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PREFACE

The work presented ill this thesis has been carried out by the author ill the Department

of Physics, Cochin University of Science and Technology during the period 1993-1998.

The Universe has been a wonder to the humanity and continues to be so. The search

to understand the Universe, how it works and where it came from, can be considered

to be the most persistent and greatest adventure in human history. Cosmology - the

science of the Universe - based on Einstein's General Theory of Relativity has helped

us very much to understand the evolution of the Universe and has opend new horizon

in this field of study.

The thesis deals with the study of cosmological particle creation and related issues

using squeezed state formalism. The thesis is organized in five chapters. Chapter I is

an introductory one. It contains a brief description of different cosmological models,

grand unified theories and the phenomena of structure formation and the objectives

of the present study. Chapter 11 deals with the quantization of scalar field and basic

mechanism of particle creationin curved spacetime. A brief review of the physical and

mathematical properties of coherent states and squeezed states which are revlevant to

the present study are also presented, Recent studies of cosmological problems using

coherent states and squeezed states are also mentioned. In Chapter Ill, the quanti­

zation of scalar field coupled minimally with gravity in various quantum states, vis,

coherent states, squeezed states and squeezed vacuum states are discussed. The expec­

tation values of the energy-momentum tensor are calculated and the particle creation



problem is examined in an anisotropic background cosmology. A brief discussion of

standard cosmology a.nd squeezing effect is also included. Chapter IV contains studies

on the quantum fluctuations ill different representations of the scalar field and the

validity of the semiclassical theory is discussed. III Chater V we have examined the

particle creation by black holes and the corresponding entropy generation and Hawking

temprature for squeezed states and coherent states are studied, These studies showed

that the change in entropy, the Hawking temperature and change in mass are related

to the associated squeezing parameter.

A part of the present investigations has appeared in the form of the following publi­

cations:

(1) 'Squeezed states representation and vacuum fluctuations in the early universe',

P.K.Suresh,V.C.Kuriakose and K.Babu Joseph,Int.J.Mod.Phys.D 6,781(1995)

(2) 'Squeezed states, balck holes and entropy generation'

P.K.Suresh and V.C.Kuriakose, Mod.Phys.Lett. A 12 1453 (1997)

(3) 'Squeezed states representation of quantum fluctuation and Semiclassical theory'

P.K.Suresh and V.C.Kuriakode, Mod.Phys.Lett.A 13 165 (1998)

and also has been presented in the following symposia/conferences

(1) 'Squeezed states and vacuum fluctuation in the early universe', Symposium on Early

Universe held at lIT Madras (Dec 22-24,1994)
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(2)'Squeezed states a.nd black hole' ,XVIIlt h IGARG Meeting held at IMSc Madras (

Feb.16-19,1996)
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SYNOPSIS

One of the great successes of classical cosmology is its ability to describe the main

features of the observed physical Universe by using some specific initial conditions. To

avoid postulating such initial conditions as well as the existence of particle horizons ill

isotropic models the study of inhomogeneous and anisotropic models of the Universe

has been initiated. To bring about the observed isotropy in such models at a later time,

it requires the introduction of a dynamical mechanism for damping the inhomogeneity

and the anisotropy. One such mechanism is neutrino viscosity, which was investigated

in Bianchi type I,V and IX cosmologies and found not to be rapid enough to bring

about the observed isotropy later. Another mechanism coming into play at much earlier

times ( trv Planck time) is the production of elementary particles by rapid expansions

of the Universe. Zel'dovich suggested that this process could bring about isotropy near

the Planck time(tp ) . Quantum aspects of particle production and renormalization of

the energy momentum tensor in Bianchi type I and IX Universe have been studied

by many people. In an anisotropic expanding Universe we expect that when t>tp

the process of anisotropic damping is dominated by the created particles. Therefore

the investigation of particle creation in anisotropic cosmological models have much

relevance near the singularity where the gravitational field is expected to be strong.

Particle creation in cosmological spacetime was first investigated by Parker, Sexl, Ur­

bantke, Zel'dovich and Strobinsky in the late sixties. The basic mechanism can be
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understood as parametric amplification of vacuum fluctuations by the expanding Uni-

verse.

Recently, in order to probe quantum effects ill cosmology, quantum optics concepts like

coherent states and squeezed states are found to be suitable candidates. These states

are important classes of quantum states well understood ill the context of quantum

optics and obey the Heisenberg minimum uncertanity principle. Creation of particles

like gravitons and other primordial perturbations created from the zero point quantum

fluctuations in the process of the cosmological evolution were studied by Grishchuk

and Sidorov. Gaspern.ini and Giovananni have shown that the entropy growth in the

cosmological process of pair creation call be completely determined by the associated

squeezing parameter. Albreacht etal analysed inflationary cosmology in the light of

squeezed states. Hu etal have given a systematic description of the dependence on the

initial states in terms of squeezing parameter.

The present study emphasis that quantum phenomena are inevitable to understand

the particle creation near the singularity. Squeezed vacuum states can be treated as

possible quantum states in theearly Universe epoch. In the context of the anisotropic

background cosmology, the squeezing of vacuum lead to the production of the particle

and hence the damping mechanism occur with the created particls. Squeezing of

vacuum is achieved by means of the background gravitational field; the gravitational

field plays the role of the paramertic medium. The validity of the semiclassical theory is

based on the assumption that the fluctuations in the expectation value of the energy­

momentum tensor is minimum. But the present study shows that particle creation
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near the singularity ill this scenario is large and hence tile semiclassical theory may

break down near the singularity. The study of black hole problems shows that entropy

generation and change of mass depend OIl squeezing paramater.
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Chapter 1

Introduction

Cosmology is the science of the Universe. It deals with the study of the formation

of large scale structures of the Universe. The central issue in these studies is to

understand the origin and the evolution of the Universe in a systematic way. Though

many beautiful and fascinating models and theories have been proposed, only a few

can even qualitatively explain some of the observed properties of the Universe. The

standard cosmology is now considered to be the most promising candidate to describe

the main features and evolution, of the observed physical Universe. The main features

of the standard cosmology are briefly described below.

1.1 Standard cosmology

General Theory of Relativity of Einstein [1, 2, 3] forms the corner stone of modern

cosmology and there have been two important stages in the development of modern
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cosmology. The first stage began ill 1920~s when Friedmann [4, 5] developed a theo-

retical model of the Universe based on Einstein's equation and his model visualized a

homogeneous, isotropic and expanding Universe. The discovery of redshift by Hubble

[6] in 1929 has been interpreted as a consequence of the expansion of the Universe

and is viewed as an experimental support to the theoretical model of Friedmann, TIle

cause of this expansion is being speculated to be due to a big explosion ill the begin-

ning. This explosion is IlOW called the big bang]?]. The second stage began with the

discovery of cosmic microwave background radiation ( CMBR ) by Penzias and Wilson

[8] in 1965. Though Friedmann envisaged an expanding Universe it was not clear then

whether the early Universe was hot or cold. The discovery of CMBR led to the belief

of a hot early Universe.

The most fundamental feature of the standard cosmology is the expansion of the

Universe which is quantitatively expressed through the measurement of red shift which

has a major role in the observational cosmology. The light we see today from the most

distant objects might have been emitted when the Universe was only a few years old.

The relationship between luminosity distance dL and the redshift of a galaxy z can be

written in a power series: [9]

(1.1)

where Ho is the value of the Hubble constant which gives the present rate of expansion

of the Universe and qo is called the deceleration parameter.

The assumption of an isotropic and homogeneous Universe dates back to the earliest
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workof Einstein and this assumption is called the cosmological principle. He used this

principle to solve his field equations for gravitation

GJ1.V = 81rGTJ1.v, (1.2)

where GJ1.V is the Einstein tensor, TJ1.v is the energy-momentum tensor of all the fields

present-matter and radiation and G is the universal gravitational constant. Tile obser­

vation of the uniformity in the temperature of the CMBR provides the best evidence

for the isotropy of the Universe. If the expansion of the Universe were not isotropic,

then the expansion would lead to a temperature anisotropy of small magnitude in the

CMBR. Likewise, inhomogeneities in the density of the Universe on the last scattering

surface would also lead to temperature anisotropies. The remarkable uniformity of

CMBR indicates that at the epoch of last scattering of the CMBR (about 2 x 105

years after the big bang), the Universe was, to a high degree of precision isotropic and

homogeneous.

1.1.1 Friedmann-Robertson-Walker metric

In Einstein's early work, however, he adopted what seemed to be like a perfectly natural

assumption, that the Universe on the average was not only homogeneous and isotropic

but also unchanging in time as well. The assumption that the Universe does not change

in time is philosophically very pleasing, and when added to the cosmological principle,

the resulting principle was called the perfect cosmological principle. Einstein found

that physical meaningful static solutions to his equation could not be found except

for the trivial case of an early Universe. To rectify this deficiency, Einstein modified
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his equations by incorporating a repulsive force of unknown origin, which is called the

cosmological constant alld the modified equation is given by:

(1.3)

where A is known as cosmological constant, With the cosmological constant, the

gravitational effects of a finite mass-energy density could be balanced; and it "vas

possible to produce non-trivial static models of the Universe.

.
In 1922, Friedmann discovered three possible classes of nonempty cosmological models

which did not require the cosmological constant; and they were also discovered inde-

pendently later by Lematire. The Friedmann-Lemaitre models are for a homogeneous

and isotropic, but not for a static Universe, Le., they evolve in time, and therefore do

not satisfy the perfect cosmological principle.

The assumption of homogeneity and isotropy restrict the geometry of spacetime. The

metric for such a spacetime can be written as

(1.4)

This metric is now called Friedmann-Robertson-Walker-Lemaitre (FLRW) metric or

simply Robertson-Walker (RW) metric [9]. The metric is characterized by two param-

eters, (i) the scale factor S(t) and (ii) the spatial curvature parameter k which can

take values + 1, - 1 or 0 and they refer respectively to closed, open and flat Universes.

The Einstein's field equation relates the behavior of S(t) to the energy -momentum ten-

sore To be consistent with the symmetries of the metric, the total energy-mpmontum
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tensor must be diagonal and isotropy implies that the spatial components must be

equal. The Universe is assumed to be filled with a perfect fluid. The energy-momentum

tensor is assumed to take a form that of a perfect fluid alld is given by [10]

(1.5)

In a locally inertial comoving frame this expression reduces to 'PLI = diag [p, -p, -p, -p]

soone can identify p as the energy density, p as the pressure, and uJ.L as the four-velocity

of the fluid. The field equations then imply that:

S 41rG
S - --3-(P + 3p)

and

• 2

(~) +~ = 8n-G P
S S2 3

(1.6)

(1.7)

By combining (1.6) and (1.7), one can obtain a relation for conservation of energy

which can be written as

d 3 ell
dS(PS ) + 3pu- = O.

The Hubble constant H is related to S(t) through the relation:

~ = H
S

(1.8)

(1.9)

All Friedmann models have a common feature of having S = 0 at a certain epoch (

which can be chosen as at t = 0 ). As we approach the limit S ---+ 0, the Hubble

constant increases rapidly, being infinity at S = O. This epoch therefore indicates
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an epoch of violent activity and is given the name big bang. From a mathematical

point of view, S == 0 describes a spacetime singularity, a region of infinite curvature

and energy density at which the laws of physics break down, S == 0 also presents all

insurmountable barrier to physicists. If we use the strong principle of equivalence to

study how the physical processes operate in strong gravitational fields, our procedure

will break down at S == O.

Singularities are not artifacts of the models. Hawking and Penrose [11] have sho\vn that

singularity is unavoidable in standard cosmology and their famous results is now known

as the 'singularity theorem'. The theorem does not imply, however, that a singularity

will physically occur. Rather, the theory predicting it will break down at very high

curvature. This can be suppressed by some better or more powerful theory. In such

theories, near a singularity, spacetime becomes highly curved; its volume shrinks to

small dimensions. Under such circumstances, one must appeal to quantum theory.

Our current understanding of the evolution of the Universe is based upon FRW cos­

mological model or the hot big bang model as it is usually called. This model is

so successful that it has become now known as the standard cosmological model. It

provides a reliable and tested account of the history of the Universe from at least as

early as the time of synthesis of light elements (t == 10-2 to 102 sec after the big bang,

T rv 1011K to 109K ) until today (t == 15 Gyr, T = 2.75 K ) and provides a sensible

frame work for describing the early history of the Universe.
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1.2 Grand Unified Theory

The remarkable developments ill particle physics during 70's and 80's, significantly

the progress made towards unification of basic interactions ill nature have their own

impacts in cosmology also. There are four basic interactions ill nature (i) gravitational

interaction (ii) electromagnetic interaction (iii) weak interaction and (iv) strong nuclear

interaction. Weinberg [12] and Salam [13] in 1964 independently showed that the

strength of electromagnetic and weak interactions become comparable at energies of

the order of 102 GeV( 1015K) and in 1980's the experimental verification came in.

This gave a moral boost to particle physicists that at sufficiently high energy, three

of the basic interactions - strong, weak and e.m-can be believed to be unified and

the strength of the three interactions become comparable at energies of the order of

1015GeV (1028 K), the energy at which unification is likely to take place [14]. This

energy is not available now on earth and hence there is no way to verify this. Present

calculations suggest that this might have occurred when the Universe was 10-37sec

old when the characteristic energy of a typical particle was as high as 1015 GeV. To

particle physicists, these ideas are exciting because, the early universe could act as a

high energy particle accelerator. By studying the particle interaction at energies 2::

1015 GeV and looking for possible relics of those events today, one can place certain

limits on the parameters of the theories meant to explain the physics of the early

epochs. It is an indirect way to test a physical theory, but there is no alternative way

to do this. This helps us to believe that at a still high energy all the four interactions
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might have been unified, Planck had ShO\VIl that by suitable combinations of the three

fundamental constants c, G, and h., one call obtain new scales for energy, time and

length: Planck energy: Ep =~ = 10 19 GeV, Planck time: t p = f9j = 10-44 sec,

and Planck length: L, = n '"10-33 km.

The era O<t<tp is usually called quantum gravity era and ill this era the classical

theory of gravity breaks down. The appearance of the three fundamental constants

c,G, and h together suggest that we are reaching a synthesis of theories of relativity,

gravitation and quantum theory. The concept of spacetime measurement so crucial to

General Relativity breaks down at this level.

1.3 Inflationary cosmology

Though standard cosmology is an achievement, it is not free from shortcomings. The

shortcomings of this model are flatness problem, horizon problem, entropy problem,

the monopole problem, etc [15]. These shortcomings do not invalidate the standard

cosmology in any \vay. They can be accommodated in the standard model, even if

they lack proper explanations. To avoid these problems of standard cosmology, Guth

[16] introduced the concept of inflationary cosmology. According to the inflationary

model, the early universe underwent a brief period during which the system was in a

metastable state called 'false vacuum' state, driving the evolution of the Universe into

an exponential expansion. The successes of the original inflationary model depend on

the assumption that the phase transition occurred quickly with rapid thermalization of
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the energy that was released. It is IlO\V known that this assumption is false. Also, found

that the randomness of the bubble nucleation process leads to gross inhomogeneities,

rendering the original inflationary model untenable. To overcome these problems 11e\V

inflationary models have been proposed by Linde [17, 18], Albreccht and Steinhardt

[19]. Even though the new inflationary model could find explanation to the problems

raised ill standard cosmology, the idea of inflation has difficulties of a different kind;

there are no satisfactory explanations for the formation of structure, the exact value

for the age of the Universe, lack of direct evidence for non-baryonic matter, etc.

1.4 Structure formation

The problem of galaxy formation is one of the greatest interests in modern cosmol­

ogy and at present we do not have a satisfactory theory of structure formation. It

has been argued that galaxy formation required the existence, in the early Universe,

of some kind of initial perturbations slightly disturbing the homogeneous expanding

background. Such perturbations grew under gravitational instability and later result

in the formation of structures, the nature of the initial perturbations is not well un­

derstood even now. In the existing theories of galaxy formation, the spectrum of

fluctuations is chosen by fitting the theoretical models to observational data. It seems

that more natural and attractive theories are needed to obtain the spectrum of initial

fluctuations [20, 21, 22] from fundamental physical principles. Several approximation

methods have. been developed to study the formation and growth of structures in the

Universe [23, 24, 25]. The formation of these structures still remains to be all Ul1-
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solved problem ill cosmology ( The real Universe contains inhomogeneous structures

like galaxies, clusters of galaxies, superclustures etc.). The origin and growth of small

inhomogeneities could be understood using linear perturbation theory. When devia­

tion from a smooth Universe becomes large, the evolution becomes nonlinear and one

has to use other techniques to study the nonlinear evolution, Recently, approximate

analytical and N-body simulation techniques have been used ill the study of nonlinear

evolution [26].

1.5 Anisotropic background cosmology

The overall structure of the Universe is believed to be homogeneous and isotropic [27].

But it is inhomogeneous and anisotropic on the scale of galaxies and their clusters.

The standard hot big bang model, now-a-days, generally incorporate the hypothesis

of inflation and cold dark matter. After the Universe was rendered transparent by the

decoupling of radiation and matter, the standard model asserts that all future clus­

tering of matter is entirely due to the ponderous action of gravity working against the

general Rubble expansion. Inflationary cosmology was prized as the only theory that

offered a causal mechanism for the origin of perturbations large enough to account for

the creation and clustering of galaxies. As the decade passed, the observing technology

progressed, extensive redshift surveys accumulated, more and more evidences were ob­

tained showing the clustering of structures much larger than anything the inflationary

theories were expecting. Computer simulations of density fluctuations left behind by

inflation, were able to generate structures much larger than 30 Mpc. The recently dis-
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covered Great wall alld Great Attractor megastructurcs [28] appear to stretch over 170

Mpc. Attempts to understand the origin of such inordinate structures, theories have

come UI) with imaginative claborations of the standard model involving double infla­

tion or very late phase transitions, Noninflationary theories employing concepts like

supersymmetry, topological defects, cosmic strings,[29] etc have also been formulated.

The observed uniformity of the cosmic micro wave background radiation provides more

exotic theoretical speculations.

CMBR measurements support the assumption of a homogeneous and isotropic Uni­

verse. The conclusive evidence that the C11BR spectrum is indeed of blackbody type

came from experiments conducted in Cosmic Background Explorer satellite (COBE)

launched in 1989 [30]. The temperature deduced from the COBE experiments is T

= 2.726 K with an accuracy of O.OlK. When the measurements improved over these

years, it was found that the CMBR exhibits anisotropy in temperature and the tem­

perature varies minutely over the sky and it has been estimated that the temperature

variation is of 8T= 30 ± 5J.LK or bJ rv 10-5
• Half of this 6~ could be due to quadruple

anisotropy at 900 angular scale.. Although some quadruple anisotropy is kinetic, the

remainder is then of purely cosmological origin which could have arisen if the expan­

sion had not been spherically symmetric. This would then contradict the cosmological

principle and the FRW cosmology. The other half of 6:[, are intrinsic CMBR fluctua­

tion on all scales, indicating the existence of 500 Mpc size which is much larger than

the optically observed superstructure.
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The recent COBE satellite experiments S}lO\V large angular anisotropy in the tempera­

ture distribution of microwave background radiation [31]. TIle standard cosmological

model that purports to describe the evolution of the Universe is being tested at both

ends by spectacular astronomical observations. On the other hand the recently dis­

covered Great wall and Great attractor suggest enormous agglomeration of galaxies,

that attested to coherent structures, stretching over half a billion light years in the

present epoch. The l1ew measurements on the uniformity of the cosmic microwave

background radiation tell us that the Universe was amazingly smooth. The question

at issue is: how did the cosmos evolve from these almost wrinkle-free beginnings to a

present structure of these manifest inhomogeneity.

Arelated question, but without any satisfactory explanation, is the creation of particles

in the Universe especially in the vicinity of singularities, or almost singular regions.

The most general solution of the problem of collapse turn out to be locally anisotropic

near the singularity. Cosmological solutions are also known in which the expansion be

anisotropic at first near the singularity, and later becomes isotropic [32]. Such models

have received much attention during last decades.

Particle creation resulting from the strong gravitational field near the cosmological

singularity may have a profound influence on the evolution of the metric of very

early times. The question is whether such a process could have brought about the

isotropization of an initially anisotropic expansion at sufficiently early time. There­

fore the investigations of the behavior of the Universe near a singularity are of great

12



interest. Studies of quantum field theory ill curved spacetime call throw more light 011

these problems. Therefore it is appopriate to discuss the formulation of quantum field

theory ill curved spacetime and the basic mechanism of particle creation ill curved

spacetime and are described in the next chapter.
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Chapter 2

Quantum field theory in curved
spacetime

2.1 Introduction

Einstein's General Theory of Relativity is revolutionary in the sense that a ne"v con-

cept on spacetime structure and gravitation has been put forth. But there is a major

drawback for the theory as it is not based on the principles of quantum theory. There

are two reasons which compell us to look for a quantum theory of gravity. Advances

made in grand unified theories make us to believe that it may be possible to unify all

the four forces of basic intractions. Interestingly, the natural length scale which arises

in grand unified theory is only a few orders of magnitude < Lp. Thus it is possible

that a quantum theory of gravity may even play an important role in the unification

of the strong and electromagnetic interactions. A unified theoery of all forces might

predict many new phenomena, and observations of them would justify the unification
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scheme [29]. The second reason arises directly from general theory of relativity. As

mentioned earlier spacetime singularities occur ill the solutions of classical general the­

ory of relativity relevent to gravitational collapse and cosmology. In these singularitics

the classical description of spacetime structure breaks down, Thus it appears that

the development of a quantum theory of gravitation will be all essential requirment

for our understanding of the initial state of the Universe [10, 29]. The formulation of

quantum gravity will be a great achievment as far as theoretical physics is concerned.

All the attempts so far made to have a quantum theory of gravitation ran into dif­

ficulties. The lack of a satisfactory quantum theory of gravity does not mean that

one can not perform any reliable calculations of quantum effects occuring in strong

gravitational fields. A complete satisfactory theory exists for a free quantum matter

field propagating in a fixed background spacetime. In this approach, the spacetime

metric is treated classically and is coupled to the matter field which is treated quan­

tum mechanically. Such a programme is known as semiclassical approximation [33] .

Though this method is only an approximation to a full quantum theory of gravity this

procedure can at least give a good indication of the types of quantum effects which

might have occurred in strong gravitational fields. This programme is being used to

study the effect of quantum gravity on other phenomena like creation of particles,

black hole evaporation, etc.

The phenomena of particle creation can be understood by studying the matter field

in a background metric. Therefore the essential ideas of formulation of filed theory in

curved spacetime and particle creation mechanism are briefly discussed below.
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2.2 Quantun fields in curved spacetime and parti­
cle creation

Advances made ill Grand VIlified Theories make tIS to believe that it may be possible

to correlate observational data with quantum process in the early Universe [34, 35,

36, 37]. This has caused increasing interests ill the study of quantum theory ill curved

spacetime.

A great deal of the formalism of quantum field theory in Minkowski spacetime can

be extended to curved spacetime with little modifications. In flat spacetime, Lorentz

invariance plays an important role in each of the basic ingredients in the construction

ofa quantum field theory. In flat spacetime the Lorentz invariance allows us to identify

a unique vacuum state for the theory. However in curved spacetime, we do not have

Lorentz symmetry. The formulation of a classical field theory and its formal quanti-

zation may be carried through in an arbitrary spacetime. The real difference between

fiat space and curved space arises in the characterisation of the quantum states and

the physical interpretations of the states [38]

In view of current quantum concepts, the physical vacuum (i.e. the state without real

particles ) is a quite complex entity. According to the formulation of quantum field

theory virtual (short-lived) particles are constantly created, they interact with one

another, and are annihilated in the vacuum. The vacuum is stable and real particles

(long-lived) are not produced. But we can see that in the presence of external fields

virtual particles may acquire sufficient energy for becoming real. The result is that
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quantum creation of particles from vacuum is possible in the presence of all external

field [33, 38].

In general, there does not exit a unique vacuum state in a curved spacetime. As a

result, the concept of particles becomes ambiguous, and the, physical interpretations

of particles become much more difficult. This issue call be realised by considering the

formulation of quantum field theory in Minkowski spacetime and in curved spacetime.

First we discuss quantum field theory in Minkowskai spacetime.

Consider a real scalar field in Minkowski spacetime satisfying the equation ofmotion:

(2.1)

Let {Uk} be a set of solutions of this equation, which are positive frequency modes

with respect to some time-like Killing vector (1, that is

(2.2)

where w > 0 and L denotes the Lie derivatives. Assuming that the Uk'S are complete

and orthonormal, we have:

(2.3)

where

(2.4)
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and t denotes a spacelike hyperplane of simultaneity at instant t. Now let lIS choose

[38] a solution ill the following form

where

( ? ?) ~W = k .. + m: -.

Now the scalar field may be expanded ill terms of these modes,

(2..5)

(2.6)

(2.7)

and the quantization of the theory is implemented by imposing canonical commutation

relations:

The vacuum state I 01) is defined as

o (2.8)

(2.9)

In Minkowski spacetime there is a natural set of modes, namely, as given by (2.5),

that are closely associated wih the rectangular coordinate system ( t,x,y,z). In turn,

these coordinates are associated with the Poincare group, the action of which leaves

the Minkowski line element invariant. Thus vacuum is invariant under the action

of Poincare group. Therefore the soultions contain only posituve frequencies with

respect to the Minkowski time coordinate. But the situation is quite different in

curved spacetime.
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Now consider a real scalar field in a curved manifold without horizons [38]. TIle field

must satisfy the generally covariant Kleiu-Gordon equation:

(2.10)

Let {Uk} be a set of solutions of this equation, which are positive frequency modes

with respect to some time-like Killing vector (1, that is

(2.11)

where w > 0 and L denotes the Lie derivatives. Assume that the Uk'S are complete and

orthonormal then we have, as before the Klein-Gordon scalar product ( generalized to

curved space),

(2.12)

where

(2.13)

and E is a three-dimensional space like hypersurface. The scalar field may be expanded

then in terms of these modes,

rP = L (akuk +aluk)
k

(2.14)

and the quantization of the theory is implemented as usual by imposing canonical

commutation relations (2.8).
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Defining a vacuum state I 01) such that

(2.15)

then ,\ve call construct the Fock space by the action of the creation operators at.

Suppose 110W to have a different family of solutions of the covariant wave equation

(2.10), {Vk}, with only positive frequencies with respect to another Killing vector L(2'

(2.16)

( W2 >0 ), and Vk form a complete orthnormal set:

(2.17)

Then ljJ may be expanded in this set also:

ljJ = L (bkVk + blvk)
k

(2.18)

and in this decomposition the canonical quantization commutuation relations are:

(2.19)

This implies that a new vacuum state I 011) can be defined:

(2.20)

which yields a new Fock space.
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The annihilation and creation operators of the two quantization schemes, viz a and b

can be related by the Bogolubov transformation, For this by considering the scalar

product ( tu, 4J ), and using (2.14) and (2.18) "ve get

a; = :L((likbk + 'sikbl)
k

where

(2.21 )

are known as Bogolubov transformation coefficients. In the same way, the scalar

product (Vi, ljJ) gives the following inverse relation

(2.23)

(2.24)

(2.25)

Imposing the compatibility of (2.21) and (2.23) we find that the Bogoliubov coefficients

satisfy the conditions

:L(aikajk - 'sik,Sjk) = s.,
k

:L(-aik,Sjk + 'sikajk) = O.
k·

Using these coefficients we can expand Uk in terms of Vk and vice versa ( as both set

are complete ). We find, e.g.,

Vi = :L(-QkiUk + ,BhuZ) ·
k

(2.26)

It is evident that, as long as ,Bik =1= 0, the Bogolubov transformations can induce a

mixing up of positive and negative frequency modes, and that Vi is not a positive
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frequency mode with respect to the Killing vectors (1. This means, ill other words,

that the I 01) vacuum is IIOt annihilated by bk and the t\VO vacua are not equivalent.

In particular, the state I 01) is not empty for all observer \VI10 defines positive fre-

quencies with respect to (2 : the state I 01) contains particles alld in the mode 'Vk the

expectation value of their number operator blbk is, according to (2.23)

(0/ Iblbk I0/) = L f3ikf3jk(O/ Iaia! I0/)
ij

(2.27)

Now we are in a position to describe the physical phenomenon of particle creation by

time varying gravitational field. Let us assume that no particles were present before

the gravitational field is turned on. If the Heisenberg picture is adopted to describe

the quantum dynamics, then I O)in is the state of the system for all times. However,

the physical number operator which counts particles in the out-region is Ni; = btbk .

Thus the mean number of particles created in the mode k is

(Nk) =in (OlblbkIO)in = L lf3jkI
2

•
j

(2.28)

If any of the !3jk coefficient are .non-zero , i.e., if any mixing of positive and negative

frequency solutions occur, then particles are created by gravitational field.

The formalism may be extended, with little complications, to describe particle creation

in the presence of horizons. In that case the two Killing vectors (1 and (2, defining the

in equivalent vacua, may correspond to observers using different coordinate systems to

cover the same manifold: for example Minkowski and Rindler coordinates if we have

a uniform accelerated observer in flat space or Kruskal or Schwarzschild coordinates
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in the so called eternal black hole model.

If we have a field ill tile vacuum state] 01), the probability amplitude to find tile field ill

an excited state containing n particles ill a given mode Vk, for all observer associated

to the other vacuum 1 all), is given by Ak(rt) = (nk 1 01) , where

(2.29)

The probability distribution, Pk(n) = 1 Ak(n) 1
2

, can be computed explicitly using the

relation connecting the two vacua, i.e., expanding I 01) as a superposition of states

belonging to the Fock space constructed from 1011). To simplify the formalism, let us

consider spatial homogeneity. In this case the Bogolubov transformation is diagonal,

because both set of modes Uk and Vk have. the spatial dependence and the coefficient

becomes

(2.30)

( no summation over i) From (2.21) we have then

(2.31)

and the condition (2.24) reduces to

(2.32)

The special feature of Minkowski space is that the conventional vacuum state is the

same for all initial measuring device throughout the spacetimc. This is because the
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vacuum is invariant under the Poincare group and so are the set of inertial observers

in Minkowski space.

In curved spacetime the definition of vacuum is associated with the quantum mea­

surement processes used to detect the quanta present. TIle state of motion of the

measuring device call affect whether particles are observed or not. For example, a

free-falling detector will not always register the same particle density as a noninertial

accelerating detector does. This means that particle concepts does not generally have

a universal significance and is observer dependent.

In many problems of interest the spacetime can be treated as asymptotically Minkowskian

in the remote past and or in the remote future and they are respectively refered to

as 'in' and 'out' regions and in Minkowskian quantum field theory it is assumed that

as t ~ ±oo, all the field interactions approach zero. The analogue situation here is

that the 'in' and 'out' regions admit natural particle states and a privileged quantum

vacuum. If the state of the quantum field in the 'in' region is chosen to be the vacuum

state, it will remain in that state during its subsequent evolution. However at later

times, outside the 'in' region, freely falling particle detectors may still register parti­

cles in the vacuum state. If there is also an 'out' region then the 'in' vacuum may not

coincide with the 'out' vacuum and observers in the 'out' region will detect presence of

particles. This phenomenon is now refered to as 'particle creation by time-dependent

gravitational field' [38].

Qunatun field theory in curved spacetime reveals that quantum concepts are essential
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to understand various problems ill cosmology. Such studies naturally lead to quantum

cosmology.

2.3 Quantum effects in cosmology

One of the greatest successes of classical cosmology is, its ability to describe the impor­

tant features of the evolution of the Universe by using some specific initial conditions,

The observed Universe could have arisell from a much larger class of initial conditions

than in the hot big bang model, it is certainly not true that it could have arisen from

any initial state - one could have chosen an initial quantum state for the matter which

do not have correct density perturbation spectrum, and indeed could choose initial

conditions for which inflation does not occur and so on. In order to have complete

explanation of the presently observed state of the Universe, therefore, it is necessary

to face up to the initial conditions, This is one reason compelling us for replacing

classical cosmology by quantum cosmology.

Another fundamental problem facing the standard cosmology is the occurrence of sin­

gularities in spacetime, examples of which are the initial singularity of cosmological

models and the curvature singularities on the behavior of black holes. General theo­

rems have been proved which demonstrate that singularities are inevitable in standard

cosmology, provided that certain conditions are imposed on the energy momentum­

tensor [11]. These conditions are reasonable for classical matter, but are not expected

to hold in general for energy-momentum tensor associated with quantized matter fields.
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This holds out the hope that quantum effects associated with the matter fields call

lead to the avoidance of singularities,

It has been assumed that quantum zero-point fluctuations got amplified during ill­

flationary period and produced density perturbations, rotational perturbations and

gravitational waves. Density perturbations seeded tile observed inhomogeneity ill the

Universe. These perturbations which eventually give rise to galaxy clusters began as

quantum fluctuations that were enormously stretched during the inflationary expan­

sion phase in the first 10-35 sec after big bang. The inflationary scenario requires

that the mean density of the Universe may be very close to its closure value. In the

standard model, most of the remaining dark matter is presumed to consist of weakly

interacting particles whose thermal velocities would have been negliable in the epoch

when structures started to develop. However the origin of the inflationary stage still

remain as an unsolved problem. Also what kind of evolution the Universe experienced

before the inflationary stage and how did the Universe itself originate still remain as

unanswered questions. A frequently made assumption is that initially the Universe

was filled with radiations and the inflation era was preceded by an essentialy quantum

gravitational phenomenon called the spontaneous birth of the Universe. Gravitational

waves seem to be the only SOlITce of impartial information about the very early Uni­

verse and the quantum birth of the Universe. For this one need quantum theory of

gravity [15, 29].

The second motivation for quantum cosmology comes from quantum gravity. At a
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deeper level, both the background geometry <111d matter fields are to be treated (11.1<111­

turn mechanically, this is the realm of quantum cosmology. TIle main object ill quan­

turn cosmology is the introduction of a wavefunction of the Universe [15] which, ill

general, describes all degrees of freedom on an equal footing. But there is no unique

wavefunction of the Universe. Presently, we do 110t know any guiding principle allow­

ing one to prefer one cosmological wavefunction over others. We do not have a fully

satisfactory and consistent quantum theory of gravity. But a viable programme is no\v

accepted in which the quantum gravity effects can be ignored as they are likely to be

small, but quantum mechanics plays a vital role ill the behavior of matter fields. Thus

we have a problem of defining a consistent scheme in which the spacetime metric is

treated classically but is coupled to the matter fields which can be treated quantum

mechanically except near the spacetime singularity. This formulation is now generally

called the semiclassical theory of gravity. At the moment, classical general relativ­

ity still provides a most successful description of gravity and matter field is treated

as quantum mechanically as the source of gravity. In semiclassical theory, Einstein

equation takes the following form [33]:

(2.33)

The right hand side of the equation is supposed to be the energy-momentum tensor of

the matter field. This means that in semiclassical theory the source on the right hand

side of Einstein equation is taken to be the expectation value of some suitably defined

energy-momentum operator for the matter fields. Another satisfactory explanation

is needed in cosmology for the mechanism of particle creation in the early Universe.
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These observations emphasis the fact that quantum concept and quantum effects are

needed to understand the various stages of evolution of the Universe, especially the

very early Universe.

Recently in order to probe quantum effects in cosmology, CIlIC111ttlm optics concepts like

coherent states [39] alld squeezed states [40, 41] have been found to be very useful. It

is now believed that relic gravitons and other primordial perturbations, created from

zero-point quantum fluctuations in the course of cosmological evolution exist in spe­

cific quantum states known as squeezed states [42]. Creating particles like gravitons

and other primordial perturbations from the zero-point quantum fluctuations in the

processof the cosmological evolution were studied by Grishchuk and Sidorov [42] using

squeezed state formalism. Gasperini and Giovannini [43] have shown that the entropy

growth in the cosmological process of pair creation is completely determined by the

associated squeezing parameter. Albreacht etal. [44] analyzed inflationary cosmol­

ogy in the light of squeezed states. Hu etal. [45] have given a systematic description

of the dependence on the initial states in terms of squeezing parameter. Using the

squeezed state formalism Grishchuk [46] have studied generation of rotational cos­

mological peturbations. Novello etal [47] treated cosmological perturbations in the

quantum frame work by using squeezed states. Caves [48] .suggested that the concept

of squeezed states might have a role in increasing the sensitivity of a gravitational

wave detectors

Ata first glance it seems that the two areas, viz, quantum optics and cosmology have no
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direct connections but the mathematical formalism and physical concepts are similar,

the quantum optics concepts are found to be very useful to study many problems ill

cosmology. The basic properties of coherent states and squeezed states are discussed

below.

2.4 Coherent states and Squeezed states

Coherent states and squeezed states are t\VO important classes of quantum states well

known in quantum optics [40]. A more appropriate basis for many optical fields are

coherent states. The coherent states have an indefinite number of photons which allow

them to have a more precisely defined phase than a number state where phase is

completely random. The variances of quadrature components in a coherent state are

equal having the minimum value allowed by the uncertainty principle. In this sense

they are quantum mechanical state close to classical description of the field.

A single mode coherent state (scs) [39] is defined as:

I A) = D(A) I0)

where D(A) is the single mode displacement operator and is given by

The displacement operator have the following properties:

Dt(A) = D-1(A) = D(-A)
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Dt(A) a D(A)

D t (A) at D(A)

a+A

where at and a are creation C111d annihilation operators respectively and coherent states

are eigen states of a:

a I A) = A I A)

Similarly t\VO mode coherent states (tcs) are defend as:

(2.37)

(2.38)

where D(A+A_) is the two mode displacement operator which is the product of two

single mode displacement operators.

Now using these properties we can calculate the expectation values of the position and

momentum operators for the harmonic oscillators in single mode coherent states.

(p)scs

(cl) scs

fh().. + )..*)
V~

_ ~ /h().. _ A"),
2 v·~

- 2: (A2 + )..*
2 + 21 A 12 + 1),

_ ~ ()..2 + )..*2 _ 21 A 1
2 + 1),

(2.39)

where q = ["f;(a + at) and p = iff(a - at)

The coherent states form a two-dimensional continuum of states and are, in fact,

overcomplete, The completeness relation is:
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The coherent states have Cl physical significance that the field generated by a highly

stabilized laser operating well above the threshold is Cl coherent state. They form a

useful basis for expanding the optical field ill laser physics and ill nonlinear optics.

Another class of minimum uncertainty states is the squeezed states. Hollenhorst [49]

first used the term squeezed states. These states are characterized by reduced quantum

fluctuations in one quadrature component of the field at the expense of increased

fluctuations in the other noncommuting component. This remarkable property of

squeezed state field has no classical interpretation and makes sense only in models

when the nonlinear medium and the radiation fields are treated quantum mechanically.

A single mode squeezed states (sss) (or displaced squeezed states) is defined as[40, 41]:

I A,~) = D(A)S(r,ep) 10) (2.41)

where D(A) is the single mode displacement operator given by (2.35) and S(r, ep) is

the single mode squeezing operator and is given as :

(2.42)

where r is the squeezing parameter which determines the strength of squeezing and ep

is the squeezing angle which determines the distribution between conjugate variables

and 0 ~ r < 00 and -'!r ~ ep ~ tt, While a is annihilation operator and at is the

creation operator for the single mode states and they obey the following commutation

relation.

[a,at ] = 1
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and all other commutation relations vanish,

When .A == 0 (2.41) reduces to single mode squeezed vacuum states (ssv).

I ~) == S(r, <p) I 0).

The squeezing operator obey the following relation

sf(1', <p) == S- (r. <p) == S (- r, ip )

and has the following properties

(2.44)

(2.45)

a cosh r - ateicp sinh r

at cosh r - ae-icp sinh r.

(2.46)

Similarly two mode squeezed states (tss) are defined as

The two mode displacement operator is given by.

and St(r, <p) is the two mode squeezed vacuum operator and is given by:

(2.47)

(2.48)

(2.49)

where A+, A_ and ~ are complex numbers and a, b are annihilation operators for each

mode and at, bt are creation operators and

[a, at] = [b, bt] = 1
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and all other commutation relations vanish,

When A+ = A_ == 0 (2.48) reduces to two mode squeezed vacuum states (tsv).

I~) == S(r,'P) 10,0). (2.51)

The most fundamental properties of two mode squeezed vacuum states are given below

a COSll r - btei cp sinh r

at cosh r - be-i cp sinh T.

(2.52)

The squeezed vacuum states under considerations are many particle states, hence the

resulting field can be called classical but the statistical property is highly different

from that of the coherent states. From that point of view, squeezed vacuum is purely

a quantum phenomenon having no analogue in classical physics.

Basically single mode and two mode squeezed states are two photon problems. The

displacement operator adds a constant to a, thus changing the mean values of the

position and momentum variables. The single mode squeezed operator mixes a and at.

Consequently, it induces a correlation between the position and momentum variables

that is independent of their mean values. The two mode squeezed operator mixes a

with bt and b with at. Consequently, it induces correlation between the position and

momentum of the different modes.

Theoretical predictions have shown that squeezing of quantum fluctuations can occur

in a variety of nonlinear optical phenomena like ,four wave mixing [50, 51], parametric
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amplification [52, 53, 54], harmonic generation [55, 56, 57]' multiphoton absorpt.ion

process [58, 59], optical bistability [HO], etc. Squeezed number states, squeezed coherent

states and squeezed thermal states are SOIne of the well kIIO\VIl squeezed states. Over

the past decade considerable efforts have been put into experiments aiming at the

generation and detection of squeezed states of the field. Slusher et.al. [61] ill 1985 first

performed a four wave mixing experiment in sodium vapour to generate squeezing

inside a resonant cavity.

In curved spacetime there is, in general, no unique choice of the {v} , and hence

no unique vacuum state. This means that we cannot identify what constitutes a

state without paricle content, and the notation of 'particle' becomes ambiguous. One

possible resolution of this difficulty is to choose some quantities other than particle

content to lable quantum states. Possible choice might include local expectation values

ofthe field operator. In the particular case of asymptotically flat spacetime, we might

use the particle content in an asympototic region. Even this characterisation is not

unique. However, this non-uniqueness is an essential feature of the theory with physical

consequences, namely, the phemomenon of particle creation.

Thephenomenon particle creation in a nonstationary background mertic using squeezed

state and coherent state formalisms are investigated ill the next chapter.
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Chapter 3

Quantization of the Scalar field and
Particle Creation

3.1 Introduction

Although the present Universe in its over all structures seems to be spatially homo-

geneous and isotropic there are reasons to believe that it has not been so in all its

evolution and that inhomogeneities and anisotropies might have played an important

role in the early Universe [62, 63].

The isotropic model is adequate enough for the description of the later stages of evo-

lution of the Universe but this does not mean that the model will be equally suited

for the description of early stages of the evolution, especially near the time singular-

ity [64].Also the most general solutions of the problem of gravitational collapse turns

to be locally anisotropic near the singularity [65, 66, 67]. Cosmological solutions of

Einstein's general relativity are also known ill which the expansion be anisotropic at



first near the singularity, and only later does the expansion became to be isotropic.

Interests in SUCll models have recently been increased [H2, 67, {)8~ 69].

To avoid postulating specific initial conditions, as well as, the existence of particle

horizons in isotropic models attempts have been made through the study of inhomo­

geneous anisotropic Universe [30, 31]. To bring about the observed isotropy ill such

models at sufficiently early times requires a dynamical mechanism for damping in­

homogeneity and anisotropy, One such mechanism is neutrino viscosity, which "vas

investigated in Bianchi type I, V and IX cosmologies, and was found not to be rapid

enough to bring about isotropy at a sufficient early stage [70, 71]. Another mechanism

coming into play at much earlier times (t "-I tp ) is the production of elementary parti­

cles by the expansion of the Universe. Zel'dovich [72] suggested that this process would

bring about isotropy near the Planck time. In anisotropic expanding Universe we ex­

pect that for t ~ tp the process of anisotropic damping is dominated by the created

particles. Therefore the investigations of particle creation mechanisms in anisotropic

models, near singularity are of great physical interest.

Zel'dovich [72] has considered a cosmological mechanism for the production of particles

near a Kasnar singularity. Zeldovich and Starobinskii [68] studied particle creation

and vacuum polarization of a scalar field with arbitrary mass in a srtong anisotropic

external gravitational field with a homogeneous spatially-fiat nonstationary metric. III

the presence of a strong gravitational field, it is natural to treat it in the classical

approximation.On the other hand, the particles which are created necessarly must be
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described within the spirit of the theory of quantized fields.

The behavior of classical scalar field Ileal' the cosmological singularity call be best

followed quantum mechanically by constructing all ( over ) complete set of coherent

states for each mode of the scalar field [73]. TIle coherent states are parameterized by

initial conditions for the scalar field. The states become the usual minimum uncertainty

'Nave packet if the time scale for the evolution of the background spacetime is much

greater than the periods of oscillation of the modes of the scalar field. Hawking

[74] has proposed. a way to avoid the requirement to specify the initial conditions

for each modes. The quantum state of the scalar field near the initial singularity

is inaccessible to an observer at the present time. Hawking [74] suggested that this

ignorance of the actual state of the quantized field could be best expressed by taking

a random superposition of all allowed states in the inaccessible region. Berger [73]

has imposed this randomicity principle by superposing the coherent states and studied

the expectation values of the energy-momentum tensor which gave rise to classical

value except for the zero-point energy term. He also constructed a coherent state

representation of the scalar field even valid near the singularity. But the problem

of particle creation was not discussed in that study which gave us the motivation to

study the saclar field in squeezed states and creation of particles in an anisotropic

background metric. In this chapter we will consider a minimally coupled quantized

massive scalar field in a spatially homogeneous and possibly anisotropic background

spacetime and study the problem of particle creation in coherent states and squeezed

states.
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3.2 Representation of scalar fields in squeezed states
and coherent states

The most important class of Friedmanu's cosmological solutions pertain to conformally-

fiat metric. However, the more general singular solution and, ill particular, the sim-

plest of these, whose three scaling factors SI, S2 and 53 along the three spatial axes

depend on the time in different ways are 110t conformally-flat. TIle general form of

such a background metric in which three-dimensional space is homogeneous and three-

dimensionally flat and possibly anisotropic ( with 1i = c = G = 1 ) is given by [68, 73]:

3

ds2 = -dt2 + L Sf(t) (dXi
) 2

i=l

(3.1)

In this background a minimally coupled scalar field of mass m satisfing the Klein-

Gardon equation:

(3.2)

(3.3)

(3.4)

can be expanded in odd and even parity modes.efz] can be put as

rjJ(x) = (27T") 2
3 2: [lJk(r) cosk.x+ q_k(r)sink.x]

k

wher Ek represents a sum over both odd and even discrete modes in the three-torus. V'J.L

is the covariant derivative and tL= 0, 1,2,3. Transformation to a new time coordinate

denoted by g~dr = dt for g~ = 818283 yields an equation for the mode amplitude qk:

d2
qk 2

dt2 +w (r)qk = 0

where

w% - 9 (t k: + m
2

)
i=l Sf
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where g = det LqJu/]' TIle action describing the scalar field is

I 1 }"3 r: [ .'> '> ..>]1(0) = "2 do :rv -g VcY - niro:

The energy-momentum tensor for the scalar fiels is then given by

(3.0)

2 6I(4J)
Fa 6gJ1.1~

8J1. <P 8v<p - ~91l V (l a86<p8a<p + m 2cP) ·

(3.7)

where oJ1. = ~Il' This tensor is assumed to be symmetric and obeys the law of COll-

servation of energy and this property call be expressed in the following mathematical

forms:

(3.8)

The background mertic under consideration is assumed to be not quantized. Therefore

for the metric (3.1), the diagonal components ( T as time coordinate ) of energy-

momentum tensor of (3.7) can be found as :

1 { (84J ) 2 [3 1 2 2 ]}Too ="2 Br + 9 tr Si2 (8i<P ) + m <p ,

and

(3.9)

~..n (3.10)

where i = 1,2,3

Since the background metric is spatially homogeneous, we may require the quantum

state of the system to be also spatially homogeneous, Thus we need consider only the

39



spatially homogeneous modes of expressions (3.9) and (3.10) and 21T-=f .fd:3:c applied to

the result yields the spatially averaged components of ( 3.~) ) and (:~.10) and they are

given by

(3.11 )

and

(3.12)

The expectation values of the diagonal components of the energy-momentum tensor

given by ( 3.11 ) and (3.12 ) respcetively represent the energy density and pressure

of the scalar field under consideration. Since the background metric is taken to be

anisotropic in the present study, these corresponding quantities can be conveniently

termed as anisotropic density and anisotropic pressure which are to be distingushed

from the corresponding quantities in an isotropic background metric case.

Consider the scalar field (3.3) and can be quantized mode by mode by defining

Pk = (3.13)

and imposing the usual canonical commutation relations. A complete set of orthonor-

mal states Ink) can be constructed to be eigenstates of a formal number operator

N k
t (3.14)- akak

where

.d1]k .
(3.15)ak -z dr qk + Z'f}kPk
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qk,Pk = -i .~ are 110\V operators. TIle C 111.UIlbcr complex function lJk is Cl solution to
("lk

the equation (3.4) such that the Wronskian is

(:~.1 ())

Here onwards we drop the suffix k for notational convenience. Now the scalar field

can be represented by different states and the expectation values of energy-momentum

tensor can be computed,

As all alternative to the number states representation we can have other states such

as squeezed vacuum states ( 1~) ), squeezed states (I A,~) ) and coherent states (I A)).

These states are constructed in such way that they are complete and normalized sets.

In the present study we use single mode as well as two modes of the aforementioned

states.

Todetermine the expectation values of the energy-momentum tensor in these states we

will first evaluate the expectation values of the ri, p2 in these states. The programme

is as follows:

Single mode squeezed vacuum states

The single mode squeezed vacuum states and their properties have been described

in Chapter 2.4. From the fundamental properties of squeezed vacuum states we can

obtain the following expectation values using (2.47) and (3.15):

(a2 ) _eil(J cosh r sin hrss'V - (3.17)

_e-il(J cosh r sinh r
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+ ) . 2(it a SS'l' = sinh T.

Now q and 1) are related to a and (Lt through tile equations (:t15) a11<1 (:~.1(») :

(3.18)

Therefore the expectation values of cl and p2 can be calculated and are given by:

(3.19)

17] 12 ( cosh'' r + sinh'' r )

(d*) 2 . (d )2 .(P2)ssv - - d: et V'cosh r sinh r + d; -e-t
V'cosh r sinh r +

dry 2

I dT 1 (cosh
2r+sinh2r)

Single mode squeezed states

The single mode squeezed states and their properties have been introduced in Chapter

2.4. As described above, we can evaulate (a2)sss and (at)sss, (ata)sss: followig the results

given by (2.42), (2.37) and (2.42):

A2 - ei<p cosh r sin hr

A· 2 - e-i<p cosh r sinh r

sinlr' T.

(3.20)

The expectation values of rl and p2 are computed using the above results :
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Two mode squeezed vacuum states

In Chapter 2.4 we have introduced two mode squeezed vacuum states and their l)rop-

erties. By using the properties of these states the expectation values of, cl and 1)2 are

obtained from (2.53) :

2'f}*2ei
CP cosh r sinh r + 2'f}2e-i cp cosh r sinh r +

Two mode squeezed states

(3.22)

The two mode displaced squeezed states or simply two mode squeezed states have been

introduced in Chapter 2.4. The expectation values of cl and p2 in these states can be

computed using (2.48) and (2.53) and are obtained as:

(q2)tss = 'T}*2 (A~ + A~ + 2A_A+ - 2ei
l{' coshrsinh r) +

'f}2(A~ 2 + A~ 2 + 2A~A~) - 2e-icp cosh r sinh r) +
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(
d )2d~ ().~ +).~ + 2)':)'~ - e- i

:; coshrsinhr) +

1 dl] 1

2

(21 A ~ 1
2 + 21 A 1

2 + 2A:~A + 2A~. A~ + 2(COSl1
2 r + SilI11

2 r))
dr

'Two mode coherent states

The t\VO mode coherent states have been introduced in Chapter 2.4 and their properties

are different from single mode coherent states. By using the same procedure adopted

in the above and using the proerties of two mode coherent states the expectation values

ofcl and p2 are obtained:

(3.24)

Now we are in a position to compute the expectation values of the energy-momentum

tensor in different states under considerations.

3.3 Squeezed vacuum and Particle creation

The energy-momentum tensor and its expectation values have a siginificant role in un-

derstanding the particle creation phenomena and related problems. Since the choice

of the quantum states is not unique the expectation values of the energy-momentum

tensor depend on the selection of quantum states chosen, In this section the expecta-
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tion values of the energy-momentum tensor are calculated ill various quantum states

and then the possiblity of particle creations ill all anisotropic background COSII10logy

is discussed. The form of such all anisotropic background metric is given by (3.1).

Investigations 011 the effects of gravity 011 quantum fields dated back at least since the

'Nark of Schrodinger [75]. Particle creation ill strong gravitational fields, ill particular

near the cosmological singularity has been considered by a number of peoplel'Zti, 77].

Particle creation in cosmological spacetime was first introduced by Parker [78], Sexl

and Urbantke [79], Zel'dovich and Starobinskii [68] in the late sixties. The basic

mechanism can be understood as parametric amplification of vacuum fluctuations ill

an expanding Universe.

Quantum aspects of particle production and renormalization of the energy-momentum

tensor in Bianchi type I and IX Universe were studied by various people. The reaction

back on the metric of the created particles has been studied by Lukash and Staroban­

skii. They assumed that the particles created at a time to large with respect to tp , was

sogreat that the evolution of the metric at times near to could be treated independently

of the created particles.

Parker [78] has studied spin 0 field of arbitrary mass and quantised this field in an

expanding universe by cannonical procedure and shown that particle number is an

adiabatic invariant, but not a static constant of motion and has obtained an expression

for the average particle density as a function of the states and shown that particle

creation occurs in pairs.
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(3.25)

Particle creation mechanism call be investigated by studying the expectation values of

energy-momentum tensor of the scalar field for various quantum states. Therefore the

expectation values of the energy-momentum tensor will be 110\V calculated for various

states under considerations using the results of the previous section. For calculational

simplicity we consider only the fth mode pieces of Too and '1i~ :

Sinqle mode squeezed uacuum.

The expectation values of the energy-momentum tensor in single mode squeezed vac-

uum states are obtaind by using (3.11) and (3.19). The temporal component and

spatial components of TJ1.£I are given by:

and

(~)ssv
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Single mode squeezed state

The expectation values of the energy-momentum tensor call be computed using (:~.11)

and (3.21) ill single mode squeezed states. The expressions for the temporal component

and spatial components are obtained :

and

(~~)SSl' = _1_{ [( d'f}* ) 2+ w2r( 2] (A2_ ei
4(J cosh r sinh r) +

321L'3g dr

[(~~) 2 +W21J2] (A*2 _ e-i~coshrsinhr) +

[I ~~12 + W211J12] (21 A /2 + 1 + 2sinh'' r)}

(3.27)

(Tt)ssv

Similarly using the properties of two mode squeezed vacuum states, squeezed states

and coherent states we can compute the expectation values of energy-momnetunm

tensor.

Two mode squeezed vacuum

The expectation values of the energy-momentum tensor ill two mode squeezed vacuum
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states are computed using (3.11) and (3.22) and are given by' :

(3.29)

and

The expectation values of the energy-momentum tensor in two mode squeezed staes

are computed by using (3.11) and (3.23) and lead to the following results:

_1 {[(d'fJ*) 2 + w21J*2]
32-rr3g dr

x (A~ + A~· + 2A+A_ - 2ei
't' coshrsinh r) +

[ (~;) 2 + w
2

1J2]

x (A~2 + A~ 2 + 2A~A~ - 2e-i't' coshrsinh r) + +

[1~;12 +w211J1
2]

(2IA+1 2 + 21A_12 + 2A~A_ + 2A+A~ + 2 (1 + 2sinh2r))}
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and

x (>..~2+ >..~2+ 2>"~>"~ - 2e- i
'f' cosh r sinh 1') +

[1~~12 + (2~g-W2) Iry12]

X (21)''+12+ 21>"_12+ 2>"~>"_ + 2>"+>"~ + 2(1 + 2sinh21'))}

The expectation values of the energy-momentum tensor in two mode coherent states

are also computed using (3.11) and (3.24). The diagonal componets of the energy-

momentum tensor for temporal and spatial components are given by :

(~~)tcs = 32~g{[(~~) 2+ w
2ry*2] (>..~ + >..~ + 2>"+>"_) + (3.33)

[( ~~) 2+ W2ry2] (>..~ 2+ >..~2+ 2>"~>"~) +

[I ~~12 + w21ry12] (21)''+ 1
2+ 21>"_12+ 2>"~>"_ + 2>"+>"~ + 2)}

and

(r£)tcs 32~gB;{ [ ( ~~) 2+ (2~g - W2) ry*2] (>..~ + >..~ + 2>"+>"_) + (3.34)

[(~~) 2+ (2~g_W2) ry2] (>..~2+ >..~2+ 2>"~>"~) +

[1~~12 + (2~g-W2) Iryf] (21)''+12+21>''_12+2>''~>''_ +2>"+>"~ +2)}
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(To 0) = {J, gives the energy density and (Ti i) == P, gives tile pressure of the source

field. Since the background metric under Ollf consideration is all anisotroic metric,

»e call the energy density and pressure as anisotropic energy density and anisptropic

pressure ill order to distingush them from the isotropic case.

Now, from the expectation values of the energy-momentum tensor obtained for various

states, expression for the corrsponding anisotropic energy density and pressure call be

obtained,

The expectation values of the temporal component of the energy-momentum tensor

gives the anisotropic energy density and ill single mode squeezed vacuum states it can

be written as:

Po + Pssv (3.35)

where

[I 1
2 ]1 dry 2 2

Po = 3211"3g dT + W 11]1

is called vacuum energy density.

(3.36)

The expectation values of spatial components of the energy-momentum tensor give the

anisotropic pressure and in single mode squeezed vacuum states it can be written as:

where

(Ti i)ssv = Po +Pssv

[I I? (2 )]1 _ dry - k i 2 2

Po = 327r'3gSf dT + 2Sfg - w 11]1
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is called vacuum pressure.

The expectation value of energy-momentum tensor ill single mode coherent states

considered by Berger [73] SllO\VS that the energy density call be written as zero-point

term plus an additional term The additional term corresponds to the classical value.

But the present study shows that the similar situation occurs for single mode squeezed

states calculations. But we are primarly interested ill squeezed vacuum states. TIle

vacuum expectation values of energy-momentum tensor include the energy density and

the pressure of the ordinary zero-point term plus extra term, which can contribute to

the zero-point fluctuations and can provide quantum results. The vacuum value of the

energy-momentum tensor defined prior to any dynamics in the background field gives

us all the information about the particle creation and vacuum polarization. Therefore

one can expect particle creation in squeezed vacuum state formalism. Fig3.1 shows

that when r =1= 0 and <.p =1= 0, there is maximum value for Pssv, the scale factor is chosen

such that Po = o. The same arguments can be extented to two mode squeezed vacuum

states with the only exception that mode-mode correleation terms are also present in

the expression for (Too) and (Tii)'

In curved spacetime the choice of vacuum is not unique and therefore one needs to

correleate the evolution of one vacuum state at a time to to another vacuum state at a

later time and can be done by Bogolubov transformation method. The transformation

coefficients satisfy the following condition.

(3.39)
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Let tlS consider the special case of a metric whose evolution is such that 8 1,S2,83 Ir=-oc

and 81,82,83 Ir=+oo = 1. Now consider a single mode k. As T ~ -oo,let the function

TJ(T) corresponding to this mode have the form TJ(T) = e-iDT,where n = Jm2+ ['2,

Then, as T ~ +00 this same function 1] has the asymptotic form

(3.40)

where a and 13 safisfy the condition given by (3.47) .13 =1= 0 ill the general case. Thus

when the amplification of the waves occures,its energy increases by 1+21131 2 times. The

same thing also pertains to the second elementary wave: if 1] = eiOT as 1]~ -00, then

for 'fJ ~ +00 one has

1] = a*eiOT + 13*e-i o T
, (3.41)

The energy of this wave also increases by 1+21131 2 times. An arbitrary linear combi­

nations of both waves with different signs of the frequency for T ~ -00 obviously can

be both intensified and weakened.

From the quantum point of view, the energy increase associated with this process

implies the creation of new quanta of the field. In the classical theory the increase of

energy is proportional to its initial magnitude by virtue of the linearity of the field

equations. The quantum theory of Bose particles is equivalent to a classical theory

with a nonvanishing energy hfl/2 of the state without any particles, and therefore

gives a non-zero value for the production of particles from this state.

Now in the present context as T ~ +00 the function 1] has the asymptotic form

(3.42)
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where

I COSll r 1
2

- I sinh r 1
2 = 1

Thus, when the amplification for the wave occures, its energy is increased by 1+21 sinh r 1

2

times. The same thing also pertains to the second elementary wave, then as 1] -t +00

1] = cosh reiOT + sinh re-i<peiWT (3.44)

The energy of this wave is also increased by 1+21 sinhr 12 . The wave equation is

invariant with regard to the replacement of 7 by -7

Parker [78] has ShOWl1 that the probability of observing particles at time t is

(3.45)

where Q and f3 are Bogolubov transformation coefficients and in the present context,

one can identify I Q 1
2 by cosh/ rand / f3 /2 by sinh'' r and they satisfy the condition

(2.47). Therefore, the probability of observing particles in a squeezed vacuum can be

written as

r, = 1 sinh r 1

2

qv cosh r
(3.46)

Also, the probability of observing nk pair of particles at t in the state 1 0) where one

particle is in the mode k and the other in the mode -k for some set of occupied modes

{k} is

(3.47)

53



The probability of observing the n'k pair ill the squeezed vaCUlIIIl is then given by

[(
0) 1tk ]sinh r - 1

Pllk sqr == -- ")If 1cosh ,.1 1cosh r 1-
(3.48)

where nk == 1,2, ... Fig 3.3 shows behaviour of probability of observing pair of parricles

in squeezed vacuum states, which reaches Cl maximum and then decreases.

Now in terms of barrier reflection coefficient R and tunneling coefficient D, the particle

creation condition is

R==l-D

Grishchuk and Sidorov [42] showed that D == 1
cosh2 r '

(3.49)

Therefore the particle creation

condition is fully satisfied in the squeezed vacuum state formalism. The increase in

energy is proportional to 1 + 21 sinh r 12•

The essential idea of creation of squeezed states of light is that a nonlinear medium acts

like a meterial with a time-dependent dielectric function when a strong, time-varing

classical electromagnetic field is applied. Photon modes propagating through a time

dependent dielectric will undergo a mixing up of positive and negative frequencies,

and photons will be quantum mechanically created into a squeezed vacuum state.

The basic idea of the present work is that a similar programme is performed for

particle creation in the early Universe. Time dependent background gravitational field

acts as an nonlinear medium ( parametric amplification ) which squeezes the scalar

field vacuum and hence squeezed vacuum states can be taken as the initial states for

calculationg the expectation values od the energy-momentum tensor.
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The gravitationally induced pair creation is analogous to excitation of an oscillator or

pendulum when the length l of the string is changed. For the pendulum, I{I is larger

than the charactristic frequency w. Similarly (HIC call argue that the probability of

creation of pair of paricles of energy io, will be significant when I~I is larger than Wi.

Therefore ill this case the probability of paricle creation ill different directions will be

different. So the produced particles may move in different directions and this gives

rise to anisortiopic pressure.

3.4 Standard cosmology and squeezing effect

In this section we study the semiclassical quantum gravity 011 quantum FRW cosmo-

logical model by using the squeezed states and coherent states formalisms. Since the

quantum field preserves the unitarity throughout evolution, the application of squeez-

ing to the FRW model is expected to be particuarly useful in probing the quantum

effect of matter field on gravity.

Let us consider the FRW Universe in which the classical Einstein's equation is

(~) 2 +~ = 811" ( ep2 + dV( tp) )
S 82 3mp 2 d<p

and the classical field equation is

In semiclasical quantum gravity Einstein's equation can be written [9, 15, 27]:

(8)2 k _ 811" S3(H)'" .
S + S2 - 3mp
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and

where

m~ <J.>(<p, t) (:~.53)

H (3.54)

Now we call represent the semiclassical Einstein's equation ill squeezed vacuum states,

squeezed states and coherent states. Let us construct the the Fock space by introducing

creation and annihilation operators:

a

-i [1j(t)-n-2- 831j(t)ep2]

i [~*( t)-n-2- S3~* (t)ep2]

(3.55)

We require that at and a are to be invariant operators:

ili~at + [at, il]

ili~a + [a, il]

then 1] satisfies the equation

From the usual commutation relations it follows that

o

o

o.

(3.56)

(3.57)
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In this context tile position and the momentum operators are given by

(:~.5D)

Now we call calculate the expectation value of the Hamiltonian ill squeezed states and

coherent states.In the present study we choose the potential to be of the form:

(3.60)

In the single mode squeezed vacuum states the expectation values of the Hamiltonian

is obtained:

(iI) ssv ~g'3{[7j2+m2'1l] (-ei'f'coshrsinhr) +

[.,j*2 +m21J*2] (-e-i'f'coshrsinhr) +

(3.61)

The expectation values of the Hamiltonian in squeezed states can be calculated:

(H)sss = ~g'3{['1]2 +m21J2] (>.2 - ei'f'coshrsinhr) +

[.,j*2 + m21J*2] (>.*2 _ e-i'f' cosh r sinh r) +

(3.62)

Similarly in single mode coherent state the expectation value of the Hamiltonian is

obtained:

(3.63)
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Now we will consider tIle semiclassical Einstein's ill squeezed vacuum,

(8)2 A~ 87T" A

-8 + 52 = -3-(H)SSl'
nlp

87T"
-3- (Ho + H ssv )

rn,p

where

~S3{[1}2 + m 21J2] (-ei'Pcoshrsinhr) +

[~*2 + m21J*2] (_e-i'P cosh rsinh r) +

and

is the zero-point energy.

(3.64)

(3.65)

(3.66)

Insqueezed state representation the semiclassical Einstein's equation takes the follow-

ing form:

(8)2 k- +­
8 82

87T" A

-3(H)ssvm p

8~ 8~ 8~
- -3-Ho+ -3n.; + -3-Hssv

m p m p m p

(3.67)

where Hssv is given by (3.65) and
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Similarly ill coherent state representation the serniclassical Einstein's equation is O[)-

tained as:

(8)2 A~- +­
S S2

(3.69)

where Ho is given (3.66) and Hscs is (3.68)

3.5 Conclusions

We have examined the problem of particle creation near the cosmological singularity

by means of single mode squeezed vacuum state formalism. The particle production

probability is found to be fully dependent upon the associated squeezing parame-

ter. The squeezed vacuum gives rise to fluctuations in anisotropic energy density and

anisotropic pressure. Particle creation near the singularity in this scenario is very

high and hence it might account for the initial anisotropic damping. The calculations

are done in single mode as well as two mode representations Plots for energy density,

probability of observing particles with squeezing parameter are also drawn. When

the squeezing parameter becomes zero all results are consistent with that of coherent

states formalism. From these results we can conculde that for creating a large number

of particles near the singularity quantum phenomena are inevitable and it seems that

squeezing phenomenon can play a major role in accounting for the particle creation in
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the early Universe, Therefore the gravitationally induced particle creation ill squeezed

vacuum states may lead to fundamental 11C\V insights ill cosmology,
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Fig 3.1 Plot for squeezed vacuum energy density Pssv with squeezing parameter rand

squeezing angle ({J for single mode case.

Fig 3.2 Plot for squeezed vacuum energy density Ptsv with squeezing parameter rand

squeezing angle ({J for two mode case.
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1 • 4 n_

Fig 3.3 Plot for probability of observing pair of particles squeezed vacuum states Pn kSqv

with squeezing parameter r and squeezing angle nk for single mode case.
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Chapter 4

Squeezed states and Semiclassical
theory

4.1 Introduction

At present there does not exist a complete quantum theory of gravity and hence the

gravitational field of quantum system is being described by a semiclassical theory

based on Einstein's equation and in this theory Einstein's equation takes following

form (G=l)

(4.1)

where Gp,v = Rp,v - 49p,vR, is the Einstein tensor and (Tp,v) denotes the expectation

value of the energy-momentum tensor of the matter field under consideration. This

theory is almost certain to fail at the Planck scale where quantum nature of gravity

becomes important. It can also fail far away from Planck scale if fluctuations in the

energy-momentum tensor become relevent. Tile serniclassical theory gives reliable
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results when the fluctuations ill the energy-momentum tensor are 110t too large, le

when [80]

(4.2)

Forquantum states ill which the energy density fluctuations are large, the semiclassical

theory based UpOll (4.1) may not be valid.

In this chapter we will explore the issue of the limit of validity of tile semiclassical

theory by evaluating the expectation value of the energy-momentum tensor using the

formalisms of squeezed states and coherent states. The study of the validity of the

semiclassical theory will be probed in a spatially homogeneous and possibly anisotropic

background metric. The form of such a metric is given in (3.1) and is minimally coupled

to the scalar field which has been discussed in Chapter 3.

4.2 Limits on the semiclassical theory

Todiscuss a criterion for the validity of semiclassical gravity theory we have to consider

the energy flux of gravitational radiation in linearized gravity produced by matter field

in both the semiclassical theory and in linear quantum theory. In the semiclassical

theory based upon (4.1), the flux depends on products of expectation values of stress

tensor operators, whereas in a theory in which the metric perturbations are quantized,

it depends upon the corresponding products of expectation values [80].

The semiclassical theory of gravity holds good only if the fluctuations in the energy-
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nomentum density of the quantum field are not large [80]. This means that \VC have to

evaluate (~T)2 = (T~v) - (Tp.// ) '2 and it must be small compared to (T~v)' TIle evaluation

of (~1)'2 will be extremely cumbersome, For the sake of calculational simplicity \V(-~

will evaluate temporal and spatial components of (~T)'2 separately. The temporal

component leads to fluctuations ill energy density while the spatial components lead

- .) - .)

to fluctuations ill anisotropic pressure. TIllIS we find first expressions for 'P~o and 'P;i

and are respectively obtined from (3.9) and (3.10):

(4.3)

and

where

(4.5)

- 2 - ?

The expectation values of 'Poo and rp;i can be calculated in squeezed states and eo-

herent states and then the fluctuations in energy density p and pressure p can be

studied. Thus the validity of semiclassical theory can be understood by evaluating the

dimensionless quantity:

(4.6)
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for energy density fluctuations and

(4.7)

for pressure fluctuations.

If the values of f#y and IJr are very small compared to unity then it means that

fluctuations are small and semiclassical theory holds good.

4.3 Squeezed states formalism and validity of semi­
classical theory

In order to study the validity of semiclassical theory of gravity for various represen-

tations of the scalar field we have to compute the above mentioned dimension less

quantities. To obtain these quantites we have to compute the square of the expec-

tation values of the energy-momentum tensor and the expectation values of squared

energy-momentum tensor for each states under consideration. The expectation values

-2 -2
ofTkoo and Tkii can be calculated in squeezed vacuum states, squeezed states and eo-

herent states by using their properties which have been introduced in Chapter 2.4. In

addition to the earlier calculations we have to find the expectation values of q4, v',

r{p2 and p2cf in each states and they are as given below.

Single mode squeezed vacuum

The expectation values of q4,p4, cfp2 and p2cf in single mode squeezed vacuum states
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are obtained by using (2.44), (2.46) :

(4.8)

-l (4 4 .).) )I 7} I COSll r + sinh r + 2 COSll- r sinlr' r

(P4) ssv ( ~~*r (e
2i

<P cosh" r sinlr' r) + (~~) "' (e -2i<; cosh r sinh1') +

1

it171-l (4 4 <) <) )dT cosh r + sinh r + 2 cosh- r sinhr

(irj)ssv (~~*)2r]*2 (e
2i'{) cosh2r sinh'' r) + (~~) 2fJ2 (e-

2i
<; cosh'' r sinh'' r) +

I~~12IfJI2 (cosh4 r+sinh" r +2 cosh'' sinh'' r)

(rjp2)ssv _ fJ*2 (~~*)2(e2i'{) cosh'' r sinh'' r) + fJ2 (~~) 2(e-
2i'{) cosh/ r sinh'' r) +

IfJI21 ~~12 (cosh4r +sinh" r +2 cosh" r sinh'' r)

-2
Now the expectation value of T 00 is obtained by using (4.3) and (4.8): Thus

(~200) ssv = (32~3g)2{[(~~)4+W4fJ*4 +w2 ( ~~)2fJ*2 +W
2fJ*2

( ~~) 2] (4.9)

x (e2i
'{) cosh'' rsinh'' r) +

[(~~)4+W
4fJ4 +w

2
( ~~) 2fJ2 +W

2fJ2
( ~~) 2]

X (e-2i'{) cosh.' rsinh'' r) +

[1~~14 +w41fJ14+W21~~12IfJI2 +W2IfJI21~~n
x (cosh4 r + sinh" r + 2 cosh" r sinh'' r)}
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The square of the expectation value of the 1io is computed from (3.25):

(
1 ) 2{ [(dT}~)·1 -1 •.1 ~ (dT)*) 2.~ ').2 ((lTJ~):2]-- -- +W 1") + Lv' - 1} +W-IJ -

32iT:3g dr dr dr

X(e2i~" cosh'' r sinh" 1-) +

[(li1
7) 4 +W.I1J4 +w2 (liT}) 21J2 + w21J2 (dTJ)~]

dr dr dr

X (e- 2i
<P cosh" rsinh'' r) +

[1~~14 +w
4

11J1
4 +w21~~1211J12 +W211J121~~n

x (cosh4 r + sinh" r + 2 cosh'' r sinh/ r) +

[(~~ )2(~~) 2+W
41J*21J2 +w

2
( ~~) 21J2 +W

21J*2
( ~~) 2]

x (cosh2
r sinh2

)

[(~~ ) 21 ~~1
2
+ W41J*211J12 +w

2
( ~~ ) 2'7]12+w217]1 27]*2]

x (cosh2r + sinh/ r) (ei<P cosh r sinh r)

[(~~)2(~~)2+W
47]27]*2 +w

2
( ~~) 27]*2 +W

27]2
( ~~) 2]

x (cosh2 r sinh2
)

[(~~) 21 ~~12 +W
4
7]

2
11J1

2 +w
2 (~~)217]1

2+ W217]127]*2]

x (cosh2 r + sinh'' r) (e -i<p cosh r sinh r)

[1~~12(~~)2 +W417]127]*2+W217]12(~~)2 +W21~~127]*2]

X (cosh2 r + sinh'' r) ei<p (cosh r sinh r)

[I ~~r (~~) 2+w417]1 21J2 +w217]12(~~)2+ w21 ~~12 7]2]

X (cosh2 r + sinh'' r) (e-i<P cosh rsinh r)}
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Therefore tile dimcnsionaless quantity for tile density fluctuations call be computed iu

squeezed vacuum by applying (4.9) (111(1 (4.10) ill (4.f»:

4 cos cp cosh rsinh r(1 + 2 sinh2 r) - 2 cos 2cp cosh2 sinh2
l'

2 cosh'' r sinhf r (1 + cos 2cp) + 4 sinh' (1 + sinh' r) + 1
(4.11 )

- I) - I)

The expressions for (P;i) ss» and (Pi i ) :Sll can be calculated by a similar procedure

and the dimensioness quantity for pressure fluctuation in squeezed vacuum states is

obtained using (4.7) :

8p
-

(P2) svs

4 cos cp cosh l' sinh l' ( 1 + 2 sinh21') - 2 cos 2cp cosh2sinh21'
2 cosh/ r sinh'' r (1 + cos 2cp) + 4 sinh'' (1 + sinh21') + 1

(4.12)

Lengthy but straight forward algebra that we employed in the above case can be

extented to other states also and we find

Single mode squeezed states

The dimensionless quantity for density fluctuation is obtained using (4.6)

-2A*2 - 2A2 - 4sinh21' (A2+,A*2 + IAI2) +'1/11

where 1/Jl and 1P2 are given by

- 4 cos cp cosh r sinh r ( A2+ A·2- 1 + 2 sinh2r )
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+4 cos <p cosh T' sinh r (1 + 2sinh' T')

'V:! -4 cos <p sinh r cosh r (,\2 + ,\,2 + 21,\1:! + ,\ + '\')

+4 sinlr' r (2,\2 + 2,\,2 + I'\I:!) + 2 coslr' r sinh" r (1 + cos 2<p)

+4 sinh' r(1 + sinh' r)

The dimensionless quantity for pressure fluctuations ill single mode squeezed states is

obtained:

£Jp

(p2) sss
(4.15)

Single mode coherent states

Now we will calculate the dimensionless quantities given by (4.6) and (4.7) in single

mode coherent staes. Thus we find:

fJp I -2,X*2 - 2,X2 I
(p2) scs = ).4 + ).*4 + 61)./4 + 41).1 2 + 4).21).12 + 4).*21).12 + 1

(4.16)

For the pressure fluctuation study the dimesionless quantities in single mode coherent

states is obtained by using (4.7) :

£Jp I -2,X*2 - 2,X2 I
(P2) scs = ).4 + ).*4 + 61).14 + 41,\1 2 + 4).21).1 2 + 4).*21).1 2 + 1

(4.17)

The calculations performed in single mode states can be extented to two mode states:

Two mode squeezed vacuum
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In this case the dimensionless quantity for density fluctuation is obtained :

bp = I~ cos cp.;osh l' ~)inhr(cosh:! ,. + sinh:!r).)- 4 cos.?cp cosh:'! ~ sinh:'! T'I (4.18)
(p2) is» 4 cosh" r sinlr' 1'( 1 + cos 2~) + 8 sinlr' '1'( COSll- r + sinh" 1') + 2

The dimensionless quantity for anisotropic pressure fluctuation is

bp = 18cos c.p cosh l' sinh r(cosh
2

T' + Sillh
2 r) - 4 cos 2c.p COSl1

2
r Sill112 '1'1 (4.19)

(p2) tsv 4 cosh" r sinh' r(l + cos 2'P) + 8 sinh' r( cosh" r + sinh" r) + 2

Two mode squeezed states

The dimensionless quantity in t\VO mode squeezed states is obtained :

£Jp = 1-4 cos c.p cosh r sinh r(A~ + A~
2+ A~ + A~

2+ 4 sinh
2
r - 2) + Cl (4.20)

(p2) tss A + B + D

where

4A~A_ + A+A~ + A~
3
A+ + 4A~A:

3 + 4A~A~ + 4A~A_ +

4A~ 21A+1 2 + 4A~2IA_12 + 2 + 6A:A~ + 6A~A~ + 6A~2A~ + 6A~A~2

B - 4cosh2rsinh2r(1 + cos2c.p) + 8sinh2r(cosh2r + sinh/ r] + 2

c - -4sinh2r(A~ + A~2 + IA+1 2
) - 4sinh2r(A~ + A~2+ IA_12)

-2A~ - 2A~ - 2A~ - 2A~ - 4A;A+ - 4A~A~ - 4A~A_ - 4A+A~ +

8 cos c.p cosh r sinh r(cosh2r + sinh2r) - 4 cos 2c.p cosh2r sinh2r

(4.21)
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The dimcusionless quantity for anisotropic pressure Huctuation ill t\VO mode squeezed

states call be obtined by using (4.7):

(1) = 1-4 cos <p cosh r Sillh1'(A~ + A~
2 + A~ + A~ 2 + 4 Sil111~ r - 2) + Cl (4.22)

(1J2)tss A + B + D

where A,B,C and Dare given by (4.20).

Tuio mode coherent states

Similarly the dimensionless quantity for density call be also computed in two mode

coherent states :

6p 1-2A~ - 2A~ - 2A~ - 2A~ - 4A+A+ - 4A~4A~ - 4A~A_ - 4A+A~1(4.23)
(p2) tcs = At + A~ + 61A+1

4 + 61A_14 + A+4 + A~4 + 4A~IA+12 + A

where A is given by (4.20)

The dimensionless quantity for anisotropic pressure fluctuation :

6p 1-2A~ - 2A~ - 2A~ - 2A~ - 4A+A+ - 4A~4A~ - 4A~A_ - 4A+A~1 (4.24)

<:JP) tcs = At + A~ + 61A+ 1
4 + 61A_1

4 + A+4 + A~ 4 + 4A~ IA+ 1
2+ A

where A is given by (4.20)

Fig 4.1 shows the variation of energy density Pssv with squeezing parameter rand

squeezing angle <pe Fig 4.2 represnts the variation of -!l.E!..-(b.» with rand <pe From this
p: ssv

graph we can see that f#r = 0 for r = 0, <p = 0 and increases with rand cp. Plot for

f#l for coherent states shows that the fluctuation is less compared to unity (figA.3).

The same arguments can be extented to the pressure fluctuation studies also. Hence

the semiclassical theory may break down in squeezed states formalisms.
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4.4 Disscussions and conclusions

In this chapter w« have examined the validity of semiclassical theory using of squeezed

vacuum states, squeezed states and coherent states. Tile semiclassical theory is valid

only when the fluctuations ill the energy-momentum tensor become very small com­

pared to unity. If the cosmological perturbations were generated quantum mechani­

cally, they can be represented by the squeezed vacuum states. When vacuum states are

squeezed an increase ill the variance of phase which means a decrease in the variances

of amplitude.

In the case of two mode squeezed vacuum states the calculations show that the result

is twice the result of using a single mode squeezed vacuum state, while this is not so

for the two mode coherent states and two mode squeezed states.

In the case of squeezed vacuum state, fluctuations can be expected to be large because

of the quantum nature of the system involved, This implies a break down of the

semiclassical theory near the initial singularity. The initial anisotropic damping can

be interpreted as due to the particle production. If the cosmological perturbations

were generated quantum mechanically we believe that squeezed vacuum states are

good candidates as non-vacuum initial states for understanding the particle production

phenomena. Squeezing of the vacuum of the scalar field is achieved by means of the

background gravitational field and squeezed vacuum states evolve to squeezed states

and later to coherent states in the process of cosmological evolution.
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From the present study we call conclude that the coherent states and squeezed states

representations of the scalar field are consistent with the semiclassical theory, There­

fore we call say that tile squeezed vacuum state is a possible quantum states to describe

the early Universe. and during the evolution of the Universe quantum effects are dem­

inishing and squeezed vacuum evolve to squeezed states and then to coherent staes

which resembles the classical states.

74



Fig 4.1 Plot for squeezed vacuum energy density Pssv with squeezing parameter rand

squeezing angle <p

. Fig 4.2 Variation of density fluctuation parameter ~ 555 with squeezing parameter r

and squeezing angle <p for real A.
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Fig 4.3 Variation of density fluctuation parameter T#>ssv with squeezing parameter r

and squeezing angle <p .

Fig 4.4 Variation of density fluctuation parameter T#>tsIf with squeezing parameter r

and squeezing angle cp.
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Fig 4.5 Variation of density fluctuation parameter ..£2...(62) with real A.
p scs
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Chapter 5

Quantum effects in Black hole
radiation

5.1 Introduction

Black holes are objects \vhose gravitational fields are so strong that no physical bodies

and or signals call escape to infinity from them. The concept of black holes arose

in Einstein's General Relativity, after Schwarzschild obtained first the exact solutions

of Einstein's equations in vacuum. A black hole is formed \vhen a body of mass M

contracts to a size less than the so called gravitational radius "s = 2ff, where G is

Newton's graviational constant and c is the speed of light. Schwarzschild's solution

possesses singularity at r = 0 and also on the gravitational radius surface ie at r = "o:

Theoretical predictions made by Hawking in mid 1970's drew great attention of physi-

cists on black holes. He found that as a result of the instability of the vacuum in the

strong gravitational field of a black hole, black holes can act as sources of radiation.
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He found that if t he black hole mass is less than 101:'")9 it would decay over a time

shorter than tile age of tile universe. Such black holes, 110\V called primordial black

holes, might have been formed at a very early stage of the Universe's evolution. He

also found that quantum creation of particles takes place ill neutral nonrotating black

holes and that black holes create a11d. emit particles as if it were a black body heated to

a temprature TH = 8ir1/G. III the process of Hawking radiation, a black hole loses mass

so that its surface area decreases. In the general case of a black hole having charge

and angular momemtum, tile radiation accompanies the processes which remove all­

gular momentum and electric charge. The classical theory of black holes is based on

Einstein's General Relativity. The Schwarzschild black holes and Kerr black holes are

exact classical solutions of Einstein's field equations. Classical theory can not account

for the predictions of Hawking. The effect of black hole emission is the consequence

of the quantum theory of black holes and leads to black hole theomodynamics. The

quantum theory of black hole is based on the quantum field theory in curved space­

time. Hawking has showed that the black hole emission is thermal and is black body

radiation in nature.

In any classical process, the area A of the black hole and hence its entropy do not

decrease, [81]i.e.,

(5.1)

But the quantum evaporation reduces the area of black holes and hence the equation

(5.1) is violated. Since the black hole evaporation is thermal in nature, the entropy

under consideration need not be the entropy of tile black hole alone but it comprises
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the entropy of the black hole and the entropy of tile matter out side tile black hole :

5 == 5 13 11 + s" (5.2)

Inany physical process involving black holes, the generalised entropy S do 110t decrease,

i.e., 68 ~ 0 and this law is known as generalised second law of black hole physics. III

Hawking radiation, black hole absorbs negative energy and its area decreases and so

does the mass. But the temperature and the luminosity rise and hence the black hole

has a negative specific heat.

We will now apply the concept of squeezed states develpoed earlier to black hole

radation process. We first consider Schwarzschild black holes and then extent the

calculations to rotating black holes. Before considering the black radiation in squeezed

states we briefly discuss the Hawking effect first.

5.2 Hawking effect

Hawking's discovery [82, 83] of the thermal radiation of black holes indicates of a

profound relationship between black hole physics and thermodynamic laws. It fur­

ther shows that quantum phenomena are also essential to understand the radiation

processes of black holes.

Consider a black hole formed at some time in the past by gravitational collapse. Fol­

lowing Hawking [83], let us assume that no scalar particles were present before the

collapse began, In this case, the quantum state is the in-vacuum: I 'ljJ) =1 O)in. The
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in-modes,fwlm are pure positive frequency 011 L, SO fJJlnl ~ C-i",-'l' as v ---f -00, where

v = t + ris advanced time coordinate, Sirnilarly, the out-modes, F~lm" are pure posi-

tive frequncy 011 r , so Fwlrn "J e':" as LL --t 00, where 'u = t - ,.1' is the retarded time

coordinate ( Fig 5.1 ). Now as discussed ill Chapter 2 we have to find the relation

between thse t\VO sets of modes ill order to compute the Bogolubov coefficients and to

explain the particle creation processes. Our main concern is ill particle emissiom at

later times. Sincee these modes had all extremely high frequency during the passage

through the body, we may describe their propagation by use of geometrical optics

[83,84].

A u = constant ingoing ray passes through the body emerges as a v = constant out

going ray, where u = g(v) or equivalently, v = g-l(U) = G(u). The geometrical optics

approximation leads to the following aymptotic forms for the modes

fwlm
-iwv on 1- (5.3)~ e ,

fwlm ~
e-iwG(u) on 1+,

and

Fw1m
-iwv on 1+ (5.4)e ,

Fwlm
e-iwg(v) on 1-,

Hawking gave a general ray-tracing argument which led to the result that

u = g(v) (5.5)

v = G(u) - Vo - Gem,
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where M is the IllClSS of the black hole, C is a constant, and Vo is the limiting value of

u for rays which pass through the body before the horizon forms.

From (5.3), the out modes, when traced back to 1-, have the form

Fwl-m rv 0, V > Vo

wher e = 4JvIiw 111[(vo - 'V) / C] ·

(5.6)

Now the Bogolubov coefficients are obtained by taking the Fourier transformation of

the function:

The angular coordinates is same for each term in the above equation. Thus:

* 1 ~'1° iuJv eaw1wlm = - - dve e,
27r W -00

and

(5.7)

(5.8)

f3wlwlm (5.9)

or, equivalently

1 ~'[d I iw'v e= - - ve e,
27r W 0

(5.10)

f3w1wlm (S.11)
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Now using the following result

i. l I - i ...;,./ r (-)
( V t: c

. c

\ve may write

o. (5.12)

Id I iw'v eve e
o

(5.13)

where 8' = 4Miwln[-(vo - v)/CJ and 8 1 = 4NJiwln[-7ri + lll[-(VO - v)/CJ. Also using

V' -+ -v' and In[-(vo - v)/C - if] = -7ri + In[-(vo - v)/CJ.

Now comparision of (5.13) with (5.10) and (5.11) leads to:

(5.14)

Then using the condition (2.24) in the present context, the Bogolubov coefficients can

be obtained as:

L (IO:wlwlml 2
- e411"MWI,BwlwlmI2) = L (e411"Mw- 1) l,Bwlwlml 2 = 1

~ ~

Therefore the mean number of particles created into mode (wlm) is:

This exhibits the nature of the Planck spectrum with a temperature

which is known as Hawking temperature.
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5.3 Black hole radiation and entropy generation

Hawking's calculations [82, 83]sllo\ved that if quantum effects were taken into account,

the radiation from a black hole has the characteristic nature of a black boby spectrum.

Let a system OCClIPY the vacuum state before the black hole was formed. After the

formation, the black hole becomes a source of radiation, The mean number of particles

radiated ill the mode h~ can be written by considering I D) to be the vacuum state,

then ( INI) is [81,85]

(n INI n) = '" 1
eTii - 1

where N = ata and TB is the Hawking temprature.

(5.18)

Hawking temperature and the entropy of black hole are related by the equation [86]

(5.19)

where S is the entropy associated with it, M is the mass parameter, J is the angular

momentum and Q is the charge.

Now the radiation emitted by a black hole can be considered to be in single mode

squeezed vacuum states, squeezed states and coherent states.

Single mode squeezed vacuum

First we consider that the radiation coming from a black hole is in single mode squeezed

vacuum state. The functional form of the radiation spectrum in squeezed vacuum
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follows from (2.45) and (5.19) and it takes tile following form

(~ I N Ie = ~1 .
e,1Ji - 1

(5.20)

From the properties of squeezed vacumrn states introduced ill Chapter 2.4, we call

write

(~ I N I~) = sinl12
T. (5.21)

which accounts to spontaneous creation of particles. Using (5.20) and (5.21) we call

write

sinh/ r

Thus we find :

TB =

A plot of TB with r is given in fig.5.2.

From (5.15), (5.17) and (5.23) we find

1

eTH -1

w

e-87rGMw

(5.22)

(5.23)

(5.24)

This result shows that the Hawking temperature depends on squeezing parameter

through (5.23). Thus we find that (5.24) gives Hawking temperature ill terms of the

squeezing parameter.

Now our programme is to calculate the change in entropy produced due to black hole

evaporation in squeezed vacuum state formalism. Following the definition of entropy
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given by Shannon's information theory [~7] we call write:

(5.25)

where p is the density matix.

Since the actual values of € forming the squeezed state I €) are 110t known we may

assume a Gaussian distribution for €values, We may also assume that the state of the

system is

(5.26)

Superposition of the squeezed vacuum state in a random manner may lose the phase

information of the amplitude and hence only / a(€) /2 may be specified. This allows

construction of a density matrix in the following way [73]

(5.27)

where we have assumed that the random phase approximation replaces

(5.28)

with

(5.29)

The diagonal matrix elements of the density matrix are I a(~) 1
2

I ~) (€' I for each value

of~. The required Gaussian distribution is given by.

1O"(~) 1
2

1 [_1~12]
1r(N) exp (N)
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Since

we find

In squeezed vacuum representation (5.25) call be written as

(5.31)

(5.32)

S (5.33)

Now using the properties of r function and (5.21) we find

Now b,.S = S - So , where So is the initial entropy which is defined as [88]

and using the properties of r function we obtaind

Hence the change in entropy produced due to black hole radation is given by

b,.S = Insinh2
T.
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Tile variation of !:i.S with r is shown ill fig.5.3. It is found that b.S is positive only

when r ~ 1.

From (5.19), (5.23) and (5.37) we obtain tile following relation

b.Af"-l III cosh" 1'. (5.38)

(5.38) gives the change of mass of the balck hole ill trems of squeezing parameter .

The dependence of !:i.AJ 011 r is as ShO\V1l in fig.5.4. !:i.Al is positive for o~ r < 00 and

vanishes when r = O.

The entropy generation of black holes may be interpreted due to spontaneous creation

of particles by the black hole. The particles produced are from squeezed vacuum states

of the radiation field.

Single mode squeezed state.

Related to Hawking effect, a similar phenomenon of creation of particles can take

place in gravitational field of rotating black holes [89, 90, 91, 92]. This is known as

Starobinskii-Unruh process [90,' 92]. Due to vacuum instablity the ergosphere of the

black hole leads to the classical phenomenon of wave amplification which is known as

superradiance. This aspect manifests itself, in the independence of the enhancement

of coefficient on Planck's constant. The superradiance can be described in quantum

terms. A quantum analogue can be found for the classical phenomenon of superra­

diance : spontaneous creation of particles from the vacuum in the gravitational field

of a roatating black hole. Since the radiation from a black hole contains an increased
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number of particles, we call say that tile out going radiation contains stimulated emis-

sion as well as spontaneous emission of particles. Such a situation call be explained

using the squeezed state representation of the radiation field.

Now the black hole radiation spectrum can be considered to be ill squeezed states.

The functional form of the spectrum in squeezed states become:

1
(A,~ INI A~~) = -,,,./~

eTii - 1
(5.39)

where w' = w - rrltf2 , where m is the azimuthal quantum number and n is the angular

speed of the event horizon. When the radiation field is in squeezed states, the quanta

of the field is given by

(A, ~ IN I A,~) = IAI2 + sinh'' r. (5.40)

when the first term in the right hand side represents stimulated emission while the

second term represents spontaneous emission of particles. Using (5.40) and (5.41) we

find:

TB... = [ w' ]
. 1,,\12 1In /2. 2 + -~~2--";;"'--1,\ -l-sinh r ~ +tanh2 7.

cosh

Plots of TB•., with A and r are given in fig 5.4

(5.41)

The entropy change can be evaluated in squeezed states also. Since the actual value

of A and~ forming the squeezed state I A~) are not known we may assume a Gaussian

distribution of A~ values. We may also assume that the state of the system is

(5.42)
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Superposition of t he squeezed state ill Cl random manner InClY lose the phase informa-

rion of the amplitude and hence only I a(.\~) 1
2 may be specified. This allows construe-

tion of a density matrix ill the following way [7:~]

(5.43)

where we have assumed that the random phase approximation replaces

(5.44)

with

(5.45)

The diagonal matrix element of the density matrix are 1 a(A) 1
2

1 A~)(A/~' I for each

value of A~. Then the required Gaussian distribution is

(5.46)

since we have a unit norm

(5.47)

we find

In squeezed state representation (5.26) can be written as

S - -Trpsss Inpsss
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Thus we find

Now ~S = S - So, where So is the initial entropy which is given by (5.3{i)

Hence the change ill entropy produced due to black hole radation is given by

The variation of ~S with A and r is shown in fig.5.5.

(5.50)

(5.51)

The change in mass parameter in this representation is obtained by using (5.20) and

(5.55) and is given by

sss.; rv [ ]

In 2 IAI
2

2 + 2 1
1).1 +sinh r ~+tanh2 r

(5.52)

If the' black hole radiation contains only stimulated emission of particles and no sponta-

neous emission particles', then the radiation field of the black hole may be represented

by coherent states. In that case-we can find the following results:

Hawking temperature:

the change in entropy :

T _ W

H••c - In(l + 1.)
j):j2
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and the change ill mass parameter :

(5.55 )

A plot of Tssc wirh A is given ill fig 5.7. Fig.5.8 shows the variation of ~Sscs withX

while Fig 5.9 SllO\VS the variation of ~l\.Jscs with A.

5.4 Conclusions

In this chapter we have studied the generation of entropy via squeezed vacuum state

and found that it is complectly determined by the associated squeezing parameter

and is caused by the particle creation which can be understood as a squeezed vacuum

phenomenon. For large squeezing limit our result for entropy change is given by

b..S = In sinh" T. An expression for the Hawking temperature is also obtained in

terms of the squeezing parameter and our result leads to the observation made by

Hawking [83]. The change in the mass parameter of the black hole is also related to

the squeezing parameter. We found that the change in mass parameter of the black

hole is completely determined by the associated squeezing parameter. Therefore in

order to understand change in entropy and change in mass due to particle production

by the black hole squeezing can be a possible mechanism. We have also studied these

parametres in squeezed states and coherent states representations of radiation field.

We hope that these types of studies can throw more light on the problem of loss of

information paradox [93, 94, 95]of black holes.
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r=O

r=O

Fig.fi.I. The penrose diagram for the spacetime of a black hole formed by gravitational

collapse. The shaded region is the interior of the collapsing body, the r = 0 line on

the left is worldline of the center of this body, the r = 0 line at the top of the diagram

is the curvature singularity, and H+ is the future event horizon. An ingoing light ray

with v < Vo from 1- passes through the body and escapes to 1+ as a u = constant

light ray. lngoing raya with v > Vo do not escape and eventually reach the singularity.
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Fig 5.2. Plot for Hawking temprature TH ssv with squeezing parameter T.
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Fig 5.3 Plot for change in entropy ~Sssv with squeezing parameter T.

94



r

ig 5.4. Plot for massparameter ~Mssv with squeezing parameter r.

TH$U-2~OCl\

-,jC':": ~
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T

g 5.5 Plot for Hawking ternprature TH sss with squeezing parameter rand A.
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.g 5.6 Plot for change ill entropy ~Ssss with squeezing parameter r and A
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g 5.7 Plot for Hawking ternprature Tu.: with A.
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Fig 5.8 Plot for change in entropy tlSscs with A
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Fig 5.9. Plot for massparameter tlMscs with A
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