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Preface 

The discovery of high temperature superconductivity in the oxide system La-Ba-Cu­

o by Bednorz and Muller in 1986, closely followed by the discovery of the famous 

"123" compound by Chu and his associates in 1987, raised exceedingly high hopes 

in the world scientific community. These new materials have generated tremendous 

excitement for the following two reasons. First, they open a new temperature realm 

for superconducting devices and components which should have widespread commercial 

applications and these potential benefits have attracted phenomenal attention from the 

public as well. Second, the conventional electron - phonon interaction appears not to 

be the origin of superconductivity in these materials, leaving the fundamental physics 

open to further investigations. Thus these exotic materials have been the subject of 

intense research by a large number of scientists from a wide range of fields of basic and 

applied research. 

In this thesis we present the results of the investigations carried out by us on 

the thermal and elastic properties of some of the high Tc superconductors. The thermal 

properties investigated include the thermal diffusivity, specific heat and thermal con­

ductivity of a set of YBa2Cu307-6 sample~ifferent amounts of Sn02. The 

photoacoustic technique and differential scanning calorimetry have been employed to 

measure the thermal diffusivity and specific heat respectively and thermal conductiv­

ity is then evaluated from these parameters. The elastic properties investigated include 

measurement of ultrasonic velocity and attenuation in a set of Ga doped GdBa2Cu307-6 

samples using the ultrasonic technique, computation of elastic phase velocity, slowness 

and ray velocity surfaces from available elastic constant data for three major supercon­

ducting systems LSCO, YBCO and BSCCO and the evaluation of phonon enhancement 

factors for the first time in different directions for the above mentioned systems. The 

thesis is presented in eight chapters. A chapterwise description of the contents of the 

thesis is outlined below. 

Chapter 1 is an introductory chapter which outlines the general aspects of the 

phenomenology of superconductivity. It gives a review of superconductivity, starting 

from the discovery of this spectacular phenomenon in 1911. The general features of 



high Tc superconductors which include the structural features of major superconducting 

systems, various theoretical models that has been proposed to explain the normal state 

and superconducting properties and the general thermal and elastic properties of these 

materials are described in this chapter. 

In chapter 2, we describe the experimental set-ups employed in carrying out 

the experimental investigations. The photoacoustic technique is employed to measure 

the thermal diffusivity of the superconducting samples. The details of the photoacoustic 

spectrometer used in the work is discussed with the help of a block diagram. For 

the specific heat measurements, a differential scanning calorimeter (Perkin - Elmer 

DSC - 7) has been used, the details of which are also given. The Matec model 7700 

pulse modulator and receiver along with the necessary subsystems have been used for 

the measurement of ultrasonic velocity and attenuation. Details of this system and 

measurement technique are outlined with the help of a block diagram. 

Though endowed with comparatively high transition temperatures, the 

prospects of application of the high Tc superconductors is severely limited due to var­

ious reasons. The addition of selected metals or oxides to a high Tc material, while 

retaining superconductivity, has been shown to change the other characteristic features 

drastically. This is of great technological importance because of the need for normal 

and stable materials to be used for various applications. The next two chapters (chap­

ter 3 and 4) consist of the studies on the effect of various dopants on the properties of 

superconductors. 

The effect of addition of Sn02 on the thermal properties of YBa2Cl1J07-6 

is given in chapter 3. We have measured the thermal diffusivity of a set of YBCO 

- Sn02 using the photoacoustic technique at different temperatures above and below 

Tc in the temperature range 85 - 300 K. Using the specific heat data obtained from 

the DSC measurement, the thermal diffusivity and density, the thermal conductivity 

of the samples have been calculated at room temperature. The details of the above 

measurements, the results and an analysis of these results are given in chapter 3. The 

results have been found to support the phonon mediated pairing mechanism as the 

possible reason for superconductivity. 
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In chapter 4, the effect of Ga doping on the elastic properties of GdBa2Cu307-6 

is outlined. The ultrasonic velocity of four different samples of GdBCO with varying 

amounts of Ga doping have been measured using the pulse echo overlap technique and 

the ultrasonic attenuation has been measured employing the pulse comparison technique 

in the temperature range 85 - 300 K. Apart from the anomalies observed near To 

interesting features are found in the temperature range 180 - 220 K which has been 

observed by many workers in other experiments also. The results are explained taking 

into account the structural changes taking place in the compound with varying Ga 

doping levels. 

In chapter 5, we present a detailed study of the elastic phase velocity surfaces 

of different high Tc superconductors. Starting from the Christoffel equation, the phase 

velocities are computed for the pure shear, quasishear and quasilongitudinal modes 

and the corresponding phase velocity surfaces are plotted as a function of propagation 

direction. The velocity surfaces are plotted for YBCO, BSCCO and LSCO either for 

single crystals, sinter - forged samples or polycrystalline specimens at temperatures 

above and below Tc subject to the availability of data, for propagation of waves in 

different planes. A comparative study of the wave surfaces of the three materials is 

given taking into account the structure of these compounds. The surfaces plotted at 

temperatures above and below T c indicate that the nature of the surfaces do not change 

significantly as the sample undergoes the superconducting transition. 

In an anisotropic solid, the group velocity, with which the energy is propa­

gated, is generally different from the phase velocity with which the wave is propagated. 

A plot of group velocity as a function of propagation direction, also called the ray sur­

face, can therefore provide, important information regarding the energy distribution in 

the crystal. In chapter 6, the ray velocity surfaces of three high T c superconductors 

are plotted in different symmetry planes after deriving the corresponding equations. In 

addition, the slowness surfaces, which are the inverse phase velocity surfaces are also 

plotted, since they can explain many features of the ray surfaces which are much more 

complicated. The quasishear mode of all the superconductors investigated exhibit cusp­

idal edges at least in one symmetry plane, which are of great physical significance. The 
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computational details, results obtained and a discussion of the results are presented in 

this chapter. 

When phonoIlB are excited in a given region of an anisotropic crystal, the 

energy flow is found to be enhanced in certain directions and decreased in others even 

when the angular distribution of wave vectors is uniform. This amplification of phonons 

in certain directions of a crystal arises from elastic anisotropy of the crystal. The phonon 

enhancement factor, which is the ratio of the energy flux for a particular polarization and 

propagation direction to the corresponding flux in an isotropic solid, is calculated for the 

three superconducting systems - YBCO, BSCCO and LSCO - for the pure shear, quasi 

shear and quasi longitudinal modes and are plotted in pseudo 3D-representation as a 

function of the polar and azimuthal angles () and rjJ in spherical coordinates. Sharp peaks 

are observed in the phonon intensity along specific directions in these plots. These are 

interpreted as not due to the real focussing of phonons, but due to caustic surfaces which 

are singularities occurring in the mathematical formulation of the theory of phonon 

focussing. The theoretical background, computational details, results obtained and an 

analysis of the results are given in chapter 7. 

Chapter 8 is the concluding chapter in which the overall conclusions drawn 

from the work presented in the previous chapters are discussed. It also projects the 

scope for doing further work in the area of high temperature superconductivity. 

The following papers have been published/ presented/ communicated for pu~ 

lication in different journals/ conferences during the course of this work. 

1. Effect of Sn02 addition on the thermal diffusivity of the high Tc superconductor 
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M.S. Kala, J. Philip, M. T. Sebastian and A. D. Damodaran 

Advances in Phonon Physics (Wiley Eastern, 1996). 

2. Effect of Ga doping on the elastic properties of GdBa2Cu307-6 high Tc supercon­

ductor : An ultrasonic study 

M. S. Kala, R. Sreekumar, J. Philip and N. C. Mishra 
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Chapter 1 

Introduction 

1.1 Introductory remarks 

The era of 'superconductivity' commenced in 1911 with the discovery of superconduc­

tivity in mercury by Kammerlingh Onnes; just three years after he liquified helium. Just 

like mercury, whose resistance drops to zero at 4.18 K, Onnes found that other materials 

like lead, tin, indium also undergo the same change at 7.2 K, 3.7 K and 3.4 K respec­

tively. The temperature at which the transition to a zero resistance state takes place is 

the superconducting transition temperature (T c) and is characteristic of the material. 

In 1913, Onnes himself found that superconductivity was destroyed in the presence of 

moderate current densities and ordinary magnetic fields of the order of 0.05 T. This 

disappearance of superconductivity above a critical magnetic field suggested that the 

phenomenon of superconductivity and magnetism are closely associated. 

The research field was rather silent for more than a decade and in 1933, 

W. Meissner and R. Ochsenfeld came up with the second crucial discovery in the his­

tory of superconductivity. They reported that upon cooling, a magnetic field is expelled 

from a normal metal specimen when it passes through Tc and this effect was called the 

Meissner effect. Perfect diamagnetism was thus found to be an independent property 

of superconductors which suggested that superconductivity involves a change of the 

thermodynamic state and not just a change in the electrical resistance. 

Later years witnessed theoretical attempts by many of the great physicists 

of the period, to characterise the nature of the superconducting state of matter. One 

such attempt was by Gorter and Casimir in 1934 with the 'two-fluid' model in which 

the superconducting state was considered as a result of a mixture of superconducting 

1 



and normal electrons. In 1935, the London brothers (F and H. London) came up with 

the electrodynamic equations who argued that superconductivity was a quantum me­

chanical phenomenon. Pippard modified this model to reduce the discrepancy between 

the theoretically predicted and the experimentally observed results. One of the other 

prominent theories is by Ginzburg and Landau (1950) which could not only account 

for the zero resistance and Meissner effect in fundamental terms, but could explain the 

second order nature of the superconducting phase transition in zero magnetic fields. 

However, with the discovery of isotope effect, it became clear by the early 

1950's that vibrations of the lattice are somehow involved in superconductivity. Frolich 

was able to show that two electrons in a metal could effectively attract each other, the 

attraction being mediated by lattice vibrations. In 1957, Bardeen, Cooper and Schrieffer 

developed a complete atomistic theory of superconductivity based on the formation of 

such electron pairs called the Cooper pairs and the coherent superposition of these pairs 

into a single quantum state. The possibility of such a state was foreshadowed in the 

work of Ginzburg and Landau. Bardeen, Cooper and Schrieffer were awarded the Nobel 

prize in 1972 for their work. Their theory which is known as the BCS theory made many 

detailed predictions which have been verified. A detailed discussion on BCS theory is 

given later in this chapter. 

Another important event that took place in the history of superconductivity 

was the discovery of the Josephson effect in 1962. Earlier in 1959, Giaever had shown 

that single electron tunnelling was possible in superconductors. But Josephson showed 

theoretically that the Cooper pairs also can tunnel. 'Pair' tunnelli'ng was carried out on 

very thin tlmnel barriers which couple the superconducting materials to one another. 

These junctions have enormous technological applications and Josephson and Giaever 

received the Nobel prize for their work on tunnelling junctions. 

At the same time, attempts were going on to find new materials which could 

superconduct. Many metals like Nb, Ru, Mo etc. have been found to be superconducting 

in the liquid helium range. Apart from these elements, a new class of superconductors 

which belong to the ,B-tungsten family, also called A-15 compounds, were developed. 

The first superconducting material of this structure was V3Si with a Tc of 17.1 K. After 
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this discovery in 1953, several other A-15 compounds with higher Tc's were discovered, 

the highest Tc being 23.2 K for the compound Nb3Ge. This value remained the highest 

Tc for quite some years, till the discovery of 'high temperature superconductivity' in 

oxide systems. 

Superconductivity was observed in some organic materials also. One of the 

early discoveries was the intercalation compounds of graphite (eg. CsK) which becomes 

superconducting below 1 K. Organic metals such as the charge transfer compounds 

formed between strong electron accepting organic molecules (eg. tetra cyanoquin­

odimethane, TCNQ) and good electron donors (eg. derivatives of tetrathiofulvalene, 

TT F) also were found to be superconducting at low temperatures at ambient or high 

pressures. 

Another class of superconductors worth mentioning is those that come under 

the family of 'heavy fermion superconductors'. UPt3, UBe13, CeCu2Si2 etc. are a few 

examples of this class having Tc's 0.54 K, 0.85 K and 0.65 K respectively. These heavy 

electron metals can be characterised by a low temperature specific heat that is two or 

three orders of magnitude larger than that of ordinary metals and usually are f - electron 

metals, having huge effective masses. In spite of the hectic search for higher Tc's Nb3Ge 

remained the material with the highest Tc for quite some years. 

1.2 High temperature superconductivity 

The second phase of the history of superconductivity began in 1986, with the discovery of 

'high temperature superconductivity' in a class of cuprates by Bednorz and Muller [1] in 

the 30 K range. The material was La2Cu04 in which ions of Ba2+ had been introduced 

to replace some of the La3+ and the material is generally expressed by the formula 

La2-zBazCu04_6' Later it was found that these compounds have the general formula 

La2-zMzCu04-6 where M can be Ba, Sr or Ca and the Tc of the system is a function of x 

which reaches its maximum value of about 35 K for x ::::::: 0.15. Bednorz and Muller were 

awarded the 1987 Nobel prize in Physics for their discovery, making the time between 

a discovery and Nobel prize one of the shortest on record. 

Chu and coworkers reported late in 1986 [2] that with increase in pressure, 
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Tc also increased in La-Ba-Cu-O, reaching 57 K at 12 kbar. Investigations of chemical 

pressure dependence on Tc followed and subsequently led to the substitution of Sr 

instead of Ba, increasing the Tc to 42.5 K. M.K.Wu and associates of the University 

of Albama [3] could step up the T c to 90 K by substituting both La and Sr with Y 

and Ba. The material was composed of two major phases - the green phase Y 2BaCu05 

which was nonsuperconducting and the dark superconducting phase with the chemical 

formula YBa2Cu307-6, also called the '123' compound. Further investigations indicated 

that YBa2Cu307-6 was neither the most stable nor was the only superconductor in the Y­

Ba-Cu-O family. YBa2Cu40S, also called the 124 compound is the most stable member 

which superconducts at ~ 80 K. In addition, the 247 compound Y2Ba4Cu7015, resulting 

from recurrent intergrowth of 123 and 124 units was also found to be superconducting. 

Later studies revealed that Y in the 123 compound can be replaced by any of the rare 

earths (R) with the exception of Sc, Ce, Pr and Tb [4,5] and the compound can be 

expressed by the formula RBa2Cu307-6. 

In 1988, another breakthrough followed. A new superconducting compound 

was discovered by H.Maeda's group in Japan [6]. They reported that the compound 

Bi-Sr-Ca-Cu-O superconducted at 110 K. However, the compound was found to con­

tain many superconducting phases and it was not easy to separate the low Tc phases. 

Now this family of superconductors has been identified as having the general formula 

Bi2Sr2Can-lCUn02n+4+6 with n = 1, 2 and 3 giving the Bi2201, Bi2212 and Bi2223 com­

pounds with T c's 20 K, 85 K and 110 K respectively. These Bi based compounds were 

found to be far more stable than the YBCO compounds and had higher critical current 

densities. 

Superconductivity was reported in compounds containing thallium in the same 

year by different groups. The superconducting oxides containing thalliwn fall into 

two main series, the single thalliwn - oxygen layer materials of the general formula 

TlBa2Can-lCun02n+2+6 with n = 1,2,3,4 [7] and the double layer materials having the 

general formula TI2Ba2C~-1 CUn02n+4+6 with n = 1, 2, 3, 4 [8,9]. In each homologous se­

ries, as n increases the nwnber of copper oxygen planes, which are separated by Ca ions, 

is incremented by one. It is generally found that with increase of n, T c also increases, 
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at least upto n = 3. For example, the members of the first series, denoted by T11201, 

T11212, T11223 and T11234 (for"n = 1, 2, 3 and 4) have Tc's 50 K, 80 K, 110 K and 

122 K respectively. The third member of the second series, namely T12Ba2Ca2Cu3010H 

(T12223) was the holder of the record of having the highest T c of 125 K till 1993. 

Putilin et al. [10] reported in 1993 that the mercury based compound 

HgBa2CU04+6 superconducts at 94 K. This compound was later identified as the first 

member of the homologous series HgBa2C~_1 CUn 02n+2H with n = 1. Schilling et al. [11] 

in the same year reported the observation of superconductivity at 133 K in a Hg-Ba-Ca­

Cu-O sample which consisted of both the n = 2 and n = 3 members of the above series. 

Other groups have since reported Schilling's results from different parts of the world 

and HgBa2Ca2Cu30SH with T c = 133 K remains as the compound with the highest T c' 

The manner in which the superconducting transition temperature increased over the 

years is pictorially depicted in Fig. 1.1. 

There are other materials also which were found to be superconducting, even­

though their T c 's are not as high as that of the materials described above. One such 

material is Bao.6KoABi03 [12], which belongs to the BaBi03 class of superconductors 

and found to be having a T c of ~ 30 K. This material aroused much interest among sci­

entists because of the absence of Cu. Eventhough the T c was low, the material exhibited 

3D - superconductivity which was isotropic compared to Y, Bi or Tl based supercon­

ductors. Superconductivity has also been observed in alkali metal doped La2Cu04 with 

the structure La2-xAxCu04 with A = Na or K [13]. Another compound which was 

found to be superconducting is Nd2-xCexCu04 with a T c of 30 K which was obtained 

by replacing Nd3+ in Nd2Cu04 with Ce4+. 

Another important class of superconductors which have been the subject of 

intense research belongs to the family of fullerenes. In 1985, Kroto et al. [14] were 

successful in producing a remarkably stable cluster coIisisting of 60 carbon atoms by the 

vaporisation of graphite by laser irradiation. Six years later Hebard and his group [15] 

of AT and T Bell Labs reported that these Coo fullerenes when doped with potassium 

become superconducting with a Tc of 18 K. Later in the same year it was shown by the 

same group [16] that the transition temperature is raised to 28 K when C60 is doped 
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with rubidium. Another report by Tanigaki et al. [17] indicated that when Coo is doped 

with cesium and rubidium (Csx RbyC6o ), the material has got a Tc of 33 K. This value of 

T c is higher than that previously observed in any molecular, elemental or intermetallic 

superconductor and is surpassed only by the cuprate superconductors. 

1.3 General features of high Tc cuprate supercon­
ductors 

The different types of high T c cuprates discussed above possess some unusual properties, 

when compared to the conventional superconductors. Extremely high values of T c, 

linear d.c. resistivity in the normal state, unusual behaviour of the nuclear relaxation 

rate below T c , extremely small coherence lengths, close analogy to antiferromagnetic 

phases etc. are a few characteristic properties common to these materials. 

These materials can generally be described as consisting of rock-salt type 

metal-oxygen layers and defect perovskite layers. All of them have Cu-O sheets with a 

square-pyramidal or octahedral coordination of Cu with an apical oxygen. The Cu­

o bond is quite covalent with an average distance around 1.9A. Besides the two­

dimensional Cu-O sheets which are primarily responsible for superconductivity, they 

have charge reservoirs in the form of Cu - 0 chains or TIO (BiO, HgO) layers. The 

superconducting cuprate families generally have parent members which are antiferro­

magnetic insulators (eg. La2Cu04, YBa2Cu306, Bi2CaSr2LnOs etc.). 

Because of the presence of two-dimensional Cu-O sheets, properties of these 

materials are highly anisotropic. Accordingly these cuprates show very much higher 

normal state resistivity perpendicular to the ab plane compared to that in the plane. 

Another important feature common to these materials is that they are all hole super­

conductors containing oxygen holes. It has also been found that in the different series 

of cuprates, the Tc varies with the hole concentration, though not linearly. 

Many of the unusual properties exhibited by these materials can be explained 

on the basis of their structure. The structure of the superconducting compounds and 

those of the related phases have been well studied by both X-ray and neutron diffraction 
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techniques. Single crystal studies have shed light into the dimensions of the unit cell, 

electronic charge distribution, location of atoms in the cell, possible presence of atomic 

irregularities etc. In the following section, the structure and properties of major high 

Tc superconducting systems are discussed. 

The first cuprate superconductor discovered in 1986, La2-xSrxCu04-6 (LSCO) has a 

body centred tetragonal K2NiF4 structure at room temperature [18,19]. The parent 

compound, La2Cu04 is orthorhombic at room temperature and transforms to a tetrag­

onal structure around 500 K. It is insulating and antiferromagnetic with a Neel tem­

perature of ~ 290 K. As La3+ is replaced with Sr2+ or Ba2+ in La2Cu04, the doping of 

the cation lattice introduces holes into the conduction band and the compound becomes 

superconducting. 

The value ofTc in the La2-xSrxCu04-6 system is found to be a function ofx and 

reaches its maximum value of about 35 K for x ~ 0.15. The La ion can be replaced by Pr, 

Nd, Gd and other rare earth ions upto a point without losing superconductivity, while 

substitution of Cu partly by Ni or Zn drastically lowers the T c. High resolution neutron 

diffraction experiments done on a powder sample of LSCO showed that this material 

undergoes a tetragonal to orthorhombic transition in the vicinity of 180 K [20] together 

with further structural anomalies on approach of the superconducting transition at ~ 

35 K. 

As mentioned earlier, LSCO possesses a K2NiF4 type structure which can be 

described as containing alternate layers of perovskite (ABX3 ) and rock salt (AX) units. 

At all temperatures, the lanthanwn and strontium cations are found to be distributed 

at random over the equivalent sites of the same position. The copper - oxygen layers 

perpendicular to the c axis are separated by the La/Sr oxygen planes with the rock 

salt type of arrangement. The copper atoms in one plane do not share oxygen atoms 

with copper atoms in other planes. Each oxygen atom of the perovskite layers 0(2) 

is bonded to two Cu atoms in the same plane and to four R atoms (R = 0.925La + 
0.075Sr) in adjacent planes, while each oxygen atom of the rock salt layers 0(1) is 
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linked to five R atoms and one copper atom in a distorted octahedral configuration. 

The Cu-O distances within the perovskite type planes are short (1.889A) and those in 

the perpendicular directions are rather long (2.411A). The schematic representation of 

the unit cell of LSCO is shown in Fig. 1.2(a). 

1.3.2 YBa2Cu307-b and related 123 compounds 

All the superconducting oxides in this family have the general formula RBa2C1l307-6 

(RBCO) where R can be any rare-earth with the exception of Sc, Ce, Pr, Tb and have 

an orthorhombic structure with Tc in the range 90 - 95 K. In general, the R ion has little 

effect on Tc, but the Tc and the orthorhombic lattice parameters is markedly dependent 

on the oxygen content 6. The Tc is found to remain stable around 90 K upto 6 = 0.2 

and then shows a plateau at 60 K when 6 = 0.3 - 004, T c is 45 K when 6 = 0.5 and the 

material becomes non-superconducting when 6 = 0.6. The structure is orthorhombic 

over the entire range of 6 = 0.0 - 0.6, but becomes tetragonal when 6 ~ 0.6. 

Structural studies carried out by means of single crystal and powder X-ray 

diffraction techniques [21-26] indicate that the structure of YBCO can be obtained 

from that of perovskite by tripling the c axis, by eliminating all the oxygen atoms at 

(0 0 ~) and half of those at (0 ~ 0) and (~ 0 0), by ordering the metal atoms with 

yttrium at (~ ~ ~) and barium at (~ ~ i) and (~ ~ ~) and by shifting some of the atoms 

from the ideal positions they occupy in perovskite. The structure of superconducting 

YBCO is schematically represented in Fig. 1.2(b). 

The ordered elimination of some of the oxygen atoms from the atomic arrange­

ment of perovskite has significant effects on the features of the resulting compound. 

The copper atoms are located on two inequivalent positions in the compound. The 

first, Cu(2) has a pyramidal, almost square - planar coordination and the second, Cu(l) 

located at the origin has square - planar coordination in which the near square CU-02 

units share one corner and form chains along the b axis of the unit cell. The atoms 

Cu(2) are strongly bonded to the four oxygen atoms 0(2) and 0(3), forming the basis 

of the pyramid, and are weakly bonded to the oxygen atom O( 1) at the apex. Because 

of this feature, there exists in the structure two dimensional layers of copper and oxygen 
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atoms perpendicular to the c axis. The oxygen atoms in these layers are slightly shifted 

from their ideal perovskite positions, producing the puckering of the layers indicated 

in the figure. The ordering of the oxygen vacancies also affects the coordination of 

other metal atoIn.<;. The yttrium atom is eight fold coordinated and the shape of the 

polyhedron is prismatic. The bariwn atoms, on the other hand, are tenfold coordinated 

and the coordination polyhedron can be described as a cubo octahedron with two oxygen 

atoms missing. 

In the Bi2Sr2C~-1 CUl1 02n+4+c5 (BSCCO) series, the first three members with c param­

eters of 25, 31 and 38A have been characterised; the Tc's being 60, 90 and 110 K re­

spectively. It has been found that T c increases with the number of CU-02 layers [27,28] 

and stabilises when Bi is partially substituted by Pb upto 25%. These cuprates are 

orthorhombic and consist of layer structures containing adjacent pairs of BiO planes 

that alternate along the c axis with perovskite like multilayers. Crystallites of these 

compounds have mica like morphology which is found to cleave readily between the 

layers. They show modulation in the ab plane, which is found to be related to the 

oxygen content and the structure of the Bi-O layers. One of the problems with these 

cuprates is the lack of single phase materials. Members with different n values are found 

to intergrow with each other, even at the unit cell level. 

The structure of the second member of the family, Bi2Sr2CaCu20s+c5 (Bi2212) 

is shown in Fig. 1.2( c). In Bi2212, the perovskite like multilayer comprises two copper -

oxygen sheets in the form of corner sharing CU05 pyramids separated on the base sides 

by calciwn ions [29]. The Bi20 2 layers consist of two parallel, planar BiO sheets. The 

bismuth ion coordination is six with four oxygen atoms in the BiO plane, one oxygen 

on the adjacent BiO layer and one oxygen in the adjacent apex of a CU05 pyramid. 

These BiO octahedra are strongly distorted, having the typical oxygen coordination for 

Bi3+ with three short Bi-O bonds and three much longer Bi-O bonds in the direction of 

the lone pair electrons. These lone pairs are positioned in the interstitials between the 

pairs of BiO layers leading to a large interlayer spacing [30]. The lattice parameters of 
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the Bi2212 compound is determined as a = 5.4091A, b = 5.4209A and c = 30.8445A 

which is very much larger than a and b. 

One interesting aspect about these compounds is that the actual cationic 

composition is likely to be quite different from that given by the nominal formula. The 

most stable and easily reproducible composition is found to be the Bi2(Sr,CahCu208~6 

compound. 

The oxide superconductors containing thallium fall into two series depending on the 

number of TI-O layers present in the structure, as mentioned earlier. Thallium cuprates 

of the general formula TI2Ba2C~-1 CUn 02n+4+6 (2-TI) are tetragonal and contain two 

TI-O layers and n Cu-O sheets. The Te's of these compounds are 80, 110 and 125 K 

respectively for n = 1, 2 and 3. Members of the TIBa2C~-1 CUn02n+2+6 family (1-

TI), having a primitive tetragonal structure, contain a single TI-O layer. The Te's of 

these cuprates are slightly lower than those of the corresponding members of the 2-TI 

series. TI based cuprates with n > 3 have also been characterised, but it is seen that 

Te does not increase beyond n = 3 [31,32]. In the TI family also, the problem of phasic 

inhomogeneity due to the intergrowth of different members of the series is encountered. 

Due to high toxicity of thallium and the need for special hood chamber and 

related setups for preparation of TI- based compounds, reports on the preparation and 

structural studies on these compounds are comparatively less in literature. 

The synthesis and structural determination of the 2 - TI family, have been 

carried out by Ogborne and group [33-35] by X - ray powder profile refinement. The 

structural features are found to be identical for all the members of the family. They 

are body centred tetragonal crystals and consist of n immediately adjacent Cu - 0 

planes, with a Ca plane between each immediately adjacent Cu - 0 plane for n ~ 2. For 

example in the 2234 phase (n =4), four such parallel layers exist, for the inner pair the 

copper coordination geometry is almost perfectly square planar with a slight buckling 

of the layers outwards from the calcium, whereas the outer sheets are formed from 

CU05 square pyramids, the coordination in the ab plane being almost perfectly square 
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planar. Separating the immediately adjacent Cu-O planes is a corrugated Ba-O plane, 

two TI-O planes and another Ba-O plane before the next Cu-O plane is encountered. 

The distance between the Cu-O planes is rather large, ~ llA which is due to these four 

Ba-O and TI-O isolation planes. The apical Cu-O distances are found to be typical 

for this family of materials, the value being 2.657 A. The TI-O layers show disordering 

of oxygen producing a complex coordination geometry around thallium with two short 

and two long in-plane TI-O distances. 

The structure of the single layer TI compounds have also been determined 

from X-ray and neutron diffraction experiments. Here also the structure consists of n 

immediately adjacent Cu-O planes with a plane of Ca between the Cu-O planes for n ~ 

2. For this structure there is only one TI-O plane rather than two as in the 2-TI family. 

Here the distance between Cu-O planes is just the c axis unit cell length and is equal 

to 9.7A. 

The members of the series HgBa2C~-lCUn02n+2+6 are structurally similar to the corre­

sponding compounds of thallium, TlBa2Can-1CUn02n+2+6 , the main difference between 

the two class of materials being the oxygen occupancy of the TI and Hg layers which is 

almost complete in the case of thallium and less than 50% in the case of mercury. An 

increase of T c is observed with increasing n until the third member of the series after 

which T c is seen to be saturated. This behaviour also is quite similar to those of other 

homologous series such as th~se of TI and Bi. 

The crystal structure of these compounds have been well studied by X-ray 

and neutron powder diffraction [36-40]. Just like the single layer TI compound, the 

structure of mercury compounds are based on the layer sequence in which blocks of Hg­

o layers sandwiched between Ba-O layers having the rock-salt structure alternate with 

blocks of (Cu-02)-(n-1)Ca-(Cu-02) having a perovskite structure. The third member 

of the series, HgBa2Ca2Cu30S+6 (Hg1223) possesses a tetragonal structure with lattice 

parameters a = 3.85A and c = 15.85A [39]. There are two different kinds of CU02 layers 

- one in which the copper atoms have five-fold pyramidal coordination and one in which 
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the copper coordination is square planar. The in-plane Cu-O bond is almost identical 

for the two atoms. A comparison with the other members of the homologous series 

shows that this bond length is strongly dependent on the oxidation state of copper and 

varies from compound to compound. The apical Cu-O distance involving the copper 

atoms with pyramidal coordination is large when compared to other layered cuprate 

superconductors. The oxygen atoms of the CU02 planes containing the copper atoms in 

pyramidal coordination, are almost exactly coplanar with the copper atoms, a feature 

common to all members of this homologous series. The mercury atoms have two-fold 

dumbbell coordination in those unit cells in which the 0(4) oxygen sites are empty, 

and they are coordinated by a third oxygen atom at much a larger distance when the 

sites 0(4) are occupied. The coordination of Ba is also affected by the presence of 0(4) 

atoms, being eight-fold when these sites are empty and nine-fold when they are full. 

1.4 Theoretical Developments 

Since the discovery of superconductivity, several theoretical models have been proposed 

to explain the normal state and superconducting properties of these materials. In the 

following sections, some of these prominent models are briefly outlined. 

1.4.1 The BCS theory 

The first successful microscopic theory of superconductivity, the BCS theory, was pro­

posed by J. Bardeen, 1. N. Cooper and J. R. Schrieffer in 1957 [41] which is based on 

the existence of a net attractive interaction between the electrons mediated by phonons. 

The idea was not entirely new; the discovery of isotope effect earlier in the 1950's had 

suggested that lattice vibrations play a major role in the mechanism of superconductiv­

ity and in 1952 Frolich predicted that two electrons can attract each other via distortion 

of the lattice. This can be explained as follows. When an electron moves through a 

lattice of ions, it exerts forces on them and move them slightly from their equilibrium 

positions. The ions, being heavy, are set into slow forced oscillations, while the elec­

trons being fast, would have already left this region. Another electron passing later 

through this region experiences a force due to the locally distorted oscillating lattice of 
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ions. This force is one of attraction. If this attractive interaction is greater than the 

coulomb repulsion, the two electrons pair up to form what is known as 'Cooper pairs'. 

The coupling of the electrons into Cooper pairs marks the onset of superconductivity. 

Theoretically, it is assumed that all the electrons in a superconducting body 

are paired into Cooper pairs at 0 K in the absence of an applied magnetic field and an 

electric current. The pairs break up when energy is supplied either by the application 

of an external magnetic field or by increasing the temperature. The population of 

unpaired electrons having energy E is proportional to exp(-Ejk8T) which explains the 

exponential temperature dependence of specific heat. 

The Cooper pairs are governed by certain requirements of quantum mechanics, 

the most important of which is that for the Cooper pairs momentum is conserved. This 

property leads to the static electromagnetic properties of zero resistance and Meissner 

effect. The unpaired electrons coexisting with the Cooper pairs in the superconducting 

state are like the electrons in a normal metal. Currents carried by them are resistive 

and their contribution to the magnetic superconductivity are very small. A Cooper pair 

is more stable than two unpaired electrons by the amount of their binding energy, which 

is the energy of the superconducting 'gap'. 

The BCS theory makes predictions for the transition temperature Tc in terms 

of the parameters of the theory. The transition is governed by 

(1.1) 

where A = V N(EF) is a dimensionless constant called the electron-phonon coupling 

constant in which V is the electron-electron interaction and N(EF) is the density of 

states at the Fermi level, and 1i Wn is the Debye energy for the phonons. Since the 

phonon frequency is inversely proportional to the square root of the mass for a simple 

metal, this prediction is in agreement with the isotope effect. 

An expression for the energy gap (Ll) is also given by the BCS theory in terms 

of the above parameters as 

(1.2) 
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This expression is for zero temperature. With increasing temperature, the energy gap 

monotonically decreases and approaches zero as T -4 Tc. In the vicinity of TCl the 

energy gap is expressed as 

T 1/2 

~(7) = 1.74 ~(O) ( 1 - TJ (1.3) 

The continuous approach of energy gap to zero is characteristic of a second order phase 

transition. 

The theory also gives a relationship between the zero temperature energy gap 

and the transition temperature as 

~(O) = 1 76 
k T. . 4 

B c 

(1.4) 

This prediction is independent of the parameters of the theory and agrees quite well 

with many of the simple elemental superconductors. 

Though the BCS theory was successful in explaining almost all the proper­

ties of conventional superconductors, many unusual properties of the high T c materials 

could not be accounted for by this theory. The comparatively higher values of T c, linear 

normal state d.c. resistivity, close proximity between superconductivity and antiferro­

magnetism, anisotropy of the superconducting energy gap etc. are a few examples of 

the properties of these new materials, which cast doubts on the applicability of the BCS 

theory to these materials. So new theoretical models invoking other possible excitations 

like plasmons, polarons, excitons etc. have been proposed for high Tc superconductors. 

1.4.2 The plasmon theory 

Based on electron-phonon interaction, the maximum value of T c which a superconductor 

can have is less than 23 K. These low values of Tc may be due to the low energy of the 

phonon. This immediately suggests that a higher energy boson might act in place of or 

in addition to phonons, yielding a higher Tc. 

When a test charge is inserted into a solid, three kinds of distortions occur 

the lattice distorts which are the virtual phonons, the electrons can repopulate any 

partly filled band which are called 'the plasmons' or they can mix in components from 
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higher unfilled bands which are called 'the excitons'. If the test charge is time de­

pendent, then these distortions follow in time with a lag which is larger for a lattice 

distortion than electronic distortions. A second test charge will feel both the direct 

instantaneous repulsion of the first test charge and a time dependent attraction from 

these dynamical distortions. The usual phonon mediated coupling theory assumes that 

electronic polarisation serves only to cancel part of the direct coulomb repulsion and 

that only phonon polarisation is sufficiently strong and retarded to contribute to pair 

binding. But Rietschel and Sham [42] have shown that in the absence of phonons the 

plasmon mechanism can in principle, cause superconductivity. However, this solution is 

totally altered by Grabowski and Sham [43], who approximately included the effects of 

the lowest order vertex corrections and the graph with crossed coulombic interactions. 

Experiments also suggested the possible existence of plasmon mechanism. X 

ray photoelectron spectroscopy (XPS) on single phase YBCO by Ihara et al. [44] has 

revealed a relatively high value of the density of states at Fermi level. The XPS CU2P 3/ 2 

peak was divided into three peaks which were attributed to monovalent, bivalent and 

trivalent Cu ions with the concentration ratio of 1:2:1. These results and the lattice 

structure of YBCO lead to the T c enhancement mechanism from the plasmon or exciton 

origin due to the Cu d-hole creation and annihilation resonating with vibrating modes 

of the CU05 and CU04 clusters. 

1.4.3 The exciton theory 

Two versions of the idea of excitons got developed during the past few years. Allender 

et al. [45] proposed getting a metal into such intimate contact with a polarisable, narrow 

gap semiconductor that the metallic electrons would be able to interact strongly with 

interband excitations of the semiconductor. Pairing would then occur by the exchange 

of these virtual excitations. Here the word 'exciton' is used loosely to describe the sort 

of virtual excitations involved in the polarisation of a valence band. 

The exciton mechanism, like the plasmon mechanism, surely exists and helps 

in the sense that it weakens the direct coulomb repulsion of electrons. Unlike the 

plasmon in the free electron gas, there is no obvious simple model system which should 
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be subjected to rigorous theoretical investigations. 

The other version of this idea was in the original paper by Little [46]. It is 

almost the same as that of the first version except that it is presumed that it is better 

not to have intimate contact between the electrons involved in pairing and the entity un­

dergoing electronic polarisations. Separation eliminates exchange interactions between 

Cooper pairs and polarising electrons, which otherwise would reduce the attraction. 

Though there are evidences for these excitons, a general difficulty with ex­

citonic mechanisms is that the effective electron-electron interaction is required to be 

attractive over sizable electronic length and time scales, while we know it to be repulsive 

at long distances and times. Since there is no separation of energy scales as for phonons, 

these two requirements are difficult to reconcile. 

1.4.4 Spin fluctuations 

In a magnetic medium, a free electron can scatter off the spin system, emitting a spin 

wave. Superconducting systems are generally magnetically ordered, except perhaps at 

temperatures lower that Tc as in rare earth substituted YBa2Cu307. An exception is the 

heavy fermion systems like URu2Si2 [47,48] in which superconductivity may be caused 

by exchange of antiferromagnetic spin fluctuations. A more common situation for a 

metal to be close to magnetic ordering when becoming superconducting is in which one 

expects to have relatively long lived local spin fluctuations. This scattering of electrons 

from these fluctuations will alter the tendency to form pairs. Usually this alteration 

has been assumed to be harmful in the sense that a spin up electron will attract other 

electrons of up spin, creating a locally ferromagnetic region, and repelling the down spin 

electron needed for singlet Cooper pairing. This process is found to be helpful to triplet 

pairing, and is believed to be an important source of triplet pairing in liquid 3He. So 

far there is no proof that any metal has a triplet pairing state, although UPt3 and other 

heavy fermion systems as well as some organic superconductors are possible candidates. 

These materials all have low Tc values. 

The experimental discovery of closely related antiferromagnetic and supercon­

ducting states in organometals and then in heavy fermion metals has raised the question 
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ofthe existence of antiferromagnetic spin fluctuations [49-51]. However, it is not obvious 

whether an up spin electron will create or destroy local antiferromagnetic polarisation 

or whether this will attract or repel other electrons of opposite or parallel spin. The 

discovery of antiferromagnetism in La2CU04_y [52] and YBa2CuJ07-6 [53] has raised 

further interest in this mechanism. 

Schrieffer et al. [54] have proposed a simple scenario which suggest that free 

carriers in a material wanting commensurate antiferromagnetism will weaken the ten­

dency to order. Thus an up spin electron repels local spin order. Other free carriers, 

with either spin orientation, will be attracted to the region of depleted spin giving a net 

attractive interaction. 

1.4.5 The polaron, bipolaron theory 

The polaron theory was first developed [55] on the basis of periodic lattice in molecular 

crystals where a polaron was defined as the combination of the metal atom with its extra 

charge plus its deformed oxygen coordination. This model could successfully explain 

the conduction mechanism in disordered systems like transition metal oxide glasses like 

Bi-Sr-Ca-Cu-O [56]. Later on this theory was applied to superconducting oxides [57] like 

SrTiOJ, BaPb1-xBixOa, La2-xSrxCu04 etc. by treating them as doped semiconductors 

where conductivity is due to induced doping or self doping. Doping leads to mixed 

valence condition for the metal ions responsible for the formation of polarons, where 

the mobility of these polarons is ensured through the mixed valence charge transfer 

mechanism. 

Under special circumstances, these polarons may combine to form 'bipolarons'. 

The first idea of the existence of bipolarons came from Vinetskii [58,59]. Two polarons 

separated by a finite distance and bound by a common polarisation constitutes a bipo­

laron. A bipolaron may also be viewed as a quasi particle consisting of a self consistent 

state of two conduction electrons and the axially symmetric polarisation potential well 

which is produced by them and which binds them. There is no unambiguous evidence 

that bipolarons exists in any known solids, but a plausible case has been made [60] that 

the metal insulator transitions seen in Ti40 7 at 140 K and at 150 K could be described 
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as bipolaronic. 

It is possibly accidental but nevertheless interesting that the idea of bipola­

ronic superconductivity, specifically in Jahn-Teller distorted systems, is part of what 

motivated Bednorz and Muller [1] to search for superconductivity in Cu-O based sys­

tems. Scalapino et al. [61] argued that Cu-O based superconductivity may be electron­

phonon driven, and on the border between bipolaronic and BCS like. 

1.4.6 The Resonating Valence Bond ( RVB) Theory 

According to P.W.Anderson [62], the oxide superconductors possess some peculiarities 

that suggest a common unique magnetic mechanism as responsible for superconductivity 

which is known as the resonating valence bond (RVB) model. The unique and extra 

ordinary properties of these materials like - high T c values, anomalous superconductor 

- normal metal tunnelling, indications of unstable superconductivity even at room and 

higher temperatures, strong sound attenuation, lR absorption different from that of the 

BCS materials etc. have led to the development of this theory. 

Superconductivity in most of the cuprates occur near a metal to insulator tran­

sition known as the. Mott transition into an odd electron insulator phase with peculiar 

magnetic properties. This insulating phase was proposed to be the 'Resonating Valence 

Bond' or 'quantum spin liquid' hypothesised in 1973. This insulating magnetic phase 

is favoured by low spin, low dimensionality and magnetic frustration. When doped suf­

ficiently to become a metal, the insulating state magnetic-singlet pairs become charge 

superconducting pairs. Thus the pairing mechanism is proposed to be predominantly 

electronic and magnetic, although weak phonon interactions might favour the state. 

The RVB model predicts and is compatible with many experimental findings 

such as the absence of an isotope effect, behaviour of low temperature specific heats, 

elastic properties dominated by electronic energies, the absence of an effective energy 

gap, the insulating and/or antiferromagnetic states of undoped or weakly doped copper 

oxide compounds, anomalous temperature dependence of the normal state resistivity 

etc .. 
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1.5 Thermal and elastic properties of high Tc su­
perconductors 

The high Tc materials have been the subject of intense research by scientists from a 

wide range of fields of both basic and applied research since their discovery, not only 

because of the unusual properties exhibited by them, but also due to the prospects of 

applications of these materials. Since the discovery in 1986, nearly every conceivable 

measurement has been performed on this class of materials and innumerable reports 

concerning different aspects of superconductivity have appeared in literature. 

The magnetic properties of these materials is an area of hectic research which 

include the Meissner effect, determination of both upper and lower critical fields, the 

interplay between long range magnetic order and superconductivity, the critical current 

density, compositional variation of the magnetic properties etc.. The preparation and 

substitutional studies of the ceramic oxides both in bulk polycrystalline and single crys­

tal form has been another important area of research since these sort of studies could 

result in new superconducting materials with even higher Tc's. The structural studies 

of these materials by X-ray and neutron diffraction experiments, thermal and transport 

properties, pressure and temperature dependent studies on various parameters of the 

system, elastic properties, energy gap determination from photoelectron spectroscopy 

(PES) etc. are important for the scientific community since they can provide valuable 

information about the mechanisms responsible for superconductivity. The development 

of thin and thick films of these materials, development of high field superconducting 

magnets to be used in electronic and radio frequency devices, nuclear magnetic reso­

nance (NMR) spectrometers, fabrication of Josephson junctions with high Tc materials 

to be used in SQUIDS etc. are some of the challenges faced by scientists of the techni­

cal field where intense research is going on. A detailed review of all the experimental 

investigations probing different properties of these materials is beyond the scope of this 

chapter and hence is not attempted. 

Among these different areas of research, the thermal and elastic properties 

of the high T c oxides have attracted almost as much attention as the superconducting 
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properties, not only because of the technological importance of these types of investi­

gations but also due to the information provided by these studies for the theoretical 

understanding of the mechanism. Since this thesis is the result of our investigations on 

the thermal and elastic properties of high T c superconductors, an outline of the impor­

tant properties coming under the thermal and elastic regime is given in the following 

sections. 

1.5.1 Specific heat 

The specific heat of a superconducting material is a true measure of its bulk properties 

which plays an important role in determining the volume fraction of superconductiv­

ity which cannot be determined by other measurements. The temperature dependence 

of the specific heat C(T) can provide valuable information concerning the nature and 

energy dependence of many excitations like phonons, electrons, spin waves etc. in con­

densed matter systems [63,64]. Actually it was the exponential temperature dependence 

of the electronic contributions to the specific heat for T < T c in conventional super­

conductors along with the lack of a latent heat of transformation at T c which revealed 

many major facts leading to the development of the BCS theory. Similarly specific heat 

studies of the oxide superconductors do provide valuable insight into both the normal 

and superconducting behaviour of these new and unusual systems. 

In the normal state, there are several types of excitations which may contribute 

to the measured specific heat C(T), where C(T) here refers to the specific heat measured 

at constant pressure. In general, 

(1.5) 

where Ce(T) is the electronic contribution, Cph(T) is the phonon term, Csf(T) is due to 

spin or magnetic fluctuations, CT is due to ionic tunnelling between nearly degenerate 

states and Csch(T) represents a contribution due to a Schottky anomaly resulting from 

a multilevel system. 

Ce(T), The electronic contribution 

The electronic contribution to the specific heat C(T), is given by 1'T for T « T F, the 
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Fermi temperature characterising the electron gas. The electronic coefficient of C(T), l' 

for nearly free electrons is proportional to the density of electronic states at the Fermi 

level, N(EF), and is given by 

(1.6) 

1 The linear T dependence for Ce(T) is found to be independent of the dimensionality 

of the system. 

Cph(T), The phonon contribution 

The phonon contribution to the specific heat has been derived in the Debye model and 

is given by 

C
p
h(1) = 9nNokB1D (hvjkBT)2e(hv/knT) v2dv 

Vb 0 (e(hv/knT) - 1)2 
(1.7) 

where n is the number of ions per molecular units, No is the Avogadro number and VD 

is the Debye frequency. At low temperatures (kBT « hVD) the above equation gets 

simplified to 

12 (T)3 
Cph (1) = "5 7r

4 
nNo kB BD (1.8) 

where BD is the Debye temperature. Thus the Debye model predicts a T3 law for C(T) 

at low temperatures. 

Cs/(T), spin fluctuation contribution 

The spin fluctuations, which are highly damped excitations of the spin degrees of free­

dom of the system, lead to an enhancement of magnetic susceptibility and a modification 

to C(T) at low temperatures. These excitations lead to an enhancement of the electronic 

coefficient of the specific heat l' and introduces a 'J8lnT correction. Including this, the 

electronic specific heat becomes 

(1.9) 

where :: is a mass enhancement due to spin fluctuations and 6 depends on electronic 

parameters such as the exchange interaction, N(EF), TF etc. The 'J8lnT term produces 

an upswing in C(T)jT as T - 0, which is observed for many of the high Tc oxide 

systems [65]. 
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CT(T), two level tunnelling contributions 

The anomalous thermal properties of the disordered systems have been modelled assum­

ing a two-level excitation system representing the tunnelling of atoms or group of atoms 

from one potential well to a degenerate or nearly degenerate neighbouring well. If one 

includes a small distribution in the size of the potential barriers and energy splitting 

between the two levels, a density of the tunnelling states which is nearly constant over 

a limited range of energy is obtained. Then C(T) = fff is obtained with /3 proportional 

to the density of tunnelling states. Thus two level tunnelling models lead to a nonelec­

tronic contribution to C(T) as T -+ 0 which is linear in T, thus mimicking an electronic 

contribution. 

Csch(T), Schottky contribution 

A system of discrete excitations such as a two-level system with a ground state of 

degeneracy go, an excited state of degeneracy gl and an energy splitting Ll will lead to 

an additional contribution, called the Schottky contribution to C(T) given by 

(1.10) 

where R is the universal gas constant. At low temperatures, a T-2 dependence for C(T) 

has been observed for several high Te oxides and has been associated with the Schottky 

contribution. 

The Gibb's free energy difference between the normal and superconducting 

states in a magnetic field H can be written as 

(1.11) 

where He is the thermodynamic critical field and Vs is the volume of the supercon­

ductor. Using this free energy difference, the difference in specific heat along the 

superconducting-normal state boundary is calculated as 

(1.12) 

The observed temperature dependence of the thermodynamic critical field of many 
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superconductors is well represented by a parabolic relationship, 

(1.13) 

Substituting in eqn.(1.12), the difference in specific heat becomes 

(1.14) 

The first term on the R.H.S. can be associated with the normal state contribution given 

by 

CN(T) = (~(O)) T= "(T 
21T"~ 

(1.15) 

where the second term represents C(T) of the electrons in the superconducting state, 

given by 

Cs(T) = 3~(O) (T)3 
21T" Tc Tc 

(1.16) 

This thermodynamic argument, along with the observed parabolic dependence of Hc(T) 

predicts a T3 dependence for Cs(T) as T -t O. However, both experiments and BCS 

theory indicate that Cs(T) goes to zero more rapidly than T3, and this difference is due 

to the slight difference between the assumed parabolic T dependence of Hc(T) and the 

actual dependence. But, near Tc this difference is found to be very small. 

a. Conventional superconductors 

One of the significant accomplishments of the BCS theory is that it provided a correct 

description of the thermodynamic properties of superconductors. The BCS theory pre­

dicts a second order transition to the superconducting state with a discontinuity in the 

specific heat at T = T c, given by 

(1.17) 

where "( is the electronic specific heat coefficient in the normal state. 

In most of the elemental superconductors like Al, Ga, Cd, V, Zn etc. !:l.C/,,(Tc 

is in good agreement with 1.43. However this ratio has been found to depend on the 

details of the pairing interactions. For example, in strong coupled superconductors 

like Pb, Hg, Nb etc. in which the superconducting pairing energy is not negligible 
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compared to the phonon energies, the value of /:1C/1Tc is as high as 2.5. And, if an 

excitonic coupling is added phenomenologically to the electron-phonon coupling and 

modelled just by adding the effective electron-phonon and electron-exciton couplings, 

then /:1C/1Tc has been found to decrease monotonically with increasing electron-phonon 

weight. 

For T « To the BCS theory predicts that Ces(T), the electronic contribution 

to C (T) in the superconducting state, will be proportional to exp( -/:1 /kB T) where /:1 is 

the superconducting gap in the electron density of states at EF. Extensive studies have 

been reported in most of the elemental superconducting systems and the results are 

consistent with the weak coupling BCS theory or appropriate extensions of this theory 

to account for strong coupling corrections. 

h. High Tc oxide superconductors 

There are some distinct differences between specific heats of conventional and oxide 

superconductors. First, since T c of these materials is high, the phonon specific heat 

dominates over electronic contribution which is opposite to the behaviour exhibited by 

conventional superconductors. Second, the critical field necessary to suppress supercon­

ductivity is too large in the oxide superconductors to obtain reliable normal state data 

on T < T c. This coupled with the large phonon contribution to C(T) for T < T c makes 

it nearly impossible to establish the temperature dependence of Ces (T), the electronic 

contribution to C(T) for T < T c. 

Specific heat measurements have been reported on all the major high T c oxide 

systems [66-72], mainly using the adiabatic or quasi adiabatic calorimetric techniques. 

All of them exhibit a distinct anomaly in specific heat around T c, though there is no 

general agreement on the magnitude of this anomaly. The possible reasons for this 

disagreement have been suggested to be the broad and possibly incomplete transition 

due to the lack of phase purity and an intrinsic broadening of the transition due to 

thermodynamic fluctuations of the order parameter. In spite of sample inhomogeneities 

and fluctuation effects, a discontinuity is obtained at T c and is attributed to a mean 

field theory transition. Another interesting feature is the linear term and an 'upturn' in 

specific heat observed at low temperatures. The upturn has been found to be associated 

27 



with electronic magnetic moments that order at very low temperatures as shown by its 

magnetic field dependence. 

There have also been attempts to calculate the ratio ~C h T c for these mate­

rials. Since an unambiguous determination of"( is not easy in these materials, the values 

show variation from sample to sample even for the same material. For YBCO and LSCO, 

this ratio is found to be close to or higher than the BCS value [66,67J, suggesting these 

materials to be in the weak coupling or strong coupling limits respectively. 

1.5.2 Thermal conductivity 

The measurement of transport properties such as Hall effect, electrical resistivity, ther­

mal conductivity, thermopower etc. of a superconducting system can yield valuable in­

formation regarding the nature of the charge carriers and their interactions. In addition, 

the strange normal state properties of high Tc materials, which are not characteristic of 

other materials, are most vividly displayed in their transport properties. For example, 

the electrical conductivity is found to be extremely anisotropic with metallic like be­

haviour along one direction and semiconducting or insulating like behaviour along the 

other. 

The thermal conductivity K is a particularly useful transport coefficient in the 

sense that it can probe scattering processes in both normal and superconducting states. 

Since heat is conducted by both charge carriers and phonons, a measurement of thermal 

conductivity can give valuable information not only about the spectra of electrons and 

phonons, but also about the interactions between them. 

The thermal conductivity K, like the specific heat, can be separated into 

different components as 

(1.18) 

where Ke and Kph refer to the electronic and phononic contributions to the thermal 

conductivity. The temperature dependence of each of these contributions is found to 

depend on the nature of the scattering processes. 

K e , the electronic contribution 

Electrons in a material are scattered by other electrons, by phonons and by defects and 
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boundaries of the material. According to Matheissen's rule, K .. can be expressed as 

(1.19) 

where the additional subscripts ph, e, and d refer to phonon, electron and defect -

limited thermal conduction. 

The electronic thermal conductivity can be calculated from the Wiedmann -

Franz law using the relation 

K .. = LuT (1.20) 

where L = 2.45 X 10-8 V2 K- 2 , is the Lorenz number and u is the electrical conduc­

tivity. Since u is inversely proportional to the temperature T, K .. is a constant at high 

temperatures. As the temperature decreases phonon scattering becomes less and less 

effective, impurity scattering dominates and correspondingly KI' goes through a maxi­

mum value. The temperature at which KI' becomes maximum and the value of Ke at 

this temperature depend on the defect content. At very low temperatures, boundary or 

defect scattering limits the electron mean free path to a temperature independent value 

and the electronic thermal conductivity varies linearly with temperature. 

Kph' the phonon contribution 

Here also, the thermal conductivity depends on the nature of the scattering processes, 

playing a dominant role in the temperature region of concern. Kph can also be split into 

different components as 

(1.21) 

where the subscripts represent, as before, the phonon, electron and defect components. 

At high temperatures, phonon - phonon scattering is dominant and the num­

ber of phonons excited at any frequency is proportional to the temperature T. In this 

range of temperatures, the corresponding mean free path is inversely proportional to 

temperature and hence the thermal conductivity. As the temperature decreases, the 

mean free path due to phonon - phonon interaction increases exponentially with 1 IT 

and Kph also follows such a temperature dependence. At very low temperatures, the 

primary scattering mechanism is the external boundaries of the specimen and Kph varies 
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as T3. In metals, it is found that there can be an intermediate region in which phonon 

- electron scattering dominates and Kph varies as T2. 

The thermal conductivity of a material can show a complicated temperature 

variation depending on the relative strengths of the electronic and phononic contribu­

tions. In a pure metal the electronic contribution dominates while in an alloy or a 

compound with a relatively high resistivity both contributions may be important in 

certain temperature ranges. 

a. Conventional superconductors 

The variation of thermal conductivity with temperature in metallic superconductors 

has been well explained by the BCS theory, as follows. When a metal becomes super­

conducting, electrons form Cooper pairs. Such pairs of electrons do not carry entropy 

and hence cannot contribute to thermal conductivity, while the single particle Fermion 

excitations do transport heat. As the temperature decreases below Tc the number of 

such excitations decays exponentially as they form Cooper pairs. The electronic thermal 

conductivity therefore falls rapidly below Tc. 

On the other hand, the phonon contribution Kph will increase as the temper­

ature falls because of the corresponding increase in the mean free path due to the rapid 

decrease in the number of single particle Fermion excitations in the superconductor. 

The ultimate temperature dependence of thermal conductivity below Tc will depend 

upon whether the material is clean or dirty. In ideal superconductors, with no trace of 

impurities, the phonon contribution is negligible down to the lowest temperature and 

the electron contribution decreases exponentially to zero. If the superconductor is in 

the dirty limit, the decreasing electronic contribution to the thermal conductivity will 

be compensated by the increasing phonon contribution at temperatures below T c· So 

the thermal conductivity will show a peak at a certain temperature Tm below Tc. Below 

Tm , the phonon contribution is dominant and as T tends to zero, thermal conductivity 

will vary as T3. 

h. High Tc oxide superconductors 

Since in conventional superconductors the main heat carriers are electrons, the thermal 

conductivity followed by the Wiedmann - Franz relation gives the same information as 
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that which can be obtained from the more easily measured electrical resistivity. Only 

well below Tc are phonons the main heat carriers and different information can be 

extracted. However, phonon scattering in these low temperature regions is mainly due 

to boundary scattering and no intrinsic features of the sample can be observed. The 

uniqueness and importance of thermal conductivity measurements in high temperature 

superconductors become evident at this point. Electrons are not the principal heat 

carriers in these materials, they only contribute values that range from 3% of the thermal 

conductivity at 300 K to perhaps 30% in single crystals. In other words, the high 

transition temperatures get the electrons out of the way at temperatures where phonons 

can still probe intrinsic properties. 

Eventhough there are numerous reports on the thermal conductivity of high 

Te materials [73-81]' the interpretation of the data is difficult because of a number of 

reasons. The thennal conductivity of the samples should be anisotropic, but since most 

of the measurements are made on sintered polycrystalline samples, the value averaged 

over all possible orientations of the individual grains is obtained. Secondly, the oxygen 

stoichiometry plays an important role on the superconducting properties and for a 

given oxygen stoichiometry, the distribution of oxygen atoms do play an important role 

in defect scattering. Further, the magnetic excitations which are likely to be present 

in some of the superconductors can play a part in scattering phonons and even in the 

transport of heat. 

In spite of the complications mentioned above, thermal conductivity measure­

ments in high T c superconductors have revealed a uniformity in behaviour. Above T e all 

superconducting samples follow an almost temperature independent behaviour, while 

at Te an abrupt increase in K is reported, though the magnitude of this increase differs 

from one report to another. This behaviour is explained on the basis of electron pairing. 

The electron - phonon interaction is very strong in these materials and causes a reduc­

tion in the phonon mean free path in the normal state. When the material becomes 

superconducting, the electrons get paired and the phonons cannot be scattered against 

these pairs anymore and their mean free path and hence the thermal conductivity in­

creases. When the temperature is further lowered, the scattering of phonons by defects, 
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grain boundaries etc. come into play, causing a reduction in thermal conductivity at 

low temperatures well below T c. 

1.5.3 Elastic properties - ultrasonic velocity and attenuation 

One of the most important measurements for the study of superconducting phase tran­

sitions is the velocity and attenuation of ultrasound which probe the elastic properties of 

the material. Because the elastic modulii and therefore the sound velocities, are directly 

proportional to the second derivative of the Gibb's free energy with respect to stress, 

ultrasound provides a direct probe of phase transitions where strain is the order param­

eter. Additional information such as the coupling of phonons with electrons, relaxation 

mechanisms etc. can also be derived from the attenuation of ultrasound. Moreover, the 

measurement of sound velocity can not only provide results that are difficult to obtain 

by other methods, but also be used to confirm the results of other measurements. 

If the elastic constants of a superconductor are measured as a function of tem­

perature, certain features in the vicinity of the transition temperatures can be observed. 

Many nonoxide superconductors with high T c's have transitions that are accompanied 

by structural instabilities or structural transitions and in some cases the structural 

transition may be arrested by the onset of superconductivity. Such instabilities are 

important to the theory of superconductivity. For conventional BCS superconductors 

the increase of the superconducting transition temperature near a structural instabil­

ity is understood because the electron pairing mechanism involves strong electron -

phonon coupling. For the new oxide superconductors, the role of lattice is uncertain. In 

this context, the measurement of the elastic constants become important because, as a 

derivative of free energy, the elastic constants are a sensitive probe of the environment 

in which the electrons pair. 

a. Conventional superconductors 

Ultrasonic techniques have commonly been used to study normal metals and super­

conductors, since it is a very good tool to probe the bulk properties of materials. In 

conventional superconductors, sound propagation studies have primarily focussed on 

attenuation since it provides direct measurement of the superconducting energy gap 
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leading to direct confirmation of the BCS theory. 

At high temperatures, the dominant attenuation mechanism is the scattering 

of the sound wave from dislocations in the lattice. As the temperature is lowered and 

the electron mean free path becomes longer, the interaction of electrons with the lattice 

also contributes to the attenuation. 

In the limit qZ < < 1, where q is the sound wave vector and Z is the electron 

mean free path, the expressions for attenuation 0, of longitudinal (L) and transverse 

(T) sound are given by 
4 NmvF 2Z 

OL = - q 
15 PVL 

(1.22) 

and 
1NmvF 2Z 

OT = - q 
5 PVT 

(1.23) 

where N, m, VF are the number density, effective mass and Fermi velocity of the electrons, 

VL and VT are the longitudinal and transverse sound velocities and P is the density. The 

attenuation is proportional to the mean free path and the square of the frequency since 

w = qv. As the temperature falls, the electron mean free path increases and ultimately 

saturates because of scattering from imperfections in the crystal. 

In the collisionless limit qZ > > 1, ie, for high purity samples and/or high fre­

quencies, the attenuation becomes independent of Z and is proportional to the frequency 

/, and the expressions get modified as 

(1.24) 

and 

0T = ~ N m v F q = ~ N m v F f 
31T" P VT 3 pv~ 

(1.25) 

In most superconducting materials, the electronic contribution to the atten-

uation drops sharply at T c , approaching zero as the temperature is lowered. The su­

perconducting state is characterised by the existence of a gap in the energy spectrum, 

which increases with decreasing temperature, approaching ~ = 1.764 kB Tc at zero tem­

perature. The existence of the energy gap implies that there are no unbound electrons 

to scatter the sound and therefore the attenuation at T = 0 should go to zero. At finite 
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T, thermally excited quasiparticles are present, the distribution of which is governed 

by the Fermi distribution, leading to an exponential temperature dependence for the 

attenuation. An expression for the temperature dependent attenuation is given by 

(:.:) = et.(7)/:aT + 1 (1.26) 

where as and aN are the attenuation coefficients in the superconducting and normal 

states respectively and Ll(T) is the temperature dependent energy gap. 

Elastic measurements, either through sound propagation or through vibrating 

reed type techniques, are not routinely made in conventional superconductors for the 

simple reason that the condensation energy per particle is very small, approximately 

10-6 times the typical elastic energy. The net effect in sound velocity is of the order of 

a few parts per million and can be studied only with the most precise techniques in the 

most carefully prepared single crystals. These measurements are used in conventional 

superconductors to test the thermodynamic relationships that exist among the various 

second derivatives of the free energy such as compressibility, specific heat and thermal 

expansioI;l coefficient. These measurements have yielded information on the microscopic 

parameters involved in the BCS theory such as the strain dependence of the electronic 

density of states, electron - electron interactions etc. 

The isothermal elastic modulus Cij , obtained as the second derivative of the 

Helmholtz free energy (F) with respect to strain (€) is given by 

eij = (~ d: :€J T 
(1.27) 

where Vo is the unstrained volume. Substituting the expression for the free energy, the 

velocity jump at the transition is obtained as 

c:. eN _ a 
2 arc arc 

ij - ij - - 471" 8€i &j 
(1.28) 

where the superscripts Sand N refer to the superconducting and normal states respec-

tively. 

h. High temperature superconductors 

Unlike conventional superconductors, sound propagation in high T c materials is com­

plex and reflects the remarkably wide range of phenomena exhibited by multiconstituent 

34 



oxides. Several factors make the extraction of clear results from acoustic investigations 

difficult: large anisotropies arising from the 2-D planar structural elements, low crys­

talline symmetry, sensitivity to oxygen stoichiometry, impurities, magnetic interactions, 

structural instabilities etc. being a few examples. 

The bulk of acoustic investigations of high Tc superconductors have been 

performed on ceramic samples comprising aggregated micron sized crystallites. Such 

experiments generally probe spherically averaged properties, which cannot provide any 

information regarding the anisotropy. Measurements on single crystals is a solution to 

this problem. However, the successful growth of single crystals is not easy, whereas 

ceramics have been easy to synthesize. The control of stoichiometry is generally more 

difficult in crystals as compared to microcrystalline ceramics. As a result there have 

been only a handful of acoustic studies on high Tc single crystals [82-86]. 

Extensive sound velocity and attenuation measurements have been reported in 

ceramic polycrystalline high Tc materials [87-95]. The velocity measurements generally 

give consistent results over a wide temperature range for both sintered polycrystalline 

ceramics and single crystals. The velocity generally increases with decreasing temper­

ature and in the vicinity of Tc, there is a change of the derivative of velocity with 

respect to temperature, though reports vary on the magnitude of this change at T c' 

The anomalies exhibited at temperatures above T c, usually in the range 180 -220 K, the 

large hysteresis observed in heating - cooling cycles etc. are other interesting features 

characteristic of these materials. 

The discontinuity of velocity at T c can be explained thermodynamically by 

the jump in specific heat observed at Tc and by the pressure dependence of Tc. At 

zero magnetic field, the superconducting transition is a second order phase transition. 

Starting from one of the TdS equations, 

TdS = CdT- TVj3dP (1.29) 

and a differential equation for V(P,T), 

(1.30) 
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an Ehrenfest's equation for a second order phase transition can be obtained. By using 

the fact that entropy and the specific volume are continuous across a second order phase 

transition, we have 

dP !:1C 

dT TV!:1 B 
dP !:1.3 
dT !:1K 

(1.31) 

Here the thermal expansion coefficient {3 and compressibility K are defined as follows. 

B 
18V 
--
VaT 

K 
1 8V 

- ---
V8P 

After simplification, eliminating !:1{3, one gets 

!:1K= _1_ (aTc) 
2 

!:1C 
TcV 8P 

(1.32) 

(1.33) 

Since the compressibility K is the reciprocal of the bulk modulus B, it follows that 

(1.34) 

Similarly the shear modulus G and the strain f at the transition temperature can be 

written as 

!:1G 

G 

(1.35) 

where !:1S is the entropy change at T c, CTs is the shear stress, fa is the generalised strain 

and CTa is the conjugate stress. 

Ultrasonic attenuation measurements in high T c materials generally yield three 

attenuation maxima in the temperature range from 4 K to 300 K in zero magnetic field. 

One of the three maxima is around the superconducting transition temperature and the 

other two are located at higher temperatures. The positions of these maxima display 

considerable frequency and sample dependence. In addition, a peak is observed below 
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the superconducting transition in some systems. It has been suggested that the change 

in attenuation is too large to be produced by electron - phonon interaction alone in high 

Tc materials and the peak below Tc is not directly associated with the superconducting 

transition. Rather, this behaviour is characteristic of a relaxation process for sound 

wave attenuation. Anisotropy is another feature observed in attenuation when the 

measurements are performed in single crystals or sinter forged samples. 

1.6 A brief outline of the work presented in the the-
• 

SlS 

The following chapters of this thesis give a detailed account of the work carried out 

on high T c superconducting samples and the experimental techniques employed for 

these investigations. The thermal properties such as thermal diffusivity, specific heat 

and the thermal conductivity of a set of YBa2Cua07-c5 - Sn02 composites have been 

measured employing the photoacoustic technique and differential scanning calorimetry. 

The effect of Ga doping on the elastic properties of GdBa2Cua07-c5 superconducting 

samples is another investigation presented in the thesis. The ultrasonic velocity and 

attenuation as a function of temperature have been measured in this set of samples 

using the ultrasonic technique. In addition, the thesis contains numerical investigations 

carried out on selected superconducting systems. The phase and group velocities have 

been computed for superconducting LSCO, YBCO and BSCCO for waves propagating 

in different directions and the corresponding velocity surfaces have been plotted as a 

function of propagation direction, taking the single crystal elastic constant data available 

in literature. Another investigation carried out is the evaluation of phonon focussing 

and amplification for elastic waves of different polarisations propagating along different 

directions in the superconductors LSCO, YBCO and BSCCO again using the elastic 

constant data taken from literature. Phonon amplification factors have been plotted as 

function of the polar and azimuthal angles in a pseudo 3D representation. 
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Chapter 2 

Experimental Techniques 

2.1 Introduction 

In this chapter, the different experimental techniques employed for the investigations 

presented in the thesis are described. Three different techniques have been used for 

these studies. They are 

1. Photoacoustics 

2. Differential scanning calorimetry 

3. Ultrasonics 

A description of each of the experimental methods and setups used for the measurements 

is given in the following sections. 

2.2 Photoacoustics 

The photoacoustic (PA) effect has its origin long back in 1880, when Alexander Graham 

Bell [1, 2] discovered that when a periodically interrupted beam of sunlight falls on a 

solid in an enclosed cell, an audible sound could be heard. Subsequent studies by other 

scientists revealed that this effect was not exhibited by solids alone, but an acoustic 

signal was found to be produced when a liquid or gas in an enclosed cell was illuminated 

with chopped light. However, the potentialities of this technique in the study of thermal 

and optical properties of solids remained almost unexploited until the advent of the 

microphone. Since then this technique has evolved as a very powerful method for the 

investigation of solid samples. 

The PA effect is the generation of an acoustic signal when the sample under 
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investigation, placed inside a closed cell, is irradiated by an intensity modulated beam 

of light. In the case of gas and liquid samples, the sample fills the entire volume of the 

cell, while the solid sample occupies only a portion of the cell and the remaining volume 

of the cell is filled with a nonabsorbing gas such as air. The internal energy levels of 

the sample are excited by the absorption of incident radiation and upon subsequent 

deexcitation, all or part of the absorbed photon energy is converted into heat through 

nonradiative deexcitation processes. In the case of solid samples, this periodic heating 

of the sample results in a periodic heat flow from the interior of the sample to the 

surrounding gas which in turn produces pressure fluctuations in the gas which can be 

detected as an acoustic signal by the microphone. In gas and liquid samples, the internal 

heating causes pressure fluctuations having the same frequency as that of the incident 

beam, which can be detected by an acoustic transducer. 

Eventhough the PA effect was discovered more than a century ago, a proper 

theoretical understanding of this effect in solids was lacking until recently despite several 

attempts by many physicists. Though it was correctly deduced by Bell himself that the 

PA effect is due to the internal heating of the sample by the absorbed energy, the 

generation of the acoustic signal due to this heating could not be correctly explained. 

Many suggestions were put forward to explain the generation of the acoustic signal [3-5], 

but were found to be inadequate in explaining the experimental results. 

The present understanding of the P A effect in solids is based on the general 

theory developed by Rosencwaig and Gersho (R-G theory) [6,7], which has been found 

to be very successful in interpreting most of the experimental observations. The theory 

predicts that in a gas - microphone PA cell, the signal depends both on the generation 

of an acoustic pressure wave at the sample - gas interface and on the transport of this 

pressure disturbance through the gas to the microphone. The pressure fluctuations at 

the sample - gas interface are caused by the periodic heat flow from the sample which 

is governed by thermal diffusion equations. Rosencwaig and Gersho solved the thermal 

diffusion equations for the sample, the backing material on which the sample is mounted 

and the gas in the cell and obtained exact expressions for the periodic temperature at 

the sample - gas interface. However, a detailed discussion of the theory is not presented 
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here since it is beyond the scope of this chapter. 

2.2.1 The Photoacoustic setup 

The photoacoustic method has been used extensively in the study of optical and thermal 

properties of solid samples. The essential modules of a PA spectrometer are a source 

of intensity modulated optical radiation, a PA cell which incorporates the microphone 

and the electronics for detecting the photoacoustic signal. 

A block diagram of the PA setup used for the temperature dependent studies 

described in the next chapter is shown in Fig. 2.1. It consists of (i) a 1000 W Xe arc 

lamp, (ii) an electromechanical chopper, (iii) a variable temperature PA cell, (iv) a 

lock-in amplifier and (v) a temperature controller. A brief description of each of these 

components is given below. 

The light source we have used, i. e., the 1000 W high pressure Xenon arc lamp 

(Spectroscopy Instruments, Model SVX 1000) has got a continuous emission from 280 

to 2500 nm with high intensity in the visible region. The power of the lamp can be 

varied from 600 to 1000 Wand the intensity of the lamp is found to be highly stable. 

Intensity modulation of the incident light beam is accomplished by an elec­

tromechanical chopper (Photon Technology International, Model OC 4000). Using two 

discs, the chopping frequency can be varied continuously from 4 to 4000 Hz. The chop­

per also provides appropriate reference signal to the lock-in amplifier with excellent 

phase stability. 

The PA cell, which forms the central part of the PA spectrometer, can be used 

over a wide range of temperature, from 85 - 450 K. Fig. 2.2 shows the schematic diagram 

of the PA cell used for our studies. The sample compartment made out of a brass rod, 

is in the form of a cold finger, one end of which is in contact with a liquid nitrogen 

reservoir and is kept inside a vacuum chamber. The sample cell is sealed with a window 

against the vacuum outside using an '0' ring made of indium wire. The liquid nitrogen 

reservoir has a double wall construction, with the vacuum extending throughout the 

interior of the walls. The microphone compartment is integrated with the other end side 

wall of the outer chamber and is acoustically coupled to the sample cell through a thin 
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Schematic representation of the photoacoustic setup. 
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Fig. 2.2 

Schematic diagram of the variable temperature PA cell. 
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walled stainless steel tube. This configuration permits large variations in the sample 

temperature without altering the microphone temperature appreciably. The sample 

temperature is detected by a platinum resistance sensor and can be varied by the heater 

wound around the cold finger. Both the temperature sensor and heater are connected 

to a temperature controller. The modulation frequency and temperature dependence of 

the cell have been characterised using carbon black sample. The resonant frequency of 

the cell is determined to be around 310 Hz at room temperature. 

A small size fiat type electret microphone (Knowles, Model BT 1759) is used 

in the PA cell to pick up the generated acoustic signals. It has got a fiat frequency 

response in the range 10 to 5000 Hz and a high sensitivity of 10 m V/Pascal. 

The PA signal detected by the microphone is processed using a single phase 

lock-in amplifier (Stanford Research Systems, Model SR 510). The lock-in amplifier has 

a built in preamplifier providing a full scale sensitivity of 10 n V maximum. It has an 

operating frequency range from 0.5 Hz to 100 kHz. Phase can be adjusted in large steps 

of 90° and fine steps of 0.025°. 

The temperature dependent studies have been carried out with the help of 

a temperature controller (Lakeshore Model DR 82C). This is a three mode controller 

utilizing the proportional, integral and derivative functions (PID). There are provisions 

to use two temperature sensors - one as control sensor and the other as sample sensor. 

2.2.2 Thermal diffusivity measurements using PA technique 

Using the photoacoustic technique, the thermal diffusivity of the superconducting sam­

ples have been measured at different temperatures. This has been done by measuring 

the amplitude of the PA signal as a function of the chopping frequency f. The am­

plitude of the PA signal is determined primarily by the amplitude of the temperature 

oscillations at the sample surface and it is governed by the thermal diffusivity (Q) of 

the sample, which is related to other thermal parameters of the sample by 

K 
Q = - (2.1) 

pC 

where K, p and C are the thermal conductivity, density and specific heat of the sample 

respectively. 
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The R-G theory predicts different quantitative relations between et and the 

PA signal depending upon the experimental conditions. One of the parameters which 

determine the amplitude of the PA signal is the thermal diffusion length j.L, which is 

defined as 

(2.2) 

where I is the chopping frequency. When the chopping frequency is varied, j.L changes 

giving two different conditions according to the relative magnitudes of the thermal 

diffusion length j.L as compared to the physical length 1 of the sample. For a sample 

thickness l, mounted on a suitable backing material, at low chopping frequencies when 

J.L > l, the acoustic signal varies as w- 1 (where w = 21Tf) and depends on the thermal 

properties of the backing material and this condition of the sample is referred to as 

thermally thin regime. At higher chopping frequencies, j.L becomes less than 1 and the 

PA signal reflects the thermal properties of the sample material and is independent of the 

properties of the backing material. In this condition the sample is said to be thermally 

thick and the acoustic signal varies as W- 3/ 2 in this regime. So for an appropriate sample 

thickness, one can obtain a crossover from the thermally thin regime to the thermally 

thick regime by increasing the chopping frequency. The amplitude versus chopping 

frequency plot hence shows a change in slope at the characteristic frequency le at which 

the crossover takes place. The characteristic frequency le is related to the thermal 

diffusivity of the sample by the relation [8] 

(2.3) 

le can be determined from the amplitude versus chopping frequency plot and measuring 

the sample thickness l, et can be calculated using the above relation. 

2.3 Differential Scanning Calorimetry 

Whenever a material undergoes a change in its physical state such as melting or tran­

sition from one crystalline form to another, or whenever it reacts chemically, heat is 

either absorbed or liberated. In other words, thermal changes in a sample are due to 

endothermic or exothermic enthalpic transitions or reactions. Such enthalpic changes 
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can be caused by phase changes, fusion, crystalline inversions, boiling, sublimation, 

vapourisation, oxidation, reduction or other chemical reactions. Generally phase tran­

sitions, dehydration, reduction and some decomposition reactions are endothermic in 

nature, whereas crystallisation, oxidation etc. are exothermic. 

In order to study the thermal behaviour of materials as they undergo physi­

cal and chemical changes during heat treatment, several experimental techniques have 

been developed over the past years. Differential Scanning Calorimetry (DSC), Differen­

tial Thermal Analysis (DTA) , Thermogravimetry (TG), Thermo Mechanical Analysis 

(TMA), dilatometry etc. are a few examples of the techniques which can be used to 

detect the physical and chemical changes which are accompanied by a gain or loss of 

heat in a material as its temperature is varied. 

Among these different techniques, the DSC and DTA are being used widely, 

since the thermal properties of a wide variety of materials can be investigated and are 

particularly useful tools in the characterisation of organic polymers, biological materials, 

inorganics, amorphous alloys etc. In addition, they find applications in qualitative 

and quantitative evaluation of phase transformations such as glass transition, melting, 

crystallisation etc., study of polymerisation, determination of thermal and processing 

histories etc. 

In DSC, the thermal behaviour of the material is studied by measuring the 

differential heat flow required to maintain the sample material and an inert reference 

material at the same temperature, while in DTA the temperature difference arising 

between the sample and reference materials is measured as both are heated at a constant. 

rate in the same environment. Although DSC yields data which are inherently more 

qualitative and more amenable to theoretical interpretation than the DTA data, it does 

not seem to have been used as widely as the latter. The DSC technique has been 

applied, however, to diverse types of compounds and reviews on the application of DSC 

to petroleum products, plastics, biological systems, metal complexes, polymers etc. have 

appeared in literature [9-13]. 

The term differential scanning calorimetry was first used by Watson et al. [14] 

to describe the instrumental technique developed by the Perk in - Elmer Corporation. 
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This technique, as mentioned earlier, maintains the sample and reference materials 

isothermal to each other by proper application of electrical energy. as they are heated or 

cooled at a linear rate. The curve obtained is a recording of heat flow dH/dt in mcal/sec 

as a function of temperature. In the true thermodynamic sense, an endothermic peak 

curve is indicated by a peak in the upward direction, indicating an increase in enthalpy, 

while an exothermic peak is recorded in the opposite direction. The area enclosed by 

the DSC curve peak is directly proportional to the enthalpy change, as in DTA. 

Though this technique suffers from serious limitations such as relatively low 

accuracy and precision, inability to determine the enthalpy changes of overlapping reac­

tions conveniently etc., it has got many advantages over conventional calorimetric tech­

niques. Rapidity in the determination of thermal properties over a wide temperature 

range, small amounts sample required for measurements, easy data analysis procedure, 

ability to study many different types of reactions etc. are some of the unique features 

possessed by the DSC technique. 

2.3.1 The experimental setup 

Generally two different types of techniques - power compensated DSC and heat flux 

DSC - are used to obtain calorimetric data. In power compensated DSC, the sample and 

reference materials are heated by separate heaters in such a way that their temperatures 

are increased or decreased linearly. In heat flux method, the difference in heat flow into 

the sample and the reference material is measured as the sample is heated or cooled 

linearly. Although the two methods provide the same information, the instrumentation 

for these two is fundamentally different. 

We have used the DSC-7 differential scanning calorimeter (Perkin - Elmer) 

for our measurements which operates in the power compensation design. With the 

3700 Data station, the modular DSC-7 permits the direct calorimetric measurement, 

characterisation and analysis of thermal properties of materials. Under the control of 

the computer, the DSC-7 is programmed from an initial to a final temperature through 

transitions in the sample material. 

Platinum resistance heaters and thermometers are used in DSC-7 to accom-
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plish the temperature and energy measurements. The continuous and automatic ad­

justment of heater power necessary to keep the sample holder temperature identical to 

that of the reference holder provides a varying electrical signal equivalent to the varying 

thermal behaviour of the sample. This measurement is made directly in energy units 

(mW), providing true electrical energy measurements of peak areas. 

For standard operation the DSC-7 is equipped with an insulated reserVOIr 

which allows the use of ice water coolant. In this configuration it can be operated 

from 25°C to 730°C. With additional accessories, the temperature can be lowered to 

liquid nitrogen temperature. The scanning rate, i. e., the rate at which the sample is 

heated or cooled can be varied over a wide range from O.loC to 200°C/minute in steps 

of O.loC/minute. 

Before any quantitative measurement is made, the calorimeter must be cali­

brated for the temperature and energy scales. High purity metals with accurately known 

enthalpies of fusion are generally used as calibration standards. Zinc and indium are the 

commonly used calibrants, using which the instrument can be calibrated over a wide 

temperature range. 

2.3.2 Specific heat measurements using DSC 

Determination of specific heat of a material is accomplished in two ways, depending 

on the temperature range in which the property is to be measured. From cryogenic 

temperatures to approximately 350 K, adiabatic calorimeters are usually used, while 

at higher temperatures, the drop calorimeter using the method of mixtures is generally 

preferred. 

Though these techniques can provide fairly accurate results, there are some se­

rious drawbacks too. For example, the analysis time is prohibitively long, large samples 

are required for the measurements and sample geometries must be carefully controlled 

for the accurate determination of the specific heat. Another objection to these tech­

niques concerns their precision at transition temperatures of the sample material. 

The differential scanning calorimetry can also be used for the direct measure­

ment of the specific heat of materials. The basic principle involved is that when a sample 
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is subjected to a linear temperature increase, the rate of heat flow into the sample is 

directly proportional to the instantaneous specific heat of the sample. By measuring 

this heat flow rate as a function of temperature and comparing it with a standard 

material under the same conditions, one can obtain the specific heat as a function of 

temperature [15,16J. 

The procedure to determine the specific heat of a material using DSC is briefly 

described below. Empty aluminium pans are placed in the sample and reference holders. 

An isothermal baseline is recorded which indicates the differential losses of the two 

sample holders caused by the thermal capacity mismatch between the two sample holders 

and their contents. The procedure is then repeated with a weighed amount of the sample 

placed in the sample holder. There is an offset from the baseline owing to the absorption 

of heat by the sample. The heat flow rate into the sample is then given by 

dH =rnC dT 
dt p dt 

(2.4) 

where dH / dt is the heat flow rate, m is the sample mass, Cp is the specific heat and 

dT/dt is the programmed rate of temperature increase. 

Eqn.{2.4) can be used for the specific heat calculation, but the ordinate cal­

ibration and the temperature program rate must be known with at least the precision 

required for the final result. However, these parameters can be eliminated from the 

calculation if a material with a known specific heat is used to calibrate the instrument. 

Such a material is et - aluminium oxide or synthetic sapphire, for which the specific heat 

has been determined to five significant figures in the temperature range 0 to 1200 K [17J. 

In order to avoid the errors, the above procedure is repeated with a known 

mass of sapphire, after the baseline and sample programs. Then at any temperature T, 

the following equations apply: 

(2.5) 

(2.6) 

where y and y' are the ordinate deflections due to the sample and the standard respec­

tively, as is shown in Fig. 2.3. rn' and Gp' are the mass and specific heats of the standard 

and K is the ordinate calibration factor. 
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Fig. 2.3 

Specific heat determination by ratio method. 
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Dividing eqn.(2.5) by (2.6) and rearranging terms, 

(2.7) 

Thus the determination of the specific heat requires only the comparison of two ordinate 

deflections at the same temperature and this method of determining the specific heat 

is referred to as the ratio method [15]. It has been observed that, in this method the 

calculation of specific heat would be correct evenif the ordinate calibration and the 

program rate are temperature dependent. 

2.4 Ultrasonic Technique 

Study of elastic wave propagation through solids is very important both from scientific 

and technological points of view since it enables to probe the bulk elastic properties as 

well as microscopic lattice dynamical properties of materials. Since the measurement 

of elastic response can provide a lot of information about the nature of transition and 

the order parameter involved, they become very valuable in phase transition studies as 

well. While determination of elastic constants by measuring ultrasound velocities helps 

to locate transition points, to determine phase diagrams etc., ultrasound attenuation 

measurements provide direct information about the dynamic behaviour of the system. 

2.4.1 Ultrasonic velocity and attenuation measurements in 
solids 

As the measurement of acoustic parameters is very important in characterising ma­

terials, several experimental methods have been developed for the purpose, such as 

torsion pendulum, resonance - antiresonance, ultrasonics, hypersonics, Brillouin scat­

tering etc. for different frequency ranges. Among these, ultrasonic techniques have been 

widely used in the study of elastic properties of solids because of the higher frequency 

range (1 MHz - 1 GHz), greater variability and sensitivity compared to other meth­

ods. Besides, the ultrasonic techniques enable one to make simultaneous velocity and 

attenuation measurements very accurately. 
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The ultrasonic techniques again can be broadly divided into two categories 

- continuous wave (cw) methods and pulse methods. In the cw method, a standing 

wave pattern is obtained in a specimen by applying an acoustic excitation such that 

an integral number of half wavelengths are set up between the opposite faces of the 

sample. Using frequency modulation techniques, one can measure changes in velocity 

and attenuation of the specimen. Though this technique provides results with high 

precision, there are several sources of error in this method and proper corrections are 

required. cw methods are seldom used for low temperature measurements because of 

sample heating due to the large input power into the sample. 

The pulse methods are very popular and in its simplest form, an ultrasonic 

pulse of short duration is injected into the sample by a piezoelectric transducer made 

of materials like quartz, LiNb03 , BaTi03, SrTi03 etc. This pulse sent into the sample 

is almost perfectly reflected at the opposite air - sample interface and it returns to the 

transducer - sample interface, where all but a small fraction of energy is again returned 

to the sample. By the time the first echo has arrived back at the transducer, the trans­

ducer has been turned off. The transducer converts a small amount of the energy of 

the returned pulse into electrical energy. This electrical signal is amplified by an ap­

propriate receiver and the result is displayed on an oscilloscope. The other portion of 

the acoustic energy gets reflected at the transducer - sample interface and the process 

described above is repeated. The received signals can be seen on the oscilloscope screen 

as a series of echoes. Because of multiple reflections, each time the stress wave passes 

through the sample, a fraction of its energy is absorbed or scattered. The result is an 

exponentially decaying echo pattern. By measuring the time between two successive 

echoes and knowing the thickness of the sample, the ultrasonic velocity can be deter­

mined. Attenuation can be measured by observing the decay rate of these successive 

echoes. 

Considering the plane attenuated wave as represented by 

A(x, t) = Aa e-ox ei(wt-kx) (2.8) 

the attenuation factor Q can be defined as the imaginary part of the complex propagation 
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vector, while the phase velocity Vp is given by the real part. Then the attenuation can 

be expressed as 

dB/unitlength (2.9) 

where A(xd and A(X2) are the amplitudes of the two echoes and X2 - Xl represent the 

distance between these echoes. 

There are a number of pulse techniques used for accurate ultrasonic velocity 

and attenuation measurements, and among them the most important and widely used 

ones are the pulse superposition technique, sing - around technique and pulse echo over­

lap technique. Since we have used the pulse echo overlap technique in our measurements, 

it is discussed in some detail in the following section. 

2.4.2 Pulse Echo Overlap Method 

The Pulse Echo Overlap (PEa) method is a very versatile and highly accurate technique 

for measuring the velocity of ultrasonic waves in materials and structures [18-21]. The 

absolute accuracy of this method arises from the fact that the method is capable of mea­

suring accurately from any cycle of one echo to the corresponding cycle of the next echo. 

In addition, the attenuation of the ultrasonic wave can be measured simultaneously in 

this technique. 

In PEa method, the rf pulse is applied to the sample through a transducer 

which is bonded to the sample. A series of echoes is obtained on the oscilloscope screen 

as explained earlier. In order to measure the time between two echoes, the two echoes of 

interest are overlapped on the oscilloscope screen by driving the X - axis with a frequency 

whose period is the travel time between the signals of interest. Then one echo appears 

on one sweep and the other on the next sweep on the oscilloscope screen and thus echo 

overlap is effected optically on the screen. Instead of driving the X - axis directly using 

a cw, a trigger pulse generated from this can also be used to trigger the X - axis of the 

oscilloscope and this is more convenient. For jitter free overlap the signals of interest 

must be synchronised with the phase of the cw voltage. This condition is achieved by 

generating the repetition rate of the input rf pulse from the phase of the cw voltage by 
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a frequency divider. Division by a large integer of the order of 100 or 1000 allows all the 

echoes from one pulse to be attenuated before the next pulse is applied. The output of 

the frequency divider is a trigger signal synchronous with the cw voltage and it triggers 

a pulsed rf oscillator which is connected to the transducer. The echoes are amplified 

by an amplifier and a diode limiter circuit keeps the input pulse from overloading the 

amplifier. The trigger signal also triggers two intensifying pulses which are applied to 

the oscilloscope to select any pair of echoes of interest and to blank out all other signals. 

To make a measurement, the oscilloscope is first set in the triggered mode of 

operation. The delays and widths of the intensifying pulses are then adjusted to cover 

the signals of interest. The frequency of the cw oscillator is then set approximately 

as the reciprocal of the travel time between the signals of interest. The oscilloscope is 

switched to the driven x - axis mode of operation and the intensity is adjus~ed so that 

only the two selected echoes are visible. Then the cw frequency is adjusted so that the 

two signals overlap as shown in Fig. 2.4. 

In order to accomplish an overlap, any pair of echoes can be chosen. However, 

this may lead to a cycle mismatch relative to the true delay in the specimen and a proper 

correction has to be applied. To decide which cycle is the proper one in each echo for 

matching, a technique called Mc Skimin ~t criterion [22,23] is used. It was developed for 

the pulse superposition technique initially and later it was shown by Papadakis [19] that 

the same can be applied to the PEO method when run with rf pulses exciting transducers 

bonded to the specimen directly. A computer program written in BASIC [24] to make 

the corrections numerically has been used to make the Mc Skimin ~t criteria in our 

measurements. 

Ultrasonic attenuation Q is measured as the logarithm of the ratio of the 

amplitudes of the ultrasonic wave at two distances along its propagation path. For a 

plane wave and a linear sensor that could not perturb the wave, attenuation can be 

given by [25,26] 

nepers/unitlength 
X2 - Xl 

20 log (A I /A2) 
dB / unitlength (2.10) 
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Fig. 2.4 

Echo pair in the overlapped condition. 
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where Al and A2 are the amplitudes of echoes sensed at positions Xl and X2' 

Various schemes have been developed to find the amplitudes of the echoes. 

MATEC has developed an automatic version of the attenuation measuring system, which 

ha" been used in our measurements. In this, two gates with variable delay are set on the 

two echoes of interest to sample them. The amplitude of the first echo is held constant 

by an AGC circuitry, and the amplitude of the second echo is sampled at its peak. A 

calibrated logarithmic amplifier converts the sample amplitudes to decibels relative to 

the constant amplitude of the first echo. The decibel level can be either recorded on a 

built-in stript chart recorder or can be read on a readout meter. 

2.4.3 The ultrasonic experimental set up 

The block diagram of the experimental setup used for measuring ultrasonic velocity 

using pulse echo overlap technique and attenuation by pulse comparison technique is 

given in Fig. 2.5. The system consists of the MATEC Model 7700 pulse modulator 

and receiver together with Model 760V rf plug-in, Model 122B decade divider and dual 

delay generator, Model 110 high resolution frequency source, Model 2470B attenuation 

recorder, Model 70 impedance matching network, HIL Model 2722 frequency counter 

and lllL Model 5022 oscilloscope. In order to carry out temperature dependent studies 

a cryostat and a temperature controller (Lakeshore Model DR 82C) have also been used. 

The heart of the system is the pulse modulator and receiver with the RF 

plug-in. The pulse oscillator can be triggered either with an external sync pulse or with 

an internally produced one, which gives a peak power of 1 kW and a total receiver 

gain of 110 dB. It can provide rf frequency in the range 10 - 90 MHz. The cw signal 

from the high resolution frequency source is applied to the decade divider and dual 

delay generator, which is the key interfacing unit between the cw source and the pulsed 

oscillator in the PEO method. The output of the cw source is highly stable and can be 

varied from 0.5 Hz to above 50 MHz. The cw source is operated at a frequency whose 

period is equal to the round trip time in the sample under investigation. The trigger 

signal of the pulsed oscillator is obtained from the divided sync output of the decade 

divider and dual delay generator. The output of the cw source is applied to this decade 
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Fig. 2.5 

Block diagram of the experimental setup for measuring ultrasonic velocity by Pulse 

Echo Overlap technique and attenuation by Pulse Comparison technique. 
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divider and dual delay generator and the divided sync output is obtained by dividing 

the cw signal by 10, 100 or 1000 which can be selected. Another output of this is the 

sweep sync out for the external trigger of the oscilloscope. This can be set in two modes, 

either equal to the divided frequency of the divided sync output or equal to the applied 

cw frequency itself. The first one is for getting a stable echo pattern on the oscilloscope 

and the latter is for overlapping purpose. It also provides two strobe outputs whose 

width and delay can be controlled, and it is applied to the z-axis of the oscilloscope 

for intensifying the desired echo pair. The frequency counter is directly connected to 

the high resolution frequency source to measure the frequency of the cw wave. 

For attenuation measurements, the Model 2470B automatic attenuation 

recorder is incorporated in the setup. This also has a strobe output for selecting the 

desired echo pair for attenuation measurement. It provides the necessary AGe output 

to connect to the pulse modulator and receiver for keeping the amplitude of the first 

echo constant during the measurement. The attenuation value can be either recorded 

in a strip chart or can be seen on a panel meter. The sensitivity of the attenuation 

recorder can be varied from 0.01 dB to 20 dB/ division. 

The transducer is bonded to the sample using a proper bonding medium. 

Silicone grease and Nonaq stopcock grease are found to be very good bond materials for 

longitudinal measurements at room temperature as well as at low temperatures, while 

for transverse waves silicone grease is found suitable for most samples. 

The sample bonded to the transducer is connected to the pulse output of the 

system through an impedance matching network for optimum power transfer. Keeping 

the sweep sync out at the divided position, the echo pattern can be observed on the 

oscilloscope screen. Then, using the strobe signals from the decade divider and dual 

delay generator, any echo pair is selected and the approximate time difference between 

the two echoes are noted. The frequency of the high resolution frequency source is 

then fine adjusted so that its period is equal to this time difference. The sweep sync 

out is then changed to the direct position and the echoes are seen as approximately 

overlapped. By adjusting the cw source the echoes are overlapped exactly and the 

frequency is measured from the frequency counter. By determining the travel time from 
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this frequency, the velocity can be obtainf'd. 

In order to make temperature dependent studies, a bath type cryostat has been 

used in which liquid nitrogen is used as the cryogen. Fig. 2.6 gives a cross sectional view 

of the cryostat. The main parts are two stainless steel vessels. The first chamber is a 

double walled vessel A and the space between these walls can be evacuated through a 

port PI by connecting it to a rotary vacuum pump, which reduces heat loss. The second 

vessel B is single walled and both the vessels are fixed to an an upper annular flange 

Fl. Liquid nitrogen can be poured to the space between the two vessels (Cl) through 

two tubes Tl. There is an upper flange F2 which rests over a rubber '0' ring placed 

on the annular flange. One end of two stainless steel tubes T2 are fixed to the centre 

of this upper flange, while the other end is connected to the sample chamber C3. This 

can be evacuated or liquid nitrogen can be poured into it using the two ports P3. The 

stainless steel tube also houses all the electrical connections from the sample chamber 

to the appropriate connectors. 

The sample chamber consists of small discs which acts as the platforms to place 

the sample (S) and the spring mechanisms for fixing the transducer. This arrangement 

is covered by a copper chamber on which a heater (H) is wound, and the sample chamber 

can be vacuum sealed using Wood's metal. Two temperature sensors (R) are used, one 

is placed very near the heater coil which is the control sensor and the other very close 

to the sample which is the sample sensor. The terminals of the sensors are taken out 

through a 9 pin D-type connector (E2) and the heater power from the temperature 

controller is applied through a 3 pin connector. 

In ultrasonic experiments, it is most essential that the cooling rate of the 

sample be kept very small to avoid cracking of the sample. Moreover, if the cooling rate 

is not small, thermal gradients may be developed within the sample which can cause 

many undesired effects. Thus a slow and uniform heating (cooling) is necessary. In our 

setup a cooling rate of I Kj min. or less can be obtained and measurements can be 

made in the temperature range 80 - 300 K. 
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Cross section of the cryostat. 

(A - Double walled outer vessel , B - Single walled inner vessel , Cl - Chamber I. C2 

. Chamber 2, C3 . Sample chamber, El, E2 . Electrical I/ O, Fl , F2 • Flanges, H . 

Heater coil, PI, P2, P3 - Evacuation ports, Q - Transducer, R - Temperature sensors, 

S - Sample, Tl - Liquid N2 guide tube, T2 - Connection tube , W - Wood's metal joint) 
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Chapter 3 

Effect of Sn02 addition on the thermal 
properties of YBa2Cu307-8 

3.1 Introduction 

One of the most exciting developments in modern physics has been the discovery of the 

oxide superconductors with Tc's well above liquid nitrogen temperature. These mate­

rials have generated tremendous excitement for two basic reasons. First, in spite of the 

large variety of experimental techniques being employed to investigate these materials, 

the physical mechanisms responsible for the high Tc's has not yet been identified, leaving 

the basic physics of these systems open to further investigations. Secondly they open 

a new temperature realm for superconducting devices and components which have got 

widespread commercial applications and this has attracted phenomenal popular interest 

in these materials. A nwnber of devices have already been fabricated which make it 

clear that these oxide materials could have a substantial economic impact. They are 

also capable of supporting large critical currents and if high current devices can be suc­

cessfully developed, then these materials should have a diversity of applications. And 

if, room temperature superconductivity ever becomes a reality, then superconductivity 

will have a profound influence on our every day lives which could rival developments 

such as the radio waves and the transistor. 

However, it has soon been realised that the use of these materials for various 

applications and fabrication of various components and devices using these materials 

is not as easy as envisaged at the time of their discovery. Though endowed with com­

paratively high transition temperatures, the prospects of application of these materials 
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are severely limited due to a number of reasons. The brittle nature of these oxide su­

perconductors, for example, is one of the drawbacks which prevents them from being 

used in the fabrication of wires and other useful forms. One of the main applications 

of these materials is in the form of thin and thick films to be used in electronic devices. 

But the high chemical reactivity of most of the oxide superconductors imposes severe 

restrictions on the availability of substrates for depositing thin films. Further, these 

superconducting oxides are found to interact with air, water, water vapour, moisture 

and other aqueous media, which deteriorates their superconducting properties. The 

aging effect, i. e., the degradation of the superconducting samples in ordinary atmo­

spheres with time, is another problem that is encountered, which makes the material 

unsuitable for investigations and various applications. In addition, the critical current 

density of high Tc materials are found to be smaller compared to the conventional super­

conductors. This has raised serious doubts about the use of these materials in various 

potential high magnetic field applications like superconducting machines, magnets and 

related systems. 

So, commercially useful high Tc superconductors require enhancement of me­

chanical properties, critical current as well as thermal and environmental stability. Many 

reports indicate that addition of selected metals or oxides to high Tc superconductors 

retains the superconducting property, while changing the other features of the materials 

drastically. This suggests that practical applications of these materials are likely to be 

in their 'composite' form. 

Numerous reports investigating the effects of various additives on the super­

conducting as well as the mechanical, electrical and magnetic properties of high T c 

superconductors have appeared in literature [1-13] eversince the discovery of these ma­

terials. Among them the addition of various metal oxides like CdO, Ce02, Cr203, Sb20 3 

etc. and rare earth oxides [1,2] are found to be effective in increasing the microhard­

ness and density of the superconductor, while the addition of Ah03 is found to have 

a deteriorating effect on T c [3]. The superconductor - silver composites have also been 

reported to possess many desirable properties. For example, addition of Ag20 or Ag 

to a superconductor has been found to reduce the width of the superconducting transi-
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tion, facilitate oxygen diffusion into bulk 123 compounds, improve the mechanical and 

fracture properties of materials like YBCO, BSCCO etc. [4-6] which enable them to be 

used in the fabrication of superconducting wires and tapes. Further, silver is found to 

be one of the few materials that does not degrade the properties of 123 compounds [7] 

and silver addition has been found to enhance the critical current density in high Tc 

materials [8,9]. However, Tc is found to be depressed by partial replacement of Cu by 

Ag [10] and in one report, total replacement lowered the onset of Tc to 50 K [11]. A 

tremendous increase in the rate of oxygen absorption has been reported in Zr02 and 

Nb20 5 added YBCO system [12,13] in which superconductivity is found to be obtained 

just by quenching the doped specimen in oxygen from sintering temperature, which 

makes the preparation much easier. 

Though all the above mentioned additions are successful in improving any 

one of the properties, some other characteristic feature of the material has to be com­

promised. In this context, studies pertaining to the effect of Sn02 addition on various 

superconductors have attracted considerable attention, as addition of Sn02 is found to 

improve many properties of the superconductors and numerous reports can be found in 

literature on this [14-21]. 

A slight improvement in the Tc value has been reported with Sn02 addition in 

YBCO and BSCCO systems [14,15], the reasons for which is suggested to be the optimal 

carrier concentration and the possible increase in oxygen content. Osamura et al. [16] 

report an enhancement in critical current density with small amounts of Sn02, which 

is attributed to an increase in the pinning states. Increase in critical current density 

has also been reported in YBCO by Xu et al. [17] with BaSn03 addition and by Feng 

et al. [18] by the substitution of Sn for Cu. 

The mechanical properties also show significant improvement with the addi­

tion of Sn02. An improvement in the microstructure and sintered density is reported in 

YBCO with Sn02 addition which is found to reduce the porosity and distribute homo­

geneously among the YBCO grains [16,19]. Another interesting feature that has been 

observed with Sn02 added samples is the tremendous oxygen absorption [20], as has 

been found in the case of Zr02 and Nb20 5 added YBCO samples. 
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There have also been attempts to replace different elements of the supercon­

ductors with tin. These experiments, however. show conflicting results. Dubovitskii 

et al. [22] report that tin is contained in the lattice of 123 compounds and that it is 

present in two nonequivalent sites, replacing both the Cu(l) and Cu(2) sites, while the 

results of Mossbauer effect and positron annihilation spectra reported by Chen Ang 

et al. [14] show that Sn ions substitute only the Cu(l) sites. But other reports indicate 

thatSn does not substitute Cu or Ba but only Y upto 4% [23,24]. Sn is reported to 

have a limited solubility in LSCO and substitutes for Cu upto 4 at.% [23,24]' while in 

BSCCO also, Sn ions are found to go to the Cu site rather than Sr or Ca. However, un­

like the addition of Sn02 which leads to an increase in T c upto a certain concentration, 

substitution of Sn at the Cu site leads to a decrease in Tc [21,25]. This indicates that 

the whole electronic structure of the system, or part of it, at the Cu - 0 planes may be 

changing with the partial replacement of Cu with Sn. 

The thermal and transport properties of superconductors have attracted al­

most as much attention as their superconducting properties because of the valuable 

information they can provide about the superconducting mechanism, as has already 

been pointed out in chapter 1. Because of this reason, a large number of reports on 

these properties of superconductors such as thermal conductivity, specific heat etc. have 

been published, eversince the discovery of these materials, a review of which is also given 

in chapter 1. 

The specific heat of a material is a bulk thermodynamic quantity determined 

uniquely for any material by its spectrum of excitations. The observation of a specific 

heat anomaly at Tc for a superconductor is, in principle, a proof of the bulk nature of its 

superconductivity. Since in high T c superconductors, the electronic specific heat is only 

a few percentage of the total specific heat, the separation of the electronic component 

from the overwhelming lattice contribution is not easy. Further, the evaluation of LlC/Tc 

is often hampered by considerable fluctuation effects. 

The specific heat measurements in superconductors, in spite of these problems, 

show a distinct anomaly around T c, though the magnitude of this anomaly is found to be 

sample dependent. Unlike the conventional superconductors, the ratio LlC/"YTc is also 
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found to vary from sample to sample, making it impossible to classify these materials 

as weak coupling or strong coupling superconductors. 

Measurement of thermal conductivity in superconductors is another important 

probe to investigate the scattering mechanisms that comes into play in superconductiv­

ity. Heat is conducted by both electrons and phonons in a material and since electron 

- phonon scattering can limit the flow of heat in high Tc superconductors, thermal 

conductivity measurements can serve as a useful tool for investigating this important 

mechanism. 

Though there are numerous reports on the measurement of thermal conductiv­

ity (K) of these materials, most of them have been on sintered polycrystalline specimens, 

mainly due to the non availability of large enough, crack free single crystals. In poly­

crystalline samples, the pores present and the grain size do impose serious limitations 

on the mean free path of phonons. However, thermal conductivity measurements show 

a uniformity in behaviour, despite these limitations, as mentioned earlier in chapter 

1. It is found that thermal conductivity increases as the temperature drops below the 

transition, the amount of increase depending on the sample quality, purity and oxygen 

content. The consensus is that the increase is due to a drop in electron - phonon scatter­

ing as the charge carriers condense into superconducting pairs. Although the reduction 

of normal state carriers also lead to a loss of the electronic component of K, calculations 

indicate that the majority of heat is transported by the lattice. This interpretation has 

received theoretical support, applying the BCS theory to the phonon - scattering limited 

thermal conductivity. Thus by examining the shape and magnitude of the enhancement 

in K, it may be possible to estimate the electron - phonon coupling strength. 

The thermal diffusivity (0) is another important thermal parameter of a ma­

terial, that can provide similar information as that of the specific heat and thermal 

conductivity since it is related to these two quantities by the relation 0 = K/ pC where 

p is the density of the material. Eventhough innumerable reports on the specific heat 

and thermal conductivity of high T c superconductors are available in literature, only 

relatively few measurements on the thermal diffusivity of these materials have been re­

ported which is usually measured using the photothermal or photoacoustic technique. 
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X.D.Wu et al. [26], for example, have reported the temperature variation of (} along 

three axes of a Bi2Sr2CaCu208 single crystal using the photothermal technique, while 

the PA technique has been used by a few different authors [27-29J to study the temper­

ature dependence of (} of various polycrystalline superconductors like YBCO, BSCCO 

etc. 

The PA technique has been used not only for the thermal diffusivity mea­

surement, but also to detect the superconducting transition and for the measurement 

of specific heat. Y. S. Song et al. [30J have measured the relative values of specific 

heat for GdBa2Cu307_6 and DyBa2Cu307-6 using the technique, while the PA signal 

measurements on different 123 compounds [31,32J indicate that it is possible to detect 

the superconducting transition from the temperature dependence of the PA signal am­

plitude and phase. In a review article, B. K. Chaudhury [33J explores the enormous 

possibilities of the PA technique for the characterisation of high Tc superconducting 

samples. 

We have measured the temperature dependence of the thermal diffusivity of 

four samples of YBa2Cu307-6 with different concentrations of Sn02 added, using the 

PA technique. Measurements have been carried out on samples with varying Sn02 

concentration, above and below Tc. Details of the experiment and the results obtained 

are discussed in the" following sections. 

3.2 Experimental 

The well established solid state reaction technique has been adopted for the preparation 

of YBa2Cu307-6 (YBCO) samples used for the present investigations. High purity 

powders of Y20 3, BaC03 and CuO are mixed in the appropriate stoichiometric ratios 

and calcined at 860°C for 12 hours. To the calcined powder, high purity Sn02 powder 

is added in the range 0 - 8 wt% and mixed thoroughly. The pressed pellets are sintered 

at 940°C for 20 hours in flowing oxygen and slowly cooled to room temperature. 

Four samples with different concentrations of Sn02 are prepared. They are 

Sample 1 : YBCO with 0.2 wt% of Sn02 

Sample 2 : YBCO with 0.5 wt% of Sn02 
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Sample 3 : YBCO with 1.0 wt% of Sn02 

Sample 4 : YBCO with 8.0 wt% of Sn02 

Superconductivity of these samples have been verified by making electrical resistivity 

measurements. All these samples are found to undergo superconducting transition in 

the temperature range 92 - 94 K. 

Thermal diffusivity of these samples have been measured using the photoa­

coustic technique in the temperature range 85 - 300 K. The method involves measure­

ment of the amplitude of the PA signal as a function of the chopping frequency on 

a thin sample mounted on a suitable backing material, as has been described in the 

previous chapter. A log - log plot of the amplitude against chopping frequency shows a 

distinct change in slope at the characteristic frequency fe above which the PA signal is 

independent of the properties of the backing material. In other words, the sample goes 

from a thermally thin regime to a thermally thick regime, as the chopping frequency 

is increased. Thermal diffusivity Q can then be obtained using the relation Q = fe l2 

where l is the sample thickness. Pellets of the YBCO samples have been thinned down 

to ~ 200 /-Lm by hand lapping and polishing. The thin sample is then mounted on a 

thick polished aluminium disc which acts as the thermally thick backing material, us­

ing silver epoxy to ensure good thermal contact. Using the photoacoustic experimental 

setup described in the last chapter, Q of the samples are measured at different fixed 

temperatures in the range 85 - 300 K, where the temperature of the sample is kept 

constant within ±0.5°C during the measurement. 

The specific heat of the samples have been measured at room temperature 

using the DSC - 7 differential scanning calorimeter described earlier, adopting the ratio 

method in which sapphire was used as the reference sample. Combining the thermal 

diffusivity and specific heat data with the density, the thermal conductivity has been 

calculated for all the samples at room temperature. 

3.3 Results and Discussion 

Fig. 3.1 shows a typical log - log plot of the amplitude of the PA signal measured as a 

function of the chopping frequency at 300 K for samples 1 to 4. The change in slope at 
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the characteristic frequency fc can be clearly seen in these figures from which the thermal 

diffusivity Q can be determined using the relation Q = fc l2. The temperature variation 

of the thermal diffusivity of all the four samples in the temperature range 85 - 300 K are 

plotted in Fig. 3.2. As is evident from the figure, all samples show a uniform trend in the 

variation of Q with temperature: there is a sharp increase in thermal diffusivity below 

Te for all the samples. Fig. 3.3 shows the variation of density and specific heat with 

Sn02 concentration at 300 K, while in Fig. 3.4 the thermal conductivity variation with 

the Sn02 concentration is plotted at 300 K. The dependence of thermal diffusivity on 

the concentration of Sn02 have been plotted at different temperatures above and below 

Te. These curves are shown in Fig. 3.5. At all temperatures, the nature of variation of 

Q is found to be the same with Sn02 concentration. 

It can be clearly seen from Fig. 3.2 that the thermal diffusivity suddenly 

increases just below T c, which is similar to the behaviour exhibited by many high Tc 

superconductors in thermal conductivity measurements [34-40]. Eventhough Q is related 

to both thermal conductivity (K) and specific heat (C) by Q = K/ pC, the change in 

specific heat reported is not large enough to contribute to such a large increase in Q, 

when compared to the increase in thermal conductivity near T c. So an explanation 

for the observed thermal diffusivity variation near T c can be given on the basis of the 

corresponding thermal conductivity variation. 

The increase in thermal conductivity below T c, which has been observed in all 

the high Tc superconductors, has been attributed to the condensation of free electrons 

into Cooper pairs below T c. The electrons which are condensed into pairs do not carry 

entropy and hence do not contribute to thermal conductivity. Unpaired electrons in a 

superconductor can, however, transport heat, but as the temperature decreases below 

Te, the number of such electrons decrease exponentially. The electronic contribution to 

thermal conductivity of a superconductor, therefore falls rapidly below Tc. On the other 

hand, since the paired electrons no longer scatter phonons, there will be an increase in 

the phonon mean free path below T c, giving rise to a corresponding enhancement in the 

phononic contribution to thermal conductivity. The net temperature dependence of K 

below T c will depend upon whether the electronic or phononic contribution dominates 
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in the superconductor. The overall increase in K below Tc indicates that the major 

contribution to heat conduction in these materials is due to phonons. 

These observations also indicate that thermal transport in the superconduct­

ing phase is limited primarily by phonon - defect scattering. Obviously, these arguments 

have their limitations owing to the fact that a quantitative deconvolution of thermal 

transport into its intrinsic electronic and phononic contributions is difficult due to the 

complexity of the polycrystalline system. The phonon - phonon urnklapp processes 

can safely be ignored in these discussions as they are overshadowed by scattering from 

defects and electrons. 

A small anomalous decrease in Q can be noticed in Fig. 3.2 near T Cl which 

is absent in thermal conductivity measurements. This may be the consequence of the 

jwnp observed in heat capacity measurements near Tc [41,42]. Another feature that 

can be observed is the very broadened peak or bump in Q in the temperature range 200 

- 260 K. However, no systematic variation with 8n02 can be found in these curves. This 

also may be correlated to the anomaly observed in the specific heat of high T c materials 

in the same temperature range [43,44] due to the ordering of the Cu - 0 chains. 

The curves in Fig. 3.5 represent the thermal diffusivity variation with 8n02 

concentration at different fixed temperatures. Generally speaking, Q increase with con­

centration of 8n02, but the increase is not linear. The increase is rather sharp upto 

0.5 wt% of 8n02, but after that it is at a slower pace. This behaviour is observed at all 

temperatures above and below T c' These curves can be explained taking into account 

the density, specific heat and thermal conductivity variations of the samples with 8n02 

concentrations. 

Many reports indicate an improvement in the density and microstructure of 

the samples with the addition of 8n02 as mentioned earlier and the density is found to 

be closest to the theoretical value at 1 wt% of 8n02. Our samples also exhibit similar 

behaviour, i. e., there is an increase in density upto 1 wt% event hough the increase is 

small, after which the density decreases as is clear from Fig. 3.3. This decrease in denSity 

for sample 4, with 8 wt% of 8n02 may have resulted due to the formation of impurity 

phases like CuO, Ba8n03 etc. which also have been reported with higher concentrations 
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of 5n02' The specific heat, on the other hand, shows a decrease throughout with 

increasing 5n02. The decrease is rather sharp upto 0.5 wt% of 5n02 after which the 

rate of decrease is low, which is evident from Fig. 3.3. 

The improvement in the density and microstructure upto 1 wt% of 5n02 may 

have caused a corresponding increase in thermal conductivity shown in Fig. 3.4. How­

ever, the decrease in density for sample 4 does not appear to have increased the porosity 

of the sample because the thermal conductivity is found to increase even above 1 wt%. 

Assuming that the variation of density and specific heat with 5n02 concentration at 

room temperature is maintained at all temperatures, the variation in thermal diffu­

sivity with 5n02 concentrations at different temperatures, plotted in Fig. 3.5 can be 

explained. Taking into account the variations in density, specific heat and thermal 

conductivity, one can infer that the increase in density, which causes a corresponding 

increase in thermal conductivity and the sharp decrease in specific heat are responsible 

for the increase in thermal diffusivity upto 1 wt% 5n02 added samples. The decrease 

in density and the slower decrease in specific heat above 1 wt% of 5n02 may be the 

reasons for the comparatively lower rate of increase of a above 1 wt% of 5n02' 

3.4 Conclusions 

Using the photoacoustic technique, we have measured the thermal diffusivity of a set 

of 5n02 added YBa2Cu307-c5 samples. Like any other high Tc superconductor, these 

samples also show an abrupt increase in thermal diffusivity below T c, owing to a cor­

responding increase in thermal conductivity. With increase in the amount of 5n02, 

the thermal diffusivity also is found to increase, event hough the increase is not linear. 

Taking into account the density, specific heat and thermal conductivity variation with 

the concentration of 5n02, this behaviour has been explained. 

The observation of enhancement of a below T c is in accordance with the 

explanation that there is a reduction in the electron - phonon scattering below Tc due to 

the condensation of free electrons into Cooper pairs. In other words, these observations 

suggest that the BC5 mechanism which is based on phonon mediated electron pairing 

is adequate to explain the thermal properties of high Tc materials. 
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Chapter 4 

Effect of Ga doping on the elastic 
properties of GdBa2Cu307-8 

4.1 Introduction 

Substitutional studies have been found to be one of the interesting areas of research in 

high Tc superconductivity, in which one or more chemical constituents of the parent 

material are replaced either partially or completely by other elements. The importance 

of substitutional studies stems from their role as a probe of the chemical and structural 

environment which determines whether or not the system exhibits superconductivity. 

Besides, these studies may lead to new superconductors with higher T c 's since all the 

major high T c superconductors have shown their genesis in substitution at one or more 

cationic sites in the parental material. 

Since the discovery of high T c materials, numerous investigations have been 

carried out on substitution of each element of the copper oxide superconductors. These 

type of studies can be categorised into three major groups :- 1) those substitutions that 

have little or no effect on the CU02 planes 2) those that indirectly affect the planes 

by charge transfer and 3) those that directly affect the planes substituting for Cu in 

the planes. In the first case, there are no dramatic structural changes, the formal Cu 

valence is not affected and there is little or no suppression of T c. In the second case, 

there exist significant structural changes as well as a change in the formal Cu valence 

and Tc drops in correlation with the structural changes. In the third case, there are no 

dramatic structural changes; the formal Cu valence does not change and the drop of Tc 

with doping level is the most severe. 
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Thus the chemical doping is a crucial investigative tool for the study of high 

Tc materials since the substituents can affect the structure including bond lengths and 

can also produce band filling in the parent compound. The determination of crystallo­

graphic structure and measurement of different properties of doped cuprate materials 

can provide valuable information regarding the correlation between superconducting 

and other physical properties. In addition, the sensitivity of superconducting and nor­

mal state properties to the electronic structure of the dopants will be very much useful 

for the confirmation of the theories of superconductivity. 

Innumerable reports investigating the effects of various dopants on the su­

perconducting and other properties of cuprate superconductors can be found in liter­

ature. In fact, it was this substitutional chemistry that led from the original report 

of superconductivity in the La-Ba-Cu-O system to the family of 90 K superconductors 

YBa2Cu307-cS. The Bi-, TI- and Hg- based oxides with Tc's well above 100 K were also 

discovered in a similar manner. 

In YBa2Cu307-cS (YBCO), which is the most thoroughly investigated high 

Tc superconductor, extensive substitution studies have been reported with virtually 

every element. Among them, the most successful substitution consists of replacing 

Y by other rare earth elements. With the exception of Sc, Ce, Pr and Tb, all rare 

earths are reported to substitute completely for Y, still retaining the high temperature 

superconductivity [1-4]. In the case of Sc, the Sc3+ ion is found to be too small to stabilize 

the structure. Substitution of Tb yields superconductivity, but with a relatively low Tc 

of 35 K [5]. In the compounds containing Ce, Pr and Tb, superconductivity may be 

weakened or destroyed through electronic effects originating with the valence state of 

the rare earth ion. Substitution of other nominally trivalent ions such as AI, TI, In etc. 

are also reported [6,7], but in the YBCO structure these elements do not raise the Tc 

value. 

Partial or complete substitutions have been reported also for the alkaline earth 

Ba, which are found to result in a constant or declining transition temperature. The 

most common substitutions for Ba are other alkaline earths and some alkali metals 

[8-10]. Since Ba occupies one unique sublattice in the structure, most authors assume 
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partial substitutions occur statistically on this sublattice. In one report [11], the partial 

substitution of Ba by Pb and Y by Bi have shown that T c remains unchanged while the 

normal state resistivity decreases by an order of magnitude. Both Bi and Pb oxides act 

as fiuxes in the sintering process during the synthesis and changes in the morphology 

of the sintered grains take place. 

Exciting results are reported for elemental substitution on the oxygen sublat­

tices. Experiments replacing oxygen with isoelectronic sulfur atoms claim an increase 

in Tc upto 108 K [12]. This increase is attributed to the possible effects sulfur may have 

produced on the crystallographic stability. In another report, the partial substitution 

offiuorine for oxygen results in an increase in Tc upto 150 K [13]. But such compounds 

are found to be highly unstable and the results are often not reproducible. 

Substitution at the copper site is considered to be the most important among 

all the cationic sites of YBCO, since Cu-O networks have been suspected to play the 

major role for the occurrence of superconductivity in these materials. Because of this 

reason, doping at the Cu site has been attempted with almost all the elements in the 

periodic table. Since Cu occupies two distinct sublattices in the orthorhombic unit cell 

of YBCO, there may be preferential site occupancy depending on the nature of the 

substituent. 

Among these different dopants, substitution by the 3d transition elements 

have attracted considerable attention since they possess certain favourable features in 

respect of their compatible ionic sizes and closer orbital structure to that of copper. The 

3d metallic dopants also provide interesting situation of interplay of superconductivity 

and magnetism. However, many of them exhibit multiple valencies varying from +2 to 

+4. Although some of the others like Co, Ni, Fe etc. substitute preferentially at one 

of the Cu sites, their large magnetic moments severely complicate the interpretation of 

superconducting mechanism. So the ideal dopants for Cu must have similar electronic 

configuration as that of Cu, must be non-magnetic and should substitute preferentially 

either at the Cu(l) or Cu(2) site. The post transition elements Zn and Ga, which are 

closed shell 3d non-magnetic ions with fixed valencies possess all these qualities and 

qualify themselves as the ideal candidates to replace Cu atoms. 
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Extensive studies have been made on the substitution of Zn and Ga in place 

ofCu, not in 123 compounds alone, but on other high Tc materials like LSCO, BSCCO, 

YBa2Cu408 etc. [14-19]. In all these compounds, superconducting transition temper­

ature is found to decrease with these dopants, though the T c depression rates are dif­

ferent for Zn and Ga. In 123 compounds also, the behaviour is similar and it has 

been established beyond doubt that Zn, being divalent, substitutes preferentially at 

the Cu(2) site, while Ga, being trivalent, substitutes preferentially at the Cu(l) site 

in these compounds. When doped with Zn, T c is found to decrease drastically and 

superconductivity disappears around 12 -13 at.% of Zn. However, the samples remain 

orthorhombic throughout, indicating that the Cu-O chains remain intact in the Zn­

doped system [20-24]. 

Substitution of the Cu site by Ga in 123 compounds has also been reported by 

many groups [22-33]. With Ga substitution also, T c has been found to decrease, but the 

rate at which T c decreases is much smaller than those due to Zn substitution. Reports 

vary on the Tc depression rates as well as on the exact solid solubility of Ga in 123 

compound. While Xiao et al. [23] observe an initial rate of decrease of Tc of 1 K/atom.% 

and the solid solubility limit to be as high as x = 0.2 in YBa2(Cul-xGaxh07-6, Xu 

et al. [25] report that Ga is incorporated into the compound only below x = 0.05. 

In a study of the ion size effect on T c in Ga doped RBCO system (R - rare earth), 

Y.Xu et al. [26] have reported aTe depression rate of ~ 3 K/ atom. % for YBCO and 

a decrease of T c with increasing radius of R ions at a constant Ga concentration. The 

solid solubility limit reported by Mary et al. [27] in Ga doped NdBCO is as high as x 

>:::: 0.33 while the rate of decrease of Tc is 12 K/atom.%. 

Another interesting feature observed with Ga doping is that it induces an 

orthorhombic to tetragonal transition at a particular concentration of Ga. This effect 

has also been reported with other dopants like AI, Fe, Co etc. [24,34]. However, there 

is no consensus on the exact doping concentration at which the transition takes place. 

While Hiratani et al. [28] observe that the concentration at which the transition takes 

place, Xo-T, to be as high as 0.1, Xiao et al. [23] report this transition value to be 0.06. 

However, the value of Xo-T, as observed by Maeno et al. [24], Xu et al., [25], Mary 
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et al. [27], Suryanarayanan et al. [29J etc. is very low and is approximately 0.03. Y.Xu 

et al. [26J find that with increasing ionic radius of the rare earth ions, Xo-T is shifted 

to lower Ga concentration and in YBCO it is found to be 0.05. 

Since the discovery of high Tc superconductivity in ceramic cuprates, nearly 

every conceivable measurement has been performed on this class of materials and ul­

trasonic studies are not an exception. In fact, sound velocity anomalies were among 

the first anomalous results obtained in these materials. In conventional superconduc­

tors, the results of sound attenuation has provided one of the first measurements of the 

energy gap and a direct confirmation of the BCS theory. 

Extensive elastic measurements have been reported in cuprate superconduc­

tors using ultrasonic technique, since it is one of the standard methods in characterising 

the lattice dynamical properties of solids near phase transitions and critical points. 

Further, the measurement of sound velocity can provide informations that are difficult 

to obtain with other methods and it can also be used to confirm the results of other 

experiments. These types of measurements are generally made for two purposes - ei­

ther to measure absolute values of velocities and elastic modulii or to study the general 

temperature dependence of velocity and attenuation. 

In single crystals, the sound velocities depend on the direction of propagation 

and polarisation of sound, from which the elastic constants can be calculated. However, 

the successful growth of large single crystals required for these measurements have been 

found to be difficult. Available single crystals are usually in the form of thin platelets 

that do not allow the precise determination of the whole set of elastic constants. In 

addition, the control of stoichiometry is found to be more difficult in single crystals 

when compared to ceramic samples. Because of these reasons, the bulk of acoustic 

investigations on high T c materials have been performed on ceramic specimens com­

prising aggregated micron sized crystallites, most of which involve measurement of the 

temperature dependence of velocity and attenuation. 

When solid matter cools, it usually becomes stiffer. Consequently, the sound 

velocities and elastic constants increase. The normal change of sound velocity (v) can 
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be written as 

(4.1) 

at low temperatures ( T < 10 K) 

and 
~v - TC(T) "12 

V PV2 
(4.2) 

at higher temperatures 

Here C is the specific heat, kB is the Boltzmann constant, n is the number of atoms per 

unit volume, BD is the Debye temperature and "1 is the the effective Gruneisen parameter 

related to the modes of propagation of lattice waves. 

The sound velocities in all high T e materials are generally found to increase 

from room temperature to 4 K by 4 - 10%. Deviation from this standard behaviour is 

found in some materials like LCO, LSCO etc. which are caused by phase transitions and 

other effects in the material. The origin of attenuation consists of several components 

in these materials that can be treated as independent. These include diffraction losses, 

scattering from grain boundaries, interactions with thermal phonons and electrons, in­

teraction with point defects and dislocations etc. 

In 123 compounds, velocity measurements generally give consistent results 

over a wide temperature range for both polycrystalline ceramics and single crystals, 

when the porosity of the material is taken into consideration. The velocity, which 

increases with decreasing temperature, shows an anomalous jump in the vicinity of T c 

in most ofthe measurements [35-38]. Below Te, the velocity again increases, may be even 

more rapidly than above Te. Attenuation measurements also exhibit anomalous changes 

near the superconducting transition. Various reasons have been attributed to these 

anomalies. The temperature variation of the first derivative of velocity has been related 

to the specific heat jump and the second stress derivative of Te. Abd-Shukor [39] reports 

a change in the slope of the shear velocity with respect to temperature, which according 

to him, is expected of any volume preserving transition such as the superconducting 

transition. 

Apart from these anomalies observed near Tel anomalous changes are reported 

in both velocity and attenuation at temperatures above T c in many measurements 
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[40-44]. Various explanations have been given for this behaviour also. While some 

reports suggest that the changes may be due to a phase transition [40,41]' possibly of 

the martensitic type [42], some others stress the ferroelectric nature of the transition, 

which can explain changes in sound velocity and attenuation as well as sudden apparent 

changes in resistivity [43]. Regarding the peaks observed in attenuation at different 

temperatures above T c, most of the authors agree that these peaks are of a relaxational 

character, since their position shifts with frequency and that they are in some way 

connected with the oxygen atoms [44]. 

Another interesting effect is the thermal hysteresis of the velocity, i. e., the 

velocity is higher upon cooling than upon subsequent heating [40,43,45,46]. This effect 

appears in the temperature range 230 - 235 K in some samples and is found to be 

more pronounced in coarse grained samples than in fine grained ones. It depends on 

oxygen content and its origin is still unclear. While some authors suggest a phase 

transition as the possible reason for this effect [40, 43], some others attribute it to 

twinning, twin boundary movement, reordering of oxygen atoms, relaxation of tension 

of grain boundaries etc. [45,46]. 

The work presented in this chapter is an attempt to study the effect of Ga 

doping on the elastic properties of superconducting GdBa2Cu307-6 (GdBCO) samples. 

We have carried out ultrasonic velocity and attenuation measurements on pure and 

Ga doped GdBCO samples in an attempt to throw more light upon the mechanism of 

superconductivity in these materials. 

4.2 Experimental 

Samples investigated in this work have a general formula GdBa2(Cul-xGaxh07-6 with x 

= 0.0, 0.02, 0.04 and 0.06 which are referred to as 51, 52, 53 and 54 respectively. They 

are prepared by the conventional solid state reaction method. Stoichiometric mixtures 

of Gd2D3, BaC03, CuD and Ga203 powders are thoroughly mixed and calcined in the 

form of loosely packed pellets for about 80 hours with three intermediate grindings. 

Samples are then powdered and pelletised under a pressure of nearly 100 Kg cm -2 and 

sintered at 900 QC for 24 hours and then furnace cooled to room temperature. The Tc's 
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of the samples are determined to be 92 K, 88 K, 83 K and 78 K respectively by dc 

resistivity measurements. 

In order to study the variation of elastic properties with Ga doping, we have 

carried out ultrasonic velocity and attenuation measurements in all the four samples in 

the temperature range 85 - 300 K. Velocity and attenuation of longitudinal ultrasonic 

waves have been measured in all the samples as a function of temperature and transverse 

velocity was measured in 52 down to 85 K, using the ultrasonic PEO experimental setup 

already described in chapter 2. 

Pelletised samples in the form of circular discs of diameter ~ 10 mm and 

thickness ~ 3.5 mm have been used for the measurements. The faces of th~ samples 

have been well polished so that they are plane and parallel to each other. An x-cut 

quartz transducer with resonant frequency 10 MHz is used to generate and detect ultra­

sonic waves of longitudinal polarisation while a y-cut transducer of the same resonant 

frequency is used for transverse waves. The transducer is bonded to the sample with 

nonaq stopcock grease for longitudinal waves while silicone grease is used as bond for 

transverse waves. The sample is then placed in the homemade stainless steel cryostat 

described earlier in chapter 2, in which liquid nitrogen is used as the cryogen. A temper­

ature controller (Lakeshore DR 82C) is used to control the temperature of the sample 

in which the cooling rate is kept at approximately 0.5 K/min. Reasonably good echoes 

are obtained for all the samples at room temperature. For measuring the ultrasonic 

velocity, the pulse echo overlap technique is used, while the pulse comparison technique 

is employed to measure attenuation, as outlined in chapter 2. 

From the measured velocities, the elastic constants are calculated at different 

temperatures for all the samples using the formula Cij = pv2• The Debye temperature 

On is calculated for sample 52 from the measured longitudinal (VI) and transverse (Vt) 

velocities as a function of temperature, using the relation [47] 

(4.3) 

where N is the Avogadro's number. 
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4.3 Results and Discussion 

The absolute and relative (6 v/V3Qo) velocities of longitudinal ultrasonic waves for all the 

four samples as a function of temperature are shown in Figs. 4.1 and 4.2 respectively. 

Fig. 4.3 shows the variation of longitudinal attenuation with temperature for all the 

samples. The attenuation is plotted only down to 150 K for SI because measurements 

could not be made below this temperature due to bad shape of the echoes. The variation 

in longitudinal elastic constant with Ga concentration at different fixed temperatures is 

depicted in Fig. 4.4. The temperature variation of the Debye characteristic temperature 

for S2, calculated from the longitudinal and transverse velocities, is plotted in Fig. 4.5. 

As is evident from Figs. 4.1 and 4.2 there is a slope discontinuity in longitudinal 

ultrasonic velocity near Tc for SI while S2 shows the onset of this anomaly, as has 

been observed in the case of most of the other high Tc superconductors. However, 

such an anomaly cannot be found in the curves for S3 and S4. The dip in velocity 

and the hardening of elastic modulus below T c suggests that a structural instability is 

occurring at the transition point, while the hardening of the modulus below Tc may be 

due to the depletion of an excitation that cocondenses with the carriers, which couples 

strongly to the transverse acoustic phonons [39]. The anomalies near T c are found to be 

more pronounced in transverse velocity measurements, since the order parameter has a 

stronger coupling with shear distortions than with compressive distortions, as suggested 

by Abd-Shukor [39]. Our observations also support this argument, since the anomaly 

near Tc is more pronounced in the transverse velocity for S2, which is reflected and 

is evident from the Debye temperature curve shown in Fig. 4.5. The absence of any 

anomaly in S3 and S4 may be due to the fact that their Tc's are below 85 K, which is 

the lowest temperature at which we have made these measurements. 

There is a much more pronounced anomaly in sound velocity far above T c 

for all the samples, except S4, in the temperature range 150-200 K and is better seen 

in Fig. 4.2. Several reports reveal similar anomalies in high T c materials above T c, 

although the temperature at which these occur vary from sample to sample and there 

is no consensus on the reasons attributed to this behaviour. Structural measurements 
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have reported first order like transitions with changes in lattice constants, while calori­

metric measurements reveal a large specific heat anomaly at this temperature. Oxygen 

vacancy ordering has also been suggested as one of the possible reasons. A comparative 

study of the ultrasonic characteristics of superconducting orthorhombic and nonsuper­

conducting tetragonal GdBCO is reported by Almond et al. [48J. The dominant feature 

of sound velocity, characteristic of superconducting GdBCO, is a step like change at 

temperatures around 200 K. Hysteresis is also found predominantly in the same tem­

perature range. These features are absent in the characteristics of the sample in its 

nonsuperconducting tetragonal form. It is suggested that these phenomena may be due 

to the coexistence of superconducting and antiferromagnetic phases in the sample. 

Similar behaviour is observed in our samples also, but all our samples are 

superconducting. In samples SI, S2 and S3 the step like increase in velocity is clearly 

visible in the temperature range 150-200 K whereas it is absent in S4 as is clear from 

Figs. 4.1 and 4.2. 

In 123 compounds, there are two inequivalent positions for the Cu atoms; 

Cu(l) site or the so called chain Cu atom and the Cu(2) site which forms the two 

dimensional Cu-O planes. It has been established beyond doubt that the trivalent 

cations get substituted preferentially at the Cu(l) site and Ga is no exception. From 

neutron refinement studies it is found that with Ga doping, considerable disorder is 

induced on the chain Cu atom and in the limit of vanishing orthorhombic distortion the 

structure becomes tetragonal. The chain structure is fully disordered and the 0(4) and 

0(5) sites become indistinguishable. Due to this distortion, a maximum difference in 

the lattice constants b and a is found to appear around the superconducting transition. 

This orthorhombic distortion does not result in changes of the volume of the unit cell 

or the area of the unit basal plane. There have been suggestions that the softening of 

sound velocity occurring near T c also reflects this structural instability. 

All our samples are superconducting with gradually decreasing T c 's with in­

creasing Ga doping concentration. So the superconductivity of the sample cannot be the 

possible reason for the anomaly since it is absent in 54 which has a Tc of 78 K. Instead 

of assuming the change in velocity to be caused by the superconductivity of the mate-
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rial, it seems reasonable to assume that these changes are associated with the structure 

of the compound. 50 the possible conclusion that can be drawn is that the first three 

samples 51, 52 and 53 belong to the orthorhombic class while sample 54, eventhough 

superconducting, is in the tetragonal form. There are many reports which indicate 

that superconductivity can occur in the tetragonal form of YBCO, which supports this 

argument. 

The attenuation measurements support the velocity curves which is evident 

from Fig. 4.3. Peaks or shoulders can be seen in attenuation in the same temperature 

range where the velocity anomaly occurs. The notable feature is that this maximum 

is absent in the case of 54 whereas it is very much pronounced in the case of the first 

three samples. The attenuation peaks around these temperatures have been observed by 

many groups and various possible reasons have been attributed to it, just as in the case 

of velocity measurements. The peaks are found to be highly sample dependent as well 

as frequency dependent. For example, Wolanski et al. [33] have reported attenuation 

measurements in pure and Ga doped YBCO. They observe attenuation maxima in the 

temperature range 175-200 K for both pure and doped samples. The positions of these 

peaks are found to be frequency dependent and they shift to higher temperatures as the 

frequency is increased. They attribute this to a thermally activated oxygen reorientation 

or a structural instability occurring in the samples in this temperature range. 

Though reports vary on the exact reasons for this type of behaviour, most 

of them agree that the behaviour is characteristic of a relaxation process and various 

models have been suggested for the nature of the relaxation process. One of the reasons 

suggested is that of the orthorhombic distortion explained earlier. It is possible that this 

distortion also enhances the energy loss of sound at the same temperatures where there 

is anomalous change in velocity. The absence of any attenuation maximum in 54 may 

be due to the tetragonal structure of the sample. 50 from the velocity and attenuation 

measurements, it is safe to conclude that the structure of GdBCO remains orthorhombic 

upto a doping level of 4 at.% of Ga and at 6 at.% the structure is tetragonal. 

From Fig. 4.4 it is clear that 52 has got the maximum value for elastic constant 

at all temperatures. Reports indicate that Ga can be incorporated into the lattice of 
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123 compounds only for low concentrations. This may be the reason for this behaviour 

and the decrease in elastic constant when the Ga concentration is greater than 2 at.% 

may be due to the deterioration of the single phase nature of the samples. 

The Debye temperature is a very important physical parameter for a solid since 

it enters into a very large number of solid state phenomena such as temperature depen­

dence of specific heat, electrical resistivity, diffuse X-ray reflection from lattice planes, 

scattering of thermal neutron by lattice vibrations etc. on account of its relationship 

with lattice vibrations. From the longitudinal and transverse velocities measured for 

sample S2, the Debye temperature is calculated and plotted as a function of tempera­

ture in Fig. 4.5. It essentially reflects the velocity variation; at T e there is a pronounced 

slope change, much more pronounced than the one which is present in the longitudinal 

velocity in Fig. 4.1. This may be due to the fact that the anomaly near Te is dominated 

by shear distortions, as explained earlier, which is reflected in Debye temperature. 

4.4 Conel usions 

A detailed study of the effect of Ga doping on the high Te superconductor GdBa2CUJ07-6 

has been carried out using ultrasonic technique. Longitudinal ultrasonic veloc­

ity and attenuation have been measured in samples with the general formula 

GdBa2(Cul-xGaxh07-6 with x = 0.0, 0.02, 0.04 and 0.06, as a function of temperature 

employing the pulse echo overlap technique and pulse comparison technique respectively 

in the temperature range 85 - 300 K. The longitudinal elastic constants are determined 

for all the samples at different temperatures and the Debye temperature is calculated 

for the sample with Ga concentration x = 0.02, for which the transverse velocity was 

also measured. 

Apart from the anomalies observed near Te, the samples exhibit pronounced 

anomalies in both velocity and attenuation in the temperature range 150 - 200 K. These 

changes are attributed to the structural changes taking place in the orthorhombic state 

due to Ga doping. The notable absence of anomalies in the sample with 6 at. % of Ga 

indicate that the structure has turned to tetragonal form at this concentration. 

In summary, it can be concluded that the doping of Ga induces an orthorhom-
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bic to tetragonal transition in GdBCO. The structure of GdBCO remains orthorhombic 

upto 4 at.% of Ga and it transforms into tetragonal form at 6 at.% of Ga. Our results 

reveal that this structural change can be detected from elastic measurements since they 

get reflected in the ultrasonic velocity and attenuation measurements. 
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Chapter 5 

Elastic phase velocity surfaces of high T c 

superconductors 

5.1 Introduction 

The study of elastic properties of a material is very important since they are directly 

related to various fundamental solid state parameters such as specific heat, Debye tem­

perature, phonon dispersion, thermal expansion, Gruneisen parameter etc. For super­

conductors, since the elastic constants can be linked explicitly to the superconducting 

transition temperature through the Debye temperature and the electron-phonon cou­

pling parameter, their measurement become all the more important. In addition, the 

elastic constants directly determine the behaviour of long-wavelength acoustic phonons 

and provide a sensitive probe of structure related properties and phase transitions oc­

curring in these materials. Because of these reasons, there have been a large number of 

studies on the elastic properties of these materials, aimed at getting some insight into 

the mechanisms responsible for superconductivity. 

Extensive sound velocity measurements have been reported in high Tc super­

conducting cuprates, for a variety of reasons. First, as is obvious from their structures, 

they are extremely anisotropic, with a strong two-dimensional character. Therefore the 

coupling of superconductivity to structural distortions could also be highly anisotropic. 

Measurement of the sound velocity anomaly at the superconducting transition for sound 

waves with different polarizations propagating in different directions would, in principle, 

provide information on this particular aspect of superconductivity. Second, there are 

structural transitions in these systems, such as tetragonal to orthorhombic, that occur 
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above Te, similar to the A-I5 compounds, which get reflected in elastic measurements. 

However, most of the early work on the elastic properties of these materials 

were performed on ceramic polycrystalline samples using ultrasonic or vibrating reed 

techniques. Since the synthesis of ceramic samples with dimensions large enough for 

the measurements is comparatively easy, numerous papers have appeared in literature 

reporting elasic measurements on such samples. Though these studies provide a very 

good tool to probe the bulk properties of these materials, they fail to give information 

about the elastic anisotropy, since such experiments generally probe the spherically 

averaged properties. 

Elastic constant measurements on single crystals is the solution to the above 

problem. Growth of large and homogeneous single crystals of high T e materials has 

proved to be extremely difficult when compared to the ceramic specimens and as a re­

sult there have been only a handful of elastic measurements reported on single crystals. 

Moreover, single crystals are usually in the form of thin platelets that do not allow the 

determination of the whole set of elastic constants and because of their small dimen­

sions, precise measurement of elastic constants is rather difficult. Even by using the 

resonant ultrasound technique, which enables one to measure the elastic constants of 

small crystals of the size of even a few hundred microns, all the elastic constants of high 

Te materials above and below Te have not yet been reported due to various difficulties. 

Further, these systems and their superconducting properties are found to be extremely 

sensitive to their composition, such as oxygen stoichiometry. Moreover, since the su­

perconducting coherence length is extremely short in these materials, one is not sure 

about the sample homogeneity even in small single crystals. 

An alternative way to obtain information on the anisotropic elastic properties 

of high Te superconducting materials is to make measurements on samples with pref­

erentially aligned crystallites, or the so-called sinterforged samples. Large size samples 

are rather easy to obtain in this form as compared to single crystals and pulsed echoes 

in ultrasonic experiments can be separated owing to proper size of the samples. Oxy­

gen content is usually more homogeneous because of the small size of the crystallites 

within them. Above all, these samples yield a nearly uniaxial symmetry, whereby the 
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behaviour in the Cu-O layers, as opposed to directions perpendicular to them, can be 

sorted out. 

Eventhough elastic properties of these materials have been investigated thor­

oughly and elastic constants determined accurately for many of them, no serious at­

tempt has been made so far to plot elastic wave surfaces and study elastic anisotropy 

in these materials in a systematic way. In this chapter, we have made an attempt to 

do this and analyse the results obtained on three popular high T c superconductors, 

Bi2Sr2CaCu208_c5, RBa2Cu307-c5 (R = Y or Gd) and La2-xSrxCu04-c5' The details of 

this calculation of the phase velocity surfaces is presented after outlining the theory 

of elastic wave propagation in anisotropic solids and applying it to orthorhombic and 

tetragonal crystal symmetries to which most of the high T c materials belong. 

5.2 Elastic wave propagation in anisotropic solids 

Elastic waves are generated by mechanical vibrations of material media, which are 

the result of collective vibrations of the atoms and molecules of the medium. The 

vibration characteristics of the atoms and molecules of the medium are determined by 

the magnitude of the interatomic forces, and the nature of these forces and hence their 

wave propagation characteristics are different for solids with different structures. 

The elastic properties of a medium is understood in terms of its response to 

an applied stress. Under the application of an external stress the medium undergoes 

deformation and gets strained. The magnitude of the strain developed for a given stress 

is a characteristic of the medium. Under the assumption that stress is proportional to 

strain within the elastic deformation limit, the Hooke's law can be expressed as 

(5.1) 

Since the stress and strain are tensors of rank two, the proportionality constant con­

necting them is a fourth rank tensor, called the elastic stiffness C ijkl . Its inverse is the 

elastic compliance Sijkl which relates the strain to stress. Both Cijkl and Sijkl have 81 

elements relating nine stress components to nine strain components. For convenience, 

a more compact two suffix notation is generally used to represent the elastic constants 
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in which the tensor for the Cijkl (i, j, k, 1 = 1, 2, 3) is replaced by the matrix Cij (i, j = 

1, 2, 3, 4, 5, 6) according to the following equality 

Tensor notation 
Matrix notation 

11 
1 

22 33 23, 32 
2 3 4 

which is called the Voigt notation [1,2]. 

31, 13 
5 

12.21 
6 

When all the symmetries of the stress and strain components are taken into 

consideration, the number of independent elastic constants reduces to 21, which is the 

case for the most anisotropic system - the triclinic crystal. Further reduction in the 

number of independent elastic constants is possible when the structural symmetry of 

the crystals are considered and this number is different for the different crystal classes. 

For example, a cubic crystal has only 3 independent elastic constants, whereas an or­

thorhombic crystal has 9. An isotropic solid has only two independent elastic constants 

which are sometimes called the Lame constants. 

The propagation of acoustic waves in elastically anisotropic solids is governed 

by a set of three linear equations known as Christoffel equations. This characteristic 

equation relates the velocity v, the direction of wave propagation and the elastic con­

stants of the medium and is cubic in v2• These equations play a central role in crystal 

acoustics, and their solutions are required for a wide variety of purposes [1-7]. Consid­

erable simplification of these equations comes about when the wave normal lies along a 

crystal symmetry direction. 

Consider an anisotropic medium which shows the ideal Hooke's law behaviour 

and in which dissipative, nonlinear and dispersive phenomena can be neglected. A 

disturbance in such a medium is governed by the equations of motion for an element of 

the medium. This, when expressed in the tensor format, will be 

&u· aa·· 1 1] 
p-=-

&t2 8Xi 
(5.2) 

where p is the density of the medium. When the right hand side of this equation is 

expressed in terms of the deformation components Ui, the wave equation is obtained as 

(5.3) 
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In an unbounded medium this equation has basic solutions given by plane waves, 

Ui = 0"i exp [i (k.r - wt) 1 (5.4) 

Inserting this solution in the wave equation, one obtains, the following conditions on 

the wave amplitude Ui 

(5.5) 

The three homogeneous equations for Ui from the above equation are the Christoffel 

equations and they have a solution only if the secular equations of their coefficients is 

satisfied. This requirement leads to the familiar form of a determinantal equation for 

the propagation velocity v = w / k. If the propagation vector is written in terms of the 

direction cosines as k = k (1, rn, n), the secular determinant becomes 

(5.6) 

where the A'S are the elements of the Christoffel matrix whose values depend on the 

directions of wave propagation and the elastic constants. The expanded form of this 

determinantal equation for the most unsyrnmetric case is 

A13 

A23 = 0 
(A33 - pv2

) 

(5.7) 

where the Christoffel coefficients are 

All 

A22 

A33 

A12 

A13 

A23 

-

-

-

-

-

l2 Cll + m 2 C66 + n 2 C55 + 2mn C56 + 2nl C15 + 2lm C16 

l2 C66 + m 2 C22 + n 2 C44 + 2mn C24 + 2nl C46 + 2lm C26 

l2 C55 + m 2 C44 + n 2 C33 + 2mn C34 + 2nl C35 + 2lm C45 (5.8) 

l2 C16 + m 2 C26 + n 2 C45 + mn (C25 + C46 ) + nl (C14 + C56 ) + lm (C12 + C66 ) 

l2 C15 + m 2 C46 + n 2 C35 + mn (C36 + C45 ) + nl (C13 + C5S ) + lm (C14 + C56 ) 

l2 C56 + m 2 C24 + n 2 C34 + mn (C23 + C44 ) + nl (C36 + C45 ) + lm (C25 + C46 ) 

On evaluating the determinant and equating it to zero, the secular equation is obtained. 

This is a cubic equation in v2 and hence has got three solutions. Thus in a given direction 
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there are three waves propagating with different velocities. The fastest of the three is 

the longitudinal wave or the quasilongitudinal wave, while the other two are the fast and 

slow shear waves or the pure and quasi shear waves. The waves are purely longitudinal 

or purely transverse only in the pure mode directions in the crystal and these directions 

are usually the symmetry directions or symmetry planes in the crystal. 

5.3 Wave propagation in orthorhombic and tetrag­
onal systems 

The general expressions for elastic wave propagation presented in the previous section 

are required for the most unsymmetric triclinic crystal. Much simplified equations can 

be obtained for higher symmetry crystals since several elastic constants are zero for 

such crystals. Further simplification occurs when symmetry directions or planes are 

considered in which one or two of the direction cosines 1, m, or n becomes equal to zero 

as shown in Fig. 5.1. Since all the superconductors for which the elastic wave surfaces are 

plotted in this chapter belong either to the orthorhombic or tetragonal symmetry, the 

necessary equations are given for these two crystal systems in the following paragraphs. 

For orthorhombic crystals of all point groups the nonzero elastic constants are 

Cll , C22 , C33 , C44 , C55 , C66 , C12 , C13 and C23 • Retaining only those terms that contain 

the nonzero elements, the coefficients of the Christoffel matrix .Aij can be written as 

.All - l2 Cll + m 2 C66 + n 2 C55 

.A22 - l2 C66 + m 2 C22 + n 2 C44 

.A33 - l2 C55 + m2 C44 + n 2 C33 

.A12 - lm (C12 + C66 ) 

.A13 - nl (C13 + C55 ) 

.A23 - mn (C23 + C44 ) (5.9) 

Some of the off diagonal terms of .Aij are still not equal to zero and so the 

characteristic equation cannot be factored and single term equations cannot be written 

for the velocity. So propagation of elastic waves in different symmetry planes are 
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considered separately. 

X-V plane 

Consider a wave propagating in the X-Y (a-b) plane, for which n = O. The A coefficients 

then become 

All - Z2 CIl + m 2 C66 

A22 - Z2 Coo + m 2 C22 

A33 - Z2 C55 + m 2 C44 

A12 - Zm (C12 + C66 ) 

A13 - 0 

A23 - 0 

The determinantal equation can now be written as 

Expanding this, one obtains 

Solving and substituting the values of A, three solutions are obtained as 

where 

PV~ - C44 z2 + C55 m
2 

2pvi - (Coo + C n Z
2 + C22 m2

) - J(C66 + CnP + C22 m2 )2 - 4C 

2pv~ - (Coo + Cll z2 + C22 m2
) + J(C66 + CnP + C22 m2)2 - 4C 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

Here Vo is the velocity of a pure shear wave with polarisation in the Z - direction, while 

VI is the velocity of a quasishear wave and V2 that of a quasilongitudinal one. 

X-Z plane 

Consider the wave propagation in the X-Z (a-c) plane, for which m - O. The Aij 
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coefficients are 

2 2 l C55 + n C33 

'>'13 - nl (C13 + C55 ) 

'>'23 - 0 

The characteristic equation is then given by 

Solving and substituting for '>"s as before, 

where 

pv~ - C66 l2 + C44 n2 

2pvi - (C55 + Cll l2 + C33 n2
) - J(C55 + Cll 12 + C33 n2 )2 - 4C' 

2pv~ - (C55 + Cll l
2 + C33 n2

) + J(C55 + Cll l2 + C33 n2 )2 - 4C' 

Y-Z plane 

(5.14) 

(5.15) 

(5.16) 

Considering the wave propagation in the Y-Z (b-c) plane for which 1 = 0, the coefficients 

are obtained as 

'>'11 - m 2 C66 + n2 C55 

'>'22 - m 2 C22 + n2 C44 

'>'33 - m 2 C44 + n2 C33 

'>'12 - 0 

'>'13 - 0 

'>'23 - mn (C23 + C44 ) (5.17) 

117 



The characteristic equation is then obtained as 

(5.18) 

The solutions of this equation are 

PV5 - C66 m
2 + C55 n

2 

2pv~ (C44 + C22 m 2 + C33 n
2) - J(C44 + C22 m 2 + C33 n2)2 - 4C" 

2pv~ - (C44+C22m2+C33n2)+J(C44+C22m2+C33n2)2-4C" (5.19) 

where 

The above analysis has provided three sets of equations corresponding to the 

three orthogonal symmetry planes of the orthorhombic crystal. It can be seen that when 

the wave propagation is in a symmetry plane there is always a pure shear mode which 

is polarised normal to the plane. These equations can be used to compute the velocities 

in any direction in these symmetry planes if the elastic constants are known. 

For tetragonal crystals, the number of elastic constants can be 7 or 6 depending 

on the symmetry of the point group. The superconductor having tetragonal symmetry 

considered here comes under the second category and the six nonzero elastic constants 

for it are Cll, C33 , C44 , C66 , C 12 and C13 . The equations for the wave propagation in 

a tetragonal crystal are very easily obtained from the equations for the orthorhombic 

crystal, by making the substitutions Cll = C22 , C44 = C55 and C 13 = C23 and hence these 

equations are not rewritten. Further, it can be seen that these simplifications yield the 

same expressions for the velocities of waves propagating in the XZ and YZ planes. 

5.4 Elastic wave surfaces of selected high T c super­
conductors 

The elastic wave propagation is highly anisotropic in many crystals in the sense that 

waves with different polarisations propagate with different velocities in different direc­

tions. Except in certain special directions, waves are not strictly transverse or longi­

tudinal in crystals, as is clear from the above analysis. The velocities calculated from 

118 



the elastic constants as a function of () (defined in Fig. 5.1) can be plotted for different 

propagation directions lying in different planes for each polarisation mode which give 

the corresponding phase velocity surfaces. The inverse of phase velocities also can be 

plotted for various propagation directions which are referred to as slowness surfaces. 

The pictorial representation of the wave velocities give a much better understanding of 

the anisotropic nature of elastic wave propagation in different directions in a crystal. 

In this work, we have studied the ani sot ropy in elastic wave propagation in 

selected high Te superconducting samples, by plotting the phase velocity surfaces in 

different symmetry -planes. 'The surtaces have been -platteu tar three malar su-percan­

ductors - Bi2Sr2CaCu20s-6, RBa2Cu307-6 and La2-xSrxCU04-6 - and for the nonsuper­

conducting La2Cu04, at temperatures above and below T e, either for single crystals, 

sinterforged samples or ceramic polycrystalline specimens subject to the availability of 

elastic constant data. 

All the three systems studied belong either to the orthorhombic or tetragonal 

symmetry. The expressions for the velocities of acoustic waves in the symmetry planes 

of orthorhombic and tetragonal lattice are derived in the above section, using which 

the velocities have been computed and plotted for the superconducting systems. The 

velocities have been calculated using the elastic constant data taken from literature, 

as a function of () varying from 0 to 27r in steps of 2 a. For plotting the surfaces the 

calculated velocity v and the angle () is converted into the x and y coordinates. If () is 

measured from the x-axis, the x and y components are given by 

x - vcos() 

y - vsin() (5.20) 

and if () is measured from the y-axis, the correspnding relations are 

x - v.sin() 

y - vcos() (5.21) 

The work done on different systems are separately outlined in the following sections. 
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This compound is the second member of the superconductor family having the general 

formula Bi2Sr2Ca,'_ICu,,04~2,,_6 with n = L 2, 3 and is often referred to as the Bi2212 

phase. The structure of BSCCO is orthorhombic with c = 30.8445 A which is much 

larger than the lattice parameters a = 5.4091 A and b = 5.4209 A which are nearly 

equal. 

Eventhough there are many reports on the elastic properties of this material, 

none of them give the complete set of elastic constants, numbering nine, even at room 

temperature. The major work in this regard is by Wu et al. [8] who have determined 

the temperature variation of several of the constants by ultrasonic measurements, but 

do not give all the constants even at room temperature. There are other reports also 

which give only one or two constants [9.11]. 

However, a clear picture of the anisotropy in elastic wave propagation and their 

variation with temperature can be obtained since Saunders et al. [12] have determined 

all the elastic constants from ultrasonic measurements on a textured sample of BSCCO 

both above and below T c' In this sample, a high proportion of the grains are found to 

be aligned preferentially with the c-axis along the forging direction, while it is isotropic 

in the plane normal. to the forging axis. So the sample is assumed to have a cylindrical 

symmetry and the five independent elastic constants are given at 290 K and 20 K. In 

addition, they have plotted the velocity surfaces for the XZ plane at 290 K. Another 

important work in this direction is by Boekholt et al. [13], who have reported room 

temperature elastic constants measured from Brillouin light scattering experiments on 

a single crystal. Here also cylindrical symmetry is assumed and the five independent 

elastic constants have been determined. The elasic constants reported by different 

authors for this material are tabulated in Table 5.l. 

We have computed the phase velocity surfaces above and below T c using 

eqns. (5.13) and (5.16) using the elastic constants reported by Saunders et al. [12]. 

Because of the cylindrical symmetry of the sample, the surfaces are the same in the XZ 

and YZ planes. Figs. 5.2(a) and 5.2(b) gives the plots at 290 K while Figs. 5.2(c) and 

5.2(d) are those at 20K where the symbols ps, qs and ql refer to the pure shear, 
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Table 5.1 

Elastic constants of BSCCO (values in GPa) 

Cll C22 C33 C44 C55 C66 C12 C13 C23 T (K) Reference 
123.2 110.8 50.4 67.3 250 [8] 
133.1 119.6 50.4 65.8 200 [8] 
137.2 127.6 50.3 75.9 150 [8] 
141.9 134.4 50.5 83.8 100 [8] 
144.9 136.0 50.7 77.4 80 [8] 
130.0 110.0 51.0 72.0 260 [9] 
143.0 [10] 
165.0 [11] 
118.5 44.2 19.0 37.70 43.1 7.3 290 [12] 
124.0 45.2 20.2 40.20 43.7 7.5 20 [12] 
125.2 75.8 15.8 23.15 78.9 56.0 300 [13] 
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Fig. 5.2(b) Phase velocity surfaces in the ac (XZ) plane for BSCCO at 290 K. 
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Fig. 5.2( d) Phase velocity surfaces in the ac (XZ) plane for BSCCO at 20 K. 
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quasishear and quasilongitudinal modes respectively. 

These compounds, also called the '123' compound have been investigated very thor­

oughly owing to their relatively high Tc values and straight forward method of synthesis. 

The structure of RBCO at room temperature is orthorhombic and is a tripled perovskite 

with a unit cell containing two Cu-Oz layers (planes) and one Cu-O chain. 

The elastic properties of this material have been investigated extensively. 

There exists several ultrasonic and other measurements of elastic constants on sam­

ples in the single crystal form [14-23]. The elastic constants reported for this material 

are summarised in Table 5.2. 

The complete set of elastic constants for YBCO at room temperature are avail­

able from three different groups. Ming Lei et al. [14] have measured the complete set 

of elastic constants by the resonant ultrasound technique, while Ledbetter and Lei [15] 

have given the complete set from a semi-theoretical estimate. The third set by Re­

ichardt et al. [16] is from inelastic neutron scattering and since they asswne tetragonal 

symmetry only six constants are reported by them. Incomplete set of elastic constant 

data is available from many groups [17-23] which also are given in the table. 

The phase velocity surfaces for YBCO have been plotted at room temperature 

using the elastic constant data reported by Ming Lei et al. [14]. Results obtained for 

propagation in the XY, XZ and YZ planes are plotted in Figs. 5.3(a), 5.3(b) and 5.3(c), 

where the symbols ps, qs and ql have the usual meaning. Though there are a nwnber 

of measurements reported at low temperatures, for example Golding et al. [18] give two 

constants Cll and C3,'3 measured at 80 K, no data giving complete set of elastic constants 

at low temperatures could be found. 

As mentioned earlier, one of the alternative ways to shed light on the 

anisotropic nature of the elastic properties of these materials is to study the sinter 

forged materials when data on single crystals is lacking. Sinterforged YBCO samples 

show preferential orientation [24] with 80% of the c-axis of the crystallites aligned within 

20° of the forging axis. Since in the direction perpendicular to the forging axis, the a 
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and b axes of the crystallites are randomly oriented, such samples show rotational sym­

metry and hence there are five different propagation modes for elastic waves. The major 

works are by Xu et al. [25J and Zhao et al. [26J who have reported incomplete sets of 

elastic constants at room temperature but no data at low temperatures could be found 

in literature for these type of samples. 

Since a comparison of the wave surfaces above and below T c has not been 

possible for YBCO due to the lack of data at low temperatures, we have plotted the 

surfaces for a polycrystalline 123 sample - GdBCO. For a polycrystalline material, the 

phase velocity is independent of direction and has only two values; VI for the longitudinal 

wave and Vs for the shear wave. Many reports can be found in literature which give the 

longitudinal and transverse velocities of 123 compounds. The elastic constants taken 

from some of these reports for GdBCO are tabulated in Table 5.3, along with the values 

we have measured for a superconducting GdBCO at 300 K and 90 K using the ultrasonic 

pulse echo overlap technique. Figures 5.3{d) and 5.3{e) depict the surfaces at 300 K 

and 90 K plotted using the values measured by us where the symbols sand 1 refer to 

the shear and longitudinal modes respectively. 

This superconducting compound is derived from the stoichiometric compound La2Cu04 

(LCO) by replacing La3+ with Sr2+ (or Ba2+) partially. The parent LCO is a semiconduc­

tor which exhibits tetragonal symmetry of 14/mmm space group at high temperatures 

(above 530 K), which distorts to a lower symmetry orthorhombic state on cooling. Since 

most of the measurements reported are at and below room temperature, the structure 

is invariably orthorhombic in all these. As La3+ is replaced by Sr2
+, the temperature at 

which the tetragonal - orthorhombic transition takes place decreases and LSCO is found 

to undergo the transition around 180 K for x = 0.15. So the superconducting LSCO 

has a tetragonal structure at room temperature and it transforms to the orthorhombic 

state at ~ 180 K. 

Though the parent compound LCO is not a superconductor, the elastic prop­

erties of this compound has also been measured. Migliori et al. [30] have measured all 
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Cll 

231 
223 
230 
211 
234 

207 
315 

Table 5.2 

Elastic constants of YBCO (values in GPa) 

C22 C33 C44 C55 C66 C12 C13 C23 T (K) Reference 
268 186 49 37 95 132 71 95 295 [14] 
244 138 61 47 97 37 89 93 295 [15] 
230 150 50 50 85 100 100 100 295 [16] 

- 159 35 [17] 
- 145 80 [18] 
- 160 25 82 66 [19] 

42 33 57 [21] 
63 31,36 85 220 [22] 

275 279 [23] 

Table 5.3 

The longitudinal (Cl) and shear (Cs) elastic constants of 

polycrystalline GdBCO (values in GPa) 

Cl Cs T(K) References 
143.5 49.4 300 [27] 
149.1 52.4 90 [27] 
158.2 52.0 [28] 
170.6 64.5 4 [29] 
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the nine constants of LCO at three different temperatures using the resonant ultrasound 

technique. Allan and Mackrodt [31] also give the complete set at room temperature 

which is the result of a molecular dynamic simulation. Incomplete data is available 

from different groups [32,33] and the results are tabulated in Table 5.4. 

The velocity surface plots for LCO at 297 K, plotted using the data given by 

Migliori et al. [30] are given in Figs. 5.4(a), 5.4(b) and 5.4(c) for wave propagation in 

the XY, XZ and YZ planes respectively. The surfaces are more or less the same at 44 K 

and so the figures are not reproduced here. 

Superconducting LSCO has tetragonal structure at room temperature, with 

the space group D!~, and transforms into an orthorhombic state at 180 K with further 

structural anomalies on approach of the superconducting transition. Although the first 

member of the high Tc superconductor family, data is comparatively less on LSCO 

compared to other superconductors. Migliori et al. [34] have reported the complete 

set of elastic constants at 297 K measured using the resonant ultrasound technique. 

However, no data could be found which give all the six independent elastic constants 

at temperatures around or below T c. The data which could be found in literature are 

given in Table 5.5. 

Figs. 5.4(d) and 5.4(e) give the velocity surfaces plotted for wave propagation 

in the XY and XZ (YZ) planes respectively for LSCO at 297K using the elastic constants 

reported by Migliori et al. [34]. Though there are many reports on the temperature 

variation of sound velocity, the absolute values of longitudinal and transverse velocities 

at two temperatures (one above and the other below T c) could not be found for the 

same sample and hence they are not plotted. 

5.5 Discussion and conclusion 

The velocity surfaces plotted for the superconducting compounds for the propagation of 

elastic waves in different planes clearly depict the elastic anisotropy in these materials. 

For BSCCO, the three surfaces for the shear, quasishear and quasilongitudinal 

waves are circles in the XY plane (Fig. 5.2(a)) indicating that the phase velocity is 

independent of direction for all the waves. The compound possesses a layer structure 
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Table 5.4 

Elastic constants of LCO (values in GPa)] 

Cll C22 C3.'3 C44 C55 Coo C12 C13 C23 T (K) Reference 
172.2 171.6 200 65.2 65.8 97.1 89.2 72.8 73.2 310 [30] 
171.9 171.2 200 65.6 65.8 96.8 90.4 72.2 73.1 297 [30] 
168.8 166.8 200 70.5 66.0 103.6 100.0 71.4 72.8 44 [30] 
199.0 184.0 190 65.0 64.0 66.0 65.0 65.0 70.0 298 [31] 
131.0 - 327.0 4 [32] 
223.0 - 272.0 68.0 105.0 132.0 96.0 77 [33] + 

C16 = -19.0, C36 = -7.0 

+ In the last set, the structure is treated as monoclinic and the additional constants 

are given. 

Table 5.5 

Elastic constants of LSCO (values in GPa) 

248.0 205.0 67.4 58.3 48 
263.4 246.5 
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C23 T (K) Reference 
65 297 [34] 

50 [35] 
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Fig. 5.4(b) Phase velocity surfaces in the ac (XZ) plane for LCO at 297 K. 

132 



fl 
....... 
11 

6000 

6000 ~~--~~--r-----+-----~~~~--~~ 
c 

6000 
(m/s) 

6000 

Fig. 5.4(c) Phase velocity surfaces in the bc (YZ) plane for LeO at 297 K. 

133 



III 
....... 
8 

8000 

8000 

b 

8000 

8000 
c 

(II/S) 

Fig. 5.4( d) Phase velocity surfaces in the ab (XY) plane for LSCO at 297 K. 

III 
....... 
& 

8000 

8000 

a 

8000 

• (m/s) 

Fig. 5.4( e) Phase velocity surfaces in the ac (XZ) plane for LSCO at 297 K. 

134 



which consists of adjacent pairs of Bi-O planes that alternate along the c axis with 

pervoskite like multilayers. The Bi20 2 layers consist of two paralleL planar Bi-O sheets 

while the pervoskite multilayers comprise two Cu-O sheets in the form of corner sharing 

CU05 pyramids separated on the base sides by Ca ions. Crystals of BSCCO compounds 

have a mica-like morphology which indicates that the interlayer binding forces are very 

weak, while strong interatomic binding forces exist within the Cu-O planes. 

The direction independent velocities in the XY plane may be explained on 

the basis of the structure. It is possible that the strong interatomic forces within the 

Cu-O layers are responsible for the ab (XY) plane rigidity and therefore control the wave 

propagation within this plane so that these waves have velocities which are essentially 

independent of direction. 

In the XZ (YZ) plane the wave surfaces plotted for the three waves clearly 

indicate the anisotropy in this plane. The velocity of the longitudinal elastic wave 

propagating within the layer i. e., along X (Y) direction is much greater than that of 

the waves propagating along the Z direction. The shear waves also have more or less 

the same behaviour. This behaviour is consistent with weak interlayer binding forces 

mentioned earlier. 

The nature of the wave surfaces in YBCO should be similar to those in BSCCO 

since YBCO also possesses a layer structure. The unit cell of YBCO consists of two Cu­

O2 planes and one Cu-O chain with the Cu atoms located at two inequivalent positions~ 

The first, Cu(2) has a pyramidal coordination while the Cu(1) located at the origin has 

a square planar coordination in which the near square Cu-O units share one corner and 

form chains along the b axis of the unit cell. The Cu(2) atoms are strongly bonded to 

the four oxygen atoms 0(2) and 0(3) forming the basis of the pyramid and are weakly 

bonded to the oxygen atom 0(1) at the apex. Because of these features, there exists in 

the structure, two dimensional layers of Cu and 0 almost perpendicular to the c axis. 

Just like BSCCO, the anisotropy is more in the XZ and YZ planes compared 

to the XY plane as is clear from Figs. 5.3(a), 5.3(b) and 5.3(c), though the velocities 

for the different modes are not independent of direction in the XY plane. In the XZ 

plane the velocities are higher along the Z direction. In other words, the elastic waves 
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propagating within the layers are faster than those perpendicular to the layer or in the 

direction of weak coupling which is again similar to that of BSCCO. The nature of the 

wave surfaces in the YZ plane is more or less similar to that in the XZ plane since both 

X and Y axes are within the layer and the Z axis normal to the layer. 

Comparing BSCCO and YBCO it can be found that BSCCO IS more 

anisotropic elastically. For example, the longitudinal velocity along the X axis is nearly 

double of that along the Z axis in BSCCO while the ratio of velocities along X and Z 

axes is not that high. This may be due to the larger number of layers present in the 

unit cell of BSCCO. 

Though a nonsuperconductor, the interest in the elastic properties of LCO lies 

in the fact that the Cu-O planes present in the compound produce anisotropic elastic 

effects just as in a superconductor. Moreover, elastic and specific heat anomalies appear 

in this material at temperatures near Tc in the superconductor LSCO [36]. 

It is interesting to note that the anisotropy is more in the XY plane for both 

LCO and LSCO, contrary to what has been seen in the other two superconductors. The 

Cu-O perovskite layer perpendicular to the c axis are present in these materials also, 

which are separated by La/Sr-02 planes with a rock salt type of arrangement. Each 0 

atom of the perovskite layers 0(2) is bonded to two Cu atoms in the same plane and to 

four R atoms (R = 0.925 La + 0.075Sr in LSCO and La in LCO) in adjascent planes, 

while each 0 atom of the rock salt layers 0(1) is linked to five R atoms and one Cu atom 

in a distorted octahedral configuration. In other words, the R atoms are strongly bonded 

to both the 0 atoms located on the same plane and those of the perovskite layers and 

the nature of the atoms forming R can strongly influence the Cu-O bonding [37] . So it 

is likely that wave propagation in the XY plane is not controlled by interatomic bonds 

within the layer alone, as in the case of the other two superconductors, but the La/Sr-02 

bonds also have some influence on wave propagation in this plane. So the combined 

influence of these two interatomic bonds may be responsible for the anisotropy in this 

plane as is clear from the figures 5.4(a) and 5.4(d). 

Comparing LCO and LSCO it is seen that velocities are higher in LSCO which 

indicate that doping with Sr makes the material stiffer. This is contrary to the usual 
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trend where charge carriers are found to soften elastic waves by screening. This stiffening 

has been attributed to the suppressed onset of the low temperature orthorhombic phase 

in the doped material [34]. 

Not much information can be expected to be obtained regarding the anisotropy 

by plotting the wave surfaces for poly crystalline samples for which just two elastic con­

stants exist. However, for the 123 compound GdBCO the velocity surfaces have been 

plotted at two temperatures in order to check for any relative variations in the two veloc­

ity surfaces above and below T c' It is found that the curves are exactly similar at these 

two temperatures indicating that there is no relative changes in velocity as the sample 

undergoes a superconducting transition. In the case of the velocity surfaces obtained 

above and below T c for the sinterforged BSCCO sample also, the wave surfaces are quite 

similar at the two temperatures. These results indicate that the anisotropic nature of 

wave propagation does not change significantly upon superconducting transition. 
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Chapter 6 

Slowness and ray velocity surfaces of high 
Tc superconductors 

6.1 Introduction 

The propagation characteristics of elastic waves in crystals are strongly affected by 

the elastic anisotropy of the lattice. As a result, elastic waves with different polarisa­

tions travel with different velocities in different directions and these waves are neither 

strictly transverse nor longitudinal except in specific directions of the crystal, as has 

been pointed out in the previous chapter. The phase velocity with which the wave prop­

agates can be calculated from the elastic constants and can be plotted as a function 

of the propagation direction and is referred to as the phase velocity or simply velocity 

surfaces. Various aspects of these surfaces drawn for high Tc superconductor crystals 

have been discussed in detail in chapter 5. 

Eventhough the phase velocity surfaces can provide information regarding the 

anisotropy in elastic wave propagation, it is common practice to plot the inverse of these 

phase velocities as a function of the propagation direction. Such surfaces are referred to 

as the slowness or inverse velocity surfaces and denotes the locus of the end points of the 

radius vectors whose lengths are proportional to the refractive indices. It is also known 

as the refraction or index surface, and apart from a factor of scale is identical to the 

surface of constant frequency w or phonon energy nw in k space. The slowness surface 

is often preferred over the phase velocity surface since one can trace all the features of 

the group velocity surface from the former. Further, the slowness surface is found to be 

of great importance in treating reflection and refraction processes at boundaries and is 
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a valuable aid in unravelling the complexities of the group velocity surface. Just like the 

velocity surface, it is also a surface of three sheets and possesses the same degeneracies 

as the phase velocity surface. 

Another remarkable feature of elastic wave propagation in anisotropic solids, in 

contrast to those of isotropic ones, is that the direction of energy flow given by the group 

velocity vector is not col linear with the phase velocity vector which is parallel to the 

wave vector. Consequently, a plot of the group velocity as a function of direction, called 

the ray surface, cannot be obtained simply by inverting the slowness surface. However, 

it can be seen that the group velocity vector is always normal to the slowness surface. 

In other words, the ray surface can be defined as the envelope of plane wavefronts with 

respect to the slowness surface and is one of the important aspects in the understanding 

of elastic wave propagation in anisotropic solids. 

Hence the velocity, slowness and ray surfaces are valuable aids to the un­

derstanding of the nature of acoustic wave propagation in elastically anisotropic solids. 

Some of the areas of interest where these surfaces find application are ballistic heat pulse 

propagation and phonon focussing effects, relaxation of paramagnetic and paraelectric 

centres, charge density waves, vibrational effects on x - rays, second sound, Akhiezer 

damping of sound waves, Kapitza resistance and measurement of elastic constants us­

ing nonaligned crystals [1-8J. In fact, these surfaces play a crucial role in every effect 

connected with long wavelength phonons or acoustic waves in crystalline media. 

The ray surface is physically the most meaningful among these three surfaces 

in that it represents the wave front or surface of equal phase for an oscillating disturbance 

a unit time interval after it has been created at the origin. It also happens to be the most 

complicated of the three. The analytical techniques for generating these surfaces are well 

established and the group velocity surfaces for a large number of substances have been 

investigated by many previous workers [9-12J. For example, Musgrave [l1J has plotted 

the ray surfaces for different substances belonging to different symmetry classes such as 

cubic, hexagonal, trigonal, tetragonal, orthorhombic etc. Philip et al. [12J have plotted 

the slowness and ray surfaces for over 65 cubic crystals including the superconducting 

A-15 compounds at temperatures below the transition. 
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There have been several papers of general nature also in this area and most of 

them focus on issues such as conditions for the existence of cuspidal edges in symmetry 

planes [13-16] and phonon enhancement factors in specific directions [16-18]. When a 

cuspidal edge occurs in the ray surface there exist two or three wave vectors correspond­

ing to a single group velocity vector. The conditions for the existence of cuspidal edges 

have been derived by different authors [11,13,19]. McCurdy [19] has pointed out that 

the directions along which cuspidal edges occur might give rise to high phonon ampli­

fication. Every [20] has shown that the results of phonon imaging and other ballistic 

phonon experiments can be interpreted in terms of the shape of the acoustic ray surfaces 

of cubic crystals. 

In this chapter, an attempt has been made to compute and plot the ray and 

slowness surfaces for three major high Tc superconductors, taking elastic constant data 

from literature. The details of the calculation and the results are presented after giving 

an outline of the theory behind computing the group velocity values for orthorhombic 

and tetragonal crystal systems and the necessary equations used in the calculations. 

6.2 The ray or group velocity in anisotropic solids 
- General aspects 

The ray velocity is an important physical attribute of any acoustic wave. This is the 

velocity with which energy is transported in the wave and is necessary to interpret 

different phenomena associated with ultrasonic wave propagation, thermal conductivity, 

phonon transport etc. Except in special circumstances the ray velocity does not coincide 

either in magnitude or direction with the phase velocity, as has been mentioned earlier. 

The group velocity is the velocity of the modulation envelope of a wave packet 

composed of waves of slightly differing values of k and wand is given by 

(6.1) 

whereas the ray velocity is obtained from the acoustic Poynting vector. However, in the 

absence of dissipation the distinction between these velocities disappear and eqn. (6.1) 

provides a computational route for obtaining the velocity. 
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Though the ray surface cannot be obtained simply by the inversion of the 

slowness surface because of the noncollinearity of k and S. there exists an interesting 

and useful relationship between these surfaces. It has been shown that the group velocity 

must always be perpendicular to the slowness surface. In other words, the wave vector 

k must always be normal to the ray surface. An important physical interpretation of 

this result can be made by expressing it as 

Vp = S cos'IjJ (6.2) 

where 'IjJ is the angle between the group velocity S and the wave vector k. This leads 

to a useful relation between the phase velocity and ray surfaces. It follows that the ray 

surface must be the envelope of planes normal to vp' Since the phase fronts of a plane 

wave are normal to k, it is seen that each portion of the ray surface corresponds to the 

phase front for a plane wave with energy travelling in that direction. 

The equation for S, given by eqn. (6.1), is convenient to calculate the group 

velocity only if the dispersion relation is given explicitly as w = !(kz , ky, kz)' But in 

section 5.2 of the previous chapter, it was seen that the dispersion relation for plane 

acoustic waves is obtained in the implicit form 

(6.3) 

and this cannot always be transformed into an explicit equation for w. In such cases, 

the different components of group velocity are obtained by implicit differentiation of 

eqn. (6.3) as shown below. 

(6.4) 

from which the x component of S is obtained as 

( CM) (an) (an) s = - -- - / -
z 8kz k k - 8kz 8w 

y, • 

(6.5) 

Similarly the y and z components of group velocity can be written as 

(6.6) 
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Therefore the group velocity can always be evaluated as 

- '\JJc n 
s = (fX1/8w) (6.7) 

Since the group and ray (energy) velocity are identical for acoustic waves in a loss less 

medium, eqn.(6.7) provides an alternative to the Poynting vector calculation of ray 

velocity and this provides a significant computational advantage. The group velocity 

also has a directly measurable physical meaning that is not apparent in the definition of 

energy velocity (vE,). If a pulse of acoustic energy is radiated by a plane wave transducer, 

the wavepacket is limited in two dimensions by the size of the transducer and in the 

third dimension by the pulse length. The wave fronts travel along the direction of k, 

which is normal to the transducer surface; but the wavepacket modulation envelope 

travels in the direction S = ve , which may be inclined at an angle to k. This means 

that the receiving transducer must be offset in order to intercept the acoustic pulse. 

Experimental evidence of this effect is reported in single crystal quartz [21] where the 

path of the acoustic beam has been made visible by means of optical scattering. When 

the quartz crystal is oriented with k parallel to the y crystal axis, it was seen that the 

quasilongitudinal wave should be deflected upwards and the quasishear waves deflected 

downwards by an angle of approximately 25°. 

6.3 Computation of group velocity for orthorhom­
hic and tetragonal crystals 

The expression for the group velocity given by eqn.{6.7) can be used for crystals of 

any symmetry to calculate the group velocity in any direction. However, the general 

expressions for S are formidably large and is essentially required for the triclinic system 

only. The expressions get much simplified when applied to higher symmetry crystals 

since several elastic constants become zero for these crystals. As has been seen in the 

case of phase velocity expressions, further simplification occurs when symmetry planes 

and directions are considered where one or two of the direction cosines 1, m or n also 

becomes equal to zero. Since the superconductors for which the ray surfaces are drawn 

in this chapter belong either to the orthorhombic or tetragonal system, the expressions 
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for the group velocity are derived for these crysfal classes in the following paragraphs. 

For the orthorhombic symmetry, the coefficients of Christoffel matrix are given 

by eqn.(5.9) in chapter 5. However, since some of the off-diagonal terms are retained, 

the characteristic equation given by eqn.(6.3) cannot be factored. The equations are 

hence derived for the symmetry planes, as has been done for the phase velocities. 

XV plane 

For the XY (ab) plane, the direction cosine n = 0 and the dispersion relation can be 

written as 

(6.8) 

where the Christoffel coefficients are given by eqn.(5.10). Substituting the values of .A 

and expressing the equation in terms of kz, ky, kz and w where kz/k = l, ky/k = rn, 

kz/k = nand w = kv, the dispersion relation for the pure shear mode works out to be 

(6.9) 

from which the necessary derivatives are evaluated as 

an 
2 Css kz 

8kz 
-

an 
2 C44 ky 

8ky 
-

an 
0 

8kz 
-

an 
-2pw (6.10) 

8w 
-

from which the x, y and z components of S can be obtained and hence the group velocity 

can be evaluated. 

For the quasishear and quasilongitudinal modes, n is given by 

from which the derivatives are obtained as 

- 2 Cll kz (C66 k; + C22 k~ - pw2
) + 2C66kz (Cllk; + C66k~ - pw2

) 

-2(C12 + C66 )2 kz k~ 
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- 2 C66 ky (C66 k; + C22k~ - pw2
) + 2C22 ky (Cll k; + C66 k~ - pw2

) 

-2(CI2 + C66 )2 k; ky 

= 0 

(6.12) 

from which the components of the group velocity can be obtained after substituting the 

appropriate values of phase velocity given byeqn. (5.13). 

The deviation 'I/J of the ray from the wave normal can be calculated in this 

plane as 
. Sy 

tan'IjJ =-
SI. 

(6.13) 

XZ plane 

For the XZ (ac) plane, the direction cosine m = 0 and the dispersion relation can be 

expressed as 

(6.14) 

where the A's are given by eqn.(5.14). Substituting the values of A and rewriting the 

equation in terms of kx, ky, kz and w , the dispersion relation for the pure shear mode 

is obtained as 

(6.15) 

The deri vati ves are calculated as 

an 
2 C66 kI. 

8kx 
-

an 
0 

8ky 
-

an 
2 C44 kz 

8kz 
-

an 
-2pw 

8w 
- (6.16) 

from which the group velocity can be obtained after substituting for the phase velocity. 

For the quasishear and quasilongitudinal modes, the dispersion relation is 
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and the derivatives are 

an 
8w 

2ClI kx (C55 k; + C33 k; - pW
2

) + 2C55kx (C 11 k; + C55 k; - pW
2

) 

-2(C13 + C55 )2 kxk; 

- 0 

- 2 C55 kz (C55 k; + C33 k; - pw2
) + 2 C33 kz (Cll k; + C55 k; - pw2

) 

-2( C13 + C55 )2 k; kz 

- -2 pw (C55 + Cll k; + C33 k; - 2 pw2
) (6.18) 

The group velocity is obtained from the different components after substituting the 

values of phase velocity given by eqn. (5.16). 

The angle of deviation 'l/J of the ray from the wave normal in this plane is 

YZ plane 

Sx 
tan'l/J = Sz (6.19) 

For the YZ (bc) plane, the direction cosine 1 = 0 and the dispersion relation can be 

written as 

(6.20) 

where the Christoffel coefficients .A's are given by eqn.(5.17). Substituting the values of 

,\ and expressing the equation in terms of kx, ky, kz and w, the dispersion relation for 

the pure shear mode is obtained as 

(6.21) 

from which the derivatives are evaluated as 

an 
0 

8kx 
an 

2 C66 ky 
8ky 

-

an 
2 C 55 kz 

8kz 
an 

-2pw -
8w 

(6.22) 
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from which the x, y and z components of S can be obtained and hence the group velocity 

can be calculated. 

For the quasishear and quasilongitudinal modes, n is given by 

from which the derivatives are obtained as 

an 
8kz 

0 

an 
2 C22 ky (C44 k; + C33 k; - pw2

) + 2C44ky (C22k; + C44 k; - pw2
) 

8ky 
-

-2(C23 + C44 )2 kyk; 
an 

2 C44 kz (C44 k; + C33 k; - pw2
) + 2 C33 kz (C22 k; + C44 k; - pw2

) 
8kz 

-

-2(C23 + C44 )2 k; kz 
an 

-2 pw (C44 + C22 k; + C33 k; - 2 pw2
) (6.24) 

8w 
-

from which the components of the group velocity can be obtained by substituting the 

values of phase velocity given by eqn. (5.19). 

The angle of deviation 'I./J of the group velocity vector from the wave normal 

can be calculated in this plane as 

(6.25) 

For the superconductor which belong to the tetragonal symmetry, the corre­

sponding equations for the group velocity can be obtained by making the substitutions 

Cn = C22 , C44 = C55 and C I3 = C23 as seen in the case of the phase velocity calcula­

tions and they are not reproduced here as they can be obtained by making the above 

substitutions in the equations derived above. 

6.4 Slowness and ray surfaces for high Tc supercon­
ductors 

As is well known, even ten years after the first report of high Tc superconductivity in 

ceramic cuprates, the mechanism of superconductivity and the role played by phonons 
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in superconducting transition are not clear. Every possible experiment has been done 

on these materials and every conceivable theoretical model has been applied to explain 

experimental findings with varying degrees of success. Of late, with the success of 

growing single crystals of most of the high Tc oxide superconductors, it has become 

possible to get a better insight into these materials, with the aid of fine experiments. 

A thorough knowledge of the elastic properties of these materials is necessary 

to understand the mechanism of superconductivity since these properties are closely 

related to a large number of fundamental solid state parameters. Actually the behaviour 

of long wavelength acoustic phonons is directly determined by the elastic constants of 

the material. In spite of these facts, elastic constant measurements on single crystals of 

all high Tc superconductors are not reported due to various technical difficulties involved 

in growing single crystals and making measurements. Even now, all the independent 

elastic constants are available only for a few high T c materials, that too only at room 

temperature. The elastic constant measurements on high Tc superconductors have 

already been reviewed in chapter 5. 

In this chapter we have plotted the slowness and ray surfaces for three 

superconducting systems Bi2Sr2CaCu20s-o (BSCCO), YBa2Cu307-0 (YBCO) and 

La2-zSrzCu04-0 (LSCO) for which the phase velocity surfaces have already been plot­

ted in chapter 5. Eventhough the slowness surfaces, which are the inverse of the phase 

velocity surfaces plotted earlier, may not seem to give any more information than given 

by the phase velocity surfaces, they have a direct correlation with the ray surfaces 

and being the polar reciprocals of ray surfaces can explain many of the features of ray 

surfaces. 

The three systems studied here have either orthorhombic or tetragonal sym­

metry. In order to plot the slowness surfaces, the inverse of the expressions derived 

for phase velocities in various symmetry planes in chapter 5 have been used, while the 

expressions for the group velocity given in the above section have been used to plot 

the ray surfaces. The inverse velocities and the group velocities have been calculated 

using the elastic constant data taken from literature. The calculated values have been 

plotted as a function of the propagation direction varying from 0 to 360 degrees in steps 
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of 2° after determining the x and y components of the velocities using the procedure 

described in chapter 5. The computations have been performed on a PC employing 

MATHCAD software. 

For BSCCO, the surfaces have been plotted at two different temperatures -

one above and the other below T c - using the elastic constant data of Saunders et al. [22] 

determined from ultrasonic measurements. Since the measurements are performed on a 

sinterforged sample of BSCCO, the samples has a cylindrical symmetry and hence there 

are only five independent elastic constants. Consequently the surfaces are the same 

in the XZ and YZ planes. Figs. 6.1(a) and 6.1(b) give the slowness surfaces for this 

compound at 290 K in the XY and XZ (YZ) planes, which are plotted using the same 

expressions for phase velocity given in chapter 5. The corresponding surfaces at 20 K are 

plotted in Figs. 6.1(c) and 6.1(d). The ray surfaces in the XY and XZ (YZ) planes for 

BSCCO are plotted in FIgs.6.2(a) and 6.2(b) at 290 K while the plots in Figs. 6.2(c) and 

6.2(d) depict the ray surfaces at 20 K, which are drawn using the expressions derived 

in the previous section. The symbols ps, qs and ql in all these plots represent the pure 

shear, quasi shear and quasilongitudinal modes respectively. 

In YBCO, since the complete set of elastic constants are reported only at 

room temperature,. the surfaces have been plotted only at room temperature. The 

elastic constant data is taken from Ming Lei et al. [23] who have measured all the nine 

independent elastic constants for this material having orthorhombic symmetry by the 

resonant ultrasound technique. Plots given in Figs. 6.3(a), 6.3(b) and 6.3(c) are the 

slowness surfaces for YBCO in the XY, XZ and YZ planes respectively, while those 

in Figs. 6.4(a), 6.4(b) and 6.4(c) depict the ray surfaces in the same planes and the 

symbols in the figures have the usual meaning. 

For LSCO also, complete set of elastic constants are available only at room 

temperature. The structure of this compound is tetragonal at room temperature and 

the six independent elastic constants have been determined by the resonant ultrasound 

technique by Migliori et al. [24]. Because of tetragonal symmetry, the surfaces are the 

same in the XZ and YZ planes. Figs. 6.5(a) and 6.5(b) are the slowness surfaces for this 

compound in the XY and XZ (YZ) planes and Figs. 6.6(a) and 6.6(b) are the 
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corresponding ray surfaces. 

6.5 Discussion and conclusions 

The slowness and ray velocity surfaces plotted for the three superconductors in different 

synunetry planes give a clear picture of the anisotropy in elastic wave propagation in 

these materials. 

The slowness surfaces, as mentioned before, are the inverse phase velocity sur­

faces and are the polar reciprocals of the ray surfaces. The nature of elastic anisotropy 

exhibited by the phase velocity has been discussed in detail in chapter 5. It has been 

found that the anisotropy is more in the XZ (YZ) planes for the superconductors BSCCO 

and YBCO whereas in the XY plane the elastic waves are found to propagate with ve­

locities that are essentially independent of direction. However, in LSCO the anisotropy 

is seen to be more in the XY plane. The difference in results are also discussed in 

chapter 5, taking into account the structure of these compounds. 

The ray surface, as mentioned earlier represents the direction of propagation of 

phonon energy flux and is much more complex than the corresponding slowness surface. 

However, all the features of the ray surface can be traced from the shape of the slowness 

surface. It is found that if the slowness surface is circular, the group velocity is parallel 

to k and the ray surface is simply another circle inverse to the slowness surface and is 

true in our plots also. For example, in BSCCO, the slowness and ray surfaces for all 

the three modes are circles in the XY plane as is evident from Figs. 6.1(a) and 6.2(a), 

indicating that the energy flow is distributed uniformly in the plane. For the other two 

superconductors one or two modes of the slowness and hence the corresponding ray 

surfaces are circles. For example, the slowness surfaces for the pure shear mode and 

quasilongitudinal mode in the XY plane of YBCO, pure shear mode in the XY and XZ 

planes of LSCO etc. are circles and hence the corresponding ray surfaces are also circles 

as is evident from Figs. 6.3(a), 6.4(a), 6.5(a), 6.6(a), 6.5(b), 6.6(b) etc. 

As is well known, whenever the slowness surface is nonspherical in shape the 

ray surface is found to exhibit interesting features such as folds or cusps. Several papers 

have appeared in literature indicating that many crystals exhibit cuspidal edges in ray 
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velocity surfaces along specific directions for selected modes. When a cuspidal edge 

occurs in the ray surface there exist more than one wave vector corresponding to a 

single group velocity vector. All crystals do not give rise to cusps and the conditions 

under which a cusp occurs in the ray surface can be predicted from the shape of the 

slowness curve. 

The cusps on the ray surface arises from the convoluted form of the correspond­

ing slowness curve. In other words, the folds in the group velocity surface correspond 

to zero curvature of the slowness surface. At the point where a cusp is seen in the ray 

surface, there is an inflection in the curvature of the slowness surface. 

The quasishear waves of all the superconductors investigated exhibit cuspidal 

edges in one or two planes in the ray surfaces. For example, cuspidal edges are clearly 

seen along the X and Y directions of YBCO in the XY plane, along 45° from the X 

direction in the XZ plane of YBCO, along 40° from the X axis in the XZ plane of 

BSCCO and along 45° from the X axis in the XY plane of LSCO etc. in the quasishear 

mode, as is clear from Figs. 6.2(b), 6.2(d), 6.4(a), 6.4(c), 6.6(a) etc. The point of zero 

inflection or a point of zero curvature is seen in the slowness surfaces exactly along the 

same directions where these cusps occur. 

These cuspidal edges are of great physical significance in the light of the fact 

that many authors have suggested that the directions along which these edges occur 

might give rise to high phonon amplification. This effect, also called the phonon fo­

cussing is found to occur when an isotropic distribution of k vectors, such as that 

emanating from an ideal point heat source, transforms into a distinctly anisotropic dis­

tribution of group velocities. Then the phonon energy is found to be concentrated or 

focussed along directions for which the curvature of the constant frequency slowness 

surface is small. And the folds in the ray surfaces define the real space directions of 

the singularities and are found to form boundaries between strong and weak focussing 

directions. This effect and various aspects associated with it are discussed in more detail 

in the next chapter. 

A comparison of the energy disribution above and below T c is also possible, 

since the ray surfaces have been plotted for BSCCO at two temperatures - one above and 
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the other below T c in the XY and XZ planes. From these figures it is found that the ray 

surfaces do have the same shape at 290 K and 20 K. For example, from the figures 6.2{b) 

and 6.2{ d) , it can be seen that the folds in the ray surface occur in the same direction in 

the crystal above and below Tc. This indicates that the nature of anisotropy associated 

with elastic energy propagation do not change with the superconducting transition, 

which is in accordance with the conclusions drawn from the phase velocity surfaces. 
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Chapter 7 

Phonon focussing in high T c 

superconductors 

7 .1 Introduction 

The propagation of long wavelength phonons in a crystalline solid is characterised by 

anisotropic velocities due to the direction dependent elasticity of the medium. Even 

in a highly symmetric cubic crystal, anisotropy in elastic properties are found to be 

significant. On the other hand, the thermal conductivity of a crystal, is usually repre­

sented by a second rank tensor, which for a crystal of cubic symmetry implies isotropic 

propagation of heat. The apparent discrepancy arises because the theory of thermal 

conductivity involves diffusion of high energy acoustic phonons with mean free paths 

much shorter than crystal dimensions. 

However, if a localised pulse of high energy acoustic phonons or a heat pulse 

is introduced into an otherwise cold crystal, such phonons may travel ballistically over 

macroscopic distances, displaying anisotropies directly associated with the elastic ten­

sor. Unlike the coherent plane waves produced at RF frequencies by a quartz transducer, 

a heat pulse consists of incoherently generated phonons with a near planck energy dis­

tribution characterised by the heater temperature. This heat pulse method, originally 

demonstrated in crystals by von Gutfeld et al. [1] generally utilises a resistive film to 

produce the heat pulse and a fast superconducting bolometer to detect the slight tem­

perature rise when the ballistic phonons arrive at the opposite face of the crystal. The 

time of flight of these phonons across a crystal of known dimensions is well characterised 

by the corresponding sound velocities. 
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Shortly after these experiments it was observed that, in addition to the sound 

velocity, the phonon energy flux is dependent on the propagation direction. At low 

temperatures, where phonon mean free paths are comparable to crystal dimensions, 

which is called the ballistic regime, it was observed that there is an anisotropic chan­

neling of phonon energies emanating from a localised heat pulse. The phenomenon was 

first explicitly demonstrated by Taylor et al. [2,3]' who have explained the 'phonon 

focussing' effect as a consequence of the noncollinearity of the phase and group veloci­

ties. They presented statistical calculations of the angular dependent flux enhancement 

which roughly explained their data. 

In subsequent years there has been considerable activity in the area of bal­

listic phonon propagation in solids [4-9]. This was supported by the development of 

experimental techniques for generating and detecting acoustic phonons of frequencies 

upto several THz. In such heat pulse experiments, phonons are generated in a thin 

metallic film on one face of a crystal by means of short duration electrical, microwave 

or laser pulses. The phonons are detected, after propagating through the crystal, by 

means of a suitable bolometer. Metallic films which undergo superconducting to normal 

transition when the phonon flux arrives are very effective detectors. For heat pulse ex­

periments, a crystal with phonon mean free path comparable to its linear dimensions is 

required so that the phonons will propagate ballistically rather than diffusively. Pulses 

due to phonons of different polarisations then arrive at the detector at different times 

and therefore can be studied independently. These experiments have considerable ad­

vantages over thermal conductivity studies as a means of investigating phonon - phonon 

and phonon - defect interactions. For example, the scattering of phonons by crystal 

defects may be studied by introducing the defects into the crystal and determining the 

fraction of phonons of a given polarisation which travel unscattered from the generator 

to the detector. Heat pulse studies thus make it possible to investigate the scattering of 

phonons of different polarisations separately. This is in contrast to thermal conductivity 

measurements, which only give some average scattering rate for all phonons. Another 

advantages of heat pulse studies is that the propagation of groups of phonons with 

wavelengths lying in different directions can be investigated, whereas, again, thermal 

168 



conductivity involves a complicated average over the k space. 

The phonon focussing effect. as mentioned earlier. is onc of the consequences 

of elastic anisotropy. The phonons generated by the film are assumed to have an ap­

proximately uniform distribution of wave vectors. However, since the wave vector and 

the group velocity vector are not collinear. a uniform distribution of directions in k 

space does not lead to a uniform distribution of energy flux. The amount of energy and 

hence the heat pulse amplitude received thus depend on the crystallographic direction 

between the detector and the generator. The energy received varies for the different 

phonon polarisations since the deviation of the group velocity direction from the wave 

vector direction is different for each polarisation. 

The phonon focussing effect has been well studied both experimentally and 

theoretically. Heat pulse experiments carried out in ultrapure single crystals of Ge [10-

13] , GaAs [14], Si [15,16] etc. revealed sharp features in the phonon flux along specific 

directions for transverse acoustic modes. Large differences have also been observed 

by Taylor et al. [3] in the intensity of phonons of different polarisations propagating 

ballistically in LiF, KCl and Al20 3 . Most of these experiments exploit temporal analysis 

of heat pulse intensity. Results of ballistic phonon imaging experiments, which offer a 

geometric visualisation of anisotropic phonon propagation in crystals, carried out on 

Ge [10,11]' GaAs [14] and KDP [17] also show striking differences in the intensity of 

phonons propagating along different directions and found to have correspondence with 

phonon enhancement calculations in these crystals. 

On the theoretical side also, there have been several attempts to study phonon 

focus sing and to calculate the phonon enhancement factor employing various analytical 

techniques. Rosch et al. [7], for example have calculated the phonon focussing parameter 

for several crystals, which showed immense variations in phonon intensity within a 

given phonon mode. Philip et al. [8] have proposed a method to evaluate the phonon 

amplification factor for any general direction inside a cubic crystal. Northrop et al. 

[11] have explained the origin of complex intensity patterns observed in Ge in ballistic 

phonon imaging experiment, by calculating the complete locus of points on the slowness 

surface for which the enhancement factor diverges. 

169 



Eventhough the phonon focussing effect has been investigated thoroughly us­

ing various analytical techniques, the approach has always relied on the geometrical 

optics concept of a ray. And it has been found that in most crystals there exists cer­

tain directions, known in classical wave theory as caustics, where the geometrical optics 

approximation yield infinities in the displacement amplitude. These infinities are non­

physical and violate the assumptions of linear elastic theory. The standard analysis of 

phonon focussing breaks down along these singular directions and catastrophe theory 

has been applied to the phenomenon [18,19,21]. 

In this chapter, an attempt has been made to calculate the phonon enhance­

ment factor along different directions for three high Te superconductors. The effect 

of caustics as well as the results obtained are discussed taking into account the slow­

ness and ray surfaces of these materials, which are given in chapter 6. The results are 

presented after giving the details of computation of the phonon enhancement factor. 

7.2 Phonon focussing in orthorhombic and tetrago­
nal crystals 

The phonon focussing, as has been mentioned already, is the amplification of phonons in 

certain directions of the crystal and the enhancement factor (A) is defined the ratio of 

energy flux for a particular polarisation and propagation direction to the corresponding 

flux in an isotropic solid. Mathematically it is equivalent to the ratio of the k space 

solid angle ~ rh to the corresponding S space (group velocity) solid angle ~ ns' Thus 

the enhancement factor A = I~ nk / ~ nsl is proportional to the phonon energy flux and 

is equal to unity for an isotropic medium. The physical idea is contained in Fig. 7.1, 

plotted for Ge [11]. Fig. 7.1(a) represents the constant frequency slowness surface for 

Ge in the XY plane for the quasishear mode. For a given wavevector k, terminating on 

this surface, the group velocity is normal to the slowness surface and is in general, not 

collinear with k. Fig. 7.1(b) gives the plot of group velocities corresponding to the k 

vectors in 7.1 (a). Two equal solid angle sections along different group velocity directions 

are shown on the left side of the diagram. A mapping of these two real space sections 
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Fig. 7.1 

(a) : Intersection of a constant frequency surface with the ab plane for the quasishear 

mode in Ge. 

(b) : Plot of the group velocities corresponding to the k vectors in (a). 
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into k space is shown on the left half of Fig. 7.1(a). A constant real space solid angle 

~ ns subtended by a detector corresponds to one or more k space solid angles ~ nk , 

differing in magnitude and location and flux enhancement along this group velocity 

direction is large. In other words, phonon energy is concentrated or focussed along 

group velocity directions for which the curvature of the constant frequency surface is 

small. 

It has been shown that the phonon enhancement factor A can be expressed in 

.spherical polar coordinates in terms of the Jacobian J of the transformation relating the 

variables (Bk, <Pk) in k space to the corresponding variables (Bs, 4>s) in the group velocity 

space, and is given by [8] 

A= I~~:I = I~ (7.1) 

where the Jacobian J is found to be proportional to the Gaussian curvature of the slow­

ness surface and is dimensionless. Since J is expressed as a function of (Bk' <Pk) and the 

energy propagation is along the corresponding (B" <Ps), calculation of the enhancement 

factor A requires the mapping of one two dimensional space (BS! <Ps) into another two 

dimensional space (Bk, <Pk). This mapping is generally not unique, there are cases where 

one (Bs, <Ps) results from several different (Bk,4>k) as illustrated in Fig. 7.1 

In this chapter, we have evaluated the phonon enhancement for high Te super­

conductors, by evaluating the Jacobian of the transformation between these variables, 

taking the elastic constant data from literature. Since the superconductors investi­

gated belong either to the orthorhombic or tetragonal symmetry, the details of the 

computation of A in these crystal classes is discussed. Previous workers have done the 

computation only in cubic crystals. 

The dispersion equation for the propagation of an elastic wave of frequency w 

and wavevector k(kx, ky, kz) is given by 

All - pw2 

n(w, kx, ky, kz) = A12 (7.2) 

A13 

where the Christoffel coefficients A for the orthorhombic symmetry is given by eqn.(5.9). 
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Expanding the determinant in eqn.(7.2), a cubic equation in pw2 is obtained, 

which can be expressed as 

where x = pw2 and the coefficients are given by 

A3 - 1 

A2 - - [l2 Jx + m2 Jy + n 2 J%] 

Al - l4 K + m 4 K + n 4 K + z2 m 2 L + l2 n
2 K + m 2 

n
2 K x y % xy x% y% 

Aa - _[l6 Lx + m 6 Ly + n 6 L% + l4 m 2 Lxy 

+l4 n
2 Lx% + l2 m4 Lp + m 4 

n
2 Ly% 

+z2n
4 L +m

2
n

4 L +l2m
2

n
2 L 1 : • xp 

where J's, K's and L's are expressed in terms of the elastic constants as 

Jx - C n + C55 + C66 

Jy - C22 + C44 + C66 

J% - C33 + C44 + C55 

Kx - Cn C66 + Cn C55 + C55 C66 

Ky - C22 C66 + C44 C66 + C22 C44 

K% - C33 C44 + C33 C55 + C44 C55 

Kxy - Cll C22 + Cll C44 + C55 C66 + C44 C66 + C22 C55 - Ci2 - 2 CI2 C66 

Kx% - Cll C44 + Cll C33 + C55 C66 + C33 C66 + C44 C55 - Ci3 - 2 CI3 C55 

Ky% - C22 C33 + C22 C55 + C33 C66 + C44 C55 + C44 C66 - ~3 - 2 C23 C44 

Ly - C22 C44 C66 

L% - C33 C44 C55 

Lxy - C n C22 C55 + Cn C44 C66 - C55 Ci2 - 2 C I2 C55 C66 
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Lxz -

Lyx -

Lyz 

Lzx -

Lzy -

Lzyz -

2 C22 C44 C55 + C22 C3.1 C66 - C66 C23 - 2 C23 C44 C66 

Cl I C3.1 C44 + C3.1 C55 C66 - C44 C~3 - 2 CI3 C44 C55 

C22 C33 C55 + C3.1 C44 C66 - C55 C~3 - 2 C23 C44 C55 

4 C44 C55 C66 + CII C22 C33 - CII ~3 - C33 Ci2 - C22 Ci3 - 2 Cll C44 C23 

-2 CI2 C33 C66 - 2 C13 C22 C55 + 2 C12 CI3 C44 + 2 CI2 C13 C23 + 2 CI3 C23 C66 

(7.7) 

In spherical polar coordinates, the direction cosines can be represented as 

l - kz . () 4J T = sm keos k 

m - ky . () . T = sm k sm 4Jk 

kz 
(7.8) n - T = COS(}k 

To derive the expressions for phonon focussing, it is found necessary to have explicit 

expressions for the roots of the cubic equation (7.3). Let 

Al A~ 
q - ---

3 9 
1 A 3 

"( - 6 (AIA2 - 3Ao) - 2; (7.9) 

Since the roots of eqn.(7.3) are real, the discriminant (if + -1) is negative and hence we 

can write [21] 

(q3 + "(2)1/2 = i Bl/2 (7.10) 

where 

B = lif + "(21 

Let 

h+ iBl/2) = Rei'" (7.11) 

where 

R2 = "(2 + B 
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and 
BI/2 

tan'l;) = -­
"r 

Then the roots of eqn.(7.3) can be written as 

(7.12) 

Of these, XI denotes the pure shear mode whereas X2 and X3 denote the quasishear and 

quasilongitudinal modes respectively. 

As stated earlier, the group velocity S of the wave is not in the same direction 

as that of the wavevector k. The cartesian components of S can then be expressed in 

spherical polar coordinates as 

Dx S. () 
&njfM = sm s cos 4Js 

Dy S. () . ,,/, 
&njfM = sm s sm 'f's 

Dz 
&njfM = Scos()s (7.13) 

where the derivatives D x , Dy and Dz can be evaluated from eqn.(7.3), after substituting 

for A3 , A 2 , Al and Ao and the direction cosines. The expression for Dx is given in terms 

of kx, ky and kz as 

Dx =: --2 (pW2)2 kx Jx + 2 (pw2) [2 k; Kx + kx k~ Kxy + kx k; Kxz] 

-2[3 k~ Lx + 2 k; k~ Lxy + 2 k; k; Lxz + kx k! Lyx 

+kx k! Lzx + kx k~ k; Lxyz] (7.14) 

The other two derivatives can be obtained by a cyclic rotation of the coordinates. 

However, the values of kx, ky and kz have to be substituted in spherical polar coordinates 

given by eqn.(7.8). Also, we have from eqn.(7.13) 

(S; + EP )1/2 (D; + D2 )1/2 
tan()s= y = y 

Sz Dz 
(7.15) 
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and 
Sy Dy 

tan Os = - = - (7.16) 
Sx Dx 

The above equations show that O. and o. are functions of Ok and Ok and from these the 

Jacobian of the transformation relating the variables (Os, cPs) and (Ok, Ok) can be written 

as 

(7.17) 

If the Jacobian of the transformation is evaluated, the phonon enhancement factor (A) 

can be written as 

(7.18) 

To evaluate the Jacobian, it is necessary to obtain the four partial derivatives ~, ~, 

~, and :: and these can be obtained by direct partial differentiation of eqns. (7.15) 

and (7.16) with respect to Ok and lPk' The procedure involves considerable algebraic work 

and formidably long expressions are obtained and are not reproduced here. However, 

in obtaining the equations, it must be remembered that the expressions for Dz , Dy and 

Dz involves p v2 and the partial derivatives of p v2 with respect to Ok and lPk should be 

evaluated in each case. 

For tetragonal symmetry, the expressions for phonon enhancement factor can 

easily be obtained by imposing the equalities Cll = C22 , C44 = C55 and C13 = C23 . 

7.3 Computation of phonon intensities in high Tc 
superconductor crystals 

The importance of studies probing the different aspects of elastic wave propagation 

in high Tc superconductors have been discussed in the previous chapters. However, 

literature is short of such reports due to the technical difficulties in growing single 

crystals of these materials. The elastic constant measurements reported on high T c 

superconducting crystals have been thoroughly reviewed in chapter 5. 

We have calculated the phonon enhancement factors for three superconducting 

systems - BSCCO, YBCO and LSCO - for which the phase velocity, slowness and ray 

surfaces have been plotted in chapters 5 and 6. Eventhough phonon focussing may 
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not have any direct bearing on the superconducting transition, it would be of great 

interest to understand the anisotropic nature of phonon propagation in these materials. 

A computer program written in FORTRAN has been used to evaluate the phonon 

enhancement factors for the shear, quasishcar and quasi longitudinal modes for the three 

superconductors. Computations have been performed in each crystaL varying (h and Ok 

and from 0 to 7r /2, each in steps of 2°, resulting in performing the computation at 2025 

points in the wave vector space. The phonon intensities are then plotted in a pseudo 

3D representation as a function of ()k and rPk. A print out of the program is given in 

Appendix A. The elastic constant values used for these computations are the same as 

the ones used to compute the phase velocity surfaces in chapter 5 and the ray velocity 

and slowness surfaces in chapter 6. 

The phonon enhancement factors have been computed and plotted for BSCCO 

for the shear, quasishear and quasilongitudinal modes at two temperatures - one above 

and the other below T c, taking the elastic constant data of Saunders et al. [22]. 

Figs. 7.2(a), 7.2(b) and 7.2(c) represent pseudo 3D plots of the phonon intensities for 

the shear, quasishear and quasilongitudinal modes respectively of BSCCO at 290 K. The 

plots in Figs. 7.3(a), 7.3(b) and 7.3(c) depict the corresponding pseudo 3D plots for the 

three modes at 20 K. Plots of one particular mode at 290 K and 20 K are given together 

so that a comparison of the distribution of the intensities at temperatures above and 

below T c is possible. 

For the two superconductors studied, i. e., YBCO and LSCO, such a compar­

ison is not possible since the complete set of elastic constant data is lacking for these 

materials at low temperatures as has been mentioned already. Figs. 7.4(a), 7.4(b) and 

7.4(c) represent the pseudo 3D plots of the phonon intensities for shear, quasishear and 

quasilongitudinal modes for YBCO computed using the elastic constant data reported 

by Ming Lei et al. [23] at room temperature. In Figs. 7.5(a), 7.5(b) and 7.5(c), we 

have shown the pseudo 3D plots of the phonon intensities for the shear, quasishear and 

quasilongitudinal modes respectively for LSCO at 297 K, computed using the elastic 

constant data reported by Migliori et al. [24]. 

In these figures, sharp features are visible in phonon enhancement factors in 

177 



Fig. 7.2(a) Pseudo 3D representation of the distribution of phonon intensity (A) for 

the shear mode of BSCCO at 290 K. 

Fig. 7.3(a) Pseudo 3D representation of the distribution of phonoD intensity (A) for 

the shear mode of BSCCO at 20 K. 
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Fig. 7 .2(b) Pseudo 3D representation of the distribution of phonoD intensity (A) for 

the quasishear mode of BSCCO at 290 K. 

Fig. 7.3(b) Pseudo 3D representation of the distribution of phonoD intensity (A) for 

the quasishear mode of BSCCO at 20 K. 
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Fig. 7.2(c) Pseudo 3D representation of the distribution of phonon intensity (A) for 

the quasilongitudinal mode of BSCCO at 290 K. 

o 
'" r 

Fig. 7 .3(c) Pseudo 3D representation of the distribution of phonon intensity (A) for 

the quasi longitudinal mode of BSCCO at 20 K. 
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Fig. 7 .4( a) Pseudo 3D representation of the distribution of phonon intensity (A) for 

the shear mode of YBCO at roon temperature. 

Fig. 7.4(b) Pseudo 3D representation of the distribution of phonon intensity (A) for 

the quasishear mode of YBCO at room temperature. 
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Fig. 7.4(c) 

Pseudo 3D representation of the distribution of phonoD intensity (A) for t he 

quasi longitudinal mode of YBCO at room temperature. 
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Fig. 7.S(a) Pseudo 3D representation of the distribution of phonon intensity (A) for 

the ,hear mode of LSCO at 297 K. 

Fig. 7.S(b) Pseudo 3D representation of the distribution of pbonon intensity (A) for 

the quasi,hear mode of LSCO at 297 K. 
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Fig. 7.5(c) 

Pseudo 3D representation of the distribution of phonon intensity (A) for the 

quasilongitudinal mode of LSCO at 297 K. 
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certain directions. For example, the pure shear mode of YBCO exhibit a very sharp 

peak at (£h, ePic) = (20, 12), whose value run in to several thousands as is clear from 

Fig. 7.4(a). All the superconductors investigated here are found to possess such ex­

ceedingly high values in certain directions, at least for one mode of wave propagation. 

However, these high intensities cannot be attributed to the real focussing of phonons 

along these directions, since these values are physically unrealistic. These peaks are 

interpreted as caused by caustics, which is discussed in detail in the following section. 

7.4 Phonon focussing catastrophes 

Many previous workers have shown that striking differences occur in the magnitude 

of phonon intensities along various directions of an anisotropic crystal for the three 

modes of propagation. An interpretation of these rather complex behaviours of the 

phonon beams in the ballistic regime should be made by means of the basic theory 

of phonon focussing. The traditional phonon focussing theory is constructed on the 

focussing factor introduced by Maris [4] as a ratio of the solid angles occupied by the 

phonons in the wave vector and real spaces. However, the focussing factor defined 

in this way is based on a trajectory picture for the phonons or geometrical acoustics 

approximation [27], and its analytical expression has been recognised to yield infinities, 

though integrable, along certain crystal axes. Taborek et al. [18, 19] have remarked 

that vectors parallel to such crystallographic directions form conical surfaces, called 

caustic surfaces or simply caustics in classical wave theories. According to their analysis, 

the correct phonon intensity obtained by solving the wave equation of the lattice is 

finite along these directions, though still enhanced heavily [18,19,28]. This means that 

geometrical acoustics approximation breaks down on the caustics. 

Considerable efforts have been made to understand the origins of sharp en­

hancements of the observed phonon flux in connection with the infinities of the focussing 

factor and the underlying geometry of constant frequency surfaces of the phonons in 

the wave vector space. Tamura et al. [20J have shown that the sharp focussing of the 

phonon flux are deeply connected with topological properties of the w surfaces. A similar 

conclusion has been reached by Northrop et al. [11]. 

185 



Taborek et al. [19] have shown that the directions of high focussing are asso­

ciated with small curvature on the slowness surface and that points of zero curvature 

yield an infinity in the field amplitude. The possible forms of regions of zero curvature 

can be investigated by considering perturbations of the slowness surface of an isotropic 

solid, which is a sphere. The effect of elastic anisotropy is to deform the spheres slightly, 

leading to regions of negative curvature. Regions of positive and negative curvatures 

are separated by smooth curves along which the curvature vanishes. Vectors normal 

to the slowness surface along such a closed curve correspond to Poynting vectors which 

sweep out a conical surface emanating from the point source on which the field is intense 

but cannot be computed using geometrical acoustics. These surfaces are the caustics in 

classical theory mentioned earlier, and higher order approximations to the wave equa­

tions must be used to analyse the field in their vicinity. A thorough analysis including 

complete mathematical treatment of this effect is rather lengthy and not attempted. 

Considering the slowness and ray surfaces plotted for the high T e superconduc­

tors in chapter 6, it is clear that the ray surfaces for the pure shear and quasilongitudinal 

modes do not contain any folds or cusps. The only mode in which cusps appear is the 

quasishear mode, and this is the case for all the three high T e superconductors inves­

tigated. And, it has been suggested by many authors that phonon energy is focussed 

along the directions in which cusps occur in the ray velocity surface. So the only mode 

for which we can expect to see interesting features in phonon enhancement is the quasis­

hear mode for all the superconductors. This aspect is further discussed in the following 

section. 

7.5 Phonon enhancement along fold directions for 
the quasishear mode 

After having identified the directions in which folds or cusps occur in the ray surfaces 

for the quasishear mode in different high Te superconductors, we have computed the 

phonon enhancement factors along these directions for this mode. The general program 

developed to compute phonon enhancement factors along general directions has been 
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modified to compute phonon enhancement factors along the directions in which cusps 

are found to occur in the ray velocity surface. The computation has been performed on 

BSCCO at 290 K and 20 K, and on YBCO and LSCO at room temperature. Figs. 7.6(a) 

and (b) represent the curves for BSCCO at 290 K and 20 K respectively in the ab plane; 

Figs. 7.7(a) and (b) depict those for YBCO in the ab and ac planes respectively and 

Fig. 7.8 gives the curve for LSCO in the ab plane. 

All these figures show peaks in phonon intensity along specific directions. The 

position of these peaks in these figures corresponds to the points at which the caustics 

intersect the group velocity surface. A qualitative analysis of the positions of these 

peaks in comparison with the directions in which cusps occur indicate that these are 

the directions along which the phonon intensity is getting amplified. It should be noted 

that the values of the phonon enhancement factors are not abnormally high along these 

cusp directions. So the sharp peaks in the pure shear and quasilongitudinal modes, 

present for all the superconductors, can be interpreted as due to caustics. 

However, it must be remembered that the ray surfaces have been plotted 

only in selected symmetry planes of the crystals. A three dimensional view of the 

group velocity surfaces is necessary to find out the exact positions where the Gaussian 

curvature of the corresponding slowness surface tends to zero. Moreover, a one to one 

mapping of the group velocity surface with the corresponding slowness surface will reveal 

the points where the caustics will meet the group velocity surface. Such points for the 

quasishear mode will give the directions along which phonon intensities will be more 

compared to those in an isotropic medium. Such a detailed analysis and mapping are 

not attempted here since such an analysis for orthorhombic crystals is very involved and 

lengthy. But a qualitative picture of the physical effects involved can be obtained from 

the figures 7.6, 7.7 and 7.8. Detailed mapping and analysis have been done for cubic 

crystals by Tamura [25] and Every [26]. A comparison of the results presented here 

with the detailed analysis done for cubic crystals aids to obtain an idea about phonon 

focussing effects in high Tc superconductor crystals. 
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Fig. 7.6(a) Variation of phonon intensity with the polar angle ((h) for the 

propagation of quasishear mode in the ac plane of BSCCO at 290 K. 
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Fig. 7.6(b) Variation of phonon intensity with the polar angle ((h) for the 

propagation of quasishear mode in the ac plane of BSCCO at 20 K. 
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Fig. 7.7(a) 

Variation of phonon intensity with the polar angle (rh) for the propagation of 

quasishear mode in the ab plane of YBCO at room temperature. 
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Fig. 7.7(b) 

Variation of phonon intensity with the polar angle (81.) for the propagation of 

quasishear mode in the ac plane of YBCO at room temperature. 
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Fig. 7.8 

Variation of phonon intensity with the polar angle (Ok) for the propagation of 

quasishear mode in the ab plane of LSCO at room temperature. 
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7.6 Conclusions 

The phonon enhancement factors have been computed for the superconductors BSCCO, 

YBCO and LSCO along different directions and the results are presented. It is found 

that the phonon intensities plotted in three dimensions take physically unrealistic values 

in certain directions for all the superconductors. These are interpreted as not due to the 

real focussing of phonons, but due to the singularities occurring in the mathematical 

formulation. The phonon intensities have been calculated along directions where phonon 

amplification is expected for the quasishear mode from the nature of the ray surfaces and 

found that the values are not abnormally high verifying the predictions of the theory. 

It is not suggested that phonon focussing has any direct bearing on super­

conducting transition. Figs. 7.6(a) and 7.6(d) give the peaks in phonon intensities at 

the same angle above and below T c' All one sees is a change in the magnitude of the 

phonon intensity above and below T c' This change merely reflects the changes that 

elastic constants undergo over this temperature range. Interestingly, the positions of 

the caustics shift with temperature, which again is a consequence of the change in the 

value of the elastic constants. 

Ballistic phonon imaging experiments need to be done on ultrapure single 

crystals of high T c materials to verify these results. 
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Chapter 8 

Summary and conclusions 

This thesis is the result of our attempts to study certain thermal and elastic properties 

of selected high T c superconductors, which have been motivated by the enormous pos­

sibilities offered by these exotic materials not only to the scientific community, but also 

to the whole mankind due to their applications. This concluding chapter is aimed to 

provide a summary of the work done as well as to discuss the scope for doing further 

work in this field. 

The thermal and elastic properties of high T c cuprates have attracted almost 

as much attention as their superconducting properties eversince the discovery of these 

materials, not only because of the technological importance of these types of inves­

tigations, but also due to the valuable information provided by these studies for the 

understanding of the mechanism behind superconductivity in these materials. 

The thermal properties such as thermal diffusivity, specific heat and thermal 

conductivity of a set ofYBa2Cu307-6 - Sn02 composites have been investigated in which 

the concentration of Sn02 was varied from 0 - 8 wt. %. The temperature dependence of 

thermal diffusivity have been measured for four samples using the photoacoustic tech­

nique while the specific heats have been measured using differential scanning calorime­

try. Combining these data with density, the thermal conductivity of the samples have 

been determined. The results obtained are found to support the phonon mediated BCS 

mechanism as responsible for superconductivity in these materials. 

The effect of Ga doping on the elastic properties of GdBa2Cu307-6 samples 

have been studied using the ultrasonic technique. Ultrasonic velocity and attenuation 

have been measured as a function of temperature on four samples with varying Ga 
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doping levels, employing the pulse echo overlap technique and pulse comparison tech­

nique respectively. Apart from the anomalies observed near T~, anomalous features are 

found to occur at temperatures well above T e , which have been explained as due to the 

structural changes taking place in the material with Ga doping. 

The anisotropy in elastic wave propagation in single crystals of high T e su­

perconductors have been investigated by computing and plotting the phase and group 

velocities in three major superconducting systems - BSCCO, YBCO and LSCO - taking 

elastic constant data from literature. The velocities plotted as a function of the propa­

gation direction for the pure shear, quasishear and quasilongitudinal modes in different 

symmetry planes give a clear picture of the elastic anisotropy in these materials. The 

quasishear group velocity surfaces of all superconductors investigated exhibit cuspidal 

edges, at least in one symmetry plane, in specific directions. A comparison of the phase 

velocity surfaces for these materials and an analysis of the results have been attempted, 

based on the structure of these materials. Further, it is seen from the surfaces plot­

ted at temperatures above and below T e that the nature of anisotropy do not change 

significantly upon the material undergoing superconducting transition. 

Another remarkable consequence of elastic anisotropy, viz., the phonon fo­

cussing has also been studied in single crystals of high T e materials for the first time. 

The phonon enhancement factors have been computed for the superconductors BSCCO, 

YBCO and LSCO for the three modes of wave propagation and plotted in spherical po­

lar coordinates. The sharp peaks in phonon enhancement observed at various points of 

the plots are interpreted as not due to real focussing of phonons, but as due to caustics 

which are nonphysical and arise from the singularities occurring in the mathematical 

formulation. 

The overall goal of this work has been to study some of the thermal and elastic 

properties of selected high T e superconductors which are very important from the the­

oretical as well as technological viewpoints as has been mentioned already. Eventhough 

the results do not support any of the well established theoretical models completely, 

these investigations serve as a test for the validity of the various models. For example, 

the investigations of the thermal properties of YBa2Cu307-c5 indicate that the phonon 
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mediated electron pairing is adequate to explain the phenomenon. From the techno­

logical side also, these sort of studies are very valuable. For example, it is likely that 

these materials would be the basis for many commercial applications in the foreseeable 

future. Hence. there is a need for a comprehensive experimental description of the ma­

terial properties of these high Tc materials, including the extent to which their elastic, 

thermal and transport properties can be anisotropic. 

Every possible experimental technique has been applied to study the high T c 

materials and innumerable theoretical models have been proposed to explain the super­

conducting mechanism, eversince the discovery of these materials and many workers feel 

that this field is a saturated area of research. However, in spite of the intense research 

centred around these materials, many factors still remain mysterious even after nearly 

ten years of their discovery and there is much scope for doing further work in the area 

of high temperature superconductivity. 

Though the maximum value of Tc of the 'high temperature superconductors' 

have been raised to 135 K from the 30 K range within a few years, the realisation of 

room temperature superconductivity still remains an unreachable goal for the scientific 

community. Further, these materials could not be used for various applications because 

of a number of reasons. The brittle behaviour of these materials, for example, is one 

of the major disadvantages that restrict their engineering applications. The high re­

activity of some of these compounds prevents them from using in various applications. 

The fabrication of various devices and components using these materials is one of the 

challenges faced by the researchers in technical field. These are a few examples and 

many more problems remain unsolved for experimentalists in the field. 

Since the discovery of these materials, many theories have been proposed to 

explain the properties exhibited by these systems, as mentioned earlier. While some 

of the properties can be explained by phonon mediated electron pairing, the extremely 

small isotope effect and many other unusual electronic properties have led to the belief 

that the electron - phonon interaction by itself cannot be the dominant mechanism re­

sponsible for superconductivity. The occurrence of antiferromagnetic correlations in the 

copper oxides seem to support the notion that superconductivity in these compounds 
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may be due to magnetic interactions, while the presence of oxygen breathing mode 

distortion suggests an alternate pairing mechanism due to charge fluctuations. Again, 

these are only a few examples of the proposed models and many more theories have been 

proposed. Unfortunately none of them do clearly explain the mechanism behind super­

conductivity in these materials, again leaving the field open to further investigations for 

a theorist. 
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Appendix A 
Computer program to calculate Phonon enhancement factor 

C Program - Phonon Focussing 

REAL JX,JY,JZ,KX,KY, KZ, KXY, KIZ, KYZ 

DIMENSION T(50),P(50),Tl(45),Pl(46) 

DIMENSION C(6,6),Cl(6,6),Xl(50,50),X2(50,50),X3(50,50) 

DOUBLE PRECISION LX,LY,LZ ,LXY,LXZ,LYX,LYZ,LZX,LZY,LXYZ 

DOUBLE PRECISION A2(50,50),Al(50,50),AO(50,50) 

DOUBLE PRECISION G,Q,B,R,S,DX,DY,DZ 

DOUBLE PRECISION DDXT,DDYT,DDZT,DDXP,DDYP,DDZP,DA2T,DA2P 

DOUBLE PRECISION DA1T,DA1P,DAOT,DAOP,DTST,DTSP,DPST 

DOUBLE PRECISION DPSP,RJ,TS 

REAL A ,AS(50,50),AQS(50,50),AQL(50,50) 

C Elatic onstant matrix 

PRINT *, 'Give the Matrix elements' 

READ (*,5) «Cl(I,J), J = 1,6), I = 1,6) 

5 FORMAT(6F6.2) 

DO 7 I = 1,6 

DO 7 J = 1,6 

C(I,J) = Cl(I,J)*lE9 

7 CONTINUE 

C Coefficients J,K,L 

JX = C(l,l)+C(5,5)+C(6,6) 

JY = C(2,2)+C(4,4)+C(6,6) 

JZ = C(3,3)+C(4,4)+C(5,5) 

KX = C(1,1)*C(6,6) + C(l,l)*C(5,5) + C(5,5)*C(6,6) 

KY = C(2,2)*C(6,6) + C(4,4)*C(6,6) + C(2,2)*C(4,4) 

KZ = C(3,3)*C(4,4) + C(3,3)*C(5,5) + C(4,4)*C(5,5) 

KXY = C(1,1)*C(2,2) + C(l,l)*C(4,4) + C(5,5)*C(6,6)+ 

1 C(4,4)*C(6,6) +C(2,2)*C(5,5) - (C(1,2))**2 - 2*C(l,2)*C(6,6) 

KXZ = C(l,l)*C(4,4) + C(l,l)*C(3,3) + C(5,5)*C(6,6) + 

1 C(3,3)*C(6,6) +C(4,4)*C(5,5) - (C(1,3))**2 - 2*C(l,3)*C(5,5) 

KYZ = C(2,2)*C(3,3) + C(2,2)*C(5,5) + C(3,3)*C(6,6)+ 
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1 C(4,4)*C(6,6) +C(4,4)*C(5,5) - (C(2,3))**2 - 2*C(2,3)*C(4,4) 

LX = C(l,l)*C(5,5)*C(6,6) 

LY = C(2,2)*C(4,4)*C(6,6) 

LZ = C(3,3)*C(4,4)*C(5,5) 

LXY = C(l,l)*C(2,2)*C(5,5) + C(l,l)*C(4,4)*C(6,6) -

1 C(5,5)*(C(l,2))**2 - 2*C(l,2)*C(5,5)*C(6,6) 

LXZ = C(l,l)*C(4,4)*C(5,5) + C(l,l)*C(3,3)*C(6,6) -

1 C(6,6)*(C(l,3))**2 - 2*C(l,3)*C(5,5)*C(6,6) 

LYX = C(2,2)*C(5,5)*C(6,6) + C(l,l)*C(2,2)*C(4,4) -

1 C(4,4)*(C(l,2))**2 - 2*C(l,2)*C(4,4)*C(6,6) 

LYZ = C(2,2)*C(4,4)*C(5,5) + C(2,2)*C(3,3)*C(6,6) -

1 C(6,6)*(C(2,3))**2 - 2*C(2,3)*C(4,4)*C(6,6) 

LZX = C(l,l)*C(3,3)*C(4,4) + C(3,3)*C(5,5)*C(6,6) -

1 C(4,4)*(C(l,3))**2 - 2*C(l,3)*C(4,4)*C(5,5) 

LZY = C(3,3)*C(4,4)*C(6,6) + C(2,2)*C(3,3)*C(5,5) -

1 C(5,5)*(C(2,3))**2 - 2*C(2,3)*C(4,4)*C(5,5) 

LXYZ = 4*C(4,4)*C(5,5)*C(6,6) + C(l,l)*C(2,2)*C(3,3) -

1 C(l,l)*(C(2,3))**2 - C(3,3)*(C(l,2))**2 - C(2,2)*(C(l,3))**2 

1 + 2*C(l,2)*C(l,3)*C(4,4) + 2*C(l,2)*C(l,3)*C(2,3) + 

1 2*C(l,3)*C(2,3)*C(6,6) + 2*C(l,2)*C(4,4)*C(5,5) + 

1 2*C(l,2)*C(2,3)*C(5,5) + 2*C(l,3)*C(4,4)*C(6,6) + 

1 2*C(2,3)*C(5,5)*C(6,6) - 2*C(l,l)*C(4,4)*C(2,3) -

1 2*C(l,2)*C(3,3)*C(6,6) - 2*C(l,3)*C(2,2)*C(5,5) 

C Theta, Phi-Definition 

PRINT *, 'Give the values of Theta' 

DO 10 I = 1,45 

READ *, Tl 

T(I) = (Tl(I) * 3.14)/180 

10 CONTINUE 

PRINT *, 'Give the values of Phi' 

DO 20 J = 1,46 

READ * , Pl 

P(J) = (Pl(J) * 3.14)/180 

20 CONTINUE 
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C A2, Al, AO - Calculation 

DO 30 J = 1,46 

1 

1 

1 

DO 30 I = 1,45 

A2(I,J) = -(JX * ( SIN (T(I)) )**2 * (COS (P(J)) )**2 + 

JY * ( SIN (T(I)) )**2 * (SIN (P(J)) )**2 + 

JZ * ( COS (T(I)) )**2) 

Al(I,J) = KX * ( SIN (T(I)) )**4 * (COS (P(J)) )**4 + 

KY * ( SIN (T(I)) )**4 * (SIN (P(J)) )**4 + 

1 KZ * ( COS (T(I)) )**4 + 

1 KXY * ( SIN (T(I)) )**4 * (COS (P(J)) )**2 * ( SIN (P(J)) )**2 

1 + KXZ * ( SIN (T(I)) )**2 * (COS (T(I)) )**2 * ( COS (P(J)) )**2 

1 + KYZ * ( SIN (T(I)) )**2 * (COS (T(I)) )**2 * ( SIN (P(J)) )**2 

1 

1 

AO(I,J) = -(LX * ( SIN (T(I)) )**6 * (COS (P(J)) )**6 + 

LY * ( SIN (T(I)) )**6 * (SIN (P(J)) )**6 + 

LZ * ( COS (T(I)) )**6 + 

1 LXY * (SIN (T(I)) )**6 * (SIN (P(J)) )**2 * ( COS (P(J)) )**4 

1 + LXZ * (SIN (T(I)) )**4 * (COS (T(I)) )**2 * ( COS (P(J)) )**4 

1 + LYX * (SIN (T(I)) )**6 * (SIN (P(J)) )**4 * ( COS (P(J)) )**2 

1 + LYZ * (SIN (T(I)) )**4 * (COS (T(I)) )**2 * ( SIN (P(J)) )**4 

1 + LZX * (SIN (T(I)) )**2 * (COS (T(I)) )**4 * ( COS (P(J)) )**2 

1 + LZY * (SIN (T(I)) )**2 * (COS (T(I)) )**4 * ( SIN (P(J)) )**2 

1 +LXYZ * (SIN (T(I)) )**4 * (COS (T(I)) )**2 * 

1 (SIN (P(J)) )**2*(COS (P(J)))**2) 

C Solution of the cubic equation 

1 

1 

Q = Al(I,J) /3 - A2(I,J) ** 2 /9 

G = ( Al(I,J)*A2(I,J) - 3*AO(I,J))/6 - A2(I,J)**3/27 

B = ABS ( Q**3 + G**2 ) 

R = SQRT ( G**2 + B ) 

S = ATAN (SQRT(B) / G ) 

Xl(I,J) = -A2(I,J)/3 - 2* R** (1.0/3.0) * COS (S/3) 

X2(I,J) = -A2(I,J) / 3 - R ** (1.0/3.0) * COS (S/3) -

SQRT(3.0) * R** (1.0/3.0) * SIN(S/3) 

X3(I,J) = -A2(I,J) / 3 - R ** (1.0/3.0) * COS (S/3) + 

SQRT(3.0) * R** (1.0/3.0) * SIN(S/3) 
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30 CONTINUE 

35 WRITE (*,*) 'Select the mode (0,1,2 or 3)' 

WRITE (*,*) , 
1. For Pure shear' 

WRITE (*,*) , 2. For Quasi shear' 

WRITE (*,*) , 3. For Quasi longitudinal' 

WRITE (*,*) , O. To print the result' 

WRITE (*,*) , Any other key to end the program ' 

READ * ,MODE 

DO 40 J = 1,46 

DO 40 I = 1,45 

IF ( MODE .EQ. 1) mEN 

X = XlCI,J) 

ELSEIF ( MODE .EQ. 2) mEN 

X = X2(I,J) 

ELSEIF ( MODE .EQ. 3) TIIEN 

X = X3(I,J) 

ELSEIF ( MODE .EQ. 0) TIIEN 

GO TO 50 

ELSE 

GO TO 100 

ENDIF 

C Derivatives of A2, Al and AO 

DA2T = -2* SIN( T(I))* COS( T(I))* (JX* (COS( P(J)) )**2 

1 + JY* (SIN( P(J)) )**2 - JZ) 

1 

DA2P = 2*(SIN(T(I)))**2 *SIN(P(J))*COS(P(J))* (JX - JY) 

DA1T = 4*(SIN(T(I)))**3 *COS( T(I))* (KX* (COS( P(J)))**4 

+ KY* (SIN( P(J)) )**4) -

1 4*KZ* SIN( T(I)) * (COS ( T(I)) )**3 + 

1 4* KXY * ( SIN (T(I)) )**3 * COS ( T(I))* (COS (P(J)) )**2 * 

1 (SIN (P(J)) )**2 + 2*KXZ * (COS ( P(J)) )**2 * SIN ( T(I))* 

1 COS ( T(I)) * ( (COS ( T(I)) )** 2 - (SIN ( T(I)) )** 2) 

1 + 2 * KYZ * (SIN ( P(J)) )**2 * SIN ( T(I)) * 

1 COS ( T(I)) * ( (COS ( T(I)) )** 2 - (SIN ( T(I)) )** 2) 

DA1P = 4*(SIN ( T(I)) ) **4 *SIN ( P(J)) *COS ( P(J)) * 

1 ( KY * (SIN ( P(J)) )**2 - KX * (COS (P(J)) )**2 ) + 
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1 2 * KXY * (SIN ( T(I)) ) ** 4 * SIN ( P(J)) * 

1 COS( P(J)) * ( (COS ( P(J)) ) ** 2 - (SIN ( P(J)) ) ** 2) 

1 + 2 * (SIN ( T(I)) ) ** 2 * (COS ( T(I)) ) ** 2 * 

1 SIN ( P(J)) * COS ( P(J)) * ( KYZ - KXZ) 

DAOT = -6 * SIN ( T(I)) * COS ( T(I)) * ( 

1 LX * (SIN ( T(I)) ) ** 4 * (COS ( P(J)) ) ** 6 + 

1 LY * (SIN ( T(I)) ) ** 4 * (SIN ( P(J)) ) ** 6 -

1 LZ * (COS ( T(I)) ) ** 4 + LXY * 

1 (SIN ( T(I)) )** 4 *(SIN ( P(J)) )** 2 *(COS ( P(J)) )**4) 

1 - 2* LXZ* (SIN ( T(I)) )** 3* COS ( T(I))* (COS ( P(J)) ) **4 

1 * ( 2* (COS ( T(I)) ) ** 2 - (SIN ( T(I)) ) ** 2 ) - 6* LYX * 

1 (SIN ( T(I)) ) ** 5 * COS ( T(I)) * (SIN ( P(J)) ) ** 4 * 

1 (COS ( P(J)) ) **2 - 2* (SIN ( P(J)) ) **2 * (SIN ( T(I)) ) **3 

1 * COS ( T(I)) * ( 2* (COS ( T(I)) ) ** 2 - (SIN ( T(I)) ) ** 2) 

1 * ( LYZ * (SIN ( P(J)) ) ** 2 + LXYZ * (COS ( P(J)) ) ** 2 ) -

1 2 * SIN ( T(I)) * (COS ( T(I)) ) ** 3 * 

1 «COS ( T(I)) ) ** 2 - 2 * (SIN ( T(I)) ) ** 2) * 

1 (LZX * (COS ( P(J)) ) ** 2 + LZY * (SIN ( P(J)) ) ** 2 ) 

DAOP = -2 * (SIN ( T(I)) ) **6 * SIN ( P(J)) * COS ( P(J)) 

1 * ( 3 * LY * (SIN ( P(J)) ) ** 4 - (3 * LX - LXY ) * 

1 (COS ( P(J)) ) ** 4 - 2 * LXY * (SIN ( P(J)) ) ** 2 * 

1 . (COS ( P(J)) ) **2 - LYX * (SIN ( P(J)) ) **4 + 2 * 

1 LYX * (SIN ( P(J)) ) ** 2 * (COS ( P(J)) ) ** 2 ) - 2* 

1 (SIN ( T(I)) ) ** 4 * (COS ( T(I)) ) ** 2 * SIN ( P(J)) * 

1 COS ( P(J)) * ( (LXYZ - 2* LXZ ) * (COS ( P(J)) ) ** 2 + 

1 (2*LYZ - LXYZ ) * (SIN ( P(J)) ) ** 2) + 2 * (SIN ( T(I)))**2 

1 *(COS ( T(I)) ) **4 * SIN ( P(J)) * COS ( P(J)) * ( LZY -LZX ) 

DXT = -1 *( X **2 *DA2T + X * DA1T + DAOT) 

1 / (3 * X** 2 + 2 * A2(I,J) * X + Al(I,J)) 

DXP = -1 *( X **2 *DA2P + X * DA1P + DAOP) 

1 / (3 * X** 2 + 2 * A2(I,J) * X + Al(I,J)) 

C DX, DY, DZ - Calculation 

DX = -2 *(X **2) *JX * SIN (T(I)) * COS (p(J)) + 2* X * 

1 ( 2 * KX * (SIN ( T(I)) ) ** 3 * (COS (P (J)) ) ** 3 + 

1 KXY * (SIN ( T(I)) ) ** 3 * COS (P (J)) * (SIN ( p(J)) ) **2 

203 



1 + KXZ * SIN ( T(I)) * (COS (T (I)) )** 2 * COS ( P(J)) ) -

1 2* ( 3* LX * (SIN ( T(I)) ) ** 5 * (COS (P (J)) ) ** 5 + 2* 

1 LXY*(SIN (T(I)) )**5 * (COS(P(J)) )**3 * (SIN( P(J)) ) **2 + 2* 

1 LXZ * (SIN (T(I)) )**3 * (COS (T(I)) )**2 * (COS( P(J)) ) **3 + 

1 LYX * (SIN (T(I)) )**5 * (SIN (P(J)) )**4 * COS( P(J)) + 

1 LZX * SIN (T(I)) * (COS (T(I)) )**4 * COS( P(J)) + LXYZ * 

1 (SIN (T(I)) )**3 * (COS (T(I)) )**2 * (SIN( P(J)) ) **2 

1 * COS (P(J)) ) 

DY = -2 *(X **2) *JY * SIN (T(I)) * SIN (P(J)) + 2* X * 

1 ( 2 * KY * (SIN ( T(I)) ) ** 3 * (SIN (P (J)) ) ** 3 + 

1 KXY * (SIN ( T(I)) ) ** 3 * SIN (P (J)) * (COS ( P(J)) ) **2 

1 + KYZ * SIN ( T(I)) * SIN (P (J)) * (COS (T(I)) )** 2)-

1 2* ( 3* LY * (SIN ( T(I)) ) ** 5 * (SIN (P (J)) ) ** 5 + 

1 LXY*(SIN (T(I)) )**5 * (COS(P(J)) )**4 * SIN( P(J)) + 2* 

1 LYX*(SIN (T(I)) )**5 * (SIN(P(J)) )**3 * (COS(P(J)) )**2 + 2* 

1 LYZ * (SIN (T(I)) )**3 * (COS (T(I)) )**2 * (SIN( P(J)) ) **3 + 

1 LZY * SIN (T(I)) * (COS (T(I)) )**4 * SIN( P(J)) + LXYZ * 

1 (SIN (T(I)) )**3 * (COS (T(I)) )**2 * SIN( P(J)) 

1 * (COS (P(J)) ) ** 2 ) 

DZ = -2 *(X **2) *JZ * COS (T(I)) + 2* X * 

1 ( 2 * KZ * (COS ( T(I)) ) ** 3 + 

1 KXZ *" (SIN ( T(I)) ) ** 2 * COS (T (I)) * (COS ( P(J)) ) **2 

1 + KYZ* (SIN (T(I)) ) **2 * COS (T(I)) * (SIN (P(J)) ) **2) -

1 2* ( 3* LZ * (COS ( T(I)) ) ** 5 + LXZ * 

1 (SIN (T(I)) )**4 * COS(T(I)) * (COS ( P(J)) ) **4 + LYZ * 

1 (SIN (T(I)) )**4 * COS(T(I)) * (SIN( P(J)) ) **4 + 2 * LZX * 

1 (SIN(T(I)) )**2 * (COS (T(I)) )**3 * (COS(P(J)) ) **2 + 2* LZY* 

1 (SIN (T(I)) )**2 * (COS (T(I)) )**3 * (SIN( P(J)) )**2 + LXYZ * 

1 (SIN (T(I)) )**4 * COS (T(I)) * (SIN( P(J)) ) **2 

1 * (COS (P(J)) ) ** 2 ) 

C Derivatives of DX, DY and DZ 

DDXT = -2 * X * JX * COS ( P(J)) * ( X * COS ( T(I)) + 

1 2* SIN ( T(I)) * DXT) + 2* X* COS ( T(I)) * COS ( P(J)) 

1 * ( 6 * KX * (SIN ( T(I)) ) ** 2 * (COS ( P(J)) ) ** 2 + 

1 3 * KXY * (SIN ( T(I)) ) ** 2 * (SIN ( P(J)) ) ** 2 + 
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1 KXZ * ( (COS ( T(I)) ) ** 2 - 2 * (SIN ( T(I)) ) ** 2) ) 

1 + 2 * DXT * SIN ( T(I)) * COS ( P (J)) * ( 2 * KX * 

1 (SIN ( T(I)) ) ** 2 * (COS ( P(J)) ) ** 2 + KXY * 

1 (SIN (T(I)) ) **2 *(SIN (P(J)) ) **2 + KXZ* (COS (T(I)) ) **2 ) 

1 -2 * SIN ( T(I)) * COS ( T(I)) * COS ( P(J)) * ( 15 * LX * 

1 (SIN ( T(I)) ) ** 3 * (COS ( P(J)) ) ** 4 + 10 * LXY * 

1 (SIN ( T(I)) ) **3 * (COS ( P(J)) ) **2 * (SIN ( P(J)) )**2 + 

1 6* LXZ* SIN ( T(I)) * (COS ( T(I)) ) **2 * (COS ( P(J)) ) **2 

1 - 4 * LXZ * (SIN ( T(I)) ) ** 3 * (COS ( P(J)) ) ** 2 + 

1 5 * LYX * (SIN ( T(I)) ) ** 3 * (SIN ( P(J)) ) ** 4) + 

1 2* COS ( T(I)) * COS ( P(J)) * ( LZX * (COS ( T(I)) ) **4 

1 - 4* LZX * (SIN ( T(I)) ) ** 2 * (COS ( T(I)) ) ** 2 + 3* 

1 LXYZ* (SIN (T(I)) ) **2 *(COS (T(I)) )**2 *(SIN (P(J)) )**2 

1 - 2 * LXYZ * (SIN ( T(I)) ) ** 4 * (SIN ( P(J)) ) ** 2 ) 

DDXP = 2 * X * JX * SIN ( T(I)) * ( X * SIN ( P(J)) -

1 2* COS (P(J)) * DXP ) - 2* X* SIN ( T(I)) * SIN ( P(J)) 

1 * ( 6 * KX * (SIN ( T(I)) ) ** 2 * (COS ( P(J)) ) ** 2 + 

1 KXY * (SIN ( T(I)) ) ** 2 * (SIN ( P(J)) ) ** 2 - 2 * KXY * 

1 (SIN ( T(I)) ) **2 * COS ( P(J)) + KXZ* (COS ( T(I)) ) **2 ) 

1 + 2 * DXP * SIN ( T(I)) * COS ( P (J)) * ( 2 * KX * 

1 (SIN ( T(I)) ) ** 2 * (COS ( P(J)) ) ** 2 + KXY * 

1 (SIN (T(i)) ) **2 *(SIN (P(J)) ) **2 + KXZ* (COS (T(I)) ) **2 ) 

1 -2 * SIN ( T(I)) * SIN ( P(J)) * COS ( P(J)) * ( -15 * LX * 

1 (SIN ( T(I)) ) ** 4 * (COS ( P(J)) ) ** 3 + 4 * LXY * 

1 (SIN ( T(I)) ) **4 * (COS ( P(J)) ) **3 - 6 * LXY * 

1 (SIN ( T(I)) ) ,** 4 * COS ( P(J)) * (SIN ( P(J)) ) **2 - 6 * 

1 LXZ* (SIN ( T(I)) ) ** 2 * (COS ( T(I)) ) ** 2 * COS ( P(J)) + 

1 4* LYX *(SIN ( T(I)) ) **4 *(SIN ( P(J)) ) **2 * COS ( P(J)) -

1 LYX* (SIN ( T(I)) ) **4* (SIN ( P(J)) )**4 ) - 2* SIN (T(I)) * 

1 SIN ( P(J)) * ( -LZX * (COS ( T(I)) ) ** 4 + 2* 

1 LXYZ* (SIN (T(I)) ) **2 *(COS (T(I)) )**2 * (COS (P(J)) )**2 -

1 LXYZ* (SIN (T(I)) ) **2 *(COS (T(I)) ) **2 *(SIN (P(J)) ) **2) 

DDYT = -2 * X * JY * SIN ( P(J)) * ( X * COS ( T(I)) + 

1 2* SIN ( T(I)) * DXT ) + 2* X* COS ( T(I)) * SIN ( P(J)) 

1 * ( 6 * KY * (SIN ( T(I)) ) ** 2 * (SIN ( P(J)) ) ** 2 + 
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1 3 * KXY * (SIN ( T(I)) ) ** 2 * SIN ( P(J)) * COS ( P(J)) + 

1 KYZ * ( (COS ( T(I)) ) ** 2 - 2 * (SIN ( T(I)) ) ** 2) ) 

1 + 2 * DXT * SIN ( T(I)) * SIN ( P (J)) * ( 2 * KY * 

1 (SIN ( T(I)) ) ** 2 * (SIN ( P(J)) ) ** 2 + KXY * 

1 (SIN (T(I)) ) **2 *(COS (P(J)) ) **2 + KYZ* (COS (T(I)) ) **2 ) 

1 -2 * COS ( T(I)) * SIN ( P(J)) * ( 15 * LY * 

1 (SIN ( T(I)) ) ** 4 * (SIN ( P(J)) ) ** 4 + 5 * LXY * 

1 (SIN ( T(I)) ) **4 * (COS ( P(J)) ) **4 + 10 * LYX * 

1 (SIN ( T(I)) ) **4 * (SIN ( P(J)) ) **2 *(COS ( P(J)) ) **2 + 

1 6 * LYZ* (SIN (T(I)) )**2 * (COS (T(I)) )**2 * (SIN (P(J)) )**2 

1 -4*LYZ* (SIN(T(I)) )**4 *(SIN(P(J)) )**2 + LZY*(COS(T(I)) )**4) 

1 -2* COS ( T(I)) * SIN ( T(I)) * SIN ( P(J)) * ( -4 * LZY * 

1 SIN ( T(I)) * (COS ( T(I)) ) ** 2 + 3 * LXYZ * 

1 SIN (T(I)) * (COS (T(I)) ) **2 * (COS (P(J)) ) **2 

1 - 2 * LXYZ * (SIN ( T(I)) ) ** 3 * (COS ( P(J)) ) ** 2 ) 

DDYP = -2 * X * JY * SIN ( T(I)) * ( X * COS ( P(J)) + 

1 2* SIN (P(J)) * DXP ) + 2* X* SIN ( T(I)) * COS ( P(J)) 

1 * ( 6 * KY * (SIN ( T(I)) ) ** 2 * (SIN ( P(J)) ) ** 2 + 

1 KXY * (SIN ( T(I)) ) ** 2 * (COS ( P(J)) ) ** 2 - 2 * KXY * 

1 (SIN (T(I)) ) **2 * (SIN(P(J)) )**2 + KYZ* (COS(T(I)) )**2 ) 

1 - 2 * DXP * SIN ( T(I)) * SIN ( P (J)) * ( 2 * KY * 

1 (SIN ( T(I)) ) ** 2 * (SIN ( P(J)) ) ** 2 + KXY * 

1 (SIN (T(I)) ) **2 *(COS (P(J)) ) **2 + KYZ* (COS (T(I)) ) **2 ) 

1 -2 * SIN ( T(I)) * COS ( P(J)) * ( 15 * LY * 

1 (SIN ( T(I)) ) ** 4 * (SIN ( P(J)) ) ** 4 + LXY * 

1 (SIN ( T(I)) ) ·**4 * (COS ( P(J)) ) **4 - 4 * LXY * 

1 (SIN ( T(I)) ) ** 4 * (SIN ( P(J)) ) **2 * 

1 (COS ( P(J)) ) ** 2 + 6 * LYX* (SIN ( T(I)) ) ** 4 * 

1 (SIN ( P(J)) ) **2 * (COS ( P(J)) ) **2 - 4 * LYX * 

1 (SIN (T(I)) )**4* (SIN (P(J)) )**4 + 6* LYZ* (SIN(T(I)) )**2* 

1 (COS ( T(I)) )**2 * (SIN (P(J)) )** 2 + LZY * (COS(T(I)) )**4 

1 + LXYZ* (SIN (T(I)) )**2 *(COS(T(I)) )**2 * (COS(P(J)) )**2 -

1 2* LXYZ* (SIN (T(I)) )**2 *(COS(T(I)) )**2 *(SIN(P(J)) )**2 ) 

DDZT = 2 * X * JZ * ( X * SIN ( T(I)) -

1 2* COS ( T(I)) * DXT ) + 2* X* SIN ( T(I)) * 
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1 (-6 * KZ * (COS ( T(I)) ) ** 2 + KXZ * (COS ( P(J)) ) **2 * 

1 ( 2 * (COS ( T(I)) ) ** 2 - (SIN ( T(I)) ) ** 2 ) + KYZ * 

1 (SIN (P(J)) )**2 *(2* (COS (T(I)) )**2 - (SIN( T(I)) )**2) ) 

1 + 2 * DXT * COS ( T(I)) * ( 2 * KZ * (COS ( T(I)) ) **2 

1 + KXZ * (SIN ( T(I)) ) ** 2 * (COS ( P(J)) ) ** 2 + 

1 KYZ * (SIN (T(I)) ) ** 2 * (SIN (P(J)) ) **2 ) 

1 -2 * SIN ( T(I)) * ( -15 * LZ * (COS ( T(I))) **4 + LXZ * 

1 (SIN (T(I)) ) **2 *(COS (P(J)) ) **4 * (4* (COS (T(I)) ) **2 

1 - (SIN ( T(I)) )**2 ) + LYZ* (SIN(T(I)) )**2 * (SIN(P(J)) )**4 

1 * (4* (COS ( T(I)) ) **2 - (SIN ( T(I)) ) **2 ) + 2 * LZX * 

1 (COS ( T(I)) ) **2 * (COS ( P(J)) ) **2 *( 2*(COS(T(I)) )**2 

1 - 3* (SIN ( T(I)) ) ** 2 ) + 2* LZY * (SIN ( P(J)) ) **2 * 

1 (COS(T(I)) )**2 *(2 *(COS (T(I)) )**2 - 3* (SIN (T(I)) )**2 ) 

1 + LXYZ *(SIN (T(I)) ) **2 *(COS (P(J)) )**2 *(SIN (P(J)) )**2 

1 * ( 4* (COS ( T(I)) ) ** 2 - (SIN ( T(I)) ) ** 2 )) 

DDZP = -4 * X * JZ * COS ( T(I)) 

1 * DXP + 4* X* (SIN(T(I)) )** 2 *COS (T(I)) * SIN (P(J)) 

1 * COS ( P(J)) * ( KYZ - KXZ ) + 2 * DXP * COS ( T(I)) * 

1 (2* KZ * (COS ( T(I)) ) ** 2 + KXZ * (SIN ( T(I)) ) ** 2 * 

1 -(COS ( P(J)) ) **2 + KYZ * (SIN ( T(I)) ) **2 ) * 

1 (SIN ( P(J)) **2 ) - 2 * (SIN ( T(I)) )** 2 * COS ( T(I)) * 

1 SIN ( P(J)) * COS ( P(J)) * ( -4 * LXZ * 

1 (SIN (T(I)) )**2 *(COS (P(J)) )**2 + 4* LYZ* (SIN (T(I)) )**2 

1 * (SIN ( P(J)) )**2 - 4* LZX * (COS ( T(I)) )** 2 + 4* LZY * 

1 (COS ( T(I)) ) ** 2 - 2 * LXYZ * (SIN ( T(I)) ) ** 2 * 

1 ((COS ( P(J)) ) **2 - ( SIN ( P(J)) ) **2 ) ) 

C Derivatives of (Theta)s and (Phi)s 

DTST = ( DZ * ( DY * DDYT + DX * DDXT) 

1 - ( DX **2 + DY **2 ) * DDZT ) / 

1 ( SQRT( DX **2 + DY **2) * ( DX **2 + 

1 DY **2 + DZ **2 ) ) 

DTSP = ( DZ * ( DY * DDYP + DX * DDXP) 

1 - ( DX **2 + DY **2 ) * DDZP ) / 

1 ( SQRT( DX **2 + DY **2) * ( DX **2 + 
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1 DY **2 + DZ **2 ) ) 

DPST = ( DX * DDYT - DY * DDXT ) / ( DX **2 + DY **2) 

DPSP = ( DX* DDYP - DY * DDXP ) / ( DX **2 + DY **2) 

RJ = DTST * DPSP - DTSP * DPST 

TS =ATAN(( sqrt(DX **2 + DY **2)) / DZ) 

A = (SIN ( TS ) * RJ ) / SIN ( T(I) ) 

WRITE (*,*) ABS(l/A) 

IF ( MODE .EQ. 1) THEN 

ASl = ABS(l/A) 

AS(I,J) = ASl 

ELSEIF ( MODE .EQ. 2) THEN 

AQSl = ABS(1/A) 
AQS(I,J) = AQSl 

ELSEIF ( MODE .EQ. 3) THEN 

AQLl = ABS(l/A) 

AQL(I,J) = AQLl 

ELSEIF (MODE .EQ. 0) THEN 

GO TO 50 

ELSE 

GO TO 100 

ENDIF 

CONTINUE 

GO TO 35 
WRITE (6,55) 

55 FORMAT(lX,'Phi',3X,'Theta',8X,'Shear',15X,'Q.Shear',17X,'Q.Long.') 

DO 60 J = 1,46 

DO 60 I = 1,45 
THETA = (T(I)*180)/3.14 

PHI = (P(J)*180)/3.14 

WRITE (6,80) PHI,THETA,AS(I,J),AQS(I,J),AQL(I,J) 

60 CONTINUE 

80 FORMAT ( lX,F3.0,4X,F3.0,6X,Fll.5,8X,Fll.5,llX,Fll.5) 

100 STOP 

END 
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