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1 

INTRODUCTION 

Graph theory is a subject of study Slnce 1736 

when Euler solved the famous Kbnigsberg bridge problem. It has a 

wide variety of applications in different branches of science, 

engineering and social science as described in [1], [3], [5], 

I 6 ), I 9 ) I etc. 

rl'he concept of 

complete graph and the 

graphical formulation of 

triangle, the smallest non-trivial 

smallest cycle, has been used in the 

well-known theorems such as Ramsey 

Lheorem, Friendship theorem and Kirkman's schoolgirl problem. 

'l'he concept of complementation is also an equally interesting 

and beautiful concept in Graph theory. These are the two maln 

characters interlinking most of the results in this thesis. 



1.1 DEFINITIONS AND PRELIMINARIES 

In this section we give some preliminary ideas 

and definitions, some of which are new. We follow [4] and [8] 

for notations and terminology not given here. 

We consider finite undirected graphs without loops and 

multiple edges. By a graph G = G(p,q) = G(V,E), we generally 

mean a graph of order p = peG) and size q = q(G) with vertex set 

V = V(G) and edge set E = E(G). <8> = <S>G denote the subgraph 

of G induced by 8 ~ V(G). By writing uv, we mean an edge joining 

the vertices are u and v. 

Definition 1.1 The distance 

vertices u and v in a graph G is 

d(u,v) = dG(u,v) between two 

the length of the shortest u-v 

path, the eccentricity ecc(u) = eccG(u) of a vertex u is the 

distance to a vertex farthest from it. The diameter diam(G) and 

lhe radius rad(G) are respectively the maximum and minimum of 

the eccentricities of vertices in G. Vertices u and v in a graph 

G with ecc(u) = diam(G) and ecc(v) = rad(G) are respectively 

called diametral vertex and central vertex. Two vertices u and v 

with d(u,v) = diam(G) are called antipodal vertices. Set of all 

central vertices in a graph G is called the centre of G. A graph 

G is said to be self-centered if each of its vertices is a 

central vertex, that is, if diameter and radius are equal. 

Definition 1.2 A vertex u in a graph G is said to be a 

neighbour of another vertex v if they are adjacent. The set N(u) 

of neighbours of u is called the neighbourhood of u, the set 

N[u) = ( u I U N(u) is the closed neighbourhood and the set E(u) 
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is the set of all edges incident at u is the edge neighbourhood. 

A subset D of V(G) is said to be a dominating set if every 

vertex of G is either in D or is adjacent to some vertex in D. 

The minimum of the cardinalities of the dominating sets in G 1S 

called the domination number of G and is denoted by }(G). 

Definition 1.3 Two graphs are said to be homeomorphic if 

both can be obtained from the same graph by a sequence of 

Bubdivisions of edges. An isomorphism between two graphs is a 

bijection between the vertex sets which preserves adjacency. An 

automorphism of a graph G 1S an isomorphism of G onto itself. 

Definition 1.4 The complement G of a graph G has V(G) as 

jLs vertex set, and two vertices are adjacent in G if and only 

if they are not adjacent in G. A graph is self-complementary if 

it is isomorphic to its complement. If G is self-complementary, 

an isomorphism between G and G is called a complementing 

permutation and the set of all complementing permutations of G 

js denoted by 8(G). A vertex in a self-complementary graph is 

said to be a fixed-vertex if there is a complementing 

permutation 0 of G that maps the vertex onto itself. The set of 

all fixed vertices of G is denoted by F(G). The set of all 

edges, in self-complementary graph G, such that there exists a 

complementing permutation 0 mapping one of its end-vertices onto 

the other is denoted by Z(G). 

Definition 1.5 Two vertices (edges) in a graph are said 

to be similar if there is an automorphism that maps one of the 

vertices (edges) onto the other. A graph G is vertex-symmetric 

(edge-symmetric) if every pair of vertices (edges) are similar. 
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))efinition 1.6 A graph G of order p is strongly regular 

with parameters (p,r,A,~) if it is regular of degree r, any two 

adjacent vertices have precisely A common neighbors and any two 

non-adjacent vertices have precisely ~ common neighbors. 

))efinition 1.7 The join G + H of two graphs G and H has 

vertex set V(G) U V(H) and edge set 

E(G+H) = E(G) U E(H) U {uv / u e V(G), v e V(H)}. The cartesian 

product G x H has vertex set V(G) x V(H) and two vertices 

U = (u
1
,u

Z
) and v = (v

1
,v

Z
) are adjacent whenever [ u = V 

1 1 
and 

u v e E(H) ] or [ u ... v and u v e E(G) ]. The composition or 
? Z Z Z 1 1 

lexicographic product G(H) also has vertex set V(G) x V(H) and 

two vertices u = (u
1
,u

Z
) and v = (v

1
,V

Z
) are adjacent whenever 

u
1

v
1 

e E(G) or [ u
1 

= v
1 

and uzv
z 

e E(H) ]. 

Definition 1.8 Let G be a graph and ~ = { H / u e V( G) } 
u 

be a family of graphs. The G-join G(~) of ~ is the graph with 

vertex set {(u,v) / u e V(G), v e V(H ) } and two 
u 

vertices 

u
1 

= u., and v v e E{H ). The S-join 
Co 1 Z u 

star join )is a special 

case of G-join when G 

1 

is a star K and ~ is a 
1, p 

family of p 

graphs each of which corresponds to a pendent vertex of the 

star. 

))efinition 1. 9 The neighbourhood graph N(G) of a graph G 

j~ the intersection graph of the collection of neighbourhoods in 

G. That is, the graph with vertex set same as that of G and two 

vertices are adjacent whenever they have a common neighbour in 

G. A graph is a neighbourhood graph if it is the neighbourhood 

grdph of some graph H. The antipodal graph Jl( G) of a graph G 
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also has vertex set V(G) and two vertices are adjacent if they 

are antipodal. A graph G is an antipodal graph if it is the 

antipodal graph of some graph H and is self-antipodal if it is 

the antipodal graph of itself. 

Definition 1.10 The S-antipodal graph * A (G) of a graph G 

has its vertex set the diametral vertices of G and two vertices 

are adjacent whenever they are antipodal. 

Definition 1.11 The number t(u) = tG(u) of triangles in a 

graph G containing a vertex u is called the triangle number of 

the vertex u. Triangle number t(e) of an edge is the number of 

triangles containing e. The number t(G) of triangles in a graph 

G is the triangle number of the graph. A vertex (an edge) is 

said to be triangle positive if its triangle number 1S non-zero. 

A graph is triangle positive if each of its edges is triangle 

positive. The set of all vertices with triangle number k(k-1~ in 

a self-complementary graph G of order 4k+1 is denoted by F(G). 

Definition 1.12 A connected graph without cut-vertices is 

2-connected. A graph G is dense if it is triangle positive, 

2-connected and of diameter two. A graph which 1S not 

2-connected is separable. 

Definition 1.13 A graph G is vertex triangle regular (VTR) 

(edge triangular regular (ETR» if all of its vertices (edges) 

have the same triangle number. In this case the common triangle 

number t(u) t(e» is called the vertex (edge) triangle number 

of the VTR (ETR) graph G. A graph is strongly vertex triangle 

regular (SVTR) (strongly edge triangle regular (SETR» if it is 

regular and VTR (ETR). 
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Definition 1.14 For a given positive integer p, let 

Cl 2' a be a sequence of integers where 
k 

... < a < 1'+1 Then the circulant graph C(p; a 
k -2- . 

is the graph on p vertices u (J , U 
1 ' 

... ... . .. , u 
p-1 

adjacent to each vertex u 
i±a.(modp) 

J 

The values 

jump s~zes. 

0 < a < a < 
1 2 

a ... ... . .. a
k

) 
1 ' 2 ' 

with vertex u 
1 

are called 

Definition 1.15 An isomorphic factorization of a graph G 

lS a partition of G into edge-disjoint isomorphic spanning 

subgraphs. A graph G ~s divisible by m if it can be facto red 

into m isomorphic graphs and is denoted by m/G. The set of 

graphs which occur as factors ln isomorphic factorizations of a 

graph G into exactly m factors is denoted by G/m. If H is a 

member of G/m, we write HIG. An isomorphism that maps between 

the factors in an isomorphic factorization is called factorizing 

permutation. 

1.2 BACKGROUND OF THE WORK 

Neighbourhood graphs were introduced and charact-

erized by Acharya and Varthak [11]. The neighbourhood graph of a 

graph G is the graph having the same vertex set as G with an 

edge joining two vertices if and only if they have a common 

neighbour in G. A graph H is said to be a neighbourhood graph if 

there is a graph G such that H is isomorphic to the neighbour-

hood graph N(G) of G. These graphs have also been studied under 

the name of 2-step graphs by Exoo and Harary [29] and Greenberg 

et al. [32]. Brigham and Dutton [15] analyzed these further 
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and studied the class of graphs G for which N(G) ~ K ,N(G) ~ G 

and N(G) ~ G. The following theorem is of interest to us. 

Theorem 1.1 ([15]) The following are equivalent for a 

graph G of order p ~ 3. 

(8) N(G) ~ K 
p 

(b) diam(G) ~ 2 and every edge of G is in a triangle 

and (c) l(G) ~ 3. o 

In [40], Koh and Sauer have defined a dense graph as a 

2-connected graph with diameter less than or equal to tw6 in 

which every edge is in a triangle. From theorem 1.1 and the 

definition of dense graphs, it follows that N( G) Il! K for every 
p 

dense graph G~ But this condition is not sufficient for G to be 

dense, since there exist non-dense graphs G with N( G) ~ K • 
p 

We 

have explored this class of graphs in [44]. Here we have renamed 

such graphs as S-graphs to avoid any possible confusion with an 

already existing concept of F-graphs [19]. 

Aravamudhan and Rajendran [12] have introduced the 

concept of antipodal graphs and characterized them. Antipodal 

graph of a graph G is the graph A(G) having the same vertex set 

as G with an edge joining two vertices if and only if· the 

distance between them in G is the diameter of G. A graph is 

antipodal if it is the antipodal graph of some graph. They 

obtained the conditions for A(G) = G, A(G) = G, etc. and proved 

that A(G) ~~ for any graph G ~ K. These are also referred in 
p 

the survey [16]. Acharya and Acharya [10] have studied self-

antipodal graphs. 
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A graph G is said to be self-complementary if it is 

isomorphic to its complement. While proving some results on mean 

distances in self-complementary graphs of diameter three, Hendry 

138] considered the graph G*, whose vertices are those of G with 

eccentricity three and an edge joins two vertices of G* if and 

only if the di~tance between them in G is three. He proved that 

G* is bipartite. 

All these developments have motivated us to generalize 

the definition of G* to any graph G of diameter d and call it 

the S-antipodal graph A*(G) of G. 

A graph G of order p is said to be strongly regular 

with parameters (p,r,A,p) if it is regular of degree r, any two 

adjacent vertices have precisely A common neighbors and any two 

non-adjacent vertices have precisely 11 common neighbors. 

figure 1.1 
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This class of graphs is closely related to partial geometries 

and symmetric designs, and was studied extensively by many 

authors like Bose [14], Cameron [18], and Hubalt (39]. 

Lemma 1.2 ([18]) If G is strongly regular with parameters 

(p,r,X,p) then G is also strongly regular with parameters 

(p, p-r-1, p-2r+p-2, p-2r+X). o 

~ graph is said to be vertex-symmetric if every pair 

of its vertices are similar. This class of graphs had been 

studied under the name of 'vertex-transitive graphs' also. Edge-

symmetric graphs are also defined in similar terms. Circulant 

graphs are a special type of vertex-symmetric graphs. A 

circulant graph is given fig. 1.2. 

o 

3 __________ 5 

4 

The circulanl graph C(8; 1, 4) 

figure 1.2 
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Self-complementary graphs were introduced and its 

basic properties were studied independently and simultaneously 

by Ringel [56] and Sachs [62]. An immediate consequence of the 

definition is that, self-complementary graphs are of order 

p = 4k or p = 4k+1 for some natural number k. Also, self-

eomplementary graphs exists for all such integral orders. The 

order of a regular self-complementary graph is 4k+1 and it 

exists for every such integral orders. Problems concerning the 

degree sequences, hamiltonicity, factorization, length of cycles 

and chains of self-complementary graphs were studied by Camion 

[20], Clapham [22, 23, 25]' Rao [48, 50, 51, 52, 53]' etc. 

Clapham [24] introduced the concept of graphs self-

complementary 'in K -e. They exist for orders p ~ 4k+2 and 4k+3, 
11 

that is for which self-complementary graphs do not exist. These 

were independently studied by Das [27] in the name of almost 

self-complementary graphs. Enumeration of self-complementary 

graphs has been carried out by Read [55] and an asymptotic 

formula for the number of self-complementary graphs was given by 

Palmer [47] using Polya's enumeration theorem. 

Self-centered self-complementary graphs [17], regular 

self-complementary graphs [37, 54], vertex-symmetric self-

complementary graphs [54, 64] and strongly regular self-

complementary graphs [26, 54, 57, 59] are also interesting. It 

js to be noted that the strongly regular self-complementary 

(SRSC) graphs coincide with a class of graphs investigated by 

us, namely strongly edge triangle regular self-complementary 

(SETRSC) graphs. 



The diameter of a self-complementary graph is two or 

three and that of a regular self-complementary graph lS two. A 

regular self-complementary graph will be self-centered also. If 

G is self-complementary, isomorphisms between G and G are 

nothing but permutations of V<G) and are called complementing 

permutations of G. C(G) denotes the set of all such 

permutations. Ringel [561 and Sachs [62] proved that the length 

of a cycle of a complementing permutation is a multiple of four 

except exactly one of unit length when p is odd. A gelf-

complementary graph may have more than one complementing 

permutation and non-isomorphic self-complementary graphs may 

have same complementing permutation (see fig. 1.3) 

5 

2<r--\ ---44 
(1234)(5) 

(2453)(1) 

1 

(1234)(5) 

(2453)(1) 

3 

Self-complementary graphs and complementing permutations 

figure 1.~ 

If there are more than one complementing permutation for a 

self-complementary graph, then the cycle structure of them need 

not be the same. In this connection, Kotzig asked ( problem 2, 

1411 ) " Is it true that, for every regular self-complementary 
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graph G, there is at least one complementing permutation 0 such 

that, except for the cycle of length one, every cycle of 0 is of 

length exactly four ? .. . . Hartsfield [37] answered it negatively 

by giving a regular self-complementary graph (fig. 1.+) each of 

whose complementing permutation include a cycle of length eight. 

A vertex u in a self-complementary graph is said to be 

fixed-vertex if o(u) = u for some complementing permutation' 0. 

Ringel and Sachs proved that for each ~ E C(G), there exists a 

unique fixed vertex if G is of order p = 4k+1 and none if G is 

of order 4k. Three sets F(G), F(G) and Z(G) defined in 

connection with a regular self-complementary graph of order 

p = 4k+1 are: 

F(G) = { u E V(G) / 3 0 E C(G) such that o(u) = u }, 

F(G) = {'u E V(G) / t(u) = k(k-1) } 

and Z(G) = { uv E E(G) / 3 0 E C(G) such that o(u) = v } 

1 

12 10 

A self-oomplementary graph whose complementing 

permutations always include a cycle of length eight 

o • ( 1 ) ( 2 3 4 5 ) ( 6 7 B 9 10 11 12 13 ) 

figure 1.4 



13 

Kotzig [41] observed that F(G) !;;; F(G) for every 

regular self-complementary graph and conjectured that: 

(1) A self-complementary graph is strongly regular if and 

only if F(G) = V(G) and Z(G) = E(G). 

(2) F(G) = F(G) for every regular self-complementary graph. 

Ruiz [59] has disproved the first conjecture by giving 

a regular self-complementary graph G (fig. 1.5) with F(G) = V(G) 

and Z(G) = E(G) but is not strongly regular. Rao [54] also has 

independently disproved the same. Along with the first, he has 

disproved the second by constructing counterexamples. We 

observed some mistakes in these. Rao has characterized the set 

F(G) also. 

1 

A self-complementary graph with f'(G) = V(G) and Z(G) = E(G) 
but not strongly regular 

o • ( 1 2 3 4 ) ( 5 6 7 B ) ( 9 10 11 12 ) ( 13 ) 

figure 1.5 
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Hence, to study more on this conjecture, we have first 

considered the idea of tz-iangle number, the number of triangles 

in a graph containing a vertex or an edge. 

'J'he first result, 1n our belief, on the triangle 

number 1S the following. 

Theorem 1.3 (Goodman [31]) For any graph G of order p, 

UG) + t(G) , ( 

k(k-l) (k-2) 
3 

2k(k-l) (4k+1) 
3 

2k(k+1)(4k+1) 
3 

when p = 2k 

when p = 4k+1 

when p = 4k+3 

for some natural number k, where t(G) and t(G) denote the number 

triangles in G and G respectively o 

Some other significant results in this direction are: 

Theorem 1.4 ( Lorden [42] ) For any graph G on p vertices 

t(G) + t(G) = ( p ) - ~ ~ d(u)(p-d(u)-l) 
3 uEV( G) 

where d(u) 

is the degree of u. 0 

Theorem 1.5 ( Clapham [21]) If G is a self-complementary 

graph of order p, then 

UG) '. { 

2k(k-l) (2k-l) 
3 

k(k-l) (4k+l) 
3 

when p = 4k 

when p = 4k+1 
o 
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Theorem 1.6 ( Rao (49) ) If G is a self-complementary graph 

of order p, then 

t (G) S { 

k(k-l) (8k-l) 
3 

when p = 4k 

when p = 4k+1. 

Two other interesting results concerning the range of 

number of triangles in self-complementary graphs given 1n [49] 

are: 

Theorem 1.7 Let t be an integer. There is a self-

complementary graph G of order 4k with t(G) = t if and only if t 

is even and ~ k(k-1)(2k-1) s t s ~ k(k-1)(8k-1). 
o 

Theorem 1.8 Let t be an integer. There is a self-

complementary graph G of order 4k+1 with t (G) = t if and only 

if 1 k(k-l) (4k+l) t {2~} 1 unless k = 2 and :3 s s + - k(k-l) (8k-l) 
3 

t E: { 9, 12, 13 } or k .... 3 and t E { 33, 41, 49, 54, 57 } . 0 

Even though the work is not in our lines, it seems 

worth mention the concept of triangle graphs introduced by Egawa 

and Ramos [28]. They defined the triangle graph R(G) of a graph 

G as the graph whose vertices are the triangles in G and two 

vertices are adjacent if the corresponding triangles have a 

common edge in G. 

The concept of G-join was introduced by Sabidussi [61) 

and was also studied by Ruiz [58). The following theorem of Ruiz 

is interesting. 

o 
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'l'heorem 1.9 Let G be a self-complementary graph with 

complementing permutation a and let ';f = { H I U E V( G) } be 
u 

a 

family of graphs such that H = H 
a( u) u 

for all U E V( G) • Then 

the G-join G(';f) is also self-complementary. o 

Remark 1.10 It is to be noted that the G-join is not only 

a generalization of composition, introduced by Harary [34], but 

also of the join [4, 8] and sequential join [8] of graphs. 

]f G is a self-complementary graph of order p, then G 

and G form a factorization of K into two isomorphic factors. 
p 

Harary, Robinson and Wormald [35] investigated the existences of 

isomorphi~ factorization of K into m ~ 2 factors. To them, a ,. 
graph G is divisible by m if it can be factored into m 

isomorphic factors. They have proved the following theorems. 

Theorem 1.11 If m divides E(E-l) and 
2 

(m,p) = 1 or 

(m,p-1) = 1, then K is divisible by m, where (m,p) denotes the 
p 

g.c.d. of the integers m and p. 

Theorem 1.12 ( Divisibility theorem) 

is divisible by m if and only if m divides 

The complete 

p(E-l) 
2 

o 

graph K 
p 

o 

study of isomorphic factorization in which the factors 

have certain prescribed properties have also been attempted by 

many authors. These include, isomorphic factorization into 

factors with given diameter, isomorphic factorization of K 
p 

where each factor is regular of degree two etc. The details of 

such work are in [35] and [36]. 

We have thus given a survey of results relevant to the 

work reported in this thesis. The definitions and results given 

in this thesis are either generalizations, byproducts or have 
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been motivated by earlier results, especially on dense graphs, 

antipodal graphs, self-complementary graphs, circulants, 

sLrongly regular graphs and vertex-symmetric graphs. 

1.3 GIST OF THE THESIS 

The thesis consists of five chapters including this 

introductory chapter. 

In the second chapter, we first discuss S-graphs 

followed by S-antipodal graphs and S-antipodal graphs of 

S-graphs and trees. Some of the results in this chapter are: 

]) Let G be a connected graph of order p ~ 5 then the 

following are equivalent. 

( a ) G is an S-graph 

( L ) G has exactly one cut vertex and is adjacent to 

all other vertices and no block of G is isomorphic to K 
2 

( c ) G is an S-join of a family of graphs. 

2) If G is an S-graph, then the S-antipodal graph A~(G) is 

self-centered with diameter two and hence A*(A*(G» = A~(G). 

3) Let G be an S-graph of order p with k blocks. Then the 

following are equivalent. 

A*(G) is dense 

N( G) ;, K 
p-1 

either k ~ 3 or there is a block B in G such that 

each vertex in B\v has degree at most IV(B)I - 2, where v is the 

cut vertex of G. 
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4) Every graph without isolated vertices is the S-antipodal 

graph of a hamiltonian graph and every eulerian graph of even 

order is the S-antipodal graph of an eulerian graph. 

5) Characterizations of S-antipodal graphs of S-graphs and 

t..rees. 

In the third chapter, we derive expressions for the 

triangle number of a vertex in a graph, for vertices and edges 

under some graph operations and introduce the concepts of 

strongly vertex triangle regular graph and strongly edge 

Lriangle regular graph. We also deduce some results of Clapham 

(21], Kotzig (41], Lorden [42], Rao (54J, Rosenberg (57] and the 

well-known relationship between the parameters of a strongly 

regular graph. Some of the results proved in this chapter are : 

(6) t(u) + t(u) = (P-d~u)-l) - q + L d(u) 
vEN( u) 

for any vertex u in a (p,q) graph. 

(7) The triangle number of (u,v) in the composition G(H) 

of the graphs G(P1,ql) and H(P2,Q2) is given by 

t(u,v) = q d(u) + p d(u)d(v) + P2? t(u) 
? 2 

L(e) 
= { 

when u = 
t 

when 

v v E E( H), e 
122 

(9) G is strongly regular if and only if both G and G are 

strongly edge triangle regular. 

(10) A self-complementary graph is strongly edge triangle 

regular if and only if it is strongly regular. 
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]n the fourth chapter, we restrict our analysis to 

self-complementary graphs to initiate the discussion of a 

conjecture of Kotzig, namely F(G) - F(G) for a regular self­

complementary graph of order p, which is trivially true for 

p = 5. Rao has given counterexample to this in [54]. But, we 

have observed in [45] that the argument works only for p.= 9 

and hence the conjecture was made open for p = 4k+l, k ~ 3. 

Attempts in pursuance of this conjecture are mentioned in this 

chapter. Some of the observations included in the chapter are: 

(11) F(G) = { u € V(G)/ t(u) - t(u) } and hence F(G) - F(G) 

for every regular self-complementary graph G. 

(12) Composition of vertex symmetric self-complementary 

graphs with strongly vertex triangle regular self-complementary 

graphs which are not vertex-symmetric results in latter type of 

graphs. 

(13) Strongly vertex triangle regular self-complementary 

graphs which are not vertex-symmetric are counterexamples to the 

conjecture of Kotzig. 

(14) Graphs of the type stated in (12), of order p exists 

for p = 17 and p = 33 also and hence for p = 9a17~331p~ where 

a, ~, 1 and 6 are integers with at least one of the first 

is non-zero and is such that vertex-symmetric 

complementary graphs of order P1 exist. 

three 

self-

The main aim in the last chapter 1S to extend a 

construction of self-complementary graphs given by Gibbs [30] to 

obtain a construction of the factors in an isomorphic 
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factorization of complete graphs into more than two factors and 

lhereby obtain a simpler proof of a theorem by Harary et al. 

(35). The chapter ends with a concluding remark and suggestions 

for further study. 

As remarked earlier, , triangles ' and ' complementation 

which are the main characters of the thesis and old heroes of 

many branches of graph theory have been brought again to a 

common stage. We sincerely believe that reasonable success has 

been achieved in this attempt. 
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S-GRAPHS 
AND 

S-ANTIPODAL GRAPHS 

In this chapter we study a class of 

non-dense graphs called S-graphs, the concept of S-antipodal 

graphs and the S-antipodal graphs of S-graphs and trees. Some 

results of this chapter are in [44] 

2.1 S-GRAPHS 

Let G be a graph. A vertex u of G is triangle 

positive if its triangle number is non-zero. Triangle positive 

edge is similarly defined. If G is without isolated vertices and 

every edge is triangle positive, then every vertex will also be 

triangle positive. 

A graph in which every edge is triangle positive is 

called a triangle positive graph. 

Consiqer a graph G and its neighborhood graph N(G). 

Brigham and Dutton [15] have proved theorem 1.1, part of which 

in our terminology can be stated as "The neighborhood graph N(G) 

of a graph G of order p ~ 3 is K if and only if diam(G) ~ 2 and 
p 
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G is triangle positive N
• In (40], Koh and Sauer have defined 

dense graphs which, using our terms, reads as "a graph G of 

order p ~ 3 is dense if G is 2-connected, triangle positive and 

diam(G) ~ 2". It follows that the neighborhood graph of any 

dense graph of order p is K. But, there are'non-dense graphs G 
J1 

of order p such that N(G) ~ K. 
p 

Obviously, these are the 

connected separable triangle positive graphs whose diameter is 

at most two. In fact, the diameter of such graphs will always be 

two, since p(G) ~ 3. 

~ graph G is an S-graph if it is separable, triangle 

positive and diam(G) = 2. 

An S-graph 

figure 2.1 

Lemma 2.1 An S-graph G has exactly one cut-vertex and it 

is adjacent to all other vertices. 
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Proof: Let G be an S-graph. Existence of a cut-vertex 

follows from the definition. If G has more than one cut-vertex, 

we could find a block B of G containing two or more cut-vertices 

of G. Let u and v be two distinct cut-vertices in the block B 

and let A and C be two distinct blocks of G such that u ( V(A) 

and v E V(C). Consider any x E V(A\u) and y E V(C\v). Then each 

path joining x and y contains u and v. So d(x,y) ~ 3 which is 

impossible. Hence G has exactly one cut-vertex. 

Now, let v be the cut-vertex of G and u be a vertex not 

adjacent to v. Then d(u,v) ~ 2. Let B be the block of G 

containing u and let w c V( G\B). Then every path joining u and w 

cuntains the vertex v and hence d(u,w) ~ 3. But diam(G) = 2. • 

Remark 2.2: By definition, an S-graph doesn·t have a 

block isomorphic to K2 and hence these graphs have at least five 

vertices. 

Uecall that, the S-join ( star join G = S(<;f) of a 

family <;f of p-l non-trivial graphs obtained by replacing each 

pendent vertex u
i 

of the star K 
1, p 

by 

G , G , ......... , G } is a family of p non-trivial connected 
2 3 p 

graphs and joining each vertex of G
i 

to the central vertex U
o 

of 

the star. 

Theorem 2.3 Let G be a connected graph of order p ~ 5. 

Then the following are equivalent. 

(a) G is an S-graph. 

(b) G has exactly one cut-vertex which is adjacent to all 

other vertices. 
non-h·,v,·a.1 coone.d.ed 

G is the S-join of a family of two or moreAgraphs. and 
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Proof: Consider a connected graph G of order p ~ 5. 

(a) ~ (b) By lemma 2.1. 

Let v be the cut-vertex and consider the family 

~ of the components of G\v. Since G has no member isomorphic to 

K , no member of ~ is trivial and obviously G is the S-join of ~. 
7. 

Let G be the S-join of a family ~ of two or 

more non-trivial connected graphs and v be the central vertex of 

the star. By definition of S-join, ecc(v) = 1, v is a common 

neighbor to any pair of vertices u and u' other than v and there 

exist at least one pair of non-adjacent vertices in G. Hence 

diam(G) = 2. Obviously, v is a cut vertex in G. Hence G is 

separable. since none of the members in ~ is trivial, for every 

edge e containing v there exists a vertex u which forms a 

triangle with e. For each edge not containing v, v is a common 

neighbor to its end vertices. So t(e) is non-zero for every edge 

e in G. Hence G is an S-graph. • 

Lemma 2.4 If G is an S-graph, then the domination number 

of G is three. 

Proof: Let G be an S-graph and v be its cut-vertex. Then 

y(G) ~ 3 by theorem 1.1. Since the cut vertex of G is adjacent 

to all other vertices, it will be an isolated vertex in G. SO it 

is in any dominating set of G. Now, consider two distinct blocks 

A and B of G and let u E V(A\v) and WE V(B\v). Then, in G, each 

vertex in V(G\A) will be adjacent to u and each vertex in V(G\B) 

will be adjacent to w. So { u, v, w } form a dominating set of 

G. Thus y(G) = 3. • 
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lt is clear that S-graphs are extremal for the 

inequality in theorem 1.1. Then the following question arises: 

'~re S-graphs the only graphs satisfying both N(G) ~ K and 
p 

}(C) = 3 ?, The answer is negative, as there are other graphs 

H with }(R) ~ 3. One such graph is the wheel H=W =K +C 
6 1 S 

given in fig. 2.2. For it R = K
1
U CS and }(R) = 3. 

u 

u v 

H 

the wheel on six vertices and its complement 

figure 2.2 

Hemark 2.5: It~to be noted that the friendship graphs 

I.e. t.l) are .the simplest S-graphs. 

2.2 S-ANTIPODAL GRAPHS 

S-antipodal graph of a graph G is the graph A*(G) 

whose vertices are those of G with maximum eccentricity and two 

vertices are adjacent if their distance in G is maximum. A graph 

G is S-antipodal if it is the S-antipodal graph of some graph H. 

Remark 2.6 A*(G) may be disconnected. 
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Lemma 2.7 Let G be any graph, A(C) be its antipodal 

graph and A*(G) its S-antipodal graph. Then 

(b) V(A*{G)) = V(G) if and only if G is self-centered. 

(c) A*(G) = A(G) if and only if G is self-centered. 

Proof: 

q UV E E( A (G) ) 

Conversely, 

llV E E(A(G)) .. d (u,v) = diam(G) 
G 

{ ecc (u) = ecc (v) = diam(G) 
G G 

and dG(u v) = diam G) 

(b) V(A*(G)) - V(G) .. eccG(u) = diam(G) for every u E V(G) 

* G is self-centered. 

Conversely, 

G is self-centered .. ecc (u) = diam(G) for every u E V(G) 
G 

.. U E V(A*(G)) for every u E V(G) 

.. V(A*(G)) = V(G) 

(c) Follows from (a), (b) and the fact that V(A*(G)) = V(G) • 

Lemma 2.8 If G is K or K * , then A (G) Q( K 
p p p 

• 

Proof: In both cases, G is self-centered and hence 

V(A*(G)) = V(G). When G Q( K 
p 

diam(G) = 1 and each pair of 



vertices are at a distance of one. So A*(G) ~ K 
Jl 
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When G ~ K, 
p 

diam(G) = 00 and hence d(u,v) = 00 for every pair of vertices. So 

Lemma 2.9 Let G be a connected graph of diameter d. Then 

E(A*(G» = E( Gd
-

1 
) if and only if d ~ 2. 

Proof: Let G be a connected graph of diameter d. 

When d = 1, A*(G) = G by lemma 2.8. Thus the condition 

is necessary. 

Conversely, let diam(G) ~ 2 and uve E(A*(G». Then 

adjacent 

In Gd
-

1 by its definition. So uv e E( Gd
-

1 
). On the other hand 

j£ uv e E( Gd
-

1
), then dG(u,v) ~ d. But dG(u,v) = d. Hence 

ecc (u) = ecc (v) = d. Thus u,v e V(A*(G» and uve E(A*(G» •• 
G . G 

Theorem 2.10 E( A* (G» ~ E(C) if and on1 y if diam (G) ~ 2 

and equality holds if and only if either diam(G) = 2 or G is 

disconnected and every component of it is complete. 

Proof: E( Gd
-

1 
) ~ E(C) since E(G) ~ E(Gd

-
1
). Hence by 

lemma 2.9, E(A*(G» ~ E(C) if diam(G) ~ 2. 

Conversely, if diam(G) = 1, then E( A* (G» = E( G) • 

Hence diam(G) ~ 2 is necessary. 

~or the equality, the necessity of diam(G) ~ 2 follows 

from lemma 2.8. 

Now, let G be a connected graph of diameter d ~ 3. 

Then there exist at least one pair I u, v I of vertices in G 

with dG(u,v) = 2. These vertices will not be adjacent in A*(G) 
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even if they are in V(A*(G». But they will be adjacent in G. 

'rhus E( A* (G» does not contain E(G) when G is connected and 

diam(G) ~ 3. 

Let G be disconnected amI { u, v be a pair of 

non-adjacent vertices in one of the components. Then d (u,v) < (l) 
G 

while diam(G) =(l). So uvrt. E(A)\.(G». But uv E E(G). Hence 

E(A*(~» does not contains E(G) if there is a component of G 

which is not complete. Hence the conditions for equality. _ 

Since A*(G) and A(G) are same if G is self-centered, 

we can deduce the following properties of A*(G) from that of 

A(G) given by Aravamudhan and Rajendran [12]. 

Property 2.11 A*(G) is complete k-partite if G is 

disconnected with k components. o 

Property 2.12 A*(G) = G if and only if G ~ K 0 
p 

Property 2.13 A*(G) = G if and only if G is self-centered 

of diameter 2 or G is disconnected and each component of G is 

complete. 

Theorem 2.14 A*(G) ~ G if either G ~ K ,an odd cycle or 
p 

a self-complementary graph of diameter two. 

Proof: We have seen that A*(G) = G if G ~ K 
p 

u 

Now, let G be an odd cycle of length 2n+1. Then 

diam(G) c n. For every vertex u, there are exactly two vertices 

at a distance of n from it. Hence the degree of u in A*(G) will 

be 2 and A*(G) will be connected also. Hence A*(G) will also be 

a cycle of length 2n+1. 
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When G is a self-complementary graph of diameter 2, 

the statement follows from property 2.13, since every such graph 

jg self-centered. • 
Corollary 2.15 

then A~(G) = G .~ G. 

If G is a regular self-complementary graph, 

o 

Theorem 2.16 A*(G) = A*(~) if and only if G is either 

complete or totally disconnected. 

Proof: * * - -Let A (G)= A (G). Then exactly one of G and G is 

complete. Because otherwise, by theorem 2.10, we have 

diam(G) ~ 2 .. E(A*(~)) £; E(G). 

Hut, = by hypothesis and this set 

simultaneously belongs to both E(G) and E(~), which is a 

contradiction. Thus, either G or G is K • ~, 

Converse is obvious by lemma 2.8. 

Corollary 2.17 A*(G) ~ A*(~) if G is either K or K 
" p 

o 

Theorem 2.18 Every graph without isolated vertices is 

the S-antipodal graph of a hamiltonian graph of diameter two. 

Proof: Let G be a graph of order p without isolated 

vertices. Consider the graph H . Then 
p 

(1) diameter of H is two and A~(H) = G 

and (?) H is Hamiltonian. 

Proof of (1): Since G is without isolated vertices, for every 

v~rtex u in G, there is a vertex v in G adjacent to it. So u and 

v are not adjacent in G and hence in H. Thus, for every u E V(G) 
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there exists a v E V(G) such that d (u,v) ~ 2. Hence ecc (u) ~ 2 
H H 

for every u E V( G) • But each vertex u' in K is a common ,. 
neighbour to every pair of vertices in H. So d ( u, v) ;s; 2 for 

11 

every pair u, v E V( G) • Every u' E V(K ) is adjacent to all 
p 

other vertices in H. So ecc (u') = 1 for every u' E V(K). Hence 
11 p 

diam(H) = 2 and V(A*(H») = V(G) and hence E(A*(H» = E(li) by 

lheorem 2.10 and E(H) = E(G) by definitions of complement and H. 

So A*(H) = G. 

Proof of (2) Label the vertices of G by 1, 2, 

lhoseofK by l',2',·········,p';then 11'22'··· 
p 

spanning cycl~ of H. 

p and 

pp'l is a 

• 
Theorem 2.19 A graph is S-antipodal if and only if it has 

no isolated vertices. 

Proof: Let G be an S-antipodal graph and u E V(G). Then 

there exists a graph H such that A*(H) = G and u E V(H) with 

ecc(u) = diam(ff). So, there should be a vertex vin H with 

d(u,v) = diam(H) and hence. Thus u is not an isolated vertex 

in G. 

Converse follows from theorem 2.18. 

Theorem 2.20 Every eulerian graph of even order 1S the 

S-antipodal graph of an eulerian graph. 

Proof: Let G be an eulerian graph of even order p. Being 

Eulerian, the degree d (u) 
G 

is even for every vertex u. But 

d (u) + d-G(u) = p-1, odd. So d-(u) is odd. Consider the grap.h 
G G 

H = G + K • Clearly, degree of every vertex in H is even and 
1 

hence H is eulerian. Now, consider a vertex u in G. Since G is 

• 
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eulerian and hence connected, there will be a vertex v in ~ Such 

that u and v are adjacent in G and hence d (u,v) ~ 2. For every 
H 

w e V(G) the vertex of K , say e, is a common neighbour to u and 
1 

w in H. So dH(u,w) ~ 2 and d(8,w) = 1 for every we V(G). Hence 

Hence ecc (u) = 2 for every u e V(G) and eccH(e) = 1. Thus 
H 

V(A*(H» = V(G) and E(A*(H» = E(H) = E(G) by theorem 2.10. • 

Remark 2.21 The S-antipodal graph of an eulerian graph 

need not be eulerian. The following example illustrates this. 

G 

Eulerian graph along with ila non-eulerian S-anlipodei graph 

figure 2.3 

2.3 S-ANTIPODAL GRAPH OF S-GRAPHS 

Let G be an S-graph and v be its cut-vertex. 

Then diam(G) = 2 and v is adjacent to all other vertices. 

Hence ecc(v) = 1. Because of the separability of G, all other 

vertices are of eccentricity two. So V(A*(G» = V(G\v) and by 
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theorem 2.10, E(A*(G» = ECG). So A*(G) = G\v. Here we discuss 

some properties of A*(G) and obtain its characterization. 

1'heorem 2.22 Let G be an S-graph with k blocks and every 

* block of G is complete, then A (G) is a complete k-partite graph. 

Proof: Let G be an S-graph with each of its blocks are 

complete. Let v be the cut-vertex, B , B , B
3

, 
1 2 

blocks of G and v = V( B \ v) • 
I l ' 

i = 1, 2, k. 
k 

= 0 for every i and j, i~j and iV
t 

VI = V (A*(G». 

, B be 
k 

Since 

DI is complete in G, each <V > is totally disconnected 
1 

the 

each 

in 

G\V = A*(G). Obviously, G\V = A*(G), each vertex in VI is 

adjacent to all other vertices in V for every i and j, i~j. So 
J 

A*(G) is complete k-partite. _ 

Corollary 2.23 If G is an S-graph, then 

(a) A*(G) has a complete k-partite spanning subgraph, , 

(b) A*(G) is 2-connected. 

Proof: (a) Since the cut vertex v 1S adjacent to every 

other vertex in G, A*(G) = G\V has a complete k-partite subgraph 

since G is a subgraph of an S-graph whose every block is 

complete. 

Follows from (a). -
Theorem 2.24 If G is an S-graph, then A*(G) is self-

centered with diameter two. 

Proof: Let G be an S-graph and v be its cut-vertex. Then 

we have * -A (G) = G\ v. To prove that the eccentricity of any 

vertex in A*(G) is two. Let e*(u) and * d (u, w) respectively 

denote the eccentricity and distance in A*(G). Let u be any 
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vertex in A~(G) and B be the block of G in which u belongs. Then 

* d (u,w) = 1 for every W E V(G\B) since d (u,w) = 2 and 
G 

u and v 

being in distinct blocks of G. Also * d (u, w) ~ 2 for every 

W E V(B\v) since each vertex in V(G\B) is common neighbour to u 

and w in A*(G). Hence e*(u) ~ 2. Since G has no block isomorphic 

to K
2

, there exist at least one vertex w E V(B\v) adjacent to 

u in G. So this w is not adjacent to u in A*(G) and hence 

d*(u,w) ~ 2. Thus e*(u) ~ 2. • 
Theorem 2.25 Let G be an S-graph with cut-vertex v. Every 

edge of A*(G) is triangle positive if and only if either G has 

at least three blocks or there is a block B in G such that every 

vertex in B\v has degree at most IV(B)I - 2 in G. 

Proof: Let G be an S-graph and v be its cut-vertex. Then 

we Let t*(e) denote the triangle number of an 

edge e in A* (G) • 

Let G has at least three blocks. If the end vertices 

of an edge e in A*(G) are in distinct blocks of G, then every 

vertex in other blocks is common neighbour to them. So t*(e) 

> O. If both ends are 1n the same block of G, then also vertices 

in other blocks are common neighbours to them in A*(G). Thus 

t*(e) > 0 in this case also. 

If there are only two blocks and each vertex in B\v 

hdS degree at most IV(B)I - 2 in G, then for each u E V(B\v) 

there is a vertex w in V(B\v) not adjacent to u in G. Consider 

an edge e in A*(G) whose end vertices are in distinct blocks of 

G. There should be edges in A*(G) with one end coinciding with 

that of e, say u, and other end, say w, lying in the block 
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containing u. Then the other end of e is common neighbour to u 

and w. Thus there is a triangle in A*(G) containing e, since 

each vertex in a block of G is adjacent, in A*(G), to all other 

vertices in each of the remaining blocks. 

Conversely, suppose G has only two blocks Band Band 
1 2 

every edge of A*(G) is triangle positive. Let u E V(B \v) be 
1 1 

such that degree of u1 in G is IV(B1)1 - 1; i = 1, 2. Then the 

cdge u
1

u
2 

of A*(G) fails to be in a triangle since none of the 

vertices in is adjacent to u in A*(G), 
1 

i = 1, 2. 

Because, for a triangle containing the edge u u , either u has 
1 2 1 

n neighbour in B or u has a neighbour in B • 
1 2 2 • 

Theorem 2.26 Let G be an S-graph of order p with k blocks. 

Then the following are equivalent 

and 

A*(G) is dense. 

N(A*(G»QlK 
p-l 

Either k ~ 3 or there is a block B in G such 

that each vertex in B\v has degree at most IV(B)I - 2, where v 

is the cut-vertex of G. 

Proof: Let G be an S-graph of order p with k blocks and 

v be its cut-vertex. We have A*(G) = ,(hv and diam(A*(G» = 2 by 

theorem 2.24. 

Follows from the definition of dense graph and 

theorem 1.1. 

Follows from theorems 1.1 and 2.25. 

Follows from corollary 2.23, theorems 2.24 and 

2.25 



2.4 S-ANTIPODAL GRAPHS OF TREES 

Here we discuss the properties of S-antipodal 

graphs of trees and characterize them. As usual, we call a tree 

unicentral or bicentral according as its centre is Kl or K
2

• In 

the latter case, the edge joining the central vertices is called 

the central edge. 

Lemma 2.27 Let T be a unicentral tree homeomorphic to a 

star having the centre same as that of the star. Then the 

S-antipodal graph A*(T) of T lS a complete graph. 

Proof: Let T be a tree satisfying the hypothesis. Then T 

has at least two longest tails, ( by a 'tail' we mean a path 

whose one end vertex is the centre and the other lS a pendent 

vertex of T ), because otherwise, T will be bicentral or have a 

different centre. Now, the vertices of A*(T) are precisely the 

pendent vertices of T corresponding to its longest tails and 

each pair of such vertices are at a distance of diam(T) 

Thus every pair of vertices are adjacent in A*(T). 

in T. 

• 
Lemma 2.28 The S-antipodal graph of a unicentral tree is 

either complete or complete multipartite. 

Proof: Let T be a tree. If T satisfies the hypothesis of 

lemma 2.27, then A*(T) is complete. Otherwise, define an 

. * equivalence relation on V(A (T» as: two vertices are equivalent 

jf the path in T joining them does not contain the central 

vertex of T. Let SS··· ..... . l' 2' , Sk be the equivalence classes. 

'J'hen dr(u,v) < diam(T) for u, v E Si and dr(u,v) = diam(T) for 
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U € 5 and v E 5 , i ~ j. So the graph A*(T) 
1 j 

is complete 

k-parti te with partite sets 51' 52' ... • 
Lemma 2.29 5-antipodal graph of a bicentral tree is 

complete bipartite. 

Proof: Let T be a bicentral tree. Define an equivalence 

relation on V(A*(T) as: two vertices are equivalent if the path 

in T joining them does not contain the central edge of T. Then 

there are exactly two equivalence classes. For, if possible, 

consider any three distinct equivalence classes 51' 52 and 53. 

J.et u, be the vertex in 5
i 

nearest to an end-vertex of the 

central edge. Clearly u,'s are distinct for i = 1, 2 and 3, 

being the members of distinct equivalence classes. Then each of 

lhe U -U 
1 j 

paths, i, j = 1, 2, 3; i ~ j, in T contains the 

central edge. So, we can traverse through these paths so that 

any two of these paths have a common vertex before the central 

edge is reached. Without loss of generality let us assume that 

if these are not the paths, 

we can achieve this by re-labelling the vertices u
j 

have such 

a common vertex. Then the u
1
-u

2 
path does not contain the 

central edge. Thus the number of equivalence classes is at most 

lwo. The number of equivalence classes is one only if T has no 

longest path containing the central edge, but it is not so. 

Thus, there are exactly two equivalence classes. 

In A*(G), two vertices are adjacent if and only if 

they are in different equivalence classes, since every longest 

path of a tree contains the centre. Thus A*(G) is a complete 

bipartite graph. • 
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Theorem 2.30 A graph G is the S-antipodal graph of a tree 

T if and only if G is complete or complete multipartite. 

Proof: Necessary part follows from lemmas 2.27, 2.28 and 

2.29. 

Conversely, Let G be a complete graph of order p. Then 

G - A*(T) for a star T of order p+l. Now, let G be a complete 

k-partite graph and S l' S2' 
... 

Construct a tree T with V( T) 

join each vertex Ut' i = 1, 

vertex in Sj' The center of T 
k 

vertices are those in IV1S1. 

... Sk be its partite sets • 
k 

= { U 0' U 1 ' U } k U (IV1 S t) and 

2, ... ... . .. , k to Uo and to every 

is the vertex and diametral 

The diameter of T is four and 

d(u,v) = 4 if and only if they belong to different sets SI' 

Hence A*(T) = G. • 

A alar and ila S.anlipodal graph 

r i gu r e 2.4 
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3 

TRIANGLE NUMBER 
AND 

TRIANGLE REGULARITY 

This chapter focuses on the triangle number. 

An expression for t(u) + t(u) is derived and several known 

results including the well-known relationship between the 

parameters of a strongly regular graph and some other results 

(Ire deduced. It is an important observation that the expression 

f~r t(G) + t(G) given by Lorden [42] follows from ours. 

Expressions for the triangle number of vertices and edges in the 

join, cartesian product and composition of graphs are also 

derived. Properties of strongly vertex triangle regular and 

~trongly edge triangle regular graphs are also discussed. Some 

of the results are in [45] and [46]. 

3.1 TRIANGLE NUMBER. 

'rhe triangl e number t ( u) of a vertex u in a graph 

G is the number of triangles in G containing u. Triangle number 

l(e) of an edge e, is defined similarly. The number of triangles 

in G is the triangle number of G, denoted by t(G). The triangle 

number of u in G will be denoted by t(u). Clearly, for a vertex 
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u, t(u) is the'size of the subgraph of G induced by the 

neighbourhood NG(U) of u, t(u) is the size of the subgraph of G 

induced by V(G)\NG(u], that is the number of non edges of G in 

lhe subgraph <V(G)\NG(u]> of G and t(e) is the number of common 

neighbors of the end vertices of e. The following lemma is an 

immediate consequence of these definitions. 

l,emma 3.1 Let G be a graph, then 

t ( u) 1 L t(e) for any u E V(G) = 2" cEE(u) 
, ........ (3.1) 

t (G) 1 L t (u) • = "3 ue:V( G) 
. ........ (3.2) 

Proof: (0) For each triangle containing the vertex u, 

two of its edges are incident at u. So each triangle contributes 

lwo to the sum L t(e). Hence L t(e) = 2 t(u). 
ee:E( u) ee:E( u) 

(h) Each triangle in G lS counted once at each of 

its vertices. So L t(u) = 3 t(G). • 
m::V(G) 

~long the lines of results by Goodman [311 and Lorden 

(42]' we have: 

Theorem 3.2 Let G be a (p,q)-graph and u e: V(G). Then 

t'u) + t(u) = (p-d~U)-l) - q + L d(v) 
ve:N( u) 

... (3.3) 

Proof: Let G be a (p,q)-graph and u be a vertex in it 

with degree d = d(u) and neighbourhood N = N(u). Also, let 

i = V(G)\N(u]. Then 1Nl = d,lil = p-d-1, t(u) is the number of 

edges in <N> and t(u) is the number of non-edges in <"N>. 

Now let D = L d(v) and b = 
vcN 

L.d(v). Then, 
VEN 
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J) + 0 + d = L d (v) + L_d (v) + d ( u) = L d( v) = 2q ...... ( 3.4) 
veN VEN VEV( G) 

The contribution to 0 by the d edges in G incident at u is d and 

hy the t(u) edges in <10 is 2t ( u) • So the number of edges in G 

with one end in N and the other end in N is 

D-d-2t(u) ········~(3.5) 

The number of edges in <"N> is (P-~-l) - t(u) and the contribu­

tion of these edges to 0 is 2 (1'-~-l) - 2 t(u). So the number of 

cdges in G with one end in N and other end in N is 

( 3.6) 

Obviously, the quantities given by (3.5) and (3.6) are equal and 

consequently we get 

t ( u) + t ( u) = ~ [ 2 (p-~ -1) + 0 - 0 - d ] 

= (P-~-l) + ~ [ 0 - (2q-D) ] by (3.4) 

'J'hus, 

t(u) + t(u) = (p-d~u)-l) - q + L d(v). 
VEN( u) • 

Corollary 3..3 If G is an r-regular graph of order p, 

then t(u) + t(u) = (P;l) - ~ r(p-r-l> for every UEV(G) • ... (3.7) 

Proof: Let G be an r-regular graph of order p. ~hen 

So q = ~pr and L d(v) = r2 and 
VEN( u) 

d(u) = r for every u E V(G). 

lhe result follows. • 
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Corollary 3.4 For every vertex u in a regular self-

complementary graph of order 4k+1, 

t(u) + t(u) = 2k(k-1) .- ...... (3.8) 

Proof: If G is a regular self-complementary graph of 

order p = 4k+1, then its regularity is 2k and size is k(4k+1). 

substituting these in (3.3) we get (3.8). 

We can also deduce the following known results. 

Corollary 3.5 ( Lorden (42] If G is a (p,q)-graph, then 

l(G) + t(G) = (~) - (p-1)q +! L (d(u)]2 
2 UEV( G) 

......... (3.9) 

Proof: t(G) + t(G) =! L (t(u)+t(u)] 
3 UEV( G) 

by (3.2) 

= 4 I [ (p-d(u)-1~(P-d(U)-2) - q + L d(v) ] 

VE:.N( u) 
uE V( G) 

= 4 L [ 
UEV(G) 

(p-1) (p-2) 
2 

= 
E (E-l) (E- 2 ) -~! 

3x2 3 . 2 

d(u) (d(U)] 2 
--(2p-3) + q + L d (v) ] 

vEN( u) 
2 2 

L d(u) + 1 L (d(u)]2 
3x2 

UEV( G) UEV(G) 

lS+ 1 L l L d ( v) ] 3 3 
uEV(G) vEN(u) 

• 

Thus, t(G) + ttG) = (~) - (p-1) q +! L (d(u)]2. • 
UEV(G) 

Corollary 3.6 ( Clapham (21] ) The number of triangles in 

a regular self-complementary graph of order 4k+1 is 

j k(k-l) (4k+l). 



3.2 TRIANGLE NUMBER AND SOME BINARY GRAPH OPERATIONS. 

Here we consider the composition, join and 

cartesian product of two graphs and derive expressions for the 

triangle number of vertices and edges in them. 

The composition F = G(H) of two graphs G and H has 

vertex set V(F) = { (u,v) / U E V(G), v E V(H) } and edge set 

E(F) = {(u,v)(u' ,v') /either UU'E E(G) or u = u' and VV'E E(H)}. 

This operation is discussed in [34] and [60]. 

Remark 3.10 G(H) can be obtained by replacing each vertex 

U
j 

of G by a copy of H and each edge u
j 

u
j 

of G by all the 

possible edges between the copies of H corresponding to the 

vertices u
j 

and u
j 

of G. 

graphs. 

Then the triangle number of a vertex (u,v) in G(H) is 

2 t(u,v) = t(v) + Q2d(u) + P2d(u)d(v) + p
2
t(u) ... (3.12) 

Proof: Consider two graphs G(P1,Q1)' and 

( tl, v) be a vertex in G( H). The tr iang les at (u, v) 

formed precisely in the following ways. 

H(P2,Q2) . 

in G( H) 

Let 

are 

1) A triangle at v in H is also a triangle at (u,v) in 

G(H). The number of such triangles at (u,v) is t(v). 

2) An edge in a copy of H corresponding to a neighbour of 

U in G forms a triangle at (u,v) in G(H). The number of such 

triangles is Q2d(u). 
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3) Each edge of H at v forms a triangle in G(H) with each 

of the vertices in the copy of H that corresponds to a neighbour 

of u in G. This contributes P2d(u)d(v) to t(u,v). 

and 4) Each triangle in G at u contributes triangles 

2 G(H) at (u,v). The number of triangles so formed is P2t(u). 

~ So, t(u,v) = t(v) + q2d(u) + P2d(u)d(v) + p~t(u). • 

Corollary 3.12 If there are tl triangles in G(p ,q ) 
1 1 

and 

t2 triangles in H(P2,q2). Then the number of triangles in 

F = G( H) is given by t (F) = Pl t 2 
3 

2P2qlq2 + P t + 
Z 1 

Proof: t (F) 
1 L L t(u,v) =1 

u~ V( G) VEV( H) 

1 L L [ l.(v)+ q d(u)+ p d(u)d(v) 2 ] = "3 +p t ( u) 
UEV( G) VEV( H) 2 z Z 

] 
L [ 3t (H) +qd(u)p + p d (u) 2q + p~t(u) ] = "3 

UEV( G) 2 Z Z 2 

1 [ P 1 t (H) + P2q Z2q l + 2Pzqz2ql + p~3t (G) ] = 1 

Thus t (F) = Pl t
Z 

::It + Pz 1 + 2 P2Q l q Z . • 

Theorem 3.13 Let G and H be graphs of order Pl and 

respectively. Then the triangle number of an edge e in G(H) 

{ p~t(el) + d ( V 1 ) + d ( V 2 ) when Ill;!! u 2 ' e = u u E E(G) 
t.( e) 1 1 2 

= 
l(e ) + P

Z
d(u l ) when u = u 

Z' 
e = v v E E( H) 

7. 1 Z 1 Z 

Proof: Let G and H be graphs of order P, and Pz 

respectively and e be an edge ln G(H) joining (u , v ) 
1 1 

and ( uz ' V z) • 
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Then u
1 

and u2 are adjacent in G and let e
1 

= 

'l'he triangles in G( H) containing the edge e are precisely of the 

following types: 

1) Since each vertex u in G is replaced by a copy of H in 

P t(e ) triangles in G(H). 
2 1 

Each edge incident at V 
1 

in the copy 

corresponding to u
1 

E V(G) form a triangle with (u
2
,v

2
) in 

containing e. Number of such triangles is d(v
1
). 

of H 

G(H) 

of H and 3) Similarly, the d(v
2

) edges at v
2 

in the copy 

~orresponding to u form d(v2 ) triangles in G(H) containing e. 
? 

Thus, the total number of triangles in G(H) containing 

Then v
1 

and v
2 

are adjacent vertices in the same copy 

of H. The triangles in G(H) containing e are precisely of the 

following types: 

1) The t(e
1

) triangles in the copy of H, where v V 
1 2 

and 2) Each vertex in the copy of H corresponding to u1 is 

adjacent to all vertices in the copies of H corresponding to the 

neighbors of u 1 in G. The number of such triangles formed in 

G(H) is P2 d (u 1 ) = P2d(u2). 

Thus t(e) = t(e
1

) + P2d(u1) in this case. • 
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The join G + H of two graphs G and H lS the graph with 

vertex set V(G+H) = V(G) U V(H) and edge set 

H(G+H) = E(G) U E(H) U { uv / U E V(G), v E V(H) }. 

Theorem 3.14 The triangle numbers of a vertex u and an 

edge e in the join G + H of the graphs G and H are given by 

t.(u) = { 

and t(e) = { 
Proof: 

lC(U) + dc(u)p(H) + q(H) 

LII(U) + dH(u)p(G) + q(G) 

tG(e)+p(H) when e E E(G) 

t (e)+p(G) 
11 

when e E E(H) 

when u E V( G) 

when u E V( H) 

dG(u)+dH(v) when e = uv with u E V( G) , v E V( H) • 

Let G and H be any two graphs and J be their join. 

Consider any vertex u in J. Then either u E V(G) or u E V(H). 

Let u E V( G). Then each triang le in G containing u is 

also a triangle in J containing u. In J, each vertex of G is 

adjacent to all vertices of H, and hence each edge of G forms 

p (H) triang les in J with the vertices of H. So there are 

p(H)dc(u) such triangles in J containing u due to the dG(u) 

edges of G incident at u. In J, each edge of H forms a triangle 

with u. Such q(H) triangles are there in J. 

Similarly we can derive the expression for tJ(u) when 

U E V( H) • 
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Now, let e be an edge in J. Then either e E E(G)UE(H) 

or e is an edge joining a vertex of G and a vertex of H. 

Let e E E(G). The t (e) triangles in G are triangles 
G 

in J, containing e, also. Each vertex of H is a common neighbour 

lo the end vertices of e in J. Such p(H) triangles are there in 

J containing e. These are the only triangles in J containing the 

edge e. Thus t (e) = t (e) + p(H). 
J G 

Similarly tJ(e) = tHee) + peG) when e E E(H) 

Let one of the end vertices, say u, of e be in G and 

the other, say v, be in H. In J, each edge incident at u in G 

forms a triangle with each of the vertices of H and each edge 

incident at v in H forms a triangle with each of the vertices of 

G. So, in J, every edge of G at u forms a triangle with v and 

every edge of H at v forms a triangle with u. Obviously both of 

these triangles contain the edge e. These are the only triangles 

containing e. Thus 

Corollary 3.15 The triangle number of the join of two 

graphs G and H is given by 

t<G+H) = t(G) + t(H) + p(G)q(H) + p(H)q(G). 

Proof: Let G and H be any two graphs. Then 

t( G+H) ~ t (u)+d (u)p(H)+q(H)+ ~ t (v)+d (V)P(G)+q(G)] 
'-' G G '-' H H 

UEV(G) VEV(H) 

= ~ [3t(G)+p(H)2q(G)+p(G)q(H)+3t(H)+p(G)2q(H)+p(H)q(G)] 

= t<G) + t(H) + p(G)q(H) + p(H)q(G). • 
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, 

The cartesian product G x H of two graphs G and H 

has vertex set V( GxH) = V( G) x V( H) and edge set E( GxH) = 

or v = v and U U EE( G) } 
1 Z 1 Z 

Remark 3.16 The cartesian product of G and H can be viewed 

a~ the graph obtained by replacing each vertex of G by a copy of 

H and joining the corresponding vertices in two copies of H at 

11 E V( G) and v E V( G) if and only if uv E E( G) . 

Theorem 3.17 The triangle number of a vertex (u,v) and an 

cage e in the cartesian product of two graphs G and H are given 

and tIe) = { 
t (e) 

11 

l (e) 
G 

when 

when 

e = (u,v )(u,v ) 
1 Z 

e = (U , v) (U , v) 
1 Z 

Proof: Let G and H be two graphs and their cartesian 

product be F. While constructing the cartesian product, the 

additional edges introduced between two copies of H correspond-

ing to two adjacent vertices of G form only a matching. Hence no 

new triangles are formed in F, except for the multiplicity due 

lo the replacement of a vertex in G by the p(H) vertices of H. 

Hence the expressions. • 
Corollary 3.18 For any two graphs G and H, the triangle 

number of G x H is p(G)t(H) + p(H)t(G). 

Proof: Follows from t(GxH) = ! L L [t ,(u)+t (v)]. 
3 U(V(G) VEV(H) G H 

• 



3.3 TRIANGLE NUMBER AND THE G-JOIN OF A FAMILY OF GRAPHS. 

Sabidussi [61] has introduced the concept of the 

G-join of a family of graphs and Ruiz [58] has studied this in 

connection with self-complementary graphs. This 1S also 

discussed by Golumbic [7]. 

Let G be a graph and ~ = { H / U E V( G) } be a family 
u 

of graphs, then the G-join of the family ~ is the graph J = G(~) 

with the vertex set { (u,v) / u E V(G), v E V(H ) } and edge set 
\I 

{ (u , v ) (u , v ) / either u = u
2
and v v E E( H ) or u u E E( G) }. 

1122 1 12 u 12 

We have observed the following properties of G-join. 

Lemma 3.19 Let G be a graph and ~ = { H / U E V(G)} be 
u 

(U , v ) 
2 2 

belong to 

the same component of the G-join J = G(~) if and only if u
1 

and 

112 belong to the same component of G. 

Proof: Let u
1 

and u
2 

belong to the same component of G. 

Then, we have a u
1
-u

2 
path, 

any v EV(H), 
, u

1 

sequence ( U V) ( U ' Vi) 

" " 1',' 

say u U ' U ' u' ... . ..... 
1 , 2 3 

u'u 
m 2 

in G. 

and Vi 
j 

E V( H,) , consider 
u 

j 

( u' , v' ) , 
m m 

For 

the 

~ach of the consecutive vertices in the sequences are adjacent 

in G(~) since the vertices corresponding to the first 

co-ordinates of the consecutive ordered pairs are adjacent in G. 

Thus there is a (u ,v )-(u ,v ) path in J and hence (u
1
'v,) and 

1 1 2 2 

(u ,v ) belong to the same component of G(~) 
G 2 
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component of G(~). Then there is a path (u ,v )(u' ,v' )(u' ,v') 
1 1 1 1 2 2 

... (u', v' ) (u ,v ) 
n n 2 2 

in G(~). If two of the symbols u , 
1 

u ' , u say u and u j , are identical, the 
n 2 i 

obtained by deleting all the vertices between (u 

(uj'V j ) including exactly one of them also 

(u
1
,v

1
)- (u

2
,v

2
) path. Because, if u = u = u, then 

i j 

hoods of ( u, V ) and (u, v ) from outside H 
1 j 

Repeat this process till we get a sequence 

(u ' v') 
7,' 2' 

... ... ( u' v') ( u v) in G ( ~ ) wit h 
, k' k' 2' 2 

are 
u 

(u ,v), 
1 1 

u' 
1 ' 

u' 
1 ' 

I 
U , 

2 

sequence 

1 ' vI and 

form a 

neighbour-

identical. 

(u ' v') 
l' 1 ' 

u' ... 
2 ' 

u~, u
2 

are all distinct. So the adjacencies between the 

consecutive vertices of the new path in G(~) lS due to the 

adjacencies of their first coordinates in G. Thus u1u~u; 

form a path in G and hence u
1 

and u
2 

belongs to the 

u'u 
k 2 

same 

c()mponent of G. • 

Theorem 3.20 Let G be a non-trivial graph of order p and ~ 

be a family of p graphs. Then G(~) is connected if and only if G 

jH connected. 

Proof: Consider a graph G and a family 

~ = { H I u E V(G) } of graphs. If G is a connected, by lemma 
u 

3.19, every pair of vertices of G(~) belongs to the same 

component of G(~). Hence G(~) connected. Similar arguement for 

lhe converse also. • 
Lemma 3.21 The G-join G(~) of a family ~ of graphs is 

complete if and only if G and each member of ~ is complete. 
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Proof: Let G and each member of ~ be complete. Consider 

lhe vertices 

u and u are 
1 2 

(u ,v) and 
1 1 

adjacent in G 

adjacent 1n G(~) • If u = u 
1 

( u
2

, V 2) 1n G(!f). then 

and hence (u
1
,v

1
) and ( u 2 ' V 2 ) are 

( = u say ) , then v 
1 ' 

V E V(H ) are 
2 u 

adjacent 1n H • Then also (u
1
,v

1
) and (u

2
,v

2
) are adjacent 1n 

u 

G(') • 

Conversely, if u
1 

and u
2 

are not adjacent in G, then 

Hone of the vertices in H is adjacent to the vertices in H 
u

1 
u

2 

in G(!f). If v
1

, v
2 

E V(H
u

)' for some u E V(G), are not adjacent 

in Hu' Then (u
1
'v

1
) and (u

2
'v

2
) should not be adjacent in G(!f). 

Thus G(~) is complete only if G and each member of ~ is 

complete. 

Lemma 3.22 Let G be a non-trivial graph and 

(u ,v ) be two vertices in the G-join of a family ~. Then 
2 2 

d (u , u ) if u
1

:;t u 
G 1 2 2 

J if u = u and v v E E(H 
1 2 1 2 

d ((u,v ),(u ,v» -J 1 1 2 2 2 if and v v ~ E(H u = U 
1 2 1 2 

u 

u 

d (v , v ) if u = u is an isolated 
H 1 2 1 2 vertex 1n 

Proof: Let u :;t u • 
1 2 

• 

) 
1 

) 
1 

G 

If (u
1
'v

1
) and (u

2
'v

2
) are in the distinct components of G, the 

result follows by lemma 3.19. 

of G(~) and 

'J'hen 

u'u 
m 2 

be a shortest u -u 
1 2 

component 

path G. 

for some 
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m, will 

be a shortest path 1n G(~) joining (u 1,v1 ) and (uz,v
z

). Because, 

if it is not so, it will contradict the choice of the shortest 

Let u = u = u and v and 
1 Z 1 

are adjacent 

'l'hen, (u
1

, v
1

) and (u
2

, v
z

) are adjacent in J and so 

in H. 
u 

If v and v are not adjacent in H , 
1 Z u 

(U
1
'V

1
) and (u

Z
,v

2
) must have a common neighbour in J if u 1S 

Hot an isolated vertex in G and hence dJ{(Ul,v1)'(uZ'vz» = 2 in 

this case. If u is an isolated vertex, H will be a component of 
u 

J and hence d {(u,v ),(u,v» = d (v,v). 
J 11 Z Z H 12 • 

Theorem 3.23 Let G be a non-trivial graph and J = G(~) be 

the G-join of the family ~ = { H / U € V(G) } of graphs. Then, 
u 

{ 
.1 if diam(G) = 1 and diam(H ) = 1 V U€V( G) 

u 

diam(J) = diam(G) if diam(G) ~ 2 

2 otherwise 

Proof: Case(i) oiam(G) = 1 and diam(H) = 1 for every 
u 

H € ~. 
u 

Then G and every H is complete, by lemma 3.21, and 
u 

hence diam(J) = 1 . 

Case (ii) diam(G) ~ 2. 

If G is disconnected, then diam(J) = diam(G) by 

theorem 3.20. 
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Let G be connected and diam(G) = d. Then there exist 

lwo vertices u
1 

and U z in G with dG(ut,uz ) = d ~ 2. 

dj«(U1,v1)'(UZ'vz» = d, by lemma 3.22 and so diam(J) ~ d. 

Hence 

Also, 

~lnce G is non-trivial, d j «(u,v
1
),(u,v

z
» = 2 ~ d for every 

U (. V( G) and V E V(H ). 
i u 

Hence diam(G) = d. 

Case(iii) diam(G) = 1 and diam(H ) ~ 2 for at lest one u. 
u 

rrhen G is complete and at least one H in the famil'y ~ 
u 

is not complete. By the completeness of G, pairs of vertices of 

consider an Hu which is not complete. Let v
1

' Vz E V(Hu ) be not 

adjacent in H . Clearly, each vertex in each of the remaining 
u 

member of the family ~ is common neighbour to both (u,v
1

) and 

(u,v?,) for every v
1

' V z (. V(H
u

). Hence d j «(u,v
1
),(u,v

z
» = 2. 

(or every non-adjacent vertices v and v in H • 
1 2 u 

Hence diam(J) = 2 ln this case. • 
Theorem 3.24 Let G be any graph and ~ = {H I u E V(G) }, 

u 

a family of graphs. Then the G-join J = G(~) is self-centered if 

any of the following conditions is satisfied. 

(1) G is self-centered and diam(G) ~ 2, 

(z) G and each member of ~ is complete, 

(3) G is complete and each member of ~ is self-centered of 

diameter 2. 

Proof: (1) Let G be self-centered and diam(G) = d ~ 2. 

When G is disconnected, the theorem follows from 

theorem 3.20. Let G be connected. Then, for every u
1 

E V(G), 
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there exists u
2 

E V(G) such that d
G

(u t ,u
2

) = d. Now consider any 

vertex (Ut' v
t

) in J and v € V( H ). Then d « U , v ), (u , v »... d 
2 u j t t 22 

? 

by lemma 3.22 since Ut ~ U2 So ecc (U ,v) = d for every 
j t t 

(Ut'V
t

) E V(J). Thus J is self-centered. 

(2) If G and each member of ~ is complete, then G(~) is 

also complete and hence self-centered. 

(3) Let G be complete and each member of ~ is self­

centered of diameter 2. Then dj«Ut,Vt),(u2,v2» = 1 for every 

there exists 

V E V( H ) such that d (v , v ) == 2. 
2 uHt 2 

So, d «U,v ),(U,v» = 2 
j t t 2 2 

for that u , and u
2 

by lemma 3.22. Hence eccj(u,v
t

) = 2 for every 

U E V(G) and every v , E V(H
u

)' Thus J is self-centered in 

case also. 

this 

Theorem 3.25 The degree of a vertex ( u, v) in the G-join of 

a family of graphs ~ KO { H I U E V( G) } lS d ( v) + ~ Pu u H 
ENG (u) u U 1 

1 

where Pu is the order of H • 
u 

Proof: Let G be graph, ~ == { H I U E V( G) } be a 
u 

family 

of graphs, U (.. V( G), v E V( H ) and J -= G( ':f). The neighbours of 
u 

(u,v) in J of the form (u,v / ), Vi E V(H
u

) are dH(v) in number. 
u 

For each neighbour u
l 

of u in G, all the p vertices (u1'v~), 
u 1 

v
1 

E V(H
u 

are neighbours of (u,v) in J. These are the 
I 

neighbours of (u,v) in J. So its degree is dH(u) + 1. 
u 11

1
EN

G
(u) 

only 

p • 
u 1 

• 
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Corollary 3.26 G(~) is regular if G is regular and members 

of , are of same order and regular of same degree. 

Proof: Let G be regular of degree r and each graph in ~ 

is regular of degree r' and order p' . Then, degree of (u, v) 1n J 

is r'+ rp' for every U E V(G) and v E V( H ). This expression is 
U 

independent of U and v. Thus J is regular. • 
Theorem 3.27 Let G be any graph and ':f- { H / U E V(G) } 

" 
be a family of graphs each of whose members is of order p. Then 

the triangle number of a vertex (u,v) in G(':f) is given by 

t(u,v) = p2tG (U) + tH (v) + p dG(u) d H (v) + L q(H 
U U I1

j 
EN G ( u ) U i 

Proof: Let G be a graph and ~ = { H / U E V( G) } 
U 

be a 

family of graphs such that the order of each H is p. Consider 
U 

U E V(G) and v E V(H). Then the triangles in the G-join 
U 

G(~) 

containing the vertex (u,v) are formed precisely in the 

following ways: 

A triangle in H containing v is a triangle 
u 

containing (u,v). There are such tH (v) triangles in J. 
U 

in 

(2) Each triangle in G containing u transforms to 

J 

2 
P 

triangles in J containing (u,v), since each edge of G is 

replaced by p2 edges in J. Such triangles are p2tG (u) in number. 

Each edge in H incident at v form a triangle 
u 

in J 

with each of the vertices in H corresponding to each neighbour 
u

j 

u
j 

of u in G. Triangles so obtained are dG(u) x d
H 

(v). p in 
U 

number. 



and (4) For every neighbour u of u in G, each edge in 
i 
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form a triangle in J containing the vertex (u,v). The number of 

triangles so formed is L q(H ). 
u 

u £.N G (u) i 

Thus the total number of triangles in J containing 

(u,v) 

• 

3.4 STRONGLY VERTEX TRIANGLE REGULAR 

AND STRONGLY EDGE TRIANGLE REGULAR GRAPHS. 

A graph G is vertex triangle regular (VTR) if all 

jts vertices have same triangle number and in this situation, 

the triangle number of a vertex in G is called the vertex 

triangle number of the graph G. G is strongly vertex triangle 

regular (SVTR) if it is regular also. If G is SVTR of order p, 

regularity r and has vertex triangle number t, then we say that 

G is an SVTR graph with parameters (p, r, t). 

[7 
A VTR graph which is not SVTR 

r i gure 3.1 
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Theorem 3.28 If G and Hare SVTR graphs, then their 

composition is also SVTR. 

Proof: Let G and H be SVTR graphs with parameters 

and 

U E V( G) and v E V( H) • So, 

Now by ( 3.12) , 

Then 

G(H) is regular of degree 

p( H) 

r + 
2 

:=I P , 
2 

t ( ) t 1 2t f () V( G( H) ) u,v = 2+ 2 P2 r 2r 1 + P2 r 1 r 2 + P2 1 or every U,V E • 

which is independent of the 

choice of u and v. Hence G(H) is an SVTR graph. • 
Remark 3.29 Parameters of G(H) are 

( p 1 P 2' r 2 + r 1 p 2' t 2 + P ~ t 1 +~ P 2 r 1 r 2 ) 

'l'heorem 3.30 If G is an SVTR graph with parameters 

(p, r, t), then G is also SVTR with parameters 

Proof: Let G be an SVTR graph with parameters (p, r, t). 

Then d(u) = r, and t(u) = t for every U E V( G) • Hence 

d ( ) 1 and t -G(u) = (P-2 1) G u = p-r-
3 2r(p-r-l) - t , by (3.7) for 

every vertex u in G. Hence G is an SVTR graph with these 

parameters • 
Lemma 3.31 Parameters of a strongly vertex triangle 

regular self-complementary graph are (4k+l, 2k, k(k-l» for 

some natural number k. 
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Proof: Let G be an SVTRSC graph with parameters 

( p, r, t ) . Then, due to regularity, p .... 4k+1 and r = 2k. 

Clearly G has at least one fixed vertex and, by (3.10), its 

triangle number is k(k-l) • Hence t = k( k-1) , due to triangle 

regularity. • 
A graph G is edge triangle regular (ETR) if all edges 

have the same triangle number. G is strongly edge triangle 

regular (SETR) if it is regular also. In this situation, the 

common triangle number of edges in G is called the edge triangle 

number of G. If· G is SETR of order p, degree of regularity rand 

edge triangle number t, then we say that G is SETR with 

parameters (p, r, t). 

Lemma 3.32 Every SETR graph with parameters ( p, r, t is 

1 SVTR with parameters ( p, r, 2rt ). 

Proof: Let G be SETR with parameters (p, r, t). Then 

d(u) .... rand t(e) - t for every u E V(G) and e E E(G). So, by 

(3.1>, t(v) 1 
= 2' rt for every u E V( G) , since G is regular of 

degree 1 r. Hence G is SVTR with parameters (p, r, 1rt). • 

Remark 3.33 Result analogous to theorem 3.30 doeB not hold 

for SETR graphs. Fig. 3.2 illuBtrates this - the graph G iB SETR 

with parameters (12, 4, 1). But G is not, because t(uv) - 3 and 

t(uw) = 4. The converBe of lemma 3.32 is also not true. Fig 3.3 

illustrates this. 



u 

A SETR graph G with paramere(12, 4, 1) 

whoae oomplement ia not SETR 

fgure 3.2 

A SVTR graph with parametera (12, 4, I) whioh ia not SETR 

figure 3.3 
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Theorem 3.34 A graph G is strongly regular if and only if 

both G and G are SETR. 
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Proof: Let G be a strongly regular graph with parameters 

(p, r, 1, ~). Then, by lemma 1.2, ~ is also strongly regular 

with parameters ( p, p-r-1, p-2r+~-2, p-2r+1 ). Hence d (u) = r, 
G 

tG(e) = 1, dG(u) = p-r-l and tG(e) = p-2r+~-2 for every vertex u 

and edge e in the respective graphs. Thus both G and G are 

SETR with parameters (p, r, 1) and (p, p-r-1, p-2r+~-2 ) 

respectively. 

Conversely, let G and ~ be SETR with parameters 

(p, r, t) and ( p, p-r-1, t' ) respectively. Then d (u) = r for 
G 

every vertex u and any two adjacent vertices in G has t common 

neighbours and any two adjacent vertices in ~ has t' common 

neighbours. So any two non-adjacent vertices in G has 

2r+t'+2-p common neighbours. Hence G is strongly regular with 

I~rameters (p, r, t, 2r+t'+2-p ). • 
Theorem 3.35 A self-complementary graph is SETR if and 

only if it is strongly regular with parameters (4k+1, 2k, k-1, k) 

for some natural number k. 

Proof: Let G be a self-complementary graph. If G is SETR 

then ~ is also SETR and hence G is strongly regular by theorem 

3.34. Conversely, if G is strongly regular, then G is SETR. 

Now, let ( p, r, 1, ~ ) be the parameters of G. Then 

p = 4k+1 and r = 2k for every u E V(G), for some natural number 

k, since G is regular. Further, by lemma 3.32, G is SVTR with 

1 vertex triangle number 2r1. But, by lemma 3.31, the vertex 

triangle number of a SVTRSC graph is k(k-1). So 1 = k-l. Then, 

(4k+1-2k-1)~ = 2 k(2k-k+1-1) by (3.13) 

~ - k. • 
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Corollary 3.36 ( Rao [54]) If G is an edge-symmetric 

self-complementary graph, then G is strongly regular with 

parameters ( 4k+l, 2k, k-l, k ) for some natural number k. 

Proof: Let G be an edge symmetric Belf-complementary 

graph. Then G is regular and edge triangle regular. Hence G is 

SETRSC and BOG is strongly regular with parameters 

( 4k+l, 2k, k-l, k ), by the theorem. • 
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A 
CONJECTURE OF KOTZIG 

ON SELF-COMPLEMENTARY GRAPHS 

This chapter deals with one of the maln aim 

of the thesis, to discuss a conjecture of Kotzig on self­

complementary graphs. Some of the results are reported in [45) 

and [461. 

4.1 KOTZIG'S CONJECTURE' 

~ecall that, a vertex ln a self-complementary 

graph is a fixed vertex if it is mapped onto itself by a 

complementing permutation. The set of all fixed vertices in a 

self-complementary graph is denoted by F(G) and the set of all 

vertices with triangle number k(k-1) in a regular self-

complementary graph of order 4k+1 is denoted by F(G). Two 

vertices u and v are said to be similar, written as u ~ v, if 

there exists an automorphism of G that maps u onto v. Clearly ~ 

is an equivalence relation on V(G). The equivalence classes 

under _ are called G-orbits. A vertex- symmetric graph has only 

one G-orbit 
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Kotzig [41] observed that F(G) ~ F(G) and asked about 

the possible characterization of F(G) and gave the following: 

KOTZIG'S CONJECTURE 

F(G) = F(G) for any regular self complementary graph G. 

In the subsequent sections, we recall the significant 

contribution made by Rao [54], characterize F(G) which motivates 

its definition being extended to any graph G and construct more 

counterexamples to the conjecture. 

4 • 2 I<:ARL I ER ATTEMPT. 

Rao has characterized F(G) and constructed 

counterexamples to the conjecture in [54]. For convenience, we 

reproduce some of his results and a figure. 

Theorem 4.1 ( part of the lemma 2.1 1n [54] ) If G is a 

self-complementary graph of order 4k+1, then exactly one of the 

G-orbits of V(G) is of odd cardinality. u 

Theorem 4.2 ( part of the theorem 2.2 in [54]) If G is a 

regular self-complementary graph of order 4k+1, then F(G) is the 

unique G-orbit of odd cardinality. o 

Theorem 4.3 (theorem 4.1 in [54] The following are 

equivalent for a self-complementary graph G of order ~ 5. 

(1) G is 'vertex-symmetric; 

(.d F(G) = V(G); 

(3) Z(G) = E(G). o 
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Theorem 4.4 ( part of the theorem 4.2 of [54] ) Let G
1

, G
2 

be two graphs and G=G(G). Then the following hold. 
1 2 

( 1 ) If G 
1 ' 

G 
2 

are regular, then so is G; 

(2 ) If G1 ' 
G

2 
are self-complementary, then so is G; 

( 3 ) If G1 ' 
G are 

2 
vertex-symmetric, then so is G. 0 

Theorem 4.5 theorem 2.3 in [54] ) For every integer 

k ~ 2, there is a regular self-complementary graph G of order 
~ 

4k+1, such that IF(G) I = 1 but IF(G) I ~ 2k+1. 

Proof: Define a graph G = G(4k+1) with V(G) = { 0, 1, 2, 

+ 
... ... ... 4k+1} and E(G) = I ~1AI' where AI' 1 ~ i ~ 4 is given 

below: 

A = { 10, 2i+11, 12i+l,2i+21, for every i, 0 ~ i ~ 2k-1; 
1 

14j+2,4j+41 for every j , 0 ~ j ~ k-1 }, 

11 :- { 14i+1, 4j+21, 14i+3,4j+41, for every i, j, 
2 

0 ~ i, j ~ k-1 , i ~ j } , 

11 = { 14i+1,4j+31; for every i, j, 0 ~ i, j ~ k-1, 1 ~ j } 
3 

and A = { 14i+2,4j+21, 14i+4,4j+41 for every 1, j , 

" 
0 ~ i, j ~ k-1, i ~ j }. 

lt can be checked that G is a self-complementary graph 

k-1 
of order 4k+1 under u = (0) n (4i+1, 4i+2, 4i+3, 4i+4). 

1=0 
Further 

the neighbourhood of 0 induces a regular graph of order 2k and 

degree k-1 and 0 E F(G). It can be also checked that the 

neighbourhood of 2 induces a complete bipartite graph with 

bipartition { 1, 5, 9, 13,··· ...... , 4k-3 ; 6, 10, 14, .. . 4k-2 } 

together with the isolated vertex 4, which clearly has k(k-1) 
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edges and is not regular. Further, for any i, 1 ~ i ~ 2k, the 

induced subgraph on the neighbourhood of 2i is isomorphic to 

that on the neighbourhood of 2. Therefore F(G) contains the set 

{ 0, 2, 4, ...... , 4k}. By Theorem 2.2 ( theorem 4.2 here) and 

the fact that 0 € F(G), it follows that for no i, 1 ~ i ~ 2k, 

the vertex 2i € F(G). The set F(G) being a G-orbit ( namely the 

unique G-orbit of odd length ) it is the union of some cycles of 

the above a. This implies that F(G) = to}. • 

Note that in case k = 2 for the graph G(9), F(G) = {O} 

and F(G) = V(G). However, for k ~ 3 and G = G(4k+l), F(G) = {O} 

and F(G) = { 0, 2, 4, - - 4k }. 

o 

The graph G( 9) 

figure 4.1 

4.3 THE SET F(G) 

Recall that F(G) is the set of vertices in a 

regular self-complementary graph G of order 4k+l with triangle 

number k(k-l). 
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Theorem 4.6 A vertex u in a regular self-complementary 

graph G is in F(G) if and only if t(u) = t(u). 

Proof: Let G be a regular self-complementary graph of 

order p = 4k+l, k E ~ and let u E F(G). Then t(u) = k(k-l) and 

hence, by (3.8), t(u) = k(k-l). 

Conversely, let t(u) = t(u) for some u E V(G). Then 

t(u) = t(u) = k(k-l) by (3.8). So, u E F(G). • 
An important and natural consequence of theorem 4.6 

is that, F(G), which was defined only for regular self­

complementary graphs can be extended to any graph. 

Definition: Let G be a simple graph. Then the set F(G) is 

defined as F(G) = { u E V(G) / t(u) = t(u) }. 

The graph G in fig. 4.2 is not self-complementary. The 

triangle number of each of the vertices labelled u and v is 3 in 

both G and G and that of other vertices are different in G and 

G. Hence F(G) = { u, v l. 

G 

figure 4.2 
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'l'heorem 4.7 F(G) = F(C) for any graph G. 000000000 (4.1) 

Proof: U E F(G) " t(u) = t(u) 

• 
Theorem 4.8 A vertex u in a (p,q)-graph G is in F(G) 

if and only if the size of <N(u» in G is 

Proof: Let G be a graph and u E F(G). Then t(u) = t(u). 

Hut, we have, t(u) + t(u) = (p-d~u)-l) - q + L d(u) 
vEN( u) 

• So, 

2 t(u) = (p-d~u)-l) - q + L d(u). Hence the necessary part. 
vEN( u) 

Conversely, let u E V(G) be such that 

l(u) = ~ [ (p-d~u)-l) - q + L d(U)]. Then t(u) is also 
vEN( u) 

! [ (p-d~u)-l) _ g + r d(u) ] by (3.1). Hence t(u) = 
vC:.N( u) 

t ( u) • 

• 
Corollary 4.9 Let G be a regular graph of order p and 

degree of regularity r, then a vertex u is in F(G) if and only 

10 f t () 1 (p-1) 3 ( 1 ) u = 2 2 - 4 r p-r- • o 

The proof being a routine one is omitted. 

Remark 4.10 It follows from lemma 3.31 that, if G is a 

regular self-complementary graph then, F(G) = V(G) if and only 

if G is SVTR. 



4.4 PRESENT ATTEMPT. 

Here, we mention a fallacy in the proof of 

theorem 4.5 and identify a class of counterexamples. A 

construction of such graphs of order p, for an infinite number 

of values of p, is also carried out. 

While analyzing the counterexamples of Rao, we came 

lo know that they are wrong except for k = 2. Because, the claim· 

in the proof of theorem 4.5 "the neighbourhood of 2 induces the 

complete bipartite graph with bipartition {1, 5, 9, 

4k-3 ; 6, 10, ......... , 4k-2 } together with the isolated vertex 4" 

is wrong for k ~ 3. In fact { 6, 10, ......... , 4k-2 } induces a 

complete Bubgraph due to the edges 14i+1, 4j+21, 0 5 i, j ~ k-1, 

1 i ~ j. So t(2) = k(k-1) + 2 - (k-1)(k-2) and 

Ul) 1 1 - (k-1) + 2 (k-1) = k(k-1) - 2 (k-1)(k-2) for 

every k ~ 2 and consequently F(G) = I 0 I for k ~ 3. 

Thus the conjecture was made open for p = 4k+1, k ~ 2 

Theorem 4.11 ( A class of counterexamples ) If G is a 

self-complementary graph which is strongly vertex triangle 

regular and not vertex symmetric, then it is a counterexample to 

Lhe conjecture. 

Proof: Let G be a self-complementary graph. Then 

F(G) = V(G) if and only if G is vertex-symmetric ( theorem 4.3 ) 

and F(G) = V(G) if G is strongly vertex triangle regular 

( remark 4.10). So if G is SVTR and not vertex-symmetric, then 

F(G) = V(G) ~ F(G). Hence this class provides counterexamples to 

the conjecture. • 
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Remark 4.12 It is interesting to see that the counter-

example G 
9 

theorem 4.11. 

of Rao is also of the type specified in the 

Theorem 4.13 Let G be an SVTRSC graph which is not vertex-

symmetric and and H be a VSSC graph. If there are two vertices u 

Clnd u' in G such that <N( u) > is regular and <N( u' ) > 19 not 

regular, then G(H) is SVTRSC but not vertex-symmetric. 

Proof: Let G be a SVTRSC graph which is not vertex-

symmetric and H be a VSSC graph. Then clearly H is SVTR and 

hence G(H) is SVTRSC. 

Now, let G
1 

= <N(U»G and G
2 

= <N(U'»G where u and u' 

are aB in the hypothesis. Then G
1 

is regular and G
2 

19 not 

regular. It is obvious that <N(u,v» 1n G(H) 1S G
1

(H) and 

<N( u' ,v» is G (H). 
? 

Because of the regularity of G and H, G(H) 

is also regular, but G
2

(H) is not regular since G
2 

is not. So 

<N(u,v» ~ <N(u' ,v» in G(H). Hence G(H) is not vertex-symmetric . 

• 
Remark 4.14 If G 1S a counterexample to the conjecture 

and H is a vertex-symmetric self-complementary graph. If there 

are vertices u and u' in G such that <N(u» is regular and 

<N(u'» is not regular, then, by theorem 4.12, G(H) and H(G) are 

also counterexamples. 
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(1) Counterexample of order 17 

Take a single vertex 0, a copy of the circulant graph 

C(8i 1, 4) with vertices labelled 0, 1, 2, 7 and a copy 

of its complement C(8; 2, 3) with vertices labelled 0', 1', 2', 

7'. Join each vertex i to e, i', i'+l, i' +2 and i'+3, 

addition being taken modulo 8 and j'+J is to mean (i+j)'. The 

graph G 
17 

so obtained is self-complementary, 

permutations is (B) (0 0' 1 l' 2 2' ... 

a complementing 

7 7'). From the 

figure of G , it~s strong vertex triangle regularity is clear. 
17 

G
17 

a counlerexample of order 17 

figure 4.3 
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It is not vertex-symmetric because the subgraph induced by the 

neighbourhood of 0 is the circulant graph C(8; 1, 4) which is 

not isomorphic to the subgraph induced by the neighbourhood of 

any of the other vertices. Further (N(i» and (N(j'» are also 

non-isomorphic for every i and j' ( see fig. 4.4 ) 

1 ' o (/:---+------t---1! 3 ' 

e 
~-----o 

2 ' 5 q;;:---+------+--II 5 ' 

(N(O» (N( 0' ) > 
subgrapha of G

17 
induced by the neighbourhoods of 0 and 0' 

figure +.4 

counterexample of order 33 

Take a single vertex labelled e, a copy of the 

circulant graph C(16; 1, 2, 6, 7) with vertices labelled 0, 1, 

2, ......... , 15 and a copy of its complement C(16; 3, 4, 5, 8) with 

vertices labelled 0', 1', 2', ......... , 15'. Join each vertex i to 

i', i' +1, i' +2, ......... ,i' +7 and each i' to e. Additions being 

taken modulo 16~ The resulting graph G is self-complementary 
33 



.9 

• a' 

.9' 

.10' 

.11 ' 

• 11 .12' 

.12 .13' 

.14 ' 

.15' 



"75 

under the complementing permutation (0)(0 0' 1 l' 2 2' 

15 15') and strongly vertex triangle regular. But it is not 

vertex-symmetric, since the subgraph induced by the neighbour~ 

hood of 0 is the circulant graph C(16; 3, 4, 5, 8) which is not 

isomorphic to the subgraph induced by the neighbourhood of any 

of the other vertices ( see fig. 4.5 ) and (N(j'» are also 

lion-isomorphic for every i and j'. 

"The conjecture is trivially true for p = 5. We 

have seen that strongly vertex triangle regular self-

complementary graphs which are not vertex-symmetric form 

counterexamples. We have one such graph is G(9) ( fig. 4.1 ) ~nd 

of order 17 ( fig. 4.3 ) and 33 by the above construction. Hence 

by theorem 4.12, counterexamples of order p = 9a17ff331p~ 

p is an 
1 

integer for which VSSC graph of order P1exists and 

a, ff, 1 and 0 are integers such that at least one of a, ff and 1 

is non-zero. Thus, the conjecture is false for p = 9a17ff331p~ 

where P1' a, ff, 1 and 0 are integers as above. We are examining 

the conjecture for other orders also and expect that our 

construction can be extended to graphs of order p = 4k+1 where 

k = 211, n E IN. Then theorem 4.13 can be applied to get still 

more counterexamples. 
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ISOMORPHIC FACTORIZATION 
OF 

COMPLETE GRAPHS 

5.1 ISOMORPHIC FACTORIZATION 

A factorization of a graph is a partition of it 

into edge disjo~nt spanning subgraphs. A factorization in which 

any two factors are isomorphic is called an isomorphic 

.factorization. A graph G is said to be divisible by an integer m 

if it can be facto red into exactly m isomorphic factors and we 

write m/G. If G is divisible by m, then the set of all graphs H 

such that G can be factored into m isomorphic copies of H is 

denoted by G/m. 

figure 5.1 
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]f G has g edges, G/m will be empty unless m/g. This 

necessary condition is not in general sufficient as in the case 

of the tree T in fig 5.1, which has six edges, yet TI2 is empty. 

5.2 lS0MORPHIC FACTORIZATION OF COMPLETE GRAPHS. 

]~omorphic factorization of complete graphs into m 

factors is a generalization of self-complementation. If K is 

" divisible by two, then the members of K 12 are the 

" 
self-

complementary graphs of order p. Even though self-complementary 

graphs are connected, the elements of K Im need not be so for 
p 

m ~ 3. For example see fig. 5.2. If the members of K Im are of 
p 

size g, then mg = p(}-l) and so p(~~l) is an integer. The result 

in the converse direction was independently proved by Guidotti 

1331 and Harary et al.[351. 

Jlere, we give a simpler proof by general iz ing a method 

of constructing self complementary graphs given by Gibbs [30]. 

The proof given in [351 essentially involves permutations of the 

p vertices and the 
p(p-l) 

7. edges of 

permutations of the vertices only. 

When mlK 
" 

there are 

K 
!J 

while we 

isomorphisms, that 

permutations of V(K ), that maps between the factors. We 

" 

use 

is 

call 

such a permutation a as factorizing permutation. We label the m 

factors in an isomorphic factorization of K by G , G , G
2

, 
p 0 1 

... , G so that a factorizing permutation a of V( K ) maps G 
m - 1 p i 

onto G i = 1 2 ... ... ... m-1. 
i+l(modm) , " , 
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3 6 3 
o o o 

3 0 06 5 ()oc -------'0 6 1 0--------004 

(r) 

1 

~4 
? 

\ 4 5 2 

1 IS 2 5 

6 0 3 3 6 4 

( g ) ( h ) ( i ) 

The nine members of K6/3 

Factorizing permutation for each factorization is (123)(456) 

figure 5.2 



Theorem 5.1 ([35]) If m / ~(~-1) and (p,m) = 1 or 

(p-1,m) = 1, then K is divisible by m. 
p 
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Proof(by construction): Let m and p be such that m / P(~-l) 

Clud either (p,m) = 1 or (p-1,m) = 1. We have to find m 

isomorphic factors of K • 
p 

CONSTRUCTION 

Case (i) m is odd. 

If there is an m-factorization, the edges in the 

subgraph of K spanned by 
p 

each cycle of a factorizing 

permutation 0 15 to be distributed equally in the factors, every 

cycle of 0 should be of length multiple of m except in the case 

of a 1-cycle when p - l(mod m). But it is sufficient to consider 

the permutations with cycle length power of m. Because, if there 

is a cycle of 0 not of this form, that is of length am where a 

is not a multiple of m then the permutation OU will be of the 

required form and will be a factorizing permutation not 

necessarily in the same order in which 0 acts ). 

consider a permutation 0 of p symbols with each of its 

~ycles is of length power of m, except one cycle of length one 

when p = 1 (mod m). Assume without loss of generality that the 

symbols in 0 are numbered consecutively from 1 to p and that the 

cycles are of non-decreasing length k
1

, k
2

, k
3

, --- --- except 

the 1-cycle (p), if exists, at the end. It is to be noted that 

each k
j 

is a power of m. Now, the symbol s 2, 3, --- --- ---, 
k +1 

1 
-2- of 

the first cycle, the first k1 symbols of each of the other cycle 
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and the symbol p if (p) is a 1-cycle constitute the range of the 

symbol 1. We shall construct the graphs G , G , G , ....... -.. .. 
o 1 2 

G 
m-1 

with vertices labelled 1, 2, 3, , p and hence identify the 

Bymbols in 0 with the vertices in G
j 

j = 0, 1, 2, ........ . m-1. 

For each unordered pair { 1, j}, where j is in the range of 1, 

arbitrarily decide the graph G 1n which 1 and j are adjacent. 

Once these choices have been made, the symbols ok(l) and ~k ( j ) 

are adjacent in G , k = 1, 2, ... 
i+k(modm) 

where j 

belongs to a cycle of length k
j

• A table of the following form 

js helpful. In the first column 
k

j repeated k 
1 

of the table, the symbols 1, 2, 

... ... ... k is to be , 1 times where k
j 

is the maximum 

cycle length of a. 

vertex neighbours of u in the factor 
u G G

1 
... G 

0 m-1 

1 v , v , ... v , v , ... ... v , v , . .. 
01 02 11 12 m-1 1 m-1 2 

2 a(v ), ... ... a(v01 )' ... ... ... a(v 1 ) , ... . .. ... 
m-1 m-2 

3 a(v 1) , ... ... a(v 1) , ... ... a(v 1) , ... . .. '" 
m-2 m-1 m-3 

: ... ... ... . .. ... ... ... ... . .. ... ... ... 
r 

k ... ... ... ... ... ... ... ... ... . .. ... ... 
1 

1 r : : : 
2 r I : : 

I I I I I 

Adjacency lable for lhe isomorphic faclorizlion of complele graphs 

lable 5.1 

This completes the first stage of the algorithm. In 

the next stage, reduce the permutation 0 to a on p-k 
1 1 

symbols 
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by deleting the first cycle and do the process for the symbol 

k +1. Continue the process till all the cycles of non-unit 
1 

length has been considered. 

Case (ii) m is even. 

In this case it is sufficient to consider permutations 

o with cycle length powers of 2m only. Arrange a so that the 

cycles are in the order of non-decreasing length except the one 

i-cycle (p), if exists, at the end. Let k k ... 
1 ' 2 ' 

be the 

cycle lengths and 1, 2, p be the symbols in the 

permutation. The range of 1 consists of the symbol s 2, 3, ... 

kl 
--2- +1 , the first k1 symbols of the remaining cycles and the 

symbol p, if (p) is a i-cycle. The rest of the algorithm is same 

as the first case. 

Now we. have to prove that the algorithm will produce a 

well defined isomorphic factorization. 

Claim: As a result of performing the construction 

algorithm, (1) the adjacency relation between vertices is well-

defined (2) every pair of vertices lS assigned an adjacency 

relation and (3) the graphs G G··· ... G thus obtained are 
0' l' m-l 

isomorphic. 

Proof of (1) The pair { 1, j I cannot be sent to itself by a k 

when k is not a multiple of m, because ak(j) ~ j for k ~ M (m) , 

except for the trivial case of the i-cycle (p) and if ~k(l) = j, 

then j is the symbol l+k in the first cycle of a and 

ak(j) = 1+2k ~ 1 since k ~ M(m). Thus the pair { 1, j can 

never be assigned simultaneous adjacency and non-adjacency. 



82 

The same argument applies to { a i (l), al(j) } and carries over 

for all stages of the algorithm. 

Proof of (2) Here we have to consider the two cases separately. 

Case (i) m is odd 

From the definition of range of the symbol 1, we have 

assigned adjacency to each pair { 1, i I when 2 ~ 
k +1 

1 
1 s -2- For 

every j in the first cycle, symbols in its range from the first 

cycle are j+l, j+2, 000 000 

k -1 k +3 
0+ 1 N 1 -_ a J -2-· ow -2-

k +3 
1 Lhe range of --2-- contains the symbols 

k +5 
1 

-2-

k +1 - 1 of the first cycle. Hence 1 is in the 
1 

k ·1 1 
1 

2 (1) and 

k +3 k -1 

so 

1 1 
'--2-+-2- = 

k +3 
1 range of -2-

k
1

• Thus the adjacency between 1 and every other symbol in 

Lhe first cycle are defined if we fix the adjacency of 1 and 

Lhose symbols in its range. This argument carries to all other 

symbols in the first cycle and for the adjacencies of the other 

symbols with those in the same cycle. Consider the cycle 

length k j , j ~ 1. We initially fix the adjacencies of the 

k k 

k1 symbols. But a 1(1) = 1 and if k
j 

) k
1

, then a 1 will 

a 
j 

of 

first 

give 

the adjacencies of next k1 symbols in ajwith 1. Our construction 

algorithm insists on continuing the process at least 
k

j 

k 
1 

times. 

Thus the adjacency of 1 with each symbol In the cycle (1j is 

defined. This is also applicable to all symbols ln the first 

cycle and to all steps of the algorithm. 
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Case (ii) m is even. 

k 
Here the range of 1 is 2, 3, ........ . _1+1 and that 

2 

k 
of any j in the first cycle is j+1, j+2, .. ... ... ... j+r+1 

kl 
- -+1 k 

0
2 (1) and hence the range of _1+2 is 

2 

k k 

Now, 

~1+~+1 = X
1

+1 = 1 and the remaining arguments are similar 

lo that in the first case. 

Proof of (3) Now, we have shown that all the adjacencies are 

well defined and all possible adjacencies are determined. 

,G respectively. 
11,-1 

m-1 o are isomorphism 

ILLOJSTIRATI({)~S 

from Go to G G··· 
1 ' 2 ' 

(i) ISOMORPHIC FACTORIZATION OF K7 INTO THREE FACTORS 

corresponding to the permutation 0 = (123)(456)(7) 

• 

Stage 1: The the range of 1 is I 2, 4, 5, 6, 7 1. Let 

lhe vertex labelled 1 be adjacent to 2 and 7 in Go' to 4 in G 
1 

and to 5 and 6 1n G
2

• The corresponding adjacency table is given 

in table 5.2. 

Stage 2 The reduced permutation to be considered is 

o = (456)(7). The range of 4 is I 5, 7 1. Let the vertex 
1 

labelled 4 be adjacent to 5 and 7 in G
1

• The adjacency table is 

given in table 5.3. 



vertex neighbours of u in the factor 
u Go G

1 
G 

2 

1 2, 7 4, 5 6 

2 4 3, 7 5, 6 

3 6, 4 5 1, 7 

Adjacency lable al slage 1 for an isomorphic faclorizalion 

of K'l inlo lhree faclors 
corresponding lo the permulalion (123)(456)(7) 

lable 5.2 

2 
o 

~------+---------------------------~06 

The faclor GO of K7 resulling from the above conslruclion 

figure 6.3 
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vertex neighbours of u in the factor 
u Go G G 

1 2 

4 5, 7 

5 - 6, 7 

6 4, 7 

Adjacency table at stage 2 for an isomorphic factorization 
of K7 into three factors 

corresponding to the permutation (123) (456) (7) 

table 5.3 

(ii) ISOMORPHIC FACTORIZATION OF K
20 

INTO THREE FACTORS 

corresponding to the permutation 

0=( 1 234 )( 567 8 9 10 11 12 13 14 15 16 17 18 19 20.) 
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Stage 1: The range of 1 is 2, 3, 5, 6, 7, 8 l. Let 

the vertex labelled 1 be adjacent to 3 In G , to 6 and 7 o in 

to 2, 5 and 8 in G and none in G
3

• The adjacency table is given 
? 

In table 5.4. 

Stage 2: The reduced permutation to be considered in 

this stage is 0 =( 567 8 9 10 11 12 13 14 15 16 17 18 19 20 ). 
1 

')'he range of 5 is { 6, 7, 8, 9, 10, 11, 12, 13 l. Let the vertex 

labelled 5 be adJ'acent to 6 and 13 in G , 7 and 12 in G 8 and o 1 ' 

11 in G
2 

and 9 and 10 in G
3

• The adjacency table is given 

table 5.5 



vertex neighbours of u in the factor 
u G G G G 

0 1 2 3 

1 3 6, 7 2, 5, 8 

2 4 7, 8 3, 6, 9 

3 4, 7 , 10 1 8, 9 

4 9, 10 1, 8, 11 2 

J 3 10, 11 2, 9, 12 
.. 

2 4 11, 12 3, 10, 13 

3 4, 11, 14 1 12, 13 

4 13,14 1, 12, 15 2 

J 3 14, 15 2, 13, 16 

2 4 15, 16 3, 14, 17 

3 4, 15, 18 1 16, 17 

4 17, 18 1 , 16, 19 2 

1 3 18, 19 2, 17, 20 

2 4 19, 20 3, 18, 5 

3 4, 19, 6 1 20, 5 

4 5, 6 1, 20, 7 2 

Adjacency table at stage 1 for an isomorphic factorization 
of K

20 
into four factors corresponding to the permutation 

( 1 2 3 4 ) ( 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ) 

table 5.4 
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vertex neighbours of u in the factor 
u G G

1 
G G 

0 2 3 

5 6, 13 7 , 12 8, 11 9, 10 

6 10, 11 7 , 14 8, 13 9, 12 

7 10, 13 11, 12 8, 15 9, 14 

8 10, 15 11, 14 12, 13 9, 16 

9 10, 17 11, 16 12, 15 13, 14 

10 14, 15 11, 18 12, 17 13, 16 

11 14, 17 15, 16 12, 19 13, 18 

12 14, 19 15, 18 16, 17 13, 20 

13 14, 5 15, 20 16, 19 17, 18 

14 18, 19 15, 6 16, 5 17, 20 

15 18, 5 19, 20 16, 7 17, 6 

16 18, 7 19, 6 20, 5 17, 8 

17 18, 9 19, 8 20, 7 5, 6 

18 6, 7 19, 10 20, 9 5, 8 

19 6, 9 7, 8 20, 11 5, 10 

20 6, 11 7 , 10 8, 9 5, 12 

Adjacency lable al Blage 2 for an iBomorphic faclorizalion 
of K

20 
inlo four raclorB correBponding lo lhe permulallon 

( 1 234) ( 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ) 

lable 5.5 
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5.3 CONCLUDING REMARK AND SUGGESTIONS FOR FURTHER STUDY 

This thesis is an attempt to shed more light on 

a conjecture of Anton Kotzig on self-complementary graphs. 

During this process, we have obtained several results relafing 

the concepts of triangle and self-complementation, spread over 

the different chapters of this thesis. The survey of earlier 

results have been done to the extent possible and any serious 

omission due to oversight may kindly be pointed out. 

Results of the thesis are far from complete. We list 

below some of the problems which we have either not attempted or 

found the answers to be difficult. 

1. ANTIPODAL ITERATION NUMBER ( ain. 

Consider a graph G and its antipodal graph A(G). 

Let Go = G and G • be the graph obtained by superimposing A(G
1

) 
1+1 

on G
j

, for i = 0, 1, 2, ........ . If G lS not complete, this 

process ultimately results in a complete graph since 

E(A(G» ~ E(~). The minimum value of 1 for which G
j 

is complete 

is called the antipodal iteration number (ain. of G. It 

is obvious that ain(K) = 0 and ain(G) = 1 if diam(G) = 2. 
p 

]f G is disconnected, then its ain. is 1 if every component of G 

is complete and 2 otherwise. A formula for ain(G) can be 

attempted. 
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2. S-ANTIPODAL GRAPH OF GRAPHS WITH A GIVEN PROPERTY 

We have characterized A*(G) when G is a tree. 

Similar analysis can be done for a graph G with a given property 

1', where P could be maximal outer planar, hamiltonian, eulerian, 

chordal, etc. The question whether eulerian graph of odd order 

is the S-antipodal graph of some eulerian graph remains to be 

settled. We have answered ( theorem 2.20) a similar question 

for even order. 

3. TRIANGLE SEQUENCE 

Similar to the results on degree sequences (63), 

lhe concept of triangle sequence could be investigated and 

characterization of an integer sequence being the triangle 

sequence of a graph may be attempted. 

4. TRIANGLE NUMBER IN THE G-JOIN 

Expression for the triangle number of a vertex / 

edge in the G-join of a family of graphs in the general setting 

js worth studying. See theorem 3.27 for our observation. 

5. COUNTER EXAMPLES TO KOTZIG'S CONJECTURE 

Our method of construction of counterexamples of 

order 17 and 33 could be extended to that of order p ~ 4k+1, 

where k = 211 , n E IN. 



D(G) 

E(u) 

E(G) 

P(G) 

F(G) 

a, H, ... 

G(V,E) 

G(p,q) 

G 

Glm 

G(H) 

G + H 

G x H 

G(!'f) 

HIG 

K 
J.I 

M(m) 

N( G) 

N(u) or 

N[u] or 

lHG) 

NG(u) 

N
G

[ u] 
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antipodal graph of G 

S-antipodal graph of G 

dominating set in G 

set of edges incident at u 

edge set of G 

fixed vertices in a se graph 

set of vertices with same triangle number 
in G and its complement 

graphs 

graph with vertex set V and edge set E 

graph of order p and size q 

complement of G 

set of graphs each of which is a factor 
in some factorisation of G in-to m 
isomorphic factors 

composition of the graphs G and H 

join of the graphs G and H 

cartesian product of G and H 

the G-join of a family ~ of graphs 

H belongs to G/m for some integer m 

complete graph on p vertices 

multiple of m 

neighbourhood graph of G 

neighbourhood u in G 

closed neighbourhood of u in G 

triangle graph of a graph G 



V(G) 

Z(G) 

d(u) or dG(u) 

d(u,v) or dG(u,v) 

diam(G) 

e 

ecc(u) or eccG(u) 

ain(G) 

m/G 

p or p( G) 

q or q(G) 

r or r (G) 

t(u) or tG(u) 

t (u) 

t( e) 

t(G) 

u, v, 

u _ v 

~ 

C(G) 

~ 

o 

(m,p) 11: 1 

<5> = <S>G 

vertex set of G 

set of edges in a se graph one of whose 
end is mapped on to the other by a 
complementing permutation 

degree of a vertex u 

distance between two vertices 

diameter of G 

an edge in a graph 

eccentricity of a vertex u in G 

antipodal iteration number of G 

G can be facto red in to m isomorphic 
factors ( G is dividible by m ) 

order of G 

size of G 

degree of a regular graph G 

triangle number of a vertex u 

triangle number of a vertex u in G 

triangle number of an edge e 

triangle number of G 

vertices in a graph 

u and v are similar vertices 

the set of natural numbers 
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set of all complementing permutations of G 

a family of graphs 

complementing permutation of a 
self-complementary graph 

m and p are relatively prime integers 

subgraph of G induced by S ~ V(G) 



ETR 

use 

se 

SETR 

sETRse 

SR 

sRse 

SVTR 

sVTRse 

vsse 

VTR 

ain. 

edge triangle regular 

regular self-complementary 

self-complementary 

strongly edge triangle regular 

strongly edge triangle regular 
self-complementary 

strongly regular 

strongly regular self-complementary 

strongly vertex triangle regular 

strongly vertex triangle regular 
self-complementary 

vertex-symmetric self-complementary 

vertex triangle regular 

antipodal iteration number 
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