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PREFACE

In quantum field theory vacuum is usually characterized
by zero fermion number . Every state accessible from vacuum by
local operator has integer quantum numbers . Jackiw and Rebbi were
the first to observe that 1in presence of nonlocal nontrivial
deformations such as topological solitons , vacuum acquires
fractional values for the fermion number . This effect is known as
fermion number fractionisation One can cite many examples in which
fractional fermion number play an importand role. In polyacetylene
the conductivity is found to be enhanced by the effect of fermion
number fractionisation. Fermion number fractionisation is important
in understanding certain features of Skyrme model of baryons and
its modification as well as in chiral bag models. The fractional
charges of 't Hooft-Polyakov monopole is an importand ingredient in
the study of monopole catalysis of proton decay. It 1is also
speculated that the fractional electric charge of quarks may be
explained through this phenomenon.

Jackiw and Rebbi studied the interaction of massless fermions
with solitons in 1+1 dimensions and with a Julia Zee dyon in 3+1
dimensions. In these models the C-invariance and the existence of
zero energy modes lead to a vacuum charge *1/2. When & theory is
not C-invariant calculation of the vacuum charge is not straight
forward. In such cases Goldstone and Wilczek calculated the vacuum
charge from vacuum polarization diadram

In this thesis we present a method of calculating vacuum

charge in models which are not C-invariant. Instead of evolving the
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whole background field adiabatically from vacuum we start from a
vacuum having a background field which leads to C-invariance and

owt
spectral symmetry. Now other fields,evolved adiabatically so that

the theory loses the C-invariance. During the adiabatic evolution
of the fields some energy levels cross the centre of the mass gap
(spectral flow). The spectral flow is evaluated by analysing the
Dirac equation in the soliton background. The induced charge 1is
calculated by the method of Goldstone and Wilczek. The ground state
charge 1is independent of +the way one arrives at the final
configuration. The induced charge and spectral flow may, however,
depend on the way one reaches the final configuration

The first chapter of this thesis is of an introductory
nature. It opens with a concise account of gauge theories and
spontanecus symmetry breaking. A brief review 1is then given of
solitons and their properties. This is followed by a discussion of
monopoles and dyons in gauge theories. Fermion number
fractionisation is then introduced and most important results are
summarised. The chapter ends with a discussion of several unusual
properties of fermion monopole system.

Chapter 2 illustrate our technique for the evaluation of
ground state charge of fermion soliton system in 1+1 dimensions.
The ground state charge in specific models are obtained by
evaluating the spectral flow by analyzing the bound state spectrum
and induced charge from the vacuum polarization diagrams .It |is
shown that ground state charge is discontinuous at the fermion mass
and is independent of the soliton width

In Chapter 3 ground state charge 1is evaluated in 2+1

ii



dimension .Here we consider fermion number induced by solitons in
0(3) nonlinear o model .At present this model is of considerable
importance since it provides a field theoretic description for high
temperature superconductivity . In the model that we are
considering there is a scalar triplet characterized by a nonzero
winding number. Instead of evolving three fields simultaneously,we
start from the fields say ¢, as the background and allow other
fields ¢1 and ¢2to evolve adiabatically .It is found that ground
state charge gets no contribution from the bound states . That is ,
there is no spectral flow .0On the other hand if ¢515evolved
adiabatically ,with ¢ and ¢, as the background induced charge is
zeroc and ground state charge ¢gets contribution only from the
spectral flow as is evident from the analysis of bound state
spectrum .In both cases , we get the same ground state charge . It
is found that ground state chargde take values 1 , 1/2 , and zero
depending on the parameters in the theory

In the Chapter 4 we consider the interaction of fermions
with a regular "t Hooft-Polyakov monopole. We present a detailed
study of bound state spectrum of this system including the effect
of monopole core. The theory is C-invariant and the Dirac equation
possess zero energy state . Hence ground state charge is *1/2. It
is shown that contribution to gdround state charge is made only by
the lowest angular momentum state. It is shown that there is a
discontinuity in the ground state chargde at the fermion mass.
Number of bound states is found to depend on the fermion - Higgs
coupling. The results of a closely related boson monopole system

are presented as an sappendix to this chapter.
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In the Chapter 5 we analyze the interaction of fermions
with a Julia-Zee dyon. Extending the technique developed earlier
for 1+1 and 2+1 dimensional models we calculate the induced charge
by starting with a C-invariant configuration. The induced charge
depends on the dyons electric charge.

We also consider the interaction of fermions with nonself dual
monopole which is limiting case of a dyon. The induced charge and
ground state charge is found to be 1/2 which is same as that of a
self dual monopole . In this case higher angular momentum
contribution is found to be =zero and ground state charge is
discontinuous at the fermion mass

Study of Dirac equation in the dyon background shows that
the bound state spectrum is symmetric in the massless case and
asymmetric in the massive case. In this case the necessity of
imposing certain additional conditions does not allow us to carry
out an analysis of spectral flow

The material reported in this thesis have appeared in the
form of following papers:

1. Bound states of fermions and bosons with a "t Hooft-Polyakov
monopole, J.Phys.G: Nul.phys 14 (1888) 433

2. Fermion dyon bound states and fermion number fractionisation,
J.Phys.G: Nucl.Part.Phys 15 (1888) 433

3. Ground state charge of solitons in 1+1 and 3+1 dimensions,

Int.J.Mod.Phys.A8 (1983) 705
4. Ground state charge in 0(3) nonlinear o model in 2+1

dimensions, Int.J.Mod.Phys A (Communicated)
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CHAPTER 1
INTRODUCTION

1.1 Gauge field theories

Gauge theories provide a theoretical framework for our
current understanding of the fundamental interactions of particle’
physicst_o. The idea of gauge invariance of electromagnetism was
generalized by Yang and Mills’ in 1954 to nonabelian internal
symmetries. The emergence of nonabelian gauge theories paved the
way for the unified electro-wesak theorya—io, the gquantum
chromodynamic approach to strong interactions and grand
unification schemes. As an 1illustration of the method of

constructing a nonabelisn gauge theory 1let us consider the

11

lagrangian for & scalar n-tuplet ¢ = (¢1 ....... ¢n)
£ = (a,_p)*ca“q») + V(" @) (1.1)
where
2 + X 2
V(g @) = - 1 (@ @ - XN (P P (1.2)

The above lagrangian has a global U(N) symmetry. That is, it is

invariant under the transformation
U: @—>¢ =Up= e 1o (1.3)

where .T = SOT ,a = 1..... N and 91.... g are the group

parameters independent of x . T are the (n x n) natrices



representing the generators of the group which satisfy the Lie

algebra

(1.4)

dmc are the structure constants of the group

Noether’'s theorem give 8 connection between symmetries of =

lagrangian and conservation laws . According to this theorem any

continuous symmetry transformation which leaves the action
invariant implies the existence of conserved currents Jﬁ . That
is
Mo
auJa =0 (1.5

The charges
_ 3 o
@ = [d'x J_(x) (1.6)
are constants of motion. The infinitesimal transformations
corresponding to Eq (1.3) are

Sp(x) = #(x) - . (x) =+ 8% T BAx) (1.7)

4
snd the conserved currents can be expressed as

J* = -4 SF Tc:

¢.(x) (1.8)

]

Now let us investigate the possibility of having a symmetry



transformation in which &% are space time dependant.

¢ —> ¢ =z=Ug=e 0Ty (1.9)
Such & gauge transformation is called local gauge transformation.

Under thi§,0H¢ get transformed by
& —_ 8 ' = o
P¢ > ,J¢ U (C p¢ )+ (O”U) @ (1.10)

Consequently the lagrangian (1.1) is not invariant under the
transformation because of the extra term proportional to Oyﬁ(x)

To have local gauge invariance one must introduce additional
terms which can compensate for the noninvariant term.

Equivalently , one should find a modified derivative D“¢ which

transforms like ¢
[ Dy¢ }] =1 (Dp¢) » (1.11)

and replace a“ in the lagrangian (1.1) by D“ .The derivative D“
is called covarisnt derivative since it varies in the same way as
¢ . The covariant derivative can be constructed by introducing

vector fields Au by defining
= (3 - i = (@2
Du¢ C y i g AM.T ) =¢( L + B“ ) @ (1.12)

where

Bp = -ig A”.T (1.13)

Evidently the number gauge fields are equal to the number of



generators of the group. By substituting (1.12) in (1.11) we get
Ty ] ‘ =
¢ “ + Bp) (U U ¢ au + Bu ) @

with solution

’

1 §
By

= U(x) B, Utx) - I 2 U(x) 1 U(x)~ (1.14)

Thus by introducing the gauge fields the lagrangian (1.1) is
rendered invariant under local nonabelian gauge transformation.

The required lagrangian can be written as
+ u g
£ = (D“¢).(D P + V(.9 (1.15)

This lagrangian , however , does not contain dynamical terms
for the gauge fields . The simplest choice of such term gives the

gauge invariant lagrangian

¥ +
£ = (#.0") + Wb - — Fp,, F° (1.18)
where
a a a abc ,b ,c
Fr, = (8,A% - 8,A% ) + g C™° A a7 (1.17)

It may be noted that we cannot add quadratic terms in gauge
fields and preserve the local gauge invariance. Consequently
gauge fields are massless.

The above formalism can be easily generalised for any
other symmetry G and to include other types of matter fields as

well. An important feature of gauge theories 1is that the



interaction between the matter field and gauge field is uniquely
fixed by the symmetry requirements
1.2 Spontaneous symmetry breaking

So far our consideration have been purely classical. Coming
to quantum theory , where the fields are operators, aninteresting
phenomenhﬁ_that occurs is spontaneous symmetry breaking
(SSB)“ZJ?.If vacuum or any other state does not respect the
symmetry of the lagrandian , the symmetry is ssid to be
spontaneously broken . This may happen when the vacuum or the
ground state is degenerate.

As an example of SSB in quantum field theory 1let us

consider the potentiasl for a real scalar multiplet ¢° with O(n)

symmetry (Fig. 1)

A
.

(p.5°

V($.$) = - 2 u ($.9) -

» bvio.0)

= ($.¢)

Fig. 1

2
When m-< O this potential has minima at (¢.¢) = — ;% = v?. TField

theory vacuum corresponds to the minimum of the hamiltonian and

hence to & minimum of the potential . In this case there are



infinite number of potential minima and hence vacuum is infinite
fold dedenerate . All the vacua are connected by elements of
O(n). However, choosing one of +the vacua as physical vacuunm
results in spontaneous breaking of symmetry. One of the
consequences of SSB is the production of massless excitations
called Goldstone bosons.
For convenience let us choose the vacuum as the one where
the field has expectation value <0 [¢| 0> = <¢>_, given by
0
0
P>, = . (1.18)

Thls vacuum 1is not invariant under the full group O0O(n) but is
invariant under the subgroup O(n-1). Let L....... L _,represents

the n-1 broken generators which satisfy 11<¢>0: 0 .In terms of

L,....L__, we can parameterize the field ¢ as
. 0
— (o ¢x>L +.... .. ... a ¢x>L ) 0
p(x) =’ 4 nttoon : (1.19)
v+n

¥hen the above equation is substituted in the 1lagrangian (1.1),

A, .. ... n(x) appear in the derivative term. But in the
potential , there are no quadratic terms in A etc . The
only quadratic term is nz since (. ) = (v + n)2 Therefore

there is only one massive field n(x) and all other fields

a...a  are massless . This means that when O(n) symmetry is

broken to O(n-1) symmetry there are (n-1) massless particles and



one massive particle . This 1s an instance of Goldstone’s theorem

which states that " For every broken continuous symmetry there

is a massless particle” . Such s particle 1s o¢csalled Goldstone
12,19

boson

The emergence of Goldstone boson 1is associated with the
breakdown of a global symmetry . What happens if the symmetry is
local ?. Higgs discovered a peculiar phenomena in this case . To

explain this we consider the gauged O(n) model with lagrangian

- H _o1 a Hya
Let us perform a gauge transformation with ¢ —> @' = U ¢
i q n—4
with U = .7 v (dooT+. ovnnnnns T > Bqg (1.18) now
yields
-1 n-1 0
(CIEETY i PUNNIN a 0T ) 0
p(x) —> ' (x) = e’ H(x) =
v
(1.21)

Under this gauge transformation gaude fields are transformed to

L4

1

-’. -
= - a
Bp U(x) B“ U (XD [ “U(X) 1 U "(x)
Here
- l—(d GOT o] _(x>Tn_‘)
U=z eV 1 n-1 (1.22)
Substitution of (1.22) in (1.20) dgives
_ _,2.2 1 a MVo
2= (28" ) - 0" - - F F 4
gy atatt. .. ANTIAMNTYy (1.23)



From the above equation 1t 1is evident that the gauge field
corresponding to the broken gauge symmetries acquire (mass)® =
g°v’ while the other gaude boson remain massless. There are no
massless scalar particles in the theory. This phenomenon in which
the gauge fields acquire mass with the disappearance of Goldstone

o N 14~-17
bosons is known as Higds mechanism .

The idea of Higgs
mechanism is crucial to the construction of the unified
electro-weak theory and grand unified models.

We have found that existence of degenerate minima
leads to SSB and the gauge fields acquiring mass . In the next
section we shall see that the existence of degenerate minima 1is
responsible for the appearance of soliton and monopole solutions.
1.3 Solitons

Solitary waves are the localized nondissipative
solutions of classical field equations. In soms nonlinear
dispersive systems nonlinear and dissipative effects balance each
other and there can exist solutions with following properties
1). A wave packet travels without any dispersion
2). After a8 collision of two such solutions they continue to
travel with out any distortion’® 2°

Solutions satisfying (1) are known as solitory waves
(or kinks or lumps) . Solitons sare defined as the solutions
satisfying the properties (1) and (2) . Loosely spesking we may
refer to a solitory wave as a soliton

As an example from field theory 1let us consider the

lagrangian



_ 1 2 mz qbz A 4
£= 5009 - -

5 2 @ (1.24)
. The equation of motion is

in 141 dimension

| J¢ = -n'¢ - A&

(1.25)
where | | = 0: - v, This equation has time independent
(static) solutions

¢, = a tanh (nx/72) (1.26)
é_

= -a tanh (mx/Y2)

where a = Y—m-/h. When x—>
+ 'V-mz/_h- = + g

+ o this solutions assume the values

corresponding to the minimum of the above
potential
The energy of the system is given by
1 o 2 2,2 A e
H =—2——_£ dx [(ax¢) + W+ m @ ] (1.27)

I o

| Fig. 2

When x —> * o , ¢ take the values * &8 and then enserdy is

localized in space (Fig 2)

The solution given by Eq(1.26) 1is a soliton or kink.



Depending on the asymptotic value of ¢ at x —> *w we have the

four sectors , namely

¢ = 8 as x —> o and ¢ =-a as X —> - ®
=—8 —_—D 00 - —_> - 0
@ 88 X and ¢ a as x (1.28)
$ = a8 88 X —> ® and ¢ =-a as X —> -
® =-a 86 X —> ® and ¢ = 8 as x —> - o

These can be considered as mappings from spatial
infinities to the potential minima . These mappings fall in to
distinct topological classes and cannot be deformed into one
another

Stability of soliton solutions can be related to their
topological properties. The finite energy condition requires

that, at spatial infinities
#(w) - ¢(-o) = n (2a) (1.28)

n = 0 corresponds to s non topological socliton and n = £ 1 is =8
soliton with winding number * 1 (kink or antikink) . It is easy
to see that

Ho v
J7 = suv o @ (1.30)

is a8 conserved current and the corresponding conserved charge
mx
Q= [ 9% dx (1.31)
)

ig related to the soliton number n in (1.28). This is called the
topological quantum number. It should be noted that topological

current is not a Noether current arising from a symmetry of the

10



lagrangian. The existence of the kind of topologically stable,
finite energy solutions seen here in 1 + 1 dimensional field
theories is possible only with degenerate vacua (SSB) 1in the
theory. Such solutions also exist in higher dimensional field
theories with SSB.
1.4 Magnetic monopoles

Finite energy solutions can also be found in more
realistic model in 3 spatial dimensions . As a specific case we
take the following lagrangian for a scalar triplet with SU(2)

dlobal symmetry

2= (2,9) .(8"®) - V(8.9) (1.32)

2

where V(¢.9) = —%—(¢.¢ - 9%
The potential minima occur at ¢.¢ = n® . Evidently these points
are connected by the SU(2) symmetry operators and hence 1lie on
the surface of a sphere S in three dimensional internal space.
It is easy to see that when we go to quantum theory there is SSB.
The finite enerdy requirements means that as T —>® ¢ should
approach the value in S°. Since the spatial infinities also form

a two sphere S; the finite energy configurations can be 1labeled

by a map
¢ : si—> §° (1.33)

These maps can be classified into the homotopy classes and each
one characterized by an integer called its winding number. The

homotopy class form a group called the second homotopy group

11



denoted by ﬂz(Sz). It can be shown that
n¢s®y = z (1.34)

where Z is 8 set of integers. The nontrivial topology of these

configuration will ensure the topological stability of the finite
energy configurations if they exist. However , it 1is not
difficult to see that with scalar fields alone topologically
stable finite energy solutions will not exist . To show this let

us consider the expression for energy of static solution:
Ho= Jd® [—o— (V). + V(¢.9)] (1.35)
Expansion of V¢ in radial coordinates gives
V$* = @ $° + Cr x Ip ) (1.36)

Then if ¢ is expressed in radial coordinates, the second term in
the above expression contribute l/r2 and hence energy integral
diverges. Hence with scalar fields alone there is no hope to get
the finite energy solutions. One can prove the same result in any
scalar theory in space time dimension =z 2. However, the
discouraging result due to the Derrick®' is no longer valid if we
enlarge the theory by adding dgauge fields. Also, in two
dimensions this result is not valid if V() = 0 as 1is the cass
with O(n) non-linear o model’®. To illustrate what happens with
the gauge fields 1let us study the gauged version of the example

discussed above . The lagrangian for the model is

12



.1 Hay - A Cp?y - L p @ pHva
£z OMOO') - G-@e¢ -0 - — FF

(1.37)

zz'zamodel with the fermion

This is essentially the Georgi-Glashow
fields ignored. Choosing a vacuum where the scalar fields have
v.e.v

v

0
@>, = [0] (1.38)

the SU(2) symmetry is spontaneously broken to U(l). In the

4-27

spherically symmetric ‘t Hooft—Polyakov2 ansatz one looks for

solutions of the form

rJ

a _ a . b _ _ _r _ . b
¢ = E_rl:zH(r) ; Ai = sbu gr2 [1 K(r)] ,Ao =0 (1.39)
where rt = x.L is the radial variable and H and K are

dimensionless functions which sa8re to be determined from the
equation of motion . This ansatz defines a mapping of winding
number 1 . The equations of motion following from the lagrangian

(1.37) are

(D, F™_ = - g e, "M

2 (1.40)
("D, #, = - A3 d.¢ - )

Substitution of the ansatz (1.389) vields the following equations

for H and K.

H (2K - n2r? + 2ai®)

g8 (1.41)
K (K +H - 1)

rzH ”

rzK ”

13



where mﬁ = nzh. The total enerdy of a stable solution is given by
E=[od%=- f2dx
= d’x[ 1/4 F) | F{ + 1/2 D ¢° D" + V(¢) (1.42)

ot ot

a .o a a
+ 1/2 F_F_ .+ 1/2 Do¢ Do¢ ]

By substituting Eq.(1.38) in Eq.(1.42) we get the energy integral

as
o)
’ 2 2 2 2 .2
H:ﬂ-"-zfdr{(k')’+<r" - (& -1) , KH ,
g o 2r 2r 2r
2 (1.43)
Arz (H/rz— gzmz/)\ )z}
4g

In order that this integral be finite the functions H sand K
defined in EQ. (1.38) should satisfy the following conditions.
H(r) —> O ; K—>1asr —> 0

(1.44)
H(r) —> g n_ r ;] K— 0 88 r—> ™

As stated earlier, corresponding to the unbroken U(1l)
symmetry salong ¢% direction there should be &8 massless gauge
field, the electromagnetic field. There is however no unique way

to identify this U(l) gauge field through out the space. 't Hooft

proposed gauge invariant definition 24,20
- 1 1
va - ]_TT va'¢ - W sabc¢a Dp¢b Dv¢c (1.45)
This can 8lso be written asza
- 1 o " “
va - apAv - avAu T T8 €abc?a Du b Dv¢c (1.48)

14



where A“ = A? ¢aand ¢ = ¢a . From Eq.(1.38) we can find that

for r > 0 ,A, = 0, and @, = r_. Then Eq.(1.48) gives

‘ (1.47)
F=B=————;2

1
2 itk i g
This is the electromagnetic field of a point magnetic monopole at

rest with magnetic charge 1/g

The ‘'t Hooft's definition of electromagnetic field

tensor 1is singular at the origin24’25. Another equivalent
nonsingulsr definition due to Fadeev is - %*°
o A
Fuv = va ¢a (1.48)
The ansatz in Eq.(1.38) corresponds to a map of
winding number 1 and magnetic charge one unit of 1/g . The

genersl form of the relation between winding number and wmagnetic

charge is 2
Q = - (1.49)

Unlike electric charge magnetic charge has & topological origin.
Making use of the asymptotic condition of K and H it is

straight forward to deduce from Eq.(1.43) that for large r

K(r) = OCexp (-M_r)) (1.50)

H(r) ~ gn T+ oCexp (-mr)
Y A

15



where 4 = ¥ 2 m is the mass of the Higg's particle and M, = gm/vx
is mass of scalar gauge boson. Each field approach the asymptotic
form that is determined by the corresponding mass. Hence we can
think of "t Hooft - Polyakov monopole having a definite size
determined by these masses. For distances larger than this size
the field is essentiaslly is that of a Dirac monopole.

So far our concern was with the asymptotic form of the
ansatz function which will ensure finiteness of energy. Let us
now consider the nature of the exact solution of Eq.(1.41). For
non zero values of m and A » analytic solution are not hnown.
However in the 1limit m —>0 , A—>0 but n” /A finite
(Prasad-Sommerfield limit)’° analytic solution have been found.
The solutions are

_ _ fr . = -
K(r) = m H H(r) = f?r Coth r 1 (1.51)

Where ? = gm/Y A . Asymptotically (r—>w) these solutions becoms
H(r) = ar + b ; R(r) = 0 (1.52)

Comparison of (1.52) with Eq (1.48) shows that the constant a can
be identified as the inverse diameter of the monopole.

The "t Hooft-Polyakov monopole possesses only magnetic
charge and does not carry electric charge. Julia and Zee showed
that this is so because Ag is set equal to =zero. For nonzero
values of A: there can be nonvanishing electric fields. Msagnetic
monopoles which carry electric charge as well are known as

24,25.31

dyons’z. Julia and Zee obtained dyon solutions with the

16



ansatz

#° = _r, H(r)
gr
b 3
A= - ey g2 [1- K]
A, = _x) J(r)

gr

The equation of motion now become

r2J" = J (2 KD

rzHu - H (2k2 _ mzrz + —ZZHZ)

rPK” = K(E +H - J%2 - 1)

and the energy is

20
, 2 2 2 2 2
H = 4n J dr { (k'>? + (xH'- HY (K -1), (K -1)
2 2 2 2
-4 > 2r 2r 2r
2,..2 2 . 2 2 2
y K- 0%, -3 )% erCH/rz_gzmz/x)}
r 2r 4ad
For the energy to be finite the ansatz functions must
behavior
E(r) = OCexp [-fﬁi K rl)
J(e) = M r+d+ 0(1/1)
H(r) = 8B _ » 4+ oCe™DH
Y A
when r—>o and
H(r) —> O
J(r) —> O
K(r) —> O

17

(1.583)

(1.54)

(1.55)

have the

(1.56)

(1.57)



when r —> 0. Here p and d are parameters . |M| < M, but d is
unrestricted.
In the s limit the exact dyon solutions are obtained

as

- _fr
K(r) = sinh fAr
H(r) = Cosh w(Br Coth Br - 1) (1.58)

J(r) = 8inh n( Br Coth fr - 1)

The asymptotic form (r—>mw ) of these solutions are:

K(r) = 0O
H(r) = ar + b (1.59)
J(r) = cr + d

By using Gauss’'s law, the electric charge of the dyon can be

written as

. LI LY
Q=3 d =-= Sinh » (1.80)

The original motivation of Dirac® in proposing the
existence of magnetic monopoles was to explain the quantization
of electric charge. It appears that magnetic monopoles present in
almost 8ll graend unified theories . The presence of monopoles and
dyons leads to several interesting phenomena such as fermion
nupmber fractionisation , spin isospin mixing, and baryon number

violation
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1.5 Fermion number fractionisation

Usually in a quantum theory vacuum is characterized by
zero charge or zero fermion number . Consequently any state
obtained by the evolution of a local operator as excitation of
vacuum will also have integer fermion number . But it has been
found that in presence of solitons fermion number of vacuum
becomes fractional . This effect 1is known as fermion number
fractionisation and was first analyzed by Jackiw and Rebbi’’. It
occurs in a number of models of phenomenological importance, in
presence of magnetic monopoles and other solitons”

The fermion number is the conserved charge

corresponding to the abelian phase change of a lagrangian of a

Dirsc field . The conserved current 158‘
M= Ltw, M (1.61)

To determine the spectrum of qonserved charge the standard method
is to expand yw in terms of the plane wave soclutions of Dirac

equation

—iEt LEL

p(x) = [ dk [ b w(x) e ™ - df ¢ vl e (1.62)

Where v&(x) and v&(x) are positive and negative energy solutions
and C the charge conjugation matrix . Here we assume that the
theory is C-invarisnt. Substitution of Eq(l1.82) in (1.61) gives

the conserved charge as

Q=[d% %) = fdk (b b -d d) (1.63)
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This leads to

Q 0> =0 (1.64)

implying that fermion number of the vacuum is zero

However there are cases in which the Dirac equation
possess zero energy solution . This generally occurs for fermions
in the backdround of solitons . As an example let us consider the

following lagrangian in 1+1 dimension
2 = P r“a“ - H(x) D) v (1.85)

Where #(x) is soliton field taken as the background

In this case
0 -i c 1
' = a =0 = [ } % =p =0 = [ ] (1.68)

The Dirsc equation can brought to the form

[2 + #(x) ] U(x) = E V(x)
[-3 + ¢(x) ] V(x) = E U»

(1.87)

where y = [ 3 ] . The zero energy solution of the above equation

are obtained as
b4

U(x) a exp( - § #(y) dy p)

(1.68)

X
V(x) = exp £ #(y) dy )
These solutions are normalisable if ¢(x) is topological soliton

and either o or B is zero. With zero energy solution the eigen
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mode expsnsion become

iEL i

wx) = sy (x) + [dk [ b w00 e ™ - db ¢ ylx) ™1 (1.89)

The operators b: , bk and d: , dkare the creation and

annihilation operators of fermion and anti fermion in the soliton
sector ( bound states of fermions and anti fermions with solitons
). Here 8 is associated with the zero energy eigen mode and when
operating on any other state it gives a ground state with same
energy. Therefore soliton ground state must be doubly degenerate

Let us denote these states by |t ,S>. The operators b and d

obey the anticommutation rules

{d

+
dk

¥ = {b b + =&k’ - k) (1.70)

k-’ k- 7 Tk

with all other anti commutsators vanishes . If we assume the same

algdebra for a:

{a, a} =1 (1.71)
we get
a |+ ,8 = |-, 8>
al- ,5 = [+, 5 (1.72)
at]- ,% = al]+ ,8> = 0

The fermion number operator 1is obtained by substituting the
expansion (1.68) in the expression for Q@ = Jf dx J°c0  and with

the aid of (1.72) we find
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Qt ,8> = * — | ,8> (1.73)

This means that the ground state charge of soliton is * 1/2.
Consequently all the other states will also have fractional
fermion number

In the above example we assumed that the theory is C-
invariant. But if the theory is not C- invariant, it is not
possible to calculate the vacuum charge by the above method. In
that case Goldstone and Wilczek developed a method in which
fermion number fractionisation 1is considered as due to the
polarization of vacuum by solitons . As an example let us

consider the lagrangisan

2= @Ho, - o, (x) + wTB,(x) ) v (1.74)

The theory is not C- invariant. Another important feature is that
the interaction term is invariant wunder chiral rotation. Here
¢1and ¢2 are soliton profiles with

¢ (to ) = @7

+
$ (tw ) = ¢

2

(1.75)

For free fermions the ground state expectation value of

R 4
current can be expressed as

oM l0> = Lt ie Tr [7F 5 (x*,x)] (1.76)
x'—>x

where SF(x‘,x) is the Greens function satisfying

G > - m) SF(x’,x) = &(x° - x) (1.77)
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1/2

for free fermions. Here we take m = |@]| = |(¢i + ¢:)| Let S

be the Greens function in presence of solitons ¢1 and ¢2 . Then

G A -m+ @+ r> ®, ) SL(x',x) = &(x' - x) (1.78)

GA - m)S(x,x) = 6(x - x) - (@ +ir ¢, 8(x,x)

Then the two Greens functions are related by an integral

. 2,34
equation

SL(x,x) = S (x",x) - [dy S_(x",y)&(y) + irs¢z(y) 1S (v,x)
(1.79)

the first itersation of which gives

S.(x',x) = S.(x',x) - [dy S (x',MIS(y) + e, (y) 15.(¥,%)
(1.80)

The current induced in the soliton ground state is therefore is

given by

wdHjo> = Lt { [Trts_(x',x)]
X —x (1.81)
-fdy Tr M s (x' Ly, (0 + 1 7T, (x))S_(v ,x)}

k-p

Current (D
——— — - ==X
P

Fig. 3
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The first term is vanishing since this corresponds to the vacuum
charge without any perturbation . The second term is represented
by digram(fyY- A straight forward calculation of the disgram

nives°°

5”” eab ¢° 0v¢b
< Fowd = (2my”* mE (1.82)

where |#|° = ¢f + ¢:. Then the charge is
Q =4 J%x) dx = 1/2n Tanﬁd(b/a) (1.83)

where ¢k(i) = * b and ¢1(i) = ¥+ a. This 1is the expression for

induced charge through vacuum polarization when soliton fields

evolve adiabatically . 'In the process it may happen: that some
of the energy levels cross zero of the spectrum?a'ao. Then the
ground state charge is given by87

Qground = ( n, - n )+ Q\.hducod (1.84)

where n, is the number levels crossing to the positive side of
the energy spectrum and n_ is the number levels crossing to the
negative side

If the theory is not C-invariant ,several alternative
methods has been developed for the calculation of induced charge.
Bardeen, Elitzur, Frishman, Rabinovici*®’*' used the connection
between fermion number fractionisation and chiral anomalies to

show that some of the results of Goldstone and Wilczek can be

derived using anomalous commutators. Roy and Singh“2 analyzed the

24



problem by considering the problem in a finite dimensional box
and then applying boundary conditions. A non perturbative
technique has been developed by Niemi and Semenoff*’™*? for a
particular class of field theory models. A mathematical technique
for the computation of fermion numbers for arbitrary Dirac
hamiltonians has also been introduced by Lott‘e.

There are many circumstances in which soliton number is
an observable. If it couples to the U(l) gauge field it may be
observed as the electric charge of the soliton . An experimental
realization of this phenomena is in linearly conjugated polymers,

©°-53

for example, polyacetylene‘ Here the fractional charge can

be detected through the enhancement of conductivity. 1In these
systems neutral spin 1/2 solitons have also been observed through
electron spin resonance experiments. It has also found that

fermion number fractionisation plqy:an important role in the

54,595
. In

current algebra soliton model of hadrons (Skyrme model)
a related development, it has been found that the 4dround state
charge of the chiral version of the MIT bag model also carries

G,87

fractional fermion number5 The fractional fermion charges of

‘t Hooft-Polyakov magnetic monopoles are important in the study
of monopole catalysis of proton decay5°_6°'79.
1.6 Monopoles and Fermions

Fermion monopole systems have several interesting
festures . One of these is the existence of states with peculiar
angular momentum properties . To understand this let us consider
a classical charged particle moving in the magnetic field of =

g -

monopole given by B = —;2 r . The charged particle will
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experience a Lorentz force e (; X 5) and change 1in angular

mnomentum is

=3

3( rxmr ) =

9 -+ 4 -~
\ Xmr = —5%% r x(r xr)

0Ceg t ) (1.85)

This suggests that we can define the conserved total angular

motientum of the charge-pole system tau.s‘51

~

I =Fxp-egr (1.88)

In the quantum mechanical"'2 description of the system the angular
momentum is generally integer or half integer in units of h/2%

This means that
2eg = 2q = integer (1.87)

This is the famous Diracdaquantisation condition . If 2q is odd,
two bosons may be combined to give a fermion 6“65. In (1.88) the
peculiar angular momentum is assmociated with the electromagnetic

field . In SU(2) gauge theories, electromagnetic field survives

SSB and in presence of a monopole the peculiar angular momentum
" L3 L] - ,'“'67
leads to the phenomena of spin from isospin

For fermions the Eq (1.88) get modified to

=2 xB-egr+ /2 (1.88)

where 3/2 is the intrinsic angular momentum. Therefore if we

consider the scattering of an electron by & monopole in which r
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——>-;, the conservation of angular momentum requires either

0'——>- & or ¢ —> -e . That is , either there should be spin

flip or some charge has to be deposited on the monopole ocore by

the electron . However , it can be shown that for abelian Dirac
o

monopole the second alternative is not available

On the other hand , from the Dirac hamiltonian
H=r, 3.8 +0n (1.89)

we find that

[ H,2.B) =0 (1.80)

This implies that helicity is conserved and spin can not flip
This paradox is resolved by means of a partial wave analysis of
the Dirac equation®™. For a point monopole one finds that the
wave function diverges according to ¥~ 1l/r as r —> 0
irrespective of the boundary condition . The origin of this
problem can be traced to the simple fact that the hamiltonian of
this system 1is not selfadjoint 1in the space of scattering
solutions . The same thing happens with the bound state solutions
and hence an electron cannot form bound states with Dirac
monopole " .

In order to have a well defined self adjoint scattering
problem we have to impose a mpeocial boundary oondition at r = O
which relates. the positive and negative eigen functions of the

- « 2 » ., 71,72
operator g 75 . The most general condition is '
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v,(0) = e 2w (D) (1.81)
where ® is an arbitrary phase angle

This yields a one parameter family of self adjoint
extensions of the hamiltonian (1.88). It 1is the boundary
condition (1.81) which is responsible for the helicity flipping

An slternative to the boundary condition (1.81) is to
modify the hamiltonian by including a dyon charge’® e at the
centre of the monopole. The hamiltonian now becomes selfadjoint
and then results bound states of electrons and sabelisn point
monopoles . These states are also parameterized by the phase
angle &

We can attach a physical significance to the phase
angle ® by regarding the Dirac monopole as the limiting case of &
nonabelian monopole . The vacuum charge of the monopole due to
the zero point fluctuations of fermion field around the monopole
is given by

- ed®
<@ = - 3 (1.92)

This is analogous to the Witten effect’’ in which nonabelian
monopoles acquires fractional dyon charge in an instanton
background characterized by the vacuum angle &

Let us now consider a system involving fermions and
nonabelian monopoles described by the lagrangian for the

spontanecusly broken SU(2) model
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a

py

Ura

1 1 2 = .
€=~ - F, F% 4 —Z—|Du¢°| - V() + ¥ GD - M) y

(1.83)

where M is simply the Dirac mass M = m or represents a Yukawa
coupling M = A ?°t® . When a charded fermion scatter of a ‘t

Hooft - Polyakov monopole the total angular momentum is given by
J=2+3+ 7 (1.94)

where 3§ is the ordinary spin and T is the extra spin coming from
the charge field interaction . Both helicity flip and charge
exchange are possible in this case as that for a point monopole.
However it is to be noted that the nonabelian monopole is a
nonsingular object and hence no special boundary conditions are
necessary. Further , the nonabelian monopole can carry charge and
hence may be transformed to a dyon state.

A quantum mechanical analysis of scattering of fermions
from monopoles can be carried out by studying the Dirac equation

with the field of nonabelian monopole as the background ' :

a.(p - RLDEXT )y 2 E - ), (1.95)

Defining

and by using the representation

. 0 o 1 0
a = R and 3 =
- 1} 0 -1

of the Dirac matrices the above equation reduces to
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+ -

[t3.3+—%A(r)(3x;l).?]x S (E*tH)x (1.96)

Writing

xot‘r: +[ gt(r) aa,r + ht(r) (3H)O(ﬁ 8(31.] (1.87)

the above equations can be converted to the following equations

+ +
for g and h :

e

[0, +x™ - A(r) ) & =(E*Mh
(1.88)

-(E M) g

[0+ - A(x) 1 b*

76,77

Harciano and Muzinich obtained the solution of the equation

in the following form

ey = ¢t { 2ik L 4aniC Hzr 3| et
L 4
(1.99)
2i k M r ]] ixr
I - - tanh( 5 )J}e
£ + k 2i k M r -ikr
h™ = - C FrH { [ - + coth( 5 )] e +
(1.100)
[ 2k oot Mo >H ok
By choosing the normalization constant c' = 1/2 and C = i(E2+ M)

, Marciano and Muznich have shown that the above solution
corresponds to incoming right handed spinor with charge @ = -1/2

scattering into a left handed spinor with charge @ = 1/2
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Similarly by reversing the sign of C we oan find that right
handed spinor with charge Q@ = 1/2 get scattered to 1left handed
spinor with charge @ = -1/2. That is, in this process there ls a
chargde exchange at the centre. A full understanding of this

process 1is possible only with quantum field theoretic

analysisao'a‘ It may be noted that in the above calculation the
Yukawa coupling has been neglected . The inclusion of Yukawa
coupling can lead to helicity flipping interaction . This also

leads to the existence of Jackiw and Rebbi zero modes which can
result in fractional fermion numbers for monopoles. The question
of fractional fermion number of monopoles and dyons are discussed
in in detail in Ch 4 and 5

Dokos and Tomaras78 pointed out that magnetic monopoles
can catalyze proceses which change baryon number. They noted that
dyonic excitations of SU(5) monopole have baryon number violating
couplings , and that a collision that excite the dyon degree of
freedom need not conserve baryon number . Wilczek’® and

93 the

Rubakov®®’'®' emphasized that because of axial anomaly .’
monopole is not an eigen state of chirality or baryon number
This leads to the chirsality violating or baryon number violating
cross section in monopole-fermion scattering

59'60£md Bessoned recognized that the baryon

Callan
number violating interactions inside the core can induce baryon
number changing scattering process with Cross section
unsuppressed by the exceedingly small core size . There exists an

extensive litersture on monopole catalysis of proton decay and

its experimental conseguences
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CHAPTER 2
GROUND STATE CHARGE OF SOLITONS IN 1+1 DIMENSIONS

2.1 Introduction
The fermion number fractionisation in 1+ 1 dimension

93,3%5,3¢6 .
. In their

has been investigated by several authors
pioneering work, Jackiw and Rebbi’®found that in presence of
solitons in 141 dimension there is zero energy state and spectral
symmetry . This leads to ground state charge * 1/2. When the
theory is not C-invariant the calculation of vacuum charge is not
straight forward. In such cases Goldstone and Wilczek®®
introduced the method of sdisbatic evolution of the fields from
vacuum configuration outlined in &1.4. Later Mackenzie and

Wilczek®? ?®

investigated the problem and found that during the
sdiabatic evolution , there can be spectral flow and adiabatic
calculation is not always comprehensive . Nie mi and

29:49°47 by analyzing the spectrum of Dirac hamiltonian

Semenoff
formulated an index theorem for the Dirac hamiltonian and found
that the continuum part of the ground state charge is related to
the topology of the background field. A closer investigation of
this problem was done by Blankenbecler and Boy@novskyss. They
found that even though the induced charge isv a topological
invariant, the spectral flow may depend on the width of the
solitons.

In this thesis we present an alternative approch for

the calculation of ground state charge in non C-invariant models.

Instead of evolving the whole background field adiabatically from
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vacuum we start from a vacuum having a8 background field which
leads to & zero energy bound state and spectral symmetry .Under
these conditions the vacuum charge is *1/2. Now the other fields
are evolved adiabatically so that theory loses the C-invariance
and zero energy state disappears. The induced charge is
caloulated by the method of Goldstone and Wilczek®®. If N is the
induced charge,ground state charge is

Q =N 1/2 -C n_-n_) (2.1)

ground

where n_ is the number of levels crossing to the positive side of
energy spectrum and n_ is the number of levels crossing to the
negative side. n, 1is obtained by analyzing the bound state
spectrum of the theory. The ground state charge is independent of
the way one arrives at the final configuration. The induced
charge and spectral flow may, however, depend on the way one
reaches the final configuration.

In this chapter we illustrate our technique by applying
it to some simple models in 1+1 dimensions. Application to more
important realistic models are given in Ch 4 and Ch 5. In & 2
the induced charge is calculated from vacuum polarization
diagrams. Spectral flow is <calculated by analyzing the bound
state spectrum. In & 3 spectral flow is calculated in the case of
solitons of finite width. It is shown that the ground state
charge is independent of the soliton width .

2.2 Polarization of vacuum by solitons

Consider the Lsgrangian for a massless Dirac field and
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soliton field in 141 dimensions
£ =y (0 -¢ 4279 v (2.2)
The one dimensional Dirac algebra
=24 5 M =0 5 0™ =1 (2.3

_is represented by )'5: yoyizaz ) yoza‘, y‘:iaa and ¢¢>1 and ¢2 are

soliton profiles with

¢ (20 ) = @ (%)

(2.4)
¢z(iw ) = ¢2(t)
Let us start from the Lagrangian
.fo =y (id- ¢1<x>)w (2.5)
k-p
Current d)
P

k

Fig.4

An analysis of the bound state spectrum ( given in &§ 2.3 )shows
that the theory is C-invariant and that there is zero a energy

bound state and hence ground state charge is * 1/2. The second
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soliton profile ¢z is now adiabatically evolved so that we resach
the configuration (2.2). Induced current can be calculated from

the Feynman diagram (Figure 4) as

1 1
H _ _k  Trl » rd
<Jepr> 'I(an [ HTE& BT & - ¢)]

(2.6)

2

where |#]% = a° + ¢22. a is the average of the asymptotic values

¢;. The above integral is evaluated to give (Appendix A)

(9%

M a s 2 @

<J o> = (2n)t — ¥ 2
| @

l 2
= (2n) MY 2, Tan (¢2/a)

Therefore the induced charge is

Upucoa = (217 107 [*£7/3) —Tan” (%77 |

In the case when ¢é(i > = ¥ b, the induced charde becomes

Q = ~(m)* Tan "¢ b/ (2.8)

itnduced

2.3 Spectral flow and ground state charge in presence of solitons
The spectral flow can be calculated by analyzing the
bound state spectrum. The Dirac equation following from (2.2) can

be written as
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@, (x) o -4, (x)] [U U
(2.9)

i
=

-9 ¢, (x) ¢, (x) v v

This equation is to solved for x < O and for X > 0 . On
matching the solution 8t x = 0 we get the energy spectrum . For

solving the above equation we assume

¢,(x) = &,(+) = -b for x > O
¢, (x) = @, (+0) = @ ()
and ) (2.10)
¢2(X) = ¢2<-m) = b fOl.‘ x <0
B,(x) = #,(-®) = ¢ (-)

The solutions sre readily found to be

U=oexp(-kx) ; V= —a[‘”:(” ~ K ] exp(~k,x)  (2.11)
E- b

for x > 0 , and

U=p expCkx) ; V= -ﬁ[¢1(_) — K, ] exp(k_x) (2.12)
E- b

for x < 0. o and # are integration constants and k,= [ ¢:(t) -
ts2 -
(E*- )]  .On matching (2.11) and (2.12) at x = O we get bound

states as the zeros of the function
KE) = E[ ¢(-) ~#f+)> + k_+ k. ] - b[ o{-) + &(+) + k_ -k ] (2.13)
Evidently the zero energy solution when b = 0 is shifted to E =
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b. Therefore the sign of the ground state charge when b = 0 is
negative. As b changes from its initial zero value there will be
a spectral flow and for each level crossing there must be a zero
energy level for some value of b. To find the spectral flow it is
then enough to find the number of values of b for which E = 0 is

solution of (2.13). This is given by the zeros of the function

£C0) = -b [ #(-) + &(+) + k_- k_] (2.14)

£f(0) is symmetric about b = 0 and by calculating gfﬁﬂ) it is easy

to find that £f(0) is a monotonic function in b . Therefore energy
level cross E = O only for one value of b , that is for b = 0 and
hence spectral flow is zero. Then from (2.1) and (2.8) ground

state charge is

Q = - Lran(bra) - 172 (2.15)

ground T

When b = 0 , that is with the 1lsgrangian (2.5) Sf(E) = -
f(-E) . Then there is zero energy state and spectral symmetry.
This leads to ground state charge * 1/2 as found by Jackiw and
Rebbi . This is salso obtained from (2.15) on taking b = O
That is

Q = - 1/2 (2.16)

ground

If ¢1 is a nontopological soliton or if ¢; is taken as the
fermion mass ,then , even though zero is a solution of (2.13),
the wave function is not well behaved at x = * @ . Consequently

there is no zero energy state initially and hence
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Q =- 1 = Tan~ ( b /a) (2.17)

ground

as found in Ref.(38) and (44) . When ¢; =0

Q = -1/2 (2.18)

ground

This is also evident from (2.13) . Since ,when ¢; is =zero k =

+

k_. Then equation (2.13) is reduced to f(E) = E k,

2. 4. Ground state charge of solitons of finite width in 141
dimensions

Let us consider background solitons of finite width with

P,(x) =¢,(-0) = b for x < -d/2
$,(x) = (-0 = ¢ (-)
¢ (x) }
2 =0 for -d/2 < x < d/2
¢, (x)
(2.19)
P,(x) = ¢, (+2) = -b for x > d/2
$,(x) = @ (@) = @ (+)

In this case expression for induced charge is same as that
given by (2.8). To find spectral flow we solve equation (2.8) 1in
the backdground of soliton having the configuration (2.18). For x
< -d/2 solutions are given by (2.12) and for x > d/2 solutions
are given by (2.11). For -d/2 < x < d/2 equation (2.8) gives

VvV =EU and auU =EV (2.20)
x X
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with solutions

<
1]

( ¥ exp(iEx) +5 exp(-i Ex) )
(2.21)

<3
1]

- i (¥ exp(iEx)- & exp(-iEx))

On matching the solutions at x = -d/2 and x =d/2 we get the

condition
k_ + ¢1(—) k+ + ¢’(+)
[ E + b ] - [ E - b ]

) k_ + ¢1(+) k* + ¢1(+)
+
[ E + b ] [E - b ]

Evidently f£f(E) = f(-E) and there is no zero energy state. When

f(E) = Tan(Ed) -

(2.22)

¢2 =b =0, f(E) = f(-E) and there is zero energy solution. As
in the previous case spectral flow 1is <calculated by =analyzing

£(0).

£0) =
SB[ B2 + b FYH P gy 4 (4) + (#3(+) + b7)T
2

b= [(¢%(-) + b 2)™ % p()] [o,(+) + (22(+) + b3)*7]
(2.23)

1/2]

Evidently £f(0) = 0 when b = 0. It is easy to show that £(0) is
monotonic function of b. Then there is no spectral flow when the
¢3 field is evolved adiabatically. Then the ground state chargde

is given by

1

Q = -Lranl(bra) - 172 (2.24)

ground
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If we take massive fermions with mass M , equation (2.2)
gets modified with ¢;———¢ ¢u + M . If ¢§(t) = % g, kt in (2.11)

1/2

and (2.12) gets replaced by k, = [m; - CE° - bH) with m, =
M*a. Then the initial zero energy state when b = 0 exists only
when m, > 0 and hence ground state charge is discontinuos at M =
a as found in reference (89)
2.5 Conclusion

In this chapter we have calculated the ground state charge
by a combination of adiabatic and spectral flow calculations
Our results are in sgreement with that given by Blankenbecler and
Boyonovsky . In our model ground state charge 1is found to be
independent of the soliton width . With massless fermions we
reproduce the value * 1/2 for ground state charge . It turns out
that the ground state charge has a discontinuity at the fermion
nass
2. A Appendix

In this appendix we present the details of the calculation
of induced charge from the diagram given by Fig 4. Eq (2.8) can

be written as

_ J-d’k Tr ¥, [”‘ ) +]e| ] Ys[* * ""]

~
v [k -o>2-10171 [ - 1917]

By using Feynman variable o, we get

2,2

1
<> = e fdaf a’k , 1T AL e + (o)) 7K + |9
o L (k —ap)® 4 @ (1-a)p® -¢7)
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_.‘eJ'daJ‘dzk Te r "L &+ (a- 1) g+ |0]17° [ %+ op + |8]]
2
]

[k + a (1- a ) p* -¢% 12
In 1+1 dimension Tr 2" £ »° 4% = 0 and Tr 2 »° = 0 . After

dropping linear terms in k , and after Wick rotation we get

1
2 ny
<HHS>S=e | da | Lk, 27 p,
(2") 2 2,2
o [k" + |¢|7]

- pv 2
=12 p, /| @ |

here we have neglected p- terms with respect to |¢]>.
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CHAPTER 3
GROUND STATE CHARGE OF FERMION SOLITON SYSTEM IN
2 + 1 DIMENSIONS

3.4. Introduction
Recently there has been a renewal of interest in 2+1
dimensional field theory models. In particular much attention has

18’90. With inclusion of 8

been paid to 0(3) nonlinear o model
topological term (Hopf term) the solitons of this model become
objects obeying fractional statistics’ ' (anyons) which appear to
have a role in high T  super conductivity®?. The o model is also
of relevance in explaining some magnetic properties of solids®”®
Though certain aspects of the model remain speculative the
nonlinear o model has many interesting physical properties that
render it a worthwhile object for study

Investigations have been reported of various aspects of
fermion number fractionisation in presence of 0(3) nonlinear o

O4-906

model solitons A recent study has been made by

07'“et al on the ground state charge of fermions in the

Carena
background of nonlinear ¢ model solitons including parity
breaking mass term. In this chapter we investigate the same model
on the basis of the technique developed in the previous chapter.
We evaluate the induced charge by studying the adisbatic
evolution of the solitons not from the vacuum but from two
configurations which have C-invariance. Spectral flow in each

case is studied by solving the Dirac equation. While the induced

charge and spectral flow depends on the initial conditions the
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total vacuum charge remains the same. Our calculations confirms
some of the results obtained by Carena et al®’

In § 2 discusses some of the preliminary matters
concerning nonlinear o model and fermions in 2+1 dimensions. Sec
3 contain the study of spectral flow and in & 4 the adiabatic
calculation is given. Summary and conclusion are given in & 5.

3.2. OC(3) nonlinear o model and fermions in 2+1 dimensions

The O0(3) nonlinear ¢ model 1is described by the

lagrangian
2= — (0,0 (9, #=0,1,2 :a=1,2,3 (3.1)
where ¢ is & three component field ¢ = (& , ¢5) = (¢1’¢z’¢a)

which obeys the nonlinear constraint |¢|z = P.8,= Ve,

This model
has topological solitons which are charecterised by the homotophy
group ﬂz(Sz) = Z ( assuming the boundary condition |¢| = constant

when x ——> ® ), The topological charge (winding number) of the

soliton is given by

_ 2
Q =J dx Jo
where
_ 1 v A
Jp T8 n v suv)\ so.bc ¢a 4 ¢b o ¢<: (3.2)

The Lagrangian for the Dirac field with scalar field as

background is chosen to be

43



-‘8=W(tru0“—¢.r-n)w (3.3)

Our conventions for the » matrices in 2+1 dimensions are ro = Ss

and ri = i §'obeying the algebra | Y”,rv ] =2 guvand 7“?” = g”v

HUN

- e Yy - So and L (a = 1,2,3) are Pauli spin matrices, and n

is the fermion mass . The inclusion of fermion mass term will
make the lagrangian odd under paritypzpd.

The Dirac equation following from (3.3) is

(trua"—qb.r—n)w:o (3.4)

3.3 Dirac equation in the scalar background

In this section we evaluate spectral flow from the
Dirac equation by using the technique developed in the previous
chapter for 1+1 dimensional models. We start with a fixed

configuration for the component ¢h (9. ) s8and other field

1,2
component are then varied. With ¢5 (¢;2) zero and other fields
(field) nonzero, the hsmiltonian is C-invariant and there is no
zZero energy statep‘

By defining w(x) = w(x) exp(iEt) we get, from (3.4),

the eigenvalue equation
-80S ¥ + (#.7XNS ¥ + n (S = E v (3.5)

Choosing a background field configuration of the form ¢5 = ¢3(r)
and ¢§ = ¢(r) f} (the explicit form is given in the next section
) it easy to observe thsat M9= (—ias + 83/2 + 13) is a constant of

motion snd hence commutes with the hamiltonian . Therefore the
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eigenfunction takes the form
g, (> et
v = o0 | 8(r) (3.8)
" g,(r)

g (e’

where Hawm =my

In terms of the radial functions g , EqQ(3.5) reduces to

28, =—T8,-¢¢g, +(E-n-29¢)4g
m
drggz— r g3—¢gz+(E+n—¢s)g4 (3.7)
8,31=——————)(1’:m g, -2, -(E+n+ g
og =-1 =By g +(E-n+ )
r®¢ ~ r Py 1 n 9 gé

by changing m —> -m and E —> - E we can find that if there is =a

solution
g,(r) e ?
v o= ei.Om g,(r) (3.8)
" gy (r)
i8
g ,(r)e

with energy E and angular momentum m , there is a solution
g,(r) e?
w = e ‘om | g,(r) (3.8)
m
gs(r)
id
g (r)e

with energy -E and angular momentum -m .Therefore during the
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adiabatic evolution of the scalar fields if a solution with
energy E and angular momentum m crosses zero , another with
energy -E and angular momentum -m crosses =zero in opposite
direction . Therefore we can say that during the adiabatic
evolution there is no spectral flow of nonzero angular momentum
states. Or in other words the ground state charge det
contribution only from the 1lowest angular momentum state.
Therefore for the analysis of =zero energy solution of Dirac
equation we have to consider only the zero angular momentum

states . For m = 0 and E = 0 Eq(3.7) reduces to

g, = -¢8, -(n+ ¢ g

08, =-%8 -Cn ) g, (3.10)
__ 1

08, =-—(8 -¢8, -(n+e)4g

08, =- g, -%8 -Cn-9) g

Let us consider the scalar background with the explicit formpd

¢5 = v cosf(r)

¢, = v cos® sinf(r) (3.11)
43 = v s8in® sinf(r)

where f(r) is a function with asymptotic properties

f(r)

"
o

when r —> O
(3.12)

f(r) when r —> o

1
A

so that in the limit r —> 0 and r —> o , ¢u 2 = 0. When r—> 0,

¢9= v and when r — o , ¢3 = - v, To solve Eq (3.10) we divide
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the space in to three regions

12
< -
" p)
Fig. 5
For D < r < r, We assume
$, =V =1a: ¢1‘2=0 (3.13)
Then Eq (3.10) reduces to
29g, =-(n+ 8 g
2g, =-(n - a4,
- 1 (3.14)
"rgi—-Tgl-(n**aJBz
_ 1
org“—-—r‘E‘-(T)—a.)Ba
By using first and third equation we get
2 1 2 _
ar gz+—-;_—argz—(a-n) gz-O (3.15)

with solutions
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g, =a I (kr)

2 1

8, = - s 84 = - o I(kr) (3.18)

where o is the integration constant, Iv(n) is the modified

Bessel functionlo‘ and k = (&8 - n ). In a similar manner we get

g, = 3 Io(k'r) and g, = - 3 I‘(k'r) (3.17)
with k' = (a + 1)
For r > r, We assume

¢ = -a and ¢ , = 0 (3.18)

Then we get from Eq (3.10) , equsations similar to (3.14) with =a

—> - 8 . But in this case solutions have to vanish at infinity

and are given by

m
u

r K (x'r) : g, = v K &'r) (3.19)

1
"

) Ko(kr) : g =6 Ki(kr)

where » and 6 are integration constants and Kv(n) is the modified

Bessel functions
In the region r, < r < r, Wwe assume
¢ =0 and ¢12 = v =5b (3.20)

Then Eq (3.10) become
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S
i)
H
¢
o
o
|
]
|

ro2 ) 1

orga =-b g, -~ " &g,

. - _ (3.21)
argg - r g’. b g4 " gz
_ 1

Org‘ = - 5 8, - b 31 -n g,
By identifying g:ﬂ =g = - g, and g;-’ =g, = - g, the set of
of four coupled equations get transformed to

(- (=) €=
°.8, =Dbg, g, (3.22)
- _ 1 (- = =
ar g = r g * b g, n g,
Decoupling of these equations gives
azg(—> - (2b - 1 ) ag(—) __b g(-) + (bz__. z) (= _ 0
r°o2 r ro2 r 2 n gz =
(3.23)

The solutions are

(=) br

g, = e [ o IO(P) + 3_ KO(P)]

t-> _ 1 =)

g, =—5C-9 +b)g (3.24)

Pl a«_ I(p) - B_K (p)]

where p = kr and k2= bz—nz. Iv and Kv are modified Bessel

functions. Here use has been made of the recursion relations
6r10= Iiand BrKo = K1

Another possibility is to define
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g, g = g,
. _ (3.25)
2 - gz - ga
Corresponding to this the solutions are
g” = e[ o, I(p) + B, K (p)]
- (3.28)
g7 =-e P [ o I - B, K ()
Since these solutions need not satisfy any normalisability

condition in this region, the general solutions are the 1linear

combination of (3.24) and (3.286):

(+) (- -
S br [

g, =8 + 8 a, K (P - B, 1] +
e °T [ A_K(P) - a_ I (P)]
g, =g+ &= e[ a, K (p) + B, I(P] +
e °T [ B_K(P) - a_ I (p)] (3.27)
g, =e”- & =e"" [ a, K (p) + B, I(A] -
e PF [ B_K (p) - a_1I (P
g, =8"- 4= [ o K (&) - B, I, -
e T I A_K () - a_I,(pP)]

On matching the solution at r = r, and at r = r, we get

A.R=20
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where A is a (4x4) matrix with elements

- —br . - _br
Au = (K1— E Ko) e ; A12 = (I1 + E Io) e
- br . - br
Am = (Kf E Ko) e 3 A“ = (I1 + E Io) e
- _ - -br . - -br
A,‘_,1 = (K1 F Ko) e 3 A22 = (I1 + F Io) e
- _ br . - br
A28 = (K1 FKO) e ; Ab4 = (I1 + F Io) e
at r, and
- _ -br . - -br
Asu = (K1 G Ko) e ; Aaz = (I1 + G Io) e
- br . - br
Abs = (K‘— G Ko) e ; A84 = (I1 + G Io) e
- -br | - -br
A;‘ = -(Kl- H Ko) e H A42 = (I1 + H Io) e
- br . - b1
A‘s = (K1" H Ko) e H A4‘ = (I1 + H Io) e
at r, . Here
I1C|a+n|r) Is(|a~-n|r)
- - . F = % (3.28)
ICla+n|r) I(la-n|r)
at r e The negative sign corresponds to a < 7
Ke(|a-n|r) Ke(la+n|r)
- 7 . = (3.28)
K C(la-n|r) K,Cla+n|rd
at r, . The positive sign corresponds to a8 < »
R is a vector:
[
a )
R = | °
ﬁf-
L P
Since o, and ﬁt are linearly independent for the existence of

nontrivial solutions it require that
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det A = O (3.30)

The det A is evaluated numerically and it is found that

by starting with ¢3, when ¢12are evolved , there 1is no zZero
enerdy level crossing hence there is no spectral flow . As
already mentioned when ¢1 2 is zero, there 1is no 2zero enerdy

state. It is also evident by taking b=0 in (3.30),then det A = 0.
On the other hand , by starting with ¢L2 » when ¢ is evolved
there is one level crossing when a > n and this leads to spectral
asymmetry two. It may slso be noted that for a < n there 1is no
crossing of the zero level. The zero energy state corresponds to
j#] = ».
3.4 The induced charge

To calculate the ground state charge, we have to
calculate the induced charge through vacuum polarization. In the
first case when the field ¢ is evolved adiabatically induced

charge is calculated from the diagram (Fig.6)

/,X
7
K-p
1
‘R Ve
7
Current K
~So p2
\F\
\\
k+P2 \\x
Fig. 6
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Y,
H S - 4 1 T 1 T 1
r>=2 <2n"”) Tr[ & -8, -5 'HE- B z(k+#z-A)}

where &4 = |¢| 7 + 7

I ,,u1<k-—p1+A><k+Z><xﬁ+pz+A>
i 3 =
e [Ck - p)*+a* 10K + 8°1[(k - p*+a%]

where &4 = -|¢|7v + ». By wusing Feynman parameters and after

dropping p: and p: with respect to A? and A? we det

P - 1 uﬁrt 2 [77+_L¢l(2x-1)1']x]
<J”> = P, Tr f dx a8
an °r [ | Yt iz [e ] ex - 1)
__¢C By 1 2
= Tenv: € Pp By

where C is a8 constant depending on the fermion mass:

cC = 1 for || > »
= 1/2 for |¢| = n
= 0 for |¢| <m
Therefore
HBY . -
M . C e 1 2
<JI(x) > = Br 0ﬁ¢ 07¢ (3.31)

where @ = ¢}/|¢|. By substituting ¢, and ¢, from (3.11) we gdet

the induced charge as
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o 27

Q = j<J°<x>> d’x = I I r dr d9 <J°(r,9)>
O O

[o0]
= C_ J 4 dr [ Orf Sin‘f]
8t
00.')
(3.32)
= C J 4n d{ Cos f(r) ) = C
gn 4

In this case since there is no spectral flow the ground state
charge is the induced charge itself. Another important point is
that, when |#| > », the ground state charge is the winding number
of the soliton field.

Now, instead of starting from ¢ , let # be switched
first. Now ¢315 evolved and then the induced current can be

calculated from the diagram (Fig. 7)

k-p
Current CD :
———— - — =X
P
K
Fig.7
~ 3 u
H - d k 4 1 T 1
> = @y Tr[ &-p - & " E-D ]
where A = |¢|(1’1 + 7_) + n. By using the property of 7 matrices

and by simple algebra we find that <J*> = 0
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Therefore in this case also induced charge is 1, 1/2,
or zero . In this case ground state charge is contributed only by
the bound states
3.8 Conclusion

In this chapter we evaluated the ground state charge of
fermions in presence of s8olitons in nonlinear ¢ model. The
adiabatic evolution is done in two different ways and in each
case even though the induced charge and spectral flow are
different the ground state charge is found to be the same. In one
case ground state charge get contribution only from the induced
charde and in the second case ground state charge is contributed
only by the bound states. Another observation is that the ground
state charge is contributed only by the =zero angular momentum
states. It is found that ground state charge depends onk the
fermion mass acquired through Yukawa coupling. The ground state

charge can be 1, 1/2, or zero depending on the fermion mass.
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CHAPTER 4
BOUND STATES OF FERMIONS AND BOSONS WITH A
“t HOOFT — POLYAKOV MONOPOLE

4.1 Introduction
The study of bound states of fermions and bosons with

26
nonabelian monopoles has been of interest ever since ‘'t Hooft

and Polyakov27 discovered magnetic monopoles in nonabelian gauge
theories . A general analysis of the Dirac equation or the Klein
- Gorden equation in the background of the 't Hooft -Polyakov
monopole is, however, not possible because the regular monopole
solution 1is not cast in the closed form . In the
Prasad-Sommerfield (ps)limit®® were a closed solution is
available for monopole solution , scattering solutions were
constructed by HMarciano and Muzinich’®’ *’. Bound state solution
were not obtained by these authors probably because of the

104,102 .
obtained bound

neglect of the Higgs-Fermi coupling . Tang
states of fermions and bosons with a Ps monopole ignoring the
core effects . Cox and Yildiz®’' also performed a similar work

In the s 1limit there exists point singular monopoles in addition
to the regular ps solution®. Din and Roypp considered such a
field configuration and obtained bound states of fermions with a
point monopole . Ajithkumar and Sabir'®® constructed bound states
of fermion and bosons with a general point dyon . The dyon
configuration used there may be interpreted either as point -

singular dyon or as the asymptotic form of the regular ps

solution
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In 81l the works mentioned above the effect of monopole core
is neglected . Moreover these studies were done in the ps 1limit.
Whether such a limit exists in nature or not remains to be
verified. In this limit there is a 1/r term (this will be
explained in the next section ) in the asymptotic form of the
Higgs field and it is this term which is responsible for the
existence of bound states . A term of this type is absent in the
general case . In this case Callias72 analyzed the corresponding
Dirac equation and arrived at the general result that there can
be only a finite number of bound states of a fermion with a
regular monopole

In this chapter we study bound states fermions and bosons
with a regular 't Hooft - Polyakov monopole . Ground state charge
of fermion monopole system is also calculated . We incorporate
the effect of monopole core as well . In order to make it =a
solvable problem we assume the the monopole core to be a
spherical region of radius r_ = 1/M, , where M_is the vector
boson mass in the theory . We represent the field inside the ocore
by its value as r —> 0 and outside by the asymptotic form as r
——>m, The problem thus reduces to the three dimensional potential
well problem which has to be solved by finding solutions inside
and outside the monopole core and matching the solutions at the
boundary . This is the method adopted by Besson"* to investigate
the structure of the fermi vacuum in the field of a magnetic
monopole

The matching problem to obtain the energy levels regquires

the solution of transcendental equations involving bessel
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functions . This has been done numerically by assigning arbitrary
numerical values to fermion and boson masses , vector boson mass
and Higds coupling . We have studied the bound state spectrum by
varying this parameters. For massive as well as massless
fermions, there is C-invariance. The zero energy state and hence
ground state charge is found to depend on the monopole radius.
For fermions it has been found that the number of bound states

72 -
A similar

depend on the Higgs coupling &s observed by Callias
result is obtained for the bound states of bosons . In the case
of massive fermions the number of bound states dependson the size
of the monopole core , ihe number being reduced to zero when this
exceeds a limiting value. In & 2 we review S5U(Z2) monopole
theory and discuss the fields inside and outside the monopole
core used in our oalculation . In & 3 the Dirac equation is setup
and the corresponding radial equation are obtained
4,2 The background potential

For studying the bound state spectrum we has to solve
Dirac equation in the monopole background given by Eq (1.51)

which has an asymptotic value given by Eq (1.52). The

corresponding Higgs field is,
¢° = (1/g) r, (a + b/r ) (4.1)

It is the b/r term that is responsible for the existence of bound
states in the ps limit
In this chapter we shall divide the space surrounding the

nonopole into two regions separated by a monopole core boundary
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which we assume as spherical surface with radius r, = 1/a = 1/M,

In the interior we approximate the fields by the values r—> O
as given by Eq (1.44) and out side by the field configuration at
r >> r, as given by Eq (1.52). In other words we approximate the

nonopole field by

K(r) = 8¢ r-r, Y and H(r) = ar 98¢ r-r, ) (4.2)

where #(x) is the step function. Here we have taken b = 0 in
(1.52)
4,3 Dirac equation in the monopole background

To study the bound states of fermions with monopoles we have
to consider the relevant Dirac equation . After separating the
angular parts of these equation the radial equation are obtained
in this section . We shall consider isodoublet fermions moving in
the potential (4.2)

The fermionic lagrangian in the background of the monopole

is
ot . a a
L=y (W -My -ig G7_ v v (4.3)
2
where
-— a a
D“wn = aywn - i_E TWA.,J v, (4.4)
2
G is the Higgs coupling and M , the fermion mass . The

corresponding Dirac equation to be solved is

a

By - 1/2g 6T, ¢y = Hy (4.5)

m N
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By taking wn(x) = wn(ﬁ)exp(—iEt) and by using ansatz (1.39)

we get

{&.[P(r)—Aér)(;x?)] - G H(rgo?.E)} w(x)m= (E-AHW(X)
2¢

(4.6)
were & and 3 are Dirsc matrices
To solve (4.68) let us define
x+
> n
v (x)=
n - (4.7)
By using
0 & 0 1
a = [ ] B3 = [ ] (4.8)
-i& 0 1 0
Equation (4.8) becomes
- ~ e ~ +
[aij' (¢ 6nm ———]2' A(r)(r x Tnm)) * 6i.j( G——————zl:(r) r'Tnm - M 6nm)] ij
_ *
= * E 6nm X (4.8)

+
Here x:m is defined as in Ref. 33 .The first index of x refers to

the spin part and and second index to isospin part:

tm

=L etee) Y 6 p* ™Q *oy—E 8 Y™(0
Xem =1 650 Y@ &+ [BT) YT + BT o ¥T(0)

+ 1 m a 2 (4-10)
+ Cj(r) i} sabc ra Och(Q) ] oi.m } Tnm

with j = Y J(J+1) , J being the total angular momentum . Total

angular momentum is obtained by combining orbital and spin
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angular momentum and isospin . In this case it takes values

0,1,...etc . B_ = C0 = 0 by definition . By substituting (4.10)

o]

in (4.9) we get eight coupled differential equations

1 - + j T + - ¥ 3
(0r+;+GH(r)) P -—r—B.+MG. = % E G,
: T j j J b] 5=0
1 . + i *_ + - by
(+ = FGH(r))Y G -—C¥FMP =% EP
r r T J r Ui i] J
1>
Jz0
1 + j + + F
(+ =G H(r)) B, - —P M CT =% E C,
r r 'é—f—-—- 3 o J J J
Jd >0
1 * j + * ry
(3+ = *GH(r))C, -—G *MHMB. =* EB.
r r _zr J r J J J J )0 ]

f (4.11)

4.4 Zero angular momentum fermions in presence of monopole

For zero angular momentum equation (4.11) inside the

monopole core can be written as

+* + - s
arG+MP = ¥E P
+ - + F
op" + 2r 17 M 6* = 7E 7
+
where we have suppressed the subscripts on P~ and

+ + - + + - .
defining X~ = P % P and Y =G * G equation (4.12)

written as

+
aY = (M

I+
t=1
~
b

|

(Dr +2 r )

(M

1+

=
~7/
<
]

The solutions to (4.13) which are regular at r = 0 are
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(4.12)

+
G . By

can be

(4.13)



Y™ = o, Sinh(kr) / (hkr)
- (4.14)
+
X~ = o E Cosh(kr) _ Sinh(ggl
M FTE kr (kr)
for |E| < M with k = (M - E* )2, and
+
Yy = ay Sin(k’r) / k' r)
+
X =o, kK [Cos('rd _ Sin(K ) (4.15)
M +E k' r (k'r)
for |E|] > M with k = CE - ¥DY2, Here o are integration
constants
Qutside the core equations (4.11) become
1 - + _ + - +
(G T F G H(r)) P MG =% EG@G
2r (4.186)
1 . + _ + - *
(@ + =FGH(r)) G FMP =% EP
r r —_———
2r
* + %
By substituting H(r) from (4.2) and by defining R = PT+G
and St = Pt~Gt equation (4.18) can be transformed to
-1 * - ¥
(6r + r ¥ n+)R =% E R
(4.17)
-1 _ + ¥
(ar + r *+m)S =*E S
where m, = aG/2 * M Solutions of (4.17) regular at r —> o
are
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+
R" = 3 exp(-k.r) /(k. r)
1 + + (4.18)

- k + m
) '-gi[‘%‘;—i ]°XP<'k+r>
+

¥ = B exp(-k_r) /(k_r)
(4.18)

- k_+ m_
S = Zz[—ﬁ—;—— ]exp(—k_r)

1/2

Here kt = (m; - g? ) and B‘ and ﬂz are integration constants.

For bound states E < m,and for scattering states E > m _ and since

n_ < m the possible range of bound state energies is
-(Ga/2 - M ) < E < (Ga/2 - M) (4.20)

The solutions inside and ocutside the core are matched at the
core boundary r = r_- As in 2+1 dimension we get the matching

condition,
det A = 0 (4.21)

where A is a (2x2) matrix given by

__E_(£-F) E_ (£-F_)
(£ +F+) m + k+ + (f +F ) + m,+ k+
(4.22)
E _ CE+F,) oy _ _E_ CE+F )
(f —F+) + m + (t F_) m_——+ k__
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with

£ = Sinh(kr_) / (kr,)
F, = . k ; Cosh(kr,) . Sinh(kr,) (4.23)
kr, (kr_)

for E < M and
£f =Sin (k'r ) / (k'ro)

th . g . [Coi'(k ro)_S1n'(k :2) (4.24)
r, (k'r 3
for E > M
it is trivial to show that
det A(E) = - det A(-E) (4.25)

This implies charge conjugation symmetry and existence of zero
energy bound state . In this case ground state charge is
contributed only from the zero energy bound state . In the case
of massless fermions the zero energy solution inside and outside
the core exists for all values of the parameters and hence the
ground state charge is * 1/2 and is a constant . However for
massive fermions for the zero energy solutions to vanish at o ,m,
> 0 . That is Ga/2 > M , from the definition of m_ . Then the
ground state charge is * 1/2 only when Ga/2 > M , otherwise it is
zero. Therefore ground state is discontinuous at the fermion
mass, as reported in the literature”’

The energy levels are given by the roots of the equation

(4.21), a8 transcendental equation which c¢an be solved by
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numerical methods . The values of E must be searched for in the
range given by (4.20)

We have obtained the number of energy levels for a range of
values of G and r,. For the case of massless fermions the results

are given in Table 1 . The number of energy levels is independent

of the core radius but strongly depends on the Higgs coupling G

For G < 1 the only bound state is the zero energy bound state

Table 1 . Number of bound states (inctuding zeroXor
mossless zero angular momentum fermions

ro\ G 1 4 8 8 10 12 14 20
107'° 1 12 3 3 4 4 8
107 1 1 2 3 3 4 4 6
107° 1 12 3 3 4 4 8
107° 1 1 2 3 3 4 4 6
1 1 1 2 3 3 4 4 6

s

Table 2 presents the number of bound states for massive
fermions . As in the case of massless fermions the number of
bound states increases with G . However , for massive fermions
the number of bound states also depends on the core radius . When
r, ~ G/2M the number of bound states is reduced . This

(2]

corresponds to a fermion mass M = G Mv/2

Table 2 . Number of bound states (including zeroMor
massive zero angular momentum fermions

r,\ G 1 4 6 8 10 12 14 20

-1 0

10 1 1 2 3 3 4 4 6
107*° 1 1 2 3 3 4 4 6
107° 1 1 2 3 3 4 4
107° 1 1 2 3 3 4 4 8
1 1 1 2 2 2 3 3 5
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4.3 Higher angular momentum fermion bound states
In this case Dirac equation inside the core can be

written as

-1

t * * *
o Gr -r JCT  FHMP=FEP

(a;+2r">Pt -3 p*F et =FEGT
. YT SR ¥ (4.28)
0+ r BT - r*j PTrHeT = tEC
@+ r™** - &5 6"+ u8* = + E BT
By defining
Wy= pt + p” ; Z, = ¢t + g
. o (4.27)
X,= B*+ B ; v,=c* t ¢

the above equations can be transformed to the following set

r
(@ +2 ' W, -1 5 X, =(H *E) I
(4.28)

@+ r "X, - r'3 W, = - £ E) Y,

1+

(o _+ r")Yt - ' Z,

- * E) X

These can be decoupled to yvield

~-1/2

2,= o, Ck r) I (kx)

j+er2

st/2
Y, =8, (k D Ip4/§kr)
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(4.29)

- -1/2
Ws —;E(er [ff__(lj_l/z(krﬂljw/z(kr) _% L, s,2CkED
_ﬁ;
T YIG+1) Ij+1/z(kr)_]
-1/2
X, "H%E‘(k r) [’_?_f_( o2 CREXFT (k) +_%; I,,y,2CkeD
"C(..
= VJ(J+1 I +1/z(kr)]
for | E| < M and
’ 1/2 ,
Zi':: ai_ (k'r ) Jj+1/2<k r)
. 1/2 ’
Yo =B, C kK1) I 5K D)
-— ’ ’ -41/2
"’t_HiE(k = [ai(Jj_,,z(k'r)—Jjn/z(k'r)——— je2.,2C BT
- ,3$
Kr 33+ Jj-u/z(k’r)]

X, =-k' (k' ©) 2[5 , , 1 J k'r))
x HFE +(Jj-n/£k r)_Jj+3/$k r) *Yr j+1/£

- O
e GTDY 3, (kT ]
(4.30)

for E > M . Here Iv(n) is the modified Bessel function and Jv(n)

is the spherical Bessel function' . a, and 3, are integration

constants and k = (Hz - }E.’Z)V2 and k’ = (E‘z - Hz)’/z

In order to solve the equation outside the core , we define

87



+ +
X =P +
+ +
v =P +
+ +
Z- =P -
+ +
W =P -

In terms of these varisbles ,

be written as

+i

. _
¢ + B
T
F

+ C

+

+
G- B -C

+

G + B -~-C
+ ¥ ¥
G -B +C

the equation

+

outside the

(6r+r-17~|n+)Xt=(r—’:j FE y x*
@+ T dY (-r*JFE DY
(@ +r**m 22" = 3rE >zt
(@ +r'Tm dW -r"3j2E DWW
By defining
RE=xt+x ,s =v"+vy
=zt 227, vt = wrr W
we can decouple and solve (4.32) to get
- -1/2
R =Y1(k+r) Kj+1/2(k+r)
R =-7 k (kx> "% (m, - ED'K_, (k)
- -1/2
§7= 7,(k 1) Ry _,,2C, 1)
+ -1/2 -1
8 = —rzk+(k+r) (n, -E) Kyifz(k+r)
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core can

(4.32)

(4.33)



T =y Ch ) 7P K

T" =—r k_Ck_r)

where Kv(u) is modified Bessel function and Y, » 7

(k_r)

jrar2

-1-2

(n_ + E)7'K,

-4/72

(k_

r)

U (kD TRR, (kD)

U"=-2 k_Ck_r)

are integration constants

radius r,

On matching the

-1/2

(n_+E DK

we get the condition

det A(E

= 0

solutions

at

(k_r)

j+1/2

2

the core

where A is a 4x4 matrix whose elements are

11

>
1]

13

21

o
n

RCTf

+ »

RC-f +g J)-1¢

N

+
+
v/
!
"

SCEf -¢g

[

+
+

SC(f +g )+ f

TCE +g )+ ¢

1

+ +

T(CE, +g )+ f

+ +

e g )+t
+ +

UCf -g )-f¢

2
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12

14

22

24

32

d4

42

44

£ - (f, -
£ - (£, +
£ - (f; +
£f - (-f_+
£ - (f; +
f - (f_ +
£F - (£ +
£ -C-f, +

]

' 4

and Y,

boundary of

(4.38)



where

-1

- nt/n- -
R=R/R = -k+(m+-E )/ Kj—1/z(k+ro)/xj+1/z(k+ro)
+ - -1
S=58/8 = -k+(m+-E) Kj-i—s./z(k r )/K] 1/2(k+ro)
. - ~1 (4.37)
T =T /T = -k(n_-B) K, . (k_roW/K, ,(kr)
+ - -1
U= Ut/ s ke -B K, e K (ko)
Also
+ [ ———
£ = ﬁd/z(kr ) 3 8 =- Kk J(J+1) I-u/z(kro)
M* E kr
* _  k 1 1 (kry )
f: "M E 2 (I ]1/2(kr ) + J+3/2(kr > - k ro J+l/2
+r -k 1 1 (kr )
B2 P02 E 2 Upaa(kre) + 1jp p (ki) + - tieave
(4.38)
for E < M and
+ . v % Kk’
£ = Jy4/2<k r,) ; & =- k J(J+1) J-u/z( ry)
Mt E kr
* ke 1 ¢ , _ , 1 (k'r )»)
fn "M E 2 Jj 1/2(k rt:.) Jj+z|/z(k ro) T K r ju/z
(4.39)
* _ -k 1 ' . 1 (k'r »
£, = F—i"—ﬁ—( juz(k ry) - Jj+a/z(k re) + K r_ j“/z

for E > M

The energy levels are determined numerically by searching
for values of E satisfying the equation (4.36) in the range given
in (4.20) . Numerically it is trivial to show that there is no

zero energy bound state . The number of energy levels for & range
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of values of G and r_  with J =

Table 3

1 massless fermions are

Table 3 . Number of bound states for massless fermions

vith angular momentum j = 1
TN G 1 1 8 8 10 12z 14 20
107'° o 1 2 2 2 2 2 5
107'° o0 1 2 2 2 2 2 5
107° 0 1 2 2 2 2 2 5
107 0 1 2 2 2 2 2 5
1 0 1 2 2 2 2 2 5

In this case number of bound states is independent of

radius but increases with G
mnonentum fermions
as given in Table 4
reduced for a fermion mass M ® GH_/2 as

angular momentum

. However

as

’

in

the

. This is true in

the

the case of massive

number

given in

the core

case of zero angular

of bound

in the case

Table 4 . Number of bound states for massive fermions

wvith angular momenium

i=1a

r,\ @ 1

4

6

10

12

14 20

-10

10

-10

10

-3

10
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4.6 Conclusion

In this chapter we have calculated ground state

well as the number of bound states of fermion soliton

fermions
states is

of Zero

charge as

system

Since the system is C -invariant and due to the presence of zero
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energy bound state ground state charge is * 1/2 . It has been
found that ground state charge is discontinuous at the fermion
mass and the monopole radius . Since there is no zero energy
bound states at the higher angular momentum , we can say that
ground state charge is contributed only from the lowest angular
momentum . The number of bound states 1is found to depend on
monopole radiuns and Higgs coupling . It is also found that there
is an upper bound on the number of bound states as found by
Callias’?.Studies similar to which has been done for fermions can
also be done for bosons . A summary of this calculation is given
in the appendix

4, A Appendix

Bound state of bosons

In case of bosons , the Klein Gorden equation
D, DM ux) = - (i + g£h’¢® + g 6 %% /2) U(x) (A.1)
can be simplified to
‘ ~ 2 2
[V2 - A(x)(L.T) - G H(r) (F.r ) - A°(x) - Ch H(E)" +
T 2 2 (A.2)

E* - M’] U(X)= 0

were U(x) = exp( iEt ) U(X) , G and h are Higgs coupling and M is

the boson mass . The angular part can be separated by using

spinor harmonics

UGk) = F(r) v, (@) + F_(r) v, (M (A.3)
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where

m-4./2
J;J YJ—!/Z
Y, (D =
I + 12
27 J-1/2
and
. - A
Y, () =T . ¥y, ()

Here J is the total angular momentum of the state which take
values 1,2 , asz ,..... The radial equations are obtained by

substituting (A.3) in (A.2)

d” 2 d A? h H .2 A
[—&“;az——‘i SCFEY 4 E - K - e -
(A.4)
(J - 1.2)(J + 1-2) _ G H
2 ] F, = - ——— E
r
d’ 2 d A® h H .2 2 A
At rar 3 CCF Y 4 E -+ s -
(A.5)
(J + 1,2)(J + ar2) _ G H
rz ]F-_— 2r F+

Qutside the monopole these equations can be written as

2 F ]
d 2 d 14 - J(J + 1) 2 _ 2 2 2 +
[——zdr + = ar = E (M +ha)] F_
b -
_ _agG F_ (A.B)
- 2 F
b +a

Solutions to the asbove equation can be obtained by defining new

- +
functions Rt =F *F . Equation (A.8) in terms of R~ becomes
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2
[ d 24 2 d 14 -2J(J + l)Ez—(M2++3a?$ Ga/Z)] Ri -0

dr r dr r
(A.7)

The solutions , which is regular for large r is given by

+ + 1

R- = a K“(k+r) (A.8)

Vkir -

with n = YJ(J+1) and k, = (" + h'a° ¥ Gas2 - ED'? Bound
states are possible in the energy range

| E| <CH + n'a - aG/2 ) (A.9)

Inside the core the equations (A.4) and (A.5) reduces to

2
[ d + _g d _ (J-z/g)(J + 1-2) + Ez_Hz] F =0
dr r dr r +
(A.10)
2
d 2 d__ (J+as2)(J + 1-2) 2 2 _
[——:zdr+-—r ar 2 + E M]F_-O
(A.11)
and the regular solutions for the bound states are
F, =a, (kr)" I (kr) : F_=o_ (kr) "I, (kr) (A.12)

where k = (H2 - E%f/z . The regular solution for E > M are
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F, = o, (k'r)%3,k'r) 0 F_=ea (k'r)RI (k') (A.13)

+ J+4

where k' = ¢ & - ¥O)'?

The solutions inside and outside can be matched at the
boundary . In this case one has to match the first derivative as
well . The resulting transcendental equation is solved to obtain
the energy levels . Here there are two Higgs couplings G and h.
For the lowest sngular momentum J = 1/2 and for h =5 , M = 0.1,
@ = 10 four bound states are obtained . The number of bound
states increases rapidly when h is increased but only slowly when

G 1is increased.
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CHAPTER 5

GROUND STATE CHARGE OF FERMION DYON SYSTEM

8.1 Introduction

The ground state charge of a fermion in the background
of a "t Hooft - Polyaskov monopole is purely topological and will
depend only on the asymptotic values of the fields. Niemi and
Semenoff>°"*?, employing a mathematical technique they had
developed and which can be applied to a generic class of
Hamiltonians, obtained an expression for the fermién number of a
Dirac fermion coupled to a monopole background. However, in the
case of dyons a general formula applicable to massive as well as
massless fermions is not available, mainly on account of its
greater complexity. The Hamiltonian for the fermion dyon system
does not fit into the class of Hamiltonians studied by Niemi and
Semenoff. It is also not known whether the dyon core will have
any influence on charge fractionisation as is the case with the
monopole fermion system discussed in the previous chapter.

In this chapter we investigate the problem of vacuunm
polarization by dyons . Here the theory is not C invariant and
hence to calculate the ground state charge we adopt the method
used in chapter 2 and 3 . We start from a pure monopole potential
. Then the ground state charge is * 1/2 as has been noted in the
previous chapter . Now the other fields are evolved adiabatically
so that the theory loses the C invariance and zero energy state

disappears . In & 2 induced charge is calculated from vacuum

polarization diagram .In & 3 Dirac equation is setup in the
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background of a dyon. A detailed analysis of spectral flow is

possible only for a special case of dyon solutions which

describes a nonselfdual monopole?*. In & 4 spectral flow is
calculated for zero angular momentum fermions in presence of
nonselfdual monopole . In & 5 spectral flow is calculated for
higher angular momentum fermions in presence of nonselfdual
monopole. In the case of &a nonselfdual monopole, even though
there is spectral asymmetry, the ground state charge is found to
be same as that of a selfdual monopole discussed in the previous
chapter. In &€ 8 and § 7 the Dirac equation is solved in presence
of Julia-Zee dyons taking into account the dyon core. It is shown
that the spectrum 1s symmetric in the massless case and
asymmetric in the massive case. The existence of zero energy
state in the massless case depends on the parameters in the dyon
structure. However, an explicit calculation of spectral flow
turns out to be difficult.
5.2 The background potential

In this case the Dirac equation is setup in the
potential given by (1.53). We divide the space surrounding the
dyon into two regions separated by a spherical surface. In side
the region we assume the values for the potential as given by

EqQ(1.57) and out side by the values as given by Eq (1.58):

H(r) = ar + b ; J(r) = cr +d ; A(r) = 1/r

for r > r, and (5.1)

for r < r,
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For a nonselfdual monopole, d = 0 in the above equation. (It is

discussed in § 5.4 )
5.3 The induced charge

The fermionic lagrangian in the background of dyon is

£ = Q%(iﬂ - My -ig G T:mwnwm¢° (5.2)
2
where
_ . a a
Du""n = 6uwn -ig TnmAp L (5.3

G is the Higgs coupling and M , the fermion mass

We start from the Lagrangian

£ =v( iy“ap- Hdw -igGr wy o’ (5.4)
2
k-p
A
Current
P
k
Fig. 8

In this situation a zero energy bound state exists and spectrum
is symmetric as shown in the previous chapter. Now the gaugde
field is adiabatically evolved to get the Lagrangian (5.2) .To
calculate the abelian induced charge we shall define the abelian

gauge potential associated with the dyon sas AH =A5¢°. It may be
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noted that by ansatz (1.53) this is in agreement with the

24,29

Fadeev's definition of the abelian field strength of a dyon

as F= sz¢yv %, The abelian induced current can be calculated

from the diagram (Figure 8) as in the case of electrodynanicsa‘

T Id‘p Id‘k Te[PH 12 ¥ 1 Q7 _-iex
T 2medlemt Tyt | Ge-n k-l ©

4 2 HY 2 p vy 7 -ipx
= - eg J c(lan), n(p )[g P-P P ] A, e (5.5)

where Evis the Fourier transform of Av. In (5.5)
nep®) = p°/60n° (K +p°) (5.6)

By spontaneous symmetry breahing gauge bosons become massive and

hence pz = 2 mz. Therefore ﬂ(pz) = 2 mi/sonz(Hz + n:) and

-~

My 2 v.2 MV —-ipx
<I™> = -ed 2 m, d4p‘[s“ppp]Ave

BOnz(M2+ mvz) (2n)”

t 4 N
In momentum space Fu can be written as

-~

ip” F* = ¢ oMp” -g"p%H A"
Consequently
iZegm2 4
o e ]
60n (M + m, )
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The charge density is hence given by

° t2ed m2 4 ~. .
- v dp i Ot —-ipx
o= 2, .2 2 (zn)‘[" F]
80" (M + m, )
2 .
Zegmv 3 E

gon” (W + mv’)

Corresponding to this the induced electric charge is

(o) 3 Zegmﬁ
Q = [<I>dx = v [4nd]
s0nZ(M%+ m %) g
2
- —2emvd (5.7)

2 2
15 (M + m, )

by applying Gauss theorem . Thus the induced charge depends on
the constant d in (5.1) but is independent of the coupling
constant g.
8.4. Dirac equation in the dyon background

As in chapter 2 and 3 the spectral flow is calculated by
analysing the bound state spectrum. Here we follow a method
adopted by us in the previous chapter for determining the bound
states of monopoles with fermions and bosons . In the case of
isospinor fermions Dirac equation to be solved is given by

equation (4.5) and corresponding to equation (4.6) we get

{&.[P<r)-A<r>c§x%’>]+ IR . P - FH(EYE . DY w(d)m (E-ADW(X)
2 2r 2r
(5.8)
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Equation (5.8) is solved inside the core by assuming the fields
with their value at r —> 0 as given by (1.57) and solved outside

the core by assigning to the fields thelr assymptotic values as r

H(r) = ar ; J(r) = ¢r ; A(r) = 1/r (5.8)

We have taken d = 0 ; otherwise our procedure fails to give
analytic results . This configuration is essentially a monopole
since its electric charge is 2zero by equation (1.80) . The
induced charge is alsoc zero as given by (5.7). An important
feature of the above solution is that it does not satisfy the

’ ., . 24,203
Bogomolny condition

]
n

L3 Cos?® € in Dn¢° (5.10)

3
1

. a
Sin® Dn¢

for selfduality . The angle ® is relsted to the magnetic charge
g, and electric charge Q@ by Tan & = Q/g .

As in the previous chapter equation (5.8) can be written as

{3”_ Q6 -1 AxXNrxT Mt 6.C G__Z_%Q r? - M éhm)] xfm
=+ (g Fr-ms |, (5.11)
2r

By substituting (4.10) in (5.11) we get the coupled

differential equations as

81



+
¥ @ H(r» P_

o+ L -Lplrn el = 7 (3R 4 B oD
2r jz0
+ ; + + T T
@+ 27 aHE 6; -Lcirup] = F (S J(r)e+ +EPH
r r “5F r | J 2r J
Jz0} (5.12)
0+ L+ane sl -Lplrucy =238+ EChH
Zr j»>0
+ i + + F
@+ 1+enurc] -6t HB] =1 %ir)c + EB)
2r ! ! J>0
8.5 Zero angular momentum fermions 1in presence of nonselfdual
monopole
For zero angular momentum equation (5.12) inside the
monopole core is same as that given by (4.12) with solutilions

for E < M with

for E » M with
constants .

Outside

(2

r

+

"

(ar+

e E T

Y" = o, Sinh(kr) / (kr)

. - (5.13)
X” = oy k Cosh(kr) _ Sinh(kr)

M FE kr (kr)

k = 2 . E? )l/z,and

+

Y = o, Sin(k'r) / k' r)

' oza K Cos(k' ¥ _ Sin(k j) (5.145

H3E KT (K 1)
k' = (E? - rﬁ)l/z. Here ay are integration
the core equations (5.12) become
o HE) PP T MG =7 (LT 4k ¢H
2r (5.15)

TGH(r) G T HP =7 2<r)G + EPH

2r
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By substituting J(r) and H(r) from (5.1) and by defining

b 4 * * * + *
R =P + 3 and S© = P~ - G~ equation (5.15) can be transformed
to

+
mJIR =% e R (5.18)

+1

(ar + r

(@ +r* Tm)s =te s

I+
t

where m, = aG/2 * M and £, = c/2 Solutions of (5.16)

regular at r —> ® sare

+
R = B exp(-k,r) /(k,r)
* + + (5.17)

(5.18)

£

-_ k +m
s “_ﬁz{—i—;—l ]exp(-k_r)

2

2D

For bound states &£, < m,_ and for scattering states £, >m_

1/2

Here k, = (m; - & and 3, and 3, are integration constants.

The solutions inside and outside the core are matched at the
core boundary r = r, and the matching condition is deduced 1in

the form
det ACE) = 0 (5.19)

where A is a (2x2) matrix given by
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& ) £ N
(f +F ) - + _ (E-F) Cf +F ) + +  (£-F)
m++ k+ - m, + k+
(5.20)
£ £
_ _ - (f+F ) _ - (f+F )
(r F+) 5T K + (f -F) + =l J
with
f =Sinh(kr°) / (kro)
F,.= k Cosh(kro) _ Sinh(kro)
- M + E T 2
o (kro)
for E < M and
f =Sin(k‘ro) /(k'ro)
F,= ¥k Cos(k’r ) _ Sin(k'r )
T HFE _— —_—
k ro (k ro)
for E > M
Evidently det A(E) # det A(-E) . This shows the spectral

asynmetry of the system . However when ¢ = 0 from (5.20) we can

show that

det A(E) = - det A(-E) (5.21)

This implies charge conjugation symmetry and existence of =zero
energy bound state . In this case vacuum charge is * 1/2
.Therefore it is enough to calculate the spectral flow when the
constant ¢ 1is varied

As in the case of solitons in 1+1 dimension the number of

values of ¢ for which detA(0) becomet zero gives the spectral
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asymmetry . When E = 0 ,F+=F_=F in (5.20)

c (f-F )
2(f +F ) (f +F D) + E:T-K+
det A(0) = (5.22)
- _ ¢ Cf+F )
2(f -F ) (f -F ) +-————-—-m“+ K
2 . 1/2 o
where kt = (nt - c ) .It is straightforward to show that
0;[ det A(0) 1 > 0O (5.23)

and when c¢= 0, det A(0) = 0 .Therefore det A(0) is a8 monotoniec
function in ¢ passing through ¢ = 0 and so there 1is zero
energy state only when ¢ = 0 . Conclusion is that there is no

spectral flow .

In this case the induced charge is zero by (5.7) .Therefore

the ground state charge according to equation (2.1) is

Q = * 1/2 (5.24)

ground

From (5.17) and (5.18) the condition for the existence =zero
energy state is M < ag/2 . Therefore the ground state charge is

discontinuovs at M = ag/2 as already noted in literature®”

5.6 Higher angular momentum fermions in the nonselfdual monopole
background
In this case Dirac equation inside the core is given by

(4.28) and the solutions are
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1/2

Ziza (k r) jﬂ,z(kr)

Y.t = ﬂ;‘: (k r51/2 ju/§kr)
W.= k CkD) Vo 1 (kr))
+ Ffﬁ _%?ﬁ J‘/z(kr)+11+3/2(kr) ““kr j+1/2

jri1/2

_ﬁ_
*3 JFD I (kr)}

. -1-2
Xi_-iﬁi_(k }9) [ﬁ— (Ij Vz(kr)+15+azz(kr) + }]; Ju/z(kr))
KE Y3i(3+1) Ij+1/z(kr)]
for E < M and
2,z o, (k) 53, (kr)
, A2 .
Y,o=a GO (k)
W= k'Ck B Ve . . 1 C k'r))
+ HFE ; (J 1/_‘_,(k r)- JJ+9/2(k rY)Y-—— ke J+1/2
- Pr
T Yj(j+1) Jjﬂ/z(k r)]
— 1t ’ ~41/2 ’
xt— %E(k » [ﬁ- sk'r) JJ+3/Sk'r) +k'1r J'H’/gk )
- .

F - ,
T Y3(i+1) j+1/£k r) ]

for E > M

(5.25)



In order to solve the equation outside the core , we define

Xi = Pi + Gi + B; + C;
v = pt 46 BT ¢F (5.28)
z¥ = pf - ¢* 4 BT - cf
W =p g -8t 4t

In terms of these variables , the equation outside the core can

be written as

-1 r -1 ¥
(0r+r 3Fn+)X—(r j¥£+)x
(o +r-17-m )Yi:(—r-i;);s )Yz

r + + (5.27)
@ +rtTw ) =Gt i D12
o+ r'Fom ) W- o=C-r? o= £ ) W
By defining
+ - + - + - + +

* W (5.28)

we can decouple and solve (5.27) to get

R= (k) 7K. (k1)

jrar2

+ -4/2 -1
R ==Y, k+( k+r) (m+ - c+) Kj—n/z(k-i-r)
- -1,2
5 =r,(k 1) K 4, 2(k 1)
-1-2

§"=-r, k (k)% (m, -2k (k1)

*4/2
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(5.28)

T = Ckrd 7P K, (k_r)

jrir2

T i k Ck_ r)—zxz (m_ - 5-)-1 Kj-s/z (k_r)

~-41/2

U=y (k1) Kia 2

(k_r)

+_ -1/2

U =-r k (k) (m, - 207K

jr1./2

(k_r)

where Kv(“) is modified Bessel function and Yy » 7 rd and Y,

2z’ ]
are integration constants

On matching the solutions at the core boundary of

radius r, We get the condition

det ACE) = 0 (5.30)

where A is a 4x4 matrix whose elements are

A, =RCE +g >-¢f ; A,=Rf-(f -g )

A, =RCGE +g d>-¢ A, =-RE - (f, + & )

A,, =SCE -gDd>-¢ ; A,=85¢f-(Cf +4& )

A, =8CE +8d+¢f ; A, =5¢f-Cf,+4 ) (5.31)
Ay, =TCE +g )+ f A, =TE-(f, +&)

By, =TCE, +gd+8 A,, =T E-(CE, + &g )

A, =UCE -g )+ F A, =Uf-(f +& )

A, =UCE -gDd>-¢ A, =Uf-CE +g )

where
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- 1

R=R/R = —k*(m+—8*) Kj—uz(k r, Y / K,+1/z(k+ro)
+ - -1
S=8/8 = -k+(m+—£+) Kjﬂ/z(k*ro) / Kj_1/2(k+r°)
+ -1 (5.32)
T=T/T = -k (m_-£) K a2 Ck_x ) / Kig2Ck 1)
+ - -1
U=U0/U = -k(m -£) Kju/z(k-ro) / Kj-;/z(k-ro)
Also
i.— -’
£ = j+1/2(kr ) ; g =-_k J(J+1) Ijﬂ/z(kro)
Mt E kro
* . k 1 1 (kr,))
fz "M *E 2 (I 11/2(kr ) + I)+3/z(kro) T r, jﬂ/z
*r _ -k 1 (kr »
fz "Mt E 2 (I i/z(kr )+ Ij+3/2<kro) + k r, ,u/z
for E < M and
+ R [ K’
£ = j+1/2( o) ’ g =- _k J(J+1) J+1/z( r,)
Mt E kr
+ K 1 . . 1 (k" r »
"W E 2 (Jj—s/z(k ry) - 'Jj+a/z(k ) TR/ r, 3+1/z
+ -k’ 1 , . 1 J. (k''r_»
£, M+t E 2 (Jj-a/z(k rs) - j+a/z<k )t r, sz °
for E > M
When ¢ = 0 , det A(E) = det A(-E ) . This guarantees the

charge conjugation symmetry . From direct substitution in (5.30)
shows det A(0) # 0 .That is there is no zero energy state . When
c # 0, det A(E) # det A(-E) sand so there is no spectral symmetry

. Due to lengthy algebra involved the analysis of spectral flow
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as has been done in zero angular momentum state is not easy
Numerical study shows that det A(0) as a function of ¢ has no
zeros and consequently there is no spectrsal flow. In this case

induced charge vanishes and consequently the ground state charge

is zero by (2.1).
5.7 Zero angular momentum fermions in presence of dyons

In this case Dirac equation and its solution inside the core
igs given by equation (4.12) , (4.18) and (4.18). out side the

core equation (5.12) can be written as

r

[o +r ' F (B/r + n+)] R =% (D/r + &) R (5.33)

+

FOD/r + ) s* (5.34)

H

r

[a + r ' ¥ (B/r + m_)] S

where we have substituted for J(r) and H(r) from (1.58). Also B =
Gb/2, D = d/2. To solve the above equation we define X,= R'* R

and then we can write from (5.33)

[or + r"] X, = [Bt D+m * e*] X (5.35)

* — +

r
For bound states €< m and with the ansatz

1/ -1 + +

CQ*aq ) (5.38)

X, =Cm * &) 3

+

2
exp(-p /2) pf

equation (5.35) can be decoupled and solved to give

¢ = Ff[r+B2 0% a1, e.) (5.37)
A

+

.7 + (B m - De )/
(Dm_- Be )/X,

B m - De
+ +
A

+

* 1F1[1+ r + 2 + 1, p+]
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where !F‘(a ,b ,0 )is the Kummer function , and

p,=2xr, A= - = (B -0 (5.38)

+ + + +

In a similar manner , by defining Yt =8 x5 the solution of

equation (5.34) can be written as

1/

Y, = Cm % e Pexp(-p/2) o7 C @ £ Q) (5.38)

q - 1F1[ y +Bm-De_ o p] (5.40)
A
Q = r + (B m_~ De_)/n_ F1[1+ y+ BR D o0p b, p]
(On_- Bz y/x_ * N )

From (5.38) and (5.38)solutions of (5.33) and (5.34) can be

written as

RY = o exp(-p/2) o [ VE T, (@ e @) s (5.41)
Yo - £, (q, - a ) ]

s* = p exp(-p_s2) P [W @ + Q>+ (5.42)
H T () -6 |

r we arrive at a

By matching the solutions at the boundary r

condition
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det A =0 (5.43)

where A is a (2x2) matrix given by

(f +F)) -RC(E-F ) (£ +F)) + R (£-F)

(5.44)
Cf -F,) -S(E+F,) (£ -FD + S (£4F )

with R = R'/ Rand 8 = $*/ S and

f Sinh(kro) / (kr)

(5.45)

4+

F, = k Cosh(kro) _ Sinh(kro)
M+ E —e —_—

kro (kro)z

for E < M and

(]
i

Sin(k' r ) /(k'r,)

14+

F, = __k _ [Cos(k'r )_ SinCk'r,) (5.48)
M+ E

. , 2
k'r (k'r >

for E > M . Further for the convergence of normalization integrsal
the Kummer function in (5.38) and (5.38) s8hould reduce to

polynomials . This will be true only if we impose the conditions

+ B m+— D$+

¥ = - n, (5.47)
A
+
y + BB D (5.48)
2
)\-
were n and n, are non zero positive integers . If n, and n, are
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zero 01 and Qz Ave not reduced to polynomials

During nliabatic evolution we cannot guarantee the existence
of energy levels since thay has to satisfy the conditions (5.47)
and (5.48). Therefore we cannot evalucts the spectral flow
directly as done in th~ case of nonselfdual monopole. The same
problem arises in the higher angular momentum case also. This 1is

demnonstrated in the neaxt ssction.

In the massless case we have

F(E) = f(-E) ; F,(E) = - F (-E)

+ _ ¥ . + _ AF

Qi(E) = Qa(-E) H Qz(E) = Qz(—E)
From this it follows that det A(E) = det A(-E) . There is
spectral symmetry and hence charge conjugation symmetry . Zero

ensrgy is a trivial solution of (5.43) as pointed out by Jackiw
and Rebbi for point dyons . However , in this case when the core
effects are included , for the exi~“ence of zero energdy state
conditions (5.47) and (5.48) are to be satisfied . Therefore

fermion number fractionisation depend on dyon parameters

5.8 Higher angular momentum bound states
In this case the Dirac eguation inside the core is same as
given in the equation (4.28) and 1its solution is given in

equation (4.28) and (4.30). By defining

+ + + F F
X =P + G + B+ + C+
v:. =P + G- B -C"
L (5.49)
2" =p* - ¢ + 8" -
W =P -6 -B +C



the Dirac equation out side the core becomes

. Ly

* h I ¥
.Dm*x = -—r- (D/x + c* )_ X

. .3 _ 1.%
$m+Y = = (D/xr + £+2JY

+ + T3 i ¥
.Dm_Z = L-‘"i;— - (D/r + &_ )- Z

+ + T R F
wm_w = i r (D/r + €_ )] W

where

* -1 . -

D =8 +r F(Br +m)

As in the n»revious case bound state soclution ( &

be obtained as

X = o exp(-p, /2) p{“‘ [ Ym + e, (Q;(j) + Q: ) *
Y TE @) - Q) |

L
i+

Y= 3 exp(-p,/2) Pf—‘ [ Ym + £, (G;(-J) + Q

Y m - &, (Q(-3)

I
2
v
—

2%z n exp(-p_s2) 7 [1’ m+ e (G(3) + Q)¢

SR CXEE WP
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<

(5.50)
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W= 6 exp(-p s2) ot [V——m_ T e (Q(-3) + @, )¢
Y mo - & CQ(-3) - Q) ]

where

Y=\/Bz+j2+—Dz

"D v+ 1, oy

Qt: F[}’+Bmt
Ny

Qf(a') =7 r(Bmy- DI F1[1+r+ Bm

. r 2+ 1 |, P+]
-3 + (Dmt— Bs:)/hi

>+
I+

Q:(—j) is obtained by changing sign of j in Q:(j) . On matching

the solutions at the core boundary r = r, we get the condition
det ACE) = 0 (5.561)
where A is a (4x4) matrix with

A, =C1-x)|F +(3/r)>F |+ (1+x)Tf
[ : |

A =(C1+ x) F" - (3 /x)F 1+ (1-x)T¢

A =(C1-Y) F°" -3/ )F + (1+Y) T

A =(1+7Y) F"+ (3 /r )F + (1-~-Y )¢t

23 _+ "'_1
[ b

A, =C1-2)|F +(3/c)F | -C1+2)Ff
L o
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o
i

39 L +

[ T
C1+2) F'+(d/r)F+J—(1-Z)f

>
It

" C1-Wd)[F - C3/r)F | -C1s+we
o

+ (1 +Y)D)CF

= -l

A, =Cl+WD [ F 4¢3 /) F)-C1-w>re

T "
A= Cx = 1)L B+ | (d+1) /2 | F }-Q+x)?
A“=(x+1){F+'—r(j—l)/r-F+}+(1—x)f

A22=(1—Y){F:—r(j-—1)/rql~‘
Az‘z—(1+Y){F+'+[(j+1)/r]F+}-(1-Y)f

8,=CZ - 1)1 F + (j+1)/r]F_}+(1+Z)f

A"=(Z+1){F+'—((J—1)/r F*}—CI—Z)f
h
{F;- (3-1>/rx|F }—(1+w)f

A“=—(1+H){F;+[(j+1)/r]F+}+(1—H)f

Here X = X/ X~ , Y=Y/Y , 2 =2%2", w = w/W and

f.—.‘krol (kr) F, = £/( M * E )

J+1./2
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for E < H and

f =Vk'ro J}m/z(k'ro) : Ft =f/(H *E)
o= 1 d JJ+1/z(k‘r)
t (M E) d(k’r) v r rer

for E > H
As in the zero angular momentum case , for the convergence

of the normalization integral' , wae should impose conditions

B m, - Ds*

vy + = - n, (5.52)
)\+
y + B = De_ = -, (5.53)

In this case also the existence of the levels crossing from one
side of the spectrum to the other side is not guaranteed and
hence we can not say anything about the spectral flow

For the massless fermions we have

SE) = f(-E) 5  F(E) = - F(-E)

F,(E) = - F (-E) (5.54)
I ¥ * +

Q(E) = QL(E) @ (E) = @} (-E)

from which it follows that det A(E) = det A(-E) . Therefore there
is spectral symmetry. 1f E‘ satisfy (5.52) and (5.53)
-E1 also satisfy the same equations and hence the spectral

symmetry is guaranteed . In this case by direct substitution it
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is easy to verify that there is no zero enorgy state
8.9 Conclusion

In this chapter we 1investigated the problem of fermion
number fractionisation in presence of nonselfdual monopoles and
dyons. The induced charge is calculated and was found to depend
on dyons electric charge. In presence of nonselfdual monopole the
ground state charge is found to be same as that in the presence
of a selfdual monopole. In this case also ground state charge is
contributed only by the lower angular momentum states and is
discontinuous at the fermion mass. With massless fermions in
presence of dyons, it 1s found that there is spectral symmetry
and charge conjugation symmetry but the ground state charge need
not be * 1/2 because of nonzero induced charge. For massive
fermions the spectrum is asymmetric. However, a direct study of
spectral flow is hindered by the occurence of certain conditions
to be satisfied
5. A Appendix
In this appendix we solve the first order coupled differentisal

equations

[a+_LE_J'__]X+,. [LE_D_+,,,¢$]X_ (A.1)

This equation is similer to the hydrogen atom problem in

relativistic theory if the B/r term is absent. On dividing

through by 2xn = 2 (m° - £2)?, we get

1+ 3 - B+ D
[op+——p ]x+ [————p + /—"“‘:_z ]x_ (4.2)
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[p+ 254 ] 2 [B52 v /i ]x @

where p = 2 r . For the above equation we assume solutions of the
form

X, =vmEe e 7T Qe tQe)] (A.4)

Qizand 7 can be determined by substituting (A.4) in (A.3). Then

(B+D)/ 22 ca,- Q)
-(B-D)/ Br=ca+ Q)

(A.5)

we get

‘c>(¢‘a'lc,+:v+,i)(Gl’+03),)—p(il2

p(0p+r-d)(Q1—92)+sz

These can be decoupled to get

2 Bm - D& _
P ap Q +(2r+1-p p) apai -(r +———24Q =0

po;e,wz:w1—p>opo,-cr+1+——5“;°‘>e,=o

(A.8)

There we assume that

Then » = ¢ B2 + 32 - DH'?

The solutions of the equations (A.B) are

Bm De

Q’=w,F1(r+ , 2r + 1, p)

Q =p,F 1+ 7+ PRTDE

Bn - D2 o 41, o

> >
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