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Chapter I

INTRODUCTION

In most cases of analysing statistical data, a funda­

mental problem that emerges at the outset is the identification

of an appropriate model that can describe the real situation

which generated the observations. Once the correct model is

recognised the original problem permits analysis with lesser

effort, as the properties of the model comes handy to the

analyst in drawing inferences and decisions. Owing to the

availability of a large number of probability distributions

at disposal, very often the selection of a particular one in

a specific situation turns out to be difficult, unless one

has a reasonable basis or criteria that justifies the choice.

A general approach to this problem is to make use of empirical

methods such as probability plots or goodness-of-fit tests,

while another is, to apply some approximation theorems from

probability theory. Although some times such considerations

may lead to reasonable models, neither they are of universal

applicability nor they guarantee the correct solution all the

time. The only tool that enables the determination of a

probability model exactly, is a characterization theorem and

therefore the study of such theorems has emerged as an

important area of mathematical statistics. It is also not

uncommon that many such theorems are found useful from

theoretical considerations as well.
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Suppose that, for a random variable X, there is a

family F of distributions such that a distribution L(x)

belongs to F implies that X has the property P. The

characterization theorem concludes that if X exhibits P then

L(x) belongs to F. Obviously, the two ingradients of a

characterization problem are the family of distributions F

and the property P.

The study of characterization of probability distribu­

tions appears to have begun with the work of Gauss in 1807

when he proved under certain conditions that the maximum

likelihood estimate of the location parameter of a distribu­

tion is the sample mean if and only if, the distribution is

normal. Eventhough reckoned from this work a long history

can be attributed to the research activities in characterizing

probability distributions, a full fledged development of this

field as part of mathematical statistics, began taking shape

only in the late fiftees of the present century.

Consistent with the emphasis placed on normal distribu­

tion in the early stages of development of statistical theory,

initially the work on characterization theorems also were

concerned primarily with normal models. Although in 1923

Polya characterized the normal law, by the identical distribu-

tion of two linear statistics, a real spurt in this direction

began only with the conjecture of Levy in 193~, that for

independent random variables X and Y, X+Y is normal if and
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only if X and Y also follow the same law. Cramer (1946)

proved Levy's conjecture and in the following year Raikov

established a similar result for Poisson variables. Modest

activities in the forties due to the world war gave way to

rapid growth in the next decade, with the review paper by

Lukacs (1956) and the monograph by Lukacs and Laha (1964),

which established a new line of thought. The first authorita­

tive book on the tools employed in proving characterizations

along with a large collection of results covering most

probability distributions was published by Kagan, Linnik and

Rao in 1973. This along with the books by Galambos and

Kotz (1977), Mathai and Pederzoli (1917), Azlarov and

Volodin (1986) and Pat!l et. al. (1975) contain most of the

literature on the subject in recent times.

In the present thesis, we consider certain characteriza­

tion problems associated with non-negative random variables X

for which

r(x) ~ E[x-xlx ) xl

is of the form a+bx for various values of a ) 0 and all real

values of b including zero. It can be deduced from the

papers of Kotz and Shanbag (1980) and Xekalaki (l983a)

reviewed in chapter 11, that the Pareto, finite range and

exponential model. in the continuous case and the Waring,

negative hypergeometric and 980metric models in the discrete
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domain are the only probability laws admitting the above

property. Thus in this sense, these six distributions can

be thought of as a particular class sharing similar properties.

The question that arises at this juncture is, whether there

exist other characterizations which can bring together

these models? Our investigation attempts to provide some

answers in this direction. An answer to a search of this

kind can be achieved in two ways. The first is, by identify­

ing new results characterizing the above class of distribu­

tions and the second is to look at the existing characteriza­

tions that have been established for anyone member of the

above group and then to examine the feasibility of establishing

a general property that holds for the entire family. In this

connection it is to be observed that in the continuous case,

there exist monotone transformations that can convert the

exponential model into the Pareto and finite range models and

accordingly it is possible in most cases to translate a

property of the exponential into corresponding results in the

other cases. Occasionally such translations become meaning­

ful also in practical situations. But in the present

investigation such results are not included and we present

only thol. which are not directly implied by transformations.

The present work is organised into five chapters.

After the introductory chapter currently being unfolded, we

present in chapter 11 a review of some basic properties and
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characterizations of the afore-mentioned models. Since most

characterizations of the exponential distributions based on

order statistics, lack of memory property and its variants,

provide only spin off results arising out of the monotonic

transformations mentioned earlier for the other models, they

are kept out of discussion. For the same reason, we have

chosen the Pareto models as the pivot from which the other

models are to be viewed.

In the subsequent three chapters some new results are

presented. Chapter III deals with some characterizations of

continuous models by properties of equilibrium distribution

in section 3.1 and via certain conditional distributions in

section 3.2. The next two sections, 3.3 and 3.4 discuss

properties of partial and truncated reciprocal moments that

are unique to some of the distributions. The chapter concludes

with the conditions under which the continuous models admit

characterizations in the category of additive damage models.

In chapter IV, several theorems characterizing the Geometric,

Waring and negative hyper-geometric distributions that are

extensions of the results of the previous chapter to the

discrete domain are presented. Also established are certain

properties of residual life that are unique to these models.

Most results proved in these two chapters have relevance to

reliability and life testing. In the voluminuous literature
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in this area, continuous distributions are generally proposed

as models of life lengths, in most studies. Accordingly,

results and concepts have been developed in most works in

this topic by treating time as continuous. We look at the

role of discrete distributions in life-length studies and the

possibility of developing several concepts parallel to those

in the continuous case, that can describe the pattern of ageing.

The study is concluded by presenting some new definitions and

results in this direction in chapter V. These discussions

permit to impart physical meaning to the various notions and

characteristic properties of the models, already established

in chapter IV, and thereby point out the applications of the

results in the context of reliability analysis.



Chapter 11

SURVEY OF LITERATURE

In the present chapter we consider some of the

properties of the Pareto type I and type 11, finite range

and Waring distributions, that are of relevance to the

investigations carried out in the succeeding chapters,

along with an outline of the important developments in

characterizing these models.

2.1 Pareto Type I Distribution

The Par.to type I distribution of a random variable X,

denoted in the present investigation by PI(a,k) is specified

by the probability density function,

f(x;a,k) = ak-a x-(a+l), a ) 0, x ~ k ) O. (2.1)

The distribution is J-shaped with mode located at k.

The mean and variance are

and

The r t h moment about the origin takes the form,

~'r • ( ) - 1 ra a-r k, a ) r, r • 0, 1,2 , • •• •
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The truncated moment of order r defined as,

for the distribution (2.1) is,

where a(r) is the descending factorial expressed as

a(r) • a(a-l) ••• (a-r+l).

(2.6)

Specialising for r=l, we get the truncated mean, known more

popularly as the mean residual life function (MRLF) in

reliability theory. Thus,

We notice that the MRLF is a linear function in x, for all

x ~ k. On the other hand, the partial moment of order r,

where,

(X-x)+ = max(O, X-x),

is given by the expression

(2.7)

(2.8)

ax ,
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Another type of moments, that is meaningful in connection

with the Pareto distribution, is the reciprocal moments,

br = E(X-r), r ~ 0,1,2, ••• ,

= a(a+r)-l k-~

The truncated version of (2.10) known as the truncated

reciprocal moments defined by

has the value,

where, (a+l)[r] is the ascending factorial, given by

a[r] = a(a+l) ••• (a+r-l).

(2.10 )

(2.12)

The distribution of a sum of Pareto variables that

are independent and identically distributed is difficult to

obtain. However, for the special case of P 1(1 ,k), there

is a simple closed form for the distribution of Xl+X2• This

Is

(2.13)

The problem of obtaining the distribution of the product of

several Pareto variables can be made relatively simple, if
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one uses the transformation,

(2.14)

where, Vi's are independent standard exponential variables

and U = Xl X2 ••• Xn with the Xi's following P I(a,ki). The

density function of U (Malik, 1970) is,

feu) = ( rn)-l [k log(u/k)]n-l (u/k)-aau~

u ) 0, k=klk2 •.• kn• (2.15)

Notice that here we have taken the parameter a to be the same

for all the variables. When the shape parameter a is taken

differently for the variables Xi' the form of the distribution

becomes complicated. This aspect is discussed in detail by

Pederzoli and Rathie (1980).

For deriving the distribution of the quotient

Z =Xl/~ of independent Pareto variables with parameters

(al,kl) and (a2,k2) respectively, the method is to take the

inverse Mellin transform of
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In this way, Pederzo1i and Rathie (1980) obtained

the density of Z as

p(z)
a la2 (

1 a2 - 1 -1=
klk2-1(al+a2)

z/k1k2- ) for z ~ k1k2 »

(2.16)

a 1a2
a l - 1

k k -1( Z/k1k2-
1) ,for z )=

klk2-1(al+a2) 1 2 •

In view of the recent interest generated in the Pareto

models as distributions of life lengths, it is desirable to

look at some properties of P I(a,k) in this connection. Using

the well known definition of failure rate

hex) = f{x) / (l-F{x», x ) 0 } (2.17)

where f(.) is the density function and F(.) is the distribution

function of a non-negative random variable X satisfying the

condition F(o) = 0, we find that for (2.1)

hex) = ax-1,

which ls a reciprocal linear function of x.

The life time remaining to an equipment at age x called

the residual life time, is also a random variable say, Yx'
whose distribution is expressible in terms of the distribution
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function of the life length X. One can write the relation­

ship as

Gx(Y) = p[x < X, ~y I X ) xl, y ) 0,

= l-[R(x+y) / R(x)],

where,

R(x) = I-F(x) = p[x > xj,

is the survival function of X. Accordingly the survival

function of Yx is,

Gx(Y) = R(x+y)/R(x), Y ) 0.

By direct calculation, for the P I(a,k) model,

which is again of the P I form. Notice that

ElY x) = ElX-xlx) xJ = r(x),

1s the MRLF defined earlier and shown to be linear in x

(2.19)

(2.20)

in equation (2.7). An interesting property of the distribu­

tion is that,

-1rlx) h\x) = ala-l) ,
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a constant greater than unity. A physical interpretation of

the property and an associated characterization will be taken

up in section 2.5. Further it is easy to see that hex) is a

decreasing function and r(x) is an increasing function of x

so that P I belongs to the DFR (decreasing failure rate) and

IMRL (increasing mean residual life) class of probability

distributions. Further classes of life distributions based

on different criteria of ageing, to which the Pareto models

belong to will be taken up subsequently in chapter Ill.

2.2 Pareto Type 11 Distribution

The Pareto 11 distribution, occasionally referred to

as the Lomax distribution also, is represented by the density

function,

f(x) = a«a (x+«)-(a+l); x > 0, « >0, a > 0.

The survival function corresponding to (2.22) becomes

(2.22)

R(x) - a ( -aCl X+ (I) ; x ) 0, (I ) 0, a ) 0 . (2.23)

We shall use the notation P II(a,(I) to represent the Pareto

type 11 distribution in (2.22). Dubey (1966) derives the

same model as a special case of a compound gamma distribution

and calls it exponential gamma distribution. If the conditional
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distribution of X has the exponential distribution with density

function,

f(xlb) = -bxbe , x > 0, b > 0,

and if the parameter b has a gamma distribution,

) k k-1 -«bglb = m be, « > 0, k > 0, b > 0,

then, the density of X is P IIlk,m). There exists a monotone

transformation X = aCe-uta -1) that takes the standard exponen-

tial variable u to P II(a,«).

The r t h moment about the origin of the distribution is,

In particular,

E(X) = a(a-l,-l, a ) 1,

and

(2.24)

(2.25)

vex) 2 -2 )-1m a l a-1 ) l a-2 , a > 2.

The standard ~areto type 11 distribution with

has the special property that X and X-l are identically

distributed. Utilizing the result that X= -a + az-1/.,

where Z is a rectangular variate in (0,1), Arnold (1983)
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has obtained the distribution of the sum of two independent

random variables following P II(a,aJ.

The residual life distribution for P II(a,a) has

survival function,

where GxlY) is defined in equation (2.18). It is interesting

to note that the residual life distribution is of the same

form as the parent distribution with only a shift in the para­

meter from a to (x+a). Therefore, the MRLF is deduced from

l2.2b) as,

r(xJ = (2.27)

The failure rate function is a reciprocal linear function,

hex) =

As in the case of ~ I(a,k), here also r(x) h(x) is a constant

greater than unity. In spite of t~e simple torm of the failure

rate and MRLF, the potential of the Pareto distributions as

useful models of failure times is yet to be fully exploited

in life length studies. Since P 11(a,«) arises by compounding

exponential and gamma distributions as shown earlier, there is

9cope for the model to be used whenever the exponential

distribution provides a satisfactory model in which the
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uncertainty in the parameter can be described in terms of a

gamma distribution. Several examples of problems of this

nature are discussed in literature such as Harris (1968) and

Lindley and Singpurwalla (1986).

In view of the transformation y=x+a, that changes the

Pareto type I distribution to the type 11 distribution, it

is easy to translate the properties of the former from that

of the latter. Consequently, in the present investigation,

the results are mainly obtained for the type 11 distribution

with only occasional references to the type I.

2.3 Finite Range Distribution

The finite range distribution in the interval (a,R) is

defined by the density function,

flx) = (c/R) (l_x/R)c-l, O<x<R, c>O,

and is denoted by FR(c,R). When c=l, the distribution reduces

to the uniform distribution in (a,R). The distribution is

L-shaped for c > 1, a straight line for c = 2 and J-shaped for

c < 1. It is a particular case of the Pearson type I distribu­

tion with density function,

f(x) • (l/B(p,q» (1=!Jp-l (b-l)q-l , a<y<b, p>O, q>O,
(b-a)p+q-l

as seen from the fact that when a=U and p-l (2.~O) reduces to
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FR(q,b). When R=l, in (2.29) we obtain the standard form

of the model.

The r t h moment about the origin is,

~~ = cRrSlr+l,c), r=O,1,2,3, •••.

In particular, the mean and variance are

and

(2.31)

v(x) 2( ) -2 ( )-1eR c+1 c+2 . (2.32)

The moment generating function is,

where

M( t) C e i tR l( tR)c , , (2.33)

( ) IR -qx p-l dI p,q = e x x.
o

The distribution has been found useful in several areas

of theoretical and applied statistics. From the reliability

context, it is a model of life-lengths that have increasing

failure rate. This is evidenced from the failure rat.

function

h(x)

The MRLF is

r(x)

:::a c(R-x)-l.

(R-x)(C+l)-l,

(2.34)



18

which is linearly decreasing in x. Thus the FR{c,R)

belongs to the IFR and DMRL class of life distributions.

In contrast to the Pareto variable, here r{x) hex)

is a constant that is less than unity, for all values of x

in~{O,R). As already mentioned, the distribution belongs

to Pearson family. It is also a member of the exponential

family.

If X(I)' X(2)' ••• , X(N) are order statistics of a

random sample from a continuous distribution with density

f(x), then

X(i)
:I J x dx

X(i-I)

(2.36)

are called the elementary coverages of the random interval

(X(i_I)' XCi»~· The distribution of the i t h coverage Ci'

i = 1,2, ••• ,N, is FR{N,l). This fact is utilized in non-

parametric statistical inference (David, 1970). Apart from

these, FR{c,l) inherits various properties and applications

by virtue of its status as a translated beta distribution.

It forms a special class of distributions along with the

exponential and Pareto 11 models with reference to certain

special characterizing and closure properties. These aspects

will be investigated in chapter Ill.
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2.4 Waring Distribution

One way of obtaining a discrete probability

distribution 1s to consider a mathematical function

admitting expansion as a convergent series of inverse

factorials of positive terms and then by multiplying these

terms by a suitable constant to render its sum unity. The

Waring distribution belongs to the class of discrete

models obtained in this manner, and make use of the Waring's

expansion.

1 1
-( x-a) = x +

a
-x"'{-x+-l~)· + + ••• • (2.37)

The probability function of the Waring distribution discussed

here 1s,

flx) = Plx=xJ,

(2.38)

where, (b) 1s the Pochammer's symbol, defined as
x

The model \2.38) forms a particular case of the generalized

Waring distribution introduced in Irwin (l975, a,b,e). It

was originally found by Irwin (196J), in an attempt to

encounter frequency distributions with very long tails suit­

able to describe the distribution of the number of philarial

worms. It 1s J-shaped and forms the continuous analogue of
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Pearson type VI distribution. Irwin ll968) has also

shown that his generalized model has a theoretical basis,

as a probability model for the number of accidents.

Looking at the properties of the simple model (2.38),

we note that the r t h factorial moment is

~(r) = (2.40)

In particular,

E(X) = b(a-b-l)-l

and
veX) = b(a-l)(a-b)(a-b-l)-2(a-b-2)-1, a>b+2.

The Yule distribution arises as a particular case of

(2.38) when a=l.

(2.41)

Since the Pareto 11 distribution in the continuous

case and the Waring distribution in the discrete case are

heavy tailed distributions, it is natural to expect that

they have similar properties. The limiting form of

model (2.38) derived in section 4.2 of Chapter IV confirms

this fact. From the point of view of reliability

characteristics the resemblence is almost perfect.

The survival function of the distribution Is
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00

R(x) ~ t p[x=x],
x

00

= t (a-b){b)x/{a)x+1'
x

The MRLF is

r(x) = E[x-xlx>x],

which is equal to (see equation 4.6)

(2.42)

r(x)
00

t R(t),
x+l

= (a+x) (a+b-1) -1 , (2.43)

which is linear and the failure rate function,

h(x) = p[X=x]/p[X~x],

= (2.44)

is reciprocal linear. Xekalaki (1983a) has proposed the

Waring distribution (2.38) which will be denoted in the

rest of the discussions as W(a,b), as a life-length

distribution in the discrete time domain. A generalized

version of the same distribution has been used by him in
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relation to accident theory (Xekalaki, 1983b). There is

yet another generalization of W(a,b) by Panaretos and

Xekalaki (1986) to what they call as Waring distribution

of order k, arising out of certain generalized sampling

schemes. Since W(a,b) is only investigated in the present

discussion the details of the other models and their

properties are not presented here.

We shall also need a special case of the usual

negative hypergeometric distribution,

p[X=x] = (-a) ( -b ) / (-a-b)
x n-x n ' x = O,l, •... ,n, (2.45)

denoted as NH(a,b,n). The form of the model and its

properties will be explained in connection with the characteriza­

tion theorems in chapter IV.

2.5 Characterizations

In order to motivate certain characterization problems

associated with the various models mentioned in the previous

sections of this chapter and also to ascertain the present

state of art, in this s8ction we take up an overview of the

important results in this connection. In view of the monotone

transformations existing between the Pareto and exponential

populations it is always possible to translate ~ characteristic

property of the latter to suit the former. Since the literature
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on characterization of exponential distribution is so rich,

several results for the Pareto distributions can be deduced

in this manner. The following survey does not include any

characterizations of this type.

The first characterization of the Pareto distribution

appears to be that of Hangstroem (1925) which states that X

is P I if and only if

E(xlx>t) = ct, (2.46)

for some c ) 1. It is easy to see that, in general, this

property need not be true in the case of Pareto type I model

only in view of the characterization of P 11(a,«) by

Laurent (1974). His result is that a mean residual life

function of the form

r(x) = a+bx, x > 0 ) (2.47)

with b > 0, leads to P II(ab-l,(b+l)b-1). Sullo and

Rutherford (1977) observed that the relationship h(x)r(x»l

is characteristic of the Pareto type 11 distribution. They

further proved that a constant coefficient of variation of

residual life with the constant greater than unity ls a

characteristic property of the same distribution. To be

able to identify life-time models by the numerical value

of h(x) r(x) or the coefficient of variation of residual
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life one has to specify the classes of distributions

corresponding to all numerical values these quantities

can take, rather than to specialised values. In this sense,

the characterization of Sullo and Rutherford (1977) provides

only a partial answer by restricting the numerical value to

be greater than unity. A complete answer to the problem is

given in Mukherjee and Roy (1986) who proved the following

result.

ll) If X is a non-negative random variable with finite

expectation and h(x) r(x) = k, a constant, then k~l if and

only if X is exponential, k>l if and only if X follows

Pearson type XI distribution and k<l if and only if X ls

FR(c,R).

(2) The coefficient of variation of residual life of X

with a finite variance is less than, equal to or greater

than one if and only if X is distributed respectively as

fR(c,R), exponential and Pearson type XI distributions.

In the above paper a physical interpretation of the

quantity h(x) r(x) in the context of reliability is given

as follows. The distribution of X belongs to a member of

the increasing mean residual life or decreasing mean

residual life class of distributions according as

h(x) r(x) ) or < 1. We observe that another interpretation
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of the same is also possible. Kupka and Loo (1989) define

(2.48)

as the vitality function that represents the average age

at failure of a component of life length X. The derivative

of Vex) is the rate of vitality or gain in the conditional

mean life of the component given that it has survived age x.

Since

and

h(x) = [l+dr/dx] ~(x~l,

Vi(x) = r'(x)+l

and

Vi(x) = r(x) h(x),

where the I"~ denot~s differentiation.

In this case, h(x) r(x) = 1 can be interpreted as a constant

rate of vitality or no ageing. Similar interpretation would

mean the negative ageing of the component for h(x) r(x) ) 1

and positive ageing corresponding to the reverse inequality.

The proposition of linearly increasing mean residual

life times can be achieved from other considerations as well.

Assuming the distribution of life lengths to be exponential,

Morrlson (1~'/~) considered the question of the possible mixing
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distributions for the exponential parameter that can

guarantee a linearly increasing mean residual life function.

He proved that the gamma distribution is the only absolutely

continuous model that meets the above requirement. It may

be noticed that the compound distribution arising from the

exponential and gamma is Pareto type 11 and therefore,

Mor~ison's (1978) result only confirms the functional form

of the mean residual life proposed in the earlier results.

Gupta (1980) generalized Morrison's (1978) results by

describing a method based on Laplace transform technique

to determine the mixing distributions when the life distribu-

tion is exponential. The most general result concerning the

form of MRLF appears to be that of Kotz and Shanbag (1980)

which can be stated as follows.

Let F be the distribution function of a random variable

X such that its restriction to a non-degenerate interval (a,~)

is absolutely continuous with respect to Lebesgue measure

with E(X) ( ~, then the failure rate will be a polynomial or

a reciprocal polynomial and the MRL function is a polynomial

or a reciprocal polynomial if and only if

(i) F(,-)-F(m) = 0,

or for a ) -- and F(~-)-F(a) > 0 either

(ii) G(x) = exp-a(x-m),

for some a ) 0 together with
00

! G(y)dy = a-I .xp-a(~-a),
~
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or

(i1i) G(x) = [l+c(x-a)]n, c > 0, n ~ -2,

or
(iv) G(x) = [l+c(x-a)]r, c ~ (a_~)-l, r > 0,

or negative non-integer satisfying,

where

-f G(y)dy
P

= -[c(r+l)]-l lim [l+c(x_a)]r+l,
x ---) ~

G(x) = [l-F(x)/[l-F(a:)] .

In spite of the fact that the MaL is widely discussed in

theory and practice it has several limitations. The

impracticability of waiting until all items have failed,

information on failure times is available only on a

censored basis and the high sensitivity to this function

to very large values can be cited as some of the reasons

for this. Accordingly one can use the median of the residual

life times as an alternate to the MRL. This 1s defined as

Schmittleln and Morrison (1981) have shown that

M(slt) = a+bt, a ) b ) 0

if and only if X 1s P 11.
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A considerable volume of literature is available on

characterizations based on truncation invariance of the

Pareto variables. In such investigations we look at the

properties of the random variable X that remain un~ltered

when the variable is subj ected to the right trunca tion,

X ) x. Bhatacharya (1963) was the first to find a char­

acterization in this direction. His result 1s that the

Lorenz curve and the Gini index will be independent of the

point of truncation if and only if X is distributed as P I.

Ord et. al. (1983) provided a rigorous proof to Bhatacharya's

(1963) result on the Gini index and also established that

the property of measures of inequality derived from the

Mellin-transform

where

~c - E(xlx ~ c),

being invariant under truncation. Their results can be

stated as follows.

(1) When. the densi ty func tion f( x) of the income dIs tribution

is positive almost everywhere on its range [CL'.)' the Gini

index is truncation invariant if and only if

k+lx ,0 < CL ~ x, k > 1 )
(2.52)

, otherwise.
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(2) When f(x) is positive everywhere on its range, the

index Hr in (2.51), -- < r < ~, is truncation invariant

if and only if X has a probability density function (2.52).

Assuming the existence of the r t h moment, Dallas(1976)

characterized the Pareto distribution by the condition that

the r t h truncated moment (see equation (2.5» is the same

as the r t h moment of the original distribution suitably

scaled. According to him, if Y is a random variable having

absolutely continuous distribution function with E{yr) < ~,

then

(2.53)

holds for some r > 0 if and only if Y has density (2.1).

Krishnaji (l970a)proved the following two results.

(1) Let X be a random variable having absolutely continuous

distribution function and R be a random variable having

rh(r)=
o ,

~~l, p>O )

otherwise ,

(2.54)

such that P(RX > xo) > 0, for some Xo > O. Then the

distribution of RX truncated to the left at Xo coincides

with that of X if and only if X has a Pareto 11 distribu­

tion on (xo'~).
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(~) Let Z and X be random variables such that

E(zlx=x) = a + ~x,

and X has a continuous marginal density function. Further,

let R be a random variable independent of Z and X with a

density (2.54), then

(2.55)

if and only if X has a Pareto 11 distribution on (xo'~).

The significance of the last two theorems is that

they become quite meaningful once we interpret X as the

reported income, Y as the true income and R as the under

reporting error. With this interpretation Krishnaji's

(197Da) results say that the observed income distribution,

truncated to the left is the same as the reported income

and a variable having linear regression on true income has

a linear regression on observed incomes also, if and only

if income distribution is Pareto type 11. Although

Krishnaji has assumed a power distribution for R, it has

been shown later by Lau and Rao (1982) that the result

1s true for any continuous distribution of R in the range

[0,1]. (See Krishnaji (1971) also.) However, we observe
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that to be able to ascertain that income distribution is

in fact Pareto in a real situation, one must verify that

the truncated distributions of reported and true incomes

are identical. Almost always it is the case that the

model of the true incomes, truncated or not, is seldom

known exactly.

By assuming an alternative formulation Y=X-R,

o < R < max (O,x-m), where m is the tax-exemption level

and

E(Rlx> m) = a+bx, O<b<! )

Revankar et. al. (1974) shows that for the relation

E(Rlx>y) = c+dy; d > b> 0 )

(2.56)

(2.51)

to hold it is necessary and sufficient that X has Pareto I1

distribution with finite mean. The theorem is also proved

for Pareto I distribution with c=a. The work of the last

two authors belongSto the general class of models referred

to in literature as damage models. A closer look at the

properties of (2.56) and (2.51) and the corresponding

characterizations will be attempted in chapter IV.

Talwalker (1980) defines a property called "dullness"

analogous to the lack of memory of the exponential distribu-

tion by. calling X to be totally dull at a point t in its
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support if

p[X > stlx ~ t] = p[X > s] (2.58)

for all s ~ 1. She proves that the Pareto I (a,I) is the

only distribution which is totally dull at all points in

its support and further that the dullness of the distribu-

tion of true incomes at a single reported income point is

sufficient to characterize the distribution as Pareto,

provided that the distribution function of X is concave.

It is easy to see that the first result is closely related

to the well known characterization of the exponential

distribution by lack of memory.

Yet another characterization of the Pareto I is based

on the maximization of entropy (Ord, Patil and Taillie,1981)

which seeks a distribution with support [c, ~) that maximizes
~

! f(x) log f(x)dx on the condition that the geometric mean
c

of the distribution is fixed.

The most recent characterizations of the Pareto distri-

butions appears to be that of Korwar (1989). His results can

be summerized as follows.

(1) Let X be a positive random variable on [a,-) with

density f(x) and distribution function F(x). Let Z and W

be random variables with respective densities,
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k(z) = fez) / [Z E(~)] ,

L(w) = [l-F{w)]/~, ~ = E(X»)

(2.59)

(2.60)

then Z and Whave the same distribution if and only if X

is Pareto I.

(2) If Y is distributed with density

g(y) = 1xy-2 f(x)dx, Y > a
o

(2.61)

then Y and W have the same distribution if and only if X

is Pareto 11.

There ~ a large number of results on characterizing

the Pareto distributions based on order statistics. Since

order statistics of the distributions so far discussed will

not be considered in the present work, a detailed exposition

of such characterizations is not attempted here. But for

the sake of completion of the survey of characterizations

we refer to the papers in this connection as Fisz (1958),

Rogers (1959, 1963), Rossberg (1972 a,b), Malik (1910),

Govindarajlu (1966), Ahsanullah and Kabir (1913), Ferguson

(1961), Dallas (1976), Srivastava (1965), Mosimann (1970),

James (1979),Crawford(1966), Beg and Kirmani (1974), Shah

and Kabe (1981) and Wang and Srivastava (1980).
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Analogous to the characterization of Pareto 11

distribution due to Krishnaji (1970b) in the context of

under-reporting of incomes Xekalaki (1983a) obtains a

characteristic property of the Yule distribution. The

result states that for a random variable U which is

uniform over (0,1), the distribution of [UX] truncated

at zero coincides with that of X if and only if X has a

Yule distribution where [b] denotes the greatest integer

in b. Investigating the conditions under which distributions

of two random variables are identical, Korwar (1989) has

given several characterizations of the Waring (and hence

Yule) distribution and its truncated versions. Let X,

Y and Z be positive integer valued random variables with

respective probability functions,

Pr = P[X=r], r=l,2, ••• ,

qy = p[Y=y],

y
= E x px/y ( y+l) , y=l,2, ••• ,

x=l
and

• P[Z=r],qr =

(2.62)

(2.63)

.. (r+a) Pr(l-L+a), r=1,2, ••• ,

where ~ = E(X) < - and a > -1. Further W is assumed to

be non-negative integer valued random variable with

(2.64)
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probability function,

00

= P[W=r] = E
j=r+l

-1p. ~ , r=O , 1 , 2, • •• .
J

(2.65)

The results are stated as follows:

(1) The random variable W truncated on the left at

zero has the same distribution as Z if and only if X

has Waring distribution W( A,e) given by (2.38).

(2) When E{y2) < -, Y and Z have the same distributions

if and only if the distribution of X is W(~-l, ~+l).

(3) The necessary and sufficient condition that Y and W

truncated at zero to have the same distribution is that

X follows W(~-l, ~+l).

He further considers a non-negative integer valued

random variable X with probability mass function,

p' =P[X=r], r=1,2, ••• ,m)r

and defines a new random variable Y such that,

II I

qy = p[Y=y] )

y
I x p' / y(y+l), y=1,2, •.• ,m,

x=-l x
=

Y
I x p ~ / y ( y+ 1), y=m+1, ••• .

x=l

(2.66)

(2.67)
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It is shown that the distribution of

(a) Y truncated on the right at m and Z have the same

distribution if and only if X has the Waring W(~-l,~+l)

distribution truncated on the right at m.

(b) Y truncated on the right at m and W truncated on the

left at zero have the same distribution implies and is

implies by a Waring W(~-l, ~+l) distribution for X truncated

on the right at m.

Xekalaki (1983a) introduces a class of life distribu-

tions in the discrete time domain consisting of the geometric,

Waring (2.38) and the negative hyper-geometric (2 045) with

probability function,

p[X=x] = ~ , x = 0,1,2, ••. ,x
(2.68)

which shares the property that the hazard function is

inversely proportional to some linear function of time. He

characterizes the probability law of a random variable in

th e suppo r t 0 f (0, 1 , 2 , ••• , m}, m f ( 0 , 1, • •• ) U{+oo} by

assuming that for 0 < p[X ~ 0] < 1, the failure rate

function is of the form

hex) = (a+bx)-l, x = O,l,2, ••• ,m )

to be geometric for b = 0, Waring (2.38) for b > 0 and

(2.69)
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Negative hypergeometric (2.45) for b < O.

It does not seem that much literature is available

on characterizations of discrete models by using reliability

concepts. The fact that generally continuous distributions

are considered in life length studies by treating time as

continuous, may be one of the reasons for the lack of

interest in discrete distributions in this field. We will

examine this point more closely in chapter IV and present

some results relating to reliability concepts in discrete

time.



Chapter III

CHARACTERIZATION OF CONTINUOUS MODELS

3.1 Characterization By Properties Of Equilibrium

Distribution*

Let X be a random variable admitting absolutely

continuous distribution function F(x) with respect to

Lebesgue measure in the support of the set of non-negative
00

real numbers. Further, assume that F(o) = 0 and m =! xdF< ~.
o

Associated with X a random variable Y can be defined with

probability density function,

g(y) = m-lR(y), y > 0 , (3.1)

where R{x) = p[X)x] is the survival function of X. The

distribution specified by X has special significance in

renewal theory. Consider a set of components whose failure

times are of interest to us and we start experimenting with

a new component at time zero, replace it upon failure by

a second component and so on. If the failure times Xi'

1 = 1,2,3, ••• of the components are independent and

identically distributed random variables, then the sequence

(Sn) of points where Sn = Xl + X2 + ••• + Xn constitutes a

renewal process. If F(.) is the common distribution function

* Some results in this section have appeared in the
J.lnd.Statist.Assoc. (Reference 06).



39

of the X's satisfying the conditions stipulated above and

Uy and Vy respectively denote the age and remaining life

time (residual life) of the component which is in use at

time y, then the limiting distributions of Uy or Vy is

shown in Cox (1967) to have density function (3.1). The

random variables Uy and Vy are called the backward and

forward recurrence times and their common asymptotic distribu­

tion (3.1), the equilibrium distribution. In this physical

situation, Y represents the residual life of the component

whose length of life is X. An alternative derivation of

the same model based on length biased sampling is also given

in Cox (1961).

Deshpande et. al. (1986), Singh (1989) and Bluementhal

(1967) have found several applications of the equilibrium

distribution in reliability studies. The probabilistic

comparison between the distribution functions of X and Y

were utilised to explain the phenomenon of ageing.

In the present section we develop some identities

connecting the failure rates and MRLF's of the random variables

X and Y. Eventhough we use them in the sequel to characterize

only the exponential, Pareto, Power and finite range distribu­

tions, the relationships are quite general in character and ~ftk

used to characterize the distribution of any continuous non-

negative random variable.
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3.1.1 Some Identities

Let the failure rates of X and Y be

and

hex) = f(x)/R(x),

k(x) = g(x)/S(x),

(3.2)

(3.3)

where f(.) is the density of X and S(.) is the survival function

of y.. If the MRL functions of X and Y are r( x) and s( x)

respectively, we have from equation (2.5) specialised for r=l,

r( x) = E(X-xlx>x) ,

[R{x)]-l
00

= J R(t)dt, (3.4)
x

and

[S{x)]-l
00

sex) = I S(t)dt. (3.5)
x

Using the result (Gupta, 1979),

k(x) ::K [r{x)]-l, (3.6)

and the relationships,

hex) ::a [l+r' (x) ]/r( x) J

and (3.7)
k(x) ~::11 ,

5 X
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the following identities connecting the various functions

are easily proved.

h(x) = k(x) - k'(x)/k(x) J

r(x) = s(x)/[l+s'(x)]

(3.8)

(3.9)

The primes in the last two equations and elsewhere in the

present study denotes differentiation. In view of the

one-to-one relationship between failure rates, MRL function

and the corresponding survival function, the distribution

of X be inferred from that of Y as either

R(x)
x

= exp [- ! h{t)dt]
o

,

x
= (k(x)/k(o» exp[-! k(t)dt],

o

in terms of the failure rates or as

(3.10)

R(x) =
x

(r(o)/r(x» exp [- ! (r(t»-l dt],
o

~r~l 2 exp[- j (s(t»-l dt ], (3.11)
~ l+s '(o) ts(x)J 0

in terms of the MRL function, provided the quantities on the

right side exist. The equations from (3.6) through (3.11)
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are quite useful in distribution theory as we shall see

in the next few sections. Further, they can be applied

to provide alternative simple proofs to many of the theorems

in literature concerning the inter relationships between the

various criteria for ageing and different modes of stochastic

orderings. Since our main thrust is on characterizations,

these aspects are not considered in the present study.

3.1.2 Characterizations

Since our main objective is to explore characteriza­

tions of the Pareto, exponential and finite range distribu­

tions, attention is confined only to MRL functions that are

linear. However, the techniques employed can take care of

functions of a quite general nature and therefore, be used

in other cases as well.

Theorem 3.1.

The MRL function of X is linear if and only if the

MRL function of Y is linear.

Proof.

Suppose that Y has linear MRL function.

Then
sex) = tx + m.
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For s{.) to be an MRL function it is necessary and sufficient

that s{o} = E(Y), s'(x) ~ -1 and

lim s(x}/{x log x) = 0,
x ---+ 0

(Muth, 1980). Hence the constants l and m must satisfy the

condit ions m ) 0 and 1~ -1.

Using the above form of sex) in equation (3.9), we

find

r(x} = Lx + M,

where

L = l/(l+!) and M = m/(1+1)

For t ~ - ~' L ~ -1 and M ) O.

(3.12)

Conversely when r(x) has the above form, from (3.9),

s'(x) + [s(x)-1] (Lx+M)-1 = O.

This is a linear differential equation with integrating

factor (lx+M)-l/l. Accordingly the general solution is

t (l_l)-l (lx+M)+K(Lx+M)l/L, l ~ 1
s(x)=-

-(x+M) log(x+M)+Kl(x+M), l = 1
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K and K1 being the constants of integration. In view of

the conditions on s(x), the second solution is inadmissible

and in the first solution K must be zero. Thus,

sex) = lx + m,

where

l= L/(l-L) and m =M/(l-L)

in conformity with equation (3.12).

(3.13)

Theorem 3.1 will now be utilised to establish a

closure property, for the distribution of X with respect

to the formation of the distribution of Y, in the sense

that X and Y have the same form of distribution. For this

purpose, we denote by E(b), the exponential distribution

with density function,

f(x) = b exp[-bx]

Theorem 3.2.

(3.14)

The distribution of X 1s E(b), (p 11(a,a), FR(c,R»

if and only if Y 1s E(b), (p II(a-l,a), FR(c+l,R».

Proof.

When X 1s distributed as one of the above forms, we

have from chapter 11 the following table of values of MRL,

failure rate and means.
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Table 1

Failure rates, MRLs and means.

Model MRL failure rate mean

E(b) lIb b lib

P II(a,«) (x+cx) (a_l)-l a( x+cx)-l cx(a-l)-l

FR(c,R) (R-x) (c+l)-l C(R-x)-l R(c+l)-l

Uniform(o,R) (R-x)2-1 (R-x)-l R/2

In the notations of Theorem 3.1, the values of L for E(b),

P II(a,cx) and FR(c,R) are respectively O,(a-l)-l and -(c+l)-l

while corresponding values of M are b-l, cx(a-l)-l and R(c+l)-l.

Direct calculations from equation (3.13) give t = 0, M = b-l

when X is exponential, l = (a-2), M = cx(a-2)-1 in the Pareto

case, and t = _(c+2)-1, M=R(c+2)-1 for the finite range law.

By theorem 3.1 Y has linear form and since t = 0 (> 0, < 0)

Y is E(b),(P II(a-l,a), FR(c+l,R». The conditions on the

parameters of three distributions in the order in which they

appear in the theorem for the result to be true are b ) 0,

a ) 0, a ) 1, R ) 0 and c ) -1.
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This theorem enables one to assert the distribution

of Y in terms of the distribution of X and vice versa. It

may be noticed that the closure property of the exponential

distribution proved above is well known and has been properly

exploited in literature. That the property holds for a class

of distributions, points out to the possibility of a unified

treatment of the tail behaviour of the different models

involved therein. The present study being oriented more

to~ards applications in reliability theory, some equivalent

conditions in terms of the failure rates or MRL functions are

proved in the following two theorems. In life length studies,

models are often postulated by specifying the behaviour of

the MRL's or failure rates and in such situations these

theorems may help in identifying the appropriate models.

Theorem 3.3.

The relationship r(x) = ps(x) is satisfied for all

x > 0 and positive constant p if and only if X is E(b) for

p=l, P II(a,a) for 0 < P < land FR(c,R) for p > 1.

Proo f:

When X follows (3.14), Y has an identical di5tribution

with the same parameter. Hence r(x)=s(x). For the Pareto case also

Y has the same distributional form P II(a-l,a) and therefore
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from table 1, for a > 2, (condition for E(Y) to exist)

r(x)/s(x) = (a-2)/(a-l) < 1.

Likewise, for the finite range distribution,

r(x)/s(x) = (c+2)/(c+1) > 1.

This proves the necessity of the condition.

To prove the only if part, we note that from

equations (3.6) and (3.7),

r(x) = s(x)/(l+~(x». (3.15)

When p=1, it follows that s(x)=o or sex) is a positive

constant. Hence X follows (3.14) for some b > O. When p<l,

equation (3.15) gives,

s(x)/[l+s(x)] = ps(x),

or

Thus,

s' (x) -1= P -1.

sex) =
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where, d = E(Y). Accordingly the survival function of X is

x
R(x) = exp -[ I (l+r'(t»dt/r(t)],

o

x
= exp -[ I (2-p)dt/[(l-p)t+dp] ],

o

a( )-a= a x+a ,

with,

a = dp(l_p)-l > 0 and a = (2_p)(1_p)-1 > 1.

This condition on the parameter a is necessary for the

existence of the distribution of Y. Lastly for p ) 1, the

same type of calculations imply that X follows FR(c,R), with

R = dp(p_l)-l and c = (p_2)(p_l)-1.

This completes the proof.

Theorem 3.4.

h(x) = pk(x) for all x > 0 and a positive constant p

if and only if X is E(b) for p = 1, P II(a,a) for p > 1 and

FR(c,R) for 0 < P < 1.
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Proof:

The proof is on similar lines as that of theorem 3.3

once we write

k(x) = l/r(x) and hex) = [l+r'(x)]/r(x) ·

Corollary 3.1.

The conditions of Theorems 3.3 and 3.4 characterize.

the distribution of Y as either exponential or Pareto type 11

or finite range for values of p mentioned herein. The proof

follows from Theorem 3.2.

Remark:

When the support of X is taken as (a,b), b>a>O, the

condition r(x) = ps(x) or k(x) = ph(x) for p ) 1 characterizes

the distribution with survival function,

R(x) = [(b-x)/(b-a)]c, c > 0,

and the same relationships for p < 1 is a unique property of

the model specified by,

R(x) = [(a+d)/(x+d)]C, x ) a,

which includes the Pareto type I as a particular case, when

d = O.
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The characterization theorems presented so far

demands the required properties to hold for all points in

the support of the random variable X. One problem that

will be of interest is to inquire whether it is possible

to identify a weaker set of criterion that can uniquely

determine the above mentioned distributions. The following

theorem answers the question in the affirmative, with the

limitation that the models have to come from a subclass of

the exponential family. This is in contrast with the

earlier results where one had the freedom of choice from

the class of all absolutely continuous distributions of

non-negative random variables.

Theorem 3.5.

In the one parameter exponential family specified by,

f(x) = u(Q) v(x) exp[9 w(x)], (3.16)

where Q lies in an open interval on the positive part of the

real line, the condition

E(X) ~ k E(Y), k ) 0,

is satisfied, if and only if X is distributed as

(3.17)
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(i) exponential for k=l and w(x) = x,

(ii) Pareto type I for k > 1 and w(x)= -log x (k, known)

and

(iii) Power with density,

for 0 < k < 1 and w( x) = log x ,

Proof:

The proof that k=l characterizes E(b) is given in

Gupta (1979). To prove the other two cases we note that

from equa tion (3.17) and from the definition of the random

variable Y in (3.l),

-1
00

E(Y) = m ! y R{y)dy,
0

= (3.18)

by the usual integration by parts. Further in the support

o of the family,

bu(Q) vex) .Qw(x) dx ~ 1.

Changing Q to 9+1 in the last expression J

! u(9+1) vex) .(9+1)w(x) dx ~ 1,
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and hence,

u(Q+l)/u(Q) ! u(Q) vex) e(Q+l)w(x)dx = 1.

When w(x) = log x, (3.19) reduces to

E(X) = u(9)/u(Q+1),

and similar calculations after replacing Q by Q+2

provides,

Now, equation (3.17) along with (3.18) read,

(3.19)

(3.20)

(3.21)

or

2m E(X) 2= k E(X ),

Introducing equations (3.20) and (3.21) into (3.22),

u(9)/u(9-1) = p u(Q-l)/u(Q-2),

which is identical to

b(9) = p b(9-1), Q ~ 1,

where,

b(9) = u(9)/u(9-1) and p = k/2.

(3.22)

(3.23)

(3.24)
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The next stage of the proof is the solution of the

functional equation (3.23). Setting 9=1 there p=b(l)/b(o).

Further transformation c(Q)=b(9)/b(o) yields

c (Q) = c ( 1 ) c (Q-l ) ·

By successive application of (3.25), for non-negative

integer n,

c(9+n) = c(9) g(n),

in which

g(n) = [c(l)]n.

Since c(o)=l, c{n)=g(n) and hence,

c(9+n) = c{Q) c(n),

which is the Cauchy functional equation with solution

Thus,

b{Q) = b{o) pQ

= qpQ, b{o) = q > O.

(3.25)
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Substituting into (3.24) ,

u(Q)

Recurrsively,

9= qp u(Q-l).

and in particular,

u(n) = qn pn(n+l)/2 u(o).

This gives,

u(Q+n) = pnQ u(n) u(Q) u(o),

and
u(o) = 1.

Taking g(Q) = pQ2/2/U(Q), once again we have the Cauchy

functional equation mentioned earlier with solution,

(3.26)

and whence,

g(Q) =

= ( 1/2)-9qp ,



The density function of X now becomes,

Assuming the support of X to be (q,~), one must have,

p(1/2)9(Q+l) qQ
00

vex) x-9 dx! = 1,
q

or equivalently,

p(1/2)9(Q+l)
co

vex) x-Q dx q-Q.! =
q

Differentiating both sides with respect to q,

v(q) = Q/qp(1/2)9(Q+l) . (3.27)

Usin9 the expression for v(.) in equation (3.16),

so that X is P I(Q,q). The proof for k ( 1 is on similar

lines except for the choice of w(x) = log x and our assertion

follows.

Among the three sub-classes of the exponential family

considered in Theorem 3.5 has the following implications.



(1) Since the coefficient of variation of X is
2 1/2C = (k - 1) , the values C=l, C>l and 0 < C < 1 characterize

respectively E(b), P I(a,k) and the power distribution.

(li) Muth (1980) has introduced the concept of memory of a

distribution at a point x in its support as -r'(x), which we

can see to be zero for E(b), negative constant for P I(a,k)

and positive constant for power distribution at each point of

its support. Our previous discussions show that these are the

only continuous distributions possessing this property.

(iil) For arbitrary distributions of non-negative random

variables Muth (1980) considers a weighted average of the

memories at various points to arrive at a measure for global

memory of a distribution as M = l-e2 and classify the distribu­

tions as possessing no memory, positive memory or negatlve

memory according as M = 0, M ) 0 or M < O. Since the weights

he has chosen in the calculations are positive, it is evident

that if a distribution has a particular type of memory at

every point in the support it also has the same type of memory

globally. But the converse need not be true as seen from the

expression for M and also from the fact that mixed types of

memory at various points can produce a negative or a positive

quantity as the average. Theorem 3.5 shows that the exponential,

Pareto and Power models are the only distributions in the families

considered above are characterized by a global lack of memory,

negative memory and positive memory.
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Another possible application of Theorem 3.5 lies in

the measurement of income inequality. A random variable Z

has the first moment distribution corresponding to X, if it

has distribution function,

F(z) -1= m
z
! xf(x)dx ·
o

(3.28)

When X is the income of a unit, F(z) is interpreted as the

proportional share of total income of units having income

upto z, and is extensively used to define and interpret

the Lorenz curve and Gini index. (See Kakwani, 1980). We

now prove

Theorem 3.6.

FZ(x) = Fy(x) for all x > Q if and only if X is Pareto

type I.

Proof:

The necessary part is easily verified. To prove the

sufficiency part we observe as follows. Let X ranges from

Q to~. In order to make the span of the distribution

function 1, we change E(X) to E(X)-Q, the mean of the distribu­

tion being (m-Q). Thus if f(.) 1s the density function of V,

(3.29)
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then,
-1 x

FZ(x) = m I t f(t)dt,
0

-1 x
= m I t(-dR(t».

0

Since X ranges from Q to ~, we have,

= _m-l it dR(t),
Q

x
= _m- l It(m-9) fl(t)dt,

Q
(3.30)

using (3.29).

When Z and Y have the same density function,

(3.30) leads to,

f(x) = _m- l x(m-9) fl(x),

so that

log f(x) = log C x-(m/(m-9»,

where C is a constant, thus giving,

f( x) -a= ex ,

with a = m(m-9)-l ) 0 and C = (a-I) Q(a-l).
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When income inequality is measured in terms of the

index E(Z)/E(X) (See Arnold 1983) Theorem 3.6 offers a

characterization in that direction as well.

3.2 Characterization By Properties Of Bivariate Models.

There ha~been several investigations concerning

bivariate distributions that are determined uniquely by

conditional densities of specified forms. The papers by

Abrahams and Thomas (1984), Arnold (1987), Arnold and

Strauss (1988) and Nair (1989) discuss' , this problem

extensively. It is also possible to think in terms of

characterizing univariate models by assuming particular

forms of conditional distributions derived from certain

bivariate models. Seshadri and Patil (1964) has shown

that if the conditional density of Xl given X2 = x2 is

of the form,

then the distribution of Xl is exponential if and only

if that of X2 is also exponential. An analogous result

identifying the blvariate density in the discrete domain

that characterizes the univariate geometric law is avail­

able in Nair and Nair (1990). In the present section our

objective is to find out suitable conditional densities
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that guarantee~ unique Pareto and finite range densities

for the component variates. The following results along

with characterizations of a bivariate Pareto distribution

has been reported in Hitha and Nair (1990).

Theorem 3.7.

Let (Xl'~) be a vector of non-negative random

variables with joint density function f(x l,x2) and marginal

densities fl(x l) and f2(x2). If the conditional distribution

of Xl given ~=x2 is P 11 with density,

(3.31)

where

then the necessary and sufficient condition for Xl to

follow P II(e, b/a l) is that ~ has the same type of

distribution, P II(c, b/a2 ) .

Proof:

When Xl given X2=x2 is Pareto type 11 as in (3.31)

and X2 is P II(c,a2/b), the relationship

00

fl(x l) = ! f( xllx2 ) f2(x2)dx2 •
o

(3.32)
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gives,

a cbc(a x +b)-(c+l)dx
2 2 2 2'

= ~! a a (c+I)(c+2)bc+l(a x +a x +b)-(c+3) dX2,1 2 1 1 2 2o

which establishes the necessary part.

Conversely, assuming that Xl is P II(c,b/a l) so that,

f () a cbc( a x +b)-( c- L)
'1 xl = 1 1 1 '

from equation (3.32)

Taking the Mellin transform of both sides with respect to xl'

00 c s-l (c+ I) (a
2

x
2+b)

c+l s-1
! cb xl dX1 00 00 xl
0 (a x +b)c+l

dX 1 =!! ( )c+2 f 2 ( x2)
1 1 o 0 a1x l+a2x2+b

dX 1 dx 2•



62

Transforming xl to

on the right side and

on the left side leaves the equation,

which is equivalent to

00

a2- 1 ! F(y) yS-l dy = Cbs-1(c_s+l)-1,
o

where

F(y) = H(y-b) f (y-b)
2 a2 '

and H(.) is the Heaviside unit function. Proceeding to the

inverse Mellin transform,

Theorem 3.7 provides a characterization of the

distribution of the random vector X=(Xl,X2 ) as well, in

terms of the marginal and conditional distributions of the
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same component Xl(or X2). To show this, we assume that the

distribution of Xl given X2=x2 is as in equation (3.31)

and further Xl is P II(c,b/al). By Theorem 3.7 ~ is

P II(c,b/a2) and therefore the joint distribution is computed

as,

which is the bivariate distribution of Lindley and

Singpurwalla (1986).

Theorem 3.8.

If (Xl,X2) is distributed such that Xl given X2=x2
has finite range distribution

then Xl has finite range distribution with density,

(3.34)

if and only if X2 is likewise distributed with density,

(3.35)
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Proof:

The if part follows from direct calculations as shown

below. If ~ has finite range distribution FR(a2,r) as in

(3.35) then

f(x1,x2) = r(r-l) ala2(1-alxl-a2x2)r-2,

a1,a2 > 0, alx1 + a2x2 ~ 1, r > 2.

Integrating out x2, we recover (3.34).

On the other hand, assuming that Xl has density

(3.34), equation (3.32) gives

That is,

(3.36)

or

where

and

(3.37)
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Equation (3.37) can be written as

= rr-lg ,

with I~-l standing for the Riemann-Liouville fractional

integral of order r-l of the function g(.) (Erdelyi et. al.

(1954) p.l8l) defined as

1= -rr

The operator rr is connected with differential and integral
9

operators as follows.

d r
OX Ig(x) =

Thus we get

r-l d 2 ,Y
Ig(x) and OX Ig(x) =

o
g( t)dt ·

d r-l r(r-l) a2yr-2/(r-l) f(r-l) ,
dX2 I g(x2)

=

= r(r-l) a2 Y r-2/(r_l)~

and

d 2 rfr-l~ •••2 a Y I g(t)dt ·
dX 2 I g(X2) = =r-l ~ 2

0

The unique inverse relation is, therefore,

=
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and thus,

=

This completes the proof of the theorem.

A characterization of the bivariate finite range

distribution specified by the density (3.36), with the

forms of Xl and Xl given X2=X2 following the finite range

distribution is also evident.

3.3 Characterization By Properties Of Partial Moments.

We recall from equation (2.8) that the r t h partial

moment of a random variable X about a point t is defined

as

=

w~ere, (X-t)+= max (0, x-t).

The properties of partial moments can be used to

characterize probability distributions in the same way as

truncated moments are employed by many authors in characteriz­

ing distributions like the exponential. Chong (1977) has

characterized the exponential distribution by the property

E[X-t-s]+ E(X) = E(X-t)+ E(X-s)+
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of the partial means. In a recent paper Gupta and

Gupta (1983) have made an extensive study of partial

moments and established that one partial moment is

sufficient to determine the parent distribution uniquely.

The random variable (X-t)+ used in defining the

partial moments are meaningful in the study of personal

incomes. If X represents the income of an individual and

t the tax-exemption level, (X-t)+ represents the taxable

income. Those incomes which fall short of t is of no

consequence in the computation of taxes and therefore is

as good as treated to be zero. Thus the study of partial

moments is useful in analysing the incomes that exceeds

the exempt level without truncating the distribution at t.

In the following theorem Hitha (1990) shows that

the Pareto distribution is characterized by the property

that any partial moment at a given point is proportional

to the product of partial moments at two other points

which are factors of the original point.

Theorem 3.8.

Let X be a non-negative random variable in the

support of [k, ~), k ) 0, having absolutely continuous

distribution with respect to Lebesgue measure and with
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E(X-r ) <~. Then the partial moments satisfy the relation,

(3.38)

for all t,s ~ 1, r = 0,1,2, ••• , A(r) ) 0 if and only if X

follows the P I(a,k),where A(r) satisfies the equation,

a = r[l+ A(r-l)/A(r)], r ~ 1, a > r ·

Proof:

If X is distributed as P I(a,k),

, a r/ a( )(r)Pr(t) = r. k t t a-1 , r = 0,1,2, ••• ,

so that

rt katr r~ kas r

Pr(t) Pr(s) = (a-1) (rf:;:a (a_1)(r)--;a'

Now setting t = 5 = 1 in (3.38),

(3.39)

A (r)

and hence,

= p (1) =r
, kar.

(a_1)[r)

Pr(t) Pr(s) = Pr(ts) r!ka/(a_1)(r),

= A(r) Pr(ts).
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Conversely, with p (1) > 0, (3.38) reduces to ther

functional equation,

G(r,t) G(r,s) = G(r,ts), t,s ~ 1,

where

Considering the transformations u = log t and v = log s

and writing G(r,eu) = g(u) and G(r,ev) = g(v), we get the

Cauchy functional equation,

g(u+v) = g(u) g(v), u,v ~ 0,

whose solution is

g(v) = J\(r) ea(r)v.

It follows that

G(r,t) =

From G(r,l) = 1, we have /\(r) = 1 and hence,

By differentiating the integral form of p (t), viz.,
r

(3.40)
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00

! (x_t)r dF,
t

,
Pr (t) = - r Pr-l(t), r ~ 1 ·

Equations (3.40) and (3.42) mean that

and

Using (3.39) and A(r) = Pr(l) the conclusions

(a-r) p (1) = r p 1(1),r r-

and from (3.44),

(l(r) = -(a-r)

follows.

Further,

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

= p (1) t r- a ,r

and from the recurrence relation (3.45),

P (1) = ar1 P (l)/a(r).
r 0
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By definition,

00

= I dF,
1

which is in fact a positive constant lying between 0 and 1

so that it can be written as ka for some k ) O. Thus,

(3.46)

Differentiating (3.46) successively with respect to t, and

using the relation (3.41) we arrive at,

I-F(t) = (k/t)a, t ~ k, a > 0, k > 0,

which completes the proof.

Theorem 3.8 provides a series of results relating

to other univariate families like exponential, power function,

Burr, logistic, etc. 1n terms of the monotone transformations

connecting them. Using the logarithmic transformation to

the Pareto variable, the result corresponding to (3.38) for

the exponential distribution is

(3.41)

r ~ 1, t,s > 1.
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Setting r=l in (3.47) we get the result due to Chong (1977)

mentioned at the beginning of this section. There is a

similar result that concerns the power distribution cited

in Theorem 3.5 which is stated as follows.

Theorem 3.9.

Let X be a non-negative random variable in the support

of (O,R), R > 0, having absolutely continuous distribution

with respect to Lebesgue measure such that EX-r <~. Then

the partial moments

satisfy the relation

(3.48)

for all ° < t, s < R, r = 0,1,2, ••• , B(r) > 0 if and only

if X follows the power distribution with density,

f'{x ) = (9+1) l~ / RQ+1, 0 < x < R J

where B(r) satisfies the relation

(r+l) - rB(r-l)/B(r) = Q, r ~ 1. (3.50)
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Proof:

For the distribution (3.49),

• • • (Q+r+l) ,

so that from this expression and B(r) = U (1), ther

necessity of the condition follows. The proof of

sufficiency part is along the lines of the proof of

the previous Theorem and therefore only the important

steps are presented. As before G(r,t) = Ur(t)/Ur(l)

and subsequently G(r,e x) = g(x) produces the Cauchy

functional equation whose solution turns out to be

G(r,t) = ta(r) and a(r) = Q + r + 1.

Further,

One can take Uo(l) a positive constant to be RQ+l for

some R > 0 and this leads to

=

and whence the distribution (3.49).
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3.4 Characterization By Truncated Reciprocal Moments

The r t h truncated reciprocal moment of a random

variable X is given by equation (2.11) provided the

expectation on the right side exists. The reciprocal

moments exist only for those distributions which have

a zero of order r at least at the origin. A characteristic

property of the Pareto distribution associated with the

reciprocal moments will now be proved.

Theorem 3.10.

The truncated reciprocal moments C (t) of the randomr
variable X given by equation (2.11) satisfy the relation

(3.51)

(3.52)

for all t,s ~ 1, r = 0,1,2, ••• , er(l) > 0, M(r) > 0, if

and only if X has P I(a,k) distribution with

a = r[M(r-l)/M(r)-l], r ~ 1.

Proof:

If X is P I(a,k), direct calculation yields

equation (2.12) and the relationship (3.51) is easily

verified. Conversely, let (3.51) be true with the fact

Cr(l) = M(r). Proceeding exactly as in Theorem 3.8,
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we arrive at the equation

which is analogous to (3.40).

Now,

(3.53)

00

= {l/R{t»{-l)r !({l/x)-{l/t»rdF,
t

(3.54)

where

R(t) = p[x> t].

Thus,
00

= {_r){_l)r !({l/x)_{l/t»r-l
t

(1/x2) (l-F)dx .

Differentiating the above equation with respect to t,

2Crl{t) R{t)+Cr{t)R'{t) = {{-r)/t )(r-l)

j{{1/X)-{1/t»r-2{1/X2)R{X)dX
t

Thus we get
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and so the recurrence relation

[(r/t2)Cr_l(t)+C~(t)]/cr(t)

2
= [(r-I)/t )Cr_2(t) + C~_I(t)]/ Cr_l(t) ·

Using the relation (3.53) we will arrive at

(r/t2) M(r_l)t«(r-l)+ «(r) M(r) t«(r)-l

M(r) t«(r)

= «r-I)/t2) M(r_2)t«(r-2) + «(r-I) M(r-l) t«{r-l)-l .
M{r-l) t«(r-l)

Putting t=l,

a(r) + rM(r-l)/M(r) = a(r-l)+(r-l) M(r-2)/M(r-l).(3.56)

Further we have (3.52) to obtain,

rM(r-l)/M(r) = a+r J

so that (3.56) will become,

a(r) + a + r = a(r-l) + a+r-l.

That is,

a(r) = a(r-l)-l,
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or

a(r) = -r, since a(o) = 1.

Thus,

Now,

where

00

= (l/R{t» ! dF = 1,
t

for all t ,

Thus,

Further,

Differentiating with respect to t, we get

= (_1)£+1 £(£i1 l. j«1/X)-(1/t»£-2 Bi¥ d x ,
t t x
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That is,
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r-l)~

[R'(t) - (r/t) R(t)] / (a+r) = - R(t)/t,

or

R'(t)/R(t) = -aft.

Hence,

F(t) = l-(k/t)a, t ~ k, a > 0, k > 0,

and our result is completely proved.

3.5 Characterization By Additive Damage Model

The concept of damage models introduced by Rao and

Rubin (1964) involves a random variable X reduced to another

random variable U by some random mechanism represented by

the conditional distribution of U given X = x. The quantity

y = X-U is the reduction in X and is called the damaged

component in X and the objective in the formulation of such

models, is to characterize the distribution of X in terms

of the distribution of U. Instead of the additive model

one can also have a multiplicative model of the form U=XY.

A comprehensive survey of the various results in damaqe

models is available in Patil and Retnaparki (1975) and

also 1n Galambos and Kotz (1917) where the connection between
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such models and those arrived at by geometric compounding

and rarefactions, is also explained.

In the present section, a result due to Revankar

et. al. (1974) that characterizes the P II(a,a) mo~el will

be extended to cover the finite range and exponential variables.

Theorem 3.11.

If,

E(ulx=x) = a+bx, (3.57)

a necessary and sufficient condition that X has either an

exponential distribution with ~ = b>O and a > a > 0 or a

Pareto type 11 distribution with ~>b>O and a>a or a finite

ranqe distribution with ~<b<O and a>a is that

(3.58)

Proof:

The case wh~n ~>b>O for the Pareto distribution i~

proved in Revankar et.al. (1974).

Assuming X to bA FR(c,R),

R
E(Ulx>y) = (l/R(y» J (a-bx)(c/R) (l_x/R)c-l dx,

y

= (a-bR/(c+1» - bcy/(c+l),

= a + ~y,
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where p = bc/(c+l) and a > a and b<P<O.

Conversely, with

E(ulx>y) = a+~y, b < ~ < 0,

R
R(y) (a+py) = - I (a-bx) dR(x),

Y

R
= (a-by) R(Y) - b I R(x)dx.

y

Differentiating both sides with respect to y,

R'(y)/R(Y) = -p/[(a-a) + (~+b)y] ·

The solution is

R(y) = K[(a-a) + (~+b)y]-~/(~+b) .

Evaluating K, usinq the condition R(o)=l,

K = (a-a)~/(~+b).

Thus,

R{y) = (1 - y/R)c,

where

R = (b+~)/(a-a) and c = -~/(~+b) > 0,

and Y 1s FR(c,R). The proof of the exponential case is

trivial and our theorem is proved.
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3.6 Residual Life Distributions

In section 2.5 we have examined the various

characterizations of the Pareto and related distributions

by properties of residual life time. These properties

will appear in a natural way once we look at the entire

distribution of the residual life time that is being

currently discussed. The distribution function of the

residual life Yx of a non-negative random variable X

with F(o) = 0, where F(x) is the distribution function

of X, is defined as (Arnold, 1983),

G(y;x) = ~) ,y > 0 ·
~

(3.59)

The correspondinq survival function is

s(y;x) = R(x+y)/R(x)

It is easy to see that the mean of (3.60) is thA MRL

function r(x) defined in equation (2.20), for,

(3.60)

E(Y x) =
00

! y{ -~ ( ) )OV 5 y; x dy,
o y

= (l/R(x» j y ( - %y R(x+y»dy,
o
00

= (l/R(x» f (z-x) dF(z)
x

= E[x-xlx>x],

provicted that E[X] < ~.
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The first probl~m we investigate is th~ form of

the random variable Y when X belongs to the class ofx .

models under consideration in this chaoter. The answer

is provided in the following

Theorem 3.12.

The random variable X follows

(a) E(b) if and only if Yx is E(b)

(b) P I(a,k) if and only if Yx is P I(a,k)

with the oriain shifted from k to k+x.

( c) P II(c,a) if and only if Y is P I1(c,x+a)x

(d) FR(d,R) if and only if Y is FR{d, R-x) •x

Proof:

When Y is Pareto 11 (e, x+a) it follows from (2.26)x

that

~ = ( x+a )c •
~ x+y+a

As x tends to zero,R{Y) = (y:a)C and X is P II(c,a).

The if part i~ verified throuoh direct calculations of

S(y;x) using (3.60). Proof for the other distributions

follow suit.
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As an alternative to the mean residual life function

the median residual life has also been considered in

literature, which stands for the time expected for half of

the number of items that operate at time x fail. The new

measure enjoys relative superiority over the MRL in

situations where the latter (a) becomes unstable in the

presence of outliers (b) does not exist (but the median

is always finite) (c) is less desirable for fat tailed

distributions such as those considered here, and (d) the

data is in the form of censored observations with at least

half of those remaining have recorded failured times.

Moreover, it has simple closed form expressions for many

useful failure time models while the Mean Residual life

has too complicated a functional form to be of use. We

cite for example, the Weibull case where the median residual

life is

( b-1 log
c l/c

2 + x) -x,

corresponding to the survival function R(x) = -bxc
ine ,

contrast with the MRL which at best can be written only

in terms of incomplete gamma function and is analytically

intractable.

With respect to the residual life distribution the

median residual life function is the solution for y of the
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equation

P{Yx> y)

or

1= ~,

(3.61)

S(y;x) 1
= R{x+y)/R{x) = 2 '

which is in general a function of x to be denoted by

M(x). Thus M(x) satisfies the functional equation

1R{ x+M( x) = ~ R( x) •

When x tends to zero, the last expression gives,

1
R{M{o» = '2 '

so that M(a) = M becomes the median of the random

variable X. Then the median residual life is given by

R(x+M(x» = R(x) R(M).

Theorem 3.13.

(3.62)

Let R(x) be an absolutely continuous survival

function with R(o) = 1 then the residual life distribu­

tion S(y;x) satisfies the equation,

S(g(x)y;x) = R(Y),

where g(x) = M(x)/M(o),

(3.63)

if and only if X is distributed as either exponential or

Pareto 11 or finite range.



85

Proof:

Lemma:

As a first step we show that the median residual

life function is of the form It+m, m>O if and only

if X is E(b) for 9=0, P rrt e ,«) for l:» 0 and FR(d,R)

for f< O.

Proof:

By solving the equation (3.62) we see that

b-l log 2, for E(b).

M(x) = (21/C_l)(x+a), for P II(c,a),

[l-(1/2)1/d](R-x), for FR(d,R),

satisfy the conditions of the Theorem. Conversely, when

t= 0, M(x) = a constant so that (3.62) becomes the Cauchy

functional equation,

R(x+M) = R(x) R(M),

whose only continuous solution that satisfy the probability

requirements for R(x) is

R(x) = -bxe ,

where R(M) = e-bM = 1/2. Then the result is true for the

exponential distribution. The Pareto 11 case is proved in
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Schmittlein and Morrison (1981) and the finite range

situation follows from the same proof.

In establishing the main result we first assume

that (3.62) is true. Then with the help of (3.61) and

(3.63) the equation

R(g(x)y+x) = R(x) R(Y) (3.64)

can be reached. Differentiating (3.64) with respect to x,

Rt[g(x)y+x] [g'(x)y+1] = R'(x) R(y),

and the same operation on (3064) with respect to y yields,

R'[g(x)y+x]g(x) = R(x) R'(y).

Hence,

(g'(x)y+l)/g(x) = R'(x)R(y)/R(x) Rt(y) J

and,

l/g(x) = R'(x)/R(x) R'(y).

Combining the last two equations,

g'(x)y+l = R'(o) R{Y)/Rt(y).

The right5ide being independent of x, 50 should be the left

side also which implies gl(X) is a constant or g(x)= lx+m.
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From the definition of g(x) this reduces to the linearity

of M(x) and therefore by lemrna,X has one of the distribu­

tions stated in the Theorem. In order to establish the

converse, we observe that in the exponential case g(x)=l

so that relation (3.64) holds. For P II(c,a) we replace

y by yg(x) = y.(x/a)/a in

S(y;x) = [(x+a)/(x+y+a)]~

to get

s(yg(x);x) = (a/(a+y»c = S(y).

The result for FR(d,R) is established similarly and our

Theorem stands proved.

The concept of median of residual life extends

itself to the notion of percentile residual life if one

wishes to have a finer set of summary measures of location.

Such measures are used for inference in reliability studies

by Joe and Proschan (1983). From the point of view of

characterizations also they are quite" handy and produces

conclusions similar to that of the median.

The qth percentile residual life time is accord­

ing to Haines and Singpurwalla (1974) is

Mq(X) = S-l[qS(x)]-x, 0 < q < 1.
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For the family of distributions under investigation,

(lib) log q, for E(b) J

Mq(x) = (x+a) (ql/C_1), for P II(c,a) J

[l_(l/q)l/d] [R-x], for FR(d,R).

Thus the form of the percentile residual life for the

three distributions remains identical with that of the

median residual life. Therefore the conclusions of

the last theorem can be extended to involve the per­

centile residual life.



Chapter N

CHARACTERIZATION OF DISCRETE MODELS

4.1 Preliminaries

The aim of the present chapter is to extend to the

discrete sample space some of the results that were

established earlier to the Pareto, finite range and

exponential models. As mentioned in the introduction,

the distributions in this context centres around the three

discrete distributions, Waring, negative hypergeometric

and geometric which exhibit properties analogous to the

continuous models just mentioned. Using the notations

of section 2.4, we shall denote by W(a,b), the Waring

distribution with probability function

p[X=x] = (a-b)(b)x/(a)x+1' x = 0,1,2, ••• ,

a>b>O.

while the symbol NH(k,n) is reserved for the negative

hypergeometric law specified by,

( 4.1)

p[X=x] __ ( -1 ) (-k ) / (-l-nk), 2 (2)x=O,l, , ••• ,n, 4.x n-x
k ) 0 ,

and G(p) for the normal geometric model

p[X=x] = qX p , x = 0,1,2, ••• , O<p<l, p+q=l· (4.3)
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Notice that the discrete uniform distribution in the

support of (O,l, ••• ,n) appears as a special case of (4.2)

when k=l.

4.2 Continuous Approximations

As a prelude to the explorations of characteristic

properties of models (4.1), (4.2) and (4.3) in the rest

of the chapter, a justification for alluding to them

properties similar to the exponential, Pareto and finite

range laws, as in order. One way of accomplishing this

is by calculating the continuous approximation of the

discrete distributions and thereby conclude that they lead

to the desired continuous counter parts. The slope­

ordinate ratio method propounded by Irwin (l975c) will be

involved to realise our objective. Roughly speaking, the

method consists in equating the ratio [fr-fr_l]/~[fr+fr_l]

to the l09arithmic derivative of f(x) evaluated at

x = r - ~ and then solve the resulting differential

equation. Notice that f r is the frequency for r=O,l, •••

and f(x) is the corresponding continuous density. For the

Waring distribution ~(a,b) of equation (4.1)
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10 that

= N(a-b) (b-a-l) (b) l/(a) l'r- r+

and

Hence ,

f - f 1r r-
=

2(b-a-l)

(a+b+2r-l)
,

and this is called the slope-ordinate ratio at x

We now wri te

d( di log y ) 1
x=r- 2

where y = f(x).

=
2(b-a-l)

(a+b+2r-l)
,

1 1Setting z = x + ~, we have z=r whenever x = r- ~

and we further deduce

d (a-b-l )dZ log Y = (b-a-l) 2 + z , a>b.
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The solution of the last differential equation is of the

form

y = f(x) = K(x+a)-C-1,

for some a, C > 0, leading to P II(c,a).

Now consider the negative hypergeometric distribu-

tion with

= N ( k+n-r-l ) / ( k+n )
n-r n'

giving

f -f = N (k+n-r-2) !=! / ( k+n ),
r r-l n-r-l n-r n

and

Thus

~ log Y = (k-1) / «~)+n-%)

or

f(z) = const (1- z/R)d-1 ,



93

k 1where d=K and R = ~ + n - ~ are both positive. This

shows that the finite range model is the continuous

approximation of the negative hypergeometric law.

4.3 Failure Rate and MRL

The distributions that are to follow requires

elaborate use of the concepts of failure rates and MRL's

as applied to discrete random variables. These concepts

have been touched upon in many works such as Kalbfech

and Prentice (1980). Many interrelationships and

identities in this connection will be investigated now.

Let X be a discrete random variable in the

support of r+ = (0,1,2, ••• ) with probability mass function

f(x). We also define

R(x) = p[X ~ x],

so that

f(x) = p[X=x] = R(x)-R(x+l) ·

The failure rate of X is

h(x) = f(x)/R(x),

(4.4)

(4.5)
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and the MRL is

r(x) = E[x-xlx>x] ,

1
00

= R{ x+l) 1: (y-x) fey).
x+l

This gives

00

r{x) R(x+l) = I R(Y), (4.6)
x+l

and the recurrence relation

r(x) R{x+l)-r(x+l)R(x+2) = R( x- L) ,

or

r(x) R(x+l) = [r(x-l)-l] R(x), x~l. (4 07)

From the equation (4 05) and (4.4)

hex) = [R(x)-R(x+l)] / R(x),

= l-R(x+l) / R(x).

Hence,

I-h(x) = f( x+l,/h~x+l)rt x) h x) ,

and

f(x+l) = f(x) h(x+l) (l-h(x»)/h(x).
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Thus we get by iteration on x

f(x) = hex) (l-h(x-l» •.. (l-h(o»,

and
x-l

R{x) = IT (l-h(y».
y=o

(4.8)

Equations (4.8) and (4.9) show that h{x) determines the

distribution of X uniquely.

Combining (4.7) and (4.9) we get the relationship

between the failure rate and MRL of X as

I-h(x+l) = (r(x)-l)/r(x+l), x~O. (4.10 )

It follows that MRL function also determines the distribu-

tion uniquely through

R(x) = x-l r(u-l)-lIT -- (l-f(o».
u=1 r(u)

(4.11)

These interrelationships are useful in lifelength

studies when time is treated as discrete as explained in

chapter V but their immediate application is restricted

to characterizina probability distributions.
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4.4 Characterizations By Distribution Based on

Partial Sums*

If X is a random variable defined in the previous

section with E(X) = m < ~J the variate Y specified by

g{y) = p[Y=y] = m-I p[X>y], y=O,I, ••• , (4.12)

is said to have the distribution based on partial sums

corresponding to X. The probabilities assumed by the

values of Y are proportional to the survival probabilities

of X. Some properties of (4.12) are discussed in Johnson

and Kotz (1969, p.261). Under certain conditions

Gupta (1979) describes Y as the residual life time of a

component, in a system where a component of life length X

is replaced upon failure by another, having the same life

distribution, so that the sequence of life lengths forms

a renewal process. He showed that the failure rate of Y

is the reciprocal of the MRL of X and that when the

renewal distribution belongs to the class of modified

power series distribution, the geometric law is the only

one satisfying the property E(X)=E(Y). In this section

we supplement Guptats results by extending some of his

results to cover the class of discrete distributions under

consideration and also explore the possibility of arriving

at some new characterizations.

* These results have been published in Prob.Statist.Letters
(reference 65 ).
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4.4.1 Basic Results

Analogous to equation (4.5), we write the failure

rate of Y as

k(s) = p[Y=s] / p[Y>s],

00

= R(s+l) / t R(u),
5+1

= [r(s)]-l, s>t~ 0, (4.13)

where r(s) is as in equation (4.6), the MRL of X.

Result (4.13) is obtained by Gupta (1979). Further,

00 00

k(5) = t P[Y=s+r] / t R(u),
r=l 5+1

00 00

= E R(s+r) h(s+r) / E R(u),
r=l 5+1

00

= E het) wet),
5+1

with
00

wet) = R(t) / t R(s), t = s+1, 5+2, ••••
5+1

(4.14)

Thus the failure rate of Y is a weighted average of the

failure rates of X beyond the time point s. From (4.14),
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for G(u) = p[y ~ u],

ee

a(s) = E G(t)/G(s+1), (4.15)
5+1

so that together with (4.12) giving

-1
00

G(s) = m I R(t),
5+1

we can write,

a(s)m-1
00 00

1: R{ t) = t G(t),
s+2 5+1

-1
00 00

= m t E R(t).
r=1 s+r

Substituting

00

res) R(s+1) = t R(t»
5+1

and
00

a(s) = 1: r(t) w(t+1),
5+1

the terms in (4.16) can be simplified to

{

1 , u=1)

w(t+u+l) r(u+t) - u
- 11 [l-k ( t+ 1+ j ) l . u=2, 3, ••• •

j=l

(4.16)
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Thus we see that, as in the case of failure rate, the MRL

of Y is also a weighted average of the MRL's of X.

Now with the aid of (4.13), equation (4.10) becomes,

or

I-h(s+l)

h(s)

=

= l+k(S)[l-(k(S-l»-lj, s~l,

(4.17)

giving the relationship between failure rate of X and Y.

On the otherhand, the MRL's of X and Y satisfy

r(s+l) = a(s+l) [l+a(s+l)-a(s)]-l,

T
519. 22 ..-l

H/I

which follows from (4.17), (4.13) and (4.10). We can also

have the equation

k(s) = [l+a(s)-a(s-l)]/a(s),

connecting the failure rate of Y and the MRL of X.

4.4.2 Characterizations

An immediate consequence of the identities developed

in the previous section is in characterizing some discrete

distributions. We first prove
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Theorem 4.1.

A necessary and sufficient condition for X to be

distributed as G(p) (W(a,b); NH(k,n») is that Y is G(p)

(W(a,b+l); NH(k+l, n-l».

Proof:

From Xekalaki (1983a), it is seen that a failure

rate function of the form hex) = (L+Mx)-l characterizes

G(p) for M = 0, L = p-l;

W(a,b) for M = (a-b)-l, L = a(a-b)-l;

and

NH(k,n) for M = _k-l, L = k-l(n+k).

Substituting this form of h(x) in (4.17), we find,

Since, k(x) = (r(x»-l, this should read

l-r(x-ll
r(x) = (L+Mx)-l -1.

Applying the above result recurssively for ascending values

of x,
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with

r(x-l) (4.18)

a = (L-l)/M and ~ = L/M.

Obviously the last equation represents the hypergeometric

series 2F1 ( a+x , 1, p+x, 1) in the usual notations (see

Abramowitz and Stegun, 1972). From the well known formula,

ry rey-p-g )__

re y-p) r(y-q)

it is easy to see that

2F1(p,1,y,l) = (y-l)/(y-p-l).

Thus

r(x-l) = (p+x-l) I (~-a-l),

or

(4.20)

k(x) = (A+Bx)-l.

where

A = L(l~)-l and B =M(l-M)-l.

The form of k(x) suggests that the distribution of Y

is of the same type as that of X and further (4.20) gives

the parameters of each model after inserting the values
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of L and M for each stated at the beginning of the proof.

Note:

The fact that the above models are closed with

respect to the formation of the distribution of Y can

also be established by direct calculation using the

equation (4.12). Our motivation in using the above

method are (i) direct calculation are more extensive,(ii)

the form of the failure rate and MRL is handy when the

modelling is based on these concepts, and (iil) the

relationships used here are important in their own right

in other areas of applications as will be shown in

chapter V.

Corollary 4.1.

The MRL of X is of the form A+Bx if and only if

X is either G(p) for A=O or W(a,b) for A > 0 or NH(k,n)

for A ( O.

Proof:

When X has a distribution that follows one of

the models stated in the theorem if and only if the

failure rate is of the form (L+Mx)-l. In this situation,

from equation (4.20) we see that

r(x) = (~+x) / (~-a-l) J
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and therefore, the MRL is of the required form. Conversely,

if MRL is as in (4.22), the failure rate is

h(x) =

=

1 - ( re xrM -1 )
r x

(~-a) / (p+x) = (L+Mx)-1

Accordingly, by the characterization theorem of Xekalaki

(1983a), X has the above specified distributional form.

To enable future reference, we note Table 4.1 for

the actual expressions for the failure rates and MRLs of

the various models.

Table 4.1.

Failure rates and MRL's of Discrete Models

Model Failure Rate MRL

G(p) -1p P

W(a,b) (a-b)(a+x)-1 (a+x)( a-b-1)-1

NH(k,n) k(k+n-x)-1 (k+n-x) (k+1)-1

( Uniform ) (1+n-x)-1 1
in [o,n] ~ (1+n-x)
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Theorem 4 02

The property h(x) = C.k(x) for all integers x ~ 0

and a constant C, characterizes G(p) for C=l, W(a,b) for

C ) 1 and NH(k,n) for 0 < C < 1.

Proof:

For the geometric law X and Y have identical distribu­

tions with the same parameters and therefore, in this case

hex) = k(x). When X is N(a,b), Y is W(a,b+l) so that from

table 4.1,

h(x)/k(x) = (a-b)/(a-b-1» 1.

In the negative hypergeometric case

h(x)/k(x) = k/(k+l) < 1.

Conversely, h(x) = Ck(x) is equivalent to hex) r(x) = C

or to

r(x)-r(x-l)+l = C.

The solution of this equation is

r(x) = (C-l)x + r(o»)

which is of the form A+Bx and therefore by Corollary 4.1

our Theorem is proved.
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Corollary 4 02.

The MRL and failure rate of X is such that

r{x) h(x) = C for all integers x ~ 0 and a constant C ) 0

if and only if X is G(p) for C=l, W(a,b) for C > I and

NH(k,n) for 0 < C < 1.

This follows from Theorem 4.2 and the relation­

ship k{x) = [r{x)]-l.

Corollary 4.3.

The relationship r(x) = Ka(x) is satisfied for

all integers x ~ 0 and a constant K if and only if X

is geometric (for K=l) or Waring (for K<l) or negative

hypergeometric (for K>l).

Proof:

The result follows from the relationships between

a(x) and k(x), equation (4.17) and Theorem 4.2.

The utility of these results and the physical

interpretation of the properties enjoyed by the models

in the last theorem in the context of ageing will be taken

up in chapter V. The advantages arising out of these

Theorems in the context of evaluating the memory of discrete

distributions will now be explored.
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A measure of memory at any point x in the support

(0,1,2, ••• ) of a discrete random variable X is defined in

terms of MRL (Nair, 1983) as

m(x) = r(x-l) - r(x), x ~ 1.

The distribution of X is said to have no memory,

negative memory or positive memory according as m(x) is

zero, negative or positive. Since a distribution can

have different types of memory at the various points of

its support, a consolidated measure of memory for the

entire support was obtained as a weighted average of the

measures at various points. The proposed measure was

M = 2 E2(X)
+ E(X) - E(X2) .

E(X2 ) + E(X)

The distribution itself has lack of memory, negative

memory or positive memory according as M 1s zero,

negative or positive. The following Theorems follow

from the above definition.

Theorem 4.3.

(4.23)

The geometric, Waring and negative hypergeometric

laws in that order are the only discrete distributions

that possess lack of memory, constant negative memory and

constant positive memory at each point of its support.
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(This deduction is ea s ily seen from the fact tha t

r(x) = A+Bx for these models).

Theorem 4.4.

If X has a particular type of memory,. at a given

point, then Y also has the same type of memory.

Proof:

Suppose X has positive memory at the point x.

This implies that

r(x-l) ) r(x) or k(x» k(x-l).

The last inequality, however, is equivalent to

g(x) G{x-l)-g{x-l) G{x) ) 0,

or to

G{x)/G(x-l) > G(x+l)/G{x).

Hence H(x) = G(x)/G(x-l) is decreasing in x.

Accordingly,

a{x) = H(x) + H(x) H(x+l)+H(x) 'H(x+l) H(x+2)+ ••• J

and

a(x)-a(x+l) = [H{x)-H(x+l)]+H(x+l)[H(x)-H(x+2)]+

) 0,

• • •
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which means that Y has positive memory at x. The proof

is similar when X has lack of memory or has negative

memory.

From the expression for M it is clear that, in

general, M=O does not imply that X is geometric (although

for this law M=O). This means that we have to restrict

the family of distributions to be considered, in order to

characterize the geometric law by the property M=O.

Suppose that X belongs to the modified power series

family

p[X=x] = a(x) (g(Q) ]x/f(Q), x £ B J

where B is a subset of the set of non-negative integers,

a(x) > 0, g(Q) and f(Q) are positive, finite and differen­

tiable. Then from Gupta (1979), we have E(Y) = E(X).

If we denote the generating function of < f(x) >

a nd < R( x ) ) by

A(t) = E f(x) t X and B(t) = t R(x)tX
,

x x

it is easy to see that

A t ( 1) = E ( X ) and A" ( 1) = EX( X-1) • (4.24)
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Further,

(1-t) B(t) = l-tA(t).

Differentiating (4.25) twice, with respect to t and

setting t=1

00

8'(1) = E xR(x),
x=l

and
28' ( 1 ) = A ,,( 1 ) + 2E (X) ,

= EX(X-l) + 2E(X).

Accordingly ,

E(X) E(Y) -1 yp[x>y],= = m t

= B ' ( 1 ) -E (X) •

Thus,

E(X) = ~ m-1 [ E {X2 }_E{X} ] ,

= [E{X2)-E{X)]/2E{X}.

or

E{X2) = 2E2{X) + E{X).

(4.25)

and hence M=O. We have, therefore, established the following

result.
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Theorem 4.5.

Among the modified power series family, geometric

law is the only one for which M=O.

4.5 Residual Life Distribution

Let X be a random variable representing the life

time of a component or device in the support of the set

of non-negative integers with survival function R(x).

When the life times are expressed only in completed units

of time, the domain of X will be restricted to the support

just mentioned. In such a situation, the residual life

distribution (RLO) of X at the elapse of x units of time

is specified by the distribution function

F(y;x) = p[x < X ,< x+Ylx ) x],

= Fe x+y) - Fe x)
I-F{x) ,

= [R(x+l)-R(x+y+l)]/R(x+l).

The corresponding survival function is

R(y;x) = R(x+y+l)/R(x+l), y ~ 0 •

For convenience, let Y x denote the random variable with
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survival function (4.£6). Then the MRL of X is from (4.6)

r(x) 1
= R( x+l)

1
= R( x+lf

00

I lz-x) flz),
x+l

CIO

t R(z),
x+l

where, fl.) is the probability mass function of X. This

can be written as

r(x) 1
= R( x+l)

= E(Y ),
x

00 00

t R(x+y+l) = E R(y;x),
y=o y=o

so that the definition (4.26) is consistent with the notion

of MRL and residual life given in section 4.4.

Our first concern is the form of the RLD when X

follows the class of models considered so far. This is

vindicated through the following theorem.

Theorem 4.6.

Yx is G(p) (or W(a+x+l, b+x+l) or NH(k,n-x-l» if

and only if X is G(p) (or W(a,b) or NH(k,n» and conversely.
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Proof:

When X follows G( p) , R( x) = qX and hence -'

R( Y;x) = qx+y+l / qX+l = qY = R( y) . (4.27)

Then the RLO is also geometric with the same parameter

as X. On the other hand, X is W(a,b) implies}

00

R(x) = (a-b) I [(b)t/(a)t+l]'
x

(b)x 00

= (a-b) 7 a ) I [(b+x)r!(a+x+l)r]'
\ x+l r=o

(b)x a+x= (a-b)~ --- ,(from formula (4.19»
\a'x+l a-b

Accordingly,

R(y;x)
= (b)x+y+l (a)x+l

(a)x+y+l (b)x+l

(b+x+l)
= Ye , Y = 0,1,2, ••• )

(a+x+l) y

and therefore Yx is W(a+x+l, b+x+l). Lastly when X is

NH(k, n )
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R(x) =

=
n
t ( k+n-t-l ) / ( k+n )

n-t n'x

( -p )on using k

Thus,

The last sum is, however, reduced to the following by

virtue of the combinatorial identity (Riordan, 1968)

n a+n-x-l a+n1: ( ) = ( )n-x n ,
x=o

so that,

R( x) ( k+n-x ) / ( k+n ) ,= n-x n

and

R(y;x) ( k+n-x-y-l ) / ( k+n-x-1 ) ,= n-x-y-l n-x-l

showing that Y is NH(k,n-x-l).x
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Let us look at the converse proposition. Here

we are given that, for example, in the Waring case,

R(y;x) =

and therefore from (4.26),

RfX+Y+l} =
R x+l) (b+x+l) / (a+x+l) •y y

Setting x to zero ,

filY±ll
RTIJ

and hence,

,

R{Y) = (b) / (a) •
Y Y

The proof for other models are on similar lines and the

truth of the theorem is established.

4.6 Characterization By Properties Of Residual Life*

In continuation with the characterization of the

models by properties of mean residual life renewed in

* The results in this section have appeared in Cal.
Statist. As so c , Bull. (Reference 33 )
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chapter 2, we now present certain properties based on

the form of the variance of residual life. The applica­

tions of the Theorem in reliability analysis is discussed

in chapter V •

Theorem 4.7.

If b(x) = V(Y(x»/EY(x) E[Y(x)-l] = C,

a constant, then a necessary and sufficient condition

that X follows

(i) geometric distribution is C=l

(ii) negative hypergeometric distribution,

NH(k,n), is C < 1, and

(iii) Waring distribution, W(a,b), is C ) 1.

Note that the symbol V(X) stands for the variance of the

random variable X.

Proof:

First we prove that the condition is necessary.

By definition,

V[Y(x)] = Cr(x) (r(x)-l),

where,

V[Y(x)]
00

= 1 t (y_x)2 f(y)-r2(x),
R( x+l) x+l
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or,
00 2

r(x) R(x+l)[Cr(x)-e+r(x)] = t n f(x+n),
n=l

00 2
= t n [R( x-sn) -R( x+n+l)] ,

n=l

00 2 2
= R(x+l)+ I [(n+l) -n ] R(x+n+l).

n=l

The right hand side may be simplified as,

00 00 00 00

R(x+1)+2 t nR(x+n+l)+ t R(x+n+l)= t R(x+n)+2 t nR(x+n+l),
n=l n=1 n=1 n=l

00

= r(x) R(x+l) + 2 E nR(x+n+1),
n=l

giving,

00

2 t nR(x+n+l) = r(x)R(x+l)(C+l)(r(x)-l).
n=l

(4.31)

Changing x to x+l in (4.31) and subtracting the resulting

expression from (4.31), we get

2[R(x+2)-R(x+3)+2R(x+3)-2R(x+4)+ ••• ]

= (C+l)[r(x) R(x+l)(r{x)-1)-r(x+l)R(x+2)(r(x+l)-1)].
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On using the recurrence relation,

[r(x)-l)] R(x+l) = r(x+l) R(x+2),

we find,

00

2 t R(x+n+l) = (C+l) [r(x)-r(x+l)+l] r(x+l) R(x+2),
n=1

which is the same as

2r(x+l)R(x+2) = (C+l)r(x+l)R(x+2)[r(x)-r(x+l)+1].

This, however, reduces to,

r(x) = r(x+l) + (l-C)/(l+C).

Notice that when C=l,

r(x) = r(x+l),for all x ~ 0 ,

(4.32)

and this implies that r(x) = K, a constant. From the

definition of r(x), K is greater than unity so that there

exists a p, satisfying O<p<l such that K=p-l. Hence from

(4.11),

R(x) = (l-f(o» qX-l, q=l-p.

Determining f(o) such that R(o)=l, we get,

f(x) = xpq, x = 0,1,2, ••• J

and X has geometric distribution as claimed.
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Now taking C<l, from equation (4.32), we find

r(x+l) = r(x) + rn,

50 tha t r( x) is of the form t+ mx where l) 1 and m < 0

and therefore X is W(a,b).

Lastly, when cs i , r(x) = f+mx with ~) 1, but m ) 0

so that by applying corollary 4.1 we conclude that X is

NH(k,n).

It remains to prove the sufficiency of the condi­

tions of the Theorem. We use the formula (4.31) to get,

00

(C+l)r(x)[r(x)-l] = 2[R(x+l)]-1 r nR(x+n+l),
n=l

Cr(x) (r(x)-l) • 2 s(x)-r(x) [r(x)-l],

and

V(Y(x» ~ 2s(x)-r(x)(r(x)-1),

where,
00

sex) = (R(x+l»-l r nR(x+n+l),
n=l

b(x) = 2s(x) [r(x) (r(x)-l)]-l -1.

() -1 () -2When X is geometric, r x =p , s x = qp ,so that

b(x)=l. For the Waring distribution in (4.1),

(4.33)
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co co

R{x+l)s{x) = i~ j~i {b)x+j / {a)X+j' (4.34)

=
00

t
1=2

{b)x+i ~ 1 (b+X+i~ I
ffi x+ i - 1 l{a+x+i-lf + (a+x+i-l) a+x+i) + •••J'

00

= t
1=2

b{ b+l) x+i-l

{a)x+i-l

+ ••• j ,

b (b+l)x+l J 1 Ib+x+2) J
= a-b-l Ca) t(a+x) + la+x)(a+x+l) + •.• ,

x

b {b+l)x+l 1 a > b+2.= a-b-l (a)x a-b-2'

Thus,
(b+l)x+l{a)x+l

s(x) b= (a-b-l)(a-b-2) ( a) x ( b) x+l
,

b \(b+x+2) la rh fTa+x+1L= fa-b-l) (a-b-2) rrb+l) f( a-sx) f1 b+x+l) fa
,

= fb+x+ 1 ~ ~ a+ x) a>b+2 .
a-b-la-b-2) ,
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Also, from table 4.1,

r{x) = (a+x)/{a-b-1).

Finally, we write b{x) as

2
() ~b+x+l}(a+x)(a-b-l}

b x = la-b-l){a-b-2)ra+X)-4iI(-b+-x-+-l)- 1,

= -1 + 2{a-b-l)/(a-b-2) ) 1.

To compute the expression (4.32) for the negative hyper­

geometric distribution, observe that its probability

mass function (4.2) can be converted into the form

f{x) = ( k+n-x-l ) / ( k+nn ),
n-x

resulting in the survival function,

R( x) = (k+n-x) / ( k+nn ).
n-x

Accordingly from (4.34),

( k+n-x-l)s{x) =
n-x-l

n n-i
~ ~ (k+m-y-x) i
I.. I.. , m=n- ,m-y-x1=2 y=o
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n n-i k+l+m-y-x-1= 1: 1: ( ) ~
1=2 y=o m-y-x

n n-1 k+l+n-i-y-x-l= 1: t ( ) ,
1=2 y=o n-i-y-x

n
= 1:

i=2
( k+l+n-i-x )

n-i-x '

on using the combinatorial identity (4030).

Thus,

or

( k+n-x-l ) sex)
n-x-1

n-2= t (k+l+n-y-2-x) = (k+n-x )
n-y-2-x n-x-2 'y=o

s(x) = (k+n-x)(n-x-l)/(a+1)(a+2).

Again, we have

1 n
r(x) = R(x+l) t R(Y),

y=x+1

k+n-x-l )-1
n

(a+n-y )= ( n-x-l 1:
y=x+l

n-y ,

(k+n-x-1 )-1
n-x-l k+n-y-x-l

= 1: ( ) ,n-x-l y=o n-y-x-l
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= ( k+n-x-1 )-1 ( k+n-x )
n-x-l n-x-1 '

=

=

and hence,

(k+n-x)/(k+l) ,

k+n-x-1 ~,

2
() 2(k+n-xLlD-x-1) (k+l)

b x = (k+1)(k+~(k+n-x)(n-x-1) -1,

=
2~k+1)__ 1 = k
(k+~ k+2 < 1 ·

This completes the proof.

4.7. Characterization By Additive Damage Model

Let X,V and U denote random variables in the

support of the set of non-negative integers such that

y = X-U, 0 < U < max (0, X-t)

for some positive integer t. We further assume that

for x > t, t ) '0 t

E[ulx=x] = t+mx, i> 0, m I: o.
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Thus, Y becomes the damaged component of X where,

the random mechanism that reduces X to Y is represented

by the regression function U on X. If we assume that

the conditional mean of U given X>x is a different linear

function of the form

E[ulx)x] = a+~x,

then it is possible to arrive at a characterization of

our discrete models.

Theorem 4.8.

Given that

E[ulx=x] = !+mx,

it is necessary and sufficient that

E[ulx>y] = a+~y,

for X to be distributed as geometric for ~ = m>O

and a >t> 0; Waring for j3 > m> 0 and a >l;

negative hypergeometric for j3 < m < 0 and a >j
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Proof:

We have

00

E[ulx>y] = R(~+l) t (L+mx) f(x»)
y+1

=

=

=

t +m E(X IX>y) ,

t +m[ y+E (x-v] X>y)] ,

1+my+mr( y) • (4.37)

From table 4.1, we read the values of r(y), to find,

· (l+mp-l)+my, for G( p) ,

E[ulx>y] = l +am(a-b-l)-l + ri:~~lr for W(a,b),

I It+n)y mk,J..+ k+l + (k+l) y, for NH(k,n) ,

which is of the form a+~y. The conditions on the para­

meters a and ~ can easily verified to be as stated in

the Theorem.

Conversely, if E(Ulx>y) is of the form in (4.36),
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we have from (4.37),

a+~y = 1+my+mr( y)

so that

r{ y) = Ay+B

with

A - a-m- m and B = - .m

The form of the distribution of X follows from

corollary 4.1 to Theorem 4.1.



Chapter V

RELIABILITY CONCEPTS IN DISCRETE TIME

5.1 Preliminaries

The focal theme of the last two chapters has been

the characterization of discrete and continuous distribu­

tions which share the common property that their mean

residual life is of linear form. Apart from this property

that has immense value to reliability modelling, most other

features relating to these models have also some significant

implications in the context of reliability analysis. In

the present chapter, we look more closely at some concepts

that are frequently used in life length studies vis a vis

their relationships, with reference to various notions

discussed earlier along with their inherent properties.

A failure time distribution represents an attempt

to describe mathematically the length of life of a component

or device. However, our inability to isolate the vast body

of causes, that individually or collectively are responsible

for the failure of the device at a particular instant, often

renders, the identification of the failure distribution very

difficult. Available at the disposal of the analyst is only

some actual observations on the time to failure and these

have to be made use of to explore a plausible model. When
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the data set indicates the desirability of a skew distribu­

tion, the problem becomes even more difficult, as assymetric

models differ markedly at the tails and the actual observa­

tions at the right tail are sparse on account of limited

sample size. This has led to several concepts that enable

differentiation between various models based upon physical

considerations that governed the failure phenomenon. Some

of these, such as failure rate, mean (median) residual life

function, equilibrium distribution along with the essential

conditions under which their properties provide specific

models have already been discussed. Yet another and perhaps

more versatile way of describing the failure mechanism is to

expose the manner in which its life length is affected by

the advancement of age. In other words, one can check

whether the life length of the device is increasing,

decreasing or remaining steady together with an assessment

of the manner in which these improvements or deterioration

in the effectiveness of the device takes place with regard

to its age. The various concepts designed for this purpose

are called criteria for ageing. The vast majority of

literature on the various criteria for ageing treats life

time as continuous with only occasional references to the

discrete. Recently there is some spurt of activity towards

reliability analysis in the discrete time domain.
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Xekalaki (l983a), points out that limitations of measuring

devices and the fact that discrete models provide good

approximations to their continuous counter parts, necessi­

tate assessment of reliability in discrete time. Further

discrete models do occur in a natural way as in fatigue

studies the time to failure is measured in terms of the

number of cycles to failure which is obviously integer

valued. Accordingly elaboration of various concepts

analogous to those in the continuous cases become necessary

to distinguish classes of life distributions based on the

notions of ageing. The definitions of the various classes,

their characterizations and some implications among them

are discussed in the follo~ing sections. It may be noticed

that Klefsjo (1982) have touched upon the definitions of

the various classes introduced below.

5.2 Increasing (Decreasing) Failure Rate

We first present the oldest and perhaps the simplest

concept of ageing based on the monotone character of the

failure rate.

Definition 5.1.

A discrete random variable X or the corresponding

survival function R{x} = p[X>x] belongs to the increasing
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failure rate or lFR (decreasing failure rate or DFR)

class if

h(x) = p[X=x] / R(x)

is an increasing (decreasing) function of x, for all x

in l, where I is the set of non-negative integers.

From the point of view of elucidating the above

definition and also in proving some other results, two

characterizations of the IFR c Las s-wl Lf be established.

Throughout the sequel, the proof will be limited to the

IFR class, it being understood that by reversing the

monotonicity, results for the dual~DFR class follow atonce.

5.2.1 Characterizations.

Theorem 5 .1.

X is IFR (DFR) if and only if R(x+y)/R(x) is a

decreasing (increasing) function of x for all y in I.

Proof:

When R(x+y)/R(x) 1s an increasing function of x

for all y we can write,

~ixL- RTX+YT ~ 0, for all y in I.
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Hence,

and

R«+P.
R x

RC x+y+l)
~ R( x+Y) ,

1- R' (+t1 < 1- R' X+Y+PR x -c R( x+Y

since, for all x the ratio R(x+l)/R(x) does not exceed

unity. It now follows that h{x) ,< h{x+y) and therefore

h(x) is an increasing function of x. Thus X is IFR.

The converse is obtained by retracing the above proof

from end to the beginning.

Theorem 5 02.

X is IFR (OFR) if and only if H{x,y) is an increas­

ing (decreasing) function of x for all y in I, where H(x,y)

is the cumulated failure rate in the interval [x,x+y-l]

defined by,

Proof:

x+y-l
H(x,y) = t h(t), x ~ o.

t=x
(5.1)

First we suppose that X is IFR. Then for all y in I,
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H( x+1 , Y) -H( x, y) 1 x+Y
h(t) 1 x+y-l

= x+l t - - E h(t), (5.2)
t=y x t=y

1 1 x+y-l
h(t) + h{x+y)= (x+l - -) tx x+lt=y

1 [h( x+y) 1 x+y-l
] .= x+l - - I h( t)x t=y

Since h(x) is increasing in x,

.1 x+y-l
x I: h( t ) ~ h( x+y-l) ,

t=y

and therefore,

H(x+l,y)-H(x,y) ~ (x~l) [h(x+y)-h(x+y-l)],

~ o.

Thus H(x,y) is increasing with x. Conversely, relation (5.2)

gives,

or

x+y
X t h(t)

x

xh(x+y)

x+y-l
~ (x+l) E h(t),

x

x+y-l
>/ 1: h ( t ) •

x
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Hence,

x[h(x+y-l) - h(x+y)] ~ h(x+y),

and

h(x+y+l) ~ X~l h(x+y), for all x > 0

and y in I which implies

h(x+y+l) ~ h(x+y),

and the required conclusions.

In section 4.4 properties were discussed of the

distribution based on the partial sums of a discrete

model. If X denotes the life of a component with survival

function R(x), and whenever the component fails it is

replaced by another new unit which acts independently of

the first. When the renewal of the system is continued

indefinitely, Feller (1968) has shown that the asymptotic

distribution of the residual life Y of the unit under

observation at time t has the distribution (4.12).

Deshpande et. al. (1986) considers the comparison between

R(x) and G(x), the survival functions of X and Y in the

continuous case as meaningful. Their point of view is

that the life distribution of a unit which ages more

rapidly will come off worse in such a comparison. In this

sense, the following result is meaningful.
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Theorem 5.3.

If X is IFR then hex) ~ k(x), for all x in I.

(See section 4.4.1 for the definitions of h(.) and k(.~)

Proof:

When X is IFR, from Gupta (1979)~Y is also IFR.

This means that

k(x+l) ~ k(x),

or

1 - k«~tl ~ 0k x ~ •

Therefore,

k( x+1)+1 - k~(:P. ~ k( x-s L},

and

1 + k( x-s L) [1- kt x)· ] ~ k( x+1) •

The left hand side is h(x+l) from equation (4.17) and

our result is proved.

5.3 Increasing (Decreasing) Failure Rate Average

The class of distributions distinguished by

increasing failure rate average or IFRA (decreasing

failure rate average or DFRA) property wa s introduced
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for continuous random variables by Birnbaum et.a1.(1966)

in an attempt to find a new class of life distributions

that reflect the phenomenon of wear-out. They have shown

that this class (1) limiting case of no wear; that is, all

exponential distributions, (2) preserves the wearing out

phenomenon for a system in.which the components also have

the same behaviour, (3) is the smallest one with

properties (1) and (2). K1efsjo (1982) has considered

the discrete IFRA class, prefering to define it in terms

of the behaviour of [F(x)]l/x where F(x)=R(x+l)=P[X>x],

as in the continuous case. While in the continuous case

- .! log F( x)
x

1= -x
x
J h(t)dt
o

provides the average failure rate in [o,x] no such meaning

can be given to log F(x) in the discrete case. In order to

retain the notion of averaging the failure rate, we adopt

the following definition of the IFRA class.

Definition 5.2.

A discrete random variable X or its survival function

belongs to the IFRA class if

1
x+l

x
I h(t)

t=o

.! x;l
~ I. h(t),

x teo
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or equivalently, H{x,o) is an increasing function of x,

for every x in I. The DFRA class is defined by reversing

the above inequality.

5.3.1 Properties

Directly from the discussions in the previous

section we conclude

Theorem 5.4.

1. The IFRA (DRFA) class contains all IFR(DFR)

distributions.

2. If R(x+y)/R(x) is a decreasing (increasing)

function of x, for all y ~ 0, then X is IFRA (DFRA).

3. The function H(x,y) is increasing (decreasing)

in x for all y implies that X is IFRA (DFRA).

Theorem 5.5.

If X is IFRA then

R(x) R(Y) ~ R(x+y),

for all y ~ o.

Proof:

By definition 5.2, X belongs to the IFRA class if
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1 x I x-I

x+l t h(t) - - 1: h(t) ~ 0,
t=o x t=o

or

1 x
[1- RA[~tl J 1 x-I

[1- ~f ij1lJ ~ 0,x+1
1: - - 1:

t=o x t=o

or

1
x-I R([+t1 I ~ R~ tj1)- t R t ~ x+lx t=o t=o R t '

or

x-I
~t;1l x x R([+PE R t ~ x+l 1: Rt· (5.3)

t=o t=o

Now, suppose that the condition R(x) R(Y) ~R(x+y) is

violated for the IFRA class for atleast one y, say, y=l.

Then one should have

x;1 R( [+5>-,.. >xR(l).
t=o R t

This implies

x-l ~.1 t R t+l )
x t=o R t

and

R1JJ.R"(OT ,

1
1- ­x
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Since,

BA(~tl = I-h(t),

this should mean that

x-I
1 t het) < h(a),
x t=o

which contradicts our hypothesis and therefore the theorem

is proved.

Theorem 5 06.

If X belongs to the IFRA class, then r(x) ~ reo),

for all x ~ o.

Proof:

The IFRA nature of X means that by

Theorem 5.5,

R(x) R(y) ~ R(x+y), for all x,y ~ O.

Then,

00 00

R(x+l) E R(y) ~ t R(x+y+l),
y=l y=l

for all x ~ o.
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That is,

00

R(x+l) r(o) R(l) ~ E R(t),
y+l

or
00

r{o) R(l)

this gives

1
~ RC x+l) It=x+l

R(t),

r{o) ? r(x).

The next property concerns a characterization of

the IFRA nature of the equilibrium distribution.

Theorem 5.1.

1
Y is IFRA if and only if x+l

x
I
o

1rm is an

increasing function of x, for all x > o.

Proof:

The proof follows from definition 5.2 and equation

(4.13) •

5.4. Decreasing (Increasing) Mean Residual Life

A chronological review of the development of

reliability concepts reveals that the notion of failure
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rate was pursued to the more fundamental than the mean

residual life. The potential of the mean residual life

in describing various laws of failure had received only

limited attentions from earlier researchers. In fact,

the independence- dependence relationship between h(x),

R(x) and r(x) can be reversed and it is possible to look

at the failure patterns based on the behaviour of MRL.

At times, the MRL appears to be a better concept than

the failure rate once we closely examine the definitions

of the two. The failure rate take into account, the

behaviour of the survival probabilities at times x and

x+l, while r(x) utilizes the entire information about

the survival probabilities from age x onwards till

failure. Thus, if an equipment does not fail in the

near future, its failure rate may be zero and at the

same time, the MRL may be decreasing as failure is bound

to occur once the period for ~hich h{x) = 0 is surpassed.

This difference in the behaviour of the two functions

has resulted in ageing concepts based on MRL. We first

introduce the decreasing mean residual life or DMRL

(increasing mean residual life or IMRL) class.

Definition 5 03.

A discrete random variable X or its distribution

belongs to the DMRl class if r(x) ~ r(x+l) and belongs

to the dual IMRL class if r(x) ~ r(x+l) for every x in I.
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5.4.1. Properties.

Theorem 5 07.

A sufficient condition for X to have DMRL(IMRL)

is that R(x+y)/R(x) is a decreasing (increasing) function

of x, for every y in I.

Proof:

By hypothesis, R(x+y+l)/R{x+l) is a decreasing

function of x. Summation over y yields,

00
1

R(x+l) t R(x+y+l)
y=o

or
00

1 t R(y)
RC x+l) x+l

is decreasing in x. This is the same as saying that R(x)

decreases with x for all y.

Corollary 5.1.

If X is IFR(DFR), then X is D~ffiL (IMRL).

Corollary 5.2.

If H(x+l,y) ~ H(x,y), then X is DMRL.

Notice that these corollaries are direct consequences

of Theorems 5 01 and 5 0 2 .

It remains to demonstrate that as in the continuous

case, DMRL does not imply IFR; otherwise we would not be
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introducing a new notion of ageing since the IFR class

implies the DMRL class. For the purpose we present the

following example.

x 0 1 2 3 4

f( x) 0021 0.15 0.22 0.22 0.20

R( x) 1.00 0.79 0.64 0.42 0.20

hex) 0.21 0.19 0.34 0.52 1.00

r( x) 2.60 2.00 1.50 1.00 0

It is clear that r(x) steadly decreases with x and hex)

is not always increasing.

We have postponed the physical interpretation

available to some of the characteristic properties of the

discrete models considered in Theorems 4.2 and 4 05 of the

previous chapter for later consideration. It ~ill now be

established that they are in fact closely associated with

the notion of being discussed in this section.

Theorem 5.8.

A necessary and sufficient condition for X to be

DMRL is tha t

V(Yx) ~ r(x) [r(x)-l].
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The condition for IMRL class is obtained by reversing the

inequalities.

Proof:

We have

EY
2 1

00
2

= R( x+1) t (y-x) f( x) ,x y=x+l

1
00

2
= R( x+l) t n f(x+n),

1

1 00 2
= R( x+l) t n [R(x+n)-R(x+n+l)],

1

1
00

= 1+ R{ x+l) t (2n+1) R( x-e n--L) • (5.4)
1

Also,

1
co

EYx = R( x+l) t R( x-n) ,
n=1

00

= 1
1+ R1x+1) E R(x+n+1)

n=1
(5.5)
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Subtracting (5.5) from (5.4)

Hence,

2
EY -r( x)

x

2 00

= R(x+1) E n R(x+n+1),
n=1

2
00

= R( x+l) 1: R( t+l) r(t),
x--L

2
00

= R( x+1) 1: R( t+l) r(t)-2r(x),
x

2 ~ 2=~ E R(t+l) [r(t)-r(x)]+ 2r (x)-2r(x).
x

00

EY 2 + EY _ 2[EY ]2 =
x x x

2R(x+1) E R(t+1)[r(t)-r(x)].
x

If X has DMRL,

v (Y x) - r ( x) [ r ( x)-1] ,( O.

Conversely, we have shown in Theorem 4.5 that for every

x ) 0,

V(Y
x

) = Cr(x) [r(x)-l]
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is equivalent to the statement

r(x)-r(x+1) l-e
= l+C'

where C is some positive constant. Taking O<C<l, it

follows that

V(Yx) ~ r(x) [r(x)-l],

implies

r{x) [r(x)-l] ~ o.

Accordingly r(x) is a decreasing function of x

and the theorem is completely proved.

Theorem 5.9.

X is D~mL (IMRL) if r(x) hex) is not less than

(not greater than) unity.

Proof:

From equation (4.10),

I-h(x+l) = [r(x)-l] / r(x+l),

and therefore,

h(x+l) r(x+l) = r(x+l)-r(x)+l.
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Thus, h(x+l) r(x+l) ~ 1 implies r(x+l)-r(x) ~ 0 and

consequently X is DMRL.

The results of the last two theorems can be used

to characterize the Waring and negative hypergeometric

distributions among the class of distributions for which

h(x) r(x) is a constant or b(x) = V(Yx)/r(x) [r(x)-l] is a

constant. We give the proof in one case only as the other

follows by using the same argument.

Theorem 5.10.

Among the class of distributions with strictly

increasing (decreasing) MRL, Waring (negative hypergeometric)

is the only member for which b(x) is a constant.

Proof:

The constancy of b(x) gives rise to three cases,

b(x) t 1, of which b(x)=l does not provide a strictly

increasing or decreasing ~ffiL as it corresponds to the

geometric law with constant ~~L. Let us take b(x) to be

greater than unity. From Theorem 4.5 we find that b(x)=C

implies

r(x) = r(x+l) + (l-C)/(l+C).

For C> 1, we thus have r( x) < r( x-s l ) and hence 1v\RL is an
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increasing function of x. Similarly, when C<l, r(x) is

decreasing in x and by Theorem 4.5 these values of Care

characteristic of the Waring and negative hypergeornetric

distributions. This completes the proof.

5.5. Criteria Used in Maintenance Policies

Another category of ageing concepts considered in

literature are those that help the study of maintenance

policy which are followed to reduce the incidence of

system failure or to return a failed system to the operat­

ing state. We consider some classes of distributions that

are specially designed for application in this context. The

continuous version of these classes are discussed in Marshall

and Proschan (1972).

Definition 5.4.

A discrete random variable X, with positive integer

values as its support, or its distribution is new better

than used or NBU (new worse than used or NWU) if

R(x+y+l)' (~) R(x+l) R(y+l),

for x ~ 0, y ~ o.

(5.6)
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Definition 5.5.

X is new better than used in expectation or NBVE

(new 'Norse tha n used in expecta tion or N'IVUE) if

(a) X has finite (finite or infinite) mean rn,

(b) r(x) ~ (~) rn, for x ~ O.

The quantity R(x+y+l)/R(y+l) represents the survival

function of a unit of age y or the conditional probability

that a unit of age y will survive for an addition x unit of

time. At y=O, [R(x+y+l)/R(y+l)] = R(x+l) is the survival

function of a new unit and accordingly the ageing of the

device can be studied by comparing R(x+y+l)/R(y+l) and

R(x+l). Thus, R(x+y+l) ~ R(x+l) R(y+l) if and only if the

older system has aged is that it has no better chance of

surviving for a duration of x than does a new system. In

other words, the new unit is better than the used one or

NBU. A similar interpretation can be given to the ~NU

which exhibits the benefit of ageing. On the other hand

the condition r(x) ~ reo) = m states that the expected

remaining life of a unit surviving age x is not larger

than the expected life of a new unit so that the new unit

fairs better than the unit of age x in terms of the expected

life length. This explains the terminology NBUE. It is
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easy to see that the boundary of both the classes is the

geometric law,

= x = 1,2, ••• ,

o < p < 1, p+q = 1.

Definition 5.6.

The distribution of a positive integer valued

random variable belongs to the HNBUE (harmonic new better

than used in expectation) class if

00

E R( t+l) ,<
t=x

00

t G( t+1)
t=x

= m(1-.! )x
m '

where G(x) is the survival function of a geometric random
00

variable ',Yith mean m = E R(x). The class of HNBUE distribu­
o

tions was introduced in the continuous case by Rolski (1975)

in the above definition is as in Klefsjo (1982). It is

obvious from the definition that the NBUE class is contained

in the HNBUE class. We further have the following properties.

1. If X is NBU then X is NBVE.

This is obtained by summation of (5.6) with respect

to y from 0 to 00.

2. X is NBU if and only if k(x) ~ k(o). (We use the defini­

tion of NBVE and th~ relationship k(x) =h .)
r\xJ
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x
3. X is HNBUE if and only if ~ t k(t) ~ k(o) for x=1,2, •••

t=l

4. Y is NBVE if and only if h(o) ~ h( x).

x
5. Y is HNBUE if and only if h(o) ~ ~ t het).

t=1

'~Ve have a 1so,

Theorem 5.11.

For a non-decreasing function g(.), the random variable

X is HNBUE if and only if

Eg{Z) ~ Eg(Y), (5.7)

where Z is distributed as geometric with mean m and Y is the

random variable in section 4 04.

Proof:

Since 9 is monotonic, the condition (5.7) is satisfied

if and only if Z ~ Y. This means that

or

[
_ 1] x-I 00

1 m ~ E
x=o

R(x+ll
m

00

m[l- ~]X-l ~ E R(x+l).
o

Accordingly X is HNBUE.
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As a consequence of Theorem 5.11 we can obtain

a characterization of the geometric distribution as in

the following theorem.

Theorem 5.12.

Let X1,X2, ••. ,Xn be independent and identically

distributed random variables having E(X) = m < ~ with

common survival function R(x). Then among the class of

HNBUE laws the geometric distribution,

[] x-IP X=x = pq , x=I,2, •••

is the only law for which

E(X(l»-l

E(X(l»
=

where

Proof:

min
l~i~n

x .•
1

Assume Xi to be geometric with mean m. Then,

R( x ) =

Now,
P[X(1)~X] = [R(x)]n

= [(1- ~)n]x-1,
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so that, X(I) is geometric with mean

Therefore,

1=
1-(1- 1 )n

m

E(X(I»-1

E(X(I»

as stated.

=

Conversely, assume that Xi is HNBUE. Then we

can write,

co

= E
1

where,

=

=

00

1: R(x) [R(x)]n-l
1 ~

~ R(x) [ l(x)- [(x-I)],
1
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Therefore,

E(X(l» = at i) [ t(1)-~O)]+R(2)[t(2)-~(1)]+ ••• ,

= l(l) [R(1)-R(2)]+l(2) [R(2)-R(3)]+,••• ,

= t i(x) f(x),
x=l

where,

f(x) = p[Xi=x],

= R(x)-R(x+1).

Defining,

h(x) =

we have from the HNBUE property of Xi'

00

E R( x) ~
x=t+1

1 tm(1- rn) ,

or
00

1: R(x)
x=o

t
~ E

x=l
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Also,

t 2 t 1 2 t 1 1
L [R(x)] - L (1- -) x = L [R(x)-(1- m)X- ]R(x) +

x=l x=l m x=l

t
1:

x=l

Proceeding similarly we have ,

t t
L [R(x)]n-1 ~ L (1- ~)(n-1)(x-1).

x=l x=l

Therefore,

t( t ) ~ h( t) •

Then,

= ; [ ~ (1- 1)(n-1)(x-1)]f(x) J

x=l t=l m

= E~(Y),

where,

~(y) = m(l- ~)(n-l)(x-l).
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By Theorem 5.11,

E~(Y) ~ E~(Z),

=

In the above inequality, the equality sign will hold good

if and only if t(x) = h(x), in which case,

as required in the Theorem.

5.6 Conclusion

The various results established in the last three

chapters constitute the properties of the class of discrete

and continuous distributions that are characterized by

linear mean residual life. The discrete version of the

ageing concepts that parallel with their continuous counter­

parts have also been introduced. An elaborate study of

these ageing concepts in the discrete time domain with
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respect to the preservation of these properties in

relation to convolutions, mixing and coherent structures

remains an open problem. The behaviour of the tail

distributions point out to several applications in the

analysis of income and reliability. Also, further

characterizations of these models are to be investigated.

The discussion in the present study is confined to uni­

variate models only. It will be interesting to identify

the multivariate models possessing appropriate multivariate

analogues of the univariate properties discussed here. The

answers to the various questions are being investigated

and will be presented elsewhere.
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