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PREFACE

In quantum field theory vacuum is usually characterized

by zero fermion number . Every state accessible from vacuum by

local operator has integer quantum numbers . Jackiw and Rebbi were

the first to observe that in presence of non local nontrivial

deformations such as topological Bolitons vacuum acquires

fractional values for the fermion number . This effect is known as

fermion number fractionisatioQ One can cite many examples in which

fractional fermion number play an importand role. In polyacetylene

the conductivity is found to be enhanced by the effect of fermion

number fractionisation. Fermion number fractionisation is important

in understanding certain features of Skyrme model of baryons and

its modification as well as in chiral bag models. The fractional

charges of 't Hooft-Polyakov monopole is an importand ingredient in

the study of monopole catalysis of proton decay. It is also

speculated that the fractional electric charge of quarks may be

explained through this phenomenon.

Jackiw and Rebbi studied the interaction of massless fermions

with solitons in 1+1 dimensions and with a Julia Zee dyon in 3+1

dimensions. In these models the C-invariance and the existence of

zero energy modes lead to a vacuum charge ±1/2. When a theory is

not C-invariant calculation of the vacuum charge is not straight

forward. In such cases Goldstone and Wilczek calculated the vacuum

charge from vacuum polarization diagran

In this thesis we present a method of calculating vacuum

charge in models which are not C-invariant. Instead of evolving the

i



whole background field adiabatically from vacuum we start from a

vacuum having a background field which leads to C-invariance and
~

spectral symmetry. Now other fields~evolved adiabatically so that

the theory loses the C-invariance. During the adiabatic evolution

of the fields some energy levels cross the centre of the mass gap

(spectral flow). The spectral flow is evaluated by analysing the

Dirac equation in the soliton background. The induced charge is

calculated by the method of Goldstone and Wilczek. The ground state

charge is independent of the way one arrives at the final

configuration. The induced charge and spectral flow may, however l

depend on the way one reaches the final configuration

The first chapter of this thesis is of an introductory

nature. It opens with a concise account of gauge theories and

spontaneous symmetry breaking. A brief review is then given of

solitons and their properties. This is followed by a discussion of

monopoles and dyons in gauge theories. Fermion number

fractionisation is then introduced and most important results are

summarised. The chapter ends with a discussion of several unusual

properties of fermion monopole system.

Chapter 2 illustrate our technique for the evaluation of

ground state charge of fermion soliton system in 1+1 dimensions.

The ground state charge in specific models are obtained by

evaluating the spectral flow by analyzing the bound state spectrum

and induced charge from the vacuum polarization diagrams .It is

shown that ground state charge is discontinuous at the fermion mass

and is independent of th~ soliton width

In Chapter 3 ground state charge is evaluated in 2+1
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dimension .Here we consider fermion number induced by solitons in

0(3) nonlinear 0 model .At present this model is of considerable

importance since it provides a field theoretic description for high

considering there is a scalar triplet characterized

temperature superconductivity In the model that

by a

we are

nonzero

winding number. Instead of evolving three fields simultaneously,we

start from the fields say ~9 as the background and allow other

fields ~l and ~2to evolve adiabatically .It is found that ground

state charge gettno contribution from the bound states. That is ,

there is no spectral flow .On the other hand if 4>3 "t; evolved

adiabatically ,with ~land ~2as the background induced charge is

zero and ground state charge gets contribution only from the

spectral flow as is evident from the analysis of bound state

spectrum .In both cases) we get the same ground state charge. It

is found that ground state charge take values 1 ) 1/2 and zero

depending on the parameters in the theory

In the Chapter 4 we consider the interaction of fermions

with a regular 't Hooft-Polyakov monopole. We present a detailed

study of bound state spectrum of this system including the effect

of monopole core. The theory is C-invariant and the Dirac equation

possess zero energy state. Hence ground state charge is ±1/2. It

is shown that contribution to ground state charge is made only by

the lowest angular momentum state. It is shown that there is a

discontinuity in the ground state charge at the fermion mass.

Number of bound states is found to depend on the fermion Higgs

coupling. The results of a closely related boson monopole system

are presented as an appendix to this chapter.
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In the Chapter 5 we analyze the interaction of fermions

with a Julia-Zee dyon. Extending the technique developed earlier

for 1+1 and 2+1 dimensional models we calculate the induced charge

by starting with a C-invariant configuration. The induced charge

depen~on the dyons electric charge.

We also consider the interaction of fermions with nonself dual

monopole which is limiting case of a dyon. The induced charge and

ground state charge is found to be 1/2 which is same as that of a

self dual monopole In this case higher anaular momentum

contribution is found to be zero and ground state charge is

discontinuous at the fermion mass

Study of Dirac equation in the dyon background shows that

the bound state spectrum is symmetric in the massless case and

asymmetric in the massive case. In this case the necessity of

imposing certain additional conditions does not allow us to carry

out an analysis of spectral flow .

The material reported in this thesis have appeared in the

form of following papers:

1. Bound states of fermions and bosons with a 't Hooft-Polyakov

monopole, J.Phys.G: Nul.phys 14 (1988) 433

2. Fermion dyon bound states and fermion number fractionisation,

J.Phys.G: Nucl.Part.Phys 15 (1989) 433

3. Ground state charge of solitons in 1+1 and 3+1 dimensions, ,

Int.J.Hod.Phys.A8 (1993) 705

4. Ground state charge in 0(3) nonlinear 0 model in 2+1

dimensions, Int.J.Mod.Phys A (Communicated)
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CHAPTER 1

INTRODUCTION

1.1 Gauge ~ield theories

Gauge theories provide a theoretical framework for our

current understanding of the fundamental interactions of particle'

physicSl-~. The idea of gauge invariance of electromagnetism was

generalized by Yang and Hills? in 1954 to nonabelian internal

symmetries. The emergence of nonabelian gauge theories paved the

way for the unified electra-weak
8-10

theory J the quantum

chromodynamic approach to strong interactions and grand

unification schemes. As an illustration of the method of

constructing a nonabelian gauge theory let us consider the

lagrangian for a scalar n-tuplet ~ = (~1""'" ~n)ll

where

(1.1)

V(t!' ~) = (1.2)

The above lagrangian has a global U(N) symmetry. That is, it is

invariant under the transformation

u ~ ---> ~' = U ~ = (1.3)

where &.T = & T ,a = 1..... Nand e
1

• • • • & are the
o 0 N

group

parameters independent of x . T
Q

are the (n x n) matrices
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representing the generators of the group which satisfy the Lie

algebra

(1.4)

co b c are the structure constants of the group

Noether's theorem give a connection between symmetries of a

lagrangian and conservation laws . According to this theorem any

continuous symmetry transformation which leaves the

invariant implies the existence of conserved currents J~
a.

is

iJ JJ.J = 0
J.J 0.

The cha.rges

f 9 0
Go = d x J Q. ( X )

action

That

(1.5)

(1.6)

are constants of motion. The infinitesimal

corresponding to Eq (1.3) are

6t/>(x) = 4>~ (x) - 4>. (x) = i. (to. T~.4>.(x)
\. \. \. \. J J

4
and the conserved currents can be expressed as

transformations

(1.7)

(1.8)

Now let us investigate the possibility of having a symmetry

2



transformation in which eQ
are space time dependant.

r/> --) 4>' = U 4> = e -l&<x) • T tI> (1.9)

Such a gauge transformation is oalled local gauge transformation.

Under this!,."~4> get transformed by

8 ~ ---) 8~' = U (8 ~ ) + (8 U) ~
IJ #.J J.J J.J

(1.10)

Consequently the lagrangian (1.1) is not invariant under the

transformation because of the extra term proportional to a &(x) .
IJ

To have local gauge invariance one must introduce additional

terms which can compensate for the non invariant term.

Equivalently , one should find a modified derivative D#.J~ which

transforms like ~

(1.11)

and replace a~ in the lagrangian (1.1) by D~ .The derivative D~

is called covariant derivative since it varies in the same way as

; . The covariant derivative can be constructed by introducing

vector fields A~ by defining

where

= (8 + B ) 4>
#J J.J

(1.12)

(1.13)

Evidently the number gauge fields are equal to the number of

3



generators of the group. By substituting (1.12) in (1.11) we get

=

with solution

(1.14 )

Thus by introducing the gauge fields the lagrangian (1.1) is

rendered invariant under local nonabelian gauge transformation.

The required lagrangian can be written as

(1.15)

This lagrangian , however , does not contain dynamical terms

for the gauge fields . The simplest choice of such term gives the

gauge invariant lagrangian

(1.16)

where

(1.17)

It may be noted that we cannot add quadratic terms in gauge

fields and preserve the local gauge invariance. Consequently

gauge fields are massless.

The above formalism can be easily generalised for any

other symmetry G and to include other types of matter fields as

well. An important feature of gauge theories is that the
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interaction between the matter field and gauge field is uniquely

fixed by the symmetry requirements

1.2 Spon~aneous symmetry breaking

So far our consideration have been purely classical. Coming

to Quantum theory, where the fields are operators,~~interesting

phenomenon that occurs is spontaneous symmetry breaking
12 IS(55B) , ,. I f vacuum or any other state does not respect the

symmetry of the lagrangian the symmetry is said to be

spontaneously broken . This may happen when the vacuum or the

ground state is degenerate.

As an example of 5SB in Quantum field theory let us

oonsider the potential for a real scalar multiplet ~Q with O(n)

symmetry (Fig. 1)

1= - -2- --..

v(<f>.<f»

Fig. 1

Z
2 m 2

When m < 0 this potential has minima at (~.~) = - ~ = v . Field

theory vacuum corresponds to the minimum of the hamiltonian and

hence to a minimum of the potential. In this case there are
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infinite number of potential minima and hence vacuum is infinite

fold degenerate . All the vacua are connected by elements of

O{n). However, choosing one of the vacua as physical vacuum

results in spontaneous breaking of symmetry. One of the

consequenoes of SSB is the production of massless excitations

called Goldstone bosons.

For convenience let us choose the vacuum as the one where

the field has expectation value (0 I~I 0> =<~>o given by

<4»0 =

o
o

v

(1.18)

This vacuum is not invariant under the full group O(n) but is

invariant under the subgroup O(n-l). Let

the n-l broken generators which satisfy Lt(~>o~ 0 .In terms of

L
t

_ ... L
n

-
i

we can parameterize the field ~ as

,p(x)

i.

v= e
Ca (x>L + a (x>L )

i t n- 1 n-t

o
o

V+TJ

(1.19)

When the above equation is substituted in the lagrangian (1.1),

at ' a
2

_ · · · .n(x) appear in the derivative term. But in the

potential , there are no quadratic terms in a .... a ete. The
1 n-l

on ly quadrat ic term is 7)2 since (4) .4» = (v + n)2 Therefore

there is only one massive field n(x) and all other fields

a ...a are massless . This means that when O(n) symmetry is
1 n-t

broken to 0(n-1) symmetry there are (n-1) massless particles and
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one massive particle. This is an instance of Goldstone's theorem

which states that It For every broken continuous symmetry there

is a massless partiole" . Suoh a partiole is oalled Goldstone

b
12,13oson

The emergence of Goldstone boson is associated with the

breakdown of a global symmetry . What happens if the symmetry is

local ? Higgs discovered a peculiar phenomena in this case. To

explain this we consider the gauged O(n) model with lagrangian

F
Q FJ,J'VQ

J.JV
(1.20)

now

U 4>

(1.19)Eq

Let us perform a gauge transformation with ~ ---) ~' =
i. j n-l

U
~a (x>T + a ex>T )= .--v-" t n-jewith

yields

~(x) --) ~' (x) =
-i

ve

j n-l
Ca ex>T + a (x>T )

1 n-l ~(x) =

o
o

V+l)

(1.21)

Under this gauge transformation gauge fields are transformed to

Here

u =
\. 1 n-l

- =-<:01 (x>T + Ol (x)T )v 1 n-1
e (1.22)

Substitution of (1.22) in (1.20) gives

~ = (8 n)(~n) - ~2n2 __1__ FQ F~VQ +
~ 4 ~v

(1.23)

7



From the above equation it is evident that the ~auge field

corresponding to the broken gauge symmetries acquire 2(mass) =
g2V2 while the other gauge boson remain massless. There are no

massless scalar particles in the theory. This phenomenon in which

the gauge fields acquire mass with the disappearance of Goldstone

bosons is known as Higgs • f4-I?llechanlSIl . The idea of Higgs

mechanism is crucial to the construction of

electra-weak theory and grand unified models.

the unified

We have found that existence of degenerate minima

leads to 5SB and the gauge fields acquiring mass. In the next

section we shall see that the existence of degenerate minima is

responsible for the appearance of soliton and monopole solutions.

1.3 Solitons

Solitary waves are the localized nondissipative

solutions of classical field equations. In some nonlinear

dispersive systems nonlinear and dissipative effects balance each

other and there can exist solutions with following properties :

1). A wave packet travels without any dispersion.

2). After a collision of two such solutions they continue to

t 1 Lt h t d- t t- 18-20rave Wl eu any 18 or lon .

Solutions satisfying (1) are known as solitory waves

(or .kinks or lumps). Solitons are defined as the solutions

satisfying the properties (1) and (2) _ Loosely speaking we may

refer to a solitory wave as a soliton

As an example from field theory let us consider the

lagrangian



2 2

2 = ~ (D/-J4> )2 - m24> - ~ 4>"

in 1+1 dimension . The equation of motion is

(1.24 )

(1.25)

where '----I = b:
(static) solutions

~. This equation has time independent

4> = a tanh (mx/-.'2)
+

~ = -a tanh (mx/i2)

(1.26)

where a = y-m2
/ A. When x---) ± 00 this solutions assume the values

_r--=2-± -Y--m lA =
potential

± a corresponding to the minimum of the above

The energy of the system is given by

Fi2. 2

x

(1.27)

When x --) ± 00 , ~ take the values ± a and then energy is

localized in space (Fig 2)

The solution given by Eq{1.26) is a soliton or kink.
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Depending on the asymptotic value of ~ at x ---> ±oo we have the

four sectors , namely

4> = a as x --) 00 and tf> =-a as x -) - 00

4> :-a as x ---) 00 and ~ = a as x -) - 00 (1.28)

4> = a as x ---) 00 and 4> =-a as x -> - 00

4> =-a as x --) 00 and 4> = a as x -) - 00

These can be considered as mappings from spatial

infinities to the potential minima . These mappings fall in to

distinct topological classes and cannot be deformed into one

another

Stability of soliton solutions can be related to their

topological properties. The finite energy condition requires

that J at spatial infinities

~(ro) - ~(-oo) = n (2a) (1.29)

n = 0 corresponds to a non topological soliton and n = ± 1 is a

soliton with winding number ± 1 (kink or antikink) . It is easy

to see that

J~ = £ aV~ (1.30)
JJV

is a conserved current and the corresponding conserved charge

00

Q = f iJxtf> dx
-00

(1.31)

is related to the soliton number n in (1.29). This is called the

topological quantum number. It should be noted that topological

current is not a Noether current arising from a symmetry of the

10



lagrangian. The existence of the kind of topologically stable,

finite energy solutions seen here in 1 + 1 dimensional field

theories is possible only with degenerate vacua (SSB) in the

theory. Such solutions also exist in higher dimensional field

theories with 55B.

1.4 Magnetic monopoles

Finite energy solutions can also be found in more

realistic model in 3 spatial dimensions . As a specific case we

take the following lagrangian for a scalar triplet with SU(2)

global symmetry :

~ = + ("I1t/» .(;Ylt/» - V(t/>.t/»

A 2 2where V{4>.fj» =-i-<4>.4> - 1) ) •.,

(1.32)

2The potential minima occur at ~.~ = n . Evidently these points

are connected by the SU(2) symmetry operators and hence lie on

the surface of a sphere 52 in three dimensional internal space.

It is easy to see that when we go to quantum theory there is 8SB.

The finite energy requirements means that as r ---)00 4> should

approach the value in 52. Since the spatial infinities also form

a two sphere 52 the finite energy configurations can be labeled
00

by a map

(1.33)

These maps can be classified into the homotopy classes and each

one characterized by an integer called its winding number. The

homotopy class form a group called the second homotopy group

11



2denoted by n
2

( S ). I t can be shown that

( 1 . 34 )

where Z is a set of integers. The nontrivial topology of these

configuration will ensure the topological stability of the finite

energy configurations if they exist. However

difficult to see that with scalar fields alone

it is not

topologically

stable finite energy solutions will not exist . To show this let

us consider the expression for energy of static solution:

(1.35)

Expansion of V~ in radial coordinates gives

(1.36)

Then if ~ is expressed in radial coordinates, the second term in

the above expression contribute 1/r2
a~d hence energy integral

diverges. Hence with scalar fields alone there is no hope to get

the finite energy solutions. One can prove the same result in any

scalar theory in space time dimension ~ 2. However, the

discouraging result due to the Derrick2
! is no longer valid if we

enlarge the theory by adding gauge fields. Also, in two

dimensions this result is not valid if V(~) = 0 as is the case

with O(n) non-linear u model 1 8
• To illustrate what happens with

the gauge fields let us study the gauged version of the example

discussed above . The lagrangian for the model is

12



1 JJ
~ = -2- (D

IJ4»·(D
4» ~ 2 1 F Q F~VQ--r (c/J. t/> - 1) ) - --r #-IV

(1.37)

This is essentially the Georgi-Glashow2 2
•

2 s mode l with the fermion

fields ignored. Choosing a vacuum where the scalar fields have

v.e.v

= [Ova](4))0 (1.38)

the SU(2) symmetry is spontaneously broken to U(l). In the

spherically symmetric 't Hooft-Polyakov24~27 ansatz one looks for

solutions of the form

,po. = A~ =
\.

j
e ---!:2

bij gr [1 - K(r)] (1.39)

i \.
where r = x is the radial variable and Hand K are

dimension less functions which are to be determined from the

equation of motion . This ansatz defines a mapping of winding

number 1 . The equations of Dotion following from the lagrangian

(1.37) are

(0 F/wlv) = - g e 4Jb(D~4J)
).) 0. o.be e

(Ifl 0" t/» = - h t/> ( t/>. t/> - r/)
,- 0. 0.

Substitution of the ansatz (1.39) yields the following

for Hand K.

r
2
H" = H (2k

2
- m

2r2
+ ~2It)

r 2 K " = K ( }( +It - 1 )

13

(1.40 )

equations

(1.41)



where m
2 =n 2 A • The total energy of a stable solution is given by

E = f JJed
8
x = - f :e d

8
x

=f dBX[ 1/4 F: j F: j + 1/2 Dl~~ Dl~~ + V(~) ( 1.42)

By substituting Eq.(1.39) in Eg.(1.42) we get the energy integral

as

(1.43)

In order that this integral be finite the functions Hand K

defined in" EQ. (1.39) should satisfy the following conditions.

H(r) -) 0

H{r) ---) g m r
«s:':

K ---) 1 as r ---) 0

K -) 0 as r--) 00

(1.44)

As stated earlier, corresponding to the unbroken U(l)

symmetry along ~a direction there should be a massless gauge

field, the electromagnetic field. There is however no unique way

to identify this U(l) gauge field through out the space. 't Hooft

d ". t d f· " t i 24,2«'propose gauge lnvarlan e 1nl on

F 1 F tI> ~ 4J D ~ 0 4>J.JV = In uv ' - gtj> e o.be 0. u b J,) e

This can also be written 8S
2 8

(1.45 )

_1_ e ;. D"A-
b

0"""g o.bcY'a. r: V'- }.) 'I'C

14
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where AJ.J = Aa.
4>0. and t/J = 4>0.

#J Q n-.:r
for r > 0 , AJ.J = 0, and 4>Q = r .0.

From Eq.(1.38) we can find that

Then Eq.(1.46) gives

FOi. = E. = 0
1.

1 1 r
l

(1.47)
-2- e , 'kF'k = B, = -2

l.J J 1. g r

This is the electromagnetic field of a point magnetic monopole at

rest with magnetic charge l/g .

The 't Hoaft's definition of electromagnetic field

tensor is singular at the Another equivalent

nons i.ngu La.r definition due to Fadeev is 24,29

(1.48)

The ansatz in Eq.(1.39) corresponds to a map of

winding number 1 and magnetic charge one unit of l/g The

general form of the relation between winding number and magnetic

h · 28C arge 18

n
s (1.49)

Unlike electric charge magnetic charge has a topological origin.

Making use of the asymptotic condition of K and H it is
2~

straight forward to deduce from Eq.(l.43) that for large r

K(r) ~. O(exp (-M r )
v (1.50)

H(r) r + O(exp (-~r»

15



where p =~ m is the mass of the Higg's particle and H = gm/~
v

is mass of scalar gauge boson. Each field approach the asymptotic

form that is determined by the corresponding mass. Hence we can

think of 't Hooft - Polyakov monopole having a definite size

determined by these masses. For distances larger than this size

the field is essentially is that of a Dirac monopole.

So far our concern was with the asymptotic form of the

ansatz function which will ensure finiteness of energy. Let us

now consider the nature of the exact solution of Eq.(l.41). For
2non zero values of m and A , analytio solution are not known.

However in the limit 2
D --)0 A--)O but finite

(Prasad-Sommerfield limit)90 analytic solution have been found.

The solutions are

K(r) = ~r
sinh ~r

H(r) = ~r Coth ~r - 1 (1.51)

Where ~ =gm/~ . Asymptotically (r--)oo) these solutions beoome

H(r) = ar + b K(r) = 0 (1.52)

Comparison of (1.52) with Eq (1.49) shows that the constant a can

be identified as the inverse diameter of the monopole.

The 't Hooft-Polyakov Donopole possesses only magnetic

charge and does not carry electric charge. Julia and Zee showed

that this is so because A~ is set equal to zero. For nonzero

values of AQ there can be nonvanishins electric fields. Magnetico

monopoles which carry electric charge as well are known as

82 J 1· d Z 24,25.3. bt· d ddyons . u la an ee 0 a1ne yon

16
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ansatz

t/>0 ° H(r)= r
-2
gr

A~ r i
[ 1 K( r)]= &bij

--2 -
~ gr

Aa Q
J(r)= --!:20 gr

The equation of motion now become

r
2 J " = J (2 KZ)

r
2 H" = H ( 2 k2

2 2 A 2)- 11 r + g2H

r
2

K" = K (~ +H
2

- J2 - 1 )

and the energy is

eo

H 4; Jdr { (k,)2 + (rH' - H)2
+ (K

2
- 1 )2 (K 2

_ 1)2
= +

2r
2

2r
2

2r
2

g 0

K2(H 2
_ J2) (rJ'- J )2 'Ar

2
222 ) 2}+ + + (H/r - g m /A

Z
2r

2 4g2
r

(1.53)

( 1. 54)

(1.55)

For the energy to be finite the ansatz functions must have the

behavior

K(r)

J(r)

= O(exp [_YH2~ r])
v

= H r + d + O(l/r) (1.56)

when r-)OO and

H(r) = g m
-rt:

H(r) -) 0

J(r) -) 0

K(r) -) 0

(1.57)
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when r -) o. "Here I-l and d are parameters . IMI < M... but d is

unrestricted.

In the PS limit the exact dyon solutions are obtained

as

K(r)

H(r)

= ~r
sinh f3r

= Cosh n(~r Coth ~r - 1 ) (1.58)

J(r) = Sinh ne ~r Coth ~r - 1 )

The asymptotic form (r--)oo ) of these solutions are:

K(r) = 0

H{r) = ar + b

J(r) = er + d

(1.59)

By using Gauss's law, the electric charge of the dyon can be

written as

Q = 4n
g d

4rr= - --g Sinh Y) ( 1.60)

The original motivation of Di 61 •rac In proposing the

existence of magnetic monopoles was to explain the quantization

of electric charQe. It appears that magnetio monopoles present in

almost all grand unified theories . The presence of monopoles and

dyons leads to several interesting phenomena such as fermion

number fractionisation , spin isospin mixing, and baryon number

violation

18



1.5 Fer.ion nu.ber fractionisation

Usually in a Quantum theory vaouum is characterized by

zero charge or zero fermion number Consequently any state

obtained by the evolution of a local operator as excitation of

vacuum will also have integer fermion number . But it has been

found that in presence of soli tons fermion number of vacuum

becomes fractional . This effect is known as fermion number

fractionisation and was first analyzed by Jackiw and Rebbi
8 S

. It

occurs in a number of models of phenomenological importance, in

presenoe of magnetic monopoles and other solitons8~.

The fermion number is the conserved oharge

corresponding to the abelian phase change of a lagrangian of a

Dirac field . The conserved current 18
9 4

JI-I = + [Vi • yl-lYJ ] (1.61)

To determine the spectrum of conserved charge the standard method

is to expand ~ in terms of the plane wave solutions of Dirac

equation :

J [ e -tEl - d+
k

C llJ*k (x) ei..El]¥' ( x ) = d k b
k

¥'k ( X ) T (1.62)

Where ~k(x) and ~k(x) are positive and negative energy solutions

and C the charge conjugation matrix . Here we assume that the

theory is C-invariant. Substitution of Eg(1.62) in (1.61) gives

the conserved charge as

J 3 0
Q = d x J (x)

19
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This leads to

QI 0 > = 0

implying that fermion number of the vacuum is zero

( 1. 64)

However there are cases in which the Dirac equation

possess zero energy solution . This generally occurs for fermions

in the background of solitons . As an example let us consider the

following lagrangian in 1+1 dimension

(1.65)

Where ~(x) is soli ton field taken as the background

In this case

(1.66)

The Dirac equation can brought to the form

[" + 4'(x) ] U(x) = E V(x)
x

[-iJ + t/J(x) ] V{x) = E lJl~)
)(

where ~ = [ ~] . The zero energy solution of the above

are obtained as

(1.67)

equation

U(x) = et exp(

x

.f t!>(y) dy )o

(1.68)

V(x) =~ exp( ~ ~(y) dy )

These solutions are normalisable if ~(x) is topological soliton

and either a or ~ is zero. With zero energy solution the eigen

20



mode expansion become

J [ ) e -iEl - d+
k

C 'UJ*k (X) e i E l
]¥/(x) = a ¥Jo(X) + dk bk l#k(X T (1.69)

The operators and the creation and

annihilation operators of fermion and anti fermion in the soliton

sector ( bound states of fermions and anti fermions with solitons

). Here a is associated with the zero energy eigen mode and when

operatinQ on any other state it aiv8s a Qround state with same

energy. Therefore soliton ground state must be doubly degenerate

. Let us denote these states by I± ,S). The operators band d

obey the anticommutation rules

{ d d+ }
Jc'" k

(1.70)

with all other anti commutators vanishes . If we assume the same

algebra for a:

we get

+{a,a}=l (1.71)

+
"S) I- S)a 1+ =

al- J S) = 1+ 5) (1.72)

+ , S) al+ ,5) 0a 1- = =

The fermion number operator is obtained by substituting the

expansion (1.69) in the expression for

the aid of (1.72) we find

21
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QI ± , s > 1= ± -2- I± ,S) (1.73)

This means that the ground state charge of soliton is ± 1/2.

Consequently all the other states will also have fractional

fermion number

In the above example we assumed that the theory is C-

invariant. But if the theory is not C- invariant, it is not

possible to calculate the vacuum charge by the above method. In

that case Goldstone and Wilczek developed a method in which

fermion number fractionisation is considered as due to the

polarization of vacuum by solitons

consider the lagrangian

As an example let us

(1.74)

(1.75)

The theory is not C- invariant. Another important feature is that

the interaction term is invariant under chiral rotation. Here

~iand ~2 are soliton profiles with
+

tP1 (±oo ) = et>~
+

4'2{±oo ) = 4>;
For free fermions the ground state expectation value of

a.c.current can be expressed as

(0 IJ J.l ( x) I0> = Lt i.e Tr [yJ.l SF( x' •x ) ]
X'-)X

where SF(X' ,x) is the Greens function satisfying

(l. ": - m ) SF(x' ,x) = 6( x' - x)

22
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for free fermions. Here we take m = I~I = I(~: + ~:)lj/2. Let

be the Greens function in presence of solitons ~i and ~2 • Then

S'
F

5
(l ii - m + 4> + i r 4> ) SF' (x' I X ) = 6 ( x ' - x)

x 1 2
(1.78)

(i J(, - m ) S~(x' .x ) - 6(x' - x) - (4) +
1

5
i r 4>2 ) S~(x' ,X)

Then the two Greens functions are related by an integral

. 2,34-equatlon

S~(x' ,x) = SF(X' ,x) - f dy SF(X' ,y)[ ~j(Y) + iY'!S~2(Y) ] S~(Y,x)

(1.79)

the first iteration of which gives

S~(X' ,x) = SF(X' ,x) - f dy SF(X' ,y)[ ~j(Y) + iY'!S~2(Y) ] SF(Y'X)

(1.80)

The current induced in the soli ton ground state is therefore is

given by

<OIJ~IO> = Lt ~ [TrY~SF(x' ,x)]
X'-)X

k-p

(1.81)

k
Fig. 3
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The first term is vanishing since this corresponds to the vacuum

charge without any perturbation . The second term is represented

by digram (I:;~.~. A straight forward calculation of the diagram

< J #J > (2fT) - iex) = (1.82)

where 1~12 = ~: + ~:. Then the charge is

o -i
Q = r J (x) dx = 1/2fT Tan (b/a) (1.83)

where ~2(±) = ± b and ~1(±) = + a. This is the expression for

induced charge through vacuum polarization when soli ton fields

evolve adiabatically . \ In the process it may happent that some

of the energy levels cross zero of the

37ground state charge is aiven by

Q =(n -n )+Q
ground + - \nduced

38,89spectrum . Then

(1.84)

the

where n+ is the number levels crossing to the positive side of

the energy spectrum and n is the number levels crossing to the

negative side

If the theory is not C-invariant ,several alternative

methods has been developed for the calculation of induced charge.

B d E1 · t F · h R b i ..40, 4 i dar een, 1 zur, r1S man, a lnoV1Cl use the connection

between fermion number fractionisation and chiral anomalies to

show that some of the results of Goldstone and Wilczek can be

derived using anomalous commutators. Roy and Singh4 2 analyzed the
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problem by considering the problem in a finite dimensional box

and then applying boundary conditions. A non perturbative

technique has been developed by Niemi and
.... 3-47

Semenoff for a

particular class of field theory models. A mathematical technique

for the computation of fermion numbers for arbitrary Dirac

hamiltonians has also been introduced by Lott.... s .

There are many oiroumstanoes in whioh 801iton number is

an observable. If it couples to the U(l) gauge field it may be

observed as the electric charge of the soliton . An experimental

realization of this phenomena is in linearly conjugated polymers,

49-58
for example, polyacetylene . Here the fractional charge can

be detected through the enhancement of conductivity. In these

systems neutral spin 1/2 solitons have also been observed through

electron spin resonance experiments. It has also found that

fermion number fractionisation pla~an important role in the

current algebra soliton model of hadrons (Skyrme model)~""·5~. In

a related development, it has been found that the ground state

charge of the chiral version of the HIT bag model also carries

fractional fermion number'G.'7. The fractional fermion charges of

~t Hooft-Polyakov magnetic monopoles are important in the study

1 · f d 58-60.79of monopole cata YS1S 0 proton ecay .

1.6 Monopoles and Fermions

Fermion monopole systems have several interesting

features . One of these is the existence of states with peculiar

angular momentum properties . To understand this let us consider

a classical charged particle moving in the magnetic field of a

monopole given by = ~2
r r

25
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experience a Lorentz force e C: x B) and

momentum is

change in angular

itC
l

.. -+
r x m r ) = .. ~

r x m r e el .. ~ ~= ---=::::.e2 r x ( r x r )r

(1.85)

This suggests that we can define the conserved total angular

61momentuD of the charge-pole system as

J = .. ..
r x p - eg r (1.86)

In the quantum mechanica16 2 description of the system the angular

momentum is generally integer or half integer in units of h/2n

This means that

2eg = 2q = integer (1.87)

This is the famous Dirac6 3quan
tisation condition . If 2q is odd,

two bosons may be combined to give a ferllion eu,«s. In (1.86) the

peouliar anQular momentum is aBBociated with the electromaQnetio

field . In SU(2) gauge theories, electromagnetic field survives

5SB and in presence of a monopole the peculiar angular momentum

leads to the phenomena of .. spin from isospin ..6tJ,61

For fermions the Eq (1.86) get modified to

J = r x ~ - eg r + &/2 (1.88)

where 0/2 is the intrinsic angular momentum. Therefore if we

consider the scattering of an electron by a monopole in which r

26



--)-r, the oonservation of angular momentum requires either
.. ..

(1 -)- 0 or e -) -e . That is ,either there should be spin

flip or some charQe has to be deposited on the monopole core by

the eleotron . However , it can be shown that for abelian Dirao
dB

monopole the second alternative is not available

On the other hand J froD the Dirac hamiltonian

H = r &.E' + ~ m
!'

we find that

(1.89)

[ H , ~ . E' ] = 0 ( 1 •90 )

This implies that helicity is conserved and spin can not flip

This paradox is resolved by means of a partial wave analysis of

the Dirac eQuation6P
• For a point monopole one finds that the

wave function diverges according to YJ Ho l/r as r -) o

irrespective of the boundary condition The origin of this

problem can be traced to the simple fact that the hamiltonian of

this system is not selfadjoint in the space of scattering

solutions . The same thing happens with the bound state solutions

and hence an electron cannot form bound states with Dirac

70
nonopo Le •

In order to have a well defined self adjoint soattering

problem we have to impose a speoial boundary oondition at r = 0

whioh relates. the positive and negative eigen functions of the

,.. , Th t 1 det· · 71,72operator q r. e mos genera con 1 10n 1S
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YJ (0)
+

(1.91)

where 9 is an arbitrary phase angle

This yields a one parameter family of self adjoint

extensions of the hamiltonian (1.89). It is the boundary

condition (1.91) which is responsible for the helicity flipping.

An alternative to the boundary condition (1.91) is to

modify the hamiltonian by including a dyon 73charge e at the

centre of the monopole. The hamiltonian now becomes selfadjoint

and then results bound states of electrons and abelian point

monopoles . These states are also parameterized by the phase

angle & .

We can attach a physical significance to the phase

angle & by regarding the Dirac monopole as the limiting case of a

nonabelian monopole . The vacuum charge of the monopole due to

the zero point fluctuations of fermion field around the monopole

is given by (SS)

(Q)
e&= - 2if (1.92)

This is analogous to the Witten ?~

effect in which nonabelian

monopoles acquires fractional dyon charge in an

background characterized by the vacuum angle &

Lns t an t on

Let us now consider a system involving fermions and

nonabelian monopoles described by the lagrangian

spontaneously broken SU(2) model

28
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(1.93)

where H is simply the Dirac mass H = m or represents a Yukawa

coupling H = X ~QTQ • When a charged fermion scatter of a 't

Hooft - Polyakov monopole the total angular momentum is given by

J = t + ~ + 1 (1.94)

where ~ is the ordinary spin and ~ is the extra spin coming from

the charge field interaction. Both helicity flip and charge

exchange are possible in this case as that for a point monopole.

However it is to be noted that the nonabelian monopole is a

nonsingular object and hence no special boundary conditions are

necessary. Further, the nonabelian monopole can carry charge and

hence may be transformed to a dyon state.

A quantum mechanical analysis of scattering of fermions

from monopoles can be carried out by studying the Dirac equation
76,77

with the field of nonabelian monopole as the background :

Defining

-..
a.(p -

A(r)(r
2 -: = (E - ~H) VJ

n
(1.95)

and by using the representation

of the Dirac matrices the above equation reduces to
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[
1 -. A -.] +it.~ + ~ A( r )(0' X n). T X- =

Writing

- ( E ± H ) ;t+ (1.96)

v± - _1_[ d±(r>
~otr- r ea

&
Ol,r

(1.97)

the above equations can be converted to the followin~ eQuations

[ 8
-1

A(r) ] ±
(E ± H) h++ r g =r

(1.98)
-1 + :;:

[ if + r - A(r) ] h- = - (E ± H) g
r

Haroiano and Muzinich7 6
, 7 7 obtained the solution of the equation

in the following form

2~ k
Il

+ tanh( K2r >] -ikr
e

[ 2\ k
11

tanh( K2r >]}e
i Jc r

(1.99)

+ + k { [ 2i. k coth( K2r >] -iJcrh- = c-
B + H + e +m

(1.100)

[ 2i. k coth( K2r >]} e
i Jcr

m

By choosing the normalization constant C+ = 1/2 and C = i(E
2+ K>

,Harciano and Huznich have shown that the above solution

corresponds to incoming right handed spinor with charge Q = -1/2

scattering into a left handed spinor with charge Q = 1/2
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Similarly by reversin~ the aian of C- we can find that riaht

handed sptnor with charQe Q = 1/2 get soattered to left handed

spinor with charge Q = -1/2. That is, in this prooess there is a

charge exchange at the centre. A full understanding of this

process is possible only with quantum field theoretic

I · 80,8! It b t d th · h b 1 1 ·ana YS1S . may e no e at 1n tea ove ca cu atlon the

Yukawa coupling has been neglected The inclusion of Yukawa

coupling can lead to helicity flipping interaction This also

leads to the existence of Jackiw and Rebbi zero modes which can

result in fractional fermion numbers for monopoles. The Question

of fractional fermion number of Donopoles and dyons are discussed

in in detail in Ch 4 and 5

Dokos and Tomaras7 8 pointed out that magnetic monopoles

can catalyze process which change baryon number. They noted that

dyonic excltations of SU(5) monopole have baryon number violating

couplings I and that a collision that excite the dyon degree of

freedom need not conserve baryon number

RUbakov8o,8~emphasized that because of axial

Wilczek
7 P

82,83anomaly

and

the

monopole is not an eigen state of chirality or baryon number

This leads to the chirality violating or baryon number violating

cross section in monopole-fermion scattering

Callan
59,60 86and Besson recognized that the baryon

number violating interactions inside the core can induce baryon

number changing scattering process with cross section

unsuppressed by the exceedingly small core size . There exists an

extensive literature on monopole catalysis of proton decay and

its experimental consequences .
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CHAPTER 2

GROUND STATE CHARGE OF SOLITONS IN 1+1 DIMENSIONS

2.1 Introduction

The fermion number fractionisation in 1+ 1 dimension

has been investigated by several authors89~3~,ad. In their

pioneering work, Jackiw and Rebbi3 3 found that in presence of

solitons in 1+1 dimension there is zero energy state and spectral

symmetry. This leads to ground state charge ± 1/2. When the

theory is not C-invariant the calculation of vacuum charge is not

straight forward. In such cases Goldstone and Wilczek9 6

introduced the method of adiabatic evolution of the fields from

vacuum configuration outlined in 91.4. Later Mackenzie and

Wilczek9 8
, 8 P investigated the problem and found that during the

adiabatic evolution , there can be spectral flow and adiabatic

calculation is not always comprehensive Nie mi and

Semenoff3~~48-47 by analyzing the spectrum of Dirac hamiltonian

formulated an index theorem for the Dirac hamiltonian and found

that the continuum part of the ground state charge is related to

the topology of the background field. A closer investigation of

this problem was done by Blankenbecler and
8!5Boya'llovsky . They

found that even though the induced charge is a topological

invariant, the spectral flow may depend on the width of the

solitons.

In this thesis we present an alternative approch for

the calculation of ground state charge in non C-invariant models.

Instead of evolving the whole background field adiabatically from
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vacuum we start from a vacuum having a background field which

leads to a zero energy bound state and spectral symmetry .Under

these conditions the vaouum charge is ±1/2. Now the other fields

are evolved adiabatically so that theory loses the C-invariance

and zero energy state disappears. The induced charge is

caloulated by the method of Goldstone and Wilczek8~. If N is the

induced charge,sround state charge is

Qground = N ± 1/2 - ( n -n )
+

(2.1)

where n is the number of levels crossing to the positive side of
+

energy spectrum and n_ is the number of levels crossing to the

negative side. n± is obtained by analyzing the bound state

spectrum of the theory. The ground state charge is independent of

the way one arrives at the final configuration. The induced

charge and spectral flow may, however, depend on the way one

reaches the final configuration.

In this chapter we illustrate our technique by applying

it to some simple models in 1+1 dimensions. Application to more

important realistic models are given in Ch 4 and Ch 5. In § 2

the induced charge is calculated from vacuum polarization

diagrams. Spectral flow is calculated by analyzing the bound

state spectrum. In § 3 spectral flow is calculated in the case of

solitons of finite width. It is shown that the ground state

charge is independent of the soliton width .

2.2 Polarization of vacuum by soli tons

Consider the Lagrangian for a mass less Dirac field and
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soli ton field in 1+1 dimensions

The one dimensional Dirac algebra

(2.2)

(2.3)

· tdb 5 Oi 0 t t.9 d18 represen e y Y = r Y =0
2

' 'Y =0 I r =,,0' an

soli ton profiles with

~ (±oo ) = 4> (±)
.. 1

4> ( ±oo ) = tP (±)
2 2

Let us start from the Lagrangian

-
~ = VI (i..r- rP <x» VI

o t

k-p

and are

(2.4)

(2.5)

ep
--- -~- --X

p

k
Fig.4

An analysis of the bound state spectrum ( given in § 2.3 )shows

that the theory is C-invariant and that there is zero a energy

bound state and hence ground state charge is ± 1/2. The second
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Boliton profile ~2 is now adiabatically evolved so that we reach

the configuration (2.2). Induced current can be calculated from

the Feynman diagram (Figure 4) as

I dZ k T [ 1 v 1 ]<J I-l(p>> 2 r Y I I I= (211) ,- (it -,cs )_ ~I) !:S~

(2.6)

I 1
2 2 2

where ~ = a + ~ 2- a is the average of the asymptotic

~1. The above integral is evaluated to give (Appendix A)

values

J.J
(J (X»

Therefore the induced charge is

Q = (21t)-1[Tan-1(fJzC+>/aJ -Tan-1(lI>2c- >/ a J]
\ndueed

In the case when ~2(± ) = + b, the induced charge becomes

Qinduced
-1 -1= -(rr) Tan (b/s) (2.8)

2.3 Spectral £low and ground state charge in presence of soli~ons

The spectral flow can be calculated by analyzing the

bound state spectrum. The Dirac equation following from (2.2) can

be written as
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[

4>2 (X)

-iJ -~ (X)
X t

(IX -4> t (X)] [U] = E[ U]
4>2 (x) V V

(2.9)

This equation is to solved for x < 0 and for X ) 0 . On

matching the solution at x = 0 we get the energy spectrum For

solving the above eguation we assume

= 4> (+00)
2

= 4> (+00)
i

= - b

= 4> (+)
f.

for x > 0

and (2.10)

4>z(X) = 4> (-00) = b for x < 02

,pj (x) = r/> (-00) = tP (- )
j 1

The solutions are readily found to be

U = 01 exp(-k x) V = -01 [et> i ( + ) k+ ] exp(-k x) (2.11)
+

E - b
+

for X ) 0 , and

U = (3 exp(k x) V -/1 [et> i (- ) k ] exp(k x) (2.12)= +- E - b

for x < o. 01 and /1 are integration constants and k+= [ cf>2(±}
+

_ i
_j/2

(E2
_ b2

) ] .On matching (2.11) and (2.12) at x = 0 we get bound

states as the zeros of the function

(2.13)

Evidently the zero energy solution when b = 0 is shifted to E =
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b. Therefore the sign of the ground state oharge when b = 0 is

negative. As b changes from its initial zero value there will be

a spectral flow and for each level crossing there must be a zero

energy level for some value of b. To find the spectral flow it is

then enough to find the number of values of b for which E = 0 is

solution of (2.13). This is given by the zeros of the function

f( 0 ) = -b [~~ -) + ~~+) + k - kJ (2.14)

f(O) is symmetric about b = 0 and by calculating :f~O) it is easy

to find that f(O) is a monotonic function in b . Therefore energy

level cross E = 0 only for one value of b , that is for b = 0 and

hence spectral flow is zero. Then from (2.1) and (2.6) ground

state charge is

1 -1 ( )Q d = - fT- Tan b/a - 1/2groun
(2.15)

When b = 0 , that is with the lagrangian (2.5) f(E) =
I(-E) . Then there is zero energy state and spectral symmetry.

This leads to ground state charge ± 1/2 as found by Jackiw and

Rebbi . This is also obtained from (2.15) on taking b = 0 .

That is

Q = - 1/2ground
(2.16)

If 4>1 is a non t opo LogLca I soliton or if tP.. is taken as the

fermion Dass ,then I even though zero is a solution of (2.13),

the wave function is not well behaved at x = ± 00

there is no zero energy state initially and hence
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Q = - ! Tan-1 ( b I a)
ground n

as found in Ref.(36) and (44) . When ~t = 0

Q = -1/2ground

(2.17)

(2.18)

This is also evident from (2.13) . Since ,when ~t is zero k+ =
k_, Then equation (2.13) is reduced to I(E) = E k+

2. 4. Grotmd state charge of' soli tons of' fin! le width in 1 +1

dimensions

Let us consider background soli tons of finite width with

t/>2 (x) = 4> (-00) = b for x < -d/22

tI>.(x) = 4> (-00) = 4> (-)
t t

t/> (x) }2 = 0 for -d/2 < x < d/2

f>s(x)

(2.19)
tP

2
(x) = 4> (+00) = - b for x > d/22

tf>s(X) = 4> (+00) = 4> (+)
t i

In this case expression for induced charge is same as that

given by (2.8). To find spectral flow we solve equation (2.9) in

the background of soliton having the configuration (2.19). For x

< -d/2 solutions are given by (2.12) and for x > d/2 solutions

are given by (2.11). For -d/2 < x < d/2 equation (2.9) gives

a V = E Ux and 8 U = E Vx

38
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with solutions

u = ( r exp(i. Ex) +6 exp( -i. Ex) )

(2.21)
v = i. (r exp(i.Ex)- 6 exp(-lEx»)

On matching the solutions at x = -d/2 and x =d/2 we get the

condition

f( E) = Tan ( Ed) -
[

k_ + 4>1(-)] _ [ k+ + 4'1<+)]
E + b E - b

1+ [ k_ + 4>s(+)] [k+ + f'/>j,(+)]

E + b E - b

= 0 (2.22)

Evidently f(E) = f(-E) and there is no zero energy state. When

~2 = b = 0 , f(E) = f(-E) and there is zero energy solution. As

in the previous case spectral flow is calculated by analyzing

f{O) .

f{O) =
- b[( <1>:<-) + b Z)±f./z+ <I>~-) + <l>f.<+) + (<1>:<+) + bZ)±f./z ]

b2
_ [( <I>~<-) + b Z)±f./z+ <I>~-)] [<I>f.<+) + (<1>:<+) + bZ)±f./Z]

(2.23)

Evidently f(O) = 0 when b = o. It is easy to show that 1'(0) is

Bonotonic function of b. Then there is no spectral flow when the

~2 field is evolved adiabatically. Then the ground state

is given by

Qground = - ~ Tan-1 ( b/a) - 1/2
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If we take massive fermions with mass H equation (2.2)

gets modified with ~j---) ~i + H . If ~.(±) =
and (2.12) gets replaced by k± = (m~ - (E

2

± a, k± in

b2
) ] 1/2 wi th

(2.11)

=

H±a. Then the initial zero energy state when b = 0 exists only

when M± > 0 and hence ground state charge is discontinuo~ at H =
a as found in reference (89)

2.5 Conclusion

In this chapter we have calculated the ground state oharge

by a combination of adiabatic and spectral flow calculations

Our results are in agreement with that given by Blankenbeoler and

Boyonovsky . In our model ground state charge is found to be

independent of the soliton width With massless fermions we

reproduce the value ± 1/2 for ground state charge . It turns out

that the ground state charge has a discontinuity at the fermion

Blass

a.A Appendix

In this appendix we present the details of the calculation

of induced charge from the diagram given by Fig 4. Eq (2.6) can

be written as

By using Feynman variable a, we get
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Tr y ~[ , + (a - 1) p + I~I]Y' [ ~ + ~ + I~I]

[ k2 + a (1- et ) P2 -4> 2
] 2

In 1+1 dimension Tr yP ~ r~ ~ = 0 and Tr r~ r~ = O. After

dropping linear terms in k I and after Wick rotation we get

= 1/2n &~v Pv / 1 ~ 12

here we have neglected p2 terms with respect to 1~12.
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CHAPTER 3

GROUND STATE CHARGE OF FERMION SOLITON SYSTEM IN

2 + 1 DIMENSIONS

3.1. Introduc~ion

Recently there has been a renewal of interest in 2+1

dimensional field theory models. In particular much attention has

been paid to 0(3) nonlinear q mode11s
, 90 . With inclusion of a

topological term (Hopf term) the solitons of this model become

objects obeying fractional statisticsP 1 (anyons) which appear to

have a role in high T super conductivityP2. The a model is also
c

of relevance in explaining some magnetic properties of solids9 8
•

Though certain aspects of the model remain speculative the

nonlinear q model has many interesting physical properties that

render it a worthwhile object for study

Investigations have been reported of various aspects of

fermion number fractionisation in presence of 0(3) non1inear u

model
. 94-96

solltons . A recent study has been made by

Carena8 7
, 8 8 e t a1 on the ground state charge of fermions in the

background of nonlinear 0 model solitons including parity

breaking mass term. In this chapter we investigate the same model

on the basis of the technique developed in the previous chapter.

We evaluate the induced charge by studying the adiabatic

evolution of the solitons not from the vacuum but from two

configurations which have C-invariance. Spectral flow in each

case is studied by solving the Dirac equation. While the induced

charge and spectral flow depends on the initial conditions the
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total vacuum charge remains the same. Our calculations confirms

some of the results obtained by Carena et ale?

In § 2 discusses some of the preliminary matters

concerning nonlinear 0 model and fermions in 2+1 dimensions. Sec

3 contain the study of spectral flow and in § 4 the adiabatic

calculation is given. Summary and conclusion are given in § 5.

3.2. O(3) nonlinear (Y model and fermions in 2+1 dimensions

The O(3) nonlinear 0 model is described by the

lagrangian

1 Q-U
~ =-2- (8 4» (O",p) ,

J.J 0.
#-l = 0,1,2 a = 1,2,3 (3.1)

where ~ is a three component field ~ = (~ ~9) = (~t'~2'~a)

which obeys the nonlinear oonstraint 1~lz = ~Q~Q= v
Z

. This model

has topological solitons which are charecterised by the homotophy

group n2 ( S2 ) = Z ( assuming the boundary conditionl~1 = constant

when x ---) 00 ). The topological charge (winding number) of the

soliton is given by

Q = l' d
2

x Jo

where

(3.2)

The Lagrangian for the Dirac field with scalar field as

background is chosen to be
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~ = VI ( l Y lfl - 4>.T - n ) YJ
J.J

(3.3)

Our conventions for the y matrices in 2+1 dimensions are yO = S3

and y" = i. Si. obeying the algebra [ yIJ ,yv] = 2 gIJV and rJ.Jrv = gfv

- l&~V~y~ • Sand T (a = 1,2,3) are Pauli spin matrices, and n
" Q Q

is the fermion mass . The inclusion of fermion mass term will

k h 1 · dd d · t 87,9(5ma e t e agrang1an 0 un er parl Y .

The Dirac equ~tion following from (3.3) is

( i r lfl - 4>.T - r, ) VI = 0
J.J

3.3 Dirac equation in the scalar background

(3.4)

In this section we evaluate spectral flow from the

Dirac equation by using the technique developed in the previous

chapter for 1+1 dimensional models. We start with a fixed

configuration for the component ~9 (~ ) and other¥'t,2 field

ccnponen t are then varied. With f>a (f>l,Z) zero and other fields

(field) nonzero, the hamiltonian is C-invariant and there is no
94

zero energy state .

By defining YJ(x) = ¥,(x) exp(i.Et) we get, from (3.4),

the eigenvalue equation

(3.5)

Choosing a background field configuration of the form ~9 = ~9(r)

and ~. = ~(r) ~. (the explicit form is given in the next section
~ ~

). it easy to observe that "9 = (-i8-& + 5
3/2

+ la) is a constant of

Dotion and hence commutes with the hamiltonian
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eiaenfunction takes the form

where H Y' = m YJ
B m m

VJm = ;,&m
e

-1.-9s, ( r) e

&(2 (r )

g (r)
8 1.9

g... (r )e

(3.6)

In terms of the radial functions g , Eq(3.5) reduces to

"rS2
11 cl> g + (E - t/>s) it= -r- g2 1)

3

«« m - tP g + (E + 4>9) g,.= -r- s, r,
(3.7)2

"rgj. = (1 + m J g - 4> g - CE + n + "'s) gzr j 4.

"r
g..

(1 - m )g - 4> g + CE n + t/>8) s,= r .. i

by changing m --) -m and E --) - E we can find that if there is a

solution

¥'m =
i&m

e

-i.-&at( r) e

&(2 (r )

g (r)
3 i&

g. (r )e

(3.6)

with energy E and angular momentuD D , there is a solution

-i.-&m
e

-1.&
gt (r) e

g2 (r )

g (r)
3 i&

g. (r )e

(3.9)

with energy -E and angular momentum -m .Therefore during the
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adiabatic evolution of the scalar fields if a solution with

energy E and angular momentum m crosses zero another with

energy -E and angular momentum -m crosses zero in opposite

direction . Therefore we can say that during the adiabatic

evolution there is no spectral flow of nonzero angular momentum

states. Or in other words the ground state charge get

contribution only from the lowest angular momentum state.

Therefore for the analysis of zero energy solution of Dirac'

equation we have to consider only the zero angular momentum

states. For m = 0 and E = 0 Eq(3.7) reduces to

8 r g2 = - cl> Ss - ( n + 4>9) gt

"rga = 4' "2 - ( Y)- 4>a) g. (3.10)

"r fl
1

1
4> S4 - ( + 4>3) g2= -r- s, Y1

"rg• = 1
g. - 4> g1 - ( n - 4> ) Ita- r 8

Let us consider the scalar background with the explicit form~

,pg = v cosf(r)

t/J1 = v cos& sin.f(r)

4>2 = v sin-& sinf( r)

where f(r) is a function with asymptotic properties

(3.11)

f( r) = 0

f( r) = n

when r --) 0

when r --) co
(3.12)

so that in the limit r -) 0 and r -) a> J t1' = O. When r-) 0,
1,2

tP
g

= v and when r -)00 , 4'3 = - v. To solve Eq (3.10) we divide
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the space in to three regions

r-----~------r~----.-..r

Fig. 5

For 0 < r < r we assume
j

t/> =v=a:
9

Then Eq (3.10) reduces to

4>1,2 = 0 (3.13)

"rg
2 = ( n + a) g1

"rS
3

= ( T/ - a) g4,

"rgs
1

( l) + a) f!2= -r- Sf

"rg
..

1 - ( a) g3= - -r- g.. 1) -

By using first and third eguation we get

(3.14 )

1--r (3.15)

with solutions
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g2 =at Io(kr)

1
(a + n) "rg

2 = - ott It(kr) (3.16)

where a
l

is the integration constant, 1v ( 1) is the modified

Bessel function i 0 4 and k = (a - n ). In a similar manner we get

gs = (3 I (k'r) and g. = - (3 1
1(k'r)0

with k' = (a + 7)

For r ) r
2

we assume

f/J = -a and 4>1,2 = 0
!I

(3.17)

(3.18)

Then we get from Eq (3.10) I equations similar to (3.14) with a

--) - a . But in this case solutions have to vanish at infinity

and are given by

g = 6 K (kr)
3 0

g = 6 K (kr)
4 1

(3.19)

where y and 6 are integration constants and Kv(n) is the modified

Bessel functions .

In the region r < r < r we assume
.. 2

~ = 0
""8

Then Eq (3.10) become

and tP = v = b1,2
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"rg
2 = b i a T) gt

iJrgs = b g2 - n g.

°rgt
1

gt b El... 7) g (3.21)= - -- -
r 2

8 r g..
1

g .. b Si gs= - -- - - T1r

By identifying
( -)

and
( -)

the set ofgt = g1 = - g .. g2 = fl2 = - Ss

of four coupled equations get transformed to

8 gC -) = b g (-) _ n ( -)
r 2 2 " g1 (3.22)

a g( -) =
r t

1--r

Decoupling of these equations gives

- (2b - -1-) a (-)
r r S2

b- --r (b2 2) (-) 0+ -'1) g =
2

(3.23)

The solutions are

( -)

eb r [ Io{p) (l Ko (p)]S2 = et +

( -) 1 ( it b ) ( -)

(3.24)it = + g2Y) r

= _ e b r[
et 1

1
(p) ~ Kt (p)]

where p = kr and b
2 2
-r, · and are modified Bessel

functions. Here use has been made of the recursion relations

a I = I and 8 K = Kr 0 1 r 0 1

Another possibility is to define
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= g = g
:1 ..

(3.25)
= g = g2 a

Corresponding to this the solutions are

= e- b r [ 01
+

=

+
(3.26)

Since these solutions need not satisfy any norllalisability

condition in this region, the general solutions are the linear

combination of (3.24) and (3.26):

( +) (- ) -br [ KS{p) (3+ Ii(p)]'S = gt + a.. = e et +
+

e br [ (3_ Kt (p) Ot Is (p)]-
( +) (- ) -br [ Ko(p) o, 1

0
(p)]'2 = g + g2 = e a + +

2 +

(3.27)

( +) (- ) -br [ Ko<p) 13+ 1
0
(p)]gs = gz - ~ = e ot + -

+

e br [ (l _ Ko(p) - a 1
0

(p)]-
( +) (- ) -br [ Kt (p) 13+ I i (p)]gs = gj - gt = e a -

+

e br [
~_ Kt.(p) a I .. (p)]-

On matching the solution at r = r
t

and at r = r z we get

A . R • 0
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where A is a (4x4) matrix with elements

A1f. = (K - E Ko)
-br

Aj.2 = (1 + E 1
0

)
-bre e1 1

Ass (K - E Ko>
br A

1 4
= (1 + E 10>

br= e es 1

Az.t -(K - F Ko>
-br

A
Z2 = (1 + F 10>

-br= e e
1 1

AZ8 (Kt - FKo )
br

Az"
= (I + F 10>

br= e e
i

at r
t

and

AS! (K - G Ko>
-br A

S 2
= (1 + G 1

0
)

-br= e e
1 1

Aas = CKj. - G Ko>
br

Aa", = (1 + G 1
0

)
bre e

j

A
4 1

-CK - H Ko)
-br

A"'2 = Cl + H 1
0

)
-br= e e

1 1

A
4 9

(K - H Ko)
br

A"", =(I + H 1
0

)
br= e e

1 f.

at r
2

- Here

Il(la+nl r )
E = -

IoC Ia+1) Ir)

r« Ia-» Ir)
F = ±

Io(la--nlr)
(3.28)

at r 1- The negative sign corresponds to a < ~

Kt( Ia-~ Ir)
G =+----­

Ko<Ia-n Ir)
H =

Kt' Ia+Y11 r)

Ko<Ia+n Ir)
(3.29)

at rz - The positive sign corresponds to a < n

R is a vector:

a
+

R
a=
(3+

~-

Since Q± and ~± are linearly independent for the existence of

nontrivial solutions it require that
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det A = 0 (3.30)

The det A is evaluated numerically and it is found that

by starting with ~G' when ~ are evolved
~ 1,2

there is no zero

energy level crossing hence there is no spectral flow As

already mentioned when ~1,2 is zero, there is no zero energy

state. It is also evident by taking b=O in (3.30),then det A = O.

On the other hand , by starting with ~1,2' when ~3 is evolved

there is one level crossing when a ) n and this leads to spectral

asymmetry two. It may also be noted that for a < n there is no

crossing of the zero level. The zero energy state corresponds to

I~I = TJ.

3.4 The induced charge

To calculate the ground state charge, we have to

calculate the induced charge through vacuum polarization. In the

first case when the field ~ is evolved adiabatically induced

charge is calculated from the diagram (Fig.6)

Current

k+p
2

Fig. 6
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1
(,ft - !:J.)

where 6 = I~I Ta + n

where ~ = -1~IT3 + n. By using Feynman parameters and after
2 2 2 ~2

dropping Pi and P2 with respect to A and A we get

1
4 ft

where C is a constant depending on the fermion mass:

Therefore

C = 1

= 1/2

= 0

for If/JI > T/

for ItPl =1)

for 14>1 < T1

(3.31)

where ~i. = 4>'"1\4>\. By substituting 4>1 and 4>2 from (3.11) we get

the induced charge as
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00 211

Q I<JO

(X» d
2 x I I r

0
= - dr d& <J (r,&»-

o 0

00

= c J4n dr [ " f Sin f]
Bn r-

0
00 (3.32)

I= C 4n d( Cos f(r) ) = C
Brr

0

In this case since there is no spectral flow the ground state

charge is the induced charge itself. Another important point is

that, when I~I ) ~, the ground state charge is the winding number

of the soliton field.

Now, instead of starting from ~¥'s' let be switched

first. Now ~3is evolved and then the induced current can be

calculated from the diagram (Fig. 7)

k-p

et>
--- -~- --X

P

k
Fig.7

where ~ = 1~I(Tl + T
2)

+ n. By using the property of r matrices

and by simple algebra we find that <J~> = 0
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Therefore in this case also induced charge is 1, 1/2,

or zero . In this case ground state oharge is contributed only by

the bound states

3.5 Conclusion

In this chapter we evaluated the ground state charge of

fermions in presence of solitons in nonlinear u model. The

adiabatic evolution is done in two different ways and in each

case even though the induoed char~e and spectral flow are

different the ground state charge is found to be the same. In one

case ground state charge get contribution only froD the induced

charge and in the second case ground state charge is contributed

only by the bound states. Another observation is that the ground

state charge is contributed only by the zero angular momentum

states. It is found that ground state charge depends on the

fermion mass acquired through Yukawa coupling. The ground state

charge can be 1, 1/2, or zero depending on the fermion mass.
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CHAPTER 4-

BOUND STATES OF FERMIONS AND BOSONS WITH A

, t HOOFT - POLYAKOV MONOPOLE

4.1 Introduction

The study of bound states of fermions and bosons with
ZeJ

nonabelian monopoles has been of interest ever since 't Hooft
27

and Polyakov discovered magnetic monopoles in nonabelian gauge

theories . A general analysis of the Dirac equation or the Klein

- Gorden equation in the background of the 't Hooft -Polyakov

monopole is, however, not possible because the regular monopole

solution is not cast in the closed form In the

Prasad-Sommerfield (ps)limit 3 0 were a closed solution is

available for monopole solution scattering solutions were

constructed by Harciano and Huzinich
7 6

-
7 7

. Bound state solution

were not obtained by these authors probably because of the

neglect of the Higgs-Fermi coupling . TangiOi_i02 obtained bound

states of fermions and bosons with a PS monopole ignoring the

core effects . Cox and YildizP 7 also performed a similar work

In the PS limit there exists point singular monopoles in addition
P8to the regular PS solution . Din and R P9

oy considered such a

field configuration and obtained bound states of fermions with a
100point monopole . Ajithkumar and Sabir constructed bound states

of fermion and bosons with a general point dyon The dyon

configuration used there may be interpreted either as point

singular dyon or as the asymptotic forn of the regular PS

solution
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In all the works mentioned above the effect of monopole core

is neglected Moreover these studies were done in the PS limit.

Whether such a limit exists in nature or not remains to be

verified. In this limit there is a l/r term (this will be

explained in the next section ) in the asymptotic form of the

Higgs field and it is this term which is responsible for the

existence of bound states . A term of this type is absent in the

general case . In this case Callias7 2 analyzed the corresponding

Dirac equation and arrived at the general result that there oan

be only a finite number of bound states of a fermion with a

regular monopole .

In this chapter we study bound states fermions and bosons

with a regular 't Hooft - Polyakov monopole . Ground state charge

of fermion monopole system is also calculated We incorporate

the effect of monopole core as well. In order to make it a

solvable problem we assume the the monopole core to be a

spherical region of radius r o = l/Mv where "vis the vector

bOSOD mass in the theory . We repreBent the field inside the oore

by its value as r ---) 0 and outside by the asymptotic form as r

--->~The problem thus reduces to the three dimensional potential

well problem which has to be solved by finding solutions inside

and outside the monopole core and matching the solutions at the
84boundary . This is the method adopted by Besson to investigate

the structure of the fermi vacuum in the field of a magnetio

Donopole

The matching problem to obtain the energy levels requires

the solution of transcendental equations
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functions . This has been done numerically by assigning arbitrary

numerical values to fermion and boson masses , vector boson mass

and Higgs coupling . We have studied the bound state spectrum by

varying this parameters. For massive as well as massless

fermions, there is C-invariance. The zero energy state and hence

ground state charge is found to depend on the monopole radius.

For fermions it has been found that the number of bound states

depend on the Hi«as coupling as observed by Callias?2. A similar

result is obtained for the bound states of bosons . In the case

of massive fermions the number of bound states depen~on the size

of the monopole core I 't~e number being reduced to zero when this

exceeds a limiting value. In § 2 we review SU(2) monopole

theory and discuss the fields inside and outside the monopole

oore uBed in our oalculation . In § 3 the Dlrao equation ia setup

and the corresponding radial equation are obtained .

4.2 The background potential

For studying the bound state spectrum we has to solve

Dirac equation in the monopole background given by Eg (1.51)

which has an asymptotic value given by

corresponding Higgs field is,

Eq (1.52). The

~Q = (l/g) r
Q

(a + b/r ) (4.1)

It is the b/r term that is responsible for the existence of bound

states in the PS limit

In this chapter we shall divide the space surrounding the

monopole into two regions separated by a monopole core boundary
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which we assume as spherical surface with radius r o = l/a = l/Hv

. In the interior we approximate the fields by the values r--> 0

as given by Eq (1.44) and out side by the field configuration at

r » r o as given by Eq (1.52). In other words we approximate the

monopole field by

K{r) =&( r-r )o and H(r) = ar &( r-ro ) (4.2)

where &(x) is the step function. Here we have taken b = 0 in

(1.52)

4.3 Dirac equation in the monopole background

To study the bound states of fermions with monopoles we have

to consider the relevant Dirac equation. After separating the

angular parts of these equation the radial equation are obtained

in this section . We shall consider isodoublet fermions moving in

the potential (4.2)

The fermionic lagrangian in the background of the monopole

is

~ = Yi ( i,f1 - H )¥'n - ig G Cl t/>Q
n TnmYJn¥'m

-
2

where

DJ.lYln = " J.J VIn
i- S Cl A 0.

-
T n m J..J YJm

2

(4.3)

(4.4)

G is the Higgs coupling and H the fermion mass The

corresponding Dirac equation to be solved is

iBYJ - 1/2 g G
n

0. Q

T nm 4> 'YIm =
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By taking YJ (x)
n

we get

..= YJ (x)exp(-iEt) and by using ansatz
n

(1.39)

...
were a and ~ are Dirac matrices

To solve (4.6) let us define

By using

(4.6)

(4.7)

[

0 .-'»]a = \.0'

-i~ 0

Equation (4.6) becomes

(4.8)

[dooe (~ 6
\J nm

"
- 1 A{ r)( r x f » ±
-2- nm

6 0 .e G H(r)
\J 2r

= ± E 6 nm

..r.T
nm

+
~\.m (4.9)

+
Here ~- is defined as in Ref. 33 .The first index of ~ refers to

""'im "'"

the spin part and and second index to isospin part:

= { G~(r) Y~(O) 6. + [p~(r) Y~(O) + B~(r)~ a Y~(O)
J J vm .J J J J Q J

± 1 m]+ C.(r)-'-j- & I.. r "Y.(O)
J \. o e e a C J

(4.10)

with j = ~ J(J+l) ,J being the total angular momentum Total

angular momentum is obtained by combining orbital and spin
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angular momentum and isospin . In this case it takes values

0,1, ... ete 8
0 = Co = 0 by definition By substituting (4.10)

in (4.9) we get eight coupled differential equations

1 + · + +
G~(8 + =+= G H{r» P-:- !-.a-- M G-:- =+= E- .+ =. r r 2r J r J J J j2=O

1 + · + + p+(a + :;: G H(r» G-:- ~-- H P-:- = +: E.+
r r 2r J r J J J

j2=O (4.11)
1 + · + +

c~(8 + - ± G H(r» B-:- L-p~± H c-:- = ± E
r r 2r J r J J J

j >0

1 + · + +
B~(8 + ± G H( r ) c-:- L...Q~± H B-:- = ± E

r r 2r J r J J J j >0

4.. 4- Zero angular momentwn fermions in presence of" monopole

For zero angular momentuD equation (4.11) inside the

monopole core can be written as

+ + p+a G- :;: H p- = +E
r

+ 2 -1- + G+cl p- + r + H G- = +E
r

where we have suppressed the subscripts on

(4.12)

+ +
P- and G-. By

defining x± = p+ ± P- and y± = G+ ± G- equation (4.12) can be

written as

+ +
(1 s: = (H ± E ) X-

r

-i
(iI +2 r ) = (H ± E

r

+) y- (4.13)

The solutions to (4.13) which are regular at r = 0 are

61



y± = o± Sinh(kr) 1 (kr)
(4 .14)

+x- = 01+ k [COSh(kr) _ Sinh<jtl]
H + E kr (kr)

for IEI < K with k = (Kz - F!" )1/2 , and

+
y- = o± Sin(k'r) / k'r)

+r
[

COS <k' r) - Sin( k' f)J
k' r (k' r)

(4.15)

, -2 2 1/2
for IEl) H wi th k = (~ - H) . Here

oonstants .

Outside the core equations (4.11) become

are integration

1 - + + G+(8 + - + G H( r») p- + H G- = =+= E
r r 2r (4.16)

1 + + p+(8 + + G H( r») G- :+ H p- = + E
r r 2r

+ P±+G±By substituting H(r) froll (4.2) and by defining R- =
+ + +

and S- = P--G- equation (4.16) can be transformed to

(8
r

+ r- t :+
(4.17)

(8
r

-1
+ r

++ 11 ) g- = ± E

where m± = aG/2 ± H . Solutions of (4.17) regular at

are

62

r -) (X)



(4.18)

(4.19)

2 2 j/2
Here k± = (m± - E) and ~t and /1

2
are inte~ration oonstants.

For bound sta.tes E < D±and for scattering states E > m±and since

m < D the possible range of bound state energies is
- +

-(Ga/2 - H ) < E < (Ga/2 - H) (4.20)

The solutions inside and outside the core are matched at the

core boundary

condition,

r = r · As in 2+1 dimension we geto

det A • 0

the matching

(4.21)

where A is a (2x2) matrix given by

re +F+) -
E (f-F +) (f +F_) + E (f-F )

k+
-m + k+ D+++

(4.22)

(f -F+) + E (f+F +) (f -F _) - E (f+F - )

m + k m + k
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with

f

Sinh( kro >]
(kr )2-

o

(4.23)

for E < Hand

for E ) H

it is trivial to show that

det ACE) = - det A(-E)

(4.24)

(4.25)

This implies charge conjugation symmetry and existence of zero

energy bound state In this case ground state charge is

contributed only from the zero energy bound state . In the case

of massless fermions the zero energy solution inside and outside

the core exists for all values of the parameters and hence the

ground state charge is ± 1/2 and is a constant However for

massive fermions for the zero energy solutions to vanish at 00 ,m±

> 0 . That is Ga/2 > H , frOD the definition of m Then the

ground state charge is ± 1/2 only when Ga/2 ) H , otherwise it is

zero. Therefore ground state is discon·tinuous at the fermion

mass, as reported in the literature8 9
•

The energy levels are given by the roots of the equation

(4.21), a transcendental equation which can be solved by
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numerical methods . The values of E mu~t be searohed for in the

range given by (4.20)

We have obtained the number of energy levels for a range of

values of G and roe For the case of massless fermions the results

are a1ven in Table 1 . The number of energy levels is independent

of the oore radius but strongly depen~ on the Hlggs coupling G

For G < 1 the only bound state is the zero energy bound state .

T4bl. j • Number or bound 8tate. Cincludlng zero~or

m4•• l ••• zero Qngulcr momentum r.rmlone

r o \ G 1 4 6 6 10 12 14 20

10-S G
1 1 2 3 3 4 4 6

10-i O
1 1 2 3 3 4 4 6

10-5
1 1 2 3 3 4 4 6

10-3
1 1 2 3 3 4 4 6

1 1 1 2 3 3 4 4 6

/

Table 2 presents the number of bound states for massive

fermions . As in the case of massless fermions the number of

bound states increases with G . However, for massive fermions

the number of bound states also depends on the core radius . When

r ... G/2H the number of bound states is reduced This
o -

corresponds to a fermion mass H = G M /2
v

Tab\.. 2 . Number of bound atates cincludtng ze ro)for
ma.•• i.ve 2.,.0 o.ngular momentum fermi. one

r o \ G 1 4 6 8 10 12 14 20

10-1 6
1 1 2 3 3 4 4 6

10-1 0
1 1 2 3 3 4 4 6

10-5
1 1 2 3 3 4 4 6

10-3
1 1 2 3 3 4 4 6

1 1 1 2 2 2 3 3 5
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4.5 Higher angular mo~ntum fermion bound states

In this case Dirao equation inside the core can be

written as

+ -1 + + +
(J G- - r j C- + H p-= =1= E p-

r

(8 +2r -l)p± -1 . + + G+- r J B-+ HG- = + E
r

-j + -1 + + c+(8 + r )B- - r j p-± HG- = ± E
r

r- 1 ) C± -1 . + + B+(8 + - r J G-± HB- = ± E
r

By defining

W±= p+ ± p-
Z± G+ ± G-=

X±= B+± B- y±= c+ ± C

(4.26)

(4.27)

the above equations can be transformed to the following set

" z, -1
j y± CH ± E) w-- r =r _ +

Cc' +2
-1

)W±
"-j

j X± =CH ± E) z-r - r
r +

ca + -1 -1
W± -CH ± E) y-r )X± r j =r +

(8 +
-{ -1.

Z± -CH ± E) x-r )Y± r J =r +

(4.28)

These can be decoupled to yield

-1/2
Y± =f3± (k r) I j +1 .Akr)
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(4.29)
-1/2 [w±= ~ (kr) et:+: (1. (kr)+I. (kr) __1_ I·+s/z(kr»

H+E -2- J-l/2 3+ 3 / 2 kr J

- (3- J
k; -Ij(j+l) I j+1/2(kr)

X+=-k (kr)-1/2[f3_ (1 (k) I (k ) +_1_ I j + .. / 2 ( k r »
- H+E ; j-1/2 r + j+3/2 r kr ..

-:~ "l'j(j+l) I j +1/ 2( k r ) ]

for I E I < Hand

Y = (3 ( k' )1/2 J ( k' )± ± r j+l/~ r

- ~- ]
k'; ~j(j+l) J j + . / 2(k'r)

X±=-k'(k'r)-1/2[fl +( J lk'r)-J lk'r) +_1_ Jj+1/~k' r )
H+E j-i/~ j + 3/~ k' r

(4.30)

for E ) H . Here Iv{n) is the modified Bessel function and Jv(n)

is the spherical Bessel functioJ~ et± and ~± are integration

constants and k = (H2
- ~)1/2 and k' = (~ _ H2

) 1 / 2

In order to solve the equation outside the core , we define
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+ + + B+ c+X- = p- + G- + +
± + + B+ -c+v = p- + G-- (4.31)
+ + + B+ c+Z- = p- G- +
+ + + B+ c+W- = p- G- - +

In terms of these variables , the equation outside the core can

be written as

-1 + -1 X+(cl + r + 11+ ) X- = (r j + E )
r

-1 + -j y+(8 + r =1= 11+ ) r =(-r j :;: E ) (4.32)r

-i + -i z+Cc' + r + Dl ) Z- = (r j ± E )
r -. + -j w+(8 + r + 11 ) W- =(-r j ± E )
r

By defining

+ x+ - + y+ -R- = ± X S- = ± y

+ z+ - u+ w+± - (4.33)
T- = ± Z = W

we can decouple and solve (4.32) to get
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where Kv(~) is modified Bessel function and Y
i

I Yz I

are integration constants

and v
~4

On matching the solutions at the core boundary of

radius ro we get the condition

det ACE) • 0

where A is a 4x4 matrix whose elements are

A!! = R ( f+ +
) - f A

1 2
R f (f~ )+ g = - - It!

Ai-3 = R (- f+ +
) - f Ai 4- =-R f cr; )+ g - + s2

A2 1 = S ( f+ + ) f A
2 2

S f Cf~ )s = + g
i

AZ 8 = S ( f+ + ) + f A
Z4

5 f (-f-+ )+ g = - g
Z 2

As! = T ( f+ +
) + f A

S 2
=-T f (f; )+ g - + g

i

Aaa = T (- f+ +
) + f A

S 4 = T f cr; )+ g - + g
2

A4 1 = U ( f+ + ) + f A"2 =-u f (f~ )- g - + g
2

+ +

A"3 = U ( f
2

- It ) - f A
4 4 =-u f -(-f + s )

2
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where

-1

R = R+/R- = -k (m -E ) Kj -~/2 ( k+ ro )/Kj+~/2 (k+ ro )+ +

5+/5-
-1

5 = = -k (11 -ID K j +i/2 ( k+r o )/Kj _i / 2 (k+ r o )+ +

-! (4.37)
T = T+/T- = -k_(m -E) K j -j/2 (k_ ro )/Kj +1 / 2 (k_ r o )

u+/u-
-1

U = = -k_(m -E) Kj +1/2 {k_ ro )/Kj _1 / 2 (k_ r o )

Also

(4.36)

for E < Hand

(4.39)

f ± - -k' 1 (J (k'r) J (k'r) + 1 J j + j./ 2 ( k ' r o »
z - H ± E 2 j-i/2 0 - j+B/Z 0 k' r

o

for E > H

The energy levels are determined numerically by searching

for values of E satisfying the equation (4.35) in the range given

in (4.20) . Numerically it is trivial to show that there is no

zero energy bound state . The number of energy levels for a range
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of values of G and r o with j = 1 118ss1e.ss ferllions are aiven 1n

Table 3 .

Tab l. B • Number of bound .. lal•• for maa. l .... fermi-on.
vith a.ngula.r mom.ntum j = i

r o \ G 1 4 6 6 10 12 14 20

10-it) 0 1 2 2 2 2 2 5

10-1 0
0 1 2 2 2 2 2 5

lO-!5 0 1 2 2 2 2 2 5
10-3

0 1 2 2 2 2 2 5

1 0 l' 2 2 2 2 2 5

In this case number of bound states is independent of the core

radius but increases with G as in the case of zero anaular

momentum fermions This is true in the case of massive fermions

as given in Table 4 . However , the number of bound states is

reduced for a fermion Bass H ~ GHw/2 as in the case of

angular momentull

TClb le ..,. . Number of bound .tCll•• for maa. i..v. rermion.

vi. l h angulClr momenlum j = i

r o \ G 1 4 6 8 10 12 14 20

10-1 «' 0 2 2 3 3 3 3 7
10- t O

0 2 2 3 3 3 3 7
10-!' 0 2 2 3 3 3 3 7

10-3
0 2 2 3 3 3 3 7

1 0 0 1 2 3 3 3 7

4&6 Conclusion

zero

In this chapter we have calculated ground state charge as

well as the number of bound states of fermion soliton system

Since the system is C -invariant and due ·to the presence of zero
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energy bound state ground state charge ,is ± 1/2 It has been

found that ground state charge is d t scon.t.Lnuces at the ferlllon

maBS and the monopole radius . Since there is no zero eneray

bound states at the higher angular momentuD, we can say that

~round state charge is contributed only from the lowe't angular

momentum . The number of bound states is found to depend on

monopole radius and Higgs coupling . It is also found that there

is an upper bound on the number of bound states as found by

Callias7 2.Studies similar to which has been done for fermions can

also be done for bOBons . A summary of this calculation is given

in the appendix

4.A Appendix

Bound state of bosons

In case of bOBons ,the Klein Gorden equation

can be simplified to

(A.i)

'"A(r)(L.T) - G H(r) (~.r ) - A
2(r)

r 2

2- Ch H(r» +
2 (A.2)

were U(x) = exp( iEt ) U(;t) I G and hare Higgs coupling and H is

the boson mass . The aniular part can be separated by using

spinor harmonics

F (r) y (0) + F (r) y:m(O)
+.Jm .,
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where
Y

m - i / 2

/
.J_+m

.1-1/2
2.1

ow,.m+ .. /2/ "2-: I -V ., .J-i/2

and

Here J is the total angular momentum of the state which take

values 1/2 3/2 , •.••. The radial equations are obtained by

A-- -r

substituting (A.3) in (A.2)

[
d

2

2 + £ L _ ~2 _ ch H)2 + ~ _ if _ (J -1/2)
dr r dr 2 r

G H
2r F

(A.4)

A-- -r[L +dr

G H
2r F

+

(A.5)

Outside the bonopole these equations can be written as

[~ + _2_~+
dr r dr

1/4
;2

J (J + 1) E2
_ ( M2 + h 2

a
2

)] [::]

= _ a2G [::]
(A.B)

Solutions to the above equation can be obtained by defining new
+ + +

functions R- = F ± F- . Equation (A.B) in terms of R- becomes
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(A.7)

The solutions ~ which is regular for large r is given by

(A.e)

with n = -fJ(J+l) d k (H2 + h2 a2
an ± = + Ga/2 Bound

states are possible in the energy range

I
2 2 2

E I < ( H + h a - aG/2 ) (A.B)

Inside the core the equations (A.4) and (A.5) reduces to

(J-i/2)(J + 1./2)
2

r + ~_H2] F+ = 0

(A.l0)

[L + 2 d
dr -r- dr -

(J+3/2)(J + 1/2)-----2---------r = 0

(A.l1)

and the regular solutions for the bound states are

F
-1/2

= et ( kr ) I -1+j ( kr ) (A.12)

where k = (H2
- F?-)1/2 . The r egu lar solu t ion for E > Hare

74



F = a ( k ' r ) -1/2J (k' r )
+ + J

where k ' = ( ~ - tf)1/2

(A.13)

The solutions inside and outside can be matched at .the

boundary . In this case one has to match the first derivative as

well . The resulting transcendental equation is solved to obtain

the energy levels . Here there are two Higgs couplings G and h.

For the lowest angular momentum J = 1/2 and for h = 5 , H = 0.1,

G = 10 four bound states are obtained The number of bound

states increases rapidly when h is increased but only slowly when

G is increased.
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CHAPTER 5

GROUND STATE CHARGE OF FERMION DYON SYSTEM

5.1 In~roduction

The ground state charge of a fermion in the background

of a 't Hoaft - Polyakov manopole is purely topological and will

depend only on the asymptotic values of the fields. Niemi and
3~,47

Semenoff ,employing a mathematical technique they had

developed and which can be applied to a generic class of

Hamiltonians, obtained an expression for the fermion number of a

Dirac fermion coupled to a monopole background. However, in the

case of dyons a general formula applicable to massive as well as

massless fermions is not available, mainly on account of its

greater complexity. The Hamiltonian for the fermion dyon system

does not fit into the class of Hamiltonians studied by Niemi and

Semenoff. It is also not known. whether the dyon core will have

any influence on charge fractionisation as is the case with the

monopole fermion system discussed in the previous chapter.

In this chapter we investigate the problem of vacuum

polarization by dyons . Here the theory is not C invariant and

hence to calculate the ground state charge we adopt the method

used in chapter 2 and 3 . We start from a pure monopole potential

. Then the ground state charge is ± 1/2 as has been noted in the

previous chapter . Now the other fields are evolved adiabatically

so that the theory loses the C invariance and zero energy state

disappears . In § 2 induced charge is calculated from vacuum

polarization diagram .In § 3 Dirac equation is setup in the
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background of a dyon. A detailed analysis of spectral flow is

possible only for a special case of dyon solutions which

describes a nonselfdual monopole 2 4
• In & 4 spectral flow is

calculated for zero angular momentum fermions in presence of

nonselfdual monopole . In § 5 spectral flow is calculated for

higher angular momentum fermions in presence of nonselfdual

monopole. In the case of a nonselfdual monopole, even though

there is spectral asymmetry, the ground state charge is found to

be same as that of a selfdual monopole discussed in the previous

chapter. In § 6 and § 7 the Dirac equation is solved in presence

of Julia-Zee dyons taking into account the dyon core. It is shown

that the spectrum is symmetric in the massless case and

asymmetric in the massive case. The existence of zero energy

state in the massless case depends on the parameters in the dyon

structure. However, an explicit calculation of spectral flow

turns out to be difficult.

5.2 The background potential

In this case the Dirac equation is setup in the

potential given by (1.53). We divide the space surrounding the

dyon into two regions separated by a spherical surface. In side

the region we assume the values for the potential as given by

EQ(1.57) and out side by the values as given by Eq (1.59):

H(r) = ar + b J(r) = er + d A(r) = l/r

for r > rando

for r < ro

H(r) = J(r) = A(r) = 0
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For a nonselfdual monopole, d = 0 in the above equation. (It is

discussed in § 5.4 )

5.3 The induced charge

The fermionic lagrangian in the background of dyon is

where

ig
-

2

Cl. Cl
GT YJVl4>nm Tt m (5.2)

D VI = "VIJ-I Tt J-I Tt
(5.3)

G is the Higgs coupling and H J the ferllion mass

We sta.rt from the Lagrangian

~ ~n( iyJ.J" _ H )YJ
a Cl= i g GT YJVJ,p

0 J..J Tt nm n m-
2

k-p

k

Fig. 8

x

(5.4)

In this situation a zero energy bound state exists and spectrum

is symmetric as shown in the previous chapter. Now the gauge

field is adiabatically evolved to get the Lagrangian (5.2) .To

calculate the abelian induced charge we shall define the abelian

gauge potential associated with the dyon as ~ =AJ.J~a. It
Cl
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noted that by ansatz (1.53) this is in agreement with the

Fadeev's definition Z 4
, z P of the sbelisn field strength of a dyon

as F= ruv~~V~Q. The abelian induced current can be calculated
Q.

frOD the diagram (Figure 8) as in the case of electrodynsmics8 4
•

where Avis the Fourier transform of Av. In (5.5)

-ipx
e (5.5)

(5.6)

By spontaneous symmetry breaking gauge bosons become massive and

hence p2 = 2 m2 . Therefore n(p2) = 2 m2/6On2(~ + m2
) and

v v v

-eg

In momentum space ruvcan be written as

Consequently

(JJ-I>=
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The charge density is hence given by

=

Corresponding to this the induced electric charge is

=

=
2-2em d
v (5.7)

by applying Gauss theorem . Thus the induced oharae depend. on

the constant d in (5.1) but is independent of the coupling

constant g.

5.4. Dirac equation in the dyon background

As in chapter 2 and 3 the spectral flow is caloulated by

analysing the bound state spectrum. Here we follow a method

adopted by us in the previous chapter for determining the bound

states of monopoles with fermions and bosons. In the case of

isospinor fermions Dirac equation to be solved is given by

equation (4.5) and corresponding to equation (4.6) we get

{~.[~(r)-A~r)(;X~)J+ J~~)(1.;) - ~~~r)(1.r)} ~(x). (E-~)~(x)

(5.8)
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Equation (5.8) is solved inside the core by assuming the fields

with their value at r --) 0 as given by (1.57) and solved outside

the oore by assigning to the fields their asymptotio values as r

--) 00, as

H(r) = ar J(r) = er A(r) = l/r (5.9)

We have taken d = 0 ; otherwise our procedure fails to give

analytic results . This configuration is essentially a monopole

since its electric charge is zero by equation (1.60) The

induced charge is also zero as given by (5.7). An important

feature of the above solution is that it does not satisfy the
, • . 24,103

Bogomolny condlt10n

Fo. = 5 in9 D 4>0.
On n

(5.10)

for selfduality . The angle & is related to the magnetic charge

gm and electric charge Q by Tan -& = Q/g .
m

As in the previous chapter equation (5.8) can be written as

[&.. .(i) '" ... '" .. <>]
+

6 - 1 A(r)(r x T » ± 6 ..( G H(r) r.T - H ~jm1.J nm -2- nm \.J 2r nm

=± [ J(r) (
...

)- E 6 ] + (5.11)T .r X l mnm nm
2r

By substituting (4.10) in (5.11) we

di'fferential equations as :

81

get the coupled



(8 + 1 + G H(r» p~ - L B±:;: H G± = + (2.i.r >p+ + E G+)
r r J r j j 2r j j • >02r J-

(8+ ! + G H(r» G:
r r 2r J

cc) + 1 ±
r r

(~+ 1,. r
+

± G H(r» B-
2r j

+
G H(r» C-:-

2r J

. + +
L G-:-± H B-:-
r J J

= ± (2.i.r )B+ + E C~)
2r j J

j>O

= ± (2.i.r )C+ + E B+)
2r JO j

j>D

6.5 Zero angular momentum :fermions in presence oC nonseltdual

monopole

For zero angular momentum equation (5.12) inside the

monopole core is same as that given by (4.12) with solutions

+
Y- = a± Sinh(kr) / (kr)

+
X- = <X+ k rCosh(kr} _ Sinh(f!:2.]

H + E L kr (kr)

(5.13)

for E < H with k = (H
2

- Ffl' )1/2, and

+r = o± Sin(k'r) / k'r)

+x- = ct_ k'
+ H +E [

COS<k' r)

k' r
Sin( k' f >]
(k' r)

(5.14)

for E > H wi th k =(~- tf) 1/2. Here are integration

constants

Outside the core equations (5.12) become

1 + + (-lir}p+ G+)(8 + - =+= G H( r ) p- + H G- = =+= + E
r r 2r 2r (5.15)

1 + + (-lir}G+ p+)(8 + - =+= G H( r ) G- + H p- = + + E
r r 2r 2r
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By substituting J(r) and H(r) from (5.1) and by defining
+ + + ~ + +

R- = P- + G- and S = P- - G- equation (5.15) can be transformed

to

-1 + R+Cl) + r :+ 11+) R- = +: e
(5.16)r +

-s. + s+(8 + r +: It )5- = ± &
r

where Il± = aG/2 ± H and £± = 0/2 ± E Solutions of (5.16)

reaular at r -) ex> are

R+ = /3
1
exp( -k+r) /( k+r)

(5.17)

(5.18)

H k ( 2 2) 1/2 and n. and 1':1
2

areere ± = M± - &± ,....,.. integration constants.

For bound states &± < m± and for scattering states &± >m±

The solutions inside and outside the core are matched at the

core boundary

the form

r = r and the matching condition
o

is deduced 1n

det ACE) = 0

where A is a (2x2) matrix given by
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£ er-r +)
e

(f-F )et +F+) - + (t +F ) + +
k+

-m++ k+ - m++
(5.20)

&
- (f+F +)

e
(f+F )ef -F ) - (f -F_) ++ m + k Il + k

with

for E < Hand

f =Sin(k'r ) /(k'r )o 0

[

COS( k ' r o )

k'ro

for E ) H .

Evidently det A(E) t det A(-E)

Sin( k' r 0 >]
(k'r

o
) 2

This shows the spectral

asymmetry of the system. However when c = 0 from (5.20) we can

show that

det A(E) = - det A{-E) (5.21)

This implies charge conjugation symmetry and existence of zero

energy bound state In this case vacuum charge is ± 1/2

.Therefore it is enough to calculate the spectral flow when the

constant c is varied

As in the case of solitons in 1+1 dimension the number of

values of c for which detA(O) becom~ zero gives the spectral
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asymmetry . When E = 0 ,F =F =F in (5.20)
+ -

2( f +F ) (f +F ) + c ( f-F )

11++ k+
det A(O) = (5.22)

2( f -F ) (f -F ) +
c ( f+F )

11 + k

c
2 t /2 .It is straightforward to show that

8 [ det A( 0) ] > 0
e (5.23)

and when c= 0, det A(O) = 0 .Therefore det A(O) is a monotonic

function in c passing through c = 0 and so there is zero

energy state only when c = 0 . Conclusion is that there is no

spectral flow .

In this case the induced charge is zero by (5.7) .Therefore

the ground state charge according to equation (2.1) is

Q = ± 1/2ground
(5.24)

From (5.17) and (5.18) the condition for the existence zero

energy state is H < ag/2 . Therefore the ground state charge is

discontinuo~sat H = ag/2 as already noted in literature-Pe

5.6 Higher angular momentum .fermions in the nonself'dual naonopole

background

In this case Dirac equation inside the core is given by

(4.26) and the solutions are
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-1/2
Z+ =«, (k r) I. 1 f2 ( kr)

- - J+ ,

-1/2 [
W±= ~ (kr) et:+: (1. (kr)+I. (kr) __1_ I j + i / 2 (kr))

H+E -2- J-l/2 J+3/2 kr

- (3- ]
k; -fj ( j + 1) I j +1/2 ( kr )

X+=-k Ckr)-1/2[f3+ + +_1_ I
J
' + 1 / 2 (kr»

- H+E -re I j- s/ 2(kr) I j+8/2 (kr) kr

-:~ t"j(j+l) I j+1/2(kr)]

for E < Hand

w±= ~'(k' r)-V2[o+ (J (k' r)-J . (k' r) __l_ J j + i / 2 ( k'r»
H+E -2- j-t/2 J+9/2 kr

- ~- ]
k'; t"j(j+l) Jj+s/z(k'r)

X±=-~'(k' r)-S/Z[~+(J (k' r)-J. lk'r) +_1_ Jj+s/~k' r )
K+E j-i/~ J+3/~ k'r

- k~~ -fj(j+l) J j+1/~k' r) ]

(5.25)
for E > H .



In order to solve the equation outside the core , we define

+ + + B+ c+X- = p- + G- + +
± + + B+ -c+y = p- + G-- (5.26)

z± + + B+ c+= p- - G- +
+ + + B+ c+"'- = p- G- +

In terms of these variables , the equation outside the core can

be written as

-1 + -1 x+(8 + r +: 11+ ) X- =(r j +: &+ )
r

-j + -1 y+(8 + r + 11+ ) r =(-r j + £ ) (5.27)r +
-1 + -1 z+(8 + r + 11 ) Z- =(r j ± & )

r

-1 + -1 w+(8 + r :+= 11 ) W- =(-r j ± & )
r

By defining

+ x+ - + y+ + z+ - u+ w+±R- = ± X S- = ± y T- = ± Z J = W (5.28)

we can decouple and solve (5.27) to get

+ -1/2 -1
R =-y. k (k r) (m - #;) K.•/2(k+r)

A + + + + J-A

5+ =- k (k r)-1/2 ( )-lK (k)
y 2 + + ID+ - e + j+1/2 +r
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(5.29)

+ -1/2 -1
U =-Y4k_(k_r) (11_ - &_) Kj +

1
/

2
( k_ r )

where ~(~) is modified Bessel function and Y1 ' Y2' r a and Y4

are integration constants

On matching the solutions at the core boundary of

radius ro we get the condition

det ACE) • 0 (5.30)

where A is a 4x4 matrix whose elements are

All R ( f+ + ) f A
l 2

R f (f~ )= + g = - - g
i

A
1 3

R (- f+ +
) - f At 4 =-R r er; )= + g - + g

2

A
Z I

5 ( f+ + ) f A
2 2

S f (f~ )= g = - + g
1

A
Z 8

S ( f+ + ) + A24 S f (-f-+ - )= + g f = - g (5.31)2 2

AB! T ( f+ + ) + f A
3 2

=-T f (f; )= + g - + g
!

Ass T (- f+ + ) + f A
3 4 = T f (r; )= + g - + g

2

A4 i
U ( f+ + ) + f A

4 2 =-u f (f~ g )= - g - +
2

A
4 B

U ( f+ +
) - f A

4 4 =-u f -(-r- s )= g +
2 2

where
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R+/R-
- i

R = = -k (m -£ ) Kj - f / 2 (k+ r o ) / Kj+f / 2 (k+ro )+ + +

-1

S = s+/s- = -k(m-&) Kj +i / 2 ( k+r o ) / Kj - i / Z (k+ro)+ + +

T+/T-
-1 (5.32)

T = = -k_(1l -& ) Kj - 1 / 2 (k_ r o ) / Kj +1 / 2 (k_ro )-

U+/u-
-1

u = = -k_(1l -& -) Kj+i / 2 (k_ r o ) / Kj - 1 / 2 (k_ r o )-
Also

+ k
~ (!j_i/z(kro) +

1 I j +1 / 2 (kro »f- ::
H ± E I i+!I/2 (kro )1 k r o

+ -k 1 1 I j+i/2 ( kro »f- = H ± E -2- (Ij - 1 / 2 (kro ) + I j+3/2 ( kro ) +2 k r o

for E < H and

+ k' + (Jj_i/z(k' r o)
1 Jj +i / 2 (k' r o »f- = H ± E J j+9/2 (k' r o ) k'ri

0

+ -k'
E + (Jj - i/Z (k' r o)

1 J j +S / 2 (k' r o »f- = H ± - J j+B/2 (k' r o ) + k'r2
0

for E ) H

When c = 0 , det A(E) =det A(-E ) This guarantees the

charge conjugation symmetry. From direct substitution in (5.30)

shows det A(O) t 0 .That is there is no zero energy state. When

c ~ 0, det A(E) t det A(-E) and so there is no spectral symmetry

. Due to lengthy algebra involved the analysis of spectral flow
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as has been done in zero angular momentum state is not easy

Numerical study shows that det A(O) as a function of c has no

zeros and consequently there is no spectral flow. In this case

induced charge vanishes and consequently the iround state charQe

is zero by (2.1).

5. 7 Zero angular momentwn :fermions in presence of' dyons

In this case Dirac equation and its solution inside the core

is given by equation (~.12) , (4.18) and (4.19)- out side the

core equation (5.12) can be written as

[Br -1 D+>] + R++ r :+= (B/r + R- = + ( D/r + & )
+

[Br -i D_>] + 5++ r + (B/r + 5- = =1= ( D/r + e -)

(5.33)

(5.34)

where we have substituted for J(r) and H(r) from (1.59). Also B =
Gb/2, D = d/2. To solve the above equation we define X±= R+± R­

and then we can write from (5.33)

For bound states & < D and with the ansatz
+ +

1/2 r-1 + +
X+ =( Il ± &) exp( -p /2) p+ (C- ± Ql )

_ + + + """2

equation (5.35) can be decoupled and solved to give

Q; = t F1 ( r + B 11~ - De+ • 21' + 1 • p + )

+

(5.35)

(5.36)

(5.37)

F (1+ Y + B Il+ - D& +
1 1 X

+
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where sF1(a ,b ,0 )is the Kummer function , and

p=2"-r
+ +

In a similar manner , by defining y± = s+ ± S- the solution of

equation (5.34) can be written as

where

(5.39)

,21' + 1 • p_) (5.40)

~ = l' + (B m - De )/"A_ t Ft (1+ r + B m - [)&

(DD_- BS_}/A_ ~

,21' + 1 , p_)

From (5.36) and (5.39)solutions of (5.33) and (5.34) can be

written as

+ r-1 [ y (~ + Q+R- = et exp(-p /2) p+ m + & ) ± (5.41)+ + + I

-f (~ Q+ ]11 - & )
+ + 1

+ y-i [ ~ (~ + Q- )s- =(l exp(-p_/2) p- 11 + & ± (5.42)
1

-f 11 (~ - Q- ) ]- & 1

By matching the solutions at the boundary r = ro we arrive at a

condition
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det A = 0

where A is a (2x2) matrix given by

(5.43)

(f +F_) + R (f - F _)

( f - F_) + 5 ce+F _)

(5.44)

with R = R+ / R-and 5 = S+/ S-and

f = Sinh( kro ) / (kro )

F± = k [COSh(kro ) _ Sinh(kro ) ]H + E kr o 2
( kro )

for E < Hand

(5.45)

k'
H + E

(5.46)

for E > H . Further for the convergence of normalization integral

the Kummer function in (5.36) and (5.39) should reduce to

polynomials . This will be true only if we impose the conditions

+
B 11 - D&y + + = - n

1
A

+

+
B 11 - 1)£

r - = - n
2x

(5.47)

(5.48)

were "j and n
2

are non zero positive integers . If n
1

and n
2

are

92



zero ~1 and Qt! a..~e not reduced to polynomials

During nJiabatic evolution we cannot guarantee the existence

of energy levels since they has to satisfy the conditions (5.47)

and (5.48). Therefore ~e cannot evalua~~ the spectral flow

directly as done in th~ case of nonselfdual monopole. The same

problem arises in the higher angular momentum case also. This is

demonstrated in the next seotion.

In the massless case we have

/(£) = I(-B)

Q~<E) = Q:<-E)

F±(E) =- F±(-E)

Q;<E) =Q:<-E)

From this it follows that det A(E) = det A(-E)

speotral symmetry and hence charge conjugation symmetry

There is

Zero

energy is a trivial solution of (5.43) as pointed out by Jackiw

and Rebbi for point dyons . However , in this case when the core

effects are included , for the eY~~~ence of zero energy state

conditions (5.47) and (5.48) are to be satisfied Therefore

fermion number fractionisation depend on dyon parameters .

5.8 Higher angular momenlum bound states

In this case the Dirac equation inside the core is saBe as

given in the equation (4.26) and its solution is given in

equation (4.29) and (4.30). By defining

+ + + B+ c+X- = p- + G- + +

± + + B+ -c+y = p- + G--

+ + + B+ c+
(5.49)

z- = p- G- +
+ + + B+ c+w- = p- - G- - +
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the Dirao equation out side the core becomes

+ +
[~ - (0/r + & + )] x+3)- x- =m

+

+ + [-+ £)]y+3)- v: = - (D/r +m
+

+ + [-+ (D/r + £_ )] z+3)- Z- =m

+ + [- .L )] w+~- W- = - (D/r + e
m r

where

(5.50)

=" + r-
t + ( Br

-1
r + 11 )

As in the ,;,revious case bound state solution ( & < 11 ) oan

be obtained as

+ ~,., -t

[" (~(j) + Q+x: = cc exp( -p /2) p. J) + & ) ±
+ + + + t

-( £+ (~(j) Q+ ]11 - )
+ i

+ r-t
[ -f (~{-j) + Q+Y-= (J exp(-p+/2) P+ 11 + & ) ±

+ + j

-f ": (~(-j) - Q+ ]11 - )
+ 1

+ 1'-t [~ (~(j) + Q~ )Z-= T) exp( -p_/2) p- m + & ±

-f (~(j ) - Q- ) ]11 - & .t
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+ y-1
[ -f (~( -j) + Q-W-= 6 exp( -p_/2) p- m + & ) ±

1

y cg;<-j) - Q- ]m - .c )- t

where

+ +
Q;<-j) is obtained by changing sign of j in Q;(j) On matching

the solutions at the core boundary r = rowe get the condition

det ACFJ = 0

where A is a (4x4) matrix with

A =(l-x) [ F~ + ( j / r ) F -l + ( 1 + x ) f
1t

A =(l+x) [ F~ - ( j / r ) F+] + ( 1 - x ) f
i3

A
Z

! =( 1 - Y ) [ F ~ - ( j / r ) F .] + ( 1 + Y ) f

A =(l+Y) [ F ~ + ( j / r ) F+] + ( 1 - Y ) f
23

As! = ( 1 - Z ) [F ~ + ( j / r ) F _] - ( 1 + Z ) f
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Aaa = ( 1 + Z ) [F; + ( j / r ) F+] - ( 1 - Z ) f

A =(l-W) [ F ~ - ( j / r ) F .] - ( 1 + W ) f.1

A =(l+W ) [ F; + ( j / r ) F+] - ( 1 - W ) f
43

A =(x-l) { F~ + [( j+l)/r ] F } - (1 + x ) f..2 -

A =(x+ 1) { F; - [ { j-l)/r ] F } + (1 - x ) f
14 +

'\2= ( 1 - Y ) { F ~ - [ ( j - 1 ) / r ] F _ } + (1 + Y ) f

AZ4 = - ( 1+ Y ) { F; + [ ( j + 1 ) / r ] F+ } - (1 - Y ) e

Asz=( Z - 1 ) { F~ + [ ( j +1 ) / r ] F_ } + (1 + Z ) f

~4= ( Z + 1 ) { F; - [ ( j - 1 ) / r ] F+ } - (1 - Z ) f

A4 Z =( 1 - W ) { F ~ - [ ( j - 1 ) / r ] F_ } - (1 + W ) f

A4 4 = - ( 1 + W ) { F; + [ ( j + 1 ) / r ] F+ } + (1 - W ) f

+ -= W /W and

F± = f/( H ± E )

96



for E < Hand

F± = f/( H ± E )

F' =±

for E ) H .

1
(H ± E )

cl
d( k' r) [

J.I+l/2(k'r>]
YVr r=ro

As in the zero angular momentuD case , for the convergence

of the normalization integral' , RS should impose conditions

r + B 11 - D&
+ + = - Os

A
+

Y + B 11 - 1)&
= - °2A

(5.52)

(5.53)

In this case also the existence of the levels crossing from one

side of the spectrum to the other side is not guaranteed and

hence we can not say anything about the spectral flow

For t he 1l8ss1ess ferllions we have

!(E) = f(-E)

+
Q~(E)

- F±{-E)

=Q:<E)

(5.54)

frOD which it follows that det A(E) =det A(-E) . Therefore there

is spectral symmetr~. If Et satisfy (5.52) and (5.53)

-El also satisfy the same equations and hence the spectral

symmetry is guaranteed . In this case by direct substitution it
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i& easy to verify that there 18 no zero enor~y state

6.9 Conclusion

In this chapter we investigated the problem of fermion

number fractionisation in presence of nonselfdual Donopoles and

dyons. The induced charge is calculated and was found to depend

on dyons electric charge. In presence of nonselfdual monopole the

ground state charge is found to be same as that in the presence

of a selfdual monopole. In this case also ground state charge is

contributed only by the lower angular momentum states and is

discontinuous at the fermion mass. With massless fermions in

presence of dyons, it is found that there is spectral sYllmetry

and charge conjugation symmetry but the ground state charge need

not be ± 1/2 because of nonzero induced charge. For massive

fermions the spectrum is asymmetric. However, a direct study of

spectral flow is hindered by the occurence of certain conditions

to be satisfied

5.A Appendix

In this appendix we solve the first order coupled differential

equations

1 ± j
r x-+ (A.1)

This equation is similar to the hydrogen atom problem in

relativistic theory if the B/r term is absent. On dividing

through by 2~
2 2 )t/2 get= 2 (m - & , we

[ap + 1 + j ] [ B + D +/ ]X • 11 + X (A.2)e
p + P

11 - &
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1 - j
p 11 - £

11 + &
(A.3)

where p = 2Xr . For the above equation we assume solutions of the

form

(A.4)

Qt.zand r can be determined by substituting (A.4) in (A.3). Then

we get

p (iJp+ r + j )( Qf, + ~ ) - p Qz = ( B + D >/ : ~ : ( Qf,- Qz)

These can be decoupled to get

p ,,~ ~ + ( 2r + 1 - p ) iJp~ - ( r + 1 + Bm ~ De ) ~ = 0

(A.6)

There we assume that

The solutions of the equations (A.B) are
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