emission spectroscopy 

Angle resolved photoemission data are uniquely qualified to answer the question 

- whether the charge carriers behave as fermi liquids or not. Landau describes a 

fermi liquid as a system of weakly interacting particles known as quasiparticles. 

Their behaviour is similar to a system of non interacting fermions. If we consider a 

fermi liquid, then at OK the locus of points of K space corresponding to zero energy 

single particle excitation define what is called a fermi surface. All the electrons in 

the system must be accommodated within the volume of this surface in momentum 

space. When quasi particles exist, they should give rise to a peak in the energy 

spectrum as the wave vector approaches the fermi surface value. Outside the fermi 

surface the peak disappears' rapidly. Angle resolved photoemission experiments 

essentially probe different regions of K space and determine whether quasiparticle 

peaks exist and how it behaves as the fermi surface is approached. 

The general conclusion that can be drawn from photoemission measurements 

is that in the normal state near the fermi energy EF the material behaves like an 

ordinary metal [27]. The measured E(k) are consistent with one electron calculations 

[28]. 
The reverse life time of the electron at energy E in the range below EF has been 
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measured. It is linear in (E - EF) which is to be contrasted with the (E - EF)2 

behaviour in a fermi liquid [29]. For a fermi liquid this is arrived at by phase space 

considerations and Pauli's exclusion principle [30]. 

One important theoretical question is the damping rate of electrons near the 

fermi surface. That is whether 

or 

as the energy of excitation € goes to zero. 1'( €) is the life time of the quasi particle 

[31]. For a fermi liquid €1'(€) 400 as € 4 0.0. 

while for a Tomonoga Luttinger liquid 

where et > 0 and for the marginal fermi liquid. 

It is clear from the above discussion that the high Te materials are outside the 

fermi liquid regime in an important respect. 

1.4 Superconducting state properties 

The high superconducting transition temperature is the most unusual feature of 

the ceramic oxide superconductors.Te of the materials are related to the number of 

adjacent Cu-O planar structures. 

1.4.1 Cooper pairing in high Tc materials 

In conventional superconductors, by measuring the magnetic flux trapped in a hol­

low superconducting cylinder, it was found that this flux is an integral multiple of 

the fundamental unit, the fluxoid quantum 

he 
ljJ=n-

2e 
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. where n is an integer. The factor 2 in the denominator shows that the super­

conducting ground state is composed of paired electrons. In high Tc materials also 

there is a clear evidence for electron pairing in the superconducting state. Here also 

there is clear evidence for flux quantization [32]. 

1.4.2 Nature of the paired state 

When we consider a paired state it can be either a singlet spin state or a triplet 

spin state. The wave function of a pair of electrons can be written as the product of 

the spin functions and a function of the coordinates. The total wave function must 

be antisymmetric with respect to the exchange of the two particles of the pair. 

If 0 and 13 refer to spin up and spin down states of electrons with respect to 

some axis. Then the spin function for the two particles can be constructed in the 

following four ways. 

1. 0(1)0(2) 

2 Q(1)~(~)+~(1)a(2) 
. \72 

3. 13(1)13(2) 

Of the four spin functions, the first three are called triplet state and the fourth 

one is called a singlet state. In the triplet state under the exchange of particles 

the spin part of the wave function will not change sign. Therefore the space part 

should be antisymmetric, under the exchange of particles. In a singlet spin state the 

spin part is antisymmetric under the exchange of the particles of a pair. Therefore 

the space part of the wavefunction must be symmetric under the exchange of the 

particles of the pair. In a singlet state the space part of the wavefunction must be 

either an S wave or a d wave orbital angular momentum sate. On the other hand 

in a triplet state the space part must be either a f wave or a p wave. 

Josephson tunneling experiments show that the pairs in high Tc materials exist 

in the spin singlet S state [33]. It was shown that Josephson type tunneling will 

not take place between two superconductors separated by a thin insulator, unless 

the pair wave functions have the same symmetry in the two superconductors. Tun­

neling experiments conducted on junctions made out of conventional and high Tc 
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materials shows that the pairs in high Tc materials also exists in singlet S state. 

Even though Josephson tunneling and conventional tunneling experiments lead one 

to the conclusion that S-wave pairing exists in 1 2 3 compounds, there are many 

who are not satisfied with these experimental evidences. They are of the view that 

spin flips can happen in the insulator layers and the conclusion may be wrong. 

1.4.3 Non BCS character of high Tc materials 

In BCS superconductors it is assumed that the pairing interaction is due to electron­

phonon coupling. If the pairs are weakly coupled, the superconductors are called 

weak coupling BCS and if the electron-phonon coupling is rather high, then the 

pairing is called strong coupling BCS. 

In high Tc materials the pairing mechanism is still not clear. These materials 

have Debye temperatures '" 300k to 450 k. The ratio {~ P is very much larger 

in high Tc materials than in conventional metallic superconductors. This excludes 

a weak coupling phonon mechanism for superconductivity in these materials. The 

ratio i:Tc in these materials is rather high (4-8). This is in contrast to the parameter 

independent BCS value of 3.52. Energy gap measurements have been carried 

out by among others- photoemission spectroscopy techniques. The conclusion of 

photoemission studies is that spin pairing in the Cu-O planes is S-wave like with 

a small amount of d-wave pairing. There exists a gap anisotropy in these systems. 

But experimental results in this area are still not leading to a definite result. 

1.4.4 Electronic specific heat results 

According to the BCS theory ~~ = 1.43 where Ae = et's - een and et's is the elec­

tronic specific heat capacity in the superconducting state and een is the electronic 

specific heat capacity in the normal metallic phase. 'Y is the Sommerfield constant. 

The et's and et'11 values are evaluated at the transition temperature. The above ratio 

is a parameter independent constant for BCS superconductors. In strong coupled 

superconductors this ratio is found to be much larger. For high Tc materials, the 

calculation of the above ratio involves difficulties with the estimation of the value 

of'Y in these materials. No definite conclusion can be drawn at this stage. 

A linear T behaviour of electronic specific heat capacity has been observed in 

the high 11~ materials at low temperatures. This may imply the existence of states 
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within the gap or the absence of a gap of the BCS nature. The linear T low 

temperature behaviour is consistent with the RVB theory [34]. 

1.4.5 Nuclear Magnetic Resonance results in high temper­
ature superconductors 

In the conventional superconductors the ratio TaT just below Tc rises. This rise is 
b 

some- times called coherence peak(Hebel Slichter peak). Here TIn and T1s are the 

nuclear relaxation times in the normal and superconducting states. For conventional 

superconductors, the coherence peak could be predicted successfully by the BCS 

theory. 

Experimental investigations in high Tc materials show the lack of a coherence 

peak in the nuclear relaxation rate. This may be an evidence against the BCS mech­

anism. Large anisotropies in the superconducting gap and spatial inhomogeneities 

may be the reason for the near absence of coherence peaks. Strong coupling BCS 

theories also show a reduced coherence peak. Therefore NMR results can not point 

to the mechanism of superconductivity in these materials in an unambiguous man-

ner. 

1.4.6 Isotope effect in high Tc materials 

According to BCS theory, the transition temperature is given by the relation [35]. 

kBTc = 1.141iwDe-~ 

where WD- the Debye frequency 

N-density of states at the fermi surface 

V-electron-electron attractive interaction strength 

The above expression· shows that Tc has a nuclear mass dependence via the 

Debye frequency. i.e.Tc ex M-a with a = 1/2 This prediction of BCS agrees with 

the experimental values of isotope effect in conventional superconductors. 

In the 90k high Tc materials there is a near absence of isotope effect. Whereas 

in La2-xSrl:CU04 there is an isotope effect, but at a much reduced level. It should 

be noted that even in conventional superconducting materials with narrow conduc­

tion band, the isotope effect is not a clue to the mechanism. High Tc materials 

being narrow band systems, the absence of isotope effect can not rule out a phonon 

mechanism. 
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1.4.7 l\lagnetic properties of high Tc materials 

When a superconductor is placed in a magnetic field, and when this is cooled below 

Tc, at Tc we find that the magnetic flux is excluded from the specimen. This can take 

place only if the magnetic field H is less than Hc, the critical field. The materials 

with a single critical field as described above are called type I superconductors. 

There are superconductors in which there are two critical fields (1) the upper critical 

field HC2 (2) the lower critical fieldHcl . 

For H > HC
I 

the magnetic field penetrates in vortices, and the fluxoid associated 

with each vortex is one fluxoid quantum. As the external magnetic field is increased, 

the density of vortices increases until the upper critical field HC2 is reached and the 

field penetration becomes uniform and the material goes to the normal state. This 

type of materials are called type II superconductors. 

All high Tc copper oxide superconductors are of type II character. Below HCI 

the external magnetic field is excluded from the bulk of the material by a persistent 

supercurrent in the surface region. The supercurrent induces a magnetic field which 

exactly cancells the applied field existing inside the material. The depth of this 

supercurrent carrying layer is called the penetration depth A. The external field 

penetrates into the superconductor in an exponentially decreasing manner. For 

BCS superconductors the penetration depth A has a temperature dependence given 

by the relation 

(1.4) 

This relation is in good agreement with experimental results in conventional super­

conductors. This will not hold for p-wave or d-wave superconductors. 

Experimental results in all high Tc materials [36] shows a behaviour in agreement 

with the above relation leading to the conclusion that pairing is s-wave and BCS 

like. There is a clear anisotropy in the penetration depth. The inplane penetration 

depth is Aab(O) = 1400..4.. Along the c-axis this is about 7000 A 

1.4.8 Coherence length 

Unlike conventional superconductors, the high Tc copper oxides have extremely 

small coherence lengths. The coherence length is a measure of the extent of the 

superconducting pair wave function in space. For conventional superconductors, ~ 

the coherence length varies from 500..4. to 104 A. In superconductors it is possible 
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to define an important dimensionless parameter. It is the ratio of the magnetic 

penetration depth to the coherence length, called Ginzberg-Landau parameter k = % 

If k > Ji the superconductor is called type II and if k < 7z it is called type 

I superconductor [37J. For most elemental superconductors k « 1.0 and therefore 

they are type I superconductors. All alloy superconductors ego NbaGe and high Tc 

superconductors are type II in character. The k of high Tc superconductor is ,...., 100 

which falls in the extreme type II limit. 

The high Tc superconductors are in the clean limit as their coherence length is 

much smaller than the electron mean free path (100,...., 200A). The coherence length 

can be estimated from the fluctuation contribution to the specific heat, susceptibil­

ity and conductivity. But for high Tc materials the reliable estimation of coherence 

length is obtained via HC2 the upper critical field. For type II superconductors 

HC2 = 2:~ where (flo is the fluxoid quantum. Using this relation the coherence 

length in high Tc superconductors are estimated. Coherence length along the c-axis 

is typically 2 ,...., 5A and in ab plane it is 10 ,...., 30..4.. The following conclusion can be 

drawn from the small value of coherence length and their anisotropy. Perpendicular 

to the ab plane the superconducting wave function is essentially confined to the im­

mediately adjacent Cu-O planes at low temperatures. Even the ab plane coherence 

length exceeds only a few unit cells. This points to the dominance of fluctuations 

in these systems. 

1.5 General conclusions 

The Cu-O planar structures are the important subsystems in these ceramic oxides. 

The conductivity and possibly superconductivity is confined to these structures. 

The anomalous normal state properties imply that the scattering mechanism in 

these materials must be quite unlike that in conventional superconductors. Strong 

correlation in copper orbitals are important to the charge dynamics. Charge carriers 

are holes and there are holes on copper and oxygen. The model for these systems 

should include both copper and oxygen orbitals. Copper 3d;z;Ly orbital and the 

oxygen 2pJ: and 2py orbitals are the relevant orbitals in the manybody formula­

tion of the problem. There is a strong overlap between 3d;z;Ly orbitals and their 

neighbouring 2px and 2py oxygen orbitals. 

All high temperature copper oxide superconductors have related parent com-
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pounds whkh have their copper spins ordered in an antiferromagnetic way. This 

points to the importance of exchange effects in these materials. In the large U limit 

of the Hubbard-U, the extended model Hamiltonian can be approximately reduced 

to a t - J model Hamiltonian. The condition is U» tpd where tpd is the hopping 

matrix element between copper and oxygen. In the extended Hubbard model, in 

addition to U and tpd, nearest neighbour interaction is also included. 

The major difficulty in this domain is the deduction of theoretical results by han­

dling the strong correlation in copper orbitals rigorously. But this is a very difficult 

task and approximations made in the calculation might have significant effects on 

the results. Therefore comparison of the theoretical results with experiments cannot 

be done in an unambiguous way. 

Superconducting mechanism in these materials is not clear. The most domi­

nant theme for attractive interaction is the repulsion at the copper 3d:r;Lyl orbitals. 

Others are the charge transfer resonances, interlayer mechanism, and phonons with 

band structure effects. With this brief look at the experimental situation we are 

concluding this chapter. 

TABLE 1.1 
Formula Tc(k) n 
La2-:r;Sr:r;Cu04 38 1 
La2_:r;Sr :r;CU20 6 60 2 
TI2Ba2Cu06 0-80 1 
TI2Ba2 CaCu20S 108 2 
TI2Ba2Ca2Cu301O 125 3 
Bi2Sr2Cu06 0-20 1 
Bi2Sr2CaCu20S 85 2 
Bi2Sr2Ca2Cu3010 110 3 
Nd2_:r;Ce:r;Cu04 30 1 
YBa2CU3 0 7 92 2 
YBa2CU4 Os 80 2 
Y2Ba4Cu7014 40 2 
TIBa2Cu05 0-50 1 
TIBa2CaCu2 0 7 80 2 
TIBa2Ca2CU309 110 3 
TIBa2Ca3Cu4011 122 4 
(Nd, Cc, Sr)Cu04 30 1 
BaO.6Ko.4Bi03 30 
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Chapter 2 

FUNCTIONAL TECHNIQUES 

2.1 Introduction 

Functional integral techniques provide a powerful approach to several currently 

active areas of research - for instance the theory of high temperature supercon­

ductivity. It provide new ways to organize perturbation theory. The saddle point 

calculation is a means to do nonperturbative approximation. 

Condensed matter physics employs two types of functional integral techniques. (1) 

Stratanovieh-Hubbard transformation [1,2,3] within a conventional treatment of 

Fock space statistical mechanics and (2) a priori formulation of the partition func­

tion and Green's function as path integral over spaces of complex or anticommuting 

variables. The first class of technique has been applied extensively to the treat­

ments of superconductivity [4], the Ising model [5], the Anderson model[6], and 

several other condensed matter problems. A Stratanovich-Hubbard transformation 

replaces the partition function of an interacting system with a Gaussian average par­

tition function for noninteracting system in a time dependent auxiliary field. This 

provides a method for making mean field approximation and at least in principle 

allows for the systematic study of fluctuation correction. 

Functional integrals of the second class commonly used in field theory, have 

been applied more sparingly in condensed matter theory. The path integral rep­

resentation of propagators in quantum mechanics is due to Feynman [7,8,9]. The 

field theoretical version of path integrals were introduced by Edwards and Peierls 

[10], Gelfand and Minlos [11l- and Mathews and Salam [12]. Functional integral 

techniques were applied in statistical mechanics by Bell [13] and Edwards [14]. 

A modern treatment of functional integrals is available in Negalle and Orland [3J 
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Schulman [15] and V.N. Popov [16]. 

2.2 Grassmann Algebra and Fock space 

In this section we discuss the important features of Grassmann Algebra and how 

it can be used to characterize the Fock space of Fermions. We approach it along 

the general lines of Berezin [17] and Itzykson and Zuber [18]. This correspon­

dence between Grassmann variables and Fock space for Fermions is at the basis 

of the functional integral formulation for the evaluation of the partition function 

and Green's Function for Fermi system. The study of anticommuting algebras was 

pioneered by H.Grassmann, a 19th Century German mathematician. First of all we 

will consider the Grassmann algebra G2 generated by two anticommuting elements 

7] and fJ. They satisfy the anticommuting property 

{7], fJ} = rf/ + fJ7J = ° (2.1) 

From this it follows that if we put fJ = 7] or 7] = fJ, the following relation are implied. 

(2.2) 

The algebra consists of the set of complex polynomials in 7] and fJ. 

P(fJ,7]) = Poo + POl 7] + PlOfJ + PllfJr/ (2.3) 

There will not be any term with Pij where iorj > 1. This follows from equation 

2.1 and equation 2.2, where the coef. Pij are complex numbers usually written 

as Pij E C where C is the complex space. Addition and multiplication of such 

polynomials are allowed subject to equation 2.1 scalar multiplication by elements of 

complex space C is allowed. Derivative on G2 is defined by the following relation. 

81 = 0, &r] = 1, &ij = 0, 8{rf/) = -8{fJr/) = fJ (2.4) 

8{ 0:fJ7J + (31) + T7]) = -0: + T where 0:, {3, T E C. The derivative a is defined in a 

similar way with an interchange 8 -+ a,7] +-+ fJ. It should be noted that 7]andfJ are 

independent anticommuting variables, just like z and i are independent complex 

numbers. Integration on G2 is equivalent to differentiation by definition. 

(2.5) 
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Multiple integrals are defined as iterated integrals with the innermost integration 

to be performed first. When the integration is performed according to the rules 

already defined, the integral evaluation in a multiple integral is given below. 

(2.6) 

If the order of integration is reversed 

(2.7) 

Now let us consider the effect of change of variables in an integral over Grassmann 

variables. 

Let 1],~, wand their barred counterparts form elements of an enlarged Grassmann 

algebra. 

Let the following relation hold among these variables. 

ij = Doo~ + DOl ~ + W 

which can be written in matrix form 

[1]] = [D] [~] + [w] 

(2.8) 

(2.9) 

(2.10) 

Consider the polynomial p(ij,1]). Replace ij and 1] in equation 2.8 and equation 2.9 

Then 

(2.11) 

From the equivalence of differentiation and integration 

J~df.p( ij (~,~, w, w) ,1] (~,~, w, w)) = Pll det{D) (2.12) 

From equation 2.6 and equation 2.12, we arrive at 

(2.13) 

It can be lIoted that the Jacobian of the transformation det D enters the denom­

inator rather than the numerator as is the case for a usual integral. This can be 

generalized to higher dimensional spaces. 

(2.14) 
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the transformation 

= ( D2Nx2N ) + (2.15) 

gives 
N N 

II (d1]dr,) = (det D) -1 II (~~) (2.16) 
i=1 i=1 

If D is of the Block diagonal form 

D = ( ANO'xN 0 ) 
ANXN 

(2.17) 

then 

detD =1 detA 12 (2.18) 

An element P of G2 satisfying the condition BP = 0 is called an analytic function 

on G2• This leads to the conclusion that every analytic function takes the form 

(2.19) 

where 10, I1 E C 
Complex conjugation is defined as follows 

f(fJ) = fo + flr, (2.20) 

where 10, fi E e we find that under this operation only the complex coefficients are 

affected. 

Now let us consider a Fock space of a single fermion level with creation operator et 

and annihilation operator c. Fock space of the system consists of states alO > +b11 > 
where a, bE e.The basis states 10> and 11> have the property 

elO >= 0, et 10 >= 11 >, et 11 >= 0 (2.21) 

The elements of F may be placed in one to one correspondence with a subset of the 

Grassmann algebra G2 generated by two anticommuting elements 17 and ij. 

a I 0 > +b I 1 > f----t a + br, (2.22) 
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The polynomial over G2 corresponding to the bra vector will be 

< 0la'+ < lib' ~ a' + b'1J (2.23) 

Let us consider two states belonging to the same Fock space for a single electron 

say If> and Ig >. 
This can be written as 

If >= folD> + fd1 >, Ig >= golO > +gI!l > (2.21) 

The inner product of these state vectors will be given by 

(2.25) 

by equation 2.22 and 2.23 we have established a correspondence between a state of 

Fock space and an analytic function G2 The inner product can be achieved provided 

we define it as 

(2.26) 

From equation 2.1 and equation 2.2 

(2.27) 

From the above discussion we find that it is possible to construct a Grassmann 

representation for an arbitrary Fock space. Let us examine what happens to a 

state vector, when an operator acts on it. Regarding the original vector as a linear 

superposition of basis vectors, the effect of the linear operator is to change weights 

of the basis vectors in the linear superposition. The change in the weights defines 

the linear operator. A F~k space operator can be written as superposition. The 

change in the weights defines the linear operator 

The Fork space operator can be written as 

(2.28) 
1I,m=O,l 

Where A is a complex matrix. 

It is easily checked that A corresponds to an integral operator in the space of ana­

lytic functions on G2• 

(2.29) 
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With Kernel 

(2.30) 
n,m=O,l 

This representation is inconvenient since we need to know the matrix elements 

Anm. Most of the Hamiltonians are expressed in terms of creation and annihilation 

operators and not in the form of projection operators. Therefore it is convenient to 

derive a representation from the expression for A in normal ordered form. In normal 

ordered form all creation operators are to the left of all annihilation operators. 

Normal ordering operation is indicated by 

(2.31) 

What is the action of 10 >< 0 I on a general ket a I 0 > +b 11 >. 

10 >< 0 I (a I 0 > +b 11 » = a I 0 >< 0 11 0> +b I 0 >< 0111 >= a I 0 > 
(2.32) 

What is the action of 1 - et c on the above general keto 

(1 - ctc)(alO > +b11 » = alO > +b11 > -b11 >= alO > (2.33) 

Thus the operators 10 >< 01 and 1 - ctc are equivalent for the Fock space of single 

particle system. A can be written as 

(2.34) 
n,m 

(2.35) 
n,m 

But already (Ct )1I is acting towards the left and cm towards the right. Hence there 

is nothing wrong to write it as 

(2.36) 
11,m 

(2.37) 
ij 

The matrix AN is trivially known if A is specified in normal ordered form. This is 

the chief benefit of using a normal ordered representation:The quantity A(i],1]) is 

generally hard to calculate, but AN (i], 1]) may be found trivially. 

A = L Anmln >< rnl (2.38) 
n,m=O,l 
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A= Aoolo >< 01 + Aodo >< 11 + AlOl1 >< 01 + Alll1 >< 11 

A = Aoo + AOl "I + AlO77 + All i7"l 

The general relation between AN and A is 

(2.39) 

(2.40) 

(2.41) 

The proof of equation 2.41 is given in Appendix A. The Grassmann representation 

for operator product is also required for future use. 

(2.42) 

The proof of equation 2.42 is given in Appendix B. In general 

(2.43) 

They will commute if anyone of the operators in the operator product is bilinear 

in Grassmann variables. 

Finally the Grassmann representation for an operator trace is required for use in 

statistical mechanics. 

For an operator A on F, 

(2.44) 

The proof of equation 2.44 is given in Appendix C. 

It can be noted that the order of integration is reversed in the trace formula from 

that in the previous equation. The above derivation for the Fermion case can be 

generalized to the N Fermion case by making the replacements 

(2.45) 

77 ---t (rh, rh, ... , "IN) (2.46) 

N 

j d1Jd77 ---t fIT ~"Iodrfo 
0=1 

(2.47) 

The significant results of this section are summarised in Appendix D. 
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2.3 Functional integrals for Fermi Hamiltonians 

In the present section, we derive the functional integral representations for the 

partition function and Green's function for a Fermi system. As usual the fermion 

species is indicated by a Greek superscript on Grassmann element. In any term 

a repetition of superscripts or subscripts implies sum of all species. The partition 

function of a second quantized system is written as 

Z = Tracee-13H (2.48) 

With 13 as k!T where kB the Boltzmann's constant and Tthe temperature in Kelvin. 

H is the second quanti zed Hamiltonian for the system. Consider an arbitrary par­

tition of the interval [0,13]' (10 = O,/b ... , 'N = 13) and let 6.lj = Ij - Ij-l 

The partition function may be rewritten as 

N 
Z = Trace II e-l!.TjH (2.49) 

j=l 

It is difficult to determine the Grassmann representation of the operator e-l!.TjH. 

However,the normal ordered representation: e-l!.TjH : is trivial. It may be obtained 

by replacing creation and annihilation operators with corresponding Grassmann 

variables. 

(2.50) 

(2.51) 

(2.52) 

Thus replacing e-l!.TjH with its normal ordered form leads to the neglect of terms 

(l!.T~;k? Therefore the error in this replacement is of the order of (6.'j)2 when the 

Hamiltonian itself is normal ordered. It follows that 

N 

Z = lim Tr{II : el!.TjH :} 
l!.Tj~O.N~oo . 1 

J= 

A simple Grassmann representation of Z is now possible. Let 

N 
P=. II : e-l!.TjH : 

j=l 
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Let 

Where 

PV(1JN,1)o) - (A1A2··· AN)(1JN, 1)0) 

(A1Bl)(rrN, TAl) (2.55) 

Bl = A2A3A4 ... AN (2.56) 

Pv (1JN, 1]0) = fd1),~_ld1JN_l e(rftr'1N-I)TIN-1 e(ijN-l-'1N)~ Af (1JN, 1JN-l )Bf (1JN-l, 1]0) (2.57) 

Now consider 

Bf(ijN-b1]o) - (A2B2)N(ijN-l,1]o) 

_ f dijN-2d1JN-2e('1N-l- oiiN-2)'1N-2 

e(ijN-2-ijN-l)~ Af (ijN-1l1JN-2)Bf (ijN-2, TAl) (2.58) 

By making use of the fact that Af(rrN,1JN-l), Af(ijN-h 1JN-2) etc are bilinear in 

Grassmann variables and proceeding in the above way through the product of op­

erators, we get 
nN( - ) jD- n..-.)N-l -t{ r 1JN, '10 = 1J.LJ'1 e (2.59) 

Where 
N N 

S' = - L)iil - rff-l)1JI-l + L !:l.T1H(ift, r//-l) - (iil - rfN)rfJ (2.60) 
1=2 1=1 

and 
N-l 

(DijD1Jt = IT IT diljd1Jj (2.61) 
o j=l 

To each point TI on the imaginary time partition we attach a separate set of elements 

(ift, rft)· It can be noted that the creation operators in H are replaced by ift and 

destruction operators by 1J'-l. The operator Trace formula given by equation 2.53 

becomes 

N 

Z = Trace[: IT e-ll.TjH 
:] 

j=l 

= fIT drfJ difNe2.fNrfo Pv (1JN, 1]0) 
o 

The complde exponential given by equation 2.59 becomes 

N 

I) ift - iil- fJl-l + iil r£ + rfN1J~ 
1=2 
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Note that the elements rfo and TJN do not appear in equation 2.60. For the sake of 

conciseness Let 

~ = -TJN (2.64) 

Thus expression 2.63 becomes 

N N 

- 'Liit(TJI- TJI-1) + 'L!:l.TzH(iit,r//-l) (2.65) 
1=1 1=1 

It is possible to perform a change of variables in the measure also. 

in d~ drfN = (_l)d in dTJNrfN = in difNdTJN 
000 

(2.66) 

The minus sign is removed since the multiplicative factor becomes (_1)2d where d 

is the number of Q values involved. The fundamental relation for Fermi functional 

integral can be written as 

(2.67) 

Where 

(2.68) 

and 

(2.69) 

Where rfo = -TJ'N and H is assumed to be given in normal ordered form. The 

exponent is called imaginary time action. 

The results obtained holds for arbitrary partition of the interval [O,,Bj, in par­

ticular one may take !:l.TI = ~ for all l. The uniform partition has the important 

advantage that Fourier transform from the imaginary time label to imaginary fre­

quency label is possible. 

The partition function of equation 2.67 is completely general in character. It 

can be noted that the term H( iit , rfl-l) is off diagonal in the imaginary time label. 

To make the term containing the Hamiltonian diagonal in the label l we perform 

the following variable transformation in equation 2.67 

( ~ ) ~ ( TJ!l ) (2.70) 

(This is a valid transformation, sinceij and TJ are independent elements). The new 

representation for Z is 

(2.71) 
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(2.72) 

where 

(2.73) 

Arbitrary finite temperature correlation functions are expressed in a form similar 

to the expression for Z, the partition function. 

Correlation functions have the form 

Tr(e-J3HTT(61(rCI))62(rC2)) .. . )) 

Tre- J3H 

Where TT is the time ordering operator, and 

(2.74) 

(2.75) 

The time labels for the operators appearing in correlation functions are denoted by 

superscripts to distinguish them from imaginary times appearing in the partition 

of (0, ,8). As a simple example consider the propagator 

(2.76) 

Assmne rC I ) < rC2) Let the partitioning be 

(2.77) 

This is represented in figure (2.2.2) 

The T interval contains rCl) and rC2), the imaginary time label. The correlation 

function can be written as 

(2.78) 

The expression 2.78 may be rewritten by expanding the time evolution operator 

with the aid of the partition. In the limit of an infinitesimal mesh, the replacement 

e-Il.TlH by : e-Il.TlH : is valid. A simple Grassmann representation of e-Il.T1H becomes 

possible. 

Note that 

. e-Il.TlH . C . e-Il.T1HC . 
• • 0 - • o· 

c! . e-Il.TlH . 
o . . 

. c! e-Il.T1H . 
• 0 • (2.79) 
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'[-0 

7, 

AT, 

fig (2.2.1 ) 

Partition of the interval [0, ~ ] for the representation of 

the partition function Z. The intervals AT· 
J 

may be chosen 

arbitrarly. 

. , I 

fig ( 2.2.2 ) 
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Thus the correlation function takes the form 

(2.80) 

It can be seen that there is no ordering ambiguity in the Grassmann representation 

in equation 2.80. The reason is that each term in the expression of e-s can con­

tain an even number of Grassmann elements, and hence commutes with any other 

Grassmann element. Although the formula was derived for - < C13 (..,.(2)Cl(..,.(1») >, it 

infact holds for the time ordered quantity - < TTC13 (..,.(2»)Cl(..,.(1») > The expression 

for the action in the equation 2.67 is conveniently abbreviated using the continuum 

notation. 

8(17) = 1 dr.L(if(r),if(r)) (2.81) 

with 

L(if(r), if(r)) = if( r) ~r) + H(if( r), r/(r)) (2.82) 

The above form for the exponent in equation 2.67 and equation 2.80 leads one to 

interpret 2.67 and 2.80 as path integral in Grassmann functional space. 

2.4 Evaluation of Gaussian integrals in Grassmann 
variables 

Gaussian integrals over complex variables are given in the appendix. This is discussed 

in several books [19]. Here we will be discussing in detail the evaluation of a general 

Gaussian integral in Grassmann variables. 

Consider the general Gaussian integral 

(2.83) 

Summation over repeated indices is implied. To bring the exponent in equation 

2.83 to a quadratic form, let us consider the following variable transformation 

ij" = w" - ~" (2.84) 

(2.85) 

Substitutin~ equation 2.84 and equation 2.85 in equation 2.83, the term containing 

w" and Wm are grouped and their coefficient is equated to zero, we get the following 

matrix equation for A,~, X,~. 

[H] [A] = - [~] (2.86) 
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Therefore 

[X][H] = - [~ 

[A] = _[H]-I [~] 

[X] = _[~][H]-I 

(2.87) 

(2.88) 

(2.89) 

Substituting for [A] and [X] and after simplification, the Gaussian integrals becomes 

I(~,~) = eEnmf.Wl{ jDwDw) Ne-wHw (2.90) 

Then the durruny variables wand ware replaced by f], and 'T} Grassmann variables. 

Thus the integral becomes 

I(~,~) = ef.W1
{ jDfjD'T})Ne-iiHT/ 

I(~,~) = ef.W1
{ jDf]Dr])N[1(1 + 'T}sif,.Hrs) 

r,8 

(2.91) 

(2.92) 

The above form is justified as higher powers of 'T}siirHrs will disappear since r1" = 

0= iir2 

Therefore the integral 

N 

jDfjD'T})N[1(1 + 'T}siirHrs) = D(H) = L jDf]D'T})NP('T}j'T}~j)Hpjj (2.93) 
n P pI 

where the sum extends over all permutations P of the indices(1, 2, ... ,N) 

N 

jDf]D'T})N [1 'T}j'T}Pj 
j=1 

lfor even permutations 

- -lfor odd permutations 

Hence by the definition of the determinant, 

D(H) = detH 

and finally 

(2.94) 

(2.95) 

(2.96) 

The results derived in this section are essential for the evaluation of Green's func­

tion for a fermi Hamiltonian.The results for the Bose and Fermi case are given in 

appendix E. 
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2.5 Evaluation of partition function for Fermi and 
Bose systems 

In this section, the partition function for non-interacting Fermi and Bose systems are 

computed. The Fermi and Bose cases are considered in parallel by the appropriate 

interpretation of integration and choice of imaginary time boundary condition. 

Let the Hamiltonian be of the form 

(2.97) 

here the creation and annihilation operators may be either of Fermi or of Bose 

character. 

a 

Restricting to a single fermion (Boson) Fock space with Hamiltonian 

with 
N N 

SN = L ii/(a/ - a/-d + f L Dor/ii/a/_l 
~1 ~l 

This can be written as a matrix product 

But 

S N = L bijaiaj 
i,j 

N N 

SN = La/a/ + L(-l + fDor/)ti/a/_l 
/=1 /=1 

Comparing equation 2.102 and equation 2.103 

bi,i-l = (-1 + fDor) , bij = Owheni =1= jandj =1= i-I, bij = 1 wheni = j 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

(2.104) 

When i = 1, i-I = 0 t.he boundary condition ll{) = (TaN where (T = -1 for 

fermion and (T = 1 for Bosons.This leads to a term with (T( -1 + fDor)alaN i.e. 

biN =1= 0, but, biN = 0'( -1 + fDor) (2.105) 
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Applying the Gaussian integration formula for Grassmann and complex spaces 

Z = lim [det(B)t<1 
N~oo 

(2.106) 

Evaluating det B 

N 

Z - lim [1+(-1)N+10-II(-1+f~TI)t<1 
N~oo 1=1 

N 

[1 - 0- lim II (1 - f~TI)r<1 
N~oo 1=1 

(2.107) 

The limiting value of the product is independent of the partition TI, but is most 

simply evaluated for the uniform partition TI = ~, ~Tj = ~ for alll. Then 

(2.108) 

Thus 

(2.109) 

2.6 Evaluation of propagators for Fermi and Bose 
systems 

The propagator for a noninteracting Fermi or Bose system of the previous section 

can be written as 

(2.110) 

Therefore 

(2.111) 

Assume that ~l)and ~2) occur (in either order) in the partition of (0, (3) at Tm, TMwith 

m < M see figure(2. 5.1 ) 
We proceed by evaluating each time step integral separately. For example 

jda1da1 exp{ -al(al - 0-(1 - f~T1)aN) - a2(a2 - (1 - f~T2)al)} 

e -<l2
Q

2 jda1 da1 

(2.112) 
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I 

(L(I) 01 1: ('l.)) .. ,:r.., i 
'[11-1 1 

1 

1:1 

t i 9 (2.5.' ) 
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This becomes on integration with respect to al and al 

(2.113) 

jda2da2 exp{ -a2a2 + aa2(1 - €~T!)(1- €~T2)aN - a3a3 + a3(1- €~T3)a2} (2.114) 

Continuing the integration along previous lines, we get 

3 

exp{ -a3a3 + all (1- €~Tj)a3aN} 
j=1 

The result of performing integrals for indices 1 through m-I is just 

m 

exp{ -~am + a II (1 - €~Tj)~aN} 
j=1 

(2.115) 

(2.116) 

The integrals for indices m + 1 through M-I may also be performed. The result 

in this case is 
M 

exp{ -aMaM + II (1 - €~Tj)aMa.n} 
j=m+l 

Finally on performing integrals for indices M + lthroughN1is 

N 

exp{ II (1 - €~Tj)a-NaM} 
j=M+l 

The expression for G becomes 

G = _Z-1 J. II d~daia(r'2))a(r'I))exp{-. L aiai 
l=m,M,N l=m,M,N 

m M 

+ all (1 - €~Tj)a~aM + II (1 - €~Tj)aMam 
j=1 j=m+! 

N 

+ II (1 - €~Tj)a-NaM} 
j=M+! 

Performing integration with respect to aN and aN we get G as 

G - -Z-I J. II daidaia(~2))a(~!)) exp{ - . L aiai 
l=m,~f l=m,M 

M m N 

(2.117) 

(2.118) 

(2.119) 

+ II (1 - €~Tj)aMa.n + a II (1 - €~Tj) II (1 - €~Tj)a~aM} (2.120) 
j=m+1 j=1 j=M+I 
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i.e. 

G = _Z-l IT daid~a("2))a("1))e-iiAa (2.121) 
i=m,M 

Where 

[a] = ( :: ) (2.122) 

[a] = (a~ aM) (2.123) 

A is a ~2 matrix with Aij as the matrix elements. Finding aAa and comparing 

with the exponent in equation 2.120 we find 

All - 1 

A22 1 
m N 

A12 - -(1 I1 (1 - d!~Tj) I1 
j=l j=M+l 

M 

A21 I1 (1 - f~Tj) 
j=m+l 

2.6.1 Case1.Fermions 

(1 - f~Tj) 

The exponent in equation 2.120 can be expanded as 

Hence for ~2) < r 1 on simplification equation 2.125 becomes 

Thus equation 2.121 becomes 

G 

- _Z-l J I1 daidaia~amaMaM( -A12 ) 

i=m,M 

z 
(1 m N 

- Z I1 (1- f~Tj) I1 (1 - f~Tj) 
j=l j=M+l 
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Considering uniform partition for the intervals 

!J.Tj = f~) in the first of the products and !J.Tj = f3;/~/ for the second product. 

Thus for fermions (7 = -1 

i.e. 

Where 

Thus the propagator becomes 

where f is the fermi function. 

2.6.2 Case2.Bosons with ,.,1..2) < ,.,1..1) 

G = - Ini daida;a.-naMe-iiAa 

Z 

(2.128) 

(2.129) 

(2.130) 

(2.131) 

(2.132) 

To evaluate the above functional integral over complex variables, we can write the 

expression Ini diiidaia.-naMe-iiAa as 

dU'!U (In daidaie-iiAa+U,aHu) 
m M J liD! u--+O 

(2.133) 

Performing the functional integration in equation 2.133 it becomes 

_£12 (detAtleL,ju;(A-I),jUj) 
dUmduM 

(2.134) 

On differentiating with respect to UM, and then with respect to u-m the above ex-

pression inside the bracket becomes 

(det A r 1 (eL" "W' )".,(A -1 )mM + eL., "W' )"., ~ (A -1 )mjUj ~ U;A -1 kM ) 

(2.135) 

Applying the limit Ui -t 0 equation 2.135 becomes 

(2.136) 
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Thus the propagator G becomes 

(2.137) 

substituting for Z from equation 2.106 

(2.138) 

After some calculations on matrix A,(A-l)mM can be obtained. 

(2.139) 

(2.140) 

Therefore 

(2.141) 

Thus the propagator takes the form 

(2.142) 

where b(€) is the Bose function. The above derivation do not directly involve 

Fermi or Bose commutation relation. These are built into the functional integral 

schemes themselves. The operator and functional approaches are completely equiv­

alent. 

2.7 Functional integrals in the frequency domain 

In section 2.5 and section 2.6 we have discussed functional integrals for Fermi and 

Bose systems in which the interval (0, /3) is divided into equal intervals with imagi­

nary time labels. The partition function and propagators are evaluated in the limit 

of the number of such imaginary time steps going to infinity. It is possible to make 

a Fourier transformation from the imaginary time label to an imaginary frequency 

label and define the partition function and Green's function in terms of complex 

variables /Grassmann variables defined for the imaginary frequency case. In the 

present section we give a rigorous treatment of the conversion between imaginary 
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time label to imaginary frequency label. The continuum limit formal expressions 

discussed in field theory books [19] can be obtained from this treatment. For the 

sake of simplicity let us consider a single fermion Fock space with Hamiltonian 

H = €ata (2.143) 

Where a and at are creation and annihilation operators. In section 2.5 the 

partition function for the single fermion case is defined as 

With 

where 

and 

N N 
SN = 2: a/(a/ - a/-I) + d:~T 2: a/a/_l 

/=1 /=1 

N 

(DaDa)N = IT dajdaj 
j=1 

f3 
~T=-

N 

(2.144) 

(2.145) 

(2.146) 

(2.147) 

Consider the evaluation of ZN for N even (for the sake of simplicity) The choice of 

uniform partition T/ allows diagonalisation of the action by Fourier transformation. 

where ~I and tl.1 are new Grassmann elements, 

T/ = l~rnnd 
7r 

W71 = (2n + 1)j3 
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It can be noted that N Grassmann variable pairs (ai, a~) map into N new pairs 

(a1., ~,). In subsequent expressions whenever there is summation over n, it implies 

that the boundary values of n are that in equation 2.148 and equation 2.149. 

This new representation preserves the antiperiodic boundary condition. 

(2.151) 

Now let us transform each of the tenns in equation 2.145 to the new variables 

according to the scheme for Grassmann variables. 

~ L a,.an l L ei (wn -wnl)7l 

n,n' 1 

(2.152) 

The transformation is unitary with Jacobian 

8al 001 
J = [det( -8 )][det( .Q.,_ )] = 1 

a?, ~, 
(2.153) 

Likewise 

(2.154) 

N 

L alal_1 = L a.,alle
iw

"AT (2.155) 
1=1 11 

Substituting equation 2.152 and equation 2.155 in equation 2.145 

(2.156) 

where 

(2.157) 

Equation 2.157 can be written as 
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(2.158) 

A is a diagonal matrix. Hence the functional integral over Fermi variables will 

be 

(2.159) 

Equation 2.159 can be written as 

z - 1 + (-1 + €~T) L eiwn~T 
n 

+ (-1 + €~T)2 L ei(Wn+Wnl)~T 

n>n' 

+ ... + ( -1 + €~T)N IT eiwn~T (2.160) 
n 

The sum En eiwn~T vanishes. The product 

IT eiWn~T = IT ei(2n+l)~~ = 1 (2.161) 
n n 

Thus 

(2.162) 

The partition function becomes 

(2.163) 

Starting from equation 2.159 we may write the partition function in another way 

(2.164) 

This may be written as approximately equal to 

(2.165) 

This can be written as 

(2.166) 
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Where w is an NXN diagonal matrix with elements Ww The approximation 

used in equations 2.165 makes Z divergent. This can be avoided by writing the 

expression in the form of the ratio of two partition functions. 

Z . + 
Zo = exp[TrelWo {In(iw - f) - In(iw)}] (2.167) 

where Zo = 1 + e-~ = 2. The expression in equation 2.167 may be obtained by 

converting the sum to a contour integral. 

For a single boson case a similar expression may be derived. 

(2.168) 

But in this case Zo cannot be defined as in the Fermi case as (l-e- tk)-l diverges 

for f -+ O. To avoid this difficulty we define 

Z - Tre -I3H
Ow ith 

Ho - €oataand 

fO > 0 

Then the ratio of the partition functions becomes 

le. 

.! = lim TIm[l - eilJm~T(1_ fO~T)] 
Zo N--"oo TIm [1 - eilJm~T(1 - f~ T)] 

Z .+ 
- = exp{ -Traceewo {2ln(ill- f) -In(ill- fO)}} 
Zo 

(2.169) 

(2.170) 

(2.171) 

Here eilJ.j, (ill - f), (ill- fO) are diagonal matrices and lIm = 27rmT are the Mat­

subara frequencies in the Bose case. 

The frequency space Green's functions are also evaluated along previous lines. 

Consider for example the Green's function 

(2.172) 

For the Fermi (Bose ) Hamiltonian 

(2.173) 
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The Fourier transform is just 

With 

Xn - Wn = (2n + l)~for fermions 

7r 
- Vn = 2nj3for bosons 

Consider equation 2.172 

(2.174) 

(2.175) 

(2.176) 

Substituting for the variables in terms of their Fourier transforms equation 2.176 

becomes 

(2.177) 

Where under the summation sign eiwm'o = 1 since fl) = 0 and r(2) = T in the 

present case. 

(2.178) 

When Wm = Xn the exponent becomes 0 and the integral over T becomes {3. 

When Wn f. Xn the integral in equation 2.178 vanishes. Therefore equation 2.178 

becomes 

(2.179) 

When rn' f. n the functional integral in equation 2.179 vanishes. 

(2.180) 

with 

44 



(2.181) 
m 

On performing integration for each pair a;,." a".. the result is 

(2.182) 

But 

(2.183) 
m 

Therefore 

G(iXn) - lim 
!::J.r 

(2.184) -
N->oo 1 - eix .. ~T(l - ~!::J.r) 

- lim 
1 

(2.185) -
N->oo ~ - iXn + O(!::J.r) 

1 
(2.186) -

~ -'lXn 

The Green's function for more complex Hamiltonians may be derived in a similar 

fashion. 

2.8 Slave Boson representation for the single im­
purity Anderson model 

In this section we discuss the auxiliary boson (slave boson) technique introduced 

by Barnes [20] and Coleman [21].It makes use of the Feyrunan formulation for 

imaginary time Green's functions. The slave boson formalism introduced in this 

section is closely related to the conventional manybody techniques based on free 

particle propagators. 

The single impurity Anderson model Hamiltonian [22] has the form 

H = Hba"d + Himpurity + H mix 

Hband = L ~knk,M 
k,M 
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where nkM is the number operator for band states. Himpurity is written as H f . 

(2.189) 

H mix = VL[cl,M I 0 >< M' +h.c.] (2.190) 
k,M 

where Vis the hybridization parameter, the states, 0 > and, M> (where Mcan 

assume values -j, -j+ 1, ... ,j) represent the empty state and single impurity level. 

In the limit of U at the impurity level, the only impurity level configuration is the 

state , 0 > or anyone among the possible angular momentum states , M > . The 

occupied state degeneracy is just 2j + l. 
The projection operators, M > < 0 I and, 0 > < M, present in the hybridization 

term prevents direct use of diagrammatic techniques based on free fermions. 

The infinite U limit of the problem of magnetic impurity may be identified with 

an equivalent operator acting within a restricted Hilbert space of free particles. 

The use of equivalent Hilbert space dates from the work of Abrikosov [23] on the 

Kondo problem. The additional complications in the Kondo problem is the presence 

of ionic spin operators. In the scheme introduced by Abrikosov, these operators were 

replaced by Fermion bilinears acting within a restricted Hilbert space. The fermions 

which appear in perturbation theory may not be interpreted as physical particles. 

Hence this approach is called pseudofermion technique. A similar representation for 

the infinite U Anderson model ,was introduced by Barnes and later by Coleman. In 

this case, the projection operators are replaced by fermi on boson bilinear operators 

acting within a mixed Hilbert space of fermion and boson states. 

(2.191) 

where band fM are Bose and Fermi destruction operators. A pseudo-Hamiltonian 

may be defined on the full Hilbert space;it takes the form 

(2.192) 

where 

Hba.u;l - Lfknk,M (2.193) 
k.M 

Hf - ffLfMfM (2.194) 
M 
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Hmix = VI)Cl.Mbt fM + h.c.) (2.195) 
k,M 

The restricted Hilbert space of physical states is a subspace for which 

btb+ LIMfM - Q = 1 (2.196) 
M 

Now for illustrating the method let us consider the case where M = 2 , ie. only spin 

degeneracy is present.Let us represent the auxiliary boson state bylb> and the two 

fermion state by IfI> and 112>' Therefore the state of the system at an impurity will 

be represented as a tensor product Ib> (9 IfI> (9 112> . They can have 8 different 

fillings. Operating with equation 2.196 we get the eigen values O,1,2,2,3,1,1,and 

2. Out of the above states with different eigen values the restricted Hilbert space 

corresponds to the state with eigen value l. 

The states are Ib 1 > (9 IfI 0 > (9 112 0 > ,Ib 0 > (9 IfI 0 > (9 112 1 >, 

Ib 0 > (9 Ih 1 > (9 112 0 > 
Now let us return to the general formalism. Within the restricted space, the prop­

erties of the pseudo Hamiltonian are identical with that of the initial Hamiltonian. 

This approach has been called the slave boson or auxiliary technique, since a boson 

is introduced to represent a system which previously contained only fermions.This 

is the elementary picture of slave boson formalism. 

2.9 Derivation of 0(1/ JV2) partition function for 
the single impurity Anderson model 

Large N technique in condensed matter theory originated with their application to 

the problem of magnetic impurity in a nonmagnetic host. The possibility of consid­

ering the orbital degeneracy as an expansion parameter was suggested by Anderson 

[24]. This was applied to the magnetic impurity problem by T.V. Ramakrishnan 

[25].1n this section we give a detailed derivation of the partition function for the 

single impurity Anderson model in a large N functional integral formalism [26]. 

The partition function for the Anderson model discussed in section 2.8 may be 

written as 

(2.197) 

where H is the pseudo Hamiltonian introduced in section 2.8. 
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H - 2: clMckM + €,2: fMfM 
k,M M 

+ V2:(cl,Mf",bt + bfltCkM) (2.198) 
k,M 

where clM and fM are the fermion creation operators for conduction electrons 

and impurity electrons.bt andb are the creation and annihilation operators for slave 

bosons. The impurity degeneracy N = 2j+ 1 where j is the orbital angular momen­

tum quantum number. 

The Hamiltonian given by equation 2.198 is acting on a restricted subspace of 

the original Hilbert space, which satisfies the condition given by equation 2.196. 

The trace operation may be extended to the full Hilbert space if an operator delta 

function which projects out the Q = 1 subspace is inserted. Such an operator can 

be written as 

1 f3d>" -i,8A(Q-l) -e 
-~ 21!' 

(2.199) 

Regarding Q as aC number we can perform the integration and equation 2.199 

becomes 
f3 [e-it3(Q-l)~ _ ei,8(Q-l)~] = sin(Q - 1)1!' 

2if3(Q - 1)1!' (Q - 1)1!' 
(2.200) 

1
. sin( Q - 1)1!' 
lm = 1 

Q->l (Q - 1)1!' 
(2.201) 

For Q i= 1,Q can take values 2,3 upto 2j+ 1 in which case equation 2.200 becomes 

zero. Thus we find that the integral given by equation 2.199 behaves like a delta 

function. When Q is an operator it becomes an operator delta function. 

therefore 

(2.202) 

where H is given by equation 2.198 

The restriction of the Trace operation to a subspace of the Hilbert space is 

affected by the operator delta function 

(2.203) 

put 

H + i>..Q = H(>") (2.204) 
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Since the Trace is now performed over the full Hilbert space of Fermi and Bose 

states,a relatively simple functional integral representation of the partition function 

is possible. 

H(>.) - I>:kclMCkM + (€f + iA) I: fMfM + iAbtb 
~M M 

+ VI:(ckMfMbt + bf~CkM) (2.205) 
k,M 

Now Z becomes a functional integral over complex and Grassmann variables. 

where 

N 

S - I:[c7M(c7M - c7~) + f,1(f,' - fz'-1) + +b,(b, - b,-dl 
1=1 

N 

+ I: ~T[€kc7Mc7~ + (€f + i>.)f,1 t,!.l + iAb,b,-d 
1=1 

N 

+ I: ~TV1b,C,kM fz'-1 + b'-1f,1c7~l 
1=1 

(2.206) 

(2.207) 

This form is inconvenient to manipulate because of the asymmetric time step 

indices in the interaction term. This may be remedied by the following transforma­

tion. 

( ff ) --+ ( ff-1 ) ff fz:-l 
(2.208) 

The action becomes 

(2.209) 

where smnmation over l label is implied. After making a parameter rescaling 

V --+ fN and introducing Fourier transform of the Grassmann and complex variables. 
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71 

71 

m 

z -1 e-S 

c.1,b 
(2.210) 

(2.211) 

(e-iw"~T - 1) 
G;;l (iwn• fk) - - - fk (2.212) 

~T 
(e-iw~T - 1 

G;;l(iwn' fl + iA) - - ~T - (El + iA) (2.213) 

(1 - ei""'~T) 
D;;l (illm• iA) _ - - iAei""'~T (2.214) 

~T 

The last two terms in equation 2.211 contain Grassmann variables, which are 

not in the diagonal form. To bring them to the diagonal form we make variable 

transformations defined by 

::JcnM -kM V -iw,,~TG (. ) '" b LM In - Cn - we ~ 'lW71 ,fk ~ n'-nJn' 
yN n' 

(2.215) 

_JcnM kM V -iw .. ~TG (. ) '" -b .eM In - Cn - we ~ 'lWn , fk ~ n'-nJ n' 
yN n' 

(2.216) 

The partition function is given by 

z=l dAj e-s 
-~ ..,,J,b 

(2.217) 

where S is given by 

71 

71 

+ ~T~ L e-iWn'~TG~(iw71"fk)b7l1l_71,b7l_71'?nf:J, 
7l,n',n" 

~T L bmbmD;;l(illm, iA) (2.218) 
m 
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Doing the integration over "y and f Grassmann variables 

(2.219) 

where 

S = -Nrrace (In[1 - V' ~ G(fk + iA)XG(fk)xt)) -,s~ bmbmDi) 1 (illm' i-X) 

(2.220) 

(2.221) 

(2.222) 

(2.223) 

(2.224) 

(2.225) 

where W71 and IIm are the Fenni and Bose Matsubara frequencies. In equation 

2.223 the Bose propagator is written with subscript O. We reserve the notation D>' 

for the dressed Bose propagator. 

Now let us derive the expression for z<1) and ZiJ. The quantity W is to be 

treated as a constant of 0(1). To obtain terms of order 0(1) , we retain terms of 

order bmbmin the action S. 

Tenns of quartic and higher order,which follow from the expansion of the loga­

rithm enter with coef. of 0(:$) where I ~ 1. Thus 8<1) becomes 

S<1) = -,sI: 1 bm 12 (Dil 1(illm,i-X) - rr>'(illm)) (2.226) 
m 

where n>'(illrrJ can be obtained by expanding the logarithm to the lowest order 

and then explicitly writing out the frequency trace.Expanding the logarithm tenn 

in equation 2.220 
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- N1I L G(€f + iA)XG(€k)xt (2.227) 
k 

~ f3m; ~ GJ(iw7I + lIn))Gk(iw7I)bmbm (2.228) 

Combining equation 2.223 with the term 

(2.229) 
m 

(2.230) 
m 

where 

rr),(illm ) = m; L GJ(i(wn + lIm))Gk(iwn) 
k,n 

(2.231) 

On performing frequency sum in equation 2.231 using contour integral technique 

the right hand side becomes 

(2.232) 

wheref(€k)and f(€f + iA) are fermi functions. When Gaussian integrals over the 

fluctuating complex variables b(lIm) are performed at this order of approximation, 

we get 

1 e-s(I) = exp[- L lnf3(illm - iA)] exp[- L In(1 - rr),(illm)D~)] 
b m m 

The sum Em In( illm - iAf3) can be written as a frequency sum. 

~ 1 dz In(z - iAf3) 
27ri c (ez - 1) 

Making a coordinate shift, we get expression 2.234 as 

1 i dzlnz 
27ri c ei/3>.+z - 1) 

Here the contour is taken as shown in figure (2.8.1) 
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" 
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.. 

fig (2.8. J.) 
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Going over to polar coordinates, after simplification the contribution from the 

contour parallel to the X-axis in the integral in equation 2.235 becomes 

When the integration is performed 

Along the arc the contribution to the integral is vanishingly small. 

Thus we get equation 2.233as 

(2.236) 

(2.237) 

(2.238) 

The sum over the discrete variable m in equation 2.238 may be transformed to 

an integral over the contour r 1 surrounding the imaginary axis in figures (2.8.2a, 

2.8.2b, 2.8.2c) 

The frequency sum 

L In[l - zYo(illm )IIA(illm )] 

m 

can be found by considering a contour integral. 

Jdz f3 -.b(z) In(l - zYo(z)IIA(z)) 
27rt 

(2.239) 

According to Cauchy's residue theorem this integral should be equal to 27ri times 

the sum of the residues at the poles of the Bose function b(z). This contour should 

not enclose the poles or branch cuts ofthe function In[l-D~(z)~(z)]. The quantity 

which is 27r'i times the sum of the residues will be giving the frequency sum. One 

should do this contour integration carefully. As A is a real variable, the principal 

branch of the logarithm has a cut along the line Im(z) = A with branch point 

at Eo + iA, and Eo < O. The contour of integration r 1 must not cross this cut. 

The technical difficulty is overcome by shifting A integration to the complex plane 

A --+ A - i..\o with constant ..\0. With the shift in A, the branch point in the logarithm 

is displaced to (Eo + AO) + iA. By choosing Eo + ..\0 > 0, the cut may be located 

entirely to the right half plane. Then the step in equation 2.239 is allowed. 

We change the integration variable by transforming to z --+ z + iA. 
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-A 0 

( a ) ( b ) 

( c ) 

fi 9 (2.8.2) 

a. Contour of integration for performing the Bose 

frequence sums in equation:2.. 1- 3'" 

b. Contour of integration G- after the variable shift 

has been made. Z ) z+i~ with ".Aa = rm ( ). ) . 
The quantity Ao may be choosen sufficiently negative 

to ensure that rz. lies entirely to the left of the 

singulari ties of equation 2.. 240 

c. Contour of integration encircling the singularities of the 

logarithm in a counter clockwise fashion. 



Thus equation 2.239 becomes 

lr dz fI>'(z) L In[l - D~(i/)m)rr>'(i/)m)] = j3 -.b(z + iA) In[l - --] 
m r2 27rz Z 

where 

and f2 as in figure (2.8.2b) 

The Bose and Fermi functions can be approximated as follows. 

b(z + iA) _ e-t3(z+i>.) + 0(e-2it3>.) 

f(ff + iA) - e-t3(t/+i>.) + 0(e-2it3>.) 

(2.240) 

(2.241) 

(2.242) 

The expansion of the Bose and Fermi functions within the A integral may be 

simply justified. The expansion in equation 2.242 are uniformly convergent for 

ReA E [-~. ~]. Equation 2.240 can be written as 

d E(l)( ) L In[l - D~(i/)m)rr>'(i/)m)] = j3e-i f3>' ( ~e-t3z In[l _ 0 z] + O(e-2it3>.) (2.243) 
m Jr! 2m z 

where 

(2.244) 

When the contour is distorted in figure(2.8.2c) the right hand side of equation 

2.243 becomes 

d E(l)( ) 
_ j3e -it3>. ( ~e -f3z In[l _ 0 z] + O( e - 2it3>.) 

Jr 27rz z 
(2.245) 

Using equation2.245 the 0(1) partition function becomes 

z<l) = 1 j3dA eit3>'(l + e-f3(t/+i>.)t 1. 
- ~ 27r (1 - e-1t3>.) 

(
1 + j3e-it3>. ( dZ.e-f3Zln[l _ E~l)(Z)] + O(e-2i>.t3)) 

Jr 27rz z 
(2.246) 

The first term in equation 2.246 becomes 

. [1 + e-f3(t/+i>.)]N . (1 + Ne-t3(t/+i>.) + O( e-2i>.t3) 
e1t3>. ~ e1f3>' -'-----:-----:-::-:-:---'----~ 

(1 - e- it3>.) (1- e-it3>.) 
(2.247) 

eit3>. + Ne- t3t / 

(1 - e-it3>.) 
= (2.248) 

~ (eit3>. + Ne- t3t /)(l + e-it3>. + e-2it3>. + ... ) 
(1 + Ne- t3t /) + eif3>' + e-if3>'(1 + Ne- t3t /) + O(e-2i~~249) 
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On performing integration with respect to >., the first term in equation 2.249 

becomes (1 + Ne- f3t ,). On integration with respect to >., the second and third terms 

vanishes. Thus equation 2.246 becomes 

(2.250) 

Integrating by parts on z in equation 2.250, 

(2.251) 

In a similar way but with more involved calculations we could obtain the O(~) 

correction to the partition function. The additional term appearing in the action at 

O( ~) is the second order term in the expansion of the logarithm in equation 2.220 

(2.252) 

The partition function to O(~)becomes 

(2.253) 

By evaluating the functional integral over b and then performing>. integration 

the partition function can be evaluated to O(~). 

2.10 General slave Boson techniques 

In several problems in condensed matter physics, basic Hamiltonians which de­

scribes charge/spin dynamics contain very strong interaction terms so that they 

cannot be treated within the framework of conventional manybody techniques. The 

systems of this class are found to exhibit strongly correlated behaviour. For study­

ing these systems slave boson techniques are used. The slave boson technique we 

have already discussed in section 2.8 has the disadvantage that the auxiliary bosons 

introduced to take care of the constraints do not carry spin. Spin correlations ap­

pear only as a second order process in this formulation. Another method which is 

used in spin models is called Schwinger boson[27] model. This has the disadvantage 
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that the charge dynamics appear as a second order process. The disadvantage of 

the above two models can be avoided by adopting a new slave boson technique in­

troduced by Kotliar and Ruckentein[28J. The following are the important features 

of this technique. 

1) A strongly correlated site can be in any of the four states empty, singly 

occupied with spin up, singly occupied with spin down and doubly occupied. Each 

of these states is represented by four different slave bosons. 

2) A spin doublet of fermion fields to the singly occupied sites. 

The results of the calculation based on such a representation leads to results 

identical to the Gutzwiller approximation in meanfield theory for the Hubbard 

model [29,30J. It could also predict a metal insulator transition at half filling. 

One disadvantage of the Kotliar Ruckenstein scheme is that the representation is 

not manifestly spin rotation invariant. A spin rotation invariant reformulation has 

been performed by Li et al. [31J. 

In this section we will discuss the spin rotation invariant representation of the 

Hubbard model. In the original idea put forward by Kotliar and Ruckenstein, two 

pseudofermions iT, h and two slave bosons e and d for empty and doubly occupied 

sites and two bosons PT and Pl for the two singly occupied sites are introduced to 

describe the system. 

I 0 > - et I vacuum > 

I (7 > - i!fu I vacuum > 

IH> - ~ Irftl vacuum > (2.254) 

The representation of the state I (7 > is not spin rotation invariant, but depends 

on the choice of the spin quantization axis in the spin space. In order to recover 

the two degrees of freedom associated with the spin quantization axis in I (7 > 
the operator product Ft!J, in equation2.254 is considered as creating a composite 

particle, whose spin is 1/2. This is the restriction on the spin of the composite 

particle. The spin of the pseudoferrnion (I), the two component spinor field should 

be 4. Therefore the only possible spin values for the p-bosons are 8 = 0 and 8 = 1. 

Therefore we define a scalar field (8 = 0) represented by Po and a vector (8 = 1) 

field P = (Pz,Py,Pz)' where Pz,Py and pz are cartesian components. 
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We may define angular momentum eigen states 

(2.255) 

Both Po, Pr., Py, pz and Pl,m satisfy canonical Bose commutation relations. 

The coupling of bosons with spin S = 1 and pseudofermions with S = ~ giving 

a total spin ~ is given by 

I a >S=l= L C(jl = 1,j2 = ~; ml = a - at, m2 = at I j = ~; a)PlmJto' I vac > 
+ 

0'=-

(2.256) 

with the Clebsch Gordon coefficient 

1 + 1 + 1 1 - 3 + 2m ~ C(1'2;m - 2'- 212,m) =+ 6 (2.257) 

When the component in which bosons with S = 0 and pseudofermion having 

spin ~ is also included, the state I a> can be represented as 

I a >= LP~,o'fo' I vac. > (2.258) 
0' 

where 

t _ ( ap~ + bp! b(Pl- ipt) ) 
Pa,o' - b(Pl + ipt) ap! - bp! (2.259) 

Orthonormalization of the states I a > yields 

(2.260) 

The ratio ~ is not determined and may be considered as a free parameter. Choos­

ing a = b 

t _! ~ t 
Pa,o' - 2 ~ PIJ T J.II1o' 

IJ=O 

Where TIJ are the Pauli matrices, including the unit matrix TO. 

conjugate operator is 
1 3 

Pad = 2 L pIJ TIJ,a,o' 
IJ=O 
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The Hermitian 
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The matrix elements of the two matrix operators satisfy the commutation rela­

tion 
t _~ 

[PUIU2,PU3UJ - 26uIU46u2U3 

In terms of Puu', e, d and fu the electron operators may be expressed as 

et - L(p~u'Iu'e + (7(7'~ f~p-u',-u) 
u' 

Cu - L(et fu'pu'u + (7(7'P~u,_u'fu'd) 
u' 

(2.263) 

(2.264) 

The terms involving the operator d may be expressed using the transformation 

properties of the Bose operators under time reversal operation T. 

_ A A 1 

Po = TpoT" = Po 

P = Ipr- 1 =-P 

These simply 

It follows that 

with 

Z t -t d u'u = e Pu'u + Pu'u 

(2.265) 

(2.266) 

(2.267) 

(2.268) 

(2.269) 

(2.270) 

When the commutation relations for P operators in equation 2.263 and the 

canonical anticommutation relation for pseudofermion operators are used we get 

the correct anticommutation relations for the original fermi operators (C, et), pro­

vided the following constraints are satisfied. 

(2.271) 

A second set of constraints follow from the fact that the matrix elements of f~ fu 

are related to those of ptp and dtd in the physical subspace. 

Iu'fu = 2 LP~luPu'.uI + 6uu'~d (2.272) 
UI 
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In terms of the PIA's the constraints in equation 2.272 can be written as 

3 

2: faf(1 = 2: PtpIA + 2cP d. (2.273) 
(1 IA=O 

"'- At t t ·t ~ 1(10' 10' J (1 = PoP + P Po - 'pxp (2.274) 
(10' 

The above discussion summarizes the strategy of the manifestly spin rotation 

invariant slave boson treatment. More details regarding this can be had in the 

references[32,33]. 

2.11 BCS Model studied using functional tech-
• nlque 

In this section we derive the partition function and hence the energy gap for the 

BCS superconductor using functional integral technique. 

The BCS reduced Hamiltonian has the form 

H = 2: €knCl,(1Ckn - ~g 2: ct,qct_k',_qC-k,-qCk,(1 
k,(1 k,k',eT 

(2.275) 

k stands for wave number. g is the electron (quasiparticle) - electron attractive 

interaction strength. This is assured to be positive. 

The partition function can be set up as a functional integral over Grassmann 

variables. 

where 

and 

where 
-b -kl--k! 

I =C, C, 
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(2.277) 

(2.278) 

(2.279) 

(2.280) 

(2.281) 



and 
(3 

!:1T = -
N 

(2.282) 

The two body interaction tenn can be written as two one body tenns using the 

Stratanovich Hubbard transformation[1,2,3]. The idea is that when we have two 

arbitrary commuting variables X and Y we can write eOXY as an integral. 

(2.283) 

where 

(2.284) 

Applying this to 'equation 2.279 Q = g!:1T, X = bl and Y = b
" 

the partition function 

can be written as 

with 

with 

S( e, ~) - er ( et~ 1 - er) + !:1 Tfkcf er + (3~,~, 

+ J g{3!:1r(~lb, + ~,b,) 

(D~D~)N = IT ~d(~I)d(I~I) 
1=1 7r 

Fourier transforming all variables in equation 2.286 

where 

where 
(e-iWn6T - 1) 

C- 1(iw7l,fk)=- -fk 
A .AT 

(2.285) 

(2.286) 

(2.287) 

(2.288) 

(2.289) 

(2.290) 

The following variable transfonnations are made in the Grassmann variables. 

(2.291) 

60 



The Jacobian of this transformation is unity. Thus 

where 

S =-ll.r!:'G,/(iwn, ~k)f: + f3~m~m 
- kl - kl + gll.TGll( iwn, €k)~m~m' hn'-nhn-n 

After performing the (fr, 'T) integrals, one finds 

with 

and 

Z6 - IT lim IT[e-iWnllr - 1 + €kll.-ri 
k N-<oo 71 

- IT(l+e-i3<k) 
k 

and 

The fact that €k = Lk has been used to simplify the expression for M. 

(2.292) 

(2.293) 

(2.294) 

(2.295) 

(2.296) 

(2.297) 

(2.298) 

(2.299) 

(2.300) 

(2.301) 

For a more concise notation, we redefine the complex variables as matrices 

so that 
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On performing the .,1, ,.1 integrals we get 

Z - Zo ( II det[1 + Ga(fk' Ma(fk)] exp[-,B~m~m] J( k 

- Zo { exp{ -,B~m~m + LTrln[1 + Ga(fk)Ma(f~} J( k 

with 

Ga(fk)Ma(fk) = gG(fk)XGt(fk)xt , 
with the new frequency space matrix (the fj.T --+ 0 limit ofGa ) 

fj.T 
lim . a 

aT-+O e-JW" T - 1 + fkfj. T 

1 

ie., 

The partition function for the BCS model becomes 

(2.305) 

(2.306) 

(2.307) 

(2.308) 

(2.309) 

(2.310) 

In the static approximation, only contribution from the zero frequency compo­

nent of the auxiliary field ~ is considered. 

Z 
Zo = ZstatZF (2.311) 

where 

(2.312) 

where ZF is the fluctuation contribution. 
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The integral in equation 2.312 can be evaluated by a saddle point approxima­

tion. The saddle point value of this pairing field will give us an expression for the 

zero temperature energy gap. Taking derivative with respect to ~ in the quantity 

appearing in the exponent in equation 2.312, we get 

(2.313) 

Doing the Fermi frequency sum in the above equation using contour integral 

technique we arrive at the equation. 

~L 1 = 1 
2 k Jt:~ + ge 

(2.314) 

Using the approach of[34] the summation over k is performed. We get 
I 

J9~ = 2hwDe -N(O)' (2.315) 

Where V~ is the energy gap, WD is the Debye frequencY" 9 the coupling constant 

and N(o) the density of quasiparticle states at the Fermi level. Thus we have seen 

that the functional integral provides us a new technique for obtaining the energy 

gap equation from the BCS reduced Hamiltonian. 

2.12 Variable transformations in functional inte­
grals 

The behaviour of partition function (defined as functional integral) under variable 

transformation is given by a theorem due to t'Hooft and Veltman(1974) [26,35].The 

theorem can be stated as follows. 

Let Z be the partition function defined as a functional integral over fjJ fields. 

Z = ~ e-S(~) (2.316) 

Under a variable transformation defined by 

fjJ = X + R(X) (2.317) 

It should be invertible in the vicinity of fjJ = O. All fjJ Green's functions defined by 

equation 2.316 will remain invariant when Z is written as 

(2.318) 
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with 
8R 

S' (X) = S(X + R(X)) - Trace In[l + 8x 1 (2.319) 

The logarithmic trace in equation 2.319 is the formal Jacobian of the variable trans­

formation. Z( tjJ) is obtained by performing Gaussian integration over the full real 

line or complex plane. Similarly Z(X) is also obtained by similar Gaussian integra­

tion over the same domain. 

The functional integral provides a powerful tool for obtaining perturbation the­

ory in the zero temperature limit. In this limit, the constraint integral in section 

2.9 need not be performed exactly, but may be treated in a saddle point approxi­

mation.The formal perturbation series that arises from the fluctuations about the 

saddle point may be transformed to an equivalent series by applying the theorem 

of t'Hooft and Veltman. 
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Chapter 3 

ELECTRON-PHONON 
INTERACTION WITHIN THE 
FRAME WORK OF THE 
FLUCTUATING VALENCE OF 
COPPER ATOMS - A 
THEORETICAL MODEL FOR 
HIGH TEMPERATURE 
SQPERCONDUCTIVITY 

3.1 Introduction 

The discovery of superconducting transition at high temperature in ceramic oxides 

[1,2] necessitates reconsideration of the conventional theoretical frame work of su­

perconductivity. The microscopic theory of BCS [3] with phonons playing the role 

of exchangE particles cannot explain superconducting transition at temperatures as 

high as 40K or 90K [4,5]. In chapter 1 we have explained such issues at length.Ex­

periments show nearly the absence of isotope effect in these ceramic oxides [6]. The 

La2-xSr xCU04 and YBa2Cu307_ S group of materials have Cu-O layers which are 

the conducting planes of the crystal [7,8]. There is a strong anisotropy in these ma­

terials [9,10]. By substituting Sr atoms with the La atom of the parent compound 

La2Cu04, we can introduce holes into the oxygen 2p bands of the Cu-O planes [11]. 
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In YBa2Cu:I07-6 the introduction of oxygen vacancies affects the number of holes 

in oxygen 2p bands of the Cu-O planes [12]. It is found that Tc in these materials 

have a strong dependence on hole concentration [13]. 

The above features of the materials have been explained in chapter 1. In this 

chapter we consider a theoretical model where the rather strong electron lattice 

interaction and the on site repulsion at copper sites is taken into account. 

3.2 The model 

Various theoretical models have been suggested to explain superconductivity in 

these ceramic oxides. Some of these theories assume a model system where the role 

of 2p bands is not appropriately taken into account. Hubbard model Hamiltonian 

with the hopping term and the on site repulsive term are considered to contain the 

essential interaction to describe the superconducting transition. The Resonating 

Valence Bond (RVB) theory approaches the situation along these lines [14]. In this 

chapter We take the view that RVB description is correct in the insulating limit 

where antiferromagnetic correlation of the Cu spins is possible. When the material is 

doped it leads to the creation of holes in the Oxygen 2p bands unfavourably affecting 

superexchange interaction between Cu spins. The copper &P electrons hybridises 

with the oxygen 2p bands when there are holes in the 2p bands. This strength 

of the hybridisation depends on the doping concentration. In this framework we 

are taking into account the interaction of the 2p band electrons with the lattice. 

Double occupancy of the Cu sites is energy wise made unfavourable by the Hubbard 

on site repulsive term [15] These requirements are satisfied by Anderson's Lattice 

Hamiltonian [16] with a few additional terms. 

We assume that the electron - electron repulsive interaction is only of the on 

site Hubbard type and the effective electron phonon interaction can be replaced by 

a Frohlich type electron-electron interaction term [17]. 

Under the above conditions, the Hamiltonian for the system takes the form 

H = L CL,.Ck,a + Eo L a!.aai,a + L hwqb!bq 
ka i,a q 

, 
+ U/2 L ataai,aa!.",ai,,,, 

i,a,'" 
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(3.1) 

Where €k is the band energy with wave vectork. Cl,a and Ck,a are the fermion 

creation and annihilation operators for electrons in Oxygen 2p bands. Eo is the 

orbitally nondegenerate 3cfJ energy level of Cu atom. ata and ai,a are the fermi 

creation and annihilation operators for electrons at site i in Cu3cfJorbital. b! and 

bq are the phonon creation and annihilation operators. hWq is the energy of the 

phonons in the q th mode. VI is the strength of the hybridisation between localised 

and band states. V2(q) is the strength of electron-phonon interaction. 

The energy levels €k and Eo are measured from the chemical potential and hence 

their values depend on the doping strength. 

The Hamiltonian is transformed from the site representation to the wave vector 

representation by defining the following relations. 

t l/VN'L at e-ikRi ai,a - k,a 
k 

a; ,a - l/VN'L a eilc'Ri k',a (3.2) 
k' 

After substituting and replacing the electron phonon interaction terms with the 

Frohlich type electron-electron interaction term, the Hamiltonians becomes 

k,a k,a 

+ U/2N 'L a~+kQ,aat -kQ,a'akla'a~a 
kQ ,kl ,~,a,a' ,af<i 

+ VI 'L[al,aCk,a + cl,aak,a] + 'L V2(k, k', q)cl+q,actk',a'Ck'+q,a'Ck,a (3.3) 
k,a k,k' ,q,a,a' 

Let us consider the retarded Green's functions [18]defined by 

G1 -« Cl,a(t); Ck',a'(t') »= O(t - t') < [cl,a(t) , Ck',a'(t')] > (3.4) 

G2 =« aL(t); Ck',a'(t') »= O(t - t') < [al,a(t) , Ck',a'(t')] > (3.5) 

the equation of motion for Gland G2 will be 
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i :t G2 = i6(t - t') < [al,a(t) , Ck,a'(t')] > + < < [al,a(t) , H); Ck,a'(t') > > (3.7) 

When the commutators [Cl,a' H] and [aL, H] are evaluated and substituted in equa­

tion 3.6 and equation 3.7, we find that they contain terms with higher order Green's 

function in addition to the terms with the lower order Green's functions G I and G2 • 

These higher order Green's functions are decoupled by writing them as the product 

of correlation function and a lower order Green's function G l or G2 • Thus equation 

3.6 and equation 3.7 become 

Where 

i ! Gl = i6( t - t')6aa'6k,~ + P2G 1 - VI G2 , 

i !G2 = PI G2 - VIGI 

PI - -[Eo + U/N + U/NL < alt,a'akl,a' >] 
kl 

P2 - -[tOk + 2 L V2(k' - k) < dk',o'Ck',a' >] 
~,o' 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

In obtaining the two equations of motion, standard decoupling and approximation 

methods are adopted at the higher stage. The Fourier transform of the two equation 

of motion are found. Solving them G l (E) and G2(E) are found. 

(3.12) 

and 

(3.13) 

Diagonalising the set of coupled Fourier transform of equation of motion, we get 

(3.14) 

with energies 

(3.15) 

where Vk and Vk are given by 

(3.16) 
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V
k 

= 1/J2{1 _ (P2 - Pd }1/2 
J(P2 - P1)2 + 4\1 

(3.17) 

The system can be described as an assembly of noninteracting quasiparticles be­

longing to two different species, characterized by excitation energies E+ and the 

corresponding creation operators are 

t () t + t a+ k = Ukak,a - VkC k,a (3.18) 
-,a 

Thus we are making a canonical transformation from the original set to a new set 

of operators. The various terms of the Hamiltonian are expressed in terms of the 

quasi particle operators. By doing this, we intend to diagonalize the Hamiltonian. 

Expressing the original operators in terms of the new operators, we have substi­

tuted for various operators the combination of new operators. As expected, the 

Hamiltonian is not in the diagonal form. It contains off-diagonal terms of the form 

ata(k)a_,a(k) and a~.a(k)a+.a(k) .It also contains terms which involve four oper­

ators which do not satisfy the conservation of quasiparticle species. Such terms 

are neglected. Those fourth order terms which conserve quasiparticle species are 

combined and their coefficient is set equal to zero. On simplifying we get 

, \1\1 
V2(k, k) = -(U/2N){ utUf.- } (3.19) 

At OK very few quasiparticles are excited and hence the number operators for quasi­

particles m+.a(k), m_Ak) etc. have vanishingly small expectation values. There­

fore off-diagonal terms and fourth order terms containing number operators are 

neglected. 

Equating the coefficient of off-diagonal terms to zero, after simplification, we 

have 

Eo Vi - ~k = - L V2(k, k') 
ut '" 

By using equation 3.19 for V2(k, k'), equation 3.20 leads to 

Eo \1 _ ~k = ~ \1 L \1 
ut 2N ut '" Uf.-

Putting Uk = (1/2 + Xk)1/2 and Vk = (1/2 - Xk)1/2 . 

By substituting Uk and Vk and then putting 

U " (1/2 - x",) 
2N ~ {(1/2 + x"') } = ~k(O) 
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(3.22) 



we obtain 
1/2(Eo - ~k') - ~k' /2 

Xk' = 
Eo + ~k' - ~k') 

(3.23) 

Substituting for Xk' in the equation for ~k' the energy gap at Ok leads to 

(3.24) 

Assmning ~k as slowly varying with k and introducing D(~k as the density of local­

ized states per eu atom, we get 

(3.25) 

where ~ko is the upper bound of the hybridized 2p bands, and D{ ~k) is the localized 

states per eu atoms. For each value of ~k there are two values of wand hence 

we have to sum the two density of states corresponding to E+ and E_. Linear 

relations are assumed to hold between the doping strength x and the parameters 

Eo, ~koand, VI' 

Since the Fermi level decreases linearly with doping, the relationship between 

Eo and the doping strength x will beEo = R I x+0.5. In the undoped case x = 0, the 

localized eu state and the narrow 2p band of the oxygen atoms are of nearly equal 

energy. This justifies the introduction of the small energy difference 0.5 between 

the upper bound of the 2p band and the cu3£l9 level. ~ko is the topmost level of the 

2p band as measured from the Fermi level and hence the relation ~ko = R2x holds. 

The hybridisation parameter Vi should change with the overlapping integral which 
/I. 

in turn has...linear dependence on the concentration of the dopants in the out of the 

plane sites. Therefore we choose Vi = Vio + R3X , where VlO stands for the residual 

mixing parameter . 

We have assigned the following numerical values RI, R2 , andR3are given the val­

ues 2.0,2.0,and 0.2, respectively. Vio = 0.05, V2 = -0.056 e V, U = 6.0 e V and the 

density of band states per eu atom = 1.0. 

The set of equations for the Green's functions are solved and the correlation 

function in PI and P2 are found by iterative computation. For x = 0.19, the 

computed values are 

2 L V2 < cl,/7Ck ,/7 >= -0.8867 XlO- 5 

k 
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and 
1" t 4 N L < a~,a'a~,a' >= 0.7841X10-

~ 

The density of localized states is calculated using Green's function technique with 

the help of a digital computer. Substituting for the density of states the integration 

is performed and hence ~k{O) is calculated [19]. Corresponding to x = 0.19, ~k{O) 

has the value 6.4326XlO-3 e V and 2k~~) = 3.739 for a Tc = 40K. 

The mixing parameter is determined by the overlap integral of the band states 

with the localized states of Cu atom. This integral is determined by the ordering 

of the out of the plane dopants, which have a quasi periodic character. 

3.3 conclusions 

The work was undertaken at a time, when the relevant parameter regime was highly 

disputed and hence the parameter regime assumed in this chapter do not agree with 

currently held parameter values. Another defect of the analysis is the treatment of 

the strong correlations in the double time Green's function technique. The large on 

site repulsion is not amenable to conventional perturbation treatments and hence 

the results are inadequate in several respects. In the next chapter we analyse a 

more realistic Anderson lattice model, where strong local correlation are properly 

taken into account. In the strong coupling analysis of this chapter the nature of the 

paired state is not clear. This is an important deficiency of this type of analysis. 
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Chapter 4 

DENSITY OF STATES IN 
HIGH-Tc SUPERCONDUCTORS 

4.1 Introduction 

High temperature superconductivity in ceramic oxides raises serious questions re­

garding the mechanism of normal and superconducting state properties of these 

systems. A detailed investigation of such issues have been carried out in chapter 

1 of this thesis .Ever since the discovery [1] , various theoretical models have been 

suggested and different mechanisms ranging from conventional weak coupling BCS 

like to novel strong coupling formulations have been proposed [2-4]. 

It is believed that the essential physics of normal and superconducting state 

reside in the Cu-O planar subsystem which is common to the copper oxide su­

perconductors. Many theoretical models begin with a two-dimensional extended 

Hubbard model or Anderson lattice model with a strong on-site repulsive interac­

tion [5-7]. The introduction of nearest neighbour repulsion in the extended Hubbard 

model [8] emphasizes the relevance of charge degrees of freedom. In the t - J models 

and RVB theories the low energy sector of the problem is dominated by the spin 

degrees of freedom [9-10]. In this chapter we analyze the extended model without 

nearest neighbour repulsion, but with a direct oxygen-oxygen hopping between the 

Pq orbitals which brings to the scene, in addition to the spin degrees of freedom, 

the charge degrees of freedom. These models have been previously studied using a 

mean field 5cheme [11,12]. We have studied this strongly correlated problem using a 

slave bosoh [13] functional integral formalism [14] adopting a uniform saddle point 

approximation in the complex variables. 
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The slave boson scheme [13] has been discussed in detail in chapter 2 within the 

framework of functional integration. Photoemission studies show that the copper 

on site repulsion is the largest energy scale in the problem. At half filling, the 

materials are antiferromagnetically spin ordered insulators. The proximity to being 

a magnetic insulator makes strong correlation relevant to the doped case. 

Here we consider a model, in which the on site repulsion imposes a double 

occupancy constraint on the copper 

3dx Ly2 orbital. We study this using a large N expansion technique which is 

nonperturbative in the coupling constants. The essential features of large N tech­

niques is discussed in chapter 2.The study is restricted to the meanfield theory 

(N = oo).The partition function and the free energy are derived in section 2. The 

expression for the specific heat and the density of states have been derived in sec­

tion 3. The numerical computations are presented in section 4. The conclusion 

regarding the renormalized energy bands and the comparison with experiments are 

also discussed in section 4. 

4.2 The model 

The model we consider in this chapter has three essential bands. As a consequence 

of the oxygen ligand environment the copper 3d degeneracy is lifted and the orbital 

which is closer to the Fermi energy is the copper 3dxLy2 orbital. The relevant oxygen 

orbital are the pu orbitals of x and y symmetry. The Hamiltonian for the system 

can be written as 

+ tpd L d!uPi+1/2,u(Y) + h.c. + U/2 L d!.udiudl"did 
i ,1/2 ,u i,u,d ,(u~) 

+ tp L J1+1/2.u(Y)~+1/1,U(X) (4.1) 
1/1,1/2,i,u 

where 7]1 takes values ax and -ax and 7]2 takes values ay and -ay. The scale is 

so chosen that their magnitudes are 1, fp and fd are the unrenormalized energy 
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levels. They include the chemical potential d!,O' and di,O' are the Fermi creation and 

annihilation operators for holes in the filled copper 3dxLy2 orbital. I1+'11,O'(x) and 

Pi+'11,O'(x) are the creation and annihilation operators for holes in a PO' orbital next 

to the i th planar copper atom. Similarly the other p operators corresponds to the 

oxygen PO' orbital with y symmetry. In the low energy sector which is relevant at 

low temperatures, the large U limit imposes constraints on hole dynamics. 

Using a large N slave boson technique with b! and bi as the slave boson operators, 

the Hamiltonian take the form 

i,'12,O' i,'11,0' 

+ tpd/VN L bid!O'Pi+'12,O'(y) + (h.c.) 
i,0','12 

+ tp/VN L I1+'11,u(x )~+'12,(J(y) 
i,0','11,'12 

+ tp/VN L J1+'12,0'(y)P;+'11,u( x) 
i,O','11,'12 

+ i L Ai(b!bi + L dk~O' - qoN) (4.2) 
0' 

The partition function for the model in the functional integral formalism takes 

the form 

(4.3) 

where 

(4.4) 

(4.5) 

where 
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i,U,'72 i,U,'71 

i,'72,u 

i,U,'71,'72 

(4.6) 

where J:u, dia , ~;'71,u{X), ~+'71,u(X), ~+'72,u(y),and Pi+'72,u{Y) are Grassmann variables 

corresponding to Fermi creation and annihilation operators. 

We make a uniform saddle point approximation in the slave boson variables and 

Lagrange multiplier variables. We denote them as A and b. The functional integrals 

over the Grassmann variables are performed after converting the Grassmann vari­

ables from real space to momentum space and from imaginary time to imaginary 

frequency representation. 

The conversion of functional integrals over Grassmann variables from one set to 

another and how Grassmann functional integrations are carried out is discussed in 

chapter 2. The partition function then becomes 

Z = e- f3F , (4.7) 

where the free energy is given for real degeneracy of q which is 2 

k,u 

(1//3) L {2ln{G{~p,iwn)) In{A{x)A{y) - En 
71,k,u 

(4.8) 

where Ns is the number of copper sites in the planar subsystem, 

(4.9) 

iw" are the Matsubara frequencies 

iw" = (2n + 1)(i7r//3), (4.1O) 

and n varies from -00 to 00, and we have 

~d = ~d + A, (4.11) 
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(4.12) 

(4.13) 

and 

B = 16{tp - t~b2(€d - iwn t 1}2sin2(k:z;/2) sin2(ky /2) (4.14) 

The saddle point val ues are determined by 

We can write 

where 

and 

8F 
8A 
8F 
8b2 

- 0 

- 0 

ao = 1 

a1 = i"d + €p 

a2 = ai + €pi"d - 4t~b21'1 - 16t;1'2' 

a3 = (4t~b21'1 - 2ld€p)a1 + 32(t;ld - t~tpb2h2' 

a4 = ld€p - 4t~i"d€pb21'1 + 16(2t~b2 - tp€-d)tpld1'2' 

where 1'land1'2 are 

P( iw .. ) can be written as 

1'1 = sin2(k:z;/2) + sin2(ky /2), 

1'2 = sin2(k:z;/2) sin2(ky/2) 

4 

p( iw .. ) = II (E(j) - iw .. ) 
j=l 

(4.15) 

(4.16) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

where Ej are the roots of the polynomial p( iw,J When frequency sums are per­

formed aft(!r simplification the expression for the free energy becomes 

F:= L( ~){ln(1 + e- tk-d ) - t In(1 + e-PEU»)} + N s Ab2 - NBA (4.26) 
~a ~1 
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4.3 The electronic specific heat capacity and den­
sity of states 

The electronic specific heat capacity is given by the expression 

(4.27) 

where T is the temperature. At the low temperatures of interest to us, we can set 

f3 ---+ 00. The limit is applied after taking the derivatives. We can write 

(4.28) 

The summation over k can be replaced by integration. when this is done the 

contribution of the first term vanishes in the f3 ---+ 00 limit since the integrand is 

independent of the integration variables. The second term is simplified and on 

substitution in equation 4.27 yields the specific heat capacity per copper site in the 

planar structures as 

c. ~ 2"?T{H dk,t{/}:~:) lE{}l~oVl}, (4.29) 

where the quantity appearing as the multiplicative factor of 211";UT can be identi­

fied as the density of states at the Fermi surface. 

4.4 Numerical results and conclusions 

The saddle point values A and b2 are determined numerically using equation 4.15 for 

f3 in the 00 limit. When the numerical integrations over kx and ky are performed, at 

each integration step, equation 4.17 is numerically solved to determine the energy 

values E(j). Using the saddle point values, the density of states calculation is 

carried out. The variation of density of states with doping is plotted. The chemical 

potentials are so chosen that the average number of particles is given by 

(4.30) 

where {) is the doping concentration and Jl is the chemical potential. The computa­

tion are carried out for two sets of parameter values 
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(1) tp = -O.5eV tpd = -1.5eV €p = -4.0tpeV €d = (€p - 1.8)eV 

(2) tp = -O.leV tpd = -1.5eV €p = -4.0tpeV €d = (€p - 1.8)eV 

The variation of the density of states with 8 is shown in figure (4.1). For very 

small values of 8 (close to the half filled case) the saddle point values show large 

deviations. The corresponding density of states also show an increase. When 8 is 

very small the saddle point values become a poor approximation for the functional 

integral in view of the constraint in the problem. Therefore we are not including 

the limiting half filled case in the discussion. In the other domain the pattern 

of the variation of the density of states is similar to that of reference[II]. The 

renormalized energy bands are shown in figures (4.2) and (4.3). The two dimensional 

analogue of the Fermi surface is shown in figure (4.4). The calculated values are 

in good agreement with the values deduced by Grilli etal[ll] from susceptibility 

measurements [15]. The renormalized energy bands in figure(4.2) and (4.3) show 

that in the low energy domain the physics is governed by a single band as has been 

advocated by Anderson [16]. 

We have shown [17] that even for moderately large tp values and for the param­

eter regime considered in this paper the effective one band description holds. The 

calculated values of the density of states are in good agreement with estimations 

from experiments. 
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Chapter 5 

THERMODYNAMIC 
PARAMETERS OF HIGH Tc 
SUPERCONDUCTORS IN A 
FUNCTIONAL INTEGRAL 
CALCULATION USING A NON 
UNIFORM SADDLE POINT 
APPROXIMATION 

5.1 Introduction 

The theoretical issues raised by the discovery of high Tc superconducting[l] mate­

rials has given rise to a variety of theories[2,3,4,5] for explaining the normal and 

superconducting behaviour of these materials, The isotope effect being at a much 

a reduced level, a BCS mechanism[6] is a remote possibility, These materials show 

in their normal state several anomalous behaviour (This is discussed in the first 

chapter), and their normal state can not be explained along the conventional fermi 

liquid theory of weakly interacting quasiparticles, 

The structural details of these materials show that the superconducting'mate­

rials exist in the proximity of insulators with antiferromagnetic spin ordering in 

their sUblattices[7], Doping these materials either removes oxygen from the chain 

like structures in YBa2Cu307 materials or substitutes some of the metallic ions in 

the valenc(~ state +3 by those elements which exist in the +2 valence state, The 
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dopants which destroys the translational invariance of the lattice have their posi­

tions outside the planar structures of Cu-O. The holes doped either way exist in 

the planar subsystem and their dynamics has to be treated taking into account the 

dominant interactions in the system. 

When the Cu-O planar subsystems are considered, the symmetry of the con­

figuration shows that the ligand environment has its influence on the copper 3d 

orbitals. Copper atom has its outer electron configuration 3d104s1. When copper 

is existing in the + 1 valence state the outer orbitals will be 3d lO
• There are 5 d 

orbitals and this degenerate orbitals will be split up into nondegenerate levels by 

the electrostatic fields of the oxygen ions, which exist in the - 2 valence state. The 

copper d orbital which is most affected by this ligand environment is the 3dxLy2 

orbital. When a second electron is removed from the copper ion, it is taken from 

the copper 3dxLy2 orbital. In the superconducting compounds and nonsupercon­

ducting parent compounds, the copper atoms of the planar subsystem exist in the 

+2 valence state. When these parent compounds are doped, the electrons are re­

moved from the planar subsystem. These electrons are taken from the oxygen Pu 

orbitals. In a hole scheme of description, there is only a single hole in a 3d orbital 

of planar copper atom. It is possible to reduce the extended model, which includes 

both the copper and oxygen orbitals to a model in which Cu-O can have a single 

label. In this model electrons hops from site to site but there is no double occupancy 

of electrons on a single site. This is the Hubbard model[8]. In the large but not 

infinite U, a strong coupling perturbation treatment with certain approximations, 

this model Hamiltonian can be replaced by the t - J model Hamiltonian[9]. In the 

t- J model Hamiltonian, the essential interactions are the hopping term and the ex­

change interaction term. This one body hopping term is essentially not a one body 

term. It allows only those hoppings which will not lead to a double occupancy of 

electrons at a site. The t - J model in the non doubly occupied case can be studied 

using the slave boson technique[lO]. Grilli and Kotliar[ll] has studied the t - J 

model using a functional integral technique[12]. They make a uniform saddle point 

approximation in the Bose variables and Lagrange multiplier variables and then the 

functional integral over the Grassmann variables are performed. They have derived 

the expression for the free energy in a uniform saddle point approximation. In the 

next section of this chapter we derive the expression for the partition function by 

using a saddle point approximation in which we divide the 2D lattice of Cu into 
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two sublatt.ices in which the complex Bose variables are assumed to be phase shifted 

by 1r. The Lagrange multipliers are assumed to have a uniform saddle point value. 

Under this assumption the functional integral over the Grassmann variables are 

performed and the expression for the free energy is obtained. From this expression 

for the free energy the ground state energy and the density of states are obtained. 

In section 3 the expression for the free energy, the ground state energy and 

the density of states are obtained in a uniform saddle point approximation in the 

evaluation of the functional integral for the partition function. 

In section 4 the numerical computations are done on the analytic results of 

section 2 and 3 and the results are plotted in various figures for easy comparison. 

The important conclusion of the analysis is that the system prefer to behave in 

a periodic saddle point order as the ground state energy in this approximation is 

much smaller than that in the other approximation. 

5.2 The model 

In this section we consider the t - J model Hamiltonian of reference[12]. The 

Hamiltonian can be written as 

(5.1) 

where 0a and Cia are fermi creation and annihilation operators at site j. fd is 

the energy level of 3d:z:2 _y2 symmetry. t is the hopping matrix element and J is the 

exchange integral given by J = t. 
The Hamiltonian of equation 5.1 is subject to a nonholonomic constraint 

(5.2) 

Where qo = ~ and N stands for the spin degeneracy. The nonholonomic con­

straint in equation 5.2 can be imposed via a slave boson technique[lO]. How this is 

carried out. is discussed in detail in Chapter 2. 

The partition function for the system in a functional integral formalism will be 

written as 

z = J D[J1 D[b] D[~] d[-X] e-s (5.3) 
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where 

s - lr u{a - !f~I) + b{ (bf - bf-I) 

+ L).:r {€dJ{a !f~1 + o.jb{bf-I + o.jJ{a !f~1 

; A -q N - pa 4+'7,a [~j'i+'7 + to 0+'7 tJ. ] + h c + N " is. j,j+'7 ~ j,j+'7 } (5 4) 
• J 0 J I J I-I I-I NU; I-I .. J ~ I I-I . 

],'7 

lfa and !fa are the Grassmann variables corresponding to the pseudofermion 

operators for the creation and annihilation of particles when we adopt the slave 

boson technique. b{ and tl,-I are the complex variables corresponding to the slave 

bosons j is a site index and I the imaginary time label. 

In equation 5.4 a summation over repeated indices is implied. is. and ~ are the 

complex variables (Stratanovich-Hubbard variables12,13 introduced to write the 

two body Fermi term as two one body fermion terms. We make the assumption 

that two neighbouring sites have maximum phase shift, and hence make a periodic 

saddle point approximation in the complex Bose fields with period; where a is the 

lattice parameter which is set equal to 1. 

Any lattice vector Rj can be realized as 

(5.5) 

Where f and J are unit vectors and nl and n2 are integers. 

The vectors which takes saddle point values to their original value with a sign 

change are of the form 
.... .... 
i7r+j7r=f (5.6) 

We make a periodic saddle point approximation in the boson variables ~j and 

bj and a uniform saddle point approximation in Aj. 

Th~ approximation are indicated as follows. 

0.-J - A (5.7) 

is.j,j+'7 
I - is. eiqRj (5.8) 

FJ.+'7 
I - b eU[-:(R;+'7) (5.9) 

After making the above substitution in equation 5.4 we make a transformation of 

the action in equation 5.4 from the imaginary time label to the imaginary frequency 
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label and from real space to momentum space. After these transformations the 

action becomes 

where 

~72~o(coskx + cosky)l':I:a-1f,U 

~72.~o(coskx + cosky)l:a-ffPI:aU} + So 

NB is the number of lattice sites, I' is the chemical potential. But 

(5.10) 

(5.11) 

(5.12) 

Equation 5.12 is substituted in equation 5.10 and functional integration over the 

Grassmann variables are performed. The frequency summations are carried out as 

described in Chapter 2. The partition function takes the form 

(5.13) 

where 

F = L In(1 + e-.8Ei) + So (5.14) 
k,j,u 

and 

(5.15) 

The saddle point values are fixed by 

8F 
0 (5.16) 8>- -

8F 
0 (5.17) 

8~5 
-

8F 
0 (5.18) 

8l? 
-

We do the calculation for the degeneracy value N = 2. Equation 5.16 on simpli­

fication becomes 

(5.19) 
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where fJ is t.he doping concentration. Equation 5.17 becomes 

(5.20) 

Setting €d = 0, we get 

(5.21) 

This will be less than zero for lower values of k and the other band will not be 

occupied. 

Setting equation 5.21 as equal to zero, we solve for kx(1), the kx value at which 

the energy crosses zero for a particular ky value. This is given by 

(5.22) 

We fix another parameter by setting ky = 0 in equation 5.22. We get 

(5.23) 

From the symmetry of the situation we find that ky values lies between -kifJ ~ ky ~ 

kifJ. Solving the saddle point equation we find 

A = 4t6 fJ 
J 

The energy values can be rewritten as 

4t6fJ . I 2 
E j = J -/1- + (-1)J2{cos kx + cos ky)V tofJ2 + 6.2 

The particles enclosed within the fermi surface will be 

(5.24) 

(5.25) 

(5.26) 

where kx{l) is given by equation 5.22 and kifJ by equation 5.23. On simplification 

equation 5.26 becomes 

2 14> 2 dkycos- 1 {I + cos{kifJ) - cos{ky)} = 1 - fJ 
7r 0 

(5.27) 
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The ground state energy per site can be obtained from equation 5.25 

E 

The density of states at the fermi surface is given by 

where E is a function of kz and ky and 6(E(k)) is given by 

But 

and 

IdEI= 
dk 

6(k - ~) = 6(ky - ky(0))6(kz - kz(O) 

But ;~ = 2 sinkzJt662 + fj.2 

The kz corresponding to E = 0 is given by 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

Making these substitutions in equation 5.29, the expression for the density of 

states at the fermi surface becomes 

where 

p 

q 

1'" dO D(€ ) = 4 
f 0 VP+qcosB 

8(t~ 62 + fj.2) - (,\ - 11)2 

4Jt662 + fj.2(,\ - 11) 
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5.3 Expression for the Ground state energy and 
Density of states in a uniform saddle point 
approximation 

The calculation of the partition function in a functional integral formalism using a 

uniform saddle point approximation is carried out as in reference[ll]. The saddle 

point equation are simplified. 

They become 

and 

In the situation of interest 

Nqo = 1 

tob2 

andEk = 11- A + 2(coskz + cosky)(~ + N) 

On simplification we get the result 

A ~ 
-

4to J 

The ground state energy is given by 

where Ek is given by equation 5.43. 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

Those states outside the fermi surface will not be occupied at the zero of tem­

perature and hence we have to solve for the k values for which the energy goes to 

zero. 

For any ky value inside an interval which will soon be defined, the corresponding 

maximum/minimum value of kz will be denoted by kz(l) and is given by 

(5.46) 
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when ky = 0, we define another important quantity 

{
tt-A } kcjJ = cos -1 t f? - 1 

2(L\ + T 
(5.47) 

Therefore kx (1) can be written as 

kx(1) = cos-1 {1 + cos (kcjJ) - cos(ky)} (5.48) 

The saddle point value of L\ is given by 

J 1'" 1z
(1) 2" dky dkx (cos kx + cos ky) 

7r 0 0 
(5.49) 

J1'" 2" dky { sin[cos-1(1 + cos kcjJ - cos ky)] 
7r 0 

+coskycos-1(1 + coskcjJ - cosky) } (5.50) 

We do the calculation by using kcjJ as a free parameter in terms of which others 

are defined. For each value of kcjJ, L\ is calculated and using the L\ value A is 

calculated using equation 5.44. On simplification the expression for the ground 

state energy becomes 

(5.51) 

From equation 5.50 we find that L\ is depending on kcjJ and J and not on any 

other parameters. For a particular value of J, kcjJ pair, L\ is calculated. Using this 

value of kcjJ, J, and, L\ the chemical potential is calculated. We find that the chemical 

potential depends in addition to the above quantities the doping concentration 6, 

2to 
tt = to6(1 + cos kcjJ) + 2L\( J + 1 + cos kcjJ) (5.52) 

The density of states at the fermi surface is obtained as in the previous section. 

(5.53) 

where 

(5.54) 
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5.4 Numerical calculations and conclusions 

Numerical calculations have been carried out for various parameter values both 

in the periodic saddle point version and the uniform saddle point version for the 

ground stat.e energy and the density of states at the fermi surface. The results of 

these computations are given in figures. In periodic saddle point calculation the 

relation between hand kljJ is plotted in figure (5.1). It shows a linear relation to 

hold between the above two quantities. In figure (5.2) tt is plotted against kljJ in a 

uniform saddle point analysis. Figure( 5.3) shows the variation of the ground state 

energy with doping concentration obtained in a periodic saddle point calculation 

and figure (5.4) shows that in a uniform saddle point calculation. From these 

figures it is clear that for the same parameter regime, the periodic saddle point 

has a lower ground state energy than the uniform saddle point results. Hence the 

system should obey the periodic saddle point behaviour. The relationship between 

chemical potential and kljJ in a uniform saddle point calculation which is related to 

the fermi momentum is plotted in figure ( 5.5). In figure( 5.6) the density of states 

per Cu is plotted against doping concentration in a periodic saddle point calculation 

and in figure( 5.7) This is done for the uniform saddle point case. 

The results presented in figures( 5.6) and (5.7) shows that the density of states 

per Cu atom evaluated in a periodic saddle point agrees better with experimental 

results[14] and previous calculations[15,16]. In this technique the fluctuation correc­

tion have to be performed for the Bose variables and Lagrange multiplier variables 

about the saddle point. Unlike the uniform case a straight forward technique is 

hard to come by and hence the treatment is postponed for a future work. 
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Chapter 6 

CONCLUSIONS 

We have discussed in the first chapter various experimental results which are pecu­

liar to high Tc materials. These results imposes a variety of constraints on theory 

construction in this field. High superconducting transition temperature of these 

materials is only one of the puzzles to be unraveled. The various normal state 

properties of these materials are quite unlike that of conventional metallic super­

conductors. 

The high Tc materials are generally believed to be strongly correlated and hence 

a rigorous theoretical formulation of the basic Physics can be achieved by adopting 

slave boson techniques of Barnes[l] and Coleman[2] or Kotliar and Ruckenstein[3]. 

With this end in view, the functional integral formalism is discussed at length in 

Chapter 2. In the same chapter the slave boson formalisms are briefly discussed 

within the framework of functional integration. 

In Chapter 3 a strong coupling theory is suggested to explain superconductivity 

in high Tc materials in Anderson lattice model using double time Green's functions 

and equation of motion technique for the evaluation of Green's functions. In that 

analysis the large U limit is not appropriately taken into account. 

In Chapter 4 the extended model is considered with direct hopping from oxygen 

to oxygen. Considering the large U limit of the model, the functional integral for 

the partition function is set up. A uniform saddle point approximation in the 

Bose variables and Lagrange multiplier variables are applied and the functional 

integration over the fermi variables are performed. From the expression for the free 

energy the density of states and specific heat capacity of the system is calculated 

and compared with experiments and previous calculations. 

A reduction of the extended model with zero direct overlap between oxygen or-
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bitals to a t - J model became apparent[4,5,6,7]. It seemed plausible that some 

of the correlations in the system can be taken care of by adopting a periodic sad­

dle point approximation in the Bose variables when the functional integral for the 

partition function of the system is performed. 

The results so obtained are compared with the calculation based on a uniform 

saddle point approximation[8]. It is found from the estimation of the ground state 

energy that a periodic saddle point is a better description than a uniform saddle 

point approach. The density of states at the fermi surface is calculated for various 

parameter values. The numerical results are compared with experimental results. 

The scenario of high temperature superconductivity theory research ranges from 

BCS like weak coupling to strong coupling theories where electron-electron attrac­

tive interaction has an essentially repulsive origin[9]. Quasi two dimensionality 

seems essential to any model of high Tc superconductivity. The basic Hamiltonian 

for the description of the normal state physics of the system is the extended Hub­

bard model[lO]. But there is a dominant point of view that the extended model 

is an unnecessary tour de force of no value for the physics. According to P.W. 

Anderson[ll]' in the correct parameter regime, the extended model can be reduced 

to a Hubbard model with hopping tenn and an on site repulsion term. A stan­

dard strong coupling perturbation treatment of the single band Hubbard model 

will lead to the t - J model Hamiltonian[7]. Studies on ID Hubbard model has 

lead the RVB school of thought to propose the idea of spin-charge decoupling[12]. 

The idea is that the strongly correlated system sustains two types of excitations. 

The charge and spin excitations propagate with different velocities. The spin 1/2 
+ 

chargeless excitations are called spinons and - e charged spinless excitations called 

holons. In 1 - D Hubbard model three powerful theoretical tools are employed 

- Jordan - Wigner[13] transformation (bosonization), conformal field theories[14] 

and the Bethe ansatz[15,16] techniques. Going to 2 - D, the exact solvability of 

the Hubbard model or t - J model is yet to be achieved by any method not even 

the confonnal field theory techniques or the Bethe ansatz technique. Yet another 

powerful method of study is the one using the manifestly spin rotation invariant 

generalization of Kotliar-Ruckenstein slave boson technique[17]. 

Another question debated in the context of high temperature superconductors is 

whether the systems are Luttinger liquids[18,19] or marginal fermi liquids[20]. Hal­

dane has characterized the behaviour of a large variety of one dimensional quantum 
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fluids by the term "Luttinger liquid" showing that they can all be solved by a com­

mon strategy. The strategy is bosonization in which the excitations close to the 

fermi surface are transformed in to phase and phase shift variables. The marginal 

fermi liquid phenomenology put forward by C.M. Varma and others is based on an 

analysis of several normal state properties of high Tc superconductors. The single 

hypothesis on which the results rests is that the low energy particle hole excitations 

have no energy scale other than the temperature. 

Another candidate theoretical model is the spin bag model suggested by Schri­

effer et al.[21]. Some of the weak coupling theories are based on various pairing 

mechanisms. These include interlayer pairing mechanisms[22]' phonon mediated 

pairing with band structure effects[23], plasmon mediated pairing[24,25] models 

with various charge transfer excitations[26] playing the role exchange boson, and 

antiferromagnetic magnon[27] mediated pairing. It has been believed that most of 

these models are not appropriate for the ceramic oxide superconductors. 

The phenomenological model of Varma et al. [20] bring together various anoma­

lous features and hence any microscopic formulation should at some stage leads to 

these results. But this gives no clear idea about the pairing instabilities and also 

the pairing mechanisms. 

In the extended Hubbard model suggested by Varma et al.[lO], the essential two 

body terms are the on site repulsion at copper sites and the intersite repulsion be­

tween copper and oxygen holes. Here the nearest neighbour repulsion plays a crucial 

role in charge transfer and hence Varma et al. stresses the importance of including 

these terms. But with their inclusion, the problem becomes far more complicated to 

have a solution without adopting several approximations. This makes it difficult to 

compare experimental results with theoretical calculations. Notwithstanding these 

difficulties, it seems the only theory which contains the seeds of a pairing mechanism 

in the weak coupling limit. 

The single band Hubbard model and its reduced version t - J model contains 

fewer number of parameters and hence simpler for subjecting to a rigorous analysis. 

Studies on finite size versions of the above models in 2D using quantum Montecarlo 

techniques are abounding. They are providing us with valuable information about 

these models. But still the new concepts such as spin charge decoupling or Luttinger 

liquid still lacks a rigorous footing when we approach the 2-D version of the above 

models. 
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To conclude a brief look at the possible future work we plan to do, is given. In 

any analytical scheme for the many body problem an exact solution is impossible 

to obtain elCcept in a limited number of simplified models. These simplified models 

may be of much practical value for the analysis of more complicated models. 

The high temperature superconductors are doped materials. The doping can 

renormalizp. some of the small parameters to large values and large parameters 

to small values. We intend to do parameter rescaling in the extended Hubbard 

model with direct hopping between neighbouring oxygens included. To do this 

we intend to formulate the problem in a manifestly spin rotation invariant version 

of the Kotliar Ruckenstein slave boson technique [17]. A periodic saddle point is 

assumed to be favoured and such an evaluation is intended to be carried out. The 

correlation function on which the parameters have a dependence will be calculated 

and parameter rescaling will be done until self consistency is achieved. We hope 

that such an analysis will provide us with valuable information regarding the pairing 

instabilities of the system. 
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Appendix A 

Proof of the general relation between AN and A 

Proof: 

(.1 ) 
n,m 

(.2) 
n,m 

The last expression is expressed in normal ordered form, so 

AN (ij,1J) = 2:: Anm (ij"1Jm - ijn+l1Jm+l) (.3) 
",m=O,1 

From equation 2.30 

(.4) 
n,m=O,l 

Multiplying the right hand side of equation .3 with efTrl = 1 + fpJ we get 

n,m 

On simplification we find that the right hand side is equal to A(ij,1J) and hence the 

relation is proved. 

Appendix B 

We prove the following relation in this appendix. 

Proof: 

Repeatedly applying equation 2.29 

[AIA2fJ(ij) - [AI (Ad)](ij) (.7) 

PutAd F (.8) 

[(AIA2)fJ (ij) [AIF](ij) (.9) 

- j di4JdJ...Je -W<.J Al ( ij, w) F( w) (.10) 

jdi4JdJ...Je-W<.J A1(ij, w)(Ad)(w) (.11) 

- j~di.e-{f, jdi4JdJ...Je -iiA.J Al (ij, w )A2 (w, ~)f(~) (.12) 
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r;; 153//-

so that 

(AIA2)(7j,~) = jdJ;;dwe-W Al(7j,w)A2(W,~) 

Applying equation 2.41 separately to AIA2 and Al and A2 leads to 

(AIA2)(7j,~) - ef/€(AIA2)N(7j,~) 

A 1(7j,w) - e~Af(7j,w) 

A2(W,~) - eW{Af(w,~) 

substituting in equation .13, we get 

- jdJ;;dwe-We~ Af(7j,w)g{Af(w,~) 

- j dJ;;dwe -w e~ eiiJ{ Af (7j, w) Af (w, ~) 

Multiplying both sides from the left with e-ii{, we get 

The R.H.S is equal to 

Thus equation 2.42 is proved. 

Appendix C 

Proof of the relation 

Proof: 

Therefore 

Therefore 
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(.13) 

(.14) 

(.15) 

(.16) 

(.18) 

(.19) 

(.21) 



The right hand side is the sum of the diagonal terms.Hence 

(.22) 

Appendix D 

Functional representation of Fock space.Fock space for fermions(bosons) may be 

represented by a functional space based on Grassmann (complex) variables. The 

important relation between the Fock space for a single termion(Boson) level and 

the corresponding functional space are listed below. The ket In> represents an 

n particle state. Greek letters represents Grassmann variables and Roman letters 

represents complex numbers. Complex integration element is dzdz = d(Rez)~d(IIIlz) 
Fock space functional space 
Fock space elements F l(fJ) = 10 + 11fJ 
I 1>= Ln In In> B I(z) = L':=o Inf;:;. 
Fock space operators F A(fJ,1]) = L~,m=O Anmft1]m 
A = Ln,mAn,m I n >< m I B A(z,z) = L:'m=oAnmfntfmr 
Normal ordered Fock space F AN(fJ,1]) = L~,m=O A~mif1]m 
operators = e -ip) A ( fJ, 1]) 
A = ~ AN (at)nam B AN(z z) ~oo AN r zm 

L..n,m nm , = L..n,m=O nm'Tn! Tm! 

Action of an operator on a 
Fock space element 

All> 
Appendix E 

= e-zz A(z, z) 
F (Af)(fJ) = J ~~e(fJ-(){AN(fJ, e)/(~) 

B same form with1], e -t z, v 

Functional representation of Fock space. Greek letters represents Grassmann 

variables and Roman letters represents complex variables. Bose integration element 
is dzdz = d(Rez)d(lmz) ,.. 

Fock space functional space 
Operator product F (A1A2)N(~) = J dWdwe(fJ-w)we(w-fJ){Af(fJ, w)Af(w, e) 
A1A2 B same form with1], e, w -t Z, v, w 

Operator Trace F TraceA = J drydfJe2fJr1AN(fJ, 1]) 
TrA B TraceA = JdzdzAN(z,z) 
Gaussian integrals F JT} e-- fJA '1+WTJ+7){ = det AewA -1

{ 

B Jz e-zAz+iiz+iV = (det A)-leuA-1
v 
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Appendix F 

In chapter 3 of the thesis, a study of ekctron-phonon interaction in an An­

derson lattice model is done. There we identified erroneously the hybridization 

gap as an order parameter for superconductivity.ln this appendix we carry 

out the energy gap calculation for the true superconducting gap. The lattice 

Anderson model in the large U limit can be analyzed by adopting a functional 

slave boson technique. For details of the method see chapter 2 

The partition function for the model is set up as a functional integral over 

Grassmann variables (corresponding to fermi degrees of freedom) and com­

plex variables (for Bose variables).It is elaborately given in chapter 2 that 

the slave boson technique necessitates another integration to enforce the con­

straint. These are the integration over Lagrange multiplier variables. The func­

tional integral is approximated by the uniform saddle point values in the La­

grange multiplier variables and the slave boson variables. The two body term 

can be decoupled by adopting Stratanovich -Hubbard transformation.Here ,as 

we are investigating the superconducting instability, a pairing meanfield de­

composition is done.How this is done is given in chapter 2.First the integration 

over Grassmann variables corresponding to localized states is done. Then the 

action is written in the form of equation (2.310) with G(E) taking the new 

form 

G(E) = iWn - E 
(iwn - tk)(iwn - E) - V/b2 (1) 

where E = Eo + ). and b2 is the saddle point value of slave boson fields. Then 

the arguments of an analysis given in chapter 2 follows. Thus the functional 
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integral can be evaluated.We write the partition function as a product of a 

static part and a dynamic part.The static part is evaluated by making a saddle 

point analysis for the pairing mean field. This saddle point equation leads to 

(2) 

where 9 is the coupling constant and A is given by 

Al = (iwn + fk)(iwn + E) + (iwn - fk)(iwn - E) (4) 

A2 = {(iwn)2 - f%}{(iwn)2 - E2} - 9 1 e 12 {(iwn)2 - E2} (5) 

assuming VI < 1 E 1 equation 2 becomes 

When the frequency summations are done along standard lines,we get the 

~quation containing the order parameter. 

Where N is the density of states at the fermi level and 11 and 12 are the 

integrals to be evaluated. In the limit VI --+ O,this reduces to the BCS gap 

equation.The gap equation is solved approximately by discarding the term 

containing V12. This expression for the gap (order parameter) is substituted in 

the term containing V12. Then the gap equation takes the new form 

(8) 
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where g' is given by 
, 9 

9 = 1 + 3Ng~2b2{11 + 12 } 
(9) 

where 11 and 12 are given by 

(10) 

(11) 

where 

(12) 

What we find in this analysis is that the role of hybridization is to renormal­

ize the coupling constant. The second term in the denominator is called the 

coupling constant renormalization term. This term has a dependence on the 

density of states.Thus the density of states appears both in the coupling con­

stant renormalization term and in the exponent .If the renormalization term 

is negative,an increase in density of states can enhance the gap and t_hereby 

Tc considerably. If the renormalization term is positive an enhancement in 

density of states will not decrease Tc to the same extent.The value of the other 

saddle points can be determined by discarding the electron -electron pairing 

term at an earlier stage in the calculation. When calculated it is found that b2 

is a small positive number, which can vary with doping and hybridization.The 

,\ values are small negative numbers which will not appreciably affect the bare 

value of Eo.For large -ve values of E the integrals have a net -ve contrbution to 

the renormalization term and Tc enhancement with hybridization and density 

of states is expected. 
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The large U though excludes double occupancy, it allows virtual processes 

at second order in the hybridization term. Due to this some kind of exchange 

coupling between conduction electrons mediated by localized electrons is taking 

place. This may be the reason for the renormalization of the coupling constant 

to large values. 
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