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PREFACE

The dynamics of a complex system can be modelled from a

sin~le measurable quantity of the system usin~ the recently

developed methods in deterministic chaos (Schuster,

1>e'terministic chaos', Physik Ver-Lag , Heidelber~ 1984). In t,he

case of experimental signals, the existing techniques usin~

qualitative measures like Fourier t,ransform, autocorrelation

function, e t.c., do not. enable one 'to classify bet.ween

low-dimensional deterministic chaos and broad band stochastic

noise. But,. recent studies have shown t.ha't 'time series analysis

can reveal 'the underlyin~ characteristics of nonlinear dynamical

systems. Moreover, such analyses ~ive quantit.ative measures which

are the invariants of the system (Grassber~er P and Procaccia I,

Phys. Rev. Le t.t., 50A 1983, GP al~orithm). One of the interest,in~

properties of the GP t.echnique is that" it can give si~ni£icant

insight. into t.he nature 01 the given system, whose basic equations

are unknown.

In 'the analysis based on GP algorithm, equally spaced,

di~it,ized t,emporal or spatial variation of any meas~able quantity

of the sys-Lem can be used as time series and fin!te data se~ is

enough to ~ive valuable Irif'or-mat.forr about, the lon~-term b"ehaviour

of t,he-- system. GP al~ori t.hrn is mainly used for the

characterization of nonlinear dissipative systems, the basic

assumpt.ion bein~ t,hat, 'linle series contains all the info~mat,ion

about, the system (Packard N.H, Cru1:,chfield J.P, Farmer J.D and

Shaw R.S, Phys. Rev. Le-tt,. 45 1980).

i



Time series analysis is ~uccessful in many complex systems

Astronomical

like,,. for example,

systems,

biolo~ical

Laser

systems,

matter

climatic

in'Leractions,

systems,

chemical

reactions etc.

exis'tence of

The complexity of t,he system is mainly due to 'the

. nonlinear in'Leractions and this leads 'Lo

unpredictability in the frame work of conventional met.hods of

dynamics.

In the case of nonlinear dissipative syst,ems, which can be

represented by n ·ordinary differential e:quations, evolution of

·st,ate function constitutes a flow in phase space, and in time.

The flow conver~es 1:,owards a fin!te .dimensional subset of 'the

phase space known as the a't1:,ractor, which is invariant under t,he

actdou of flow. The ~eometric structure and dimension of t,he

at.t.r-act.or- varies with sys'tems.
I

In the case of a periodic system,

the behaviour of the system is predictable and the at-tractor is

independent, of t,he set of inltial conditions and such a.,ttract,ors

are called re~~ at,tract,ors. But, for chaotic syst,erns, two

initially close trajec-tories will diverse exponent.ially, result,in~
t -t

in loss of resemblance. The at.'tractor is said to be sensi'tive to

initial condi'tions and this subset, has a compllca'ted structure and

is known as st,ran~e at,t,ractor. We can model the dynamics of a

nonlinear system by estimatin~ different, charact,eristic propert.ies

of at,t,ractors, like ~eneralized ent,ropies (K >, generalized
q

dimensions (D >, Lyapunov exponent.s CA), f(et) spectrum· etc.
q

In the present. -thesis, we ~ive prime impor'tance for the

Second order dimension D , and Second order Kolmogor-ov ent.ropy K.
2 2

D _and K are si~nificant. amon~ D' s and K' s (Caputq J.G and
2 ~ q q

At,ten P Phys. Rev. 35A, No.3, 1987). D and K are z-epo.r-t.ed t.o
2 2

be sensi~ive parameters to characterize dynamical syst,ems.

D and K are helpful in underst,andin~ whether a syst.em
22,

exhibi"ts re~ular (D =int,e~er, K -=0), chaotic (D IDnonint.e~er, K>O)
2 2 2 2

or completely st.ochas'tic (D -undefined, K =(0) behaviour. More
2 2

than that" 'these parameters quantify the det;ree of chaos in a

nonlinear system.

ii



The present thesis deals with t.he :followin~ st-udies we have

carried out on neural system and certain astronomical syst.ems in

t.er-mes of D and K .
2 2

i) Human brain under clinically normal condit.Lon and under

various p at.hologdc.al conditions like Epilepsy, Migraine,

Tumour, Head ache and Psychotic, based on the analysis of

Elect.roencephalo@;ram (EEG), which is t.he electrical

activity o:f brain.

ii) Part.icle distribution in Asteroidal system.

iii) Mat.'ter dis'tribution in Saturn rinr; st,ructure.

The thesis cont.ains ei~ht chapt.ers.
,

,;ives a gen~ral idea about. di:fferent t.ype-s

and their phase space behaviour.

The first.

of dynamical

chapter

systems

The different si~nal processins t,echniques like, fast

fourier t.r-8n.sCorm (FFT), autocorrelation funct.ion CACF), Poincare

method and their limit.at.ions are described in chapt.er 11. The

chapter also includes certain new concepts in nonlinear analysis,

like generalized dimensions, generalized e rrt.r-opfees, correlation

dimension and· Kolrnogor-ov entropy. De t.edIe-d discussion on GP

algor-I t.hm and its advant.ages are also given.

Usually experimental si~nals include noise. Hence such

si~nals should be filtered 'to eliminate noise before any nonlinear

analysis are done. Chapt.er III describes a mathemat,ical technique

to filter '.. out noise from a time series.

A major portion of 'the thesis is devo'ted t.o t,he

classificat.ion of Neural syst,em under various pat,holo~ical

condtt.Iorus. S'tudies on the relat.ion between merrt-al and. neural

activities are also a't'tempted. Hence a ,;eneral idea about, the

Neural syst,em is unavoidable, and 'this is the subject, me.t.t.er- of

iii



the four~h chap~er.

The evaluation of D and K from EEG pattern is explained
2 2

in chapter V. D is a static parameter and K is a dynamic
2 2

parameter ~ so tha~ K is more sensit1ve than D. Kolmogor-ov
2 2

entropy K, which is a measure of information content, is used to
2

characterize the dynamics of brain durin~ ment.al act.ivit.y and t.he

results obtained are described in t.his chapt.er. The ~eneralized

dimensions as well as {"(Cl) spectrum of a clinically normal person

dur-Ing rest and mental act.ivi'ty are compared.

Sixth chapter introduces the idea that K can be used to
2

classify different pathological condit.ions of the brain. The

variation of K at, different points of the brain dur-Irig an
2

epileptic seizure is studied. The capacity of t,he brain to regain

its ori~inal ·st,ate is investi~ated t,hrou~h the analysis of EEG of

a person having headache. The variation of K, in th& case of"
2

pesychot.Ic, tumour and epilepsy (with demylination) are also

studied.

In 'the case of Astronomical system, the spatial variation

of particle density is used as "time series" 1:.0 characterize t.he

system. We study in cb.apt.er- VII the dynamics oC t.wo astronomical

systems the mat.t.er- dist,ribu'tion in asteroidal belt and Saturn

rin~ structure.

In

conclusions

the last

obtained

chapter,

from the

we discuss the results and general

present studies. Future scope oC

this work is also included.

In the Appendix, we discuss the al~6rit.hm (modified from GP

al~orithn\ to develop Fortran' code) used in the evaluation oC D
2

and K. This appears to be an efficient compu'ter prof;ram which
z '

therefore enabled us 1:,0 carryinr; out- the work successfully.

it)
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CHAPTER 1

INTRODUCTION

Various aspects of nonlinear dynamics in the context of
chaotic phenomena are introduced. Important parameters
which describe nonZinear phenomena are included in this
chapter.



INTRODUCTION

The rapid de-ve-Iopmerrt.es that have t,aken place in the study

of nonlinear dynamics provide a better underst,andin~ of many

physical systems. They have 'totally chan~ed 'the way of analysing'

the dynamics of a number of interesting systems like laser-matter

interactions, hydrodynamical systems, climatic system, the neural

system, .arid many astronomical systems. In this thesis we shall

be doin~ the riordinear- analysis of Neural system and certain

Astrophysical systems. Instead of going st,rai~ht, int.o such

analysis, we shall describe the recent trends and methods of

nonlinear analysis in this and the next. chapter.

The rudiments o~ nonlinear dynamics caa~ be under-stood on

the basis oC the phase space dynamics. ·To make t-his cb.apt.er- self

contained, we shall Irrt.r-oduoe the concept of phase space and

study 'the nat.,ure of 'the phase space dynamics of conservat.ive and

cllssipative systems. After a brief discussion on 'the at,t,ractors

encountered in the phase space dynamics of dissipative systems,

we shall discuss the dimension of' such at.tractors. Chaos, one of

the most, int,erest,ing properties exhibited by nonlinear systems,

shall be explained durin~ t,he end of this chapter.

1.1 PHASE SPACE

As has already been stated, it is easy ,to describe

dynamics of nonlinear syst,ems in 'the phase space. In

seot.Ion we shall discuss briefly what, a phase space is.

t,he

this

One can define phase space as an n-dimensional Euclldean

space, where a point, can describe the stat,e of the system under

1



consideration at any ~iven 'time. The dimension of the phase

space, n, is chosen to be t,he lowest possible int,e~er sat,isfyin~

the above condition.

follows.

This could be formulat.ed mat.hemat.ically as

Let. the given physical syst,em, whose state is described by

n variables X,X X , be described by the set of equations
t 2 n

ax
\.

dt, ::I F. (X x ) ,
\. 1 n

i=1, n , (1.1)

".
where t,he funct,ions F. possess continuous partial derivat.ives and

\,

time 1'., is the sin~le independent. variable. The phase space of

such a syst.em would be n-dimensional, whose coordinat.es are

X ,X , .............X . Each pofrrt, in phase space represent.s a
to 2 ;. n

possible instant.aneous st.at.e oC t.he system.

,pif.ferent. podrrt.ss in t.he phase space could therefore

represent, the st.at.e of a given syst.em at, different. 1'.,imes. Hence

as t.he syst.em evolves in time, t,he point- represent.int; the st.-at.e

of t,he syst.em can 1'.,race out. a ~raject.ory - called the phase space

trajectory.

Anot.her Impoz-Larrt, t.erm, which needs explanation in this

context is .the ~de~rees of freedom'. The de~rees of freedom of a

Siyen dynamical system can be defined as t.he number of in!1:,1al

conditions that. can be chosen independently to define the stat,e

of the syst,em.

The concept of phase space' has been used successfully in

the developmen~of statis'tical mechanics and in the treat.ment, of

different,ial equat,ions. The dynamics of nonlinear syst,erns in

phase space has many interest,in~ and peculiar charact.erist.ics.

Nonlinear syst.ems can, in r;eneral, be classified into

coreser-v.at.Ive and dissipat-ive systems.

2

In t,he next two sect,ions



we shall discuss the ~eneral nat.ure of' the phase space dynamics

of these two classes of systems.

1.2 'CONSERVATIVE SYSTEMS

In simple words, a conservative system can be

described as one with an invariant t.ot,a! e~ergy. It is possible

to ~et a clear idea of a conservative system with the example of

a free oscillator like the simple pendulum. The equation

,overnin~ such a system is

+ + Sin e = 0 (1.2)

where ~ is the acceleration due to ~ravity and l is the len~t,h of

the pendulum. In t.he present, example, t,he phase space is 'two

dimensional and when t,he amplit,ude of oscillat,ion is small, t,he

phase space trajectory is a circle with 1ts cent,er at, t,he orit;in.

A family of circles cent-ered at, e-o and e-±2nn (n-O,1,2,... )

,iyes the complete phase por-t.r-edt, of t,he sys'tem when executi~

small oscilla'tions.

Any conserva'tive sys'tem

Hamiltonian funct,ion H such that,

dH
- 1:1 0dt,

can be described by the

or H(q ,q , q ,p,p , p ) -= E. -= Constant
i 2 n i 2 n

(1.3)

i.e. conservative systems are charac1:,erized by the invariance of

ener-gy, Arrot.be r- Impor-tcarrt, p r-ope-r-t.y of conservative syst,ems is

that the volumes (area in t.he example of harmonic oscillat,or) are

3



conserved in phase space.

so, even at large times.

1.3 DISSIPATIVE SYSTEMS

Init,ially close t,raject.ories remains

Damped oscillator is a typical example

dissipative system, represented by the equation (1.4)

of a

= 0 (1.4)

2
where y is t.he damping coefficient and Cl.) =~/t.

In t.he equation (1.4>, if' we try a solut,ion e ell, we get, an

al,ebraic equation as

2 2
Ol + ar + Cl.) .. 0

which result,s in

Ol •
2

The quarrt.Lt.y under 't,pe radical si~n is always

can also be ne~a'tive, r;iving a phase fact.or.

can arise (Minorsky 1969).

(1.5)

less than .r.o It,

Three possibilities

1) r > O. In this case, et will have a· ne~at,ive real part, and a

phas~4 factor. Hence asymptotically, the solution ~oes over

t.o zero and the system is said to have a limiting point in

t.he asympt,ot.ic limit.

2) If' r=O, then equation (1.4) charact,erizes an oscillat,ory

syst,em and a first int,e~ral exist,s viz.,

4



(1.6)

In 'the phase space characterized by e-e, ~his is an equation for

a circle and we ob'tain a limi'tin@; circle.

3) If r < 0, et will have a posit.ive definite real part besides

a phase factor and the solution goes to infini'ty as t-.oo..

Thus 1:,wo trajectories start,in~ from t.wo nei~hbourin~ initial

states, will diver~e out and separate from each other as t,-.oo..

The system is said to be unstable.

The ener~y chan~e of t,he system is governed by (1.7)

• (1.7)

Ener~y is conserved if r=o , while i 1:, decreases if r >0, and the

trajec'tol'Y converges 1:,owards t,he ori~in. The trajectory diver~es

away :from t,he ori~in if' r < 0 .

I:f r > 0 (r < 0) all trajectories are at,tracted

towards (repelled' away from) a :fixed podrrt, known as at,t,ractor.

In "the present example t,he at,t,ract.or is 1:,he ori~in. The dynamical

properties of a dissipa'tive sys'tem differ from 1:,hose of a

conservative sys1:,em. Dissipat,ive syst.ems can not, preserve volume

in phase space. As t,-.oo, the phase space volume decreases and ~he

motion is confined to a cert,ain att,rac~or. In other words, all

traject,ories passin~ throuSh a certain domain of phase space are

attracted t,owards a @;eometric hypersurface of an obje-ct, in 1:,he

subspace -called ~he at,t,ract,or.

Another interestin~ example of a dissipat,ive. syst.em is the

Van der Pol osscfIl.at.or-, In "this case, the at,trac"tor is not, a

point" but, a circle, called as "the limit, cycle. The equat,ion for

5



the Van der Pal oscillator could be obt.ained by substit,ut,in~

in equat.ion (1.4)

(1.8)

i.e = 0 (1.9)

Here, if' 'Lhe oscillation amplitude e is ~reater than e 'then y>O.
o

Hence the oscillation amplitude decreases cont-inuously till e=e ,
o

at, which point y=O and the oscillation is asympto'tically stable.

On 'the other. hand if' e<e , then r<O and the oescfIl.at.Iorr ampli'tude
o

increases with time till e=8, which is a stable orbit.· Thus,
I' 0

for the Van del' Pol oscillator, any ~iven initial ampli~ude of"

oscillation .wotrld ~ive an asympt,otic oscillat,ion ampli'tude e.
o

That is, t,he syst,em has an at,t,ractor - t,he limit, cycle - which is

a circle with radius e <measured alon~ t,he e-axis in t,he phase
o

space).

We can develop an idea of the attractor by

what, we have said about t,he limi1:, cycle. For t.hfs ,

set, of n ordinary differential equations (continuous

flow)

~eneralizin~

consider a

autonomous

1:1 (1.10)

As time evolves, for

will create an orbi t

a ~iven

or 'time

Ird.t.Lal ooridft.Lorr, equa'tion (1.10)

series or a flow, which will

conver-g-e towards a re~ion of the phase space called a'ttractor,

which has the followin~ p r-ope r-t.fees (Froehlin~ et al 1981).

D The att,ractor is invariant under t,he action of flow.

ii) The dimension of the at,tractor is less t.b.an 'the dimension

6



of the phase space.

iii) At.t.r-aot.or- is contained in a domain, of nonzero volume

known as the basin of at~raction. The basin of att,ract-ian

is defined t-o be the set of pofrrt.es from which trajectories

are ori~inated and conver~e towards the at-tractor.

The ~eometry of the attractor is characterist,ic of the giyen

system. The attractor- has a dimension D, which will obviously be

less than the phase space dimension. A brief deescr-Ipt.Iori of the

dimension of attractor is given in the next section.

1.4 DIMENSION

The din~gnsion of an at,tractor is a quantitatlve

parameter which ·character~~es t-he property of t.he system. It, can

be in'terpreted as t.he number of i~dependent frequencies present,

in t.he syst.em. or minimum number of varia-~les needed to model the
J

dynamics of the system. It, can also be defined as the amount, of

Inf'or-mat.Lorr necessary t.o specify the position of a poi~t" on the

attrac'tor. For example, :fixed podrrt, has a dimension zero, liJ--mt.

cycle has . a dimension one, while an oscillator having two

fundamental frequencies (whose at,'tractor is a t.or-uso has

dimension t,wo. In all these cases, t.he dimension' is an int,e~er.

But 'there can exist. sys~erns havin~ at.tractor, of nonint.er;er

dimensions. We shall discuss about, such syst,ems Lat.er-. It is

worth point,in~ out, ·t,ha~ in'te~e:r dimension of t.he at.t.ract,or

Indfcat.ees re~ular sys~em (Farmer 1982 8: 1983, Schuster 1984),

while f'ractal (non Int,e~er) dimension depicts a chaot,ic system.

1.5 -CHAOTIC -SYSTEMS

The phase space :f:,raject.ories of cert.ain dissipat.ive

systems ..behave in a st,ran~e manner. Two nearby t,rajectories may

separate e-xporrerrt.Lal.ly wit,h t.Ime, That., is, the system has

sensi'tive dependence on ini'tial oorrdi t.Iorus (S.I.C). Such syst.ems

are said t.o be chao'tic. There is, in fact., no t;enerally accep'ted

definition far chaos. It, is a bounded s~eady-st,at,e behaviour
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CEckmann and Ruelle 1985, Parker and Chua 1987) which is not an

equilibrium pofrrt., and neither periodic, nor quasiperiodic.

<Quasiperiodic system is one having large number of independen~

frequencies, as explained in section 2.1). The frequency

spect.r-um of a chaotic syst.em is not. composed of discre'te

frequencies but is a oorrt.Irnrouss one (Gollub et, al 1975, Ktirt.en et,

al 1986, Brandst,at,er et al 1983):

Now, 'the question arises about 'the nat,ure of the at,t,ractor

in a chaotic system.

circle or a t.orus.

It. is not, a simple ~eometric object.- like a
It. was Landau who, in 1944, first 'tried 1:,0

answer this ques~ion. He studied the behaviour of f'Irrf d flow,

which makes a transit.Lon from laminar 'LO turbulent. when 'the

Reynolds number (t,he oorrt.r-ol parameter) is increased. He

concluded that the existence of a cont.inuous Fourier spectrum is

arepresen~s

Irrcommensnrr-at.e

Landau's idea was t,hat.

numberaofpresencethe'to

frequencies, ~d i 1'.,s at.tractor is a torus
J

torus of dimension r) wit.h r very Lar-ge .

due

only t,hose systems which have a Lar-ge number of independent,

frequencies can display chaotic behaviour, since 'the dimension of

the phase ,~pace must be ~reat,er than that, of ~he at,~ractor.

However, t,hese ideas had 1'.,0 be changed later, with the discovery

of chaos in cer~ain low dimensional systems.

Ruelle and Takens in 1971 (Ber~e et, al 1984) int.roduced

cer-t.arn at,t,ractors which are t,opolo~ically different from a

torus. They are

named as stran~e

exporierrt.Lakly on t,he

attractor (Fi~ure 1.1).

initial condit.Iores.

Two in!tially close

their st,ran~e beha­

viour viz., 'the

sensit.Ive ... ~ependenc~

. t
,

Fi~ 1.1 Dive~~ence of two fro ~ially close
~rajec~ories in phase space.

3.0

f.5

x 0

-1.3

-3.0
0 , 12 18 204- 30

to

on

drver-ge

due

trajectories

trajectories

attractors

of



A. periodic (or quasiperiodic) signal resembles itself at,

Iat.er- times. However a chaot,ic system does not display this

behaviour. Also, the predictive power is lost as time increases.
I

These properties of' loosing self resemblance or predictabilit.y

can be thought of as 'the quality which defines chaos. In the

case of periodic system "the dynamics become insensi"tive to

init-ial conditions when "the trajectory is on the at.'tractor. But

in the case of chaotic system, the loss of memory as t,he system

evolves is due to the sensitivity of t.he initial conditions. Iri

other words, different initial states of a chaotic syst,em evolve

in an unpredictable way 1:,0 many final sta"tes.

Parker and Chua [1987] explained information ~ain in the

followin~ way. Consider an autonomous system w!th a cont,ractin~

flow 4> (Youn~ 1983). Suppose 'that t,he syst.em can be measured 'to
l

within a reso~u'tion of £, 'that is, if 'the state is observed to be
/

x, the actual· state lies somewhere in B (x), the £-ball cent,ered
e

I:
at x, I' Assume 'that, 'there are t.wo observers who measure the st.ate

*"
Observer 1 observes t,he '

Observer 2 measures the

x,

I. ex,)
(a)of

more

which

s'tate

is,

knows

t.he

to be x.
2

question

observer

-, .
state of the sys'tem at 'time 1:,

t 1 1
state at, t.Ime 1:,)1:.., ..----------------------------.

2 i

Now 'the.

.about,

the system.

Observer 1

-knows 'that, 'the s'tate

state at-... t, must lie
2

inside <P
l

_t(Be (Xi))

2 1

lies -somewhere

FIG 1.2 a) Deslr-uct.lon oC Informatton In ~ a
conlraclln~ flow and b) Creal.lon of In!orma~lon In
en e)(pandln~ flow.

t,he

and,

1.2a).

knows2

B ·--(x )
£ i

therefore, 'that

(Fi~ure

Observer

at 't
i

inside

that, ~he sta'le at, t lies
2

somewhere inside B Cx )
£ 2

and,
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therefore, observer 1 knows t,he st,a'te of 'the syst,em more

accura'tely. Since t,he earlier observer possess more informa'tion

about, 'the state of the sys'tem, a cont,racting syst,em may be

thou~h't of as dest,royins information.

Now consider t.he opposite case of an e xp.andfng flow

(Fi~ure 1.2b). The Lat.er- observer, number 2, knows more about,

in

t.hestat.e,

oorrt.edried

the

isB (X )
e 2

observetowaits

becauseof 'Lhe system

The longer one

statethe

rfJ
t

-l (Bs:(Xi »).
2 1

more one learns. In ot.her words, an expanding flow may be viewed

as cr-eat.Lng information.

For a corrt.r-act.ing system, it is more accurate to use x 'La
1

predict t,he st.ate at t.Ime t, than to observe the state at t,ime
2

t . Larger the value of t -t" ~reater is the accuracy of
221

prediction. Thus :for a cont,racting (information dest,royin~)

sys~em, t,he ~redict.ive value of ~nit,ial condit.Lorus increases wi t.h

time. On t,he o't.ber- hand, for an expanding (information creatin~)

syst.em, t,he predict.ive value of init.ial condition det,e~orat,es

wit,h t.Ime,

This argument, shows t.hat. expandin~ syst.ems exhibit

sensit,ive dependence on init.ial conditions, but a purely

expandirig :flow also implies unbounded behaviour. By definition,

a chaotic trajectory is bounded. It, follows that, a chao~ic

syst,em must, contract. in certain direc'tions and expand in o'Lhers,

wit,h t.he cont,ract,ion out,wei~hin~ t,he expansion. The rat,e of

divergence or oorrve-r-gerrce of 'trajectories in each drr-e-ct.Iorr of

phase space can be measured. Such rat,es characterize the

dynamics of 'the system. Lyapunov exponent, is one such quant,lty,

much helpful in iden'tifyin~ cb.aot.Ic and re~ular syst,ems~

1.6 LYAPUNOV EXPONENT

Lyapunov exponent,s (LE)

and corrt.r-ecrt.Iori o ccur-r-Lng in

syat.em. LE is the avera~e

are used to quant,ify the expansion

~he phase space of a dynanrical

exponen'tial rate of diver~~·nce or

10



corrve-r-gerrce of nearby trajectories in phase space. Negative LE

Indtc.at.ezs exponential convergence of t,raject,ories. On the

corit.r-ar-y, a posit.Ive LE expresses t.he exponential diver~ence,

indicat.ing a chaotic system.

Consider a dynamical system with n dimensional phase space

and let the syst.em be governed .by n ini t.Lal condit.ions. We can

represent the behaviour of the system by the Iorrg term evolution

of an infinitesiJnal n-sphere of initial conditions. The

will become an ellipsoid due to SIC nature of the flow.

sphere

The i
l h

one dimensional LE (A.) is then defined in terms of" t-he len~th of
l..

'the principal axis P. (t) of the ellipsoid as
t,

A
i,

Lt= t,~oo

1
~ln

p. «»
\.

P.{o)
l..

(1.i1)

If A. is the largest, poesft.Ive LE, then t.wo init,ially close point.s
j x.

on 'the at,tract,ors grow as e J ( Wolf' et al 1985, Eckmann et, al

1986 , St.oop et al 1988)

1.7 CHAOTIC ATTRACTORS

We have seen that the rat.e o:f loss of' predictive power is

equal to the rate of" information gain. Then the important point

is that" if a dynamical re~ime is represented by an att,ractor on

which nei~hbouring

chaotic.

trajectories diverge, t,hen the re~ime

... ", .,;.

is

There was an earlier belief that only thnse syst,ems, wit,h

lar-ge number of' de~rees of freedom show cb.aot.Lc behaviour. But,

recently it, has been established that certain low-dimensional

sys'tems also exhibit SIC (Lorenz 1963). SIC is not possible on a

two dimensional attractor, due to the t.opological reason that, the

Therefore only systems wit,h at. least, t,hree phase

trajectories

intersect.

of a dynamical syst,em in phase space cannot.
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space dimensions can exhibit, chaos. In a 'three dimensional phase

space, t,he exist,ence of s~ran~e a~tract,or requires 'two operations

- stre'tchin~ due to SIC, followed by f'oIdfrig , The st,retchin~ and
.,

foldin~ are necessary to ensure 'that t,he t,raject,ories will remain

in a boUnded space.

a

by

are

less

is

Then fo-

rect.an~le

wi"th

followed

ABCD

of a stran~e

t.he

a'tt.ractor

in

stran~e

st,retchin~,

foldin~.

ct,ion.

rectan~le (Fi~.1.3a) and

stretch it by a factor of

t,wo in t,he x-direction,

while corrt.r-act.fng i 1:, by a

y-dire­

we will

get,

back

fact.or 2n in the

If T1 >1
ABeD

1. 1. 1. 1

area than ABeD.

properties

at,t.r-act.or-,

Id A BeD back on itse­
11.1 1.

If as shown in Fi~ure

(1.3a) and fit, t.he ima~e

ABeD. Then we will ge~ a

hairpin shaped curve, and

is named as hor~eshoe.

Repea~ this (Fi~ 1.3b)

st.retchin~ in x-direct.ion

and foldin~ in t,he y-dir­

ection. Aft"er a number

of iterations we obt.ain a

complex layered s'truct.u­

re, which has all the

V

A B

le

D C

~
A. B.

t I
D, C.

~
A B

)".
~

I) C

FI~ t.3 1a) First, stre~chin~ and
foldinr; oC ~he rec~anr;le ABeD.

't
A a

'\ x
J

./
D C

~

l J

l
---- - . - - -

~.
--- --- ---e))))
~------_.

- ---- ._-- ~

Fl£ 1.3 b) Second f~erat,ion of"
the Smale hOl'seshoe at. t.r-aot.or-,

Smale horseshoe att,ractor is a t,heoretical model of 'the

st,ran~e at,t,ractor. As ment.ioned above, t,he basic opera'tions

necessary for crea'tin~ a

Cert.ain physical syst,ems exhibit, irret;ular or chaotic
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motion whose time dependence is deterministic. Thus the chaotic

behaviour exhibit.ed by systems whose time evolution can be

described from its previous behaviour is called deterministic

chaos. Another definit.Iori of determinist.ic chaos· is connected

with de~rees of freedom. Landau's idea was that only systems

wit,h lar~e number of de~rees of .freedom can exhibit chaos. But

it has been shown tha~ even systems wit.h t.hree de~rees of freedom

exhibit, chaotic behaviour. The chaos exhibit.ed by syst.ems with

small number of' de~rees of freedom is also called deterministic

chaos. The motive behind deterministic chaos is the SIC.

Consider a system wit.h t.hree-dimensional flow. The

requirements for SIC is that, t.he dimension of the att.r-act.or- D is

greater t.han two, and the dimension of t.he attractor is less t,han

the dimension of 'the phase space. Then the dimension of the

at.t.r-act.or- representin~ a chaotic re~ime must be ~reater t.han 2,

but less t.han 3, Le; the attractor has a fractal dimension

(2<D<3). In ~~eneral, for a system with n-dimensional :flow, the

stran~e attractor is characterized by noninte~er dimension or

fractal dimension.

Thus a dissipative dynamical system can become chaot.ic if

the phase space dimension is greater 'Lhan or equal to t,hree.

Chaos with small number of de~rees of freedom is due to the SIC

of ~rajectories on s~ran~e at'tractors.

The behaviour of a s'tran~e attractor can be explained in

terms of Lorenz model.

1.8 LORENZ ATTRACTOR

One of t,he first. systematic studies on a chaotic syst,em is

due to Lorenz in the oorrt.ext, of climatic dynamics (Lorenz ,
1963). His study was connected with equations governin~

convect!ve phenomena in fluids. Temperature differences I in a

thermally expansive :fluid placed be'tween 'two plates, where" t.,he

upper plate is at, a constant, t.ompe.r-at.ur-e T and t,he lower plate
o

at t.emper-at.ur-e T +6T csr >0), create convection if 6T > 6T,
o C

13



where eST is the crit,ical t.ernper-at.ur-e below which t,he syst,em is
c

at, the st.ate of rest,. These convect.ions set, up t.ubes wit-h a

hexa~onal cross section along t-he height, of t-he t-ube and t-hese

are called Benard cells. This was first. observed by Benard in

1900 and was sat-is:fact.orily Irrt.e.r-pz-et.e-d by Lord Rayleigh in 1916,

so that. this convect-ion is called Rayleigh - Benard oorrve-ct.fori.

The convective phenomena can be

three nondimensionalized equat.ions. The

moment.um of the fluid can be described

The momentum equat.ion is ~iven by

explained

coupled

by a set.

in t.erms of

t.ransport, of

of equations.

-f, (Pr
...

+ v - <1.12a)

We define the Prandt.l number Pr-v/D where v is the kinetic
T

viscosity of t.he fluid and D is t.he thermal diffusivity, p is
T

~

the hydrostat-ic pressure, X is t.he un!t. vect.or along t.he vert.ieal

axis in t.he direct.ion of cravit,y and e<-; ,t) is t.he t,emperature

deviation.

Incompressibilit-y of the fluid is represent.ed by

7.~ • 0 <1.12b)

- ~

and t-he heat propa~at.ion through t.he temperat.ure deviat.ion S<r,t.)

ae ...
8t, + v · '\le • Ra X . ~ + re (1.12c)

where Ra is t,he Rayleigh number
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(1.13)

~ is acceleration due "to gravi"ty

P is "the mean density ,et is expansion coefficient, n is dynamic
o .

viscosity and d is "the thickness of the :fluid

When Ra < Ra (critical Raylei~h number) the fluid remains
c

'at, rest while, if Ra>Ra, the convection be~ins. Convective
c

rolls are crea"ted be"tween the two pla"tes, with adjacent rolls
...

rotat,in~ in 'the opposite directions with velocity v.

Lorenz reduced the dynamical behaviour of 'the corive-ct.Irig

fluid Irrt.o t,he;' :following :form .

dX
d"t a= Pr Y - Pr X

dY
d"t

dZ
d"t

=-XZ+rX-Y

=XY-bZ

(1.14)

The values of t,he parameters Pr and b are :fixed. Usually Pr-10

and b=8/3 and r is t.aken as 'the control parameter. The nat.ure of'

the phase space t,rajectory varies wit,h r-,

trajectori.es become irre~ular (Ruelle 1980).

For r > 24.74,

The cont.ract.ion of volume in phase space can be described

by' Lie deriva"tive. It gives the z-eLat.Ive rate of chan~e of' a

volume V in phase space under t.he action of' the flow.
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1 dV
V dt. =

n oX
E

i

oX
i=1 i,

(1.15)

where X is ~he i
l h

oornporrerrt, of X and X eRn.
i,

Lie derivative is

ne~at,ive for dissipative syst,em, which measures the rate of

cont.r-act.Lori. For Lorenz at.tract.or, 'the Lie derivative is

+
ay
aY + = - (Pr + b + 1)

-41
=~

(1.16)

t.e; 'the volume is reduced by a :fact,or of

unit, of time.

-4.1/3
e

-6
or 10 in each

The complex nature of t,he system can be confirmed to be

chaot.Ic if the dimension of the at.t,ract,or is :fract.al. But, if the

system exhibi'ts stronr; volume corrt.r-ac't.Iori in phase space, then

the fractal value can be very close t.o an integer. In such cases

we have to resort. t.o ot.her met.ho.des like, for example, studyin~

the evolution of separation distance in phase space.

Chaotic ruat.ur-e of the system can be under-srt-ood by

close

Fi~ure

t.emporal

separation

First consider

init,ially

the

oC

gives

the t,wo t,rajectories.

(1.4)

'traject,ories in phase space by

measuring separation between

s~udying

evolution

distance 6 versus t,ime for

Lorenz model.

I I

IO~

I~. . . 1-
.-----------J-l-~i--rV'V~VC\,~~

I,
!/

J<fi
.AV'

IQ' ~.JV

10' 11 ~
ID )lr<f
•. \J. so .:

10

so
t..wo podrrt.es

dist,ance

separa~ed

-8
6 =10 .

o

by a

The

ri,; S.... Evolution of separallon dJst.ancn. dist.ance 6 bet,ween the

t.,wo t,raject.ories increases

16



exporierrt.Lakly as 6=0 e xpO,t,) where A. is the largest, LE.
o

ave.r-age slope of the curve of the Fi~ure (1.4).

posit.Ive, the system is chao'tic.
I

A is 'the

If A is

Usually, in experiments, one records the 'time v ar-Lat.Lori of'

a measurable quant.ity which charact.erizes 'the dynamics of the

syst.em. From such time series, it is difficul~ to calculate LE.

However, evalua~ion of dimension which is an Impoz-t.errt, parameter

to quant.ify chaos is comparat.ively easier. There are different

classes of dimensions, such as phase space dimension, fract,al

dimension, information dimension and correlation dimension.

General description of· these classes of dimensions are given

below.

t.9 FRACTAL DIMENSION

The fract.al dimension is referred in different

terms such as Capacity, Hausdorff-Besicovi~ch dimension~ e t,c.

Consider an at-t.ract.or A, and cover t.his set, by hypercubes of

linear dimension e, Let. N(&) be t.he number of cubes necessary t.o

cover t.his at,t.r-act.or- and if D is the dimension of t.his at,t,rac~or,

then for small e ,

where k is a const.ant.. Then t.he Fract.al dimension Df is

(1.17)

Lt
=

&-+0
(1.18)

If"
I

If t.he set. is a sin@:le point. t.hen N(£)=const.ant.....1 and Dr:
-i

the set. is a line N(£) = Le , and hence Df - 1; for a surface
-2

N(e) = So!: and leadin@: t.o Df • 2.

17



Noninteger

constructed as

ed Cantor Set

displays this

behaviour. The

Cantor set is

by certain phy­

sical systems.

A complicated

s'truc'ture call-

values

are

of' Of
exhibited

N(E) € N(E)
.1 ~ i •

.3 i/3 2 •

~ t/J 4..-..

• t 'l1 1/17 1-.- ... ......
(a) (b)

Fie; 1.5 a) The unit, Irrt.e-r-vzal b) The middle t.hfr-d
Cant-or set,

follows. Take

a line se~ment,

bet.ween (O,1). Remove the central 'third as shown in Fi~ure

(1.5b). Then we will ~et, t.wo pieces in t,he Irrt.er-ved [0,1/3] and

[2/3,1]. Remove t,he middle 'third of each of 'these intervals, t,hen

we will ~et. four units. Repea't t,his process ad inflnit.um. The

result,in~ set, is called middle 'third Cantor set.

The I ·fractal dimension of t.he line can be obt,ained by

cover-Ing it. with volume element. of lenc;t,h e = (1/3)n (Fi~ 1.5a).

Then

D =
f

Lt
n .... oo = 1

The f'ractal dimension for t,he middle t.hird Cantor set. (fl~ 1.5b)

is

D :::I

f
Lt

ID 0.6309

That, is, the f'ractal dimension of the Cant.or set, is ~reat,er than

that of' a point, but. less 'than 'that of a line.

18
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int,eres'Ling 'LO riot.o t.h.at, t.he dimension of" ~he line is integer but

its corrvohrt.e-d nature is charact.erized by rrorrirrt.e-ge r- dimension

(Lich'tenberg and Lieberman 1983).

1.1D. INFORMATION DIMENSION

Fract.al dimension is only a met.r-Lc dimension, and it

does not, consider the information about. t,he t.e.mpo.r-ad behaviour of

the dynamical system. The at,t.r-aot.or- volume is p ar-t.Itioned into

cubess of equal size, so that all cubes are equally important. even

though t,he t,raject.ories are visitin~ t,he cubes a'L different

The information dimension on the other hand" isfrequencies.

probabilistic in nature, ·and is relat.ed t,o trhe informat-ion

necessary to specify the position of a podrrt, on the attractor.

In most. cases t,he part.it.ion do not, have equal p'r-obabt lf t.y, then

the information needed t.o specify a point. wit,h· accuracy e is

I(e) =
N( e:

E
i=1

p. In ( p .)
l,. i,

(1.19)

where P. is t,he p r-ob.abfIft.y associa~ed wi'Lh t.he i
l h

box. The
l,.

Inf'or-mat.fori dimension D is defined as
I

D
I

= Lt I(e)/ In(1/e)
&-+0

(1.20)

If all boxes are of equal

then

probabilit,Y

19
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N<,e>
I(,e) = - E 1/N(e) In1/N(£) = N(e)(1/N(e) In N(e))

1..=1

!(e) = InN(e) = D ;n (1/e)

D = Df I (1.21)

t.11 CHARACTERISATION OF A SYSTEM FROM ITS TIME SERIES

Fractal dimension and Irif'or-mat.Lon dimension are very

handy in describin~ 'Lhe dynamics of nonlinear aystems. But- t,hese

quantities are difficult, t.o extract, from an experimental dat-a.

However a third 'Lype of dimension, 'Lhe oor-r-e.tat.Ion dimension is

easy 't,o oomput.e from such e-xpe-r-Imerrt.ed data. Hent,schel et. al

[1983] and Pawelzik et, a1 [1987] have in'Lroduced the concept. of

,;eneralized c:Umension so as to brin~ the Cractal, information and

correlation dimensions under one roof. A det.edIed explanation of

,eneralized dimension and correlation dimension shall be ~iyen in

the second chapt.er. The met.hod of calculat,ion of these

quantities Crom experiment,al dat.a shall also be discussed t,here.

We have merrt.Iorre-d t,hat- it.· is difficult. t.o oomptrt.e t,he

LE's from experiment.al dat-a. However it, is comparat-ively easy

to oalcufat.e a quantit,y, Kolmogor-ov entropy, which is relat,ed to

LE's (Benet,t,in et, al 1976). The next section ~ives a

description of t,his.

1.t2 KOLMOGOROY ENTROPY

The exponent-ial rat.e of divergence of f,rajec1::0ries

on a stran~e. at-tractor leads to the cr-eat.Ion of informat,ion.

This rate of diver~ence can be ident,ified in terins of Lyapunov

exponents. The Kolmogor-ov Sinai or Kolmogo r-ov e-rrt.r-opy is anot,her

20



parameter which quant,ifies 'the diver~ence of traject,ories and is

the mean rate of creat,ion of informa'tion.

a sequence s.o-o of m successive
\.

t,ime int.erval ~t,. S.<m)=s. , s. ,
\. \.1- \,2

of the sequence of S.(m) is
\.

probabili1:,yThe

For t.he calculation of this e nt.r-opy, the phase space is

par-t.It.Lorred int.o n elements, each of which is assi~ned with a

symbol s.. Let, us consider
\, ,

measurements made at. a

.......,s..
\,m

peS. (m»). Hence,
\.

E peS. (m») = 1
. \,
\.

(1.22)

The amount, of' information cont.ained in t,he sequence of len~t,h m

is

I • - E peS. (m») In peS. (m»)
m . \. \.

\.

(1.23)

The Kolmogor-ov ent.ropy is 'the information per unit. time in a

sequence of measurement.s

K
I

m

=~
0..24)

For re~ular or predict.able systems, the evolut.ion of t-rajec'tories

do not. ~i~e any new informat.ion. For. example, in 'the case of a

stable :fixed point. and limi t. cycle, new measurement.s would not,

,ive any... :furt.her informat.ion, so t.hat,. K=O. But." for chaot.ic

system K > O. (Eckmann and Ruelle 1985). K is also expressed

as



(1.25)

where 0', is the LE. The ~eneralized entropy and Second order
\,

Kolmogor-ov entropy are described in detail in "the next ·chapter.
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CHAPTER 2

QUANTIFICATION OF CHAOS
IN

NONLINEAR DYNAMICS

Detailed description of the method of nonlinear
analysis used in the present work is £iven. Parameters
which can quantify the de~ee of chaos are dealt with
in detail.



QUANTIFICATION OF CHAOS IN NONLINEAR DYNAMICS

Simple linear systems are easy to handle and one can

develop the basic equations of dynamics without much difficulty.

In case of complex systems, it, may be di.f'f'Lcuft, to obtain

equations of motion, especially when the interactions are

nonlinear. However, the dynamics will reflect up on the time

dependence of certain easily measurable quantities. The temporal

development of such quantities is known as the time series. Time

series analysis, which is currently att,ractin~ much interest, can

,ive immense ,insight, into the dynamics of t,he system. In this
:,

chapter we describe various methods used in t.ime series analysis.
"

We shall describe in detail t,he met.hods suitable for nonlinear

systems, after ~ivin~ a brief description of conventional

techniques \lSually employed in t.Ime series analysis.

2.1 FOURIER SPECTRA

Discrete fourier transform is one of the usual

methods used t.o determine the kind of evolution produced by a
. ~

dynamical system by st.udyin~ a 'Lime dependent si~nal x(t), t.he

time series. This wi II help us t.o find out various frequencies

present in 'the syst.em under consideration. This met.hod is used

to Iderrt.If'y 'the @;~neral nature of t,he syst.em and has recently
."

been successfully applied to the studies of asteroidal belt

(Pr-at.ap 1977) and Neural syst.em (Hinrichs 1987, Dumermuth and

Molinari .1987). In this sect.ion we study the method of fourier

analysis of a t.ime series. We shall explain the spectra to be

observed for different, classes of signals like sinusoidal,

non-sinusoidal, quasi periodic e t.c. The limit.at,ions of t.he

method in t.he analysis of chaotic syst,em shall be discussed.
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time.

We assume t.h.at, the si~nal x(f,) is a continuous function of

This sisnal is ~hen sampled such ~hat, the experimental

results provide a discre~e sequence of real numbers x which are
j

re~ularly spaced in time with an Irrt.er-vad of ~f,. The number of

data is finite, oorrt.edrdng n values for a t.o t.ed length of time

t = (n-1)~t.
mC1X

The smallest frequency ob~aihable from such a

time series, M=1/t- . We can define Fourier transform of a
ma.x

discret.e t.ime series x
j

as discret.e fourier series ~k '

A.
X =Jc

1

-{Il

n
Ex. exp (-i 21ljk

j=1 J n
) (2.1)

k = 1, n , i =- ~ -1

, lA. 12
.I:'" "'. f h 4:'"The ~raph :r~presen~in~ XJc as a ~ unC,-,lon 0 to. e ~ requency

f (f=k.~f) is called the power spectrum. The nature of the power

spectrum is characteristic of the syst,em.

Let, ,:ps consider a periodic si~nal x(t,) of period T , so

that

x(t) = x(t,+T) (2.2)

If the is

sinusoidal power

Fig 2.1 Four-Le r- spec~ra or pure sinusoidal
f urict.Io n.

spectrum contains only

a sin@;le "frequency at

i/T Hz "(Figure 2.1).

A nonsinusoidal signal

(Fi~ure -.. 2.2a), ~iyes

rise to the spectrum

cont.airdrig the freque­

ncies located at 2/1'

Hz, 3/1' Hz ... et-c,.

o ill

(
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(Fi~ure 2.2b) which are t,he harmonics of the fundamental

)((t)

frequency

Hz. That-

1/T

is,

is nonsinusoid-

tha~ the system

t.he presence of

harmonics in t-he

showsspect-rum

t
L...-------------+

al. The Figure
Fig 2.2a Nonsinusoidal furrc t.tori,

(2.2b) represe-

nts a sys'tem in

which the dura't-

ion of measure-

merit, is an

Fig 2.2b ;Fourier spec'tra ot: a periodic
func~ion (nonsinusoidal).

o tiT 2/T 3fT 4fT int,e~er mul'tiple

of si~nal period

T f.e; t lE: pT,
ma.x

p > 1 (a positi-

ve int,e~er).

If we have \a sit,ua'tion, where t, IT is noninte~er, then
ma.x

(2.3)

In t-his case the behaviour of

~hat of

in Figure

has a

the function is like

Sin
2z/z2

as shown

2.3. The f'uncrt.Iorr

. I

I ~)
!~~ z..
: :

maximum amplitude at, z=O,

wit.,h a series of secondary

±o.+1/2)rr,maxima

amplitude decreases as

whose

1/z
2

_~i z

where t is a positive
-b -11 Er I1

inte,el'.
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A dynamical syst.em, whose behaviour is due to "the

euper-posstt.tori of oscilla"tions which differ in amplitude, period

and I ratio of harmonics, will show a totally different frequency

spectrum. This type of syst.em can be represented by a f urrc't.Lori y

of r- independent, variables 1:," t, which is said to be
l' "'2' r'

periodic with period 2rr and has the property

y(t. .t, t,.; ,t) = y(t,t t.+2rr t )
12 J r 12 J r

j = 1, ..... r (2.4)

The function y is said to have r-periods and it represents a

quasiperiodic system wit.h mult,iple periodici'ty. An example of a

quasiperiodic system can be ~iven in terms of' 'the astronomical

posdt.Iori of a point. on the surface of t,he earth. In t.his system,

r-ot.at.Iori of the ear'th about, i t,s axis 'takes 24 hours (T =24
2-

hours), 'the r-otsat.i.orr of 'the ear'th around t,he sun 'takes 365.242

days (T =;. 365.242 days) and the precession of' the earth's axis
2

of r-ot.at.Iorr t,akes 25,800 years (T = 25, 800 years). This syst,em
3

contains t,hree frequencies. Hence i 1:, is not, possible to describe

the t.r-aje-ct.or-y of 'this in a phase space in terms of Hmi t, cycle

or fixed po.irrt., used for periodic systems. An alternat.e

descript.ion can be made for such systems in 'terms of the new mode

of phase space 'trajec'Lory, viz., 4''Lorus' of dimension -r- (i.e.

rr).

There are two 'types of quasiperiodic systems. If the

quasiperiodic function x (w i ,
1

...........•eo t)
, r

is the SU!ll of

periodic functions

x(w t , eo t) =
1 r

r

E
i=1

x:(w. t,)
\. \. (2.5)

then its power spect,rum is the sum of r- spectra of' each 01
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Then the spect,rum <io rrt.airrss a set.. of peaksfunctions x (w. t).
\. t

located at the f urid.amerrt.al frequencies f ,
1.

c
2

f'
r

and of

their harmonics,

mf,mf
1 1. 2 2

mt
r r

where m, m, m are posit,ive int,egers. But, if the
1 2 r

quasiperiodic function includes term like the product, of circular

function (Sin(w.t) Sin(w.t)), -then Fourier spec'lrum has a complex
\. J

appearance and oorit.edrr frequencies If. -f .1 and II. +f.1 and t,heir
t. J \. J

harmonics

Sin (w.1:,) Sin (w.t,)
~ J

(2.6)

Inorder to study a quasiperiodic syst.em in

consider a !, Albiperiodic

det,ail,

case in which each of

the nonzero component,

of the spect,rum of

the si~nal x(w l,W l)
1 2

is a peak wi'lh

abscissa Im f +m c I·
1 1. 2 2

We can classify t,he

systems in t.er-mes of

the

viz.,

r-at.Io of

whether

c If ,
1. 2

it is

FI(; 2.-. Four-Le r- specl,ra of a quaslperlodlc {"unction,

1"1/!'z is rat,ionalal. If f If is
1 2

rational, z: then the

Fourier spect,rum is not, dense (Fig.2.4).

rational or irrat,ion-
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f
1

T
2

=
n

1.

n
2

(n , n in'Le~ers )
1 2

(2.7)

i.e; quasiperiodic signal is periodic with period

T=nT =nT
1. 1. 2 2

So, we can wri-Le

xCeo 1:" Cl.) 1:,). = xCw t, + 2rrn , w t, + 2rrn )
1. 2 1. 1. 2 2

(2.8)

In t,his 'type of syst,em, 'there is
, I

f . This means that, all 'the
2

separated by same amoun'L of 1/T.

a ~frequency locking'

lines of spect,rum

of f wi-Lh
So

are always

But, if'

incommensurate

c If is
1 2

frequencies) ,

irrational

then t,he

<t,he

power

system contains

spect,rum has a

frequencies have ampl­

itudes too low to be

Two peaks are sb close

together with the

for very limited

number of frequencies

have significant ampl-

Hi~her .order

a

only

of

function.

appearance.

usually

complex

However,

itudes.

appearance

continuous

IX,,(2

'.
~~I

1 1 l I ~ f
I l I ~

Fie; 2.5 f l/f 2 Is irrational

det.e.ct.ed. In this case, the hi~her amplit,ude lines are present-ed
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by the crornbdruat.Lorus Im c +m f I
1 1. 2 2

values; O,±1,±2 (Fi~ure 2.5).

with m and m havin~ small
1. 2

The Fourier spectrum of an aperiodic si~nal is ciorrt.Irnrotns

as shown in Fi~ure (2.6) (Gollub et, al 1976, K\irten et al 1986,

Br-andsrt.srt.er- et, al 1983). However, we will not, be able t.o

50

"'_30
:tl.

eX

20

10

2 3 4 5 6

f

7 8· . 9

)

10 ., 1 12 13 l'

Fie; 2.6 Fourier spect.ra of an aperiodic f"unction

conclude t,hat, a si~nal is aperiodic from t,he appearance of

Fourier spect,rum alone, since quasiperiodic si~nals also give a

similar lookin~ Fourier spect,rum, when t,he number of frequencies

are very high. Moreover, random si~nals also exhibit, similar

spectra. It, is also known t,hat, signals arisin~ from a system

exhibi'Ling det,erminist,ic chaos have quasi oorrt.Irrucrues spect,ra.

2.2 FAST FOURIER TRANSFORM <FFT>

FFT is an al~orit,hm t.o compute .discret,e fourier

transform from t,ime series (developed by Cooley and Turkey in
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1965), and is one of t-he first- t-echniques usually employed in

the identificat,ion of deterministic chaos. Det.e-r-mrrrtsst.Ic chaos

has a fourier spect-rum where a few dominant- frequencies are

superimposed 'on a broad band noise floor. FFT technique is

useful when t,he number of data (n) is very lar~e wit.h small ~t-.

3
For example, t.o calculate discrete fourier t.ransform with n=10,

we have to calculat,e 1000 sums, each of which contains 1000

terms. This means t.hat the number of operation needed is of the

order of n
2

. It. will take a lar~e t.ime for the computation of

the frequencies usin~ conventional met.hod. However, when n is a

power of two, the FFT a1~orit.hm speeds up t.he calculation of

spectrum. For n=2i.O = 1024, t.he ~ain of comput.at.ional time is by

a factor of 100, while it attains 7000 for n_2
i 8

. Hence, t.he

importance of FFT techniques increases as the number of data

increases (Ber~e et al 1984).

2.3 AUTOCORRELATION FUNCTION (ACF)

Like the FFT, Autocorrelat.ion funct.ion can also be

used to charact,erize a ~iven syst.em. ACF ~ives an idea about how

predictable the system is. It- is useful t-o est-irnate the disorder

by measuring t.he resemblance of x at time t wit-h i t,seJf at a

later time t+r or it, is t-he de~ree of resemblance of si~na1 wit,h

itself as time passes. It represents t,he avera~e of the product

of the si~nal values at a ~iven time and at a time m.zxt, later.

The ACF of a si~nal x can be described in the :followin~
J

manner

1
n

"P = E x x lp = lp (m.~t) (2.9)
m n j j+m m

j=i

where lfJ is the ACF of "the si~nal x.
j

If we consider t,he t,ime se~ies CV , V , V ) (Babloyantz et,
1 2 n

al 1986), then,
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·E[V(t.)-V] [ V(t.i. +r) - V ]
(_1_) l. = 1. (2.10)

lp(T) =
n N

[ ]2_i_I: V(t.) - V
n 1-

i=1.

1
n

where V = I: V(t.)n l.
1.=1.

Accor-drng 1:,0 Wiener-Khintchine t.,heorem,

(2.11)

proportionality, the Courier

at later t.Imes. That, is

,...
where,· x

k
is a fourter component.

Thus the ACF is, up 'to a factor of
" 2

transform of' IXJc I · This means

quasiperioclib' si~nal resembles itself

t.,hat t.,he periodic or

the behaviour of' such systems are predictable.

In t,he chaotic resime, t,he power spect,rum has a ciorrt.Irnrouss

floor, so

VJ(T~ necessarily 2.89

as T increases

( Fi~ure. 2.7 ) (

tends

Gallub

'to zero

al 8
. ~

438

1975, Babloyantz

et al 1986 ).
T ---)

The resemblance
- 2.

disappears as

time increases.

of t,he signal
,

Fi~ 2.7 8~haviour of aut..ocol'-l'ela~ion f urrc t.f or, ~/(T) o t aper-iodic
funct..ion

In o t.be-r- words t,he predict,abilit,y of 1:,he signal

loases within finite time. Here also is difficult, to

distin~uish bet,ween aperiodic and random signal.
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2.4 POINCARE METHOD

We found in earlier sections that with both FFT and

ACF,·' it, is difficult, to dist,inguish between quasiperiodic,

aperiodic and random si~nals. Hence o t.rie-r- met.hodss should be

searched for. One such met.hod which gives more information about,

the behaviour of t.he system in the phase space was developed by

Henri Poincare, and is popularly known as the method of ~Poincare

sect,ion'.

x )
3

r

we

are

of Sside

condi'tion,

the dynamics

and

system (x, ",
1 2

'traject.ory

init,ial

where

from one

.,

an

dimensional

x =constan't
3

crosses

from

t.hreeaofcasetheIn

other.the

Poincare plane S defined by

intersect 'the plane S at p , p,
o 1.

assumed such 'that x continually
9

Thus

event,ually ~et, a number of pcdrrt.es on S, which is called t,he

Poincare sect,ion.

The 'transfor~t,ion leadin~ from one point, on S to t,he next

is a corrt.Irruoues rnappin~ T of S into i t.self called the Poincare

map.

P
k+i = T(T(Pk-i)) = ::1 Tl(P )

(K-l+t)

= :::::1

(2.12)

Thus, it, is clear that, P completely determines P, which in turn
o 1

determines P and so on.
2

Poincare sec1:,ion and map reflects t,he property of :flow of

the sys~~m. For example, if the flow is dissipat.ive, i 1:,s volume

in phase space cont.racts.

In the Poincare rnet.rrod, t,here is no rest,rict,ion on the

dimension n of" t,he phase space. It oorrver-t.es an n-dimensional
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flow Irrt.o (n-1) dimensional difference map. If t.he flow is t.hree

dimensional, t.hen t.his met.hod maps t.he flow on t.o a plane,

r-educfng the number of coordinates by one. Secondly, the t,ime is

disscr-et.Izied and time interval bet.ween two successive points is

no't constant.. The differential equations are replaced

difference equations, by Poincare map P~T{P), so t.hat it is easy

to manipulate 1:..he equations 1:..0 ~et, a sequence of' point.s xj,' x
2

,

. . ., x by successive it.erat.es of a difference map
n

X
n+~

= f ( x )
n

(2.13)

The Poincare sections usually have 1:..he followin~ appearance, a

point or a number of points are located alon~ a sin~le curve, or

disst.r-Ib'ut.ed on a surface. In t.he case of a periodic system· the

Poincare sect,ion is a sin~le point, in a plane and t.his point, is

called :fixed point of Poincare map T. This can be represent.ed by

P = T (P ) = T
2

(P ):= .
o 0 0

(2.14)

In t,he case of a truly quasiperiodic sys'tem, t.he Poincare

sec'tion has a number

of points which looks

frequencies are comm­

ensurate the curve

~he

a

curve

If..

only

simple

have

2.8a).

a

will

like

(Fi~.(a)

incommensurat.e

ob.ao t.tc

filled.

be

For

of

wit.h

frequ-

will

or

while

-number

it.

point.s

densely

aperiodic

limit.ed

encies
(b)

syst.em t.he podrrt.es areFig 2.8 Poincnre sect.lions
a) quaslperiodic I'e~iJne b) obao t.l c re~inle

dist.ributed on a
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surface as shown in Figure (2.8b). But, even wi t.b t,his method, it,

may not, always be helpful t.o distinguish be'lween an aperiodic

sys'tem which is s'tron~ly cont,ractin~ and a quasiperiodic sys-tem.

Thisl is because the contraction of area for a st,ron~ly

cont.r-acit.Irrg aperiodic system may be too rapid so that, Poincare

section will look like a simple curve as in the case of

quasiperiodic systems.

For example in the Lorenz model, the Poincare section in

the X,Y plane with Z=r-1 consists

of only t,wo line se~ment,s as in

Figure (2.9). This implies that,

the t.raject,ories .c.an be inscribed

y

30

at.t.r-act.or- has

almost, on a surface

dimension

and

two.

the

But

20

le

Lorenz att,ract.or has a complex

at.r-uct.ur-e consistin~ of a lar~e

number of closely packed sheet,s.

Its Hausdorf"f-Besicovitch dimens-

ion is 2.06. These result,s prove

· C

-30 -2D -la 0

C'. -re

/ -20

-30

that, t.he L9~enz att,ract,or is not, a

simple surface. The reason for

the f"ractal dimension to be very

close t.o t,wo is due 'to 'the stron~

volume contract,ion.

Fig 2.9 PoI nc.ar-e sect.ion of
the Lorenz altractor

2.5 LIMITATIONS OF CONVENTIONAL TECHNIQUES

FFT, ACF and the method of Poincare sect,ion are t.hree

si~nal processing techniques which are useful for classifYing the

systems in a @;eneral way. However, 'these ~ive only qualitative

ideas about 'the dynamics of the system. They do not quantify any

of the characteristic propert,ies of the sys'tem. Even thou~h we

are able to say that, whether or not t,he system is chaotic, 'these

methods do not, tell us how much chaot,ic, t,he system is. A study,

therefore, usin~ t,hese techniques will have its own limitations
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(Froehling et, al 1981).

FFT and ACF are usually valid only for linear syst,ems

which obey Dirichlet,'s oondtt.Iorr re~ardin~ t,he corrt.Iriutt.y and

finite number of finit,e discont,inuit,ies. Any FOUI'ier

decomposi'tion of a given dynamical process would imply the

existence of a f urrd.ame.rrt.ed frequency and o t.he-r- frequencies could

be commerisnrr-at.e t.o t,his f'urid.amerrt.ed frequency. However, a

nonlinear process can arise from the exis'tence of two or more

incommerusur-at.e fundamental frequencies in t,he system, and this

will not, be revealed by a Fourier decomposi'lion or ACF.. Thus for

thermodynamically open nonlinear sys'tems like, for example, the

neural ne'twork, principles like superposi-tion and e r-godfcdt.y are

not valid and hence FFT or ACF methods are inadequa'te for this

analysis. Furthermore, such sys'tems can also exhibit, non

Markovian charac'leristics ~ivin~, thereby, memory e:Cfects.

Mathematically speakin~, superposabili'ty of harmonic functions

which is 'the basic proper'ty used in Fourier analysis, would break

down if 'the system is nonlinear.

t,hat, recently developed

exhibi'ting deterministic

1986, Grassber~er and

1984, Holden 1986, Hao

atten'tion in 'the field

above oorrt.ext,

dynamical ~yst,ems

and Scheingraber

1984, Schust,er

1984) ~ets more

theinisIt,

theories of nonlinear

chaos (At,manspacher

Procaccia 1983a,b,c 8:

Bai-Lin 1985, Cvitanovic

of nonlinear physics.

2.6 NONLINEAR ANALYSIS

Dissipative dynamical sys'lems are charac'terized by 'the

attraction of all t.raject,ories passin~ through cer'tain domain of

phase space t.owards a geome'trical object. called a'ttractor. The

at.t.r-act.or- is a compact, set, in phase space which is invariant.

under t,he ac'tion of 'the flow or rnappdrig , The set, of ini-tial

condit.Iorus giving rise 'to trajec'tories converging t.ow.ar-dss the

at.t.r-act.or- is called t,he basin of a'tt,ract,ion.
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There are four types of attractors. Let, us briefly

describe them. The simplest, among these is -the point, attractor.

It describes a eso ltrt.forr which is independent of time - that is a

steady state. This is essentially a fixed point in the phase

space. The limit cycle is the second "type of at,t,rac'Lor, and is

basically characterized by its amplitude and period. Its fourier

spect-r-um con"tains only a sin~le fundamental frequency and

possibly a cert,ain number of harmonics. The solution to the flow

can always be expressed as a Fourier series and if the state of

the system is known at a ~iven time, one can predict i t,s state at,

all Lat.er- times.

A t.hird t.ype of attractor is the torus r" Cr- ~ 2) which

corresponds a quasiperiodic re~ime with r- independent,

fundamental freciuencies. Here also t,he Fourier spectrum is

composed of a set, of lines, whose frequencies are linear

combinations of fundamental frequencies. While the solution to

the flow cannot ~enerally be put into the form of an ordinary

Four-fer- series, it is still possible to calculate t,he st,at.e of

the sys'tem st,art,in~ from a given init,ial condit.Iori.

The (a'ttractor of systems exhibit,in~ chaos are quit,e

different. They are called st,ran~e at,tractors (Ruelle and Takens

1976). To understand the stran~e behaviour of such at,t,ract,ors,

it is necessary to discuss some of 1:..he ~eneral fea'lures exhibited

by almost all chaotic systems (Roux et, al 1983, Babloyantz et al

1986, Reghunat,h et, al 1987, Nicolis and Nicolis 1986, Albano et,

al 1985), (i) its power spectrum is oorrt.Irruoues or broad band and

(ii) t.he autocorrela'tion function of the t,ime si~nal has only

finite support" t,hat is, it, goes to zero in finite time. The

stran~e at,t,ractors have t,he followin~ properties (Schuster 1984,

Atmanspacher et, al 1986)

1) phase 'trajectories are attracted t,owards i~

2) ~~rs of neighbourin~ trajectories diver~e on it,
3) trajectories are sensitive 1:..0 init,ial conditions
4) its dimension D is :fractal

We have. seen t,hat there are t,WQ types of systems viz.,

Re~ular systems charact,erized by simple at,t.ractors (equilibrium
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point" limit cycle or torus) with inte~er dimension and chaotic

systems characterized by stran~e attractors which have rrorrfrrt.e.ge.r-

dimension. How can we classify these systems ? Even though they

can be charact,erized by Fourier analysis, t.he method does not

distin~uish between chaos involving small number of deg'rees of

freedom and white noise. Such a distinction can be made with the

help of Poincare section. But 'this method offers only

qualitative information and also it, is not quite practicable for

systems with hi~her dimensions.

A quantitative characterization can be done using certain

characteristics of at,tractors in phase space. Two of such

si~nif'ican't properties of chaotic systems are the Hausdorff

dimension of th.e at,t,ractor and Kolmogorov entropy.

Kolmogor-ov entropy, as we have already seen <section 1.12),

is connected with the diver~ence of trajectories in phase space

(Benet,t,in et.: al 1976) or creation of' information. In this

conneot.Iorr we can define a whole set of dimension D <Hent.,schel
q

et al 1983) and ent,ropies K (Grassber~er and Procaccia 1983 b 8:
q

c), which ~eneralize 'the concept, of Hausdorff dimension and
( I

Kolmogor-ov entropy <Pawelzik and Schuster 1987). We shall

discuss about, t,hese in t,he Lat.t.er- part. of' this chapter.

2.7 GENERAUZED DIMENSIONS

Traject,ories of cert.ain dissipat.ive dynamical syst.,ems

exhibft-Irrg chaot,ic behaviour shrinks 1:,owards an at-tract.or whose

dimension . is less 'than -the dimension of phase space, and is

stran~e in character (Lorenz 1963, 1984, Ruelle et., al 1971, ot.,t,

1981). As indicated earlier, st.,ran~e at,'tractors can be

characterjtz e d by t.heir· characteristic dimensions. Some of -the

dimensions whichImpor-t.errt,

commonly used 1:,0

among

describe

~eneralized

nonlinear

dimensions

syst,ems are

are

fractal

dimension, Lrifo r-rnsat.Lorr dimension and correlation dimension.
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We try 1:,0 unders'tand the ~eneralized dimension in

system by a differential equation

d-dirrierrsdorual vector obtained from

a delay time T,

detail in t,his section. Let, us describe 'the given dynamical
dX F(X) where X is
d't = a

a sin~le time series by usin~

xo» = { x{f,); x{f,+T) x{f,+{d-DT) } (2.15)

Now consider a d-dimensional phase

par-t.Itioned into boxes of size s:, and

sequence which are ~iven by samplin~

space which is uniformly

N points {X. }~ in a time
'L 'L =1

t.he si~nal X(t). One can

estimate t.he invariant. probability measure P. associated with box
'L

i by N. IN, where N. is the number of points :fallin~ wit,hin -the
'Lf6~ 'L

box i, provided N is lar~e enou~h. In general, i -t has been shown

that ~eneralized dimension D of order q <Heni:,schel and
. q

Pr-ocaccf.a 1983, 5at.o et, al 1987) can be defined as

D a:
q

(2.16)

The order of parameter q can take all real values between -00 and

+00. For q=-oo, it. characterizes -the rarer re~ions, while for q=ro,

describes t.he denser re~ions of the set.

infinite hierarchy of dimensions are implied.

Thus in (2.16) an

X, X on -the stran~e a-tt,rac-tor visit,s -the box i~
2 N

E p: can be wr-Lt.t.en in t.er-mes of the nat.ural probability
1. 1. -4

lJ<x) on t,he a-tt.r-aot.or- as

In . (2.16) P. (£) is t,he
. 'L

probability that the trajec:tory X,
1

Since

measure

I
q-1

= dj..l<x> [J..1 (B&(x»)]
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where B (x) de-rrot.e-es a ball of radius e around x and
e

1 N

= -1:N.
J=1

q-:1
""p. (e)

J
(2.18)

where p.(£) is t,he p.r-ob.abflft.y t.o find a point of the t,rajectory
J

within t,he ball of radius s: around a point, X. of t,he t,rajectory.
J

The chan~e q to (q-1) in the e-xporrent.es in e qu.at.fori (2.18) is due

to 'the fact, t,ha'L we

Schuster 1987). That,

switch

is, we

""from P. (£) 'La p .(£) (Pawelzik and
\.. J

are swit,chin~ from the probability

to find t,he t,rajectory in one of t,he homo~eneously distributed

boxes introduced above, t.o t,he p r-ob.abf.lft.y t.o find t,he trajectory

within a ball around one of t,he inhomo~eneously distribut,ed

poirit.es of" the t,rajectory.

""p.(&)
J

1
=~ E

i.
e ( s: - 1x - X·I )

\. J
(2.19)

By combfrdrig equation (2.16)-{2.19)

where

D
q

Lt 1= £~o In(£)

q

In C (e) (2.20)

1/(q-1)

]
q - 1]IX. - X·I

\. J
(2.21)

and
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d-1.

E (X
m=O

i+m
X. )2J 1/2]

J+rn

(2.22)

the

wit,hand D
2

to DF' t,he

information~he

is known as

are D, D
o 1

corresponds

to D
I

and D
2

D
o

ones

t,hat,

ident,icalis

shown

important,~he

been

D
q

hasIt,

and D
1

(Hen'tschel and Procaccia 1983)

dimension

Among

D ~D ~D •
o 1. 2

f'r-act.al

dimension

issys~emofinhomogenei1'.,yThe

correlation dimension. For a homogeneous system, all these

dimensions are equal 1'.,0 fract,al dimension, i.e.,

reflect,edD =D =D =.....D .
o :l 2 (X)

in t.he inequalit,ies of D for different, q's (Schuster 1984).
q

2.8 BOX-COUNTING ALGORITHM

Fract.al dimension D0 (D? is usually used t.o

the dynamics of 1'.,he sys~em quantita~ively. Consider a

describe

set, of

pomt.e in a d-dimensional space, and if N(£) is the smallest,

number of cubes necessary 1'.,0 cover 1'.,his set" then D is defined
o

as

D =
o

Lt In N(e)
&-+0 !n(j,/e)

(2.23)

Box-coun1:.ing by Taken's al~ori1'.,hm (Takens 1981) is used 1:.0

evaluate 1'.,his fractal dimension, which does not, 'Lake into account

of the probabili1'.,ies. This al~orit.bm oourrt.es the number of boxes

necessary 1:,0 cover 'the set,. The t,ime dependence 01 the syst,em

wit.h finite c.apacft.y can be described by fini te-dimensional

deterministic mathematical model. Nonint,e~ral capacit.y represent,
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a chaotic system. In:flni'Le capacit.y implies that, an infinite

number q.f de~rees of freedom are needed to describe the dynamical

system, which is not pos·sible in terms of both Landau's theory

and t/heor-y of stran~e att,ractors.

If the set, has volume V, t,he number of boxes of side e

needed to cover 'the set is

-D
N(e) ~ V e 0

for small a,

Then,

in N(&) la D In (j,/£) + In V
o

(2.24)

Equation (2.24) is more suitable 1:,han equation (2.23) especially

capacity Vf1n(1./&).

slope of t,he plot

for processing experiment,al

vanishing t:orrection 1:,0 t,he

calculated as t,he asymptotic

!n(1/£) for small e,

da1:,a because has a

D
o

In(N(£))

slowly

can be

against

Takens (Takens 1981) showed t,hat it is possible to compute

Do from a sin~le t.ime serief;, ...represe..et.ed by t.he infinit.e

sequence of real numbers {a. }~ . For this purpose, he
\, \,=1

consrt.r-uct.e-d a phase space wit,h infinit.e set, of D=n+1 dimensional

vect.or-es,

:s
D = a.,

\,
a.

\,+n

n ~ 0

(2.25)

Capacity calculat.ed usin~ Taken's method in t,he case of'

2/3 Cantor set., Qu.adr-art.Lc r-et.ur-ri map and Henon map are in ~ood
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agr-eernerrt. wit.h other methods <Greenside et al 1982).

2.9 IMPRACTICABILITY OF BOX-COUNTING ALGORITHM

Box countin~ al~orithm is very slowly conver~ing even

for low dimensional attractors <D < 2).
o

Also, it has severe

computational difficulties in calculation for any set, whose

capacity is greater than two <Mizrachi et al 1984).

Greenside et al [1982] tested Taken's box count-ing

algor-It.hm on several dynamical systems, the capacity of which has

been known by other methods. For low dimensional systems, D ~2,
o

the method works and the number of points necessary to deterrrrlne

the capacity is within the limits.

They have also applied Taken's al~orithm in hydrodynamical

models;' three variable model by Lorenz (Lorenz 1963) and 14

(Curry 1978).model by Curry Taken'svariable

conver-gees Cor lar~e e,
~ ~

However, Cor smaller e, the

al~orithm

algorithm

failed to oorrve.r-ge for bot.h models even when about a million

points were used.

One of t.he fundamental reasons why enormously long time

series may be needed to calculate the capacity by box-counting

method is the exponential dependence of N(e) on D
o

Two o t.her-

reasons are, (i) the set, S of't.en fills out the at.tractor in a
D

hi,hly nonuniform way and (ii) dynamical system may rapidly

contract, t,he volumes in phase space, makin~ it difficult. to

obtain t.he nonint,e~ral part. of the capacity, which arises from

the fractal: struct.ure.

Hence 'the box-count.in~ al~orithm is not useful for hi~h

dimensional and rapidly con'tract.ing att,ract,ors, like t.hose

encourit.er-e-d in the Lorenz model. But this me'thod gives

successful resul'ts in the case of low dimensional sys'tems ·like

2/3 Cantor set, and Henon map which have slow rate of" phase space

contraction.



2.10 CORRELATION DIMENSION

We have seen that, fractal dimension D is difficult.
o

to evaluate for hi~her dimensional syst,ems. To override 'this

difficulty a new dimension called correlation dimension

introduced. It has been su~~es'ted "that, stran~e att,l'actors

D
2

can

is

be

The Grassber~er-Procaccia algorithm (GP

characterized by D
2

Mizrachi et al 1984).

(Grassber~er and Procaccia 1983a,b,c,

withevencorrver-gf.ngefflcient,lyarealgor-It,hm) to evaluate D
2

smalf number of experimentai points and even at, hi~her dimensions.

(Atmanspacher et al 1986). For example, this algorit,hm yields

accurate value of D for hi~her dimensional system, with as small
2

as 500 data points (Abraham et al 1986).

oftypeprobabilisticaisdimension D
2

It can be calculated in terms of correlation int,e~ral

Correla"tion

dimension.

N
Lt E N-2

N-+oo
i,j=1

e (e - IX. - X.I )
1. J

(2.26)

e

= I d -+
d a' c (e')

o

where e(x) is the Heaviside function and Cd(e) is the standard

less "than e,

e(x)=Q. for r~Ocorrelation :funct,ion in d dimensional space.

unit-y for ,00. N-
2

is a normalization

represents "the Euclldean norm of (X. -X.).
1. J

the number of vector difference which are

factor

Equation

and

and IXi-Xj I
(2.26) ~ives

This can

also be considered as the number of"

h 1 i ~d 1·n ~hehyperbox W ose vo ume s Cor "

vec"tor "tips which lie in a

phase space and in 'lhis

sense, one can interpret, e-qu.at.Lori (2.26) as a probabili t.y

measure. The Cd(~) behaves as a power of ~ for small e ,
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«3rassber~er and Procaccia 1983a )

Cd(e)
D

s: 2
(2.27)

In most of the cases D is very close to D , btrt, is never
2 0

great,er ~han D. Now let us find, how D , D and D are related.
o 2 ~ 0

Le~ us suppose that the att,ractor has dimension D arid
0

cover this by hypercube of side len~t,h £. Each cube will have a
D

volume
0

and the number of cubes required to thes: cover

attractor is

M(e)
-D

o
s: (2.28)

We have to t;et a measure of M(£) from ~he ooz-r-eLat.Iorr ..function

(2.26).. Since 'the equation (2.26) gives the number of' pofrrt.es on

the attrac~:or, we have to connect M{e) wit,h the number of points.

Fotlowfng (3rassber~er and Procaccia [1983al, let, J.1. be the number
.lJ1

of points from the set, {X.} which are in the \. riorre-mpt.y cube.
\.

We ,then, have

Cd(e)
i

M( e»

E
1..=1.

2
J.1.

\.
= (2.29)

where we have used the box countin~.

in the asymptotic state

Usin~ Schwart,z inequality,

Lt
Cd{e) =

i
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[
D

21.0
E lJi ] = M(c:-) J\jr s:

(2.30)



as we t.ake t.he limit. of d-sco, and used t.he fact. that, ~1-l.=N
\. \.

D ~ D
2 0

(2.31)

Now, to show t.hat D ~ D , we consider t,he f'o.l.lowfrig equations
1 0

where

D =
1

S(e)

Lt
e ...o

M( e»

= - E
1.=1

p. In p.
~ \.

(2.32)

where P. is 'the probability for a point, to fall in t.he
\.

as N-+oo. We . wri'te,

p. - u, / N
\. \,

and for uniform coverage

The errt.r-opy is defined as

So(&) is the maximum information needed.

In generaI~
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.lh
\. cube,

(2.33)

(2.34)

(2.35)
,r'
f

(2.36)



therefore

s(£) = S - D In£
o 1.

This I. means t.h.at,

D s D
1 0

(2.37)

By combfrdng equations (2.31) (2.37), and following the

ar~uments pr~sented by Grassber~er and Procaccia (1983a), we ~e~

D s D s D
210

(2.38)

ofentropies

En'tropy

K :11 K = 0
2 1

K > 0
2

K .. 00
2

and

Dimension

Table 2.1 Dimensions
different sys~ems

beenalso

calcufat.e D "from
2

time series. I~

Thus D is a si~'nificant, qiaarrt.Lt.y 1:.0 characterize the st,ran~eness
2

of the a~'tractor, i ~ is a lower bound on t,he Hausdorff dimension

and i 1:, is easy t.o

has

shown that, D is
2 Regular D = D int,e~er

a very prominent 2 0

one amon~ the set, Chaotic D ~ D fractal
2 0

of D 's (Caput,o
q

St,ochast,ic D .. d
and A't'ten 1987). 2

It has also been

established t,hat, D is inte@;er for regular syst,em, nonint,e~.er for
2

chaotic syst,em and D d for oomplet.e.ly stochastic system (see
2 ,.",

table 2.1) (Atmanspacher and Scheingraber 1986).

Correlation in'te~ra1 becomes independent, of d as d ..eo and

for small yalues of £,

D
2

£

therefore
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D
2

=
Lt

d-.oo
&-+0

In C (£)
d

In £
(2.39)

Cd(e) can be calculated using the equation (2.26).

2.11 GENERALIZED ENTROPY

Unpredictability of chaotic systems due to the exponential

rate of divergence of trajectories on stran~e att,rac'lars lead to

the creation of information. But in predict,able syst,ems

traject,ories do not, create new Irif'or-mat.fori. This is an essential

difference between chaotic "and re~ular systems. Kolmo~orov

entropy provides a quantitative measure to classify' regular and

chaot.Ic system, and is defined to be the mean rate of cr-eat.Iori of

Inf'or-rnat.Lori (Farmer 1982)

Estimat,ion of Kolmogor-ov e nt.r-opy K directly from time

si,nal enable us to quantify, how chaotic the system is, or it

will help us to study the information flow in t.he system usin~

isentropy curves.

To evaluate Kolmogo r-ov entropy, consider a dynamical

system wit.b ~ de~rees of freedom. Suppose t.hat. 'the F dimensional

space is partitioned into boxes of size e
F

and that there is an
-f

at.t.r-act-or- in 'the phase space. The t,rajectory X{t,) is assumed t.o

be in 'the basin of at,t,raction. The st,ate of the system is now

measured at, intervals of time T. Let, p(i ,1. ,1. ~. . ) be
1. 2 3

l.
d

the joint, probability that, ~(t,=T) is in box 1. , X{t,=2T) is!, in box
1. I.. .

is in id. The Kolmo~orov entropy K is 'then1. , and X(t=dT)
2

K
Lt Lt Lt 1.

= - e .. 0 T"O d-eco Td E p (i.1.·····i.d)

it· .. t.d
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As is well known (Schustel' 1984, Grassberger and Procaccia 1983c,

Cohen et, al 1985) K=O for an ordered system, and K=oo for

stochastic system and K is a nonzero const,ant, for a cb.aot.i.c

syst.em,

Calculat,ion of Kolmogor-ov e rrt.r-opy K is not difficult, for

analytically defined models in terms of evolut.ion of 'the dist,ance

between two init,ially close podrrt.ss, but, it is very difficult to

determine K direc'tly from a measured 'time si~nal (Grassber~er and

Procaccia 1983c).

2.12 KOLMOGOROV SECOND ENTROPY (K )
2

which can be

is an invariant

properties (see

Grassb_~r~er and Procaccia (1983c)

quantity, viz., Kolmogor-ov Second e rrt.r-opy K,
2

extracted easily from an experiment.al si~nal. K
2

measure of the system, and has the followin~
,.

table 2.1).

defined a new

i)

il)

iii)

IV)

V)

K ~ 0
2 1-/

K s K
2

K is inf'ini'te for random syst.em (Completely st.ochast.ic
2

syst,em).

K ~ 0 for chaot.ic syst.em
2

K -0 for ordered system
2

For typical cases, K is close to K. J{ is a member of
2 2

the set, of generalized entropies (order-q Renyi ent,ropies) which

is defined as

Lt Lt Lt
:z -

£-+0 T-+O d-+oo

1

Td
InE

i. ••• i,
t d

q Co .)P \. ... l..
1 Q

(2.41)

q can ~ake any real values bet-ween -00 and +co and

is the joint. probabillt.y that. the trajectory visit.
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i, .
d

First, order orrt.r-opy,

K = Lt, K
1. q-+1. q'

is the me t.r-rc entropy which is a measure 01 the internal

information production of ~he system durin~ its temporal

evolution. On pu~~in~

p q = p exp(q-1)ln p

in equat.ion (2.41), we obt.adn

K
i

Lt Lt Lt 1.= -
&-+0 T -+0 d .... eo Td

E P (i ..... i, )
1. d

In p(i ... i, )
1 d

(2.42)

Thus K aK, the Kolmo~orov e-rrt.r-opy. Here K is approximat,ely
i 1

Ident.Ic.al with the sum of positive LE's of the system. From

equation (2.20) a (2.21), K can be defined in terms of
q

correlation inte~ral <Pawelzik and Schuster 1987) as

K =
q

Lt Lt
& -+0 d-.oo

(2.43)

~ t;ives t,he lower bound for -the Kolmogor-ov e-rrt.r-opy. It,

can be defined in terms of correlation int,e~ral as in the case 01

D . K is sin~led out, from K due to its ease of calculation
2 2 q

from a t.Ime series. We shall establish this as follows, consider

the e qu.at.Lorr <2.41) for q=2 and :for any value of d, and let £ be
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fixed. The equation 101' C 2(&) (Grassberger et al 1983c) is
cl

2
= E p.

~

(2.44)

which contain a piece of

be easily calculated from a

where P. is the probability to visit,
\,

over all the boxes in phase space

at.t.r-act.or-. This quantity C 2(&) can
cl

given 'time series.

t.he i, lh box and sum i, runs

We have already shown (Equation 2.27) t,ha't C
d

( £, ) scales like

D
2e

Hence t,his equation and (2.41) would yield

Then
, J

C
d

( £ )
~

d ..oo
&-+0

D
2e exp(-dTK)

2
(-2.45)

D

C (e)
2

exp ( -(d+1)T K )~ s:
d+i 2

and K (£) is
2,d

K (e)
i

In { C
d

( &) }= - (2.46)
2,d T C (e)

d+1

If we plot, Io~ C (e) vs log(£) we will get, a series of" lines with
d

a linear part of slope D d' and which are separated from each
2,

other by" a factor exp(-dTK ). The second Kolmogor-ov entropy K
2,d 2

is
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K
2

Lt
d oo
& 0

K (&)
2,d

(2.47)

2.13 EVALUATION OF D AND K FROM TIME SERIES - GP ALGORITHM
2 2

GP al~orithm is an efficient method to evaluat.e D
2

and K from an experimental data obtained as a time series.
2

Consider the time series

X a {X<t ),X(~ ) x«, )}
1 2 N

(2.48)

where X(t.) is t,he vol~a~e or t.empe-r-at.ur-e or density distribution
\, ;

or any fluctuat,ions measured at, the instant t.. We usually ~ake
l..

the t.Ime int.erval bet,ween two consecutive readin~s a~ cOnSt,ant T,

and t.his series is rearran~ed in the followin~ m.at.r-fx form

x(1:,) x('t+ T) .

X(t+T) X('t+2T). x(t,+ rnr )

(2.49)

This forms a matrix of m columns and d rows and is called a

delayed mat.r-Ix (Broomhead 8:: KinS 1986). The matrix <2.49) can be

considered as m vectors <columns) defined in ad-dimensional

phase space and mz d,

followin~,

The m.at.r-Lx (2.49) can be z-epr-esserrt.ed by the

x. (~.) = {x. (t,.), X o, +T)
l.. 1. 1.. 1. 1. 1.
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where ~ =~ +(i-1)T, i runnin~ from 1 t.o m.
i,

Equa"tion (2.50)

represent,s the various vectors <column) and usin~ "these vectors,

one can evalua~e the correla'tion in~e~ral (equa'tion 2.26),

Cd(-e)

N

= E N-
2

i,j=i

e (s - li .- i · t ) ,
~ J

by courrt.Irrg "the number of points whose dist,ance is less than a

where a varies from small

to. large value ).( 1

value

say 0.0012),(

each

is calculated usin~

for various s: and

assignedpre

value

for

c ( )d e
(2.26)

LOG( C( f»)
B

-18

, J

Fie; 2.10 A t.ypical Loc;-Lo~ plot, of" C
d

( & )

10' (e) for each d (Fi~ure 2.10)

a slope i>,

dimension d of the
I

constructed phaseB space.

The plot, of lo~ C
d

( £ ) vs

will have a linear re~ion with

v =

2.14 CALCULATION OF D
2

The slope v of the linear p.ar-t, of log Cd(&)-lo~(e)

plot, fop each dimension d is evalua"ted. The p lot, of i> vs

dimension d (Fi~ure 2.11), sa"turates to a fim"te value as d

increases, and t.he saturated value of v is t,he second 'order

dimension or correlation dimension D. If the dat.a se~ consists
2

of completely random noise, "then the points would lie on t,he
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st,rai~ht line with 45
0

to the d-a~is (Babloyantz et, al 1986). On

the other hand, if there exists a deterministic component, in the

system, the curve

ion d at which the

1) curve starts to

the deternrlnistic

and random parts

would saturate to

D and would
2

become independent

/
/. ....

i>
V -

-.A

~- I

2.5

0.0
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

15.0

12.5

r10.0

7.5
tala,
o
...J
tIl 5.0

the

which

or

The dimens-of d.

re~ion

saturate

complet.eIy

ate is

embeddinr;

separ­

t,he

dimens-

Dimension ---------)

Fie; 2.11 Slopes of" t.be linear part, of" t.be curves
in f"lbure 2.10, p lo t.t.ed a~ainst. dimension d.

ion (In figure 2.11 saturation starts at d=12).

2.15 CALCULATION OF K
2

C -I

The second quantity of ~reat, interest is t.he

Kolmo~orov Second

of c is calcula1:,ed for

separation between ~he

entropy K. This can
2

be measured using the

correlation integral
-e

t-he

spat-ialof

evaluat,in~

ratio

by

curves in " Fi~ure

(2.10) for dimension d

and d+1. The mean

value of C (£)/C (e)
d d+1

over the linear range
2 4 6 B 10 12 14 16 18 20. 22 -24 26 28 30

Dimension ---------)

2.5J-----~-------------------I

12.5J---\----------------------1

15.0-----------------------,

10.0~-\----------------------1

.".

~5.0

17.5~.---------

each dimension and we

writ.e
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K =
2,d

Lt
&-+0

T-+O

K d is plotted a~ainst dimension d, and the curve will saturate
2,

as shown in Fi~ure (2.12). The saturated value of K as d-soo is
2,d

the Second Kolmogor-ov e rit.r-opy (Equa'Lion 2.46).

Lt
d-+oo

K --) K
2,d 2

We can classify the systems by oomp.ar-Irig t,he values of D and K
2 2

with values in t,he t,able (2.1).

" The a1~orit.hm we shall be usin~ in t,he thesis is t.he one

developed by Atmanspacher and Scheingraber [1986] which has been

modified for smaller da'ta set,s by Abraham et al [1986]. But,
, I

before any numerical scheme is used for 'the purpose of analysis

of any unknown system, it should be subjected 1:,0 cert.ain known

syst,em, so 'that an evaluat.ion of the efficiency and accuracy of

the numerical code could be done.

2.16 PERIODIC SYSTEM

To t,est our al~ori1:,hm, we used the sine series. The

correlat.ion integral was calculated for d varyin~ ~rom ~ to 30

from 512 .. data extract.ed from t.he digait.ized values of t.en

successive periods of the sine function (Sin X). Then lo~ Cd(e)

is plot.t.e'd a~ainst log e, All t,he curves are parallel t.o each

other with equal slopes. Slopes of 'the curves (v) were p lot.t.ed

a,ainst. dimension d and it, is seen that, the v curve is parallel

to d-axis (Fi~ure 2.13), and D =1. The behaviour of e rrt.r-opy also
2

shows t,hat, the system is ordered (K ~ 0) (Fi~ure 2.14). Sine
2
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function represents a periodic system wi'Lh a sin~le frequency -' so
.'

/"

B

Fie; 2.13 Slope of" the linear part. of lo~-lo~

sine,' series, p lot.t.ed ag'ainst dimension.

curves C (£) 01
d

t.hat, D =1
2

expected

Thus the

is an

result,.

Second

1.928

order dimension rep­

resent, the number of

frequencies present,

in t.he system, or it

measures ~he number

of independent para­

me~ers required to
x

Theref'o~e our algo­

rithm is in ~ood

a,reement wit.h what.

we are expect,in~.

define the system.

e DIMENSION ~

Fig 2.14 K vs d 01 sine
2,d
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2.17 CALCULATION OF D AND K FROM SMALL DATA SE1·S
2 2

Box-icount.Irrg; al~orithm is not practical for dimension

calculation since it needs Lar-ge computer memory and time and

also requires Lar-ge amount of data to obtain satisfactory

results.

The GP al~orithm is suitable for D and K evaluation, but
2 2

there is a usual assumption that a lar~e number of data is

required for accurate results. This has been first investi~ated

by Abraham and his colleagues [1986]. They evalua1:,ed the

dimension of;lo~istic equation usin~ 500, 1200, 5000 data, and in

all these cases D was found to be more or less same (D is 0.92
2 2~

for N:II500, D -0.94 for N=1200, D aO.93 ~or N-5000). In the case
z 2

of He'norr attractor they got D -1.28 for N=500, D -1.20 for
2 2

( J

N=1200, D =1.24 for N=4000 and D =1.24 for N=10,OOO. These
2 2

results show that the GP al~orithm leads to successful results in

the case of small data sets. Abraham et al [1986] calculated the

slope in a sligahtly different way. They calculated slope of the

curve Iog C
d

( £ ) vs log(&) for each e and plotted it a~ainst lo~

C
d

( & ) . For small values of e , slope f1uct,uates due to noise, and"

for Lar-ge r- values of s: i 1:, displays an increase in ~he slopes as

the larges~ Irrt.er-pcdrrt, dis"tances on the attractor are reached,

and then satura1:,e to a constant value of lo~ Cd.

r
We ~ invest,i~a-ted the data dependence of GP al~orithm in

We calcula'te D
2

values of D
2

for 1357 and 227 data

di~i"tizedNeural system also.

Elec~roen_c::ephalogram data.

poin-ts and obtained t,he

respectively.

For this, we used a

3.56 and 3.50
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2.18 ADVANTAGES OF GP ALGORITHM

The oo.r-r-eLat.Lorr dimension D as merrt.roried earlier, is
2

one of an infinite set. of dimensions t,hat characterize t,he

stran~e attractor. It, is sin~led out by t,he ease of the actual

calcufat.Lorr :from time series (Caputo and At.t.en 1987). D is
2

defined in 'terms of correla'Lion in'Legral (equation 2.26) usin~

the power law given in equa'tion (2.27).

Now 'the question arises about t.he role of noise present, in

the time series. The basic idea is 'that when we have a

det,erminist,ic mot.Iorr on a stran~e attractor, 'Lhe exist,ence of

noise will not, ruin 'the structure of t.,he attractor, but will

cause fuzziness .on the length scales t.hat are much smaller or

equal t.o the noise st,rengt,h (Shaw 1981, Zardecki 1982). But, t,he

quarrt.If'Lc.at.Lorr of st,ran~eness usin~ GP algori t.bm ~ives a clear

demarcation between deterministic and random part of 'the signal.

According to Mizrachi et, al

at.t.r-act.or- in a d-dimensional space,
i J

trajectory will be space fiUlin~ on

the noise strength and scales like

[1984] if we embed the

we expect that, t.he noisy

len{;th scales smaller than

d
e (2.51)

The plot. of log C(£) as a :function log(£) will have a slope of D
2

down 1:,0 length scales charact.erized by the noise st.rengt.h and

then a slope of d.

To: find D accordint; t.o GP algori'thrn, we const.ruct a phase
2

space wit,h dimension d and plot. log C(&) vs log(&). For each

value of---d we ~et a curve wi'th a linear part wit.h slope equal t.o

D above t,he lengt.h scales characterizin~ t.he noise s'trengt.h.
2,d

All curves will break at t,hat value of &, below which t.he slope

is equal t.o d. Mizrachi et., al [1984] explained it in ~erms of

Mackey-Glass equat.ion, and showed that for a ~iven paramet.er t,he
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st,ran~e at,'tractor
-3

st,ren~t,h is 10 .

is characterized by D =1.95.
2

The noise

Thus GP algorithm has the followin~ advantages

1) Suit,able for small data set,s

2) It, characterizes attractors

3) It, gives Irif'or-mat.Lon on the noise level of t,he system,

f.e; the posi'tion of break in Iog c(c:) vs lo~ (£) plot,
2 2

4) It, separates deterministic and random component, present, in

'the sys'tem.

2.19 SPECTRA OF SCALING INDICES <f{a) SPECTRA) FOR FRACTAL

GEOMETRIES

The subset of phase space to which a typical orbit, of

a chaotic riorrcommensnrr-ert.e syst,em asymptotes wi t.h time is called

stran~e attract-or and can have f'ract,al geome'try. Fractal

measures can provide a phenomenolo~ical description of st,ran~e

In order to obt.edri a more oomplet.e characterizationattractors.
~ 'I

we should consider st,ruct,ure of scalin~ indices or

sin,ulari'ties on a fractal measure (Halsey et, al 1986b). We

consider a f'uncrt.Lon feet) where et is the scalin~ index of 'the

measure about, a podrrt, on t,he fractal and feet) is t-he dimension of

the set of points on_the fractal with same value of et.

Suppose that, we have a time series of N points on a

stran~e at,t,ract,or in the phase space of a dynamical system.

Typically, ~rajectories in chaotic dynamics does not, fill t,he

d-dimensional phase space even when N-.oo, because t,he traject.ory

lies on a st,ran~e at,t,ract,or of dimension D, D < d. Definin~

p.
1. = N-.OO N. / N

\.

where N. is t,he number of t.Irnees t,he time series visits 'the
\.
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lh
i box, we generate t,he measure on the at,tract,or. If' the sys'tem

is divided into pieces of size t , and defining a scalin~ exponent

a, we can write

P.
~

l ex
1.

(2.52)

a can 'take on a ran~e of values, corresponding 'La df.f'f'er-errt,

regions of 'the measure (Halsey et, al 1986a). The number of t.Ime.s

a takes on a value bet,ween et' and et' +dOt' will be of t,he form

d ' (') -(0(')
et p a.. t

(2.53)

where f(a') is a continuous function (Halsey et, al 1986c). The

exponent £(0') reflects 'the dif'£erin~ dimensions of the sets wit,h

singularities of stren~th 0'. Thus we model fractal measures by
I ~

interwoven sets of sin~u1arit,ies of st,ren~t,h ex, each

characterized by its own dimension f(Ot).

We can r-e.Lat.e f(Ot) 'to a set, of dimensions which have been

introduced by Hentschel and Procaccia [1983],

defined by (see sect,ion 2.7)

t,he set, of D
q

. where X(q) = E p. q
. \.
~

D
q

= Lt,
l-.o { 1

q-:1
(2.54)

D is the :fract,al dimension, D. is 'the inforrna'tion dimension and
o ~

D is the oo.r-r-e-Lat.Lorr dimension (Grassber~er and Procaccia 1984,
2

Grebo~i et, al 1988). Subst,it,ut,in~ :for P.
~
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;t(q) = Jd 01.' p(Ot') t -«Ot') t qOt' (2.55)

since l is small, the inte~ral will be domina'ted by value of et'

which makes qo ' -f'(a') smallest (Sato et al 1987)

Thus,

d
da'

[qet' - f(et ')]
Ot I =O(q>

= o (2.56)

also

so t-hat.

[qet' - f(Ot' >]
ex' =Ot(q)

C' [a(q)] = q

C' , [ cx(q)] < 0

> 0

(2.57a)

(2.57b)

It follows that (Halsey et al 1986b)

D =
q

1
(q-1)

r:

(2.58)

Thus if we know the f(et) spectrum, we can find D.
q

Alternatively, knowfng D we can find o{q) since
q
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d= dq
[<q-1)D ]

q
(2.59)

and hence f(Ol) can be evalua~ed from e qu.at.Lori (2.58).

If a cont-inuous scaling spectrum f(et) exists, t.ben the

above r-eLat.foresbdpes implies 'that, it- must- be convex. Further

more, f (et) will be equal 1:,0 1:,he dimension D of ~he at,t,ractor.
max 0

The minimum scalin~ exponent, et. will
m\,n

correspond to t,he most,

concerrt.r-at.ed region of measure on the attract-or and et will
max

correspond t-o 'the most r-ar-ef'Led re~ion of 'the measure (Halsey et,

al 1986c).

f(a) spect-rum can be measured experimentally and will

result, in new test-s of scalin~ 'theories of nonlinear systems. We

have evalua'ted f(a) espe-ct.r-a :from EEG r-e-coz-dfng , resul~s of" which

are included in lat-er chapters.

61



CHAPTER 3

NOISE FILTERING IN TIME SERIES
ANALYSIS

A mathematical technique for filterin,g noise from time
series data is described.



NOISE FILTERING IN TIME SERIES ANALYSIS

In mosrt, of' 'the experimen'ts, 'the orrt.ptrt, si~nal is mixed

wi'th noise. I't may riot, be possible t.o fll~er out. t.he noise

comple'tely from signal usin~ elec'tronic circui~s due t.o various

reasons such as very small si~nal t.o noise ra'Lio (SNR), lar~e

frequency band wid~h of noise, e t,c,

As already discussed in chap'ter 2, GP al~ori'thm

(Grassberger and Procaccia 1983a, b, c) discrimina~es bet.ween ~he

determinist,ic and random p ar-t, oC a syst,em using ~ime series. The

noise makes ~he cor-r-eLat.Iorr curve (Fi~.2.10) t.o devia'te from

Iinear-Lt.y. The slope vs dimension curve o{Fig.2.11) also show t,he

noise ef'fec'L at, low values of d, wheI'e t,he curve coincides wi~h
o

45 line. However, 'this me'Lhod does rio t, have any means foI'

separa'ting noise from raw da'ta (Passamant,e et, al 1989). The

phase space represent,at,ion of t,he system shows t,hat. t,he presence

of noise will not, ruin fractal st.ructure, but it, may change 'the

view of t.he at.t.ract.or (Mizrachi et, al 1984).

This chapt,er describes a mat.hemat.ical t,echnique for

filtering noise embedded dat,a. The method is suit.able t.o enhance

SNR when signal is immersed in random noise. This is an

extension of t,he met.bo-d described by Broomhead and King <BK

method) (Broornhead and King 1986). We applied a modified version

of the BK me-t.hod 1:,0 a sine series and a sine series mixed with

random noise. The t,echnique was also applied 1:,0 EEG dat,a.
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3.1 DYNAMICAL SYSTEM THEORY

A dynamical sys~em can be represen~ed by a

det,erminis~ic equa~ion

dy
dt = F(y) (3.1)

where

.system

each

and

y=(y
i

specifies

, y )
3

point in

represen~s

~he phase

a state

space s.
of the

The

dimensional! t.y of S is associa1:,ed with the degrees of freedom of

the sys~em. F(y) represents 'the vector field, which is a

nonlinear opera'tor acting on a podrrt, in S. For initial value of

Y , and at 'time t., the solution of (3.1) is Y =- 4> y ; where it
ott 0

represents one-paramet.er family of' maps of the phase space Irrt.o

itself.

For a dissipa~ive system, 'the 'trajectories evolve towards

the attractor M whose dimension is less ~han that of' S (Schuster

1984). The search f'or oomplet.e solution of' (3.1) is sometimes

not, possible. Hence the study of the system in terms of phase

space trajectory is favourable, and an equivalence relation is

sui'table for classifying the system. Members of same equivalence

class are said to have same qual!'tative dynamics.

Consider a compact manifold M of dimension m. For pairs

(F,v), F a smooth vector:field and v a smooth :function on M, it is
2m+1.

a generic property that ~ (y): M....R defined by
F,v

t (y) • (v(y),v<4> <y», v(4) <y»)T
F,v 1. 2m

(3.2)

is an embedding space, where <Pt is 'the :flow of F and v(y)

corresponds to the value of' measurement. made on t.he system in a

st,at,e given by y e M.
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3.2 METHOD OF DELAYS

It is possible to construct a phase space from time

series using above t.he-or-ems by t,he t,echnique known as ~ethod of

delays' (Broomhead and King 1986, Abarbanel et, al 1989). For

convenience, we introduce cert,ain t,erms. The space which oorrt.edri

the image of ~ is called the embedding space and its dimension
F,v

is called embedding dimension. Let us denot,e the embedding

dimension as d, which is greater than or equal to 2rn+1, by

Whi'lney embedding 'theorem (Whi'tney 1936).

represen'ted as

The time series is

( v ) • (3.3)

By method of delays, :from time series in sin~le variable,

say v (l), we can construct d variables, which are taken to be
o

the 'time delay co-ordinates (Packard et al 1980, Takens 1981).

So 'tha't,

v = V (l), V • V <l+T ), •.•.••• V • V (l+(d-1>T )
10 20 L doL

(3.4)

of (d,J)

If J=1,

concepttheintroduceWelag.t,imetheiswhere T
L

window, which makes visible elemen'ts of the time series.

then 'the elements are consecu'tive, and if J>1, there is an

interval of J sample times between each visible element,s. <d,1)

window is referred as d-window. If the sampling time is T , then
s

Iag 'time T -JT and window lengt-h is T =dT. (d,J) window
L S v· L

consrt.It.ut.e the components o:f a vector in the embedding space Rd.

The vector can be represent-ed as
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x = ~ (4). <y))
l. F,v l.

T= (V., V. ., V. )
l. l.+ J l.+<d-i)T

(3.5)

Thus we can const.ruct. N vectors in d-dimensional space as

v v V
i 2 N

V V V
X • 2 , X • 3 X = N+i

i 2 N

V V v
d d+i N+d-i

....... (3.6)

If d-window is

then it. will provide

the embedding space.

defined as

int.roduced in a t.ime series wit.h M dat,a,

N-M-d+1 vect.ors and {xi.eR
d Ii.a1,2, ....N} in

The t.raject.ory mat.rix wit.h d-window is

T
X V V · .v

di i 2

T V V .. v
X 2 3 d+i

X N-i / 2 2 N-1 / 2
11:1 =

T
X V V .. v

N N N+1 d+N-i

(3.7)

c)·~

where N-i
/

2 is t.he normalizat.ion fact.or.

and it.s t.ranspose may be t.hought. of" as linear maps bet.ween the
d N

spaces R and R <Broomhead and King 1986).

. lhWe can extract t.he 1. vect.or x. , from t.he t.rajectory
1.

mat.r-Ix X in RN by using 'the proper'ty t.hat. t.he st.andard basis

vect.or-s can be used as an indexing syst.em for point.s on the

65



d lh
trajec'tory in R. e. is the i column of the NxN unit m.at.r-Lx.

\.

Multiplyin~ equation (3.7) with N
i

/
2

e T from the left" we get"
1.

T
X =

1.

T
e. X

t,
(3.8)

For calculatin~ -the dimensionali'ty of 'the subspace which

contains -the embedded manifold, one needs to know the number of

linearly independent vectors that can be constructed from the

trajectory in -the embeddin~ space by forming linear combination

'of the x.. Consider a set, of vect.ors {so e RN}, which will ~ive
\. \.

a set of linearly independent vectors c in R
d

by -their act.ion on
1.

X, i.e., {c. 11.=1,2, d}, Then -the followin~ relationship
\.

holds

T T
S. X =- 0'. C.

1. \. \.
(3.9)

where 0'. aI'e a se-t of constants.
\.

imposes t,he following condi'tion

The ort,hogonali'ty of t,he {o}
\.

T XXT
S. S.

1. J
- 0'. Cl. 6 ..

\. J \.J
(3.10)

a complete

where 6.. is 'the Kronecker del'ta. The NxN mat.rix
1.J

real symmetric ma-trix and its ei~en vectors Corm
N

ort,ho~onal basis Cor R and, equat.ion (3.10) becomes

H=XX
T

is a

H s.
1.

2=- 0'. S.
1. \.

(3.11)
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and c are ei~en vectors. But.
i,

of t.he {o.} are nonzero, and
1.

mat.r-Ix is tedious. So we can

(3.9).

T T T
X X X X X X

1. 1. 1. 2 1 N

T T T

where H N-1. X X X X X X
= 2 1. 2 2 2 N (3.12)

T T T
X X X X X X

N 1. N 2 N N

This H is called the trajectory mat.r-Ix, {G.
2}

are the ei~en vales
\.

equation (3.9) shows that only d

also the dia~onalization of NxN

look for an inverse r-e-Lat.Iori of

Le., x c = Cl. s.
i \. \.

(3.13)

T~en by taJdn~ the transpose of (3.9) and operatin~ from the left

wi~h X and usin~ equation (3.11), we will ~et"

Z c.
\.

2
• C¥. c.

\. \,
(3.14)

where z=XT X is a real, symmetric dxd mat.r-fx

z 1

N
N

.L
1..=1.

T
x. x.

\, \,
(3.15)

or Z is the covariance matrix of the components of {x}, averag-ed
. \,

over entire trajectory.
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E vv ....... E vv LV V
i i i i+1 i i+d-1

Z
1

III

N

E V V ... L v(+d_1V. .... LV V
i+d-1 i, \.+1 i+d-1 i+d-1

(3.16)

The nonzero ei~en value of st-ruct-ured mat-rix is equal t.o nonzero

eigen values of

rank Z = d' s d.

co-variance mat-rix. This means t,hat- rank H =
N

Thus R space can be decomposed into a subspace

complement-aryt-he(3.9).

of dimension d' and it.s ort-hogonal complements. The d'

dimensional subspace is spanned by a set- {Si Ii=1,2, d' }

which is such t-hat. each corresponding average over t,he x gives
i,

vector c e R
d

according 1:,0 equat-ion
i

rise uniquely 1:,0 a basis

{c. Ii-d' +1, N}
\.

subspace, which is the Kernel of X mapping ont-o t-he origin of the

embedding space 'through equation (3.9). The maximum number of

linearly independent- vectors is d', which is t-he rank of Z, and

it is t-he dimensionalit-y of the subspace cont-aining t,he embedded

manifold.

than calculat-ion of dimension. So consider t,he

mat-r-Ix C which has columns consisting of

C=(c ,c , ..... c
d

) , and t.he diagonal mat-rix G -i 2

and we can writ.e t.he eigen value equat-ion as

Now QUI' at,t.ernpt, is t.o remove t-he noise from t,he signal

ort,hogonal dxd

ve-ct.or-es {o},
l.

diag(0' ,0' .....0' )
1 2 d

zc • (3.17)

and by definit,ion of Z

(XC)T (XC) (3.18)
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XC is a t,rajectory matrix projected on to basis {o}. To
t,

separate the noise part, we f'ollow singular value decomposition of

the trajectory matrix

(3.19)

where S is Nxd matrix of' ei~en vectors of' H, d' of which have

nonzero eigen values. The vectors of' C and S will henceforth be

referred to as t.he singular vect.ors of' X, and elements of G will

be called associat.ed singular values.

Time series with a noise component, e. can be written as
J

v.-v.+e.
J J J

(3.20)

Over bar indica'tes a quant,ity associat,ed wit,h t,he deterministic

component" and

z • z + < e2 > I
d

2
0'.

\,

- 2 2
.0'. +<~>I

\, d
(3.21)

- 2where 0'. is t,he eigen value of z.
\,

Inorder 1:,0 partition t,he embedding space, consider t,he

mat r i c e s p<1.>.p <1.>.6 6 which are the representation of
· jk ij jk'

projection operat,ors orrt.o t.he basis funct,ion {o.}. These can be
\.

used to construct projection operators onto the oo.r-r-eesp-orrdfrrg

subspaces of t,he embedding space.
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and P+Q=I.
d

Q =

p =

E p<i>

Cl. =nol.se
~

p<l.>

0' >noise
i,

(3.22)

(3.23)

Inser'ting 'the ident,i'ty in equat,ion (3.19), we get,

X =X+lJ(

where

x = S P G eT

is 'the det.ez-mtrdest.Ic part, of 'the 'trajec'tory mat-r-Ix and

(3.24)

(3.25)

(3.26)

is 'the noise-domina'ted p ar-t..

define X

In 'terms of above rela'tion we can

(X) S p<\.) G (eT).
ij = i.k lel lm mJ
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(X),. = s E p ( i>
6 (eT)

\.J ile let O'l lm mjo >nois9
i,

since P ci> = °ik °Jcl '
we can wri~e

Jel

x = E
0'. >noi se

\.

S,
\.

Cf.
\.

T
C.

'-

and using equa~ion (3.13), we get.,

x = E
0'. > noise

\.

(Xc.)
\.

T
c.

'-
(3.27)

X represen~s t.raject,ory

~he

t,he

ve-ct.oz-.

f'r-om

row

about.

it.

ais
T

c.
'-

extract.

informa~ion

can

t.he

we

all

and

cont.ains

where (Xc') is a column vect.or and
i,

- T - T -
X. • ~ Ne. X gives t.he noise :free dat.a.

1. 1..

mat.r-Ix, which

determinist.ic t.raject.ory

experiment.al signal.

We developed a Fort.ran code for t.he extract.ion of si~nal

from t.he noise dominat.ed da'ta. We diagonalize 1:.he 1:.rajec1:.ory

ve-ct.oz-es c,
'-

and c, is a
\.

eigen values Cf. , and eigen
\.

Then C is a 30x30 mat.rix,

mat-r-Ix X and get.

taking d as 30.

vect.or- and
T

C represent,s
1.

a co-ordina'te axis of t.he

usually

column

embedding

space. O'.'s have d' non-zero values.
\.

1:.0 find Cf.' s above
\.

Irior-de-r­

against i., and ident,ify t.he Cf. ' s
'-

noise

above

:floor, plot.

1:.he floor

log [0',,/ E oJ
level (Fig.3.1)

and allow t.he corresponding eigen vect.ors t.o operat.e on ~he

t.r-aje-ct.or-y mat.r-Ix (Xc.), which is a column vect.or cont.aining a
\..t.h

time series of t,he \. component., in t,he basis {o.}, of' t.he
'-

T
vect.or-s in t,he t,raject,ory, and sum over (Xc.)c. for Cf.' s above

t, \. '-

the floor level according t.o equat.ion (3.27). (Xc.) is a Nx1
\.

matrix, which on operat.ion wit.h (c. T) changes 1:.0 Nxd mat.rix.
\,
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Tha'L is, X is a Nxd

mat.r-tx. However, by

number of 'Lhe {o}
\.

cons~ruc~ion~ i'L

consists of a 'L:raj­

e ct.or-y confined 'La

'Lhe det.er-rmrrtsrt.Io
d

subspace of R hav-

I

L
I

t
0~~

~ \
I !

r \
r ~\

I \
I \ ':1 Ooj .,.,. " 0j °11 'R ': ...., .. :. j" ... ° 'j ....... :u: '1: ~ 'I~ ): *

in~ dimension

(where d· is

•d ~d

'Lhe

-------)

Fi;; 3.1 Plot. 01 Log [ 0'\./ t: O'i. ]

above

f'Ioo'r-).

'Lhe

Then

noise

'Lhe

'Lime series is

-
vs ~ f o r- SiIJ("'+nr), where r- is a
random funct.ion and 71=0.1.

noise eliminat,ed

T
X. ~

\.
(3.28)

A

r
i
t-
i

Ca)

t------)

(I,)

1!..-I ! .•~tL:P.J1

t------}

Fig 3.~ a) The noise embedded sine f urict.iorr,
Sin(x+nr) w i t.h n=O.1. b) The f'Ht.er-ed o u t.pirt..
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Inorder 1:,0 st,udy 'the effec'tiveness of t,his met.hod, we

applied i 1:, first, "to "the sin(x) series. Noise embedded sine

func~ion was obt,ained by adding random numbers 1:,0 t,he ar~ument,

t.e; sin(x+n x r) (see fi~.3.2a a 3.3a), where r- is a random

func'tion. TJ con'trols "the s'trength of noise.

A

rr
(a)

x( t)

B

A

x( t)

"

t------>

(J:,)

t--->

Fie; 3.3 P!o1:, of
a) Sin(x+17r)~ n=0.5 and b) 'the :filt,ered otrt.put.,

Enhancement, of SNR af'ter :filt,ering is obvious from Figure

(3.2b) and (3.3b) for two dif:fe:rent, noise levels.

This analysis shows 'that 'the present, mat,hema'Lical

technique can be used to fl1~e:r noise embedded di~i'tized da'ta and

SNR can be enhanced. We 'tried this me'thod on all EEG si~na.ls

73



analysed in 'the present, thesis, and it was observed that 'these

"150 r
A

150

A

x( t)

Ca)

t -------)

(b)

t -----)

Fig 3.4 a) The t.Ime series of raw data of EEG
b) The noise f'i lt.er-ed EEG

signals were almos~ noise :free (Fig 3.4)~

signal can be used without any flltering.

resul'ts obtained by Dvorak and Siska [1986].
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CHAPTER 4

NEURAL SYSTEM

A description of neural system is the subject matter of
this chapter. Stress is ,given to physical and
dynamical aspects of human nervous s»stem 9 relevant
patholo,gical conditions of brain are also included.



NEURAL SYSTEM

A descrip'tion of" human nervous syst.em is given in t,he

presen-L chapter to enable abet,t.e-r- understanding of 'the contents

of 'this 'thesis.

Nervous sys'tem is 'the prime fundamental un!'t in a livin~

organism which correlates all the various funct.ions of life.

Nervous system .o.arr, in general, be divided Irrt.o 'two part.s - the

cent.r-al nervous syst,em (eNS) and autonomic nervous syst,em (ANS).

The eNS consis'ts of t.he brain, 'the spinal cord and t.he peripheral

nerves nerve fibres or neurons t.hat, transmit sensory

informa"tion. Afferen't (or sensory) neurons carry signals from

recept.ors (t.he sense organs) 'to t.he CNS and efferent. (or mot.or)

neurons transmit. signals from CNS t.o t,he effect.ors (muscles).

The ANS cont.rols various internal organs such as t.he heart.,

intest.ine, glands e t,c.

Brain which is t,he most Impoz-t-arrt, part. of t,he CNS is
10

highly complicated in structure and consists of about, 10 nerve
1.0 15

cells, 10 -10 synapses t,hrough which interconnections t.ake

place and about. 10Km of" the fibrous axonic cables along which

elec'tric impulses travel. The brain consist.s of mainly Cerebrum,

Cerebellum and Medulla and also Thalamus, epit.halamus and

ptt.urt-ar-y. The most. elaborat.e cognit.ive processing of t.he brain

takes place in cerebral oor-t.e-x, a densely packed' assembly of

neural element.s. Because of" t.he hi~h1y sophist.icat,ed nat.ure of

the brain, it. needs a special prot.ect.ion Brain is surrounded

by t.hree membranes within t.he prot.ective skull and it "float.s" in

the shock-absorbing cerebrospinal fluid. The brain is connected

to t.he spinal cord, which is also surrounded by cerebrospinal

fluid and is prot,ec1led by 'the vert.ebrae of t,he spinal column.

(earneron and Skofronick 1978, Domany 1988).
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4.1 NEURON

The basic struc~ural unit of the nervous system is

the neuron (Fi~. 4.1), a nerve cell specialized for 'the

r-ecept.Iorr, int.erpret.at.ion and 'Lransmission of electrical

messages. There are many type of neurons, varyi~ ~reat.ly in

size and struct,ure. The most- complex .st,ructure is :found in those

of 'the cerebral oor-t.ex and cerebellum apparently' because of the

compleodt.y of the functions performed by these parts of the

brain.

Each neuron consis-

where axon start,s. The

axon is wrapped by what is

called the medullary

convey impulses from t.he

cell body t.o other cells

or to peripheral or~ans.

Axon hillock is t,he place

ts of a soma, or cell body

and processes, consistin~

of a sin~le axon and a

1ar@;e number of dendrites.

t

1I~--------7

llir-------8

~l!t------__ ,

~~r-------- 2

r:lbr------__!

~1'1r--~~-----_3

r:--e::::=--__-==~

from

processes

is to

slender

body

Iorig

cell

But t,he axon does

funct.ion

areAxons

not have 1:,hese covering

fe ... a len~t,h of approxi-

mately 50 1:,0 100 microns,

near t.he axon hillock.

This port.ion is called

whose

extensions or

on the

sheat.h.

exci1:,abi­

st,imulus

se~ment,.the initial

par-t- has

lity, and

threshold is about

This

one-

Fig 4.1 Schematic diagram of" neuron
i. dendriles; 2 cell body; 3 axon

hit lock; ... o.><on; 5 a.xon collal@ral;

6 medulla.ry shealh; 7 Schva.nn shea.th;

9 Sch'..ann nuc1.eus; 9 node of Ranvier;

10 nonmyeLino.led lerminal of axon.

-third of that. of o t.he-r-
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parts of neuron. The neuron surface is also covered with glial

or Schwann cells. The membrane of Schwann cells f o r-rn a myelin

sheat.h which is a multilayer membrane. Tt, pr-ot.eot.s 'the axon

membr-ane from 'tile environmen't. The sheat.h is interrupted at

regular intervals, say at every 1-2 mm of 'the len~th 01 'the axon.

These constrictions are called the nodes of Ranvier. Axon

membrane comes in'to con'tact wi'th environment at, t,he nodes. There

exist,s unmyelinated axons also <Volkensh'tein 1983).

Dendrites are 'the processes,

reception of impulses arrivin~ from

conduction to the body of' 'lhe nerve cell.

whose

other

functions are

neurons and

t.he

their

In view of 'the presence of t.he concent,ration of various

par-tes of neurons, 'lhe C.N.S is said t.o have grey m.at.t.er- and whi'te

mat.t.er-, Grey matter is that. po.r-t.Iori of C.N.S that, oo rrt.edres

mainly cell bodies and complex synapt-ic connect-ions involving

axons and dendri'tes. Whit.e matter refers to regions of C.N.S

that, are composed mainly of 'the myelin covered processes. It- is

composed of long axons and dendrites and con'tains few or no

synapses. It is whi'te in colour because of 'the :fat.-like myelfri

sheat,h surroundin~ -the axons and dendri-tes.

Both 'the cerebrum and cerebellum are composed 01 an

cover-Ing of grey m.at.t.er- wi'th a core of white matter. In

areas of 'the brain 'the grey mzrt.t.e-r- occurs primarily in

wit,hin the main mat.t.e-r- of whi'te m.at.t.er- <S'tephenson, 1980).

4.2 CELL MEMBRANE

out.er

ot,her

clumps

The body and processes of a nerve cell are covered

wit,h cell membrane. The t.hr-e-e layered" st,ruc'ture 01 t,he cell

membrane is shown in Fi~.4.2. A biolo~ical membrane consists

mainly of protein and lipids. The membrane consist.s of a double

layer of phospholipids, the circles shown in 'the fi~ure are 'the

polar heads of 'the lipids. The phospholipids are lined on t,he

inside wit,h a layer of p r-ot.e-in molecules and on 'the oxrt.er- side
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with a layer of molecules of' compound carbohydra'Les-

mucopolysaccharides.

The molecules of w at.er-, ions and o t.b.e r- substances pass in

thein

There are

various types of ions

exist,in~

membrane. These ions
y

and out, of t,he cell

t,hrough t,he minu'te
x

channels or pores (a

few an~st,rom in

diamet,er) of the cell
z

membrane.

Fl~ 4.2 The rnodeI of" 'lhe cell membrane
X - Inucopolysaccharide Y - Prolein
Z - Bt ruo lectrlar- lipid layer
Circles are Lhe polar heads of llpids.

give

t.r-Lc

walls

particular elec­

char~e to t-he

of ~he pores,

t,hereby impedin~ or

facili t,a1:,in~ the passa~e of" o t.her- ions. Because of t-he presence

of carboxyl ~roups and dissocia1:,ed pbosspb.at.e , t-he membrane of the

nerve fibre is much less permeable 1:,0 anions t.han 1:,0 c at.forus.

Permeabili t.y to different. cat.ions also varies, accordin~ to the

functional condit.Lorus of t,he 'tissue. For example, at, res't, t,he

permeability of" 'Lhe nerve fibre membrane t.o potassium ions is

between 10 and 20 t.Irnees that to sodium ions, whereas in an

excited state the ratio is reversed (Babsky et, al 1989,

Volkenshtein, 1983, Cameron and Skofronick 1978).

4.3 RESTING POTENTIAL

The production of nerve impulses and their

pr-opagat.iori is based on e Iect.r-ocibemiced process. The~ exisi:,s a

potential difference of t,he order 01 60-90 mv between t,he o-ut.er­

surface of t,he cell and i t,s protoplasm, the cell surIace bein~

electrically posi1:,1ve wi t.h respect t,o the p r-o t.opLassm. This
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potential difference is commonly called t.he rest.ing membrane

potent.ial. Accordin~ 1:..0

outside of neurons.

Table 4.1
(in mmoLe

Concentration of'
per Kg H 0) inside

2

ions
and

Hodgkin and Hwdey (1952)

potent.ials are caused by

unequal concentrat.ion of

Ion inside outside
Potassium, Sodium,

Chlorine and Protein ions
+Na 50 440 within t.he cell and

+
K

Cl

400

40-150

20

560

out.side, and by t.he vari­

able permeability of the

membrane with respect to

different types of ions.

The concentra'tion of ions inside and outside t.he cell

membrane is giyen in

Table (4.1) and

ions is in the rever-

dia~rammatically re-

higher than t.he out­

side of cell, and the

concentration of Na+

Oulside cell
Membran.

Inside eell

Na+
c K+0

i..
~1: !C-f ..

u
~c:

3 ........
c i.s
4U ..........,

ii..
~ Na+

.1e
1: ---...
~ e
Q ~

" :::..
.§ .I 0.1
~ ~

i
~

A-

E
~

cell

times

Fi~ure

potassium

The rest,-

in

the

10-20

The prot.oplasm

presented

inside

ions

contains

4.3.

se order.

mg state is charact­

erized by. the ratio

of ion permeabilities;

Fig 4.3 Ion corrcerrt.r-at.Iores inside and
o ut.sdde t,he cell.

P
No.

P = 1
cl

0.04 0.45 (4.1)

The rest.in~ po-tential can be explained by a model, in
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which a cell membrane separates a hi~h concentrated solut.ion (H)

of KCl from one -that is less' concentrated (L). In t,he solution,

KCl forms K+ ions and Cl- ions. As in t,he case of cell membrane,

we assume that the membrane permits K+ ions to pass throu~h but

does not, permit, the passage of the Cl- ions. Then the K+ ions

diffuse from 'the hi~h concen'trated re~ion H to low oorrce-rrt.r-at.e-d

region L. This result,s in an excess of positive char~es in L and

excess of -ve charses in H. These char~es form layers on 'the

membrane, and retards the

flow of K+ ions, and a

condition of equilibrium

exists. If e le-ct.r-odees are

by the Nernst's formula,

now put, Irrt.o the ri~ht, and

left half' of 'the vessel (Fi~.

4.4), t,he measu.rin~

ins'trument will show the

pot-errt.Lal difference such

that, L is electrically

posi1:,ive with respect, t.o 'the

grea'ter

Then the

calculat,ed

the

be

wit.h

potential can

concen'tration H.

solution

Fig 4.4 Membrane transport, is
illust,rat,ed by an art,ificial
mernbr-arre separat,ing' KCl solu­
tion of differen~ concent,rat,­
ions.

RT
:F

In (4.2)
C

2

where R is t,he gas oorisrtarrt., T is the absolut,e temperature, ~ is

the Faraday's oorust.arrt, and c and c are ion concentra~ions (see
1 2

fi~.4.4).

In t,he case of cell membrane, 'the rest,in~ pot.errt.Lsd exists

because the membrane is impermeable to t,he large A (Protein)

ions as shown in Fi~ure 4.3. While, due t.o 'the diffusion of
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positively charged po'tassium ions from t,he protoplasm to the

external fluids lends a positive char~e to t,he outer surface of

the membrane and a negative char~e to the inner one.

The resting membrane-potent,i~ is developed due to

variable permeability of the cell membrane to different. types of

ions. Hodgkin and Kat.z in 1949 (Hodgkin 1964) derived a formula

for rest.ing membrane-pot.ent.i~ assuming t.he uniform electric

field t.hroughout. the ent.ire t.hickness of t.he membrane as

P
i,

+ P
i,

+ P
e

c c c
flYJ

RT
In

K K No. No. ct ct
(4.3)•

~ p e + p e + p i,
c c C

K J( No. No. ct ct

where P is the permeabilit.y coefficient, and
i,

and
e

t.hec c are

concent.ra'tions of" ions inside and outside the membrane

respect.ively. Thus one can conclude that. 'the existence of

resting po'tent,ial can be at.tributed to the following fact,s:

1.
+

At. rest, the concent.rat.ion of K in prot.oplasm is about.

10-20 t.imes great.er t,han t.he outside of t.he cell membrane,

and t.he membrane is more permeable t.o K+ ions.

2. The principal anions inside t.he cell such as prot.ein and

nucleic acids are not. free t.o leave and CI-, which is

abundant inside, (Fig.4.3), cross"es only slowly.

3. Permeability of Na+ is only one-t.went,iet,h t,hat of K+.

Thus t.he distribut.ion of K+ det..ermines t,he transmembrane

elect.romot.ive pot..ent.ial and hence the rest.ing. pot.ent,ial is called
+ .

K pot.ent..ial (Das 1987).

4.4 ACTION POTENTIAL

If a s'timulus is applied t.o a nerve, or muscle fibre,

the mode of permeabilit.y of t.he membrane get.s changed, and a

81



variation of membrane potential takes place, as a result, of which

an elec'trical si~nal is ~enerated, which is known as action

potential.

Action potential can be measured using' extracellular leads

or intracellular leads. With an extracellular lead, it. can be

observed that, the surface of the excited port-ion of the fibre

becomes elect,rically negative in relation to the adjacent- areas

at rest" for a brief interval of a millisecond duration.

Intracellular leads show t-hat- action potential exceeds the value

of restin~ potential by 30 to 50 mv.

From the curve showing t-he temporal evolution of t.he

action pot,ent,i~ (Fig.4.5),

we can see t,hat there are two

polar-Iz.at.Iorr oC the membrane

depofar-fz.at.forr phase repres­

ented by ~a' in Figure 4.5.

The membrane potential

phases for this proce~s - the + 30

ascendtng phase and descend-
0

in, phase. Durin~ t,he

ascending phase, the initial
- ~O

I I I , 1 1 I • I I 1'1 • I I I I I 1 , , • , ,

m••e

calledisanddisappears

pot,ent,ial durin~

phase which is

reverts

membrane

descendin~

to the resting
Fig 4.5 Appearance
act,ion pot,ential.

of an

repolarizat.ion phase is longer than depolarizat,ion phase.

this time the nerve fibre is in refractory st,at.e" and it.

be exci t.e-d a~ain.

repolarizat.ion phase

msec,

4.5).

usually

During

cannot,

and

Fi~urein"b'(represent,ed by

t.Ime of about. 1aoveroccursswin@;This

called

4.5 ION THEORY OF ACTION POTENTIAL

Difference in concentration of sodium and pot.-assium

ions inside and outside the fibre is t.he . source of the
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electromot-ive force giving rise t.o t,he resting and action

pot.ent.Lales, The aet,ion pot.errt.Lal is caused by change in t,he ion

per-meabi.Ift.y of cell membrane due to passive membrane transport..

In a st-at.e of rest., the membrane permeability to pot.assium

exceeds t.o t,hat of sodium, and :flow of" posit.ively charged

potassium ions from t.he protoplasm t.o t,he surrounding fluids

.exceeds 'the cont.rary flow of sodium cation from t,he outside into

the cells, which will make t.he membrane elect,rically positive

than t.he inner one.

When an exeit,ing potent-ial is applied 'to t,he membrane, it

becomes more permeable to Na+ ions. The Na+ ions enter the axon

as a result of which inner surface of t.he membrane changes the

sign of its charge from negative t.o posit.ive and will creat.e

action pot.errt.Lal, The int-ernal :fluid will become more

concent.r-at.e-d in Na+ ions. The action pot.ent.ial is mainly Na+

+
pot.errt.Lal which is opposite t.o K pot.ential. During t.he

dspofar-Izat.Iori phase t,he membrane pot-errt.Lal swin~s from -70 mv t.o

+50mv This will remain only Cor a few milliseconds and is

followed by t,he appearance o:f rest.orat,ive processes, t,hat, is, t,he
+ +

per-meabflft.y t.o Na ions decreases and t,hat, t.o K ions increases.

The process leading t-o a :fall in t,he sodium permeability o:f t,he

membrane is called ~nactivat,ion' by Hodgktrr, During t.he
i"

tnact.Iv.at.torr process, 'the K ions will :flow 1',0 t,he outside o:f t.he

cell, and again outside becomes more posi1',ive t,han t,he

protoplasm, and will become ready t.o receive new impulses.

During t,hese st,ages 'the membrane is not, act.ively t,aldng p ar-t., and

hence, the t,ransport of ions is t,ermed as ~passive membrane

transport,' .

4.6 STIMULATION AND TRANSMISSION OF NERVE IMPULSE

import-ant­

time.

Stimulation

parameters

of

t,he

nerve impulse depends

st-imulus 'threshold and

on 'two

u1',iliza'tion

The act,ion pot.errt.Lal does not arise if' a ·cert,ain 1:,hreshold
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value is riot, reached by ~he e.lect.r-Lced s~imulus. The lowest,

st.r-engt.h of stimulation required to ~ive rise to an action

poten'Lial _in an excitable -tissue is called t,he ~t,hreshold of

stimu'ia-tion' . The nerve fibre ac'ts accordin@; to the all-or-none

law ~enera-tin~ an ac'tion potential. When once the firing' 'takes

place, it a't'tains a cons'tant value irrespec'tive of the intensity

of stimulus. However a s'tron@;er stimul1.JS increases -the frequency

of firin@;, and not an increase in 'the ampli'tude of the action

potential.

The s'tren~th of 'the stimulus and duration of its

application are inversely proportional. When an electric current

is used as a stimulus, cer-tain minimum quanti'ty of elect,ricity is

required. As t,he duration ~t, of the transmitted impulse is

reduced, -the our-r-errt, I must be increased. Figure 4.6 shows such

strength-duration curve.

t,he

the

called

action

and

is

U1:,iliza-

an

called

4.6,

t.ime.

is

induce

excitation

-to

poten-tial

utiliza-tion

the

minimum time that, a curren-t

equal to t.he rheobase must,

act.

rheobase represented by OA

in

1
-t:
:J

(.)

D

I
RheoLase A I B

• .1
I •I I

0 F C Time

The minimum strength of t,he

current required 1,0 produce

pr-olorigat.Iorr
Fig 4.6 A stren~t,h - clur-et.Lori
curve.

t.Ion

f'ur'ther

t.Ime implies

of

that

t.he

effect, oC current, has no

value or is useless in generat,in~ act.ion potential. A weak

current is inefficient- at, any dur-at.Iori, The s1,rengt,h-durat,ion

curve takes t,he form oC an equila'teral hyperbola. The threshold

current, r-e-qufr-e-d t.o generat-e impulse can be described by t,he

empirical formula,

·a
= ~-t

+ b (4.4)
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The qiaarrt.Lt.y b is t,he rheobase, .llt is 'the utiliz3'Lion

time, a is a oorust.errt. 'that, charac'terizes 'the threshold level of

the amount of elec'tricit.y.

known as Chronaxie, which

proposed t.he measurement.

A.on

membrana pot8ntial

+ + +++ -r"" +-i-++.f-

.... +++~+_+++++-4-++

01----1--4-_-----------.....

++

-eo
..-...~--------------~

+40 ,......---por--------.,;,------~

+40 ---------~-------.

Ol.----------+-~~-------t

a

1909

1:,ime

excit.-

in

which

parameter,

least

causes

double the

(OD in fi~ure

produce 1:,he

in a t.issue.

t.ime and

charac1:,erize

to

Lapicque

the

anotherof

is

equal

excit.at.Iori

Utilization

Chronaxie

the rate

stimulus

r-heobeeso

required :for a current

4.6) to

ation, ~OF' in Figure 4.6

chronaxie (Babsky et al

1989).

The pr-op.agat.Iorr of

impulse is a self

+

Ol------I--+------r--r-I

+

T -r -+- +

·Fig 4.7 The propa~at,ion of nerve
impulse and cor-r-essporidtrrg change
or axon mernbr-arre permeabilit-~ 'la
ions.

the

The

to

process.

corresponds

suet.airied

nerve impulse resembles a

burnin~ spark travelling

along 'the leng'th of t.he

fuse. The depolarizat.ion

of 'the .membr-arre giyes

rise 'to current" and

becomes a stimulus for

adjacent res'tin~ part, of

the fibre. The mechanism

by which excit.at,ion is

conducted :from one portion of 'the :fibre to another does not.
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differ in principle from 'that. by which an impulse is produced a't

the pofrrt, of stimulation. In bo'th cases an action potential

pr-opagat.Lorr of nerve impulse is portrayed in Figure 4.7.

arises when depolarization reaches the cri'tical value. The

It is

necessary 1:,0 consider the electrical equivalent circui1:. of a

Durin~ t.he ~eneration of impulse the conductance of the

increases by about. 10
3

t,imes. . Fi~ure (4.8) ~ives 'themembrane

nerve cell t.o describe ~he permeability changes. The axon

membrane has a resistance of 1000 ohm cm
2

.and a capacitance of 1
2

J.lF/cm.

equivalent- circuit.

for one element of

the membrane, the

somurn emf (E ) is
No.

to the pot.assium

emf (E ) and leak-
K

a~e emf (E ). The
L

resistance of axo-

oppositedirect.ed

outaide

B Membrane

plasm is represent.-

an

and

t,he

of

R. E
No.

de~ermine

byed

E
J(

~enerat,ion

FJcr; 4.8 The equivalent. circuit., showinf; t.he
elec~rical propert.ies of' a membrane.

impulse and E depiet,s t.he movement of other
L

permeabilit.ies do not, chan~e upon exeit-ation.

resting pot-ent,ial, t.hen t.he potent-fal chan~e V is

ions,

If E
r

whose

is the

V = E - E
r

(4.5)

where E st-ands for E , E or' E
No. J( L

Therefore t,he relative pot.errt.Lal Cor sodium, pot,assium and

leakage can be defined as
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v = E - E
No. No. r

V = E - E
K K r

(4.6)
and

V = E - E
L L r

If I represent,s t,he densit.y oC t,he current, flowing t,hrough t,he

membrane, t.hen

I C
dE + I. (4.7)= dt,.. \.

where I. I: I + I + I
\. Na. K L

with
I • ~Na. (V - V )

Na. Na.

I = '§K (V - V )
K J(

I I: ~ (V - V )
L L L

where C..
for t.he

is t.he membrane capacitance and ~ , ~
K Na

conduct.ance of potassium, sodium

and ~ st.ands
L

and leakages

respec'tively.

axons.

Rate oC t.ravel oC nerve impulse varies wit.h t.he nat.ure of

The nerve impulse t,ravels in a myelinat,ed fibre faster

than in an unmyelinat.ed :fibr.e. In t.he myelinat,ed axon, t,he nerve

impulse jumps Cram one node oC Ranvier t.o anot,her. Pot.assium and

sodium channels open and close only at, t.he nodes oC Ranvier. The

myelin sheat.h has a low capacit.ance, which account.s Cor t.he high

rate of t.ransmission oC t.he nerve impulse. The t.ravel speed of

the si~nal, v is 1-100 m/sec.
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the fibre wit.h a df.amet.er- of 1,um is 10
9 -ro'? ohm cm which exceeds

the resistance of a copper wire of the same diameter by 108

times. In such a conductor, losses and leaka~es are hi~h, but.

the nerve impulse is t.ransmi t, t.e-d by the axon to dist.ances of up

to several meters wit.ho'ut. being damped and distort,ed

(Volkensht,ein 1~83).

During t.he repolarization process, t.he sodium-potassium

status is destroyed. For example single nerve impulse in t.he

,iant axon of a squid allows about, 20,000 sodium ions to enter

the protoplasm t.hrou~h each square micron of t.he membrane, and as

many potassium ions pass out. of t.he fibres. An axon of 0.5

millimeter in diamet.er losses about one millionth part. of its

total pot.assium content during each impulse. The mechanism by

which 'the membrane act,ively removes sodium ions from the

protoplasm and supplies it, with potassium ions is called the

sodium-potassium pump, which is represented in Fisure 4.9. The

membrane actively 'takes

+ +Na and K t.ake place in

so that a large amount, of

ener-gy is required for

this process and is

t~n~ par~ a~ the

expense of ener~y of

e

I..

JC'Na

~
CPHJ A cp·

. .
1 'UcA J .cJr

+

,

i

ATP

ADP

of

t.heir

process,

of"

t.ransfer

concent.ration,

t.his

is called active

The

membrane t.ransport..

part in

hence it

the direct,ion

increased

hydrolysis

(Adenosine

In this

of ATP

triphosphat,e).

pump, the

Fi~ 4.9 Sodium pump i - inLernal side
e - e xt.er-n.al side of' t,he membrane

transpor't is accelerated due to t.he. presence of carriers

subat.ancees which int,eract wit.h the transported ions or molecules

in t.he membrane. This complex is broken down on the innerside.

The carrier (C) and the complex (CS) always remain inside the
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membrane. The following reaction is taking place inside the

membrane.

S + C cs (4.8)

where S is the transported substance.

The key role in the operation of the sodium pump is the enzyme ­

the K+ ,Na+- activ.at.e-d ATPase. The phosphorylation and

dephosphorylation take place in the various of the

membrane. The ATP to ADP conversion takes place only on the

innerside of the membrane.

C + ATP -------} CP + ADP (4.9)

The dephosphorylation is taldn~ place on the outerside of the

membrane (see Fi~ure 4.9).

(4.10)
HO

2
----} C + PCP

C and CP are proteins but 'there affinities are different,. C has

high aff'inity to K+ ions, so 'that it collects K+ ions from the

environment and releases it t.o axoplasm using the energy released

in ATP-ADP hydrolysis, and 'the protein CP has high affinity to

Na+. Thus the sodium pump operates as a system of two cycles.

The first, cycle is of the ion-exchange type

CPK + Na+ CPNa + K+ (4.11)

The second cycle is chemical and involves phosphorylation and

dephosphorylation react.ions. Thus excess Na+ is removed from

axoplasm and 'transferred t.o outside of t.he cell or environment.

Similarly K+ ions is transferred from outside to axoplasm and
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thus it regains the resting st,at,e.

4.7 ELECTRICAL ACTIVITY OF BRAIN

The electrical activity of Brain was firs~ obse:rved

by Hans Ber~er in 1929. If two electrodes were placed on 'the

scalp and 1:,he elec"trical ac"tivi"ty is measured, one will obtain a
very weak complex elec"trical signal. Traces of "these

oscillations are called Electroencephalo~ram (EEG). The

technique which deals wit.h the r-ecor-ding of the electrical

actdvtt.y of the brain and their interpretation is called

Electroencephalo~raphy. Electrodes for recordin~ the si~na.ls are

often small discs· of chlorided silver. They are at,tached to the

head at locations t,hat depend upon the part. of t,he brain 1:,0 be

studied. Usually, the in'ternational standard 10-20-20-20-20-10

system of electrode location, as shown in Figure (4.10), is used

for r-eoor-dfng, There are two methods of r-e-cor-ding

electroencephalo~rams,bipolar and monopolar.

20%

Fp~-...-_

I I \

I ' ,,F: I F:
"-QJ_Q~_gj_

I t Y
, , I

IC 3 'Cz 'C4
- --(J)- -0- -[)- --

I , ,
I I ,
, P3 ,Pz ,p

--0- -B- -~-~
I , ,
I , I
I I ,,

Fig 4.10 Irrt.e r-n.a t.i orra l s~al)dard 10-20-20-20-20-10 syst,em of'
elec'trode Ioc.at.Io n f'o r- EEGs.
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In 'the bipolar met.hod, 'two recording electrodes

applied to t,he cortex or to the corresponding areas of the scalp

and bot.h elec'trodes are ac'tiYe. The elec'troencephalograph 'then

records 'the pot.e-rrt.Lal difference of "the cor~ical areas benea"th

the elec'trodes.

In monopolar 'technique only one elec'trode is active, viz.,

the elec"trode 'tha"t is applied "to 1:,he cor~ical regions and an

indifferen't (grounded) elec'trode is applied 'to 1:,he ear lobe in

the case of man or 'to ~he nasal bone in 'the case of animals.

Then 'the waves under ac~ive elec'trode are recorded. In ~he case

of man, ampli'tude of EEG varies from 5 or 10 1:,0 200 or 300

microvol'ts

multichannel

and frequency lying be'tween

elect,roencephalographs are

0.5 and

used,

70

~o

Hz. Usually

record ~he

activi'ty a't four ~o more 'than 'thir'ty 'two poin'ts in t,he brain

sfmult.ane-ousdy, and t,hus 1:,0 s'tudy 'the relat,ionship and varia'tionS

of elect,rical act,ivit,y at, different, areas of t,he cerebral cort.ex

(Koof et, ai, 1978).

EEG signals are produced mainly due 1:,0 t,he elec~rical

activity of t,he cerebral oor-t.e-x of t,he brain. One hypo~hesis

about, EEG is that. 'the pot-errt.Lalss are produced 'through an

interrni'tt,ent, synchroniza"tion process involvin~ t,he neurons in t,he

cortex, wlt,h different. groups of neurons becoming synchronized at,

of neurons locat.ed at, various places of

consecut,ive short,

different, inst.ant,s of

si,nals consist,s of

act.Ivrt.y from groups

'time. According t,o 'this hypo'thesis 'the

se~men'ts of elect,rical

cortex (Camel'on and Skofronick 1978). The frequencies of EEG

si,nals seem t.o be dependent, on t,he ment,al st,at,e of t-he subject,.

EEG signals of a relaxed person have frequencies ran~ing :from 8

to 13 Hz, but, an alert, person can have EEG wit,h frequencies well

above 13 Hz.

4.8 EEG RHYTHMS

The Elect,roencephalograms are classified according

to the frequency, amplit.ude and physiological charac~erist,ics of
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Table 4.2 Frequency and amplit.udees
of EE.G rhyt.hms.,

rhythms frequency amplit.ude in
in cycles/sec microvolts

up to
Ot 8 to 13 50
(1 above 13 20 to 25
e between 100 to 150

4 and 8
6 bet,ween 250 to 300

0.5 to 3.5

wr-Lt.Irig " of t,he brain, which

(Anninos -et, al 1977). The

EEG i~ mainly classified into

are

"Hand

and

brain

theof

discussed

EEGs

t.he

'the

as

The

as

disorders

of

records

t,ypes,

t,he

4.11).

represented

are

below (Table 4.2).

different

activities

four

(seewavese Ie-ct.r-Lcsdtheir

Alpha Rhythm has a frequency lyin~ between 8 to 13 Hz and

has an amplitude of up to 50 microvolts.

usually found in the EEG p at.t.er-n of a

This t,ype of wave is

relaxed person. The

ampli'tude of alpha waves is greatest and most, st,able in ~he 'two

cor'tical re~ions, one in the occipital lobe, and the other in 'the

par-Ietzal. The occipi'tal alpha rhythm arises in the visual area

of the oor-t.e-x and is, as a rule, absent or faint in t,he blind.

a Bet.a Rhythm is

b

c

d

characterized by wave

frequencies above 13 Hz

with an amplit.ude of 20

or 25 nrlcrovolts. It

is most distinct, in the

frontal re~ion and is

less in parietal re~­

ion. Emotional exci'te­

ment, ment.al work and

li~ht, st.imU1.a~ion chan­

ges t,he alpha rhythm of

occipit.al re~ion Irrt.o

beta rhyt,hms.

Fig 4.11 Typical EEG rhythms.
a-bet,a rhythm; b - alpha rhythm,
c t.het.a rhythm; d deIt.e
rhy-thm.

Theta Rhythm 'con­

sist of waves wit.h a

frequency lyin~ bet,ween

92



4 and 8 cycles per second and

microvolt.s. This 1:.ype of wave

var-Ioues pa1:.hological condit.ions.

has

is

an amplit.ude

found durin~

of 100

sleep

t.o

and

150

in

Delt.a Rhyt.hm is charact.eI'ized by slow waves wit.~ a

frequency bet.ween 0.5 1:.0 3.5 Hz having an amplit.ude of 250 or 300

microvolt.s. -They are regis:tered during deep sleep, general

anes'thesia, hypoxia and various pat.hological processes in t.he

cor-t-ex,

Clinit.ians use EEG pat.t.erns for diagnost.ic purpose. EEG

pat.t.er-n is sensit.ive 1:.0 different. drugs especially anest.hesia, so

that, EEG is used as a monitor during surgery. EEG is being used

for 'the st.udy of t,he different. s1:.a,;es of sleep CBabloyant.z et. al

1985). When a person becomes drowsy" par1:.icularly wit.h eye

closed, t.he frequencies from 8 1:.0 13 Hz (alpha waves) dorninat.e in

the EEG. As t-he person moves from t.he light. sleep t.o deep sleep

the amplit.ude of EEG increases while t.he frequency decreases. If

a s'timulus is applied t.o a person co.nt.inuously, t,he EEGs show

response 1:.0 1:.he :f1rst- few pulses and .1:.he last. few pulses. The

lack of response in bet.ween is called habit.uat.ion. EEG can be

mainly used for t,he diagnosis of pat.hological condit.ions like

epilepsy, t.umor-, head ache and Migraine and are discussed in t.he

subsequent. sect-ions.

4.9 SIGNAL ANALYSIS OF EEG

The usual signal analysis employed for EEG are

spec'tral, :frequency, cross-correlat.ion, coherence, pat-t.ern

recognit.ion and dis'tribut-ion analysis. Elect.roencephalographer

does t.hese analysis and give clinical int-erpret.at.ion of" t-he

elec'troencephalograms. The accuracy of t.he int,erpre'tat.ion

depends upon t.he abili'Ly of t.he elec'troencephalographer 1:.0 see,

analyze, and in'terrelat.e t-he informat.ion con'Lained in t.he gr~phic

wri'te-ou'L of 'the scalp-derived .signal. These analysis could also

be done by oomptrtcat.forual machinery, but. a high speed comptrt.e.r- is

necessary.
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Spect.ral met.hod is one of' 1:.he usual techniques which ~ives

cer-t.edri useful informat.ion. Usually, Clinicians are doing

frequency analysis visually by describing various waves of EEG

belonging t.o different. frequency bands.

Inorder t.o do spect.ral analysis, one must first. sample t.he

signal properly,· extract. the t:~quency informat.ion, analyze t.his

informa1:.ion and t.hen make some decision about, t.he out.come of t.he

analysis. The spec"tral analysis can be done in a very limit.ed

time using FFT. The development. of algorit,hms for high speed

calculat.ion of t.he paramet.ers of t.he neural syst.em, as well as

the evaluat.ion of suit.able sensi1:.1ve paramet.ers for diagnosis do

still have room in medical physics.

4.10 DISORDERS OF BRAIN

EPILEPSY

Epilepsy is considered as "the uncont.rollable episodes

of abnormal neurological or ment.al :funct.ion or bot.h. In 'the

definit.Iori of epilepsy t.he t.erm disease has been avoided on

purpose, because in t.he large rnajorit.y of cases an epilept.ic

seizure is essent.ially a sympt.om of anyone of a number of

diseases.

In the normal brain, neuronal int.eract.ion proceeds in a

highly int.egrat.ed and orderly manner wit.h a background random

firing. The f'act.ors regulat.ing t.he level of membrane

polarizat.ion and t.he rat.e and t.emporal pat.t,ern1ng of cell

discharges are delicat.ely balanced. In cont.rast" t.he epilept.ic

process is evidenced by sudden, rapid and excessive

depolarizat.ion of t,he membrane pot.errt.Lal and prolonged high

frequency discharge of individual neurons. An add!t10nal

propert.y of t,he epileptic process is i1:,8 capaci1:,y 1:.0 ~ecruit,

neural element,s t,hat. are in funct,ional relat.ionship t,o t,hose

init.ially involved, providing a mechanism whereby it, can
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replica'te it.self as i't spreads from one ~ea 'to ano'ther.

The epilepsy can ~enerally be divided Irrt.o 'two ~roups.

The exist.ence of seizures wit.hout, known demcrcst.r-abfe or~anic

causes is classified as idiopa'thic or cryp'to~eneic or essent.ial

epilepsy. The sympt.omatic or secondary epilepsy is 'the much

frequen~ly encoun'tered ~roup of seizures resu1'tin~ from various

types of underlying disorders.

In addit.ion 'to these 'two main 'types, sei:z=ures are

classified in differen't ~roups according t.o ot.her- cri'teria 'to

achieve some uniformi'ty in 'the use of' diagnos'tic t,erms 'to permit.

comparison of cases and bet.t.er- evaluat.ion of therapy. They are

,;enerally classified according 'to cri'teria such as

symptorna'tology, anatomical ori~in, electroencephalographic

pat.t.er-res , e'tiology, chronolo~ical pa't'terns and so on. Usual t.ype

of seizures, viz., Grand mal and Pe'tit. mal belong to t,he group

sympt.omat.ology. The experiences oC pat,ient.s during different.

types of epilepsy are ent.irely different.. For example,

circumscribed sensory seizures called somat.o-sensory seizures are

charact.erized by numbness or t.in~ling sensations, visual seizures

characterized by moving flashes of light., dark spots, colours and

audit.or-y seizures are characterized by buzzing and roaring

sounds.

The elect.roencephalogram is an essential aid in 'the

evaluation of 'the patient, wi'th suspec'ted or known epilepsy. It,

provides assis'tance in det,ermining the correct diagnosis, 'the

etiology of 'the disorder, the locat.ion of epileptogenic foci, 'the

presence and absence of associated brain damage, 'the

effect,iveness of t.her-apy, and 'the suitabilit.y of the patient for

surgical managemen't <Kooi et, al 1978).

The more common type of seizures are grand mal and pe'ti~

mal. In our analysis in later chap~ers, we have applied our

method of analysis mainly in grand mal and pet,it mal. We shall

describe below 'these t,wo t,ypes very briefly.
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GRAND MAL

Grand mal is the most prevalent, and spec'tacular f'or-m
I

of epileptic seizure, and occurs in 60% of t.he cases. The

seizure is immediately preceded by an aura or warnin~, such as an

unpleasant odour, and durin~ an attack t,he individual losses

consciousness and breathing is suspended. His muscles become

rigid, jaws clenched, arms extended, and legs out.s·t,re1:,ched and he

pitches forward or slumps to the ~round. With the return of air

to the lungs, his movements instead of being ri~id, become

jerkin~. Muscular spasms begin, the head st,rikes t.he ground, the

arms repeatedly 'thrust outward, the legs jerk up and down, the

jaws open and close, and 'the mouth foams. Usually in about, a

minute t.he convulsive movemerrt.ss decrease, t.he muscle relax, and

the individual gradually returns t.o normality in some cases

after a deep sleep lasting few mirrut.ees t.o several hours <Anninos

et al 1977).

~",,/\r~.•'\,.~,~-y,;~.~~~,-v~~~~"-ol

(a)

(b)

, I I , I , I

2 J 4 5 6 7 X 'J In

(c)

Fig 4.12 EEG of a) ~clinically' normal brain

b) Grand mal and c) Pet.Lt, mal

The EEG pattern shows fast, and compara'tively hi~her

volta~e spikes in all leads from 'the skull <represent.ed by the

curve ~b' in Fig.4.12), t.he moest, common sit.es are t-emporal and

frontal areas (t,hese areas are identifiable from Fi~.4.10).
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PETIT MAL

In petit. mal seizures "there is usually a diminut.ion,

rather "than a complet.e loss, of consciousness. The individual

stops what.ever he is doin@;, s"tares vacan"tly ahead or t.oward "the

floor and "then in a few second resumes his previous ac'tivi t.y, In

certain cases, "the seizure may occur several t.imes a day.

The EEG of petit. mal seizure shows up to 3 rounded waves

per second followed or preceded by fast. spikes (curve ~c'

Fig.4.12). In some pat.ien'ts, "the discharges may be most, prominent.

over f'r-orrt.ooent.r-ed re@;ions or, less frequently, over

parietoccipit.al regions <Kooi et a1 1978).

BRAIN TUMOR

Elect.rical activit.y is reduced in t.he region of

tumor-, and t.his will show up in EEG. Focal slow act,ivit.y is 'the

most frequent. elec"trographic sign of a hemispheric brain t.umor-,

occurring in about. 90% cases. Slow act.ivi"ty is usually in t.he

form of" in"termit"tent single or brief :rhythmic t.het.a or del"ta

discharges. In more pronounced cases, delta act.ivity (0.5 to

3.5Hz) becomes prominent, relat.ive 1:,0 "thet,a act.ivit.y (4 t.o 7Hz)

and wave form less regular in "the primary focal zone. A

secondary zone showing theta act.ivit.y may develop.

HEADACHE AND MIGRAINE

Headache is a deep form of pain, as opposed t.o superficial

or cutaneous forms part.aking of t.he aching quality of ot.her deep

pains and dis"tinguished from t.hem chiefly on "the basis of locus

of origin.

Causes of most, headaches are "the dis"tending forces applied

to Int.r-acr-ard.al blood vessels. One of t,he other assumpt.ions is

that t,he massive pat.t.erns of sensat.ion involved in headache are

the free nerve endings embedded in the walls of vascular

st.r-uct.ur-e inside t,he head. St,ret.ching of "these fibres by agents
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pr-oducdrig t,ract,ion displacement" distension or inflammation

const,it,utes the st,imulus, even as such forces, when exerted on

visce:ral organs and muscle tendons, evolve deep aching pain and,

when act,ing on superficial cut,aneous t,issues, arouse prickling or

burning pain.

One of the other causes for headache is reduction of

intracranial pressure. Removal of 1% of t,he tot,al cerebrospinal

fluid (about, 20 ml) from the spinal canal create headache, due to

variation in pressure.

Among t,he most intense headaches are t,hose associated with

migraine, severe t,hrobbing pains localized chiefly in the

f'r-ont.ed, occipit,al and parietal regions of head, and oft,en

accompanied by visual pat,t,erns streaked, striped, or

scint,illat,ing "saw tooth" ima~es of cent,ral o"rigin.

Headache is

brain, the brain

hyper-t.erisdorr,

also produced

t.umor-es, and

by

also

other

from

malfunct,ioning

eye strain

of

and

4.11 DYNAMICAL ASPECTS OF NEURAL SYSTEM

Some of the usual techniques, which are employed

for t.he diagnosis of brain-disorders using EEG have already been

explained in previous sections. The Clinit,ians usually compare

the EEG pat,t,erns of the pat,ients with st,andard EEG recording by

frequency analysis. But, in some cases, t,he EEG. pattern of

diseased person looks normal (Schmidt, and Wilder 1965), and in

such cases t,he usual EEG p.at.t.e.r-n analysis fails 1:,0 give correct.

dir-ect.Iorus.

The Fourier analysis is a linear analysis and hence i 1:,

does not give any information about, 'the nonlinear int,eract,ions

present, in t,he system. Moreover, p.at.t.er-n analysis and Courier
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analysis @;ive only qualitative information. We approached 'Lhe

problem with a new mode of analysis which would give quant.it.at.ive

informat.ion, suitable for a highly nonlinear system like the

neural syst.em. The details of this work which t,akes into account

the collect.ive behaviour of the system :form t.he subject mat.ter o:f
'I

chapters 5 8: 6. ..~ ' .; ,

The new met.hod of analysis is based on the exist.ence of

more than one Iricommerisnn-at.e frequencies in t,he syst.em which

could generate nonlinear p.at.t.er-n as also it. can be as a result. of

the existence of various nonlinear mechanics in t,he syst,em. Our

aim is primarily t.o examine t.his aspect. and get. a deeper insight.

into t,he nonlinear dynamics of t.he syst.em. This is all t,he more

expected from t.he system when one realizes t.he fact t,hat. the

phenomenon is a consequence of a co-operat.ive mechanism. Hence

the :final point, is t.o det-er-mtrre t.he class of plausible t.ime

scales t.hat. could exist in t,he system. This could be determined

as one does in nonequilibrium stat,istical mechanics.

Cert,ain relevant, paramet,ers which are usually employed in

the theoret.ical :framework of neurophysics are described below.

~--. I..,

K ion

highly

BIOPOTENTIAlS

In t,he

potential change is

conduct.ances across

\ ~ \ ~ 'Cil If

'. "'~ "-, "­
''--... ,,-

......-: • I '-_ ~ _. ---' _

neural :firings, ~-::',.~lai.ned~ '

generated due to changes in Na and

'the membrane of an axon. This is

a

nonlinear, which is however a single neuron process. It, is known

that. t,here exist a rest,ing po't-errt.Lal of -80mv and. a 1:,hreshold

potential -50mv. If t,he poten~ial difference across a membral)~

is less 'than 50 mv ~ 'there is no firing. But, if this is ~rater

than 'the t,hreshold value, a firing t,akes place, and the peak

potential of this is abou~ 40mv. Thus each firing has an

amplit,ude of' about. 120 my, and one of t,he most, significant,

f'eat.ur-ess of t,his is t,hat ~he amplltude of t,his firing is

independent, of the st,rengt,h of 'Lhe simulation. F'trr-t.her-moz-e , t,he
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firin~ as it. proceeds alon@; the len~th of t.he axon, does not get

attenua'ted. A~ain the t.ransmi~sion is not. like a current. in a

conduct.or. The firing t.akes place at. t.he various nodes of

Ranvier in a sequent.ial manner. The elect.ric pot.ent.ial (e/r) has

dimension (MLT-2
) 1 / 2 .

REFRACTORY TIME (T)

Each neuron, at. a given time, has a pot.ent.ial firing

f'r-equericy which could be anything up to 1000 :firings per second,

for a given st.imulus. The 'time lapses bet.ween t.wo successive

firings, called t.he refract.ory time, is 'therefore of t.he order of

a millisecond. Hence at. a given inst.ant., one can classif.y

neurons on t.he basis of 'this re:fract.ory time. The same neuron

can however have different. refractory 'times at. different.

Inst.ant.s', but. 'they all have a least. upper bound. Hence the

number of neurons f'tring wit.h a specified refract.ory t.ime is t.ime

dependent.. Again t.he re:fractory t.ime depends on t.he st.rengt.h of

the st,imulus.

SIGNAL PROPAGATION SPEED (v)

The elect,rical signals propagat.ed along t.he lengt.h of

the axon has a :finit.e measurable speed and is about. 100 m/sec.

It is wort.h ment.ioning t.hat. this is much less t.han 'the speed of

light" which is taken as the int.eract.ion speed in

elect.r-odyrramfces.

AXON CURRENT (I)

This is the current, that. :flows bet.ween, two

consecut.ive nodes of Ranvier. This consist.s o:f two part.s a

displacement. current. component. t.hrough t.he membrane capacit.y and

an ion current. t.hrough t.he membrane. Thus t.he current, t.hat. flows
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from t,he medium (1) t.o (2) (I ) depends on t.he volt,a~e across
12

the membrane V nonlinearly, and I t.he ion current.. These
l.

cur-r-errt.es are normally defined as current, density per unit, area
. -4 1/2

and is about, 1 rnA/sq. cm and has dimension (MLT ) For a
-1 -4 1/2

volume current. t.his would be (ML T) .

NEURAL DENSITY

A signal received by one nerve

will be communicat.ed t.o a large number of

or- a ,;roup of ner-ves,

nerves

process, t.hrou~h axonal t.ree, t,he branches of

by a cascadin~

which end in

synapses oorme-ct.Irrg t.hem wit.h o't.her- cell bodies and dendrit,es.

This cascade process however will not, connect, all neurons in 'the

system b'ut, will end up wi'th t.he distribut.ion of regular 'tubes and

stripes (Law and Const.an'tine 1981). Hence all neurons are not.

involved, and t,her-e:fore one can define neural densit.y as t,he

number oC involved neurons per- uni~ volume. One can also define

this as a frac'tion of affect.ed neurons t.o t.ot.al neurons n/N in

unit volume (Prat.ap R, 1988, Parikh and Pr-at.ap 1989~ 1984).
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CHAPTER 5

CHARACTERISATION OF NEURAL
SYSTEM DURING MENTAL ACTIVITY

An attempt is made to understand the neural system
durin,g mental activity usin,g the technique in nonlinear
dynamics and the results obtained from the studies are
s:iven. Various time scales which may present -in neural
dynamics are also described.



CHARACTERISATION OF NEURAL SYSTEM DURING MENTAL ACTIVITY

Even t,hough t,he basic physiolo~ical pr-oper-t.Iees of t.he

nerve cells in t.he brain are tmde.r-est.ood 'to a cer'tain extent.,

little is known about, t.he dynamics of men'tal ac'tivities or higher

funct.ions of the brain such as p at.t.er-ri analysis, learnin~,

memory, association and abs'trac'tion (Clark et. al 1985). An

of t.hese requires t.heunde-r-est.emdrrrg

dynamics of human brain, which

knowledge

has about.

of 'the

10
1 0

~eneral

neurons

in'terconnect.ed in a complex manner. A large amount. of research

(Cooper 1973, Rapp et. al 1985, 1987 Kur-t.en et al 1986) has ~one

towards t.his end and scient.is'ts are t.r-yfng t.o explain t.he complex

dynamical behaviour- of 'the brain in t.erms of the elec'trical

act.Ivit.y of individual neurons. However, t.o explain t,he higher

funct.ions of t.he brain, one has t.o realize t,he necessity of a new

approach, takin~ into account., t.he collective behaviour of a set

of "connect.ions" which is very hi~hly dynamical in na'ture

(Babcock et. al 1987). I't is in 'this context t,hat we examine 'the

dynamics of such net.works which can exhibit, collect.ive or

cooperative electrical behaviour (Choi 8: Huberman 1983, Parikh

and Prat.ap 1984). It should be realized tha't even if t,he various

evolut.ion ce-rrt.r-ess aI'e localized, i 1:, can st,ill be a consequence of

collect.ive act.ion of a Lar-g-e number of neur-ons. The process t.hat.

we envisage is one in which a small s'timul\1s at, a cert.ain point.

in 'the syst.em ~enerat,es

affect. a Lar-ge number

response.

e le-ct.r-Lced si~nal which "cascades" in and

of neurons I'esult,ing Irrt.o collect.ive
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'We undert,ake t,he st,udy of' collect,ive nrode-s by studying t,he

EEG. EEG is a manifest,at,ion of' elect,rical act.ivit,y of t,he brain

due t.o t.he collect.ive behaviour of' a lar~e number of neurons

(Laidlaw and St,ant,on 1966). Collect.ive activity of' a large

number of cells may yield coherence in t.he neural dynamics

(Parikh and Prat.ap 1984).

As explained in the previous chapter, a qualit.ative study

of "the EEG t.races by count.in~ t.he average number of' peaks per

second is usually. undertaken t.o classify various rhyt.hms in the

so called "br-edri waves" such as 6 (0.5 t.o 3.5 Hz), e (3.5 t.o

7.58z), et (8 t.o 13 Hz) and (3 (13.5 t.o 30 Hz) (Laidlaw and St.ant.on

1966). The characterist.ic t.ime scale T for t.hese waves are of
c

the order of 0.1 sec, while t.he refract.ory time scale T
r

associat.ed wit.h t.he elect.rical act.ivity of a single neuron is

1-2 MS. Thus, t.here is a fact.or of 100 bet.ween t.he t.wo t.ime

scales T and T and t.his implies t.hat. an EEG rellect.s t.he
c r

cooperat.ive behaviour of neurons <Parikh and Pratap 1989). Thus

the neural net.works are very much dynamical in nat.ure and

therefore only an analysis from t.he point. of view 01 nonlinear

d~cs can expUrln t.he collect.ive behaviour of the syst.em

<Babcock et al 1987, Dvorak et. al 1986, Babloyant.z et. al 1986).

To st.udy t.he collect.ive behaviour of any dynamical syst.em

<Nicolis and Nicolis 1986), it. is necessary t.o know t.he number of

independent variables t.hat. are required t.o charact.erize t.he

syst.em and also t.he informat.ion flow in t.he syst.em <Parikh and

Prat.ap 1989 8: 1984). Basically t.here exist.s t.wo different.

approaches in 'the st.udy of dynamics of a neural syst.em. In t.he

first. approach, general equat-ion of evolut.ion inco:rporat.ing t.he

collect.ive nat.ure was Cormulat.ed for 'the first. t.ime by Parikh and

Pr-at.ap [1984] as an integr-al equat.ion in which t,he present, st.at.e

of a given syst.em is connect.ed t.o an earlier st.at.e by a "mapping"

or a "oorme-ct.forr" or a "t.ransit-ion probabilit.y". This equat,ion

has been writ,t.en by drawin~ inspirat-ion :from nonequilibrium

statist.ical mechanics of the Brussel School fni t.Lat.e-d by

Prigogine. The formulat-ion given by Anderson and Cooper in 1973

has been shown as a special case of t.he above equat.ion. It, has
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further been shown t.h.at. this is capable of explaining the higl"ler

functions of the brain such as Iear-rn.rrg , recollection and

asso·ciation.

The second approach is the one Irut.Lat.e.d by Hopfield

[1982,1984], wherein, 'lhe fac'l t.h.at, there exists a 'lhreshold for

neural firin~ is associated with the dynamics of spin ~lasses in

which the startin~ podrrt, is a many spin Hamiltonian with a random

distribution of flippin~ spins. Both met.ho.dss described above are

based on cer'lain model-equa'lions. However, for a complex

nonlinear system like brain, it, is difficul'l to ob t.edn 'lhe

equations of mot.Lori which will describe the exact dynamics.

Hence, it, will be of much help if one can have a method of

analysis where equations of motion are not needed. Work in t.his

drr-e-ct.Lorr has resulted in novel methods of time series analysis.

A new approach in time series analysis (Grassberger et, al 1983)

usin~ act,ual EEG records (Babloyantz et. al 1986, Dvorak et. al

1986), is very useful for analysin~ such systems whose exact.

equ.at.Lores of mot.ion are not, known. Bein~ hi~hly nonlinear,

fourier and au'locorrelat.ion t.echniques have only a rest,ricted use

in such systems. The basic assumpt,ion is tha'l a t.Ime series

contains all 'lhe informat.ion about 'the sys'lem <Packard e'l al

1980, A'lmanspacher et. al 1986 ) even 'lhou~h it, describes 'lhe

v.ar-Lat.iori of a single qu.arrt.i.t.y. Hence 'lime series analysis

should provide valuable Irrfor-m.at.Iori <Nicolis & Nicolis 1986)

about cotle-ct.Ive neural dynamics. We should also be able to

obt.edri a qu.arrt.I'la'live es'limate of t,he number of independent.

variables necessary 'la charact.erize t,he sys'lem. A detailed

descrip'lion of ·t,he me'lhod has already been ~iven in chapt.er 2.

It, has now been realized that, t,he neural system is highly

nonlinear, dissipa'live, and non Markovian since it is capable of

retainin~ a memory. This implies t,hat, there should exist in t,he

system, more t.h.an one incommensura'te frequencies which manifest.

i'tself in t,he increased dimensions as seen in a time series

analysis. This fact has already been incorporated in the

e vo.ltrt.Lori e.qu.at.Lori by Parikh and Pr-at.ap [1984]. However t.o get. a

clear unders'landin~ it, is useful 'to know various t,ime scales
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involved in i:,he neural dynamics.

5.1 TIME SCALES IN NEURAL DYNAMICS

An eleci:,rical signal corresponding t.o an individual

impulse conduc'ted along an axon is called 'the ac~ion pot.errt.Lal or

spike po'tent.ial, represent.ed by cP, and i't is of 'the order of

100 mv and has dimension of (MLT-2
) 1 / 2 . Ac'tion po't.errt.Lal is 'the

basic uni~ of" informa~ion t,ransmi~t.ed along 'the nerve fibre. The

signal propaga'tion speed is t,he ra'te of 'travel of ~he nerve

impulse, v and is 1-100 m/sec. If 'two successive s'timuli

separa'ted by a cert.ain t.ime int,erval are applied t.o 'the nerve

fibre, t.he behaviour of 'the fibre will depend on t.his 'time

int.erval. Immediat.ely af't.er a nerve impulse has been Irut.Lat.e-d,

the given part, of t.he fibre is in 'the absolut.e refrac'tory st.at,e,

i.e., it. cannot. be e~cii:,ed again. This is followed by a rela'tive

re:frac'tory s'ta'te in which 'the 'threshold pot.e-rrt.Lal is somewha't

increased. The dur-at.Iori of 'the ent,ire refrac'tory 'time, varies

from one 'to a few milliseconds.

Axon our-r-errt, is defined as ~he curren't 'that, flows be'tween

two consecu'tive nodes of' Ranvier (Volkensh~ein 1983 8:: Das 1987).

This is

about, 1

curren't

also defined as curren't densit.y per unit. area and is
-4 1/2

rnA/sq. cm and has dimension <MLT ) . For a volume

'this would be (ML-1T - 4 ) f / 2 . All neurons are not, involved

in 'the t.ransmission of a signal, and 'therefore one can define

neural densi'ty as 'the involved neurons per urdt, volume. This can

also be defined as t,he frac'tion of a£fec'ted neurons 'to 'to'tal

neurons n/N in a uni't volume.

The parame'ters, viz., 'the act.ion pot.errt.Lal 4>< ~ 100mv),

t.he 'time dura'tion T < 1-2 ms), 'the axon" current, I ( 1 mA/cm
2

)& ~ ~

and neuron densi'ty n are necessary 'to find 'the plausible 'time and

len~t,h 'scales in neural dynamics.
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5.2 DIMENSIONAL ANALYSIS

Followin~ Parikh and Prat,ap [1984] each of t,he

paramet.ers described above has a dimension defined in t.erms of

mass, lengt.h and t,ime. By doing a dimensional analysis of t,he

various quant.it.ies we can const.ruct. a dimensionless paramet.er r .
First. we define

r = </>)( yY I Z
TU n'"

where x,y,z,u,w are paramet.ers. Subst-i'Lu'Ling dimension

(MLT-Z ) i / 2 , v as LT-t , I as (ML-iT-4)i/2, T as T and n as

have

(5.1)

of 4>
-3

L ,

as

we

X/"" Y (i/2)z
r • (MLT-?..I (LT-i) (ML-iT - 4 ) TUL-3'.' (5.2)

Sine r is dimensionless, we set. powers of' M,L and T in

(5.2) t.o zero. 'We t,hen get. t,hree equat,ions

x + z
0 (5.3)2" 2 =

x + 1 -3w 0 (5.4)2" y - 2 z -=

-x - y -2z + u = 0 (5.5)

There are only t,hree equat.ions for t,he five unknowns, so

that. we can solve only for t.hree of t,hem, in t.erms of t.he at-her

two. By keeping x and v independent" we will get, 'Lhree equat.ions

as
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z = -x

y = 3w - x

u = 3w - 2x

Substit.uting :for z,y~u in equation (5.1), we get.

r = 4>x Sv-xv

( av 3v "')
V T n

x
2

• (</:J IvIT )
v

3 3
Cv T n)

put w-y/3

x
2r - (4) I vIT ) (5.6)

where x and y are t.wo parameters. The dimensionless quantity

consist.s o:f two part.s, the first, one depends on t.he

electrodynamic variables 4> and I, besides t.he dynamic variables

such as propagat.ion velocit.y v and t.he refractory t.ime T . This

is t.he resist,ance per unit. lengt,h per unit, t.ime. The second t.erm

however consist,s o:f only mechanical variables and is the rat.io of

the distance t.ravelled by

to a charact,eristic leng1:,h

t.he signal

defined by

during
-:1/3

n

a refract.ory

This clearly

period

shows

that the mechanical and electrical processes can be independent,

but. t.hey can also get, coupled by 'the choice o:f x and y ..

A .general time scale can be wri1:,t,en as

1/3 Y
(VTn ) T - rT (5.7)

The inflnite possibilit.ies are evident from (5.7) by givin~
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various values of x ~d y. Since t.Ime scales are real, x and y

can t,ake only real values, b ut, can be ra~ional or Lr-r-at.Lorual. If

x-O, y=O, equat,ion (5.7) reduces t.o t,he r-of'r-act.or-y t.Ime, If

x=y-1, then time scale reduces t,o T=-(<pnj,/3/I), t,he ra~io of ~he

and is independen~ ofpot.errt.Lal gradient,

the refractory

to

t.Ime,

t,he

as

axonal

well

c~rent,

as t,he velocity of signal

propagation. On t,he o t.bez- hand, if x=1/2, y=O, we get, a

different. t.Ime scale as (<P/vI)j,/2. The various t,ime scales are

given in Table (5.1).

Table 5.1 Time scales

x y z Symbol Order of
Magnit,ude

1. 0 -1 (vn1/3.)-j, t Mechanical 10-6..
2. 0 0 T 1:, Refract,ory 10-3

r

3. 1/2 0 (</>/vD i
/

2
t Electro- 10-1

em

Mechanical

4. 1 1 (4)n1
/

3 /1) t Elect,ro- 10"
EM

Magnet,ic

It may be seen that, t,he scales (1), (3), and (4) (see

table) are all independent of refractory time. The numerical

values given in the table show a wide range of rnagnit,ude. In
cs

t,his we have taken the density of neurons as 10 per c.c. The

longest time scale is 10'" sec while the short,est is 10-
6

sec.

Thus wit,h the known parameters of the system, the longest and t,he

shortest time scale differ by 10 orders of magnit.ude (Pra~ap

1988).

In the absence of an understanding of mut.ual neuronal

activities, we cannot stipulat,e the domain of x and y. To ge~ a

feel Cor t,his, we invert this problem and determine t,he value of
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x from t,he e qu.at.Lon <Parikh and Pratap 1989),

T = (1'4> /
2

T
e

vI)
x

T
£

(S.8)

where I' is t,he fraction of .neurons 'that. are on an average

electrically act,ive. From ~he observed value of T
obs

(average ~ 0.1 sec) and assuming t.ha~ 1'=1, we find that, x=1/2, so

that. t.he collect.ive t.ime scale T c = Jrt:/>IvI is independent. of T e.

Hence we can identify 'two dis'tinct values T and T. Clear-Iy
& c

different values of n would lead t.o different. values of x, I't is

wor'th repea'ting t.hat 'the t.Ime scale for a sin~le neuron
-3

T (1-2)x10, whereas ~he 'time scale T from 'the EEG records
£ 'v C

is 0.1 sec ie., Lat.t.er- is abou't 100 'times larger and hence 'the

EEG p.at.t.er-rus can jus'tifiably be considered as being coopera'tive

electrical ac'tivi'ty of neuron (Parikh and Pra'tap 1989 8: 1984).

Considering 'these 'time scales present in ~he sys'tem we can

develop t.he St.a'tis'tical Mechanics of t.he sys'tems. Also we can

find t.he number of independen't var-iables t.o charac'terize t.he

st,ate of 'the neural system from 'the EEG analysis and can use i't

for 'the model development. of t.he system (Babloyan'tz e't al 1986,

Babcock et, al 1987).

5.3 ANALYSIS OF EEG - TIME SERIES APPROACH

Time series analysis of EEG revealed 'tha't t,here does

exist a det.errninis'tic componen't, which could be used 'to classi:fy

the neural sys'tem 'taking Irrt.o account, of nonlinear-, non Markovian

and nonst,at,ionary nat.ure. The analysis o:f EEG records from

single neuron (Rapp et al 1985) and mul'tiple neurons (KQrt.en e't

al 1986) have revealed t.he exis'tence of det.erminist,ic componen't.

Rapp et. al [1985] recorded ~he ex'tracellular ac'tion pot.ent.ials of

sin~le neuron from different. re~ions of squirrel monkey cort.ex by

glass micro pipe't~e elect.rodes wi'th a t.ip diamet.er of 1

micromet.er filled wi'th 3M KCI, and dimensions of corresponding
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a't'tractors are calculated. They also calculated dimensions of a

,roup of neUI'ons. In all these cases they found that D is
2

fractal. KQrten et al also have done the analysis using single

neuron, a network of 26 rieur-ores and also after giving stimulus,

and found that chaos do exist in the system.

The quantitative analysis of EEG gives more information

than the qualitative analysis where the number of peaks per

second in the EEG is counted. This is further enhanced by the

dichotomy in the statement "it is usually believed that a patient

may have a completely normal EEG and yet have a well documented

epilepsy and also an abnormal EEG may be obtained from patients

wi'th no history of seizures" <Schmidt and Wilder 1965).

We have seen in earlier chapters that any nonlinear

dissipative system will shrink in phase space to a small

dimensional space <Packard et al 1980, Swinney 1983, Nicolis and

Nicolis 1986) called attractor <Rosseler 1976, Lorenz 1963)

asymptotically in t.ime, and it. requires a lesser number of free

paramet.ers t.o characterize the st.at.e. The dimension of t.his

s'tate is called at.t.ractor dimension and the space to which the

sys~em evolve is called embedding space. The inf'ormat.ion flow in

the syst.em can be measured in terms of Kolrnogorov entropy

(Bennet~in 1976).

The present. met.hod of analysis gives three significant.

quantit.ies viz.,

1. At.t.ract.or dimension D, which indicat.es the smallest. number oC
2

variables that. are required t.o charact.erize the asympt.ot.ic

s~at.e of t.he syst.em.

2. Embedding dimension d indicating the dimension oC the
e

subspace. of the total phase space to which the system shrinks

due to nonlinear dissipation.

3. Kolmogorov ent.ropy

capacity of the syst.em.

K ,
2

which
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This method answers the questions: (i) Does all neural

system evolve 'to an att.rac'Lor st,ate and if so,. do they have an

int.eger dimension (regular a'tt,ractor) or a f'rac'Lional or- fract,al

dimension (s'tran~e a't'tract,or), (ii) whet,her t,his is an invariant,

char-act.eristic of all t-he syst,ems and can 'Lhis be used t.o

classify neural syst.em in a quant.it.a'Live manner ?

informat.ion :flow occur in such a syst.em ?

(iii) Does

'these ques'tions weTo

channels)

answer

of a 'clinically' normal

analysed t.he

(without,

EEG

any

(eight,

known

rnaJfunct.ioning of 'the brain) person (age 39). We have under'Laken

the ~alysis a't two st,ages first, in 'the rest.in~ stat.e and

second when 'the subjec't is given simple numerical

multiplication and division. These EEG records were

.the same condi'tions.

5.4 IMPORTANCE OF D AND K
2 2

problems of

taken under

A syst.em which is nonst.a'tionar'Y, nonlinear and

chaotdc is no~ amenable 'to t.he usually known analyt,ical

techniques and hence one has t.o resor-'L to methods to find out as

to whether there are any Irrv.ar-Larrt, parameters in the system which

could characterize the system and can be used as an index 101'

classif'ica'tion. The two paramet.ers D and K falls in this
2 2

ca'tegory. It. may be realized 'that. D 'the dimension of the
2

at.t.r-ac't.or- as well as 'the dimension of the subspace of the phase

space in which 'the at'tract.or is embedded can be· obtained by

evaluating C (&) in the limit £-+0 and d ..eo, D gives the minimum
d 2

number of parameters that one reqWres to charac~erize a

dissipative nonequilibrium syst,em in its asympto'tic s'ta'te. As no

limi'ting process is involved in time, these are known as static

parameters. However in obtaining K, one t.ak.es ~he limi1:, of T-+O
2

or 'the time Irrt.er-v.al between the consecutive readin~s is also

subjected to a limiting process. K is hence considered as a
2
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dynamic parameter. The Kolmog-or-ov entropy can be considered as

the rate at which Irif'oz-m.at.Lon about, t,he syst,em is lost, in course

of t.Ime (Schust.er 1984). There is however a basic difference

be'tween t,he Kolmogorov e-rrt.r-opy and t,hermodynamic e-rrt.r-opy, since

while 'the former is infini'te for a completely chao'tic syst,em, t.he

Iat.t.e-r- at.tains a maximum st.a'tionary value when 'the sys'tem at,t,ains

an equilibriurn. Thus while 'thermodynamic entropy defines the

degree of disorder in t,he system, Kolmogorov e-rrt.r-opy de-t.er-rmrre

how chaot.ic a dynamical syst,em is. One would apprecia'te 'the

difference if one realises 'the difference between disorder and

chaos. The former is characterized by a completely stochas1:,ic

process, while there is det.e.r-mardssm in 'the Lat.t.er- and are

characterized by det,ermdnistic equations.

5.5 DATA ACQUISITION

Figure 5.1 represent.s t.he diagram of t.he elect.rode

posit.ions as seen from the t.op.

6

7

5

8

t

4

2

3

Fi~ 5~ 10-20-20-20-20-10 sys~em oC elec~rode

posi t..ions used f"or rest.. and ment..al act..ivi t.y.
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Eight channels of EEG are taken simult,aneously accordin~ to t,he

10-20":'20-20-20-10 interna'tionai scheme (i.e; EEG records from

elect.rodes located at 'the left. and right sides of t,he skull

Frontal, Temporal, Parietal and Occipit,al). Each ear is

grounded and this is connected to the front posterior at. eit.he-r­

side. The electrical fluctuation with respect to this is

amplified and recorded on a chart, recorder. We have taken, in

all cases, data of duration 10 seconds each and di~it,ized at, 20

millisecond interval. We thus get a set.. of 500 data pof.rrt.es for

each channel. The record was made when the subject is at, rest, as

well as when he was given simple arithmetic problems such as

mult.iplication and division of small numbers. The process was

repeated for three consecutive days at 8 am everyday. The

purpose was basically to find out (a) whet,her there is any

difference in the characterist,ic pClr'arnet,ers if t,he person is

subject,ed to mental activity and (b) having known about, the kind

of exercise t,he person is subjected to, is there any change in

the ment..al activity on subsequent days? This would imply a

direct connection bet,ween neural ac'tivit,ies and the psycholo~ical

condit.Iorus of t,he subject..

5.6 AUTOCORRELATION IN EEG RECORDING

As merrt.Icmed in previous chapt.ers, Aut,ocorrelat,ion

analysis is a quali'ta'tive analysis, which t..ells us how system

resemble,S itself as time increases. In t..he case of periodic

~ys'tem it shows a repetitive ruat.ur-e , whereas in 'the case of

chaotic syst.em, autocorrelat,ion· function 1p(T) t.ends 1:,0 zero as T

increases.

In order

aut.ooor-r-etat.Ion

au'tocorrelograms

110 study the possible v.ar-Lat.fori of

in EEG patt,erns during mental act,ivit,y,

were corest.r-uct.ed from recordings of all t,he
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ei~h't channels during rest and men'tal activity period on all 'the

three days. Fig.(5.2) give typical au'tocorrelograms for rest, and

merrt.ed activity, for 'three consecu'tive days.

observed 'tha't 'the nature

of t,he aut,ocorrelo~rams

has been
Rest

the neural activity at,

respective locations.

However, the st,ructure

of aut,ocorrelo~rams does

not, show much variation

varies

channel

due to

from channel

<Fi~.5.3 a

differences

&b)

in

1.442
L
I
~
i

- t.~

durin~ men'tal act,ivit,y

as compared to, when t,he

person is at rest,. In

abnost, all cases ~(T)~O

as T~oo..

The fac't t,hat,

2.8J\3
. I

r
I

i

aut.ocor-r-e-Lat.Iori is not
- 2.M3

analyse EEG recordings.

As described earlier,

thus assume

2.145
L
i
i

'the

alt,er­

'to

neural

1:,0 t,he

K and D
·2 2

import,ance

involving

demands

t,echniques

sensi1:,ive

of t,he

much

sta'te

syst,em

nat,e

evahrat.Iorr of

analyses

in t,he field of

neurophysics. continued ....
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T ----)

- 1.733

t.99J
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-1.

-nd
5.2 Comparison of lp(T) (2 . channel) between rest, and mental
a~tivity for. three consecutive days.
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5.~ Au't.ocor-r-eLat.Lori f'urrct.Iorr lp(T) in all t,he ei~ht channels
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of a ~cllnlcally' normal person (1 day) durin~ r-e-srt..
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5.7 ANALYSIS (Evaluation oC D and K )
2 2

Each da'ta set for eigh't channels, during 'the res'tin~

as well as during 'the mental act.ivit.y for t.hree consecu'tive days

(in all 48 set.s) were analysed separately. Each dat.a se't was

LOC( C(a»)
e

-18

Fie; 5.4 A plot. oC log Cd(&) :for the ot.h channel

oC a clinically normal person durin~ rest..

used to calculat.e the correlation int.egral Cd (£) as given in

equation (2.26) and a plot. of log C
d

( £ ) against log(£) was made

for d=1 t.o 30, as shown in :figure (5.4). This p lot, was 'then used

to calculat,e t,he mean slope of each curve and Figure (5.5) gives

a plot of t.his slope against, dimension. If t.he syst.em were

completely stochastic, t.his plot would be a st,raight line

inclined at. 45
0

t.o t.he d-axis or t.he relat.ion would be C/£)~ £d.

In t.he present. case, t.he curves, for all 48 EEG data set.s deviate

from this straight. line and saturate for large d. This

saturation value, when it becomes independent. of d, gives the

charact.eristic correlat,ion dimension D. The separat.ion :from 'the
2

asymptote t.akes place as d att.ains 'the embedding dimension. The

results are presented in Table 5.2a, b and c :for three

consecutive days. The results are arranged for ea~h channel as
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seen in Figaure (5.1). The values in paren'Lhesis give t.he

cor-r-eLat.Lori dimension durin~ men'Lal activity.

22.74

i
,..-
I

b

Il
w!
c::w'c ,,-.....
tni

I

Ir
I
I
I
~

I
!
i
/'

o
I
)

a

30

Fig 5.5 The avera~e slope

linear part, of t,he curves
function of d.

d(logCd(£»)/d lo~(£) 01 t,he

of Figure 5.4 plotted as a

It may be noted that the dimensions are all fractal,

thereby, representin~ stran~e attractors. Again 'the ei~h'th

channel shows a st,eady decrease from the first day 'to t,he t.bd.r-d

day dur-Irig; 'the restin~ stage. This fea'Lure however is not, seen

in t,he other channels. By and large, for O'Lher channels, t.here

is a slight increase for t,he second day, but, get, reduced on 'the

third day. However in the case of during 'the mental ac'tivit.y 'the

eigh'th channel registers an increase and then seems to get,

st,abilized.

In Figure 5.6 we have p lot.t.ed K
2,.d

for a p ar-t.Icml.ar-
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channel as a func'tion of d.

113.8 rO----r-----------------------------_

+,
I,
'tt
H
~

o DIMENSION - - -- ~ 30

-{
Fig 5.6 The spa'tial separa~ion T lo~(C /C ) of t,he

d d+1
cor-r-eLat.Lori curves as a f urrc't.Lori of d.

One remarkable fea~ure 'to be observed is 'Lha'L for lower dimension

t.be dat,a is noise domtruat.e-d and hence a lar~er K and 'Lhe
2

det.er-mfrdest.Io componen'L becomes dominant, only when d at,t,ains

larger values resul'Ling in 'Lhe sat,ura'Lion value of K. Thus 'La
2

ob'tain ~angible resul~s, one has to ~o for higher dimensions. A

nonzero second e rrt.r-opy indicat,es ~he existence of de~erministic

chaos.

5.8 GENERALIZED DIMENSIONS AND C(ot) SPECTRUM

As described in chapter 2, strange at,tract,ors have

frac'Lal geometry and can be characterized by a se~ of generalized

dimensions D .
q

of' s~rengt,h Ot

Knowing D , we can evaluate se~s of sin~ulari'ties
q

(scaling index), and corresponding dimension f(a).
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As Irrdfc.at.ed earlier, f (a) corresponds t.o D .
max 0

We have evalua1:,ed D and 1(0) spect,rum from t,he 7
t h

q

channel of EEG r-ecor-dfng of a normal person at, rest. Fi~.(5.7)

shows t,he variat.ion of D wi t.h q and is of standard form r-ep or-t.e-d
q

by earlier workers (~alsey et. al 1986a a c, Grebo~i et, al 1988,

Brog~i et, al 1989).

12108642o-4-6

----..

~

~~,

~l
1\

\ -.
<,
~
~ ..... .--

7

6

4
-12 -10 -8

5

-2

q --.

Fig 5.7 D as a function of q for t,he EEG (7l h channel)
q

of" a ~clinically' normal person durin~ rest,.

I
D

q

9

8

Scalinf; spect.rum f(a)

equat,ion 2.59 viz.,

has been evaluat,ed usin~ t,he

=

Fi~.5.8 shows f(a) spect.rum for t.he EEG r-e-cor-dfrrg of t.he 7
t h

channel of" a normal person at. r-ezst.. The f" (ex)
ma.x

D
o - 6.39,



D
(ex. 4.09)

mvrr>
00

concerit.r-at.ed

D (et 8.74)
and max"" podrrt.es correspond t.o t,he most,

-00

and t,he most. rarefied re~ion of t.he measure (see

section 2.7). There exist.s t.wo peaks in t.he spect,rum - one broad

(peak height, 6.39)and t.he ot.her sharp <peak height, 6.65).

9 10 11 12 13 14 1587654321

OL---J_---L_--L_-.L._--L-_-I-_..&-_...a..-_..I-_.&.-.....--.I~___&_~_ __......_~

o

2

4

6

8

10

I
f(et)

12,....----------------------------,

lh
Fi~ 5.8 f'(ot) vs ex for t.he EEG (7 channel) ot a
~clinically' normal person durinr; rest,.

It. should be riot.e-d t,hat. t.he f(ex) spec'trum evaluat,ed in t,he

present case is not, symmet,rical unlike in the case of ot.her

systems like two-scale c.arrt.oz- set. and period-doubling at.t.ract.or

(Halsey 1986a). Non symmetric f(OI) spect.ra have been observed

earlier also in 'the cases of circle map (Halsey 1986a) and NMR

laser (Broggi et. al 1989). Broggi et al observed 'that. s'truct,ure

of !"(a) spec'trum will depend on the stat,e of 'the nonlinear

system. For example, in NMR laser, f(a) spec'trum shows double

humps when t,he laser is modulated with certain crit.ical strengt,h.

The double peak oC f(a) spectrum characterises t.he co-exiS'Lence

of t.wo att,ract.ors (Broggi et, al 1989).
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We have also evaluat,ed D values (Fi~ 5.9) and ["(et)
q

spectrum of t,he same person under merrt.ed act.ivit,y.

14

I
D

q

12

10

8

---
~-,

<,

~
~

'"~
~
~.

6
-12 -10 -8 -6 -4 -2

q --.....

o 2 4 6 8 10

Fig 5.9 D as a f'urrct.Ion of q :for t,he EEG (7 l h channel)
q

of a ~clinically~ normal person ~urin~ mental activity.
J

Result.s show t,he v.ar-Lat.Lorr in f{a) spectrum in comparison with

that, evaluat,ed during t.he rest, (Fig 5.10). The f'{et) spectrum in

this case also shows t,wo peaks. The height. of bot.h t.he peaks

increase by a considerable amount. (10.6 for main peak and 11.01

for t,he sharp peak). Also, t,he widt,h of f"(Ot) spect,rum durin~

mental act,ivit,y almost, doubles (~a • 6.3) in comparison wit,h t.hat,

during rest, (~Ot .. 3.6). This means t.hat. t,he at.t,ract,or t.akes up a

more complex st,ruct.ure during t,he ment,al activit.y. It. is t.o be

noted t,hat during men'tal ac'tivity 'the f(a) spect.rum as a whole

shifts to higher ot-values. Thus t.he present, obesez-v.at.Iorss sug~est.

that. f(O() spect.rum depends on t.he ment.al st.at.e of t.he person.
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lhFig 5.10 :f(o) vs 0 for ~he EEG (7 channel) of a

~clinically' normal person during mental ac'Livity.

5.9 INFORMATION FLOW IN BRAIN

If P(A) is 'the probability of the occurrence of a

certain even't A, 'then P(A)=O.99 would indicat..e t..he almost,

certaint..y t,ha't t,he even't would occur while P(A)-O.001 indicat.e

the almost, cer'taint,y 'that.. 'the event will riot, take place. Hence

in ei'ther case, there is very li'ttle uncertainty. However,

maximum uncer'taint..y would be when P(A)=O.5. A~ain ~he

uncer-t.edrrt.y t,hat, exists before an experiment. is performed is

removed when once 'the qu.arrt.It.y A. becomes known aft,er 'the
\.

experiment. has been performed and we ~et, inforrna'tion of" 'the

system. This information that. one obtains in a series of

experimen'ts is known as errt.r-opy; defined as
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and ~his can also be a measure of unpredic"tabili"ty of t,he system.

Thus t.he e rrt.r-opy can be considered as a measure of information as

well as. tmoe-r-t.edrrt.y. This quanti"ty however is not, a s~atic

parame-ter, for, if the uncertaint.y before "the Iriptrt, X is K(X),
n n

then if the channel is noise free, then the output, Y would
n

be reduced but, i 1:, will not

reduce t.he uncer~aint,y and as such K ....O.

single valued mapping bet,ween ·X
n

-is noisy, "the urrce-r-t.edrrt.y may

and Y.
n

Thus one can have a

However, if 1:,he process

be cornplet.e-Iy removed so much so X cannot
n

condit.Iorual probabilit,yknowing Y.
n

Thus, if K(X /y )
n n

is t,he

uniquely defined by

then -the quantity

I(X,Y) = K(X) - K(x/y)

is called information :flow (Parker and Chua 1987).

(5.9)

In t,he

present, analysis, t.he ent.ropy t.hat. is measured aft.er t.he person

has been subject.ed t.o ment.al act.ivit.y could be ident.ified as t.he

condit.ional probabilit.y, since t.his has happened because of 'the

Input., Thus isent.ropy curves and t.heir difference would ~ive a

means of -the Irif'oz-mat.fon flow. The numerical values are given in

the Table 5.2, while 'the numbers in -the parent,hesis are t,he

values corresponding t.o morrt.ed act.ivit.y.

Figures (5.11), (5.12) and (5.13) give t.he isen'Lropy

curves for t.hree consecutive days. Indeed to draw the isen'Lropy

curves, one requires a much closed grid of numbers. Nevertheless

the curves here, indicat.e the trends. The solid curve represent.

the isent.ropy curves during the rest.ing state while the broken

ones are for the s-tat,e when t.he mental act.ivi-ty is on. The space

is the same as indicated in Fi~ure (5.1); -the right hand side

indicate t,he channel 1 'to 4 and the left. 5 t.o 8.
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Fig 5.11 The
firs'L day.
channels 1-4
Iridi.c.at.ed in
indicate the

figure indicates the Kolmogorov ent-ropy for ~he

Numbers on .~he right, hand side indicate the
and on the left- hand side the channels 5-8 as
Figure 5.3: The numbers in the simple bracke'L
K values during mental activi'Ly. The numbers

2

in square bracket, is 'the constant value of K for the curve.
2

The solid curve represen~s the restin~ state, t,he dot~ed ones
for ~he period of' merrt.ed ac~ivi~y. The arrow indicates t,he
downward gradient, direc~i0r:'.
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Fie; 5.12 The same kind of curve as in Fi~ure 5.7 for the
second day. It, may be noted that- the ~radien'L dfr-e-ct.Lori
during the mental activit,y is t,he same for. all t,he 'three
consecut.tve days.
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Fie; 5.13 The Kofmogor-ov ent-ropy plot. for t,he t.hird consecu1:,ive
day. Here a~ain the ~radient. direc'tion durin~ 'the rest,in~

position differs :from t,he earlier days, while the mental
activity component,' maint,ains the same direc'Lion as on 'the
previous t,WQ days.
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Tab le 5.2 D and K of a
,
clinically' normal person du r i n g

2 2 . =est
and mental activity, for three consecutive days.

FIRST DAY (a)

channel D K
2 2

5 1 5.22(4.63) 3.50(5.94) 8.41(8.85) 5.85(8.54)

6 2 5.72(4.53) 4.17(5.21) 7.72(6.14) 8.53(8.87)

7 3 4.97(5.56) 3.18(6.04) 7.96(8.77) 5.15(7.28)

8 4 6.17(3.50) 4.50(5.56) 8.52(6.90) S. 91 (7 . 84)

SECOND DAY (b)

channel D K
2 2

5 1 5.96(5.46) 5.07(5.38) 9.73(10.04) 9.21(4.35)

6 2 5.14(4.74) 5.95(3.37) 9.33(8.31) 10.31(6.38)

7 3 5.58(5.46) 4.70(5.18) 10.22(9.02) 9.97(7.79)

8 4 5.52(4.77) 6.46(5.43) 9.55(6.31) 10.38(7.36)

THIRD DAY (c)

channel D K
2 2

5 1 4.20(5.32) 3.39(5.06) 8.90(7.50) 8.09(8.01)

6 2 5.13(4.31) 3.59(5.32) 9.11(7.41) 7.88(9.62)

7 3 4.46(5.06) 4.54(6.53) 7.13(7.67) 6.77(11.41)

8 4 4.49(4.45) 4.77(6.17) 8.29(8.54) 7.07(10.15)
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indica1:,e flow from maximum t.o minimum i.e, an outward arrow

indica1:,e 1:,he fact, t.hat. t.he values inside are higher t,han t,he

errt.r-opy value of t.he curve, while an inward arrow indicat,e a

lower value inside t.he curve. This is equivalent, to an

informat.ion gradien1:,. On t.he first. day bot.h t.he rest,ing as well

as act.ive curves have a flow f'r-om t.he right. t.o left,. Thus t.he

informat.ion :flow has a st.ruct.ure in which t.he ent.ire brain takes

p ar-t., Here also t.he person was not. let. known about. the t.ype of

exercise he is going t.o be subjected t.o. Again t.he flow pattern

show a reverse in t.he pariet.al and occipit.al as compared t.o t.he

front.al part.. This is more obvious on t.he second day. On t.his

day, t.he subject. knows t.he kind of exercise, he has t.o undert.ake.

Nevert.heless, t.he pat.t,ern during t,he me-rrt.ed act,ivity is

:from right. t.o left.. On t.he t.hird day again t.he merrt-al activit.y.
curve preserves 'the same st.ruc'ture, while t.he res'ting one have a

different. st.ructure as compared t.o the previous days. The random

:firings t.aldng place in t.he neural syst,em during t.he rest,ing t.Irne

could probably account. for t.he apparent. inconsist.ency in t.he

pat.t.ern which complet.ely vanishes when t.he ment.al activit.y is on.

Thus flow pat,terns in t.he system would indicat.e t.he st.ate of

mental act.ivity in a subject.. It. may also be not.iced in Figure

(5.6) t.hat. t.he curves do not. go asympt.otically parallel t.o the

d-axis. While t.he present. met.hod is indeed one which separat.es

t.he st.ochast.ic part. from t.he det.erminist.ic one, some element. of'

.0 weak stochast.icit.y may st.ill pe~sist. in t.he data system. Any

major inst.rument.al art.ifact.s may also be filt.ered out., as we t.ake

IX.-x I in t.he evaluat.ion oC correlat.ion int.egral.
\. J
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CHAPTER 6

PATHOLOGICAL CONDITIONS OF
THE BRAIN

This chapter describes how D and J( values varies with
2 2

respect to various patholo~cal conditions of the
brain. Analysis shows a trend in which K values

-2

depend on the state of neural system and hence can be
used as a dia,gnostic tool. Spatial mappinc of K

2

values at hi,gh spatial resolution can be used for
ima~n€ purpose.



PATHOLOGICAL CONDITIONS OF THE BRAIN

In 'the li'terature 'there are a large number 'of

references, describing 'the exis'tence of chaos in bf.olog i c.al

systems especially in neural sys'tem <Holden 1982, Chay 1984).

Recen't pro~ress in the 'theory of nonlinear dynamical sys'tems has

provided new methods for the analysis of EEG as a t.Ime series

which will reveal the underlying dynamics of 'the neural syst..em.

Det,ails are ~iven in Chap~er 2. By using t..his t,echnicjue

Babloyan'tz and Des'texhe [1985, 1986] have shown 'the existence of

det.er-mfruest.Ic chaos in t.he neural syst.em, by evalua'ting the

at.t.r-act.or- dimension. Rapp et. al [1987] have shown t,he exist,ence

of cb.aot.Io behaviour by analysing the spontaneous act..ivity of

cortical neurons of squirrel monkey and EEG of human brain.

The basic assumpt.ion of t.he present, analysis is t,hat, the

time series oorrt.edrus all t,he Irrf'o.r-msrt.forus regarding t,he physical

process <Packard et. al 1980). The usual met.hod of usin~ 'the EEG

by neurologist,s is to count, the average number of peaks per

second and t.o at.t.ribute various rhy'thms such as 6, e,a or (1 as

described in earlier chapt.er. The amount, of sophist.ication t.ha't

has undergone Irrt.o 'the desi~n of an EEG apparatus has t,heref'ore

not, been adequately exploi'ted.

There is a great deal of informat.ion in EEG which has not

been ext.ract.ed. The present met.ho-d ext.rac'ts t.he det.er-mirnsrt.Lc

componen't from an apparently random signal, and i't is hoped that,

this method would resul't in a more quant.i'tative diagnos~ic t.ool
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for underst.andin~ the stat.e of the neural syst.em under various

pat.hological conditions.

In all t.he previous studies (Babloyant.z et. al 1985,

1986,Rapp et al 1985, 1987) only one of the ei~ht. channels of an

EEG were considered and "the underlyin~ assump"tion was "that, t.he

syst,em is self similar wit.h all the channels havin~ similar

characterist,ics. But. in order to t,est this assumpt,ion we

analysed all "the eight. channels of an EEG of a "clinically"

normal person known to be free from any malfunct.ioning of t.he

brain. It, was found that, at, each point in the Head space,

there is a differen"t st.ran~e at,"trac"tor with different e-mbe-ddi.ng

dimension as well as different dimension and differen"t Kolmogorov

entropy. I"t is therefore inferred "that a nor-mal syst,em should

include a collec"tion of interacting st,range at,tractors.

Previous workers (Babloyantz et a1 1985, 1986 Dvorak et al

1986, Destexhe e"t al 1988) have used second order dimension to

characterize the neural sys"tem. But analyses show that (Caputo

and At,ten 1987, Pratap et a1 1988, Re~huna"th et. al 1987), Second

Kolmogorov entropy (K) is more sensit,ive than the second order
2

dimension (D) "to charact.erize "the st,at,e of the brain. (In our
2

later discussions we use K and D instead of second Kolmogorov
2 2

entropy and second order dimension). In the case of neural

sys"tem, the K is hi~her implyin~ that. system is more complex.
2

We extended our studies in order to understand the different

pathological condit.Iores of the brain such as epilept,ic case

durin~ seizure ~ t.umoz- a:Cf'ect,ed brain, mild cases of Mi~raine and

persistent headache, in terms of K. We "tried to identify t.he
2

re~ions of the brain which are act.ively taking part, under various

pathological condi"tions. A compara"tive study of t.he different,

part.s of the brain during various conditions has also been made.

We also t.r-y to answer the questions like, can one use t.his

sensi"tive parameter 'to classify t.he different, pat,hological

conditions of "the brain ? Can one use this as a dia~nost.ic

tool 7.
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6.1 EEG MEASUREMENTS - DIFFERENT MODES OF ELECTRODE CONNECTIONS

As explained in ~he last, "two chapt,ers EEG

measurements are done based on 10-20-20-20-20-10 in'Lerna'Lional

scheme '(Fig.4.10). Simultaneous measurement of EEG from

different re~ions of the brain depends on -the number of channels

<8,16,32,64 etc.) available in the EEG equipment. In the most,

common type of EEG equipment 8 channels are available, so that.

simultaneous measurement of EEG from 8 positions of the brain is

possible. But" again the choice of elect,rode positions depends

on the type of disease and affec'ted re~ions of the brain.

Various types of electrode confi~urations commonly used

wit,h an 8 channel EEG equipment are explained in t,his sect,ion.

For convenience, the followin~ notations are used.

Ai left, ear lobe

A2 ri~ht ear lobe

F frontal

C central

T t.ernpor-ed

p pariet,al

0 occipital

1. EC1

This is one of the common t.ypes of EEG recordin~ and is

bipolar in nature. This electrode confi~urat,ion has been used

for recording EEG of a "clinically" normai person durin~ rest and

merrt.ad activity and in cert,ain pa~holo~ical condit.Iorus like,

Grand mal epilepsy, Mi~raine and epilepsy wi~h demylina'Led

disease. In ~his confic;ura~ion (Fi~ 6.ia) simul~aneous

measurement, of EEG from ei~ht re~ions of the brain is possible ­

Le , four ref;ions from the ri~h~ half and four ref;ions from ~he

Ief't, half of the brain. The positions are represen~ed as follows



Right, f'r-orrt.ad <channel 1) F ~ F
P 8

2

Right, t,emporal <channel 2) F ~ T
8 4-

Ric;ht, pariet,al <channel 3) T -. T
4- <5

Ri~ht, occipi'tal <channel 4) T -. 0
<5 2

Left, f'r-orrt.sd <channel 5) F ~ F
Pt ?

Left, t,emporal <channel 6) F -. T
7 3

Lef't parie'tal <channel 7) T -. T
3 5

Left, occipi'tal <channel 8) T -. 0
5 1.

5

,

7

8

FiG 6.1a EC1

2. EC2

2

EC2 looks similar 'to EC1 <Fig 6.1b). In EC2, the central

and pariet,al regions are also included and oorme-ct.Lori is mainly .~

be'tween second layer like F - C C - P
4 4' 4- 4.

of elect.rodes are
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Channel 1 F ... F
Pz 4-

~9\

Channel 2 F ... C
4- 4-

Channel 3 C -. P
4- 4-

Ft
Channel 4 P 0 6 2-.

4- 2

Channel 5 F -. F PzPi 3 P, p.

Channel 6 F -. C
3 3 48

Channel 7 C -. P
3 3

Channel 8 P .... 0 Fig 6.1b EC2
3 1

3. EC3

EC3 is bipolar in na~ure bu~ it, is en~irely different, from

EC1 and EC2. Only upper and lower regions are Iocat.e-d

(Fi~.6.1c). Channels 1,2,3 and 4 are f'r-orrt.ad re~ions and

Channels 5,6,7 and 8 are pariet,al re~ions. Cent,ral and occipit,al

re~ions are excluded

4 3

~
1

Channel 1 F ... F
8 4-

I

Channel 2 F ... F
4- z

Channel 3 F .... F
z 3

Channel 4 F ... F
3 7

Channel 5 T ... P
d 4-

PChannel 6 P ...
4- z

Channel 7 P .... p 7 Gz 3

Channel 8 P ... T
Fie; 6.1c EC33 5
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4. EC4

EC4 is similar 'to EC3, but inst,ead of f'r-orrt.ed re~ions.,

central regions are monitored ('the channels 1,2,3 and 4

Fig.6.1d). EC4 is represent.ed as

Channel 1 T ~ C
4- 4-

Channel 2 C ... C
4- z

Channel 3 C ... C
z 3

Channel 4 C ... T
3 3

Channel 5 T ... P
6 4-

Channel 6 P P...
4- z

Channel 7 P ~ P
z 3

Channel 8 P ~ T
3 !S Fig 6.1d EC4

5. EC5

EC5 is also

d 8 t h h Isan c anne .

similar 'to EC3, e-xoe-pt, in t,he .. s'", 6
t h

, 7
t h

Ins'tead of pariet.al region, 'these channels

occupy 'the central region. Channels are (Fig.6.1e)

Channel 1 F ... F
8 4-

Channel 2 F ... F
4- z

Channel 3 F .. F
z 3

Channel 4 F .. F
3 7

138



Channel 6 T .. C
4. 4-

Channel 6 C .. C
4. z

Channel 7 C .. C
z 3

Channel 8 C .. T
3 3

Fig 6.1e EC5

6. EC6

Only one elect,rode isMonopolar 'technique is used in EC6.

ac'tive ~ and ot,her one is corme-ct.ed 'to 'the ear lobe. I'L is

represent.ed as (Fig. s.ir»

Channel 1 F .. A2
4-

Channel 2 T .. A2
4.

Channel 3 C .. A2
4.

Channel 4 P .. A2
4-

Channel 5 F .. Ai
3

Channel 6 T .. Ai
3

Channel 7 C .. Ai
11

Channel 8 P .. Ai Fig 6.1C EC6
!I

Occipit.al region is not, included in t.his conf"igurat.ion.
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7. EC7

EC7 is also monopotar- and is similar t.o EC6, but. cent.ral

region is not, included, inst.ead of t.hat., f'z-orrt.ad re~ion is more

concent.rat.ed (Fig.6.ig).

Channel 1 F ~ A2
P

2

Channel 2 F ~ A2
8

S
Channel 3 T ~ A2

6

Channel 4 0 ~ A2
2-

Channel 5 F ~ Ai
Pi

Channel 6 F ~ Ai
7

Channel 7 T ~ Ai
5

Channel 8 0 ~ Ai
i

Fie; 6.1c; EC7

8. EC8

EC8 is bipolar but., it. is different. from all ot.her

confl@;urat.ions. Here, t.he elect.rodes are concent.rat.ed in ~he

lower part. of ~he brain, i.e, in t.he pariet.ooccipit.al region.

Only seven regions are locat.ed (Fig.6.ih). Elect.rode posit,ions

are

Channel 1 P ~ P
z 4

Channel 2 P ... T
4. cs

Channel 3 T ~ 0
cs 2

Channel 4 0 ~ 0
2 i
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~F,; - -F'~

Channel 5 0 T
/' "-+

i 5

~ r~ F4F. f1.

Channel 6 T -+ P
5 3 _Tt - C,- - c.r -~- _et:' - CA- _C

f
_c~_ T+-_ A1.

\ ' I
Channel 7 P P \ 7 f I-.

~ P3~ PI: -;: P~~f'3 z

/ '
~o---o;/f,

I~

Fig 6.1h EC8

The different, pat.hological condit.ions which we analysed

are as follows.

6.2 EPILEPSY

Epilepsy is defined as a part.icular st.a'Le of

the brain as explained in sect,ion 4.10. Behavioural t.reat.men'L of

epileptic pat,ient,s or simulat.ion at. the appropriat,e moment,

employed as a warning syst,em t.o t.he pat.ient, or his surroundings,

might. have a great.er advant.age t.han t.he ordinary met.hods of

treat.ment. in epilepsy (Rogowski et. al 1981). Rogowsld explained

the primary cause of' generat.ion of seizures as due t.o t.he changes

in t.he "paramet.ers" of t.he neural syst.em, causing disproport,ion

bet.ween excit,at,ive and inhibitive mechanism, and bringing the

syst.em int.o t.he verge of instabilit.y.

According 1:,0 Kaczmarek et. al [1977], the visual inspect.ion

of micro elect.rode recordings of cort.ical neurons, made under

normal conditions in t.he absence of external st.imuli, usually

shows no ooz-r-eLat.forr elt,her bet,ween anyone un!t and t,he local

cross EEG act,ivity. Under cert.ain corrdft.Iorus, t.his sit.uat.ion may
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charige dr-am.at.Lc.al.ly. Most, of ~he neuronal cells, picked up by a

micro elec'trode s'tar't to oscilla'te and rire in phase. This is

the phenomenon of 'the epilep'tic seizure. It, is accompanied by a

lar~e increase in 'the ampli'tude of 'the EEG which manif"est, as

extremely re~ular sharp waves. The firin~ p.at.t.er-n of 'the

individual urn t, ~enerally pro~resses from 'the 'tonic p.at.t.er-ri in

which neurons fire continually and at very hi~h frequencies over

a slower, small oscilla'tion in membrane pot.e-rrt.Lal , 'to t,he clonic

pattern in which each neuron repet,i'tively gives a hi~h frequency

bur-est, of ac'tion potentials followed by a period of srt.r-orrg

depolariza'tion dur-Irig; which the cell firin~ mechanism is

inac'tiva'ted.

In 'the absence of seizure activi'ty, 'the firin~ p at.t.er-res of

neurons frequen'tly resemble wi'th the chao'tic behaviour of t,he

sparsely oormect.e-d networks. A cell may al'ternat,e beLween high

frequency b ur-est.es of ac'tion po'tent.ials and periods of

spike-inact,ivation wit,hou't clear cnrt, r-rryt.hmfc oscilla'tions in

membrane pot-errt.Lal that, are charact,erist,ic of Lar-ge st,agaes of

seizure. The seizure it,self' may st,ar't with a :few irregular

spikes af'ter which 'the wave act,ively becomes very re~ular.

The frequency of 'the spikes and i'ts amplitude increase as

the seizure pro~resses. I't can be clearly a'tt,ribut,ed 'to 'the

recruit.me-rrt, of grea'ter number of neurons Irrt.o a homo~eneous

oscillat,ion. It, is t.ernpt.Irig 'to suggest t,herefore 'that, the

corme-ct.Ivft.y of t,he cor-t.e-x may be 'Lransformed durin~ t,he course

of a seizure from a sparsely cormect.ed ne'Lwork, wi~h ra"Lher

ch.ao't.Lc behaviour and complex spa~io-'temporal p.at.t.er-rus Irrt.o a

densely oorme-ct.ed ne'twork capable of 'truly homogeneous act,ivit,y

(Kaczmarek et, al, 1977).

There are t.wo 'types of epilepsy. One is pet.I t, mal

(Fir;.4.12c) in which EEG p.at.t.er-rus show iden~ical spikes, and it,s

ampli'tude is very small. Babloyan'tz et, al [1986] . analysed pe'tit,

mal case and obtained a dimension of 2.05±O.09. They have found

tha't au'tocorrela~ion f urrot.forr dies down as 'time increases and FFT
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is broad banded, and ~hus es~ablished ~he exist.ence of chaos in

the neural system during pet.i~ mal. However t.hey have not.

calculated ~he value of K and have gone only up t.o d-7. Dvorak
2

and Siska [1986] obtained t.he dimension t.o fluctuat.e between 3.8

and : 5.4, at Ule occipi~ region. EEG reco~d of Grand mal

epilepsy shows vigorous patterns . (Fig.4.12b) with amplit.udes

going occasionally high.

In ~he present. st,udies .EEG signal of grand mal case were

analysse-d for all eight channels. In order t.o study the t.ime

evolut.ion of t,he dynamics ,. analysis was carried out. on EEG t.aken

for t.hree different. t.ime int.ervals during~ before and after

seizure.

The mode oC conflgura~ion is EC1 (Fl~.6.1a) and t-he EEG is

measured from eight. point.s of t.he brain. One can represent.

LOG< CC £»
B

-18

Fie; 6.2 A plot. ot: lo@: C (&) Cor t.he 6t.h channel
d

(epilepsy).

corresponding set.s as front.al (1,S), t.emporal

(3,7) and occipit.al regions (4,8) which are

locat.ed on t.he lobes on elt.her side of t.he brain.

(2,6), pariet.al

systemat-ically

The EEG is



di~i t.ized at. an int.erval of 20 msec, and t.he digit.ized dat.a is

analysed using t.he met.hod (At.manspacher 1986, Abraham et. al 1986)

described in chapt.er 2. A t.ypical plot. of log C
d

{ & ) vs lo~(£)

for various dimensions d, for 'the 6t.h channel of 'the first. 10 sec

dat.a is given in Figure (6.2). The slope v of 'the linear part. of

t.he curves of Figure (6.2) against. dimension is plot.'ted in Figure

(6.3).

A

8

*
*

a

j: x x

x x x )( x x x

DIMDiS 10N------>

b

A

3fl

Fig 6.3 The plot. gives t.hree curves: slope vs
dimension d a) for a complet.ely st.ochas"Lic
case b) for the curves in Fig.6.2. c) K as a

2,d
f'uric t.Lori of d (epilepsy).

For a complet.ely random behaviour, t.his plot. will be a st.raight.

line wit.h slope uni'ty (curve a). Curve b gives t.he dimensions of

t.he at.t.ract.or, and curve c gives t.he Kolmogorov en'tropy. The

sat.urat.ed nat.ure of slopes and Kolmogorov en'tropy shows t.hat. t.he

syst.em is nonlinear and dissipat.ive and also exhibit.s t.he

exist.ence of a det.erminist.ic component..

evaluat.ed for all eight. channels of' t.he

Values of D
2

EEG are given

and K
2

in t.he

t,able (6.1). The dist.ribut.ion of D and K are also represent.ed
2 2

in box diagram (Fig.6.4 8: 6.5). The t.hree groups belong 'to 3

tdme segment.s of EEG during epilept.ic seizure and 'time goes from

left. t.o right.. Each group charact.erizes 10 sec of da'ta.
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Table 6.1 Dz and Kz obtained for Epilepsy before, during and

after attack.

Table for °2 Table for K
2

Sheet ... 1 2 3 Sheet ... 1 2 3
Channel Channel

1 2.26 6.43 5.71 1 4.88 11.42 11.69
5 2.09 5.29 5.22 5 4.51 7.32 10.52
2 3.46 5.48 5.12 2 7.91 11.30 9.76
6 3.27 6".23 4.98 6 6.38 12.51 10.18
3 5.36 5.53 4.45 3 10.02 10.59 8.84
7 4 ..94 5.90 5.68 7 9.70 9.10 9.05
4 4.98 5.93 5.21 4 10.67 12.11 10.98
8 5.02 7.5.3 9.29 8 9.76 14.53 17.35

In the case of D plot (Fi~.6.4), 'the set. (1,5) seems to
z

be small in the :first 10 seconds while 'the magnit.ude increases in

15

before S£ter

FIe: 6.4 Dist.ribut.1on

(epilepsy - beCore,
dif'f'erent. ~1mes.

oC D) values as evaluat.ed Cram 8 channel £Ea
z

durtn~ and aC~er at.~ack) recorded at. ~hree



nd'the 2 10 seconds and again shows a reducing, tendency in t.he 3rd

10 seconds. All

a~t.ribut.ed t.o t.he

D's are fract.al and t.his
2

t.ime evolut.ion of st.range

information . can be

at.tract.or behaviour

of corresponding point.s in t.he neural syst.em. It. is also

realized t.hat. values correspondi~ t.o the set (4,8) seem t.o be

higher 'than the others. This pair goes on increasing as we go

from the first. set 'to 3rd set and in this, the eight.h point, goes

on increasing in time. This implies, that. 'the eight.h point. or

'the left parietooccipit.al region is more active t,han t,he ot.her

points. The same t.rend is also seen in K One can easily see
2

~hat. t.he fract.al dimensions are asymmet.ric from t.he left and

right. halves of t.he brain, as well as in t.ime. It, may be

realized that. t.his gives t.he t.ime evolut.ion of t,he dimension of

t.he att.ractor and also t.he informat.ion capacit,y.

(darkchannel goes

K
2

in11.69and11.42

Thus the eight.h

,7.23 and 9.29, in D and
2

first. channel goes from

4.88,

t.he

5.02as

while

and

K
2

D
2

in

in

17.53

5.71

shaded)

and

and14.53

6.43

9.76,

2.26,

(Fig.6.5).

15

10

5

o

~

tiftu

during

bdore r--'

....

r-
~

.: r-

:::-
...... - -.....

- ,.- - X ~ r-
......-

X r--- '- - rrr:
./ '''\

" /0, -- r--:- --'
" - - -, , - >~>< " - r- "- ....--. -.... r-
'/ -, -- .::::: --

:~
, , -- .~< --. r >. rx <; X

r:::: ;>< -..... 'v ~
, ,

~-: ~ r)<
X ::::-

.: 0, ,x
>~

/ ,
" ~:::::

.....
r2- --. '-,

~
,', v --- l)<

:"\ ><
<-, /0, r--

.-..... 1- .....

'::: >: ~
',/

~
"., --

:~
'-, r > X ~. ........1

>( R
'v. -- 'X

.........., ...........,., ;::: x
~

/:
.~ r--: ~<

---... ''''' -- f"-/
~

. ~, \,,, ::::: y, --= ,
t /.

'-.. X "/
. .......... " -..... r2: X---...

~
-..... ~( >(...-,.- .......... ' .... r-::: y

-- " "

-..... ,. ,

~ y: \." I t ", t:::::: 'v - 'v
I:::: x r-- r-:. .::::. .' , .... ' -. .... ,

I I'

I::::::-..... ~ v x X ~ ~<--. ~<
---... >:.

'-- I' -..... rx
I

-..... I:::::: .........
.........

'./ -- -. -. ~~ --. ;~». ::- I . - t:::: --- v - '. '<......... v --. l' ~
/', -- ~<.

---... ' ..... -.

~:::::: .... " t:::. -- /,
X '/

'/ ::: ", t '>-, ...... './/",
.::: -- .: -

I
......... ."" ~ "

x. -- "x ;:::::- '.' , "
~ ~ >~ -- / -- ,,, -- 'I

"/ '-- " ~ /Y..
1'--- ,/ " -- ,',

- /0. t:-: ~.; -- " -- '-,i'

I-. I -..... .... './

-
~~

---... -. ,,/
I t:::: '" -- /'

-..... -- ,', " j -- -.....
~ -- ".,

..... r, , - v -- '>' -- .',
......... ./

10--

evalua1:,ed from 8

and afLer a~Lack)
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Thus the at.t.ract.or evolves in t.ime in a very complicated manner.

The behaviour of all channels except.in@; the ei~hth show an

increase and then a decrease. These result,s very well a@;ree wit.h

1:,he result, of Kaczmarek et. a1 [1977]. It, is suggest.ed t.hat.

inhomogeneous pat.t.ern may occur in t.he early stages of t.he

seizure only, and af'ter t.hat 'the system t,ries to at.t.ain t.he

homogeneous activity. That. is, a transfer from high degree

chaotic behaviour to low degree of chaotic activit.y.

In t.he ·pariet.ooccipit.a1 region, t.he right side shows a

slow decrease in K as 'time advances while t.he left, side
2

registers a re@;ular increase in K. More pronounced and clear
2

chan@;es are seen in K t.han in D as seen in t.he 8th channel.
2 2

Hence t,he eight.h channel is different. from ot.hers, and ei@;hth

point. is more significant. in the case of epilepsy.

The same t,ype of behaviour is observed in t.he case of

epilept,ic person wit.h demylinat.ed disease. The demylinat.ion is a

disease, caused due 'to t.he pealing of the myelin sheath of the

nerve cell. The main symptom is t.he paralysis and loss of sight,.

We analysed t.he EEG of' such a person, who has t.he demylinated

disease as well as a history of epilepsy, but the EEG appeared

normal. Two sheets of EEG is digitized at a sampling interval of

20 msec, each :for a period of 10 secs is analysed.

Thisab).(Fi@;.6.6a

is noninteger and K is great,er ~han zero for all eight
2

The variat.ion o:f K and D is much pronounced in the
2 2

(Pariet.ooccipi'tal region)channeleighth

D
2

channels.

again inferred 'that. 'the pariet.ooccipit,al region is t.he seat. of

epilepsy.

It. should be not.ed t.hat, EEG recording in t.his case was

t.ake-n not during 'the seizure and EEG appeared t.o be normal.

However, 'the present, analysis show 'the abnormalit.ies clearly,

which implies the superiority of t.he met.hod over t.he corrverrt.forual
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technique.

f
D
2

8r-----------------------------,

7 J----------------------------r-

6 ~------------------------

5l----------

3

2L-.--L.---.1----.L-------&---~----'------------'--~

5 263 7

Channel number -------)
4 8

Fi~ 6.6a) D evaluaLed at at two di:fferent t.Ime
z

(Epilepsy wit,h demytfn.at.LorO. first, 10 secs

-*- second 10 secs.

12

11 ---_._--_..

10

I
9

8

K
2 7

6

5
5 263 7

Channel number -------)
4 8

Fig 6.61» K values evalua'led at. t..wo different,
2

(Epilepsy wi'lh demylf n.at.Iorrx. first 10
-*- second 10 secs.
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6.3 MIGRAINE

Migraine is a mild t.ype of neurolo~ical disorder as

explained in sec1:,ion (4.10).

EEG recording of a person suffering from migraine was

analysed. The EEG records, which are used for analysis contains

only small re~ular sharp spikes wi~h no sign of vi~orous si~nals

and almost, normal in appearance.

~he recording of all t,he eight,

D and K were evaluated usin~
2 2

channels. Fig.{6.7a) and (6.7b)

show t,he variation of K and D wit.h respect, 1:,0 channel number
2 2

<mode of connection is EC1). As obvious from the figure, K is
2

more sensit,ive 1:,han D wit,h respect t,o t,he stat,e of t,he syst,em.
2

8 r-----------------------------,

842 6 3. 7

Channel number -------)
5

2

o

4

D
2

6l------------------------~

Fig 6.7a)

Mi~raine.

D
2

as a 1unct:-ion 01 channel number for
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15,------------------------------,

1
K

2

9

o
5 263 7

Channel number -------)

4

I----------1
I
I

.._--_.._.. j

I
I,
I
I

8

Fie; 6.7b)

Mibraine.

K as
2

a f uric t.Lori of channel number tor

of EEG

Analyses were carried

r-ecor-ding-s , each of 10

out usin~ t,wo continuous sheets

seconds duration. Resul"Ls show

sensitive as

time e v o.ltrt.ioriThe

muchpart 01 t,he brain are very

pariet,al and occipital region.

are ~iven in Fig.(6.8a&b).

OL.--""---~--~--------------&..-.---"---"'""""----I

2 ..---1---.----------------

3 ...-----I------------..Itr--I--------------4

4 t-----I--- --~~--"'.-----......-----I'-~

5t------1-

t

t,hat frontal

compared 1:,0

01 K and D
? ?

7r-------------------------------,

5 2 6 3 7

Channel number -------)
4 8

Fig 6.8a)

(Mi~raine).

D
2

evaluaLed aL aL Lwo differenL ~ime

f i r-sst. 10 secs -*- second 10 secs.
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12 -----
\

\

10
\ .,

\

1
8

\

K B

2
4

2

0
5 263 7

Channel number -------)
4 8

-'.
FI~ 6.8b) K e v afu.at.ed a~ a~

2
~wo dff'fe r-errt,

(Mig-raine). _. - f'irsL 10 secs -*- second 10 secs.

6.4 HEADACHE

EEG used for this analysis was of a person sufferin~

from headache and the patt,ern accordin~ to medical doct.or-ss, was

found to be normal. EEG p.at.t.er-rus were digitized a~ samplin~

int,ervals of 20 msec for a total span of 10 seconds<mode of

conf'ic;uration is EC1). In order, to st,udy the time e v o.lurt.Lorr,

analyses were carried out for EEG taken at, different, intervals.

given

for 4andchannels

of EEG, and are

forcalculatedwereThe K and D
2 2

sheet,s (each sheet is of 10 sec duration)

K
2

left

of

the

compared to

in

varia-Lion

i.e,

The

channel,

sensit,ive as

b).8:

5th

about, the variation of K, we
2

It, is to be noted that,

more

Fig.(6.9a

in t,he

inand

pronounced

(6.2)

much

1",able

is

K is found 1",0 be
2

In order to get a clear idea,

t,he

and D
2

f'r-orrt.ad re~ion.

in

D.
2

compared it, with t,hat of' a normal person.

t.he distribution of K is similar to that of normal in t-he ri~ht.,
2

part of' the brain (channel 1 to 4). The left part" especially

channel 5 shows considerable variation in K value implying t,hat,
2
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the possible seat, of abnormalit.y is t.he front.al area of t.he

brain. Channel 8 also has similar behaviour as in channel 5 but.

wi"th 'smaller amplit.ude.

5.5 r-------------------------------,

8

Lime for

~clinically'

alLer 110
290 secs

4

of a

-*­
af't,er

2 6 3 7

Channel number ---------)
e v aru.at.ed at, four different,

5

Fl~ 6.9a) D
2

headache case and compared wi t.h D
2

normal brain. -. - f'I r-est, 10 secs
secs -0- afLer 240 secs -+­
.. )(- normal.

to '-~ _L.. .l.._______L _L..._ Io....____.A. _.&._---"

2.5

4.0t

r

13,----------------------------,

11 ~---_r'_---~-----------------

7 1---4-------I--~~--~""'--'""7"'"~~-.A.~-r--~-

51------\-----'-------------------------:-t

3t------\

5 263 7

Channel number ---------)
4 8

for

110
secs

t.Irne

'clinically'of a

--*- aft,er
aft,er 290

different,four

152
secs240

and compared wi t.h K
2

first, 10 secs
--+-

evalua'Led

normal brain.
secs -0- afLer
-x-normal.

Fie; 6.9b) K
2

headache case



Table 6.2 D
2

and K
2(compared

with no~~al) fer Headache

Table for D"
~

Channel,! 1
sheet

5 2 6 3 7 4 8

1 4.49 4.31 4.41 5.13 4.56 4.33 4.58 5.2:

2 3.40 1.21 3.68 3.47 3.85 2.92 4.41 4.67

3 4.54 4.89 4.71 5.23 4.77 4.23 .5 . 0 8·~ 5 . 1 0

4 3.67 3.81 4.89 4.33 4.16 4.75 4.39 4.22

Table for K2

Channel/
sheet

1 5 2 6 3 rr
I 4 8

1

2

9.33

8.09

8.40

1.65

8.83 9.36

8.05 5.76

8.84

6.79

8.18

5.32

8.71

9.06

:"0.45

8.79

3 9.84 12.61 8.18 9.23 8.07 7.13 8.31 9.37

4 9.29 8.67 7.62 8.77 8.40 8.46

Normal 8.44 8.73 8.01 7.99 6.06 8.48 7.11 8.12

14--------------------------.,

\.-------~._----------------6

8

101------------1-----,

2 ~----~--,,-------.----------

12

r
K 4

2

500400200 300

Time (sec) --------)
100

Ol------L...-~---.l~-----L....------.l.-------J

o

Fl~ '06.10 V.ar-Lat.Lori of" of K in I ~he
2

left f r-orrt.a l

re~ion wit.h t.Lme <Headache).

Fi~.(6.10) shows t,he t.Irne dependence of K for t,he 5t,h channel
2

153



which is almost periodic. The value of K quantifies Lhe degree
2

of chaos in the dynamical system. Hig her- the K value higher is
2

t,he de~ree of complexity in the underlying dynamics. The

periodic varia'Lion of K in 'Lhe frontal re~ion shows t.he presence
2

of repairing mechanism of the brain.

6.5 ANALYSIS AT HIGHER SPATIAL RESOLUTION

In all t.he previous cases, EEG has been recorded in

only one mode viz., ECt (Fi~ 6.1a). This is t,he most commonly

used configuration for EEG recording. The limitations of t,he

available EEG equipment was that, only 8 simultaneous recording

is possible. This 8 r-ecor-ding is not sufficient to study the

entropy flow in t,he system at suf:ficient, spatial resolu~ion.

In order to st,udy the K variation wit,h hi~h spat.ial
2

resolution (HSR), EEG r-e-cor-dfng was done usin~ various t.ypes of'

elec"trode confi~urations (Fig. 6.1a 6.1h). Due to the

cons"trains in 1:-he Lnsst.r-umerrt.at.Iori, it was not possible to record

si~na1s from all points simultaneously. Hence, it may not

possible to compare all "the resul"ts due to possible t.ime

evolution in the system.

exclude the time variation.

Such comparison is possible only if we

We analysed three p.at.holog i c.al cases

in "this high spatial resolution, epilepsy, "tumour and psychotic.

EPILEPSY

In the EC2 confi~urat,ion (Fig.6.th) we analysed t.wo shee~s

of EEG separa~ely. In both cases channel 2 show peak. in K and
2

D values.
2

very high,

In

which

'the

is

channel 8

a common

(Parietooccipi'tal re~ion),

behaviour observed in

K is
2

epilepsy.

Enhancement of J{ values in "time was observed in channels 3,6 and
2

7 (Fi~ 6.11).
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7~----I.-----""'-----~-_--..Io_----'-----~----''''''------

5 2 6 3 7

Channel number ---------)
4 8

at, t,WQ di f f'e r-erit, Lime inFig 6.11 K e v af.uat.ed
z

mode (Epilepsy).
St-~CS.

f l r-s t. 10 secs -*- second

EC2

Analysis of EEG were carried out, using- the e.le-ct.r-ocie

value of 11.8 which has been decreased 1:,0 10.6 in the

(Fi~.6.1d). andcorrf'Igur-at.fori EC4

separa~e t.Imees (10 secs

K
2

separated).

D were evaluated
2

Irri t.Lakly channel 1

for two

has K
2

second

case. The upper part, i.e, channel 1 t.o 4 shows pronounced

v ar-Lat.Lori in K, as
2

i.e, channel 5 1:,0 7.

t.Ime evolves, as compared

The v.ar-Lat.rori of K at,
2

1:,0 ~he lower part,

~he ei~hth channel

(left, p.ar-Let.o't.empo.r-ed re~ion) is hi~h (Fi~ 6.12).

We have also done ~he analysis in EC8 mode (Fig.6.1h). In

this conf1gura~ion back por-t.Iori of t,he brain was scanned a~ seven

places. This is a localized analysis. The channel 4 (Occipital

re~ion) shows Lar-ge f1uct.uation in K value as compared t.o ot.her­
2

channels. In channel 6 and 7 also, t,he v.ar-Lat.Iori of K is very
2

much pronounced (Fig.6.13).
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Channel number ,--------)
7 8

/

Fie; 6.12 K
2

e v afu.at.ed at, t.wo different t.Irne in EC4

(Epilepsy). first 10 secs --*- second 10

i
I

r---------f----~tJI

I

mode
secs.

13
1 '

12

r
11

K 10

2
9

8"---"---~--_-L-_-_..L...-__---L_-_-L --L---..J

2 3 4 5 e 7

Channel number ----~---->

in EC8

--*- second 10f'Lr-srt, 10 secs_.-
Fig 6.13 K evalua'led at, t.wo different, t.Irne­

2

mode (Epilepsy).
secs.
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We compare all the K values, evaluat,ed in t,he epilept.ic
2

case, usin~ various

t.he central :re~ion some

left,

region

lar~e

the

confi~urat,ion.

to

cent,ral

of K barrier
2

the f'r-orrt.ed and

the

K
2

value can be observed in

type

bet,ween

elect,rode

Comparatively

(T -C -C -c -T ) (Fi~
3 3 2: 4 4-

6.14). This creat,es in

occipi'tal re~ions. Low

K activi'Ly is seen in
2

the ri~h'L occipi'La! as

compared

occipital.

Fig 6.14 Spatial varia"tion

brain (Epilepsy). c=J EC2,
~ EC8.

of K in
2

c=J EC-I

TUMOR

In the case of Turnor, EEG analyses for four elect,rode

configurations were carried out. viz., EC2, EC5, EC6 and EC7.

Both monopolar and bipolar techniques are used for t,his analysis.

par-Iet.ooccfpftal region.

Doctors have located the

The analysis

turnor

shows 'that,

in 'the

there is

right.

a dip

K
2

a depression oCThere is

in K in the right, parie'tooccipital region as compared 1:-0 t,hat, of
2

le:ft. Variation of K wi'th respect to channel number is
2

represented in box diagram (6.15).

in the frontal region also.
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K
2

15,----------------------------

12.-----,

91-----

3

o
5 2 6 3 .74 8

Channel number ----------)

Fie; '6.15 K as a funcLion of channel rn.rmbe r- f'or-
2

Tumour in EC2 mode, bf po l ar- ~erhniq'Je.

The comparison of

K at different t,ime
2

Irrt.er-ved using bipolar

technique is st,udied in

central 1( barrier'.
2

in also be noticed t,hat, aFig 6.16 Spatial varia'tion of

brain (Turnor), biploar 'technique.
c=J EC2, 0 EC5.

158

K
2
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~5 j-------------------

o

K
2

2 6 374

Channel number ------)
8

Fi~ 6.17 K
2

as a f'uric t.Iori of channel

Tumour in EC7 . clmo e, monopolar t.ecbruque.

number, for

We st.udied t,he K
2

values obt.ained from

depression of K in t.he
2

front.al rec;ion also i.e,

9.23 in t,he F re~ion.
P z

In all other re~ions K 2

is very hi~h. The

a

in

as

near

is

rec;ion,

(channel

8.52

t,echnique

i.e,

It. also shows awell.

monopolar

There

dip in K
\14'-- 2

- j ~~o.a~J parietooccipit.al
'I

"\.; (Fi~.6.17)

t,he T re~ion
cs

IiO.~! !i4-30]
_- - - _y - C

z
- - - _.c~ _-

K is shown schema~i-
2

cally in FiC;.{6.18)

Fig 6.18 Spat,ial variat,ion o:f K inz

brain (Turnor), monopolar ~echnique.

c:=J EC6, ~ EC7.

spa"Lial dist.ribut,ion of
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Fig 6.19 K as a f uric t.Io n 01 channel rnrmb e r-, f o r-
. 2

psychot,ic in EC2 mode.

In this case

K in
2

EC2case)'.

variation of'

(Psychot,ic
EC3

./

Fig 6.20 Spat,ial

brain
CJ

/
~ ([ill (8.21)
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and

low K
2

compared

occipital

cont,rast

Fig.(6.19).

Oomp.ar-et>

psychotic

of age 17,

elect,rode

in

tumour

a

right,

two

region in

epilepsy.

erit.r-opy as

ion has

Left, occipit,al reg-

1:,0

1:,0

ent,ed

The K dist,r­
2

Ibut.Lori is repres-

we analysed the EEG

confi~urations.

viz., EC2 and EC3.

p at.Lerrt.

in

of
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ively low K values are re~ist,ered in t.he cent.ral re~ion. In 1:,he
2

vicini1:,ies of F -F - F -F -F and T -P -P -P -T regions, lar~e
7 3 Z 4 8 5 3 z 4. 6

K values are observed, t.hus creat.in~ a kind of p ar-t.i t.Lores in K
2 2

drsst.r-Ibut.Lorr (Fig.6.20).

. In all 'these analyses, D behaviour
2

has been found 'to be

similar 1:.0 K, except, 1:.ha1:. J(
2 2

st.at.e of the brain. Hence K
2

which describes t,he st.at.e of

is more sensi'tive t.han D t.o t.he
2

may be identified as a paramet.er

brain under different, pa1:.holo~ical

condi'tions and possibly may be 'taken as a dia~nost,ic 'tool.

However, more det.ailed analyses and st.andardizat,ion are necessary

1:,0 put. 'this in pract.ical use.
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CHAPTER 7

NONLINEAR DYNAMICS IN CERTAIN
ASTROPHYSICAL SYSTEMS

The studies on certain astronomical systems viz.•
Asteroidal belt and Saturn rin,g structure usin,g the
technique 0 f non linear dynamics are done in this
chapter. Detailed analysis based on D and K values

2 -2

is included. To mak.e the thesis self contained some of
the features of Asteroidal belt and Saturn rinc are
also described.



NONLINEAR DYNAMICS IN CERTAIN ASTROPHYSICAL SYSTEMS

Time series analysis of the neural system has

revealed that a sin~le measurable quarrt.ft.y can

characterize complex nonlinear systems. It was found that, under

various pathological conditions, the parameters like

can adequately represent toe deterministic component,

D and
2

present,

K
2

in

the dynamics of the neural system. Since these are invariants of

t.he ~ystem they can be used to characterize the system. This

method, bein~ very general, can be applied to any dynamical

system.

In this chapter, we propose to apply this met.hod to

certain astronomical systems, like the Asteroidal belt, and Sat.urn

rings and determine whether such systems are chaot.ic or not..

But., before goin~ into details of these, we shall describe the

physical nature of the Asteroidal belt. and the Sat.urn ring system

in sections 7.2 and 7.6 respect.ively.

7.1 GENERAL INTRODUCTION

Matt.er ring formation in solar system in general

<such as Asteroidal belt,) and in planetary environment (Galilian

planets) e t.c., are still not, completely understood. Various

theories, based on Newtonian mechanics of' three body dynamics,

have be-eri put forward to explain the formation of gaps by
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~ravit.at.ional collisional self focussing <Trulson 1971) and

scavenging of mat.t.er by sa~ellit.es involvin~ resonance ~heory

(Berry 1978), but only wit.h limited success. However, there seem

to be only few at.t.empt.s t.o analyse t.he da~a o b t.edrred by the

various spac~ missions, t.owards an uride.r-est.amdfng of the dynamics

of t.hese syst.ems.' Recent.ly developed theory of det.er-rru.rrisst.Lc

chaos (Schust.er 1984, Hao Bai-Lin 1985, Ber-ge et. al 1984) is

found 1:-0 be sui t.able to explain many nat.ural phenomena like

at.mospheric studies usin~ climat.ic da'ta (Nicolis and Nicolis 1984

8: 1986, Krishna Mohan et. al 1987), Lorenz model for fluid flow

(Lorenz 1963), EEG analysis for human brain (Babloyant.z et, al

1985 8:: 1986), membrane po'tential analysis of Paramecium (Nagai et,

a1 1988) and ECG analysis of cardiac osscf.Il.at.oz- (Glass et al 1983

and Babloyant.z e"t al 1988). Time series analysis of observed

solar radio pulsat.ions su~~est,s t.hat, there must, be a low

dimensional at.t.ractor (Kurths et. al 1987) present.- in t-he syst,em.

We propose to apply t.his t.heory t.o the dat.a acquired by t.he

Voya~er missions (Phot.opolarimet.er recordin~s; Esposit.o et. a1

1983). It may be mentioned "that. a similar study is relevan'l in

t.he case of Asteroidal b e It, and Sat.urn rings, in view of 'lhe

result.s of Wisdom [1983] wherein he has shown 'lhat. in ast.eroidal

beIt., 3:1 Kirkwood ~ap coincides wit,h 'lhe oxrt.er- boundary of a

cb.ao t.Lc zone. The si~nificance of 3:1 resonance out. of all

resonances was poin'led out. for the first time by Prat.ap [1977],

where a spect.ral analysis study of m.at.t.er- distribut,ion in the

asteroidal belt has been done. He has fourier analysed t.his

distribut.ion, obt.ained the aut.ocorrelat,ion and power srpe-ct.r-um and

has identified t.he ratios :from the resonance t.heory. He has

shown that Kirkwood gaps are essent.ially the int,erfe~ence pa~t,ern

due to two spat.ial densi1:-y waves and not. merely due 1:,0 the three

body resonance phenomena between Jupit.er, t,he sun and t.he

ast.eroid. This also shows t.hat, t.his phenomenon is due t.o

collective effect.s between the p.ar-t.Lc.lees of t,he system 1:-o~et.her

wit.h gravit.at,ional field provided by t.he sun, all the planets and

probably by the st.ars as well.
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7.2 ASTEROIDAL BELT

a

su~~est

form

roids

that the aste-

raids

of the aste-

The asteroids are a cluster of' solid bodies wi t..,h

sizes greater than "that of an ordinary comet and o r-b i ting around

"the Sun in a flat cloud mainly concentrated in the main belt

between the orbits of Mars and Jupiter (Fi~ 7.1). Physical

and dynamical

investi~ations

population of

minor

bodies

suffered

solid

which

coll-

Fig 7.1 A plot of number density
asteroids )1.6k.m in diameter against
radial distance from the sun in AU.

of
the

isions.

orbits.

Asteroids move mostly on low eccentric and low inclined

Other important dynamical f'eat.ures 01 the asteroidal

beIt., like

1) Orbi1:,al and secular resonances due 1:,0 gravitat,ional Iorces

mainly e xer-t.e-d by Jupit,er.

2) Under populated re~ions in the asteroidal belt.

3) Planet-crossin~ orbits (will help us 1:,0 understand t,he

existence of ordered and chaotic regions in asteroidal

belt-).

The under populated re~ions and narrow e-mp t.y zones in the

asteroidal belt represent possible chaotic regions where

asteroids have been removed. The populated re~ions on the other

hand are eventually ordered re~ions or can even be chaot,ic

re~ions but, with t.ime scales much Lar-ge r- than the a~e of the

Solar System for r-emovfng asteroids. One of the ot,her

characteristics of t.he asteroids is t.hat they move mosst.Iy on low

eccentric and low inclined orbits trrt.er-Ior- t.o Jupiter's orbit,

avoidin~ a close approach to Jupiter.
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At present. we know accurate orbital elements 01 about 3000

elements in the belt. The main belt can be clearly seen between

2 AU and about 3.3 All as shown in Fig (7.1). Both ed~es of "the

main belt coincide with the location of resonances. The inner

edge of the main belt coincides clearly with 'the position of the

v secular resonances (Williams e't al 1981).
6

At. the u secular
6

resonance, 'the frequency for an as'teroidal orbital precession

rate ma'tches a main frequency for planetary eccentricities.

The outer e-dge of 'the main belt coincides with one 01 tl"le

Kirkwood ~aps, namely with 2/1 resonance. An m/n resonance means

that an ast,eroid completes m r-evoIut.Lores around the Sun during n

revolutions of Jupiter. The 2/1 resonance is therefore a

resonance in mean motion with Jupi t.er­

resonance is a resonance with respect to

eccentricit,ies.

while the i> secular
6

a chan~e of planetary

Resonances do seem t.o determine also the orbital e-rier-gy

distribution within the main belt and in the outer region between

the 2/1 resonance and the orbit of Jupiter. Within the main belt

three narrow ~aps (the Kirkwood gaps) appear at t,he f'o l.low i rrg

orbital resonances: the 3/1 resonance located at 2.5 AU, the 5/2

resonance located at 2.82 AU and the 7 /3 resonance located at

2.95 AU.

Two different types of resonances are known to determine

"the dynamical structure of the asteroidal belt, namely secular

resonances and orbital resonances. The dynamical system

established by the planets can be considered as an oscillating

system. The perturba~ions e-xer-t.e-d by the plane~s -ori asteroidal

orbits are de-t.er-mfrie-d by the frequencies of ~his system. An

asteroidal orbit can be interpreted as an oscillator. If a very

lon~-periodic frequency, a so-called secular frequency, of the

asteroidal oscillator is equal to one of the secular main

frequencies of" ~he planetary system, a secular resonance occurs.

a secular resonance, an asteroidal o r-bi t., for instance,

precesses wit,h about, the same velocity as Jupiter's o r-b i t.. As a

result, very stron~ variations in o r-b i t.ed eccentricity and
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inclination can occur. In particular, secular resonant. orbits

may become Mars - and Earth - crossing orbits.

An orbital resonance occurs when the ratio between an

asteroidal and the Jovian mean mot.ion is equal to (p+q)/p, wher·e

. p and q are small inte~ers. For a r-at.Io of 5/2, for instance"~

p=2 and q=3. in this case, an asteroid completes 5 revolutions

while Jupiter completes two revolutions around the Sun. As a

consequence, conjuctions between t.}"le ast.eroid and Jupit.er repeat

at almost the same locations of the asteroidal orbit which may

cause part.icularly stronc; perturbations in the ast.eroidal orbit..

In a resonant case, pe-r-t.ur-bat.Lores exerted by Jupiter add up f'or- a

comparatively Iorig period in the same way. This means that in

resonance an asteroid is eit.her accelerated or decelerated over

much Iorige r- time scales than in a non-resonant. case. Since in

the main belt, orbit.al resonances coincide wit.h the Kirkwood

~aps, it is natural t.o corrje-ct.ur-e that. t.he formation of t.he

Kirkwood gaps is due t.o orbital resonances.

Giffen [1973] st.arted to invest.igate ast.eroidal motion

under a different aspect.. He 'tried 'to determine chaot.ic and

ordered regions at t.he 2/1 and 3/2 resonances applyin~ the

surface of sect.ion method. Giffen found a small chaotic region

at the 2/1 resonance, which he did not. find at 3/2 resonance. In

an ordered region, the phase space which can be filled by an

asteroidal orbit, is confined to a surface due to 'the exist.ence

of an addit,ional quasi-integral of mot.Lori which cannot, be

obtained analytically but numerically. In chaot,ic re~ion no such

quasi-integral confines the mot.Iori t.o a surface. Froeschle and

Scholl searched more syst.emat,ically in the 2/1, 3/1 ., 5/2 and 7/2

resonances for ordered and chaotic regions by applyin~ t.he same

surface seC'Lion me-t.hod like Giffen. Froeschle and Scholl

concluded that ob.ao't.Lc regions are rare. In addi t.Iorr, they

showed (Froeschle and Scholl 1976), that 'the chaotic re~ions seem

t.o be closed by forbidden regions aJ")d a quasi-int.egral of mo't.iori.

This means that. an as~eroid locat.ed in a obaot.Ic re~ion is

trapped and cannot leave the gap. Since t,hese results were

obt.adrre-d in a rest.rict.ed model it. cannot be excluded tha~ in a

166



more realistic model , asteroids might, leave tl"le g;ap by

di.f'fussforr process on a ve-r-y long time scale. All t.hese result.s

were: obtained

motion. Wisdom

by a

[1982]

numerical

succeeded

inte~ration

to find a

o f

new

t,he

and

e qu.at.Io n at

more rapid

method to calculate. orbital revolution at the 3/1 ·resonance whfcb

allows to cover time span of the order of 10
7

years on modern

comp'ut.er-es within

function method

reasonable oomprrt.Irrg

(Chirikov 1979), Wisdom

time.

derived

Usin~ Chirikov~s

a m.apparrg for

calculating orbital evolution.

Wisdom [1983] determined ordered and chaotic regions at,

the 3/1 resonance by calculating Lyapunov characteris'Lic numbers,

which was applied by Froeschle and Scholl [1981] for 'LWO cases at

2/1 resonance. Wisdom concluded that the size of' t.he chaot.ic

region at the 3/1 resonance is about. equal to the observed size

of the ~ap. According to Wisdom an asteroid sit.uat.ed in t,he

chaotic region of the 3/1 ~ap increases it.s eccen~ricit.y so

st.rongly that it becomes a Mars-crosser. Hence, t,he asteroid is

removed from t,he 3/1 resonance after a collision with Mars.

Milani and Nobili [1983] tried 1:,0 det.ermine chaot.ic re~ions in

the outer b e It.. Scholl's aim [1985] was that an asteroid located

in the chaotic regions will suffer a collision w i t.b Jupi1:,er. .J\

collision of an asteroid with a planet implies a sufficiently

close approach t.o t,he planet which ejects the asteroid out of" t,he

corresponding region.

7.3 SPECTRAL ANALYSIS

Recent, advances in t,he st,udies

(Grassberger and Procaccia 1984, Broomhead

~iven deep insight, on nonlinear collect,ive

forces which drive a s1:,at,e from order 1:,0

of dynamical systems

and Kin~ 1986) have

modes, as well as,

t,urbulence and ~oing

t.o Asteroidal belt,

cb.ao't.Icorder from

been applied

t.heory has

1983, Scholl

veryisresonance

This

(Wisdom

particular

osscfIl.at.Iorus.

Thisresonance.3:1

back 1:,0

recently

1985) at,

significant, since it,· is at this, that, the particle changes from

positive to ne~ative correlations (Pratap 1977). F'ur-t.her-mor-e , i 1:,
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is again at, this point that maximum power is oorroent.r-at.e-d in a

power spectrum analysis. It has been further est.ablished t.hat,

t.his· resonance is t,he only significant, one and t,he rest, of -the

resonances given in literature are not, real as revealed in the

power spect,rum analysis. Besides these, the following results

are also established (Pratap 1977).

Fourier space clust­

.ered in two distinct

t.he phase angle

50
0 < <t>n < 200

0
and

286
0 < <t>n < 355

0
,

In Fig (7.2), t.he

330

320

5

by

different,

plotted in

defined

vectors

domains

a) The

of t.he Fourier comp­

onents. The number

against. each vector

represents the numb-

corresponding

represent

Fie; 7.2 Fourier space represent.ation of
the dist,ribu"tion in Fig.7.i.

the

phase

and

vectors

amplitude

er n of t.he fourier

component. 100

b) Power spect.rum analysis

commerusur-at-e or incommensur-

showed t.hat. there were £ive

dominant. frequencies involved

t.hese

Fig 7.3- Power spectrum of" Fi~.7.1.

The postt.ion of" maximum power
(:f=0.02) corresponds to ~he rat.io of

3:1.
are

(Fig.7.3).

whetherassert

dynamics

frequencies

cannot,

"thein

One

at.e. The crosses on t.he abscissa in Fig 7.3 depict t,he frequency

at, which maximum power resides and vertical arrows are the

frequencies given by t,he resonance theory.
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c) Particles could be divided into essentially t,wo ~roups

mutually correlated amon~st t.h~mselves bvrt, uncorrelat.ed

~roupwise, the chan~e of correlation takin~ place at a lag point.

cor-r-essporrdtng to 3:1 resonance (Fig.7.4)

1·0

0·8

006

o·~

·0·2

0·0 ~a

0·2

(}~

C>6

C>8

1·0

Fig 7.~ Aut.ocor-r-eIat.Iori function at
distribution iJ"l Fi~.7.1. The chan~e o f
correlation takes place at t.be posi t.tori 01

3:1 rat.io.

The above live frequencies, as obtained from t.he power

spectrum analysis, however, are not explained by the resonance

theory e-xce-pt.Irig that of 3:1. The method of analysis adopted by

Wisdom was to evaluate the LEs 101' trajectories near 3:1

resonance. Even thou~h LEs can characterize the nature of

dynamics, evaluation of these values are dif:f'icult in most of the

cases. But the approach described by Atmanspacher and

Schein~raber [1986] is useful for the evaluation of other

quantities which characterize the dynamics of asteroidal belt.

The present analysis is based on the method developed by Abraham

et, al [1986] for small dat,a set,s which is especially useful in

astronomical systems, for which sometimes the dur-at.tori of t.he

phenomena are very small. This method is also found to be

successful in solar time series analysis (Kurths et.. al 1987),

where t.he dat.a of radio waves in the Sun's at-mosphere is
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analysed. Usually the duration of solar radio pulsation event, in

t,he frequency ran~e of 480-800 mHz is not longer than a minute.

The . durat-ion of t,he considered pulsat,ions is only 40 sec at a

samplin~ r-at.e of h,.t,=O.0645. A comparison with Lorenz model for

same number of data po.irrt.es revealed t,hat. correlat.ion function

a~rees the power law.

The data obt.edried for our analysis is t,he density

dtsst.r-tbut.Lorr of ast,eroids as ~iven by Pratap [1977]. We do not

presuppose a HerruIt.orn.an struct,ure for the system or any o t.he-r-

in'teract,ions. Hence t.he problem as t.o whether a planetoid is

subjected to force due to t,he Sun and Jupiter as taken at

present" or whet,her o t.ber- planet.s also play a role in t.he

dynamics, does not. arise. This problem is significant since from

a nonequilibrium point, it, has been shown by Pri~o~ine and

Serverne [1966] that if the syst,em has only att,racting

~ravitational force t.hen t.here does not, exist, screening as in "the

case of electrically oh.ar-ge-d system and hence the system cannot

have -thermodynamic equilibrium.. Now, can there be equilibriurn in

t,he information sense ? This is ascert,ained by evaluatin~ the

five significant, frequencies

K e rrt.r-opy
2

explanation

for

for

the

t,he

system. Furt,hermore we ~et, a

obtained

physical

in the

power spectrum analysis.

7.4 ATTRACTOR DIMENSION AND KOLMOGOROV ENTROPY IN ASTEROIDAL

SYSTEM

Analysis

The radial plot of asteroid demsd.t.y distribut,ion as

~iven in Prat.ap [1977] was di~it,ized and writ.ten as a sequence

xco = xo, ), x« +flt)
o 0

x« +N~t)
o

(7.1)

Time series in ~eneral is a series of values sampled at,
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regular interval as a f'uric t.Lori 01 space or t.Lme- (Packard et a1

1980). Hence t,he above sequence can be oorrsdder-e-d as a "t.Irne

series" and can be r-e.ar-r-ange d in t.he f'or-m 01 "delayed m.at.r-Lx" as

explained in cb.apt.er- 2.

x« )
o

X(l +Llt)
o

X (t +~l)
o

Xct +2~l)
o

X(t +2~t)
o

Xct +3f1t)
o

. X(l +mlll)
o

. X {l + ( m+1 ) ~ L )
o

X(l +dLlt)
o

X{t +(d+1 )~l) •
o

. X(l + (d+m)~~)
o

(7.2)

The matrix (7.2) can be considered as an array OI m column

vectors defined in a d-dimensional space and t.his can be wr-Lt.t.eri

as in t,he case of neural syst,em as

X(t.) =
\..

X(l. +Llt)
\..

· · · · · · . . · X<li.+d.t.l)}

(7.3)

where t = 1 +i..Lll with i, bein~ an inte~er runnin~ from 0 t.o m.
\.. 0

We shall now define the correlation function

Chapter 2)

as (see

C (e) =
cl

Lt
N~oo

i.,j=t

e (e -
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The p Iot, of lo~· Cd(e) vs Iog s: for asf.,eroidal b e It. is shown in

Fig (7.5).

o

-10
LOG e

Fig 7.5 Log-lo~ p Io t, of Aseroidal b e It,

o

It, has been shown in chap'ter 2, that, if we consider 'the

t.rajectory of a particle crossin~ a ~iyen plane r-e-peat.e-dly 'then

if t,he podrrt.es at, which the t.r-aje-ct.or-y crosses 'the plane are all

confined in a neighbourhood, t.be-n 'this is called basin of 'the

at,'tractor. c in equa'tion (7.4) gives a measure of 'the basin of

t.he at,trac'Lor. One can use t,he probability p. (=N./N)
t. t.

where N
i,

are the number of pofnt.si a't which a trajectory visi'ts a given

neighbourhood in order to define quan'ti'ties D, which are called
q

t,he qth order Hausdorff dimension of the at,t,ract,or (Grassberger

e't al 1983 a,b~c). The mosst, significant, of D's, however, is D
q 2

(Caputo and At.t.en 1987) which can be defined in t.e r-mss of

cor-r-eLat.iorr f urrct.Lorr, It can be calcula'ted using the power law.
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(7.5)

Fr-om 'the plot. of Iog Cd(e) vs lo~(£) (Fig 7.5), we can calculate

i> as 'the slope of 'the linear part. of each curve 101' d varying

from 1 'to 30. It. can be shown that. if t.he dat.a set. is ~enera~ed

:from a completely stochast.ic Guassian white noise, t.hen t)=d or a

plot. of slope

1 45°an ang e

a~ainst dimension would be a straight, line making

with dimension axis (Babloyant.z and Dest,exhe 1986).

Usually we try 'to explain different. phenomena of ast.ronomical

syst.ems by oorrsdder-fng it to be st.ochast.ic. But. t.he present.

analysis indicates t.he existence of a de-t.er-rmrrisst.Lc component. in

the syst.em, indicat.ed by t.he deviat.ion of v-d curve from t.he 45°

line (Fig. 7.6).

21.14

o
DIMENSION

•
• • • •

30

Fig 7.6 Tl1.e slope 01 t,he curves in f·i~.7.5 as a f uric t.Lo ri

of' d. The asympt.,o!'ic value, D2 is 5.

This· means t.h.at, as din'lensionincreases, t,he effect 01 noise is

reduced and t.he det.er-mtrusst.fc part. becomes dominant..

173

As one can



see in the Fi~ (7.6), the slope 1.> attains an asympt.ot.ic value (as

d-.oo). Hence d should be chosen so as to obtain t.his asymptot,e.

The· asympt.otic value is defined as D. This is an invariant of
2

'the system and is a static parameter, as it. is independent, of

lengt.h scales. D is the minimum number of init.ial condit.Lorus
2

which are necessary to charact.erize t.he syst.em, in t.he asympt.otic

limit., or t.his gives the dimension of t.he subspace to which t.he

syst.em get.s embedded in the phase space. The remarkable feat.ure

in this is t.hat t.he curve sat.urat.es t.o a slope 5, showin~ t.h.at,

'the charact.erist.ic at.tractor dimension is int.e~er, indicatin~

'that. t.he attractor is a re~ular one. This also means that, t.he

Asteroid-dynamics is described by five independent init.ial

condit.Iorus.

A second point. t.o be observed is the dimension d at which

t.he curve meet.s the asympt.ot.ic line. The part. of t.he curve

defined for lower dimension goes almost. wit.h t.he stochast.icit.y

line (i.e., the v-d line), while t.hat. at the asymp'tot.ic re~ion

represents order. Hence t.he dimension at which t.he curve meet.s

t.he asympt.ot.e could denote t.he boundary between chaos and order.

This is what, has been observed by Wisdom [1983] in Ast.eroidal

belt. and it. has been verified by us using a t.ime series analysis.

In this case, sat.uration t.akes place at about. d=15 and this

implies t.hat. t.he system is an att.ractor of characteristic

dimension 5 which is embedded in a subspace of dimension 15, as

it. evolves a"symptot,ically, t.hereby giving the 3:1 Kirkwood gap.

This probably could be a significant. point. which has not been

realized earlier, as no import.ance is at.t.ached t.o the dimension

at which t.he asymptote meets t.he curve. Since saturat.ion starts

at. d=15, we are not goin~ t.o get any additional information by

increasing the dimension beyond 30. In t.erms of t.ime scales,
9 2

using Kepler's law a /T 11: constant. , t.he system can be

complet.ely characterized by Cive incommensurate frequencies and

i 1:, is these Cive frequencies that has appeared in the power

spect,rum analysis of Pratap [1977]. This would f'ur-t.be r- imply

t.hat. t.he Fourier space is basically divided into five sections

instead of· t.wo as has been visually realized by Prat.ap [1977].
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The second invariant quant.ity of int.erest. is ~he second

order Kolmogorov entropy K ,
2

K (£) =
..2,d

K
2

1

T'
In

Lt
d-+oo

£-+0

K (£)
2,d

(7.6)

(7.7)

where T' =0.02 AU,

which is t.he

sampling in'ter-

vale The Kalmog­

orav ent.ropy is

'the most. domdnant.

t.er-m in t.he gene­

ral set. of infor-

mat.ion ent.ropies.

It. is a dynamic

paramet.er and

very sensi1:,ive t.o

'the lengt.h scales

of' t.he syst.em.

The curve

log (Cd{&}/Cd+~&)]

for as1:,eroidal

•
••

•
• • ••

o 30
belt. is plot.t.ed DIMENSION -~

Fig 7.7 K a~ainst, dimension d.
2,d

The asympt.ot.ic value K is 0.074
2

a~ainst. dimension

in Fig (7.7) and

'two significant.

fea'tures are t.o be not.ed. The funct.ion sa1:,urat.es asympt.o1:,ically

wit.h d, and in t,he present. case again at, about. d=15. This also

shows t.hat. t.he at.t.l'act.or has a sat.urat.ion in a subspace of
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dimension 15. The phase space however in t,he present case is t,he

correlation space and K is Irrtor-mert.fon ent-ropy as against- t,he
2

usual Bo.lt.zmen e-rrt.r-opy which is defined in canonical space and

which indicat-es t,hermodynamic equilibrium.

Secondly, t,he sat,ura'tion value of K is about, 0.04 which
2

is indeed a very small quan'tit-y and indica'tes t,hat, t,he syst,em is

more or less comple'tely ordered in t,he informat,ion sense and has

very low st.ochas'ticit.y. Nevert,heless it, does indicat,e t,he

exist,ence of a det.erminist.ic chaos component..

7.5 DISCUSSION

The met.bod of analysis adopt-ed here discriminat.e

t,hree cases regular, chaot,ic and complet.ely st.ochast.ic. An

int,egral value of t,he dimension of an at,t,ract.or implies t,hat, t,he

det.erminist,ic component, of t,he syst,em is regular. In t,he present.

case of t.he as'teroidal be-It., 'the dynamics is 'tha't of a regular

at,t,ract.or, as t,he dimension is 5. This would furt.her imply t,hat

'the Fourier space would ac'tually be divided Irrt.o flve domains,

each having a dis'tinct, f'urrdamerrt.al frequency. Thus the curve can

be represent.ed by a summat-ion of Cive dist,inct, Courier series

each having a fundament-al frequency, and t,hat- t.hese are

incommensurat.e. This kind of resolut.ion however is not. possible

in the usual fourier expansion. These five frequencies, when

expressed in t,he phase space variables, would be Irrt.er-pr-et.ed as

t,he ilve Poincare's Summat-ional invariant-se In 'the gravit,at,ional

case, t,he Cive known summat,ional invariant.s are

t.he semi major axis a +r/ [ 2-rv
2

] ,

~ ~ ~

angular moment.um, L = r x v
A

Perihelion vect,or P=(~x~)x~ _ r
r-

These corust.It.ut.e seven variables,

not, completely independent. Two

viz.,
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but, as can be seen,

const.raint,s can be

t,hey are

obt.ained



P.L = 0

L2 = a [1_p 2 ] <7.S)

Wi'th these conditions, we are left with only five independent.

variables which could be identified as 'the invariant.s

corresponding t.o flve frequencies. The saturation of K
2,d

beginning at d=15 can t.,herefore be identified as an at.tractor of

dimension 5 embedded in a subspace of dimension 15 in an infinite

. dimensional space and the ratio of which show up in more than one

situation viz., (a) as a resonance, <b) as a dist,ance at, which

correlation changes its sign and <c) as the outer boundary of the

chaotic zone which separates chaos from order. One could

probably infer from t.,he present., analysis that t.,he role of the

Jovian resonance is t.o Irrt.r-ochroo the separat.,ion of order from

chaos in the asteroidal beIt.,

7.6 RING STRUCTURE OF SATURN

Fig 7.8 Saturn

Saturn is 'the second largest planet. in t,he solar

system and i to- is

surrounded by a

large flat, ring.

Sat.,urn appears as

an elliptical di­

sk in t,elescopic

observat,ions (Fig

7.8) and has a

diameter of about,

121,505 Km. Main

const.it.uent,s of

its atmosphere

are hydro~en and

helium and has

'the atmospheric temperat,ure of about., 120
oK.

177



The presence of' rings is one of the most, remarkable

feat,ures of the Sat,urn's syst,em. The ring syst,em is divided into

four main re~ions, viz., A, B, C and D rin~.

A is the outermost ring with moderate brightness, its

outer diameter is 278,417 Km and inner dfamet.e.r- is 241,402 Km.

A-ring and B ring are separa1:,ed by 'the dark Cassini divisions, of

4023 Km wide. B rin~ is the bri~htest rin~, wit.h otrt.er- dfamet.er­

of 233,355 Km and inner diamet.er of 180,247 Km. C is the

innermost, rin~ and is much faint,er, and is separat,ed from Bring

by narrow dark division, known as French division, of 966 Km

wide. C ring has an outer diameter of 178,637 Km and inner edge

is at 11,265 Km above the planet surface. D ring is the fourt,h

zone, and exist.s between the C ring and the globe. In the

following sections, analyses of t.he Sat.urn ring struct,ure carried

out, using nonlinear t.echniques are described in det.edl.

The data set obtained from Saturn rings consist,s of

t.he extinct,ion data as recorded by t,he pbot.opobar-Imet.ez- in t,he

Voyager mission (Esposito et. a1 1993).

I-----c· fJ --~ ..--A---+-f

Fig 7.8 fo.1at,t,er dist-ribut.,ion as a function of" }""adial disLance f'r-orn t.be
inner ed~e of" Lhe C rin~ La t.Ire o u t.e r- ed6c includin~ F r-I rig .

The density distribution of matter in t,he Sa'turn rin~s as a

funct,ion of distance is given in Fig 7.9. It is recorded at, an
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i rrt.er-ved of' 65 Km (O.002R) t-or a distance rarlging f r-orn t.he inner
s

edge of the Irmer-mosst, ring CC rin~) 1:.0 t.he o ut.er- edge of' 40\ r-ing ,

The F rin~ and t,he ~ap bet.ween A and F are not, included in t,he

present. analysis, and also t.he D r-Irig , which is supposed to exist..

bet.wee n t,he planet, and t,he C ring. The dist,ance is about 1.03 R
s

and t,he division of t,he domain is given in Table (7.1).

readings are given by t.he sequence

These

xco = x« ), x« +~l)
o 0

x« +N~t)
o

where Lll is t.he distance (~ap) bet,ween t.wo consecut,ive readin~s.

In t.he present. case it, is 65 Km, and L
o

is t.he innermost. edge of

t.he C ring. The data so ob t.edrie-d is subjected to "t.rme series"

analysis as was done in t.he case of asteroidal belt.. We have

evaluated

systems.

D
2

The

and K
2

result.s

for

are

t.he various part.s of rin~ and

present.ed in t.wo different. sets

~ap

o:f

t.he rin~s as well as ~aps. In order to check whet.her t.he

behaviour of' t,he whole syst,em is influenced by some part.icular

regions like gap~ or rin~s, analyses were carried o ut, 1"'01' wJ"'101e

dat,a set. also. But. it. shows t.hat t.he behaviour is independent..

and t.he syst.em consists of' a spatial dist,ribut.ion ot- a large

number of st.range at.tractors which can be inferred :from t.he

existence of plat.eaus in t.he slope vs dimension curve. The

evaluat.ed values of 0 and K of each rin~ and ~ap is ~iven in
2 2

Table (7.1), along wit.h 'the inner and out.er ed~es in unit. of R
s

Table 7.1 Summary of Saturn rin~ system analysis

Rin@;/Gap In unit,s of R Width D K x10
3

9 2 2

Inner ed~e Out,er ed~e

C 1.24 1.45 0.21 1.65 1.00
Gap 1.45 1.53 0.08 2.81 0.83
B 1.53 1.95 0.42 4.26 2.58
Gap 1.95 2.03 0.08 2.55 3.20
A 2.03 2.27 0.24 1.71 1.23
Total Syst,em 1.24 2.27 1.03 1.78 0.87

7.7 BEHAVIOUR OF AUTOCORRELATION FUNCTION IN SATURN RING SYSTEM

In order t.o st.udy t.he behaviour of p.ar-t.Icte

dist.ribut.ion in Sat.urn rin~, ·aut.oco.rrelat.ion has been e v afu.at.ed
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using t,he met.bod described in chapt.er 2. Analyses have been

carried out. t.aking t.he ring as a whole as well as ~reating the

gaps and rings separat.ely.

Analysis of t,he ring as a whole (R =1.24 t.o 2.03) reveals
s

1:,he switchin~ of

oor-r-e.Lat.Iorr from

positive t.o ne~a-

t,ive beyond t.he

lag point. 192

(Fig. 7.10). The

corre-985 negative

lat.ion dies out

L ----)

- 2.1

beyond the la~

point 720. Bey-

ond 720 la~

Fig 7.10 Aut.ooor-r-e.logr-am of' Saturn (Total point.s the dist.-

syst.em, from C r-ing t.o A ~in~ (1.03 R
s

) ) ribut.ion becomes

complet.ely uncorrela1:,ed.

Aut.oooz-r-e-Lat.Iori st,udies of' A ring has also revealed

1.968
negative

correlat.ion

aUto-

bey-

and a lag point.

of 80 (Fig.

does not, go t,o

zero wit,hin t,he

7.11a).

t,he

However

oo.r-r-e.Lat.to.n

l ----)

- 1.

range of obser­

v at.Iori,

Fig 7.11a) Aut.oco.r-r-eIogr-am of A rin~

Aut,ocorrelat.ion pat.t.erns of B and C rings show different.

behaviour as compared to A ring. Result.s show (Fig.7.11b & c) an

oscillatory behaviour in t,he aut.ocorrelat,ion which is well

manifest,ed in t,he case of C ring.
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t .92p

Cb)

1.5e~

l ----)

(c)

l ----)

- 1.

Fig 7.11 Aut.ooor-r-eIogr-ern of' (b) B ring" (c) C ring

The distribution in B and C gaps show similar behaviour as

in 'the case of" B and C ring. The oscillatory behaviour in the

gap s'truct,ure has been observed more clearly (Fi~. 7.12a a b).

When we 'take t,he ring as a whole, 'the osc~llatory nature

oC au'tocorrelation f"unct,ion observed in the cases of Bring, C

ring, B gap and C gap is overshadowed

of 'the funct,ion at high lag points.

by result,ant, convergence

Aut.ocor-r-eLat.Iori studies will give only a quali'tat,ive idea

about, the system. For deeper understanding we have to look of"

alt,erna~e 'treatmen'LS which t,akes Irrt.o account, of nonlinear

in~eractions present, in t,he syst,em. Result,s obtained from such
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analysis are described in the following section.

(a)

11"

70

L ----)

- t . 1

(b)

65

L ----)

- 1.

Fig 7.12
Cassini
division.

Aut.ocor-r-elogr-arn
division <b) C

or (a)

gap
B

or
~ap or

French

7.8 ATTRACTOR DIMENSION AND KOLMOGOROV ENTROPY IN SATURN RING

SYSTEM

C Ring

This rin~ is t,he one closest, t.o the planet. that, we

are considerin~, and it, experiences st,ron~ gravit,at,ional effect.

The inner

from t,he

ed~e of t,he C rin~ is at, a radial

planet,'s surface and has a widt,h

dist,ance of" 0.2 R
s

of 0.21 R (1.3x10
4

S

Km). Fi~ -(7.13) ~ives t,he plot, of lo~ C
d

( & ) vs lo~(&) for t,he
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various dimensions d (the left hand side outermost is of"

dimension 1) and we evaluated up to 30 dimensions.

have given orrlv 20 curves t.o avoid overcrowding.

In t.rre Fig we

The curve d=1

has some structure. But as cl increases. t,hese srt.r-uot ..ures

disappear even t,hough some small wobbles do persist.

-10
. !

WG( )-----)

Fig 7.13 Plot of lo~ Cd(£) against log e :for C ring.

Such wobbles do not appear in other dynamical systems such as

neural networks and Asteroidal belt" and hence, does not seem to

be an art.ifact due to smaller daLa set.

dimension is ~iven in Fi~ 7.14, curve ~a'.

Plot of slope a~ainst

The curve at,tains a

saturation value of 1.65. In t.his figure we have drawn a line(b)

at 45° t.o t.he x-axis alon~ which all t.he point.s would lie if the

process is t.ot.ally st,ochast.ic. Hence t.he deviat.ion from t.his

line indicat,es the exist,ence of a det.er-mtrrisst.Lc part.. The

init,ial point.s for small dimension indicat.e t.he noise component"

while t.he asympt.ot.ic value ~ives t.he charact.erist.ic dimension of

the at,t,ract.or. The nonint,e~er charact.erist.ic dimension indicat.es

the exist,ence of st.ran~e at,tractor. The points p lo t.t.e-d in Fi~

(7.14) ~ives t.he Second Kolmogor-ov en'Lropies - t,he most, Impor-t.arrt,

in

'c:'line

scales

ment.ioned

parameter.

The

Ie-rigt.hand

p.ar-amet.e.r- and D
2

muft.IpIe frequenciesof'

t.he family of" Kolmogor-ov e rrt.r-opfess.

(7.14) is t.he asyrnpt,ot,ic value K. It, is
2

is a s'Latica sensit,ive

presence

in

drawn in Fig

t,hat..· K is
2

Hence, t,he

component.
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~he sys~em would get,

~able (7.1).

reflected in K and
2

D ,
2

as given in ~he

8.4g2 6,587

fil l

]

~ I: ~ J

t I: t j

~ X \.. ~j~ I b ~
~ ~ 1 f J J~ 1j~
l~ fl .,It ~~
~I 1~'"
....:I ...

~I J

t --~, \ "I. I ~
........._ ~_...:::::_ _ _ _ ! _ ~ :.f.: "{ :.?=49

../.. ·.c"' 1-

I I I I I

B DIMENSION------) 30

Fig 7.14 T11e plot gives t.hr-ee curves:{a) slope vs dimension
d for 'the curves in Fi~.7.13 Cb) ~he same f'o r- compleLely
s~ochas~ic case and <c)-·· the plot, ~ of K agains~ dimension

2,d

d. The asympt,ot,e g-ive the value of K .
2

BRing

It, may be rio t.e-d that the lo~ C (&) vs lo~{&) (Fi~
d

7.15) do not. show much of wobbles for t,he initial dimensions, but,

st.ar'ts appearing in 'the hi~her dimensions. We have evaluat..ed

correlations only up to r:1., and hence the curves do rio t, converge

1:,0 Iog Cd(e)=O. But, t,he curve do conver~e to C (e)=1 if we take
cl
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LOG( e( £)
0""I

F
I

F
t
~

t

-10 LQG(~ )-----)

Fig 7.15 Curves ~ivin~ Iog C (t;) a~ainst. lo~ c for B
cl

rin~ - ~he lar~es~ in ~he sys~em.

17.98 ~11~~

b

A

I

I

I

I

~a

A

DIHENSION------) 3e

Fig 7.16 For the curves given in 7.15, (a> the slope
vs d <cl t,he K a~ainst, d.

2,d
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hi~her values of e . However we did not, ~o :for t,he same, since we

need only the slopes of· ttte linear p.art of' the. curve .arid these do

not ~han~e as e is increased be-yorid 1. It, may be mentioned t.h.at,

Fi~ 7.16, curve "a', does show plateaus indicating the presence

of more t,han one basin of at,tract,ors and if we take t,he mean

value of this, we ~et the charact,eristic dimension as 4.26. The

asympt,otic value K given by Fi~ 7.16, curve "c' , however is well
2

defined and gives the value 2.58 Km-f.

A Ring

A-rin~ is t,he outermost one and it experiences

comparatively less ~ravitat,ional force. The Voy.age r-, however,

observed krro t.zs and kinks in t,he ring syst,em as well as concentric

rin~

Iog

structures wit,hin t,he syst,em.

r, structures start, appearing

In

:from

the curves Io g

the smaller

c <£) vs
cl

dimensions

onwards as is evident in Fig (7.17). These s!'ructures are indeed

real and shows that, t,here are more than one strange atLractor in

LOij( Cce»

-18

Fig 7.17 The ~raph depicting lo~ C (e) vs lo~ e :for
d

A ring - the outermost one considered here.

"the system.

be dif'f'icult,.

To separat-e t,he various oompone-rrt.es , however, would

This also became obvious in the slope vs dimension

p.lo t.. As d increases, Lhe a't'tainment of 'the asympt,otic value is
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slow. This is given in Fig (7.18., curve 'a')., and which implies

that, the deviation f'r-orn the sLochastic line (b) is slow. Tl"lis is

also. apparent in 'the K ent,ropy plot (c' in Fig (7.18) wherein
2

there exis~s oscillatory character, which dies down as fj

7.42
I
I

-4
I
I
~

l..

I

~
I
i

-l
I
I

I
~A

I.-,.
: I

-il

b

J,
or-

~t t

·L
-I'

~ "0.
I~

a 1j~
1 I .1: lut 1-1

[ -: rf' I' l * , \. "t I J
[ ~--------- _-----1 _L ~~~~----~~~~-~~---I

I

_-~------ · r- .r. -t I ;t:. :+: C " I.... 1
.-/ J

k:L1 I I I I I I i
~ DIHENSION------) 3e

A

Fig 7.18 The plot. of (a) tt-le slope from 7.17 ag-ainst,
d and (c) K a~ainst, d.

2"d

Lar-ge r- dimensions.

increases. Probably one

The

can ~et

existence

an

of'

asymptotic

more than

value DIor
2

one attract,or

<re~ular or stran~e) in the syst,em is quit,e apparent.

D value of' about, 1.71 and K 1.23 Km-i.
2 2~

It, has a

Gaps

We shall carry out a similar analysis 101' t.he two

~aps viz. C gap - bet.ween C and B rin~s <French division) and B

~ap - between B and A rings <Cassini division).
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C gap

~iven in

The curve

Fig (7.19). A

log C (&) vs log (£) for t,his
cl

regular struc~ure in· t,he curve

re~ions

starr... s

is

-to

Fie; 7.19 Iog C
d

( & )

Division or C ~ap.

vs Iog :Cor t,he French

18.07
.t I

A

I I

..1..
·t·

I I I I I I I I

. :4
I I 1

I

A

Fib 7.20 a) Slope d e r-i v~~d fl'OJH 7.19 a~~",inst... d and
Cc) K <Jb<:ainsL d.

7.,d

188



appearin~ right from the dimension onwards, and as d

increases, the step like struct.ure also become more and mor-e

dominant.. This manif"est,s i tselt- in a peculiar manner in ~he

curve of slope vs dimension (Fi~ 7.20, curve ~a~). There doe-s

not exist a clear-cut asymp~ot,e., nor are the p o trrt.es alon~ the

stochast,ic line The curve could be considered as

combination of Lar-ge number of st,ep curves, which shows the

presence of more t.h.an one attractor. This is also evidenL :from

t,he K points distribution where t,hese points
2

compIfc.at.e-d osscfIl.at.or-y structure Fig (7.20, curve ·c').

B gap

exhibit

Unlike t,he C gap, B gap or Cassini division is better

struct.urewise. St,ruct.ures start appearin~ as dimension increases

and, here a~ain, the curves converge t.o uni t correlation for

large r-. This is given in Fig (7.21).

-10
\.

Fig 7.21 loS C/£} is plot.t.ed asainst. log(£)

Cassini Division or B ~ap.

101' the

The curve in Fig (7.22, curve ~a') however do not. show any si~n

of convergence in the asympt.otic limit for t.he number of

dimensions we have t.aken here. One does require a Lar-g-e number

of dimensions which implies. a l~r~e rrumbe-r- of closer da'La. The
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curve shows horizont.al portions for dimension around 10.. but,

'takes of'f" as dimensions go beyond 20. The curve (7 .22 ~ c ur-ve

'c') . depicting the Kolmogorov entropy also exhibit a peculiar

behaviour. It. does show a saturation beyond dimension 20.

12.2 1.441

I

-4

i
J

i...

!
i...
i
I

....

[
i I
[ I

I

t ~l I
~l

A I b

t
~A

..
1.
I'.'i "U,

-4 rt

td ~~

Sr // 1

_---:-/ -. 't'. x : ~- I

lf~:-/ \--- I l ~I' . I I : : I I I i
o DIHENSION------) 3~

Fig 7.22 a) Slope
(c) J( against d.

2,d
t.lie line b.

derived from 7.21 against d and
The stochas"lic line is given by

Ring system as a whole

Fi~ure (7.23) gives the correlation curve for the

entire rin~ system, for a ran~e of 1.03 R
s

or about 62,000 Km.

As one can easily realise, the curve is not a sum of the previous

ones, but has a different structure. There are pronounced

wobbles in t,he dia~ram, implying distinct domains having

different slopes. This manifests itself in the formation of

plateaus in the various dimension ranges. Fig (7.24, curve
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LOG( e(e»
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LOG(£. )-----}

Fie; 7.23 The entire r-Irrg systeJn from the inner edge
of C t.o ~he outer edge of A is taken as a single
unit, and the lo~ C (e) vs log e is plot. t.ed.

cl

716~7

I

~

~
r
I

L
I

A

x

. I
7.129

I ~
J
I..

~
A

Q

t .. ,/J---L----~----

L:;:'-,~ I .. I' " I X C ~. oX 1 I ~ ~ j
o 1 DIMENSION------) 3g

7.24 a)

p lot.t.ed
The slope of ~he

a~ainst, dimension
Cl.lI'VeS

d Cc)
of' Fi~.7"23 is

K a~ainst,
2,d

di mensdon d.
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~a') clearly implies the presence of various attractors having

different, characteristic dimensions. This is also quite evident

from" the fact, 1:,hat t.he devia1:,ion from t.he stochast,ic curve Fi~

<7.24, curve 4})') is also clearly pronounced. In t,he plot, for K
2

Fi~ (7.24, curve ~c'), t.he rat,io lo~ [ Cd<r)le d +1<e)] oscillates

for lower dimensions but steadies itself as d increases. It is

however evident t,hat one would not. be able to ~et, details of the

earlier curves from t.his one. It has a characterist.ic dimension

of 1.78 and a low K value of O.87x10-3 Km-i.
2

"7.9 DISCUSSIONS

The result,s of t.he analysis is ~iven in Table <7.1)

and also in Fi,; <7.25). Some of the interesting feat.ures are

t,hat the characteristic dimension increases radially, and comes

1:,0 a maximum around t.he B ring and then shows a steady decrease,

while K strikes a peak value around "Lhe Cassini ,;ap and then
2

decreases. This shows a phase la,; bet.ween the dimension and t,he

Kolmo,;orov entropy. An inspection of the dimensions reveal that.

all the at,tract,ors are strange and if' we consider the total rin~

system, we ,;et a~ain a strange att,ract,or. This is quite cont.rary

t.o t.he results one obtained in the asteroidal belt, wherein we get

a regular attract,or of dimension 5 for the syst,em. We may

conclude t,hat t.he strange at,t.ract.or for t.he t,ot,al syst,em is a

consequence of a large number of interact.ing strange at.t.r-act.or-es ,

while if we e-xt.e-nd t.his t.o t,he asteroidal system we may have a

similar conclusion viz., a system of st,range at.t,ractors result.in~

in t.he format.ion of a regular at.tractor. This implies t,hat. the

Sat,urn rin~ syst,em is chaot.ic piecewise as well as in t.ot.ad,

while in t,he ast,eroidal belt., t,he total syst,em is a re~ular

at.t,ract.or, and is an example of chaos inducing order. Saturn

ring system form an open, dissipat,ive, and non Markovian syst,em

consist.in~ of more t,han one charact,erist,ic scale, manifest,in~

itself as a ooIle-ct.Lorr of spat,ially distributed st.ran~e

at,t,ract,ors <Schust,er [1984]).
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Here solid line is for K and dashedz
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Hence in developin~ a S1:,atistical Mechanics of 1:,he system, i t,

could be more realist.ic 1:.0 consider a collection of s-trange

a'tt,ractors mu'tually int,eract,in~, ~ivin~

stran~e at,'tractor or a re~ular one.
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CHAPTER 8

RESULTS AND DISCUSSIONS

The ,general conclusions derived from the present
studies. Future scope of the work is hi,ghli,ghted.



RESULTS AND DISCUSSIONS

Time series analysis, as described in previous chapters,

can be used t.o st.udy nonlinear systems and is an effective method

from experiment.al point. of view. We described certain

applicat.ions of t.he 'technique 'to different. syst,ems like human

brain, Asteroidal distribut.ion and Sat,urn rin~s.

The analysis does not, demand any equat.ion of the state of

t.he system and hence is an efficient. t.ool t.o st,udy complex

nonlinear syst.ems. As described at len~t.h, a pseudo phase space

is constructed from the discre'te time series usin~ t.he method of

delayed matrix. The mat.rix consists of m vect,ors in a

or

D, D
o 1

correlat.ionand

evaluated.

From 'the set of m vectors, a

dimension

areentropy K
q

informa'tiondimension,frac'tal

~enera.lized Kolmogorov

are

d-dimensional phase space wi t.h mz d,
lh

q order correlation inte~ral in d-dimensional phase space,

Cdq(r) can be const.ruct.ed. By v.ar-yrng q from -00 t.o 00, Cd(r) has

been calculated from which generalized attractor dimension D and
q

and D
2

second order dimension respect.ively of the at.tract.or which

charac'terizes 'the nonlinear dynamics.

order Kolmogorov entropy.

K is known as second
2

nonhomogeneous syst.em, D >1> >D (Schust.er 1984).
. 0 1 2

bound of' 'the Hausdorff dimension. Of all

For a homogeneous system, D =
o

D
1

• D and for a
2

D is t.he lower
2

t.he generalized

quan'tit.ies D and K , D and K are 'the most important parame'ters
q q 2 2

(Caput.o and At.t.en 1987) which depend sensit.ively on the st.ate of

t.he nonlinear system. Moreover, t.hese quant.it,ies can be derived

easily from a t.ime series and i 1:- is independent of 'the number of



and will represent

D corresponds to
2

For a completely

In this case 'the

chaos.

to K =0
2

value of

ofde~reethequantifywillo>

data. I~te~er D value corresponds
2

resular dynamics, while a rrorri.rrt.e-ge.r-

K
2

stochastic system K = 00 and D is not defined.
2 2

plot slope - dimension will have slope unity.

The pz-ogr-amme we used to evaluate D and K is given in
2 2

the appendix and was t,ested usin~ a sinusoidal sisnal as 'the

data. Result yielded t,he values D = 1 and K = O.
2 2

I't has been found 'that, 'the present, algori t.hm is more

efficient, 'than o t.ber- met.rrodss like t,he box counting algori'thm.

The t,echnique has inbuilt mechanism to remove noise, and it, also

different,iates between deterministic and nondeterrrrinist,ic

components of 'the signal.

If the SNR is very low, we should search for alt,ernat,e

methods to remove noise from time series signals before applyin~

'the algorithm. In chapter 3 we described such a method 'to f'ilter

otrt, noise from experimen'tal da'ta. This is an e-xt.erusfori of' t,he

met.hod described by Broomhead and Kin~ [1986]. The met.ho-d has

been demonstrat,ed by filtering a noise - embedded sinusoidal

signal. I't has been found 'that, the EEG is more or less free at

noise and hence filtering 'technique is not, necessary for 'time

series analysis of' EEG data.

In the thesis, various types of r-Iryt.hms; present, in t,he

elec'trical activit,y have been described along wit,h the dynamical

aspect,s of 'the neural sys'tem. A brief descript,ion of various

'types of time scales presen't in 'the neural system is also

presen'ted.

Raman a'tt.ract.or e t.c.,

Our analyses show 'tha't

s'ta'te of the neural

sys'terns like certain

'the neural dynamics

is more sensi~ive as

are sensitive to theD and K
2 2

which K
2

wit.h other

system, of

comparisonD. In
2

syst,ems,

compared 'to

ast.ronomical

has at.'tract.or wi'th high D
2

K
2

values. This explains the

complexi'ty of' the sys'tem.
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All previous works (Babloyant,z et, al 1985, 1986) deal with

t,he analysis of only one of t,he channels of EEG and described the

dynamics

channels

only in

of EEG

t.e-r-mes of D. We have
2

of a "clinically" normal

analysed all the ei~ht

brain durin~ rest. and

Analyses suggest. t.he

is

very

not

D
2

of a

is

are

channels,

existence

syst.em and K
2

and right. lobes

in all eight.

t,he

Left.

in

found t.hat.

systems.

was

ot,her

It.ment,al act.ivit.y.

high compared t.o

fract.al and K is posit.ive.
2

collect.ion of st.range at.t.ract.ors

symmet,ric wit,h respect. t.o t,he neural act,ivit.y. In o t.her- words,

brain has asymmet.ric act.ivit,ies in left, and right. lobes.

The st.udy of' Irif'o'r-m.at.Lorr flow in the syst.em in terms of" K
2

variat.ion shows that" the Irrf'or-m.at.Lori flow is unidirectional when

'the person is immersed in some mental exercise. That, is, the

random firings are suppressed when t,he person is undergoing a

mental exercise. Whereas, during the rest t.ime, the random

fIrfngs become prominent, and unidirect.ional nat.ure 01

informat.ion flow disappears. The generalized dimension was also

calculated for both ment.al activity and rest. condit.ion. From

t,his t.he f(et) spect.rum was deduced. The 1(0[) spectrum shows a

well defined double peak during bot.h at. rest and ment.al activit.y,

which suggests t.he exist.ence of two at.t.ractors.

The present. met.hod of analysis gives t,he quant.it.at.ive

t.he degree of

under various

measures D and K, which can be used t.o quant.ify
2 2

D and K can be used as diagnost.ic t.ools since
2 2

chaos depends on t.he st.at.e of t,he neural syst.em

chaos. Hence,

pathological

psychot.ic.

condi t.Lorus like, epilepsy, t.umour and

We analysed t,he EEG of an epileptic (grand mal) pat.ient.

during, before and after at.tack. The eight.h channel (left.

pariet.ooccipit.al region) shows a st.eady variat.ion in K. It. can
2

be suggested 'that. seizure is a defensive mechanism of t.he brain

against. any alt,erat.ion of t.he neural dynamics.

The o t.be-r- epilept.ic case, which we have analysed is t.hat,
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of a patient havin~ both demylinated disease and epilepsy. In

'this case also we found that left pariet,ooccipi'tal re~ion is more

sensitive. The EEG in this case has been recorded while 'the

patient had no seizure and the record indicated normal brain

activit y. However, our analysis shows the abnormality in 'the

neural activit,y. This su~gests t.he superiority of the present.

t.echnique over the conventional method of EEG analysis.

The analysis of EEG of a patient havin~ headache (EEG

looks normal) revealed 'the fact tha't t.he left f'r-orrt.ed region is

'the seat. of abnormali'ty.

lef't f'r-orrt.ed re~ion as

The K shows periodic ac'tivi'ty in t,he
2

t.ime evolves. In t,he case of Migraine

also, frontal region is found 'to be sensitive, and K
2

shows Lar-ge

variation in this region as time evolves.

The analysis of epilepsy, tumour and psychotic cases at.

higher spatial resolution have also been carried o ut., by t,akin~

EEG at different electrode configurations. The pa't'tern of K
2

distribution varies for different. pathological conditions.

The K value has been found to be low in 'the ri~ht,
2

parietooccipital region, where t.he tumour is growin~, which is in

'the primary st,age. Studies usin~ bot.h bipolar and monopolar

techniques show the same behaviour.

The K value is low in the left, occipital region.
2

braininsegmen'ts

case, shows a low K
2

in the front,al andregion and high K
2

thus creat.in~ certainand

distribution in the psychotic

central

regions,

The K
2

in t,hevalue

parietal

activi1:,y.

'We have applied our analysis to two ast,ronomical systems

viz., asteroidal belt and sat.urn rings.

The st.udies by Wisdom [1983] showed that there exists an

ordered and chaot,ic regions . in t,he asteroidal belt and 3:1

resonance is t,he boundary between these t.wo. Power spect.rum

analysis by Pr-at-ap [1977] showed 'that t,here are five dominant,

:fr~quencies present "in ,the syst,erri, and 'there is a chan~e of
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coz-r-e-Lat.Iorr from positive to ne~ative at 3:1 resonance.

result, a~rees with our studies in Asteroidal belt.

This

We have analysed t,he densit,y dist.ribut.ion of asteroids,

and found 1:,hat, D is 5
2

value is close t.o zero.

and embeddin~ dimension is 15.

This shows 1:,hat, the system is

The K
2

more or

less oomp.le't.e.ly ordered in t,he informa1:,ion sense and has very low

stochast,icit y.

In t,he case of Sat,urn rin~ syst,em, we have analysed the

density dfsst.r-Ibut.Iorr of matt,er (as a f'unc't.tori of the distance

from t,he planet, saturn), for a total span of 1.03 R, i.e., from
s

C ring (innermost. ring) 1:,0 the outer edge of A ring. We have

calculat,ed D and K for various ring and gap systems, as well as
2 2

for t,he ent,ire rin~ sys1:,em.

For all rings and gaps

posi1:,ive but, very low. For the

D is
2

Sat,urn

nonint,e~er,

rin~ system

and K is
2

as a whole

also, the

system is

D is nonint,e~er and
2

chaot,ic bot.h piecewise

K
2

as

is posi1:,iYe.

well as, as

That. is,

a whole.

the

The

chaotic behaviour of the tot,al system as a whole is a consequence

of number of int,eracting strange at.tract.ors, i.e.,

chaos - inducing chaos, whereas in As1:,eroidal belt it may be t.he

case of chaos - inducing order.

FUTURE SCOPE OF THE WORK

The second order Kolmogorov e-rrt.r-opy is identified as a

sensitive parameter to characterize 1:,he neural system. By

analysing t,he EEG of large number of pat,ien1:,s wi1:,h same t.ype of

abnormality or

particular- disease

disease,

and can

we

be

can

used

standardize K,
2

as a dia~nostic

for

tool.

each

Wit,h

t.his

Also,

analysis,

we can

we can identify

develop the

different st,ages

informat.ion flow

of a disease.

pat.tern for

"clinically" normal brain as well as for affected brain. The
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chan~e in the normal flow patt.ern can be used as a symbol of

abnormalit.y. The flow patt.er-n also enables us to identify the

mechanism of thought-processes in brain. If EEG is obtained with

higher spatial resolution such as 32 channel or 64 channel, we

can identify the localized effect of the brain, or detect which

part of 'the brain is more involved in a particular activity.

This will amount to certain type of ima~in~ of the brain.

Simulation of complete signal from a part of the data is

an int.erestin~ part of t.his analysis. By t.akin~ a part of the

signal one can develop the whole si~nal by followin~ the method

by Parikh and Pr-at.ap [1990l.

The neural system does not have an ideal equation. D
2

gives t.he number of independent paramet.ers required t.o describe

t.he st.ate of the syst,em. .Thus by kriowdrig K and D , we can
2 2

construct cer'tain model equations of the sys'tem by the method

su~gested by Broomhead and King [1986l.

scintillat,ions (IPS), and also in Raman syst,em.

We are now applyin~ this analysis in Interplanetary

The spatial

behaviour of stimulat,ed Raman scat,terin~ in a medium can be

st.udied by analysin~ the spat,ial variation of amplitude of

st,okes, antistokes and pump mode.

Developing the st.atistical mechanics of Neural system is a

very exci'tin~ work, which will be carried out. in the near future.

Work in this direc'tion has already been ini'tiated by Parikh and

Pratap [1984] and Pratap [1988]. This can also be carried out in

t.he frame work of nonequilibrium s'tat.istical mechanics, as

employed by Pratap and Sreekumar [1989] in t.he study of a many

electron system.
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