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PREFACE

The work presented in this thesis has been carried out by the author as a research
scholar under the supervision of Prof. M Sabir, in the Department of Physics,
CUSAT. The thesis addresses some recent problems in the primordial synthesis of
light elements in the early universe based on the standard hot big-bag theory and

some related questions.

The recent advances in the observational arena, have led to a revision of the
primordial abundances of light elements like H, 2H, *H, *He, “He, "Li in the Universe.
1 is the aim of the standard big bang nucleosynthesis (SBBN) theory to predict
these abundances thus 10 obtain the value of the baryon-to-photon ratio % of the
present Universe. The other two parameters apart from 7 are number of light

neutrinos and neutron life time, which are derived from experimental results.

There have been reports that the latest values of the abundances of deuterium
(D), Tritium (®*H), helium-3 (*He) and helium-4 (“He) predicted by the theory do
not agree with the observed values for a unique range of . One of the aim of our
work is to check this claim in the light of latest input parameters such as neutron life
time, reaction rates etc. With a modified numerical cord, we find that discrepancy
is there and it is shared by lithium-7 (*Li) also. Even though the discrepancy is

not very large, it is considerable and has the undesirable consequence that it can



predict more than one values of 1 for our Universe. The removal of this discrepancy

calls for some essential changes in the scenario of SBBN.

The inhomogeneous nucleosynthesis model based on first order quark-hadron
phase transition in the early Universe, is an alternative scenario which has been
extensively analysed in the last decade. Another class of models include neutrino
degeneracy effects and neutrino masses. In this thesis we present our work in

nucleosynthesis calculation and related aspects in these alternative models.

The contents of the thesis are organised as follows: In chapter 1, is given an
introduction to the theory of standard big-bang nucleogynthesis, and a review of
the method of inferring the wvalues of the primordial abundance of various light
elements like D, 3H, 3He, ‘He, "Li etc.

In chapter 2 we present the method of calculating the reaction rates of the
various reactions of cosmological interest based on the method of astrophysical S-
factor formalism. Here we report our work on the calculation of the rate of the
reaction "Li{a, n)'B, which is a very important reaction in the formation of the
elemerts heavier than Li. The calculation is based on the latest data obtained
by Boyd et al. The reaction rate obtained by us leads to a small reduction in the

primordial abundance of "Li.
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In chapter 3 is presented our work about the modification of the Wagoner’s
numerical code for calculating the primordial abundance of the light elements. In
Wegoners original code all thermodynamic functions are evaluated approximately.
In order to increase the accuracy, we changed all these approximate evaluations
with exact numerical calculation. We have updated the code by incorporating the
latest results of reaction rates. By using our modified code and using the latest
value of neutron life-time, we did recalculation of the primordial abundances of the
light elements. By compering our calculated results with the observed values of the
abundances, we find that the abundances of light elements are not in agreement
with the observed values for unique range of # values. This shows that the SBBN
model is in trouble. Then we present our work regarding the removal of this dis-
crepancy by including neutrino degeneracy. By including a small electron-neutrino
degeneracy we find that the discrepancy can be removed. We also present here
our investigations on the effects of massive neutrinos on primordial nucleosynthesis.
Presence of massive neutrino can increase the neutron-proton ratio and thus the “He
abundance. But this increase can be brought down by the neutrino degeneracy. The
works done above are of extensive computational types, which do not reveal fully the
physics of the process. In order to bring out the physics very clear, we also present
an approximate analytical analysis of the neutrino degenerated nucleosynthsis.

In chapter 4 we present our work about the possibility of Mini-inflation prior
to the quark-hadron transition in the early Universe. First order quark-hadron
iransition is considered as a candidate for introducing inhomogeneity in the early

Universe prior 10 the nucleosynthesis. On studying the characteristic of this tran-
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gsition we find that there is a possibility of mini-inflation just before the transition,
which may dilute the inhomogeneity in such a way that the proceeding nucleosyn-
thesis will not be affected considerably. We aiso note the possibility of mini-inflation

without supercooling.
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Chapter 1

Introduction to standard Big-bang
theory and primordial
nucleosynthesis

The standard cosmological model is the hot big bang model. The important points
of observational supports for this model are;

(i) Hubble expansion of the Universe,

(ii) Existence of the cosmic microwave background radiation (CMBR),

(iii) Abundance of the light elements.

The distribution of matter in the Universe is assumed to be homogeneous and
isotropic on a sufficiently large scale as indicated by the distribution of galaxies.
This high degree of isotropy exhibited by CMBR. provides further evidence for the

spatial isotropy.



The standard model assumes a homogeneous and isotropic Universe which is

described by the Friedmann-Robertson-Walker (FRW) metric [2,3,7,8,9}
dst =2 di* - B (20 + 2 (d + sin’6 ) (1.1)
1-kr? )

where (1, r, 6, @) are the comoving distance, R(t) is the cosmic scale factor and
the kis a cumtu/}é'ﬁd.rameter. By an appropriate rescaling of the coordinates k
can assume values +1, -1 or 0. For k = +1, the Universe is finite but unbounded,
essentially a three sphere of radius R. The other two cases describe space of infinite

volume, k=0 being flat and k=-1 being one of negative curvature.

For an expanding Universe, the Hubbles law, is the kinematical consequence of
the FRW metric. Hubbles law [1] says that all galaxies are receding from each other,
and the velocity of recesgion of a galaxy is proportional to the distance from the
observer. The constant of proportionality known as the Hubbles constant gives the
expansion rate of the Universe. The measured value of the Hubbles constant at the
present epoch, Hp with it8 uncertainties in measurements ranges between 50 and
100 km/s/Mpc. Because of its uncertainty, one usually denotes Hy by hg in units
of 100 km/s/Mpc, where 0.4 < hy < 1.0. One of the implications of the Hubbles
law is the finiteness of the age of the Universe ¢, =~ H;!. This means that at a finite
time in the past all the constituents of the Universe must have been concentrated
at a point. In the big bang model it is assumed that Universe started expending
from such a singular state which was extremely hot and dense.
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The dynamics of the Universe is determined by the Einsteins field equation [10]
1

where K, iz the Ricci tensor, R the Ricci scalar, g, the metric, G the Newton’s
gravitational constant, 7, the energy-momentum tensor and A the cosmological
constant. Since during the nucleosynthesis era the A is not significant, we will not
consider it any more. The energy-momentum tensor 7}, comprises of all the forms
of energy and mass we can assume in the Universe. The solution for this equation
for the dynamics of the Universe will depend on the choice of the energy-momentum
iensor. For an istropic and homogeneous Universe with & FRW metric, the tensor
7,, must be a diagonal one [2,3,4,5] and the nonvanishing space components equal
to each other,

T, = diag (o, —P,~F,~P) (1.3)

where p i8 the energy density and P the pressure, which are functions of time.
With this choice Einstein equation (1.2) yield the following two equations for the

evolution of the scale factor [2,3].
3R= - 4xG(p+3P)R (1.4)

and

RR+2R*+2k=4rG(p- P)R? (1.5)

If the equations (1.4) and (1.5) are combined to eliminate R, the result is a first

.\ 2
R k sr G
(71’) tm="3 ° (1.8)

3

order equation in R



which is called as Friedmann equation. In addition to this the energy conservation

3
yields the equation i(g‘q}) + Zz ak” - o
sdp _d oy At A
R Ez=E[R (o + P) (1.7)

Equations (1.6) and (1.7) can be solved by using suitable equations of states con-
necting pressure and energy density. Assuming that initially the radiation energy

dominated over the matter energy, the equation of state is

P=

wiv

(1.8)

Neglecting the curvature effect it follows from (1.7) that the energy density of the
radiation dominated phase behaves ag

px R4 (1.9)

This leads to the connection between the scale factor and age of the radiation
dominated Universe as,

Roc 12, (1.10)
During the matter dominated phase pressure P = 0 and

px RS (1.11)
The corresponding equation which connects the scale factor to age of the Universe
is

Ro 2P (1.12)

As Universe expands the energy density of the radiation decreases faster than that of
the non-relativistic matter. But this difference in the decrease of the energy density

will not manifest until the rate of thermalisation falls short of the expansion rate of
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the Universe. When this happens the radiation and matter will thermally decou-
ple from each other and consequently the Universe will change from the radiation

dominated phase to the matter dominated phase.

The expansion rate of the Universe is controlled by the total energy density of
the Universe. This total energy density comprises the energy density due to the
photons and other particle species present in the Universe, like electrons, positrons,
neutrinos, antineutrinos, nucleons etc. For k=0, one can define a critical energy

density p. as,
_ 3H?
Pe = 8xG

(1.13)

In terms of the present value of the Hubble constant, o, = 1.88 h2 x 102 g em ™3,

We also define a parameter €} known as the density parameter as
Q=2 (1.14)

In terms of €I the Friedmann equation can be written as

L3

@-1) H = 5

(1.15)

For Q > 1, £ = +1 corresponds to a closed Universe. If Q@ < 1, k = -1 the Universe
is open, which expands for ever and 2 = 1 corresponds to a flat Universe with k =
0.

The age of the Universe is also determined by the total energy density through
the Friedmann equation. For the radiation dominated phase of the Universe, the
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age can be written for k = O as

3\
t = (321‘6'9) + constant (1.16)

Similarly one can determine the age of the matter dominated phase also. For exact
age determination it ig needed account for both the radiation and matter energy

dengities. The present age of the Universe is thought to be in the range 10 to 20
Gyr.

1.1 Thermal Evolution of the Universe

The early Universe was to a good approximation in thermal equilibrium. The
subsequent departures from the equilibrium causes the formation of the different
structures in the early Universe. A particle species depart from the thermal equi-
librium when its interaction with the other particles lag behind the expansion rate
of the Universe. During thermal equilibrium the reaction rate is a function of sev-
eral variables including temperature. The expansion rate is however a function of

temperature alone.

According to the second law of thermodynamics, the entropy of the perticles at

temperature T in a volume V is [2,3]

ds =2 {dlpV) + PV} (1.17)
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where p and Pare the equilibrium energy density and pressure. By the integrability

condition,

#s &3
oTeV ~ vV er

(1.18)

The energy density and pressure then be related as

A Y (1.19)

Energy conservation relation (1.7) can then be written as

2[5 6+ =0 (1.20)

The quantity V{p + P)/T is nothing but the entropy per comoving volume S, as can
be proved from equations (1.17) and (1.19). Equation(1.20 implies that the entropy
per comoving volume ig a congtant under the thermal equilibrium condition. During
the radiation dominated phase, the constituent particles are highly relativistic such
that the energy density is

p x T (1.21)

By entropy conservation law the corresponding evolution of the scale factor R with
temperature is

R x T (1.22)

This condition known as the adiabatic condition, holds true through out the history

of the early Universe.

At very high temperature the Universe consisted of photons, leptons, nucleons

and mesons and their antiparticles. As the temperature dropped below 102K the
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muons annihilate with their antiparticles. During the further expansion the main
events that took place are the decoupling of neutrinos around 7" 2 x 101K, pair
annihilation of e* pairs, the freezing out of the neutron-to-proton number density
ratio and subsequently the symthesis of the light nuclei at about 10°K. Due to further
cooling the Universe changed over from the radiation dominated phase to matter
dominated phase at about T = 4000K, followed by the decoupling of radiation and
matter. The energy of the decoupled radiation was then red shifted due to expansion
of the Universe, its present temperature being about 2.7 K.

The evolution of the thermodynamic functions like energy density, number den-
sity, pressure eic of the different pariicle species are as follows. In equilibrium

condition the photons will obey the Planck distribution [1,2,11,15]

_ 1 B
A = 5353 R — 1 (1:23)

where E. is the photon energy and 7, is the photon temperature. The total energy
density of the photons can then be written as {11},
4

T
py = ]:" w(By) BydEy = a - =8.4182 Ty gom™ (1.24)

The total number density of the photons [11,16}

n, = f: n(E,) dE, = % (kg’) ((3) =2.02872 x 102 T2 em™  (1.25)

This corresponds to 3.99 x 10® (73/2.7)° photons per cm?, which is very large
compared to the baryon density in a Universe with critical energy density equal
to the baryon density. Hence the Universe is dominated by photons. The ratio of
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the baryonic number density to the photonic number density, % is related to the

baryonic component of the density parameter Q, as,

3
35569 x 107 7 h (22‘,;-,) (1.26)
T\
2.7

Q

3.5569 x 10% 7h (

where h; is the present value of the Hubble's constant in units of 100 km /sec/Mpc

[2). The pressure of the photon gas is

P,=Zp,Fergem™ (1.27)

Wl

The thermodynamic functions of the other particles like electrons, positrons,
neutrines, anti neutrinos etc can be determined using the following distribution

function (3,11]
g2

_ 1
nl(p) = Zﬂhagi (e(&""i)/*DT:i: 1) (1'28)

where § refers to the particular species, p is the momentum, g; is the spin multiplicity

(which is 2 for electron, 2 for photons and 1 for neutrinos), E; = /p3c® + mycd, is
the energy of the #** particle of rest mass m;, u is the chemical potential and kg
is the Boltzman constamt. The + sign is for fermions and - sign is for bosons. In

equilibrium the number density of any species i iz

n o= f: 7i(p) dp (1.29)

the energy density is
Za= [ n() B) dp (1.30)
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and the pressure is given by the relation

R=[ %’E‘;‘;’ dp (1.31)

Using the above general prescription we obtain the thermodynamic functions for
the constituent particles of the early Universe as follows. The total energy density
of the electrons is

1 1
e (oe- + Pc’) = [ Pz 2nh? e (e(&"“'\)/*ﬂ'-l- 1 + ABAsIbaT 1 1) E,(p) dp
(1.32)

For zero chemical petential (u = 0) as assumed in the earlier works [15,16,21,22,},

the above equation can be expanded in terms of the Bessel function as,
1
Pe- + per = 15.56 Tyf [M(z) - EM(%) + } gem™® (1.33)
where z = m,c*/kgT = 5.92986 /T, and

M(2) = [I?;(z) + 2Ky (z)}

R = 5oy (3) Koo
and K,(z) is the modified function. In the ultrarelativistic limit, that is when T
> mec?/kp = 592986 x 10°K, the e* pairs are in thermal equilibrium with the
photons. During that stage the energy density of the electrons can be represented

in terms of the photon density as

7
Pet = Py (1.34)

The pressure of the electron gas can be written as {16}

DPet + Do -

2P _ 519 T [}?,(z) - 1—16-1?3(24:) o ] g cm™ (1.35)
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In the ultrarelativistic limit

+pe 1
PP = 5 (oo +00) (1.36)

The number density of the electrons is
N +n.+ = 3.38 x 10® T} [l?z(z) - %Rz(h) + e ] cem™3 (1.37)

The difference in the numbers of the electrons and positrons hag got a special
significance. It gives the net number of electrons over their antiparticles which will
equal to the total negative charge in the Universe. Since the total charge of the
Universe is assumed to be zero, there will be an equal number of positive charge
also. So by assuming charge conservation, the net number of the electrons per unit

volume can be related to the baryon number density as [11,16]

- — At = NAp; EX‘% (138)

where X;, A; and Z; are the mass fraction, mass number and atomic number of the

i** species of the nuclei and N, is the Avogadro number.

Next important constituent of the early Universe is the neutrino. It is a massles,
weakly interacting particle, with spin equal to (1/2). There are two types of neu-
trinos, Majorana and Dirac types. Recent experiments on double beta decay shows
that the neutrinos in the early Universe are of Majorana type. There are 8 types
of neutrinos acocording to the recent experimental evidence [23,25,26,146] they are
the electron-neutrino, the muon-neutrino, and taon-neutrino. These have corre-

sponding antiparticles also. By assuming that the neutrinog are non-degenerate,
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the energy density of any one gpecies, say the the electron type can be evaluated

a8,

7
Putpy = gac’T) (1:39)

= 7365937, g cm™

where T is the temperature of the neutrinos in units of 10°K. The temperature of
the neutrinos are different from that of photons after the pair annihilation of the
¢* pairs. This is because of the complete transference of the entropy of e pairs o
the photons due to their pair annihilation. Since the neutrinos will decouple form
the thermodynamic equilibrium long before the e* annihilation, they will not able
to share the entropy due to the pair annihilation. The neutrinog decouple from
the thermodynamic equilibrium at a temperature T = 2.1 x10K [11] when the
universal expansion rate overtakes the interaction rate of the neutrinos with the rest
of the Universe. Even after the decoupling the neutrino temperature will evolve as
T « Rl After pair annihilation of electrons,neutrino temperature will be little
less than that of the photons. The exact decrease of the neutrino temperature
relative to photon temperature can be calculated from the law of the constancy
of the entropy density. At high temperature almost all particles are relativistic in
character. During such a stage the total energy density of the Universe can be
expressed in terms of the photon density as,

Pra = Py Geff (1.40)

where g,y is the effective spin multiplicity factor given as [11]

' 7 T 4
20=5 0 (3)'+ Four (3) 0o
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where the subscript b(f) denote bosons (fermions). Before electron-positron anni-

hilation 7}, = 77 = T, hence g,s; becomes

1 7
Gefy = '2‘ (Q-y+§( e‘+gc"+g&+gﬂ+g”p+g*+g"'+ga')) (1.42)
3 1+3_5__43
B 8 8

In this sum we include the photons, electrons, the three types of neutrinos and
their antiparticles. Since the expansion of the Universe is adiabatic the entropy
per comoving volume remaing a constant. So if any species annihilate in to photons
their entropy will be transferred to photons and hence the photons temperature will
be increased. This increase in temperature is shared by the other particles also if
there is thermodynamic equilibrium. Since the neutrinos are decoupled well before

the pair annihilation of n%’tgiﬁos, the constancy of entropy implies that,
! T2 =9, T/ 43
9+ 58 +90)) T" =9, T (143)

where T; is the temperature before the annihilation of the e* pairs and T is tem-
perature after the annihilation process. After putting the required values in the
above equation we get [2,3,15,16)

T, (11\W
—L'I} = (—-4) = 1.401 (1.44)

The initial temperature will be identical 10 the temperature of the decoupled neu-
trinos, then the above equation shows that after the pair annihilation the neutrino

temperature is related to the photon temperature as

T,=1401T, (1.45)

13



which implies a 40% increase in the photon temperature over the neutrino temper
ature. If the present day photon temperature is assumed to be 2.75 K, then the

decoupled primordial neutrinos have a present temperature 1.96 K.

The pressure of the neutrinos can be written as
1

To get the total energy density and pressure of all the neutrinos it is enough to

multiply the above equations of energy density and pressure with a factor 3.

Baryon density py can be calculated by the relation, oy = h75. Because of the
nucleosynthesis the baryon energy density will be modified. A«. correct equation for
baryon density by taking account of the nucleosynthesis process is given by Wagoner
[16] es,

s+ (4% rcn) oam
where M, = 1.66043 x 10~/ g ig the atomic mass unit, { = 1.388 x 1074, AM; is the
mass excess of the species § produced during the primordial nucleosynthesis. and Y;
is the abundance of the #** species. The last term in the above equation represents

the kinetic energy contribution. The Baryon pressure is then written as

P;=N,4p. kBTZY. (148)

By knowing the form of the thermodynamic quantities, we can study the nature

of the variation of the main variables in the theory, which will be useful later for

14



calculating the primordial abundance of the light elements. They are T3, h and ¢,
the chemical potential of the electron. The variation of 7 can be calculated as,

dly _ dr/dt
EE‘IFE (1.49)

where r= In R®, and dr/dt = 3H. The quantity dr/d7; can be evaluated from the
principle of conservation of energy. The law of conservation of energy is as given by
the equation (1.7). This equation can be modified by taking account of the energy

imroduced due to the nucleeogynthesis process as [16}

% (oR®) + %% + R’% =0 (1.50)

T=conat.

where p is the total energy density after the neutrinos were decoupled, that is
P=0pct+ Pyt (1.51)
and p is the corresponding pressure,
P=p.+p,+m (1.52)

Now dr/dT; can be obtained as [16]
dr dr/dTy + dp./dT; + dp,/dTy

=" 1 . (1.53)
by /S put P/ 4 1/ + () (dov/ i + dpe/ )
The time evolution of the h parameter is given by

dh 1dR 1dT;

-R-t— =—-3h {-R'—dt— + ﬁ-z-] . (1.54)
The time evolution of the chemical potential can be obtained as

d¢e _ &ﬁe (ﬂ-'g aﬁe g % g
+ iy + S @t (1.55)

dt 8T, dt
where $S=Y; Z; Y.
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1.2 Primordial nucleosynthesis

It was Alpher, Bethe and Gamow [13] who were the first 1o consider the primordial
production of the light elements in the Friedmann Universe. Two years later Fermi
and Turkevich [14] did a similar work. In these earlier works it was assumed that

essentially all the baryons are neutrons and baryon density of the form
Py = hT'ga (156)

where the parameter h is fixed by assuming the value of the baryon-to-photon
number density ratio », and 7} is the temperature in units of 10°K. Later Hayashi
[17] proposed that initial baryon density would consists of mainly neutrons and
protons, the nucleons, which are in thermsl equilibrium with each other at high
temperatures through the weak interaction. A set back to the earlier approaches was
that due to the well known difficulty at mass numbers 5 and 8. Hayashi and Nishida
[18] made an attempt to overcome this by proposing triple alpha reaction, 3*He —
C!2, But their solution had the drawback that, the reaction needs a high baryon
density, which will in turn over produce other light elements and also predict higher
abundance for elements heavier than carbon which was against the experimental
evidence. Due to these difficulties the hope on primordial synthesis of elements was
doomed for a short period in the fifties. The approach was resurrected with work
of Fowler and Hoyle {19]. They showed that the observed helium abundance in the
Universe can not be accounted for by the stellar nucleosynthesis alone and implies
the necessary revival of the possibility of cosmological origin of light elements. By
their primordial abundance theory Fowler and Hoyle [19] predicted an abundance of
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‘He about 27%, which retrict the h-parameter 1o about 107, In the mean time the
discovery of the microwave background radiation by Penziag and Wilson [20], gave
strong support to the standard big-bang theory based on the Friedmann Universe
which in turn supported the theory of primordial nucleosynthesis.

One of the main process through which the primordial nucleosynthesis proceeds
is the frrezing out of the neutron-to-proton ratio. Neutrons and protons are in ther-
mal equilibrium at high temperature, T 10°K. The equilibrium was kept between
them through the following weak interactions [17)

nt+v, — pte (1.57)
n+tet «— pt+7,

n «— pt+e +1,.

During thermal equilibrium the number densities of neutrons and protons are
slightly different due to difference in their masses. The relative number density is
given by the relation [16]

D = e AmPT (1.58)

r
where Am = 1.208 Mev/c?, the rest mass difference between neutron and proton.

During thermal equilibrium the total rates of the reactions which convert neutrons

in to protons is almost equal to total rate of the reactions which convert protouns
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into neutrons. The rate of the conversion of proton into neutron is about A(p —
n) = 4 x 107 £§ sec™’. The reaction rate A(n — p) and A(p — n) are written as

the sum of the rates of the individual reactions as,

Mnap)=An—pte +v.)t+A(nt+ef 2 p+i+A(n+v.—op+e”) (1.59)
and

Mp—on)=Ap+e +7,—on)+Ap+i. —n+e’)+A(p+e = n+v,) (1.60)

and the individual reaction rates can be calculated as [16,27]

AMn—e +5+p) =(rr)" j:' i wp(i(;)'] ‘1{); ﬁ:&e_ Sy & (8
Mn+et —=o+p)=(d)" | T m(;(‘)"']‘{‘f):‘ﬁ_[‘zeﬂ)h] yde (162)
AMn+v—e +p)=(r )" j:’ i wp(jg;)'] "{)z fe:;?c_ Sy % (16)
Mp+e —ntd)=(rh)" [ i ezp{f(;)]’ 3:‘5;‘[2_ S e (189
Ap+v—et +n)=(rh)" | 7 +m(j(;)‘] “"{); fx;_[}ﬁqm} de (1.65)
Mp+e +v—on)=(rr)? ele - qf V-1 de  (1.66)

1 [1+exp(ez)] {1 +expl(g-)al}
In the original evaluation due to Wagoner [15,16] these integarls are approximated

in terms of the modified Bessel functions. In the above equations ¢ = Am/m,,
2 = m,cz/kBT, 7 is the mean life time of the neutron under laboratory conditions

and Ap is defined as

Ao = j: (@- ) (= 1) de (1.67)
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which hes a value 1.636 {16]. In Wogoner’s original work these integral is also
approximated in terms of the modified Bessel functions.

The abundance of “He is very much sensitive to the freezing out value n/p ratio
compared to the other elements. The freezing value of n/pis in turn depend on the
freezing out temperature of the weak interaction. Higher the freeze out temperature,
higher will be the value of n/p ratio. Practically all the available neutrons will be

processed in to “He.

The primordial nucleosyrnthesis process is begin with the formation of deuterium
form neutron and proton through the reaction n+p — D++. Dueto the low binding
(2.225 Mev) energy and large photo dissociation cross section, the deuterium (D)
is photo dissociated a5 soon as it is formed because of the presence of large number
of high energy photons at high temperature. This prevents the formation of the
next heavy elements like tritium and helium. This is the well known deuterium bot-
tleneck. As the Universe expands the temperature decrease hence more deuterium
will be formed due to unawailability of the high energy photons. Hence deuterium
starts building up at about 73 ~ 1. This will set the platform for formation of
next heavy elements. *H is mainly formed through the reactions D(n, v)*H and
D(D,p)*H. *He is formed mainly through the reactions *He(n,p)*H and *He — *H
+ ¢ + 7,. The main reactions through which the element helium-4 is formed are
SHe(n, v)*He, *He(D,p)'He and *He(*He, 2p)*He. As the Universe cools down to

the temperature to the temperature of 7y = 0.1, practically all the *H and ¥He are
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converted in to ‘He. Hence very soon the abundance of ‘He will exceeds that of all
other elements except that of hydrogen. According to the periodic table of elements
there are gaps at mass numbers 5 and 8. This corresponds to a pair of bottlenecks
for the production of the elements heavier than “He like ’Li, "Be, etc. However &
trace of these elements were formed mainly through the reactions *He(®H, 4)'Li and
‘He(*He, v)"Be. When temperature drops below T < 4 x 10® K, the increase in the

coulomb barrier will effectively stops the nucleosynthesis process.

The main part of the nuclear abundance calculation is 10 time evolve the abun-
dancesija.rious light elememts and thus to predict the final abundancefill the light
elements. One part of the calculation lies in the time evolution of the parameters T3,
h and ¢,, which can be done according to the prescriptions given above. Another
part is the calculation of the reaction rates of the various reactions. The techniques

of the calculation of the reaction rates will be discussed in chapter 2.

K was Robert Wagoner [16] who first developed the extensive numerical code
for the calculation of the abundance of the light elements in the SBBN model.
Later many workers modified the code [21,22,27,28,29] for various purposes. In the
original code due to Wagoner more than 140 reactions were included to calculate
the abundances. Both forward and backward rates of almost all the reactions are
incuded in the code. The abundance of any species, i is given in terms of the mass

fraction

_ Am

Xi =
N4

(1.68)
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where A; is the mass number and and n; is the number density of the §** species.
The overall abundance of the species is depends on the number of reactions in which

it is participates, the reaction rates and the type of reactions.

If the #** species is destroyed or created due to the interaction with a photon or a
lepton and forming or destroying a species j, then the corresponding contribution to
the rate of the abundance of i is £3°;(X;/A;)A.(j5). The + sign is chosen if process
is a. constructive and - sign if the process is destructive one. When the i** gpecies is
destroyed or created due to the interaction between the species j and k, then contri-
bution of such reactions to the abundance rate of i is £ 35 4 (X;/A;)( X /As)[ 7k} Here
[ik] is the reaction rate given by [16]

[ik] = s N4 (ov),, (1.69)

where
(o) = [ fo,T)o(v)odv

. and f{v,7) is the Maxwell-Boltzman distribution function for the velocities of
the reactants j and k, o(v) is the cross section of the reaction. Similarly if the
** gpecies iz destroyed or created due to interaction of three species 5, k& and
l, then the corresponding contribution o the rate of abundance of the species &
i8 £3 55 4o1( X;/A;)(Xa/Ar)( X1/ Aplikl), where [jki] is the three body reaction rate
given by the relation [15)

k] = o} N (oo} (1.70)
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Now the total rate of growth of any species 1 can be calculated as

el RWOED B

This equation i8 to be solved to get the final abundance subjected to the initial

R ML IR

conditions.

In Wagoner's code the nuclear species were first numbered as i = 1,2,3,.....etc,
their mass numbers (A;), charge number (Z;) and Q-value are listed. The reactions
are then classified according to their type as photo nuclear, weak, two body type
with proton, neutron or alpha as partners and three body type etc.

The rate equation (1.71) to be solved is a highly non-linear one, which can be

written as matrix equation [16,11]

Bi = G4 + BT Th + GiMETHT (1.72)
For practical calculation the above non-linear matrix equation is converted into a
linear one by a proper choice of the time step At. The time step should be small
a8 pomible, but at the same time should be large enough to ensure the chemical
equilibrium between the species. For chemical equilibrium #;=0, hence

0 = ayx;+ apzz; 2 4 a.,m,xio)wso) (1.73)

[aij + aijhtgo) + aaklmﬁu)mfu)] z,- = b‘-j:tj

Here a:ﬁo)

is the abundance obtained during the previous time step. A new set of
z;'s are obtained by solving this linearised equation. The calculation is continued

unti] the abundance values are saturated.
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The abundance equation is solved subjected to the initial conditions. In Wag-
oners original code initial conditions are specified for a temperature Ty3=60. The
important quantities to which the initial values to be specified number densities,
energy densities, h parameter etc. One of most important quantity whose initial
values is 10 be specified is the initial abundance of the species. Wagoner used a
relation for this in his original code as [15,16)

X(5) = 107X () X(kK)p Ty >/ *e?/ 0T (1.74)

According to this equation the initial abundance decreasses with temperature. In
later modified codes, however, many authors used a constant value for the initial

abundance all for elements.

During the calculations of Wagoner et al., the observational abundance of “He
was around 0.270 by mass fraction. Their calculation reproduced this value, and
this gave a strong to support the idea of primerdial nucleosynthesis. The corre-
sponding value for the h parameter obtained by them was about 1074, But later
determinations have altered the values of the primordial abundance of the light
elements, in particular that of “He was somewhat reduced. These changes call for
certain modifications of the theory. However there is no universal agreement on this
point. Even in the early eighties it was argued that the original theory is compatible
with the then observational data on abundances, without much medifications. But
recent determinations on the primordial abundance shows that the “He abundance
is still less [87] around 0.220. These latest results on abundances ofthe light el-

ements necesitate some essential modifications in the theoryas proposed by many
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[30,31,38,163]. Our aim in this thesis is to check the present status of such inconsis-
tenciesin the SBBN model and suggest suitable modifications to SBBN accordingly.
In the foliowing we will try to infer the primordial abundance of the light elements
from the latest observational data available.

1.3 Observational abundance of light elements

The main parameters in the SBBN model are number of neutrinos, neutron life
iime and baryon to photon number density. Once the first two parameters are
obtained from direct laboratory results, the theory becomes a single parameter
theory. The method of SBBN model is to match its results with the observational
abundances so as to predict the value of the parameter %. For this one needs reliable
observational results on the abundance of light elements. For this we have depend on
the astronomical surveys. The main observational sights for inferring the primordial
abundances of light elements are sun, other stars, galaxies and certain planets.
There are many observational uncertainties to warrant a very cautious approach in
getting the limits of the primordial abundance. The abundance we obgerve today are
contaminated with the nuclear processes in the galaxies and stars. The metallicity
of the stars can be taken as a measure of the contamination due to the stellar
evolution. Metallicity means the presence of the heavy elements. Since heavy
elements production was negligible during the SBBN period it is better to choose
metal poor stars for inferring the primordial abundance of the elements. However
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we do not gee a zero metallicity star to determine the correction due to finite age
of the stars or due to galactic chemical evolution. The general method for inferring
the value of the primordial a.bunda.qce is to extrapolate the element-metallicity data
to zero metallicity. In the following we will consider the observational constraints

on each of the light elements separately.

1.3.1 Helium-4

Apart from hydrogen, helium is the most abundant element in the Universe which
we are observing. The main sources of observations are sun, orion, galactic HII
regions and some other high metallicity sources. In the past fifteen years there has
been tremendous increase in the observational data on “He abundance. In order to
infer the value of primordial *He, we have to subiract all the contributions made
by the various astrophysical processes. During their chemical evolution stars will
synthesis “He also along with the heavy elements. Let AY be the mass fraction
of the astrophysical production of ‘He in a source. Since there was practically no
production of heavy elements during the primordial synthesis, the whole content of
the heavy elements present in the site is entirely due to the astrophysical produc-
tion. Let AZ be the mass fraction of the heavy elements. If one succeed in finding
a reliable relation between AY and AZ, that can be used to infer the primordial
abundance of “He. But theories on the chemical evolution of stars and galaxies are

manifold. It is found that the helium-to-metallicity ratio is a complicated function
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of stellar mass and composition. The relation between AY and AZ is not monotonic
{149,150). In spite of this situation what is usually done is to do a linear extrapo-
lation to zero metallicity. Traditionally, “He is inferred by linear regression of ‘He
with either oxygen or nitrogen metallicity [50,51]. However there is no compelling
reason to believe that “He abundance always increase linearly with oxygen or ni-
irogen [37]. Carbon is also used as standard. By accepting a linear relationship
between AY and AZ as [11)

AY
ZZ— = (175)
If we asBume that the mass function of stars is a universal function then the average
value of o is seems to be lie between 4 t0 6 [11]. In order to get the primordial
abundance of “He we have to subtract the the astrophysical contribution from the

observed values as

Y, = Ya. - AY = Yy — aAZ (1.76)

The reliability will be strong if the observational site is a very old one or one
with less metallicity. Caution should be taken to make sure that star which we are
identifying as the source must be a massive or of mass in the intermediate range.
In massive stars the core where the synthesis ig taking place is convective, while the
envelope is radiative. Because the envelope is not convective no mixing will take
place, hence the envelope of massive stars will retain its original composition. The
same is the case with intermediate massive stars, where the core is radiative and
the envelope is convective. But for low mass stars the core and the envelope will
overlap each other hence they are not generally selected for primordial abundance

determination.
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Let us briefly go through the various observationally inferred results due to
various authors, with the aim of selecting the reasonable value for ¥,. A detailed
list various values of ‘He abundance was compiled by Rana [11]. Pagel {106,107
carried out a linear regression analysis on all the available data on “He-metallicity
including that from sun, orion and some other high metallicity sources and derived a
value ¥, = 0.24+£0.01. In the same year Pagel [55,107] showed that if one restrict to
the data form extragalactic H II region with metallicity less than 0.25 of solar, then
the result become Y, = 0.225 + 0.005, where he did the extrapolation with oxygen.
Hasenfrats et al [103] found no such correlation between ‘He and O in their data
from the 12 metal poor galaxies of & gasious nebulee. They give a value based on
their data as Y, = 0.245 + 0.003. On the other hand the observational results
due to Peimbert & Torres-Peimbert (98], shows that there is a strong correlation
between ‘He and O, according to them ¥, = 0.220. Fuller et. al [37] argued that
the no correlation between “He and O in the data obtained by Kunth & Sargent is
due to extremely low AZ value of the object. apart from O, one can use N and C
a8 standards for the extrapolation to find the primordial value of “He. !2C and %O
are processed in the first generation stars along with ‘He [149,150]. But N is formed
gradually during the second generation. As a result “He abundance with respect
to N will show a rapid increase initially, then slow down to loewer rate due to the
increase in N. So the ‘He verses N curve for low value of N can be used to predict
the primordial value of “He at a reasonable level. The curve of ‘He with O, has
a strong dependence on the initial mass function (IMF') {149,150}, which is a very
poorly known function, and also very much medel dependend. So it is considerably
more difficult to predict ¥, using the curve between ‘He and O. Fuller, Boyd and
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Kalen {37} adopt the “He verses N curve method to predict the value of Y;. They
have used the data of Pagel [107]. They found that Y, = 0.233 £ 0.009 for all the 41
data points, Y, = 0.221 £0.007 for first 22 points of comparably low metallicity and
Y, = 0.220 1 0.007 for first 14 points of still low metallicity. They finally concluded
by accepting Y, = 0.220 as the upper limit for the primordial abundance of ‘He.
Later Melnick et al [36] did an extensive analysis and proved that the primordial
abundance of “He is still lower around 0.216 + 0.006. It may be very difficult to
judge between these 1o say what is the actual value of Y. In Table 1.1 we summarise
some of these obpervational results. Our feeling is that we should rely on the value
which is inferred from low metallicity objects. With that in mind we can very well

get the primordial abundance of Hellum between limits given below as
Y, = 0215 to 0.225, (1.77)

by mass fraction. But some other authors [29,58,66] still consider values around

0235 as primordial.

1.3.2 Deuterium and Helium-3

Here we will consider the observational limits on deuterium (D) and helium-3(3He)
together since most of the D present in early Universe will converted in to *He,
through the astrophysical process. So their combined abundance should not change

much with time. However first we will consider them separately.
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Table 1.1; Observations on ‘He abundane
Y,

year Authors A

1976 Peimbert and Torres-Peimbert 0.228
1979 Carney 0.19 + 0.04
1980 French 0.216
1980 Talent 0.216
1980 Rayo et al 0.216
1983 Kunth and Sargent 0.245 +0.003
1983 Peimbert 0.218
1983 Buzzoni et al 0.23 + 0.02
1986 Pagel 0.236 £0.005
1988 Pagel 0.230 £+ 0.005
1989 Pagel 0.229 + 0.004
1991 Fuller et al 0.220 + 0.007
1992 Melnick et al 0.216 + 0.006

The main observational sights of D are Solar system, UV absorption line studies
in the local ISM, studies of the deuterated molecules (DCO, DHO) in the ISM.
Because of ite fragile nature D is destroyed (at temperatures greater than about
0.5 x10% K) during the stellar evolution. There is practically no astrophysical
production of deuterium reported conclusively. Certain propossals are there for the
astrophysical production D {155,156}, but none are accepted widely [132]. So the
present day abundance provide a lower limit to the abundance of D and in order
to obtain the primordial value one should correct for the astrophysical destruction.
One of important nature of D is its strong dependence on the baryon-to-photon ratio
7. e abundance can related directly to the % value. Detection of the exact lower
limit or upper limit to D abundance is very difficult because of the absence of a well
defined chemical evolution theory. In 1992 Rana and Basu [32] proposed a chemical
evolution model, according to which the D abundance can be a factor 2 higher than
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Teble 1.2: Observations on D abundance

year Authors D/H
1976 York and Rogerson 1.6 x10™°
1978 Sarma and Mohanty < 61075
1979 Laurent et al 0.7 - 0.4 x10°%

1980 Ferlet et al <1x10t

1983 York 0.6-1.0 x1075
1984 Vidal-Madjar 2.0 £1.0 x 1075
1989 Smith et al 2.6 - 8.4 %1075

the presently observed abundance. Certain other authors says that its abundance
can be anywhere between 1 and 50 {49,50,51,155,158]. We will summarise some of

the results about the observationally inferred values are listed in table 1.2

For *He there are only few determinations are there. The main observational
sites are solar system, *He* lines in the galactic H II region etc. The abundance
of 3He compared to “He in the oldest meteorites and carbonaceous chondrites is
found to be 3He/H = 1.4 + 0.4 x107* [113] similar to the case with deuterium the
abundance of *He also difficult to infer because of the stellar processing, because low
mass stars tend to produce *He and high mass stars tend to destroy *He. Results

of these determinations are tabulated in table 1.3

The most reliable results on the primordial abundance of these elements is the

combined abundance these elements in number fraction. The combined abundance
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le 1.3; ations on 3He ab ce
year Authors He/*He
1970 Jeffrey and Anders  1.43 £0.4 x 10~
1977 Frick and Moniot 1.5 pm1.0 x 1074
1978 Eberhardt 1.46 £0.073 x 1074
1979 Rood et al < 5 x107° *He/H

according to Pagel [54], Smith [28] and Walker [22] is,

(D +% He

5x 1078
22 <o

by number fraction, where the subscript p denotes that the abundance shown is

primordial. The abundance from the pre-solar nebulae is taken as [11]

D +3 He
H

) = (3.6 £ 0.60) x 107°

by number fraction, Olive at al [29] have argued that the combined abundance

should be less than 107%. However we will consider a consensus value.

D +3 He

T = 7x10° to 1.3 x 107" (1.78)

by number fraction.

1.3.3 Primordial abundance Lithium-7

The determination of the primordial abundance Li is one of the most controversial

part in inferring the primordial abundance of all the elemernts. There are two main
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sources for the determination of the ’Li abundance, the Pop I stars and the Pop 11
stars. The observational limits from the Pop I star is that 'Li/H =~ 10~° [28] and
that from the Pop II stars is that 'Li/H =~ 107!° [118]. The issue is which one is the
primordial abundance. The consensus has been that the lower Pop II abundance
represents the primordial abundance of Li. The main reason for this is that the
Pop I1 stars are older than the Pop 1. The latest determination is due to Deliyannis
et. al. [159}, which tallies with the earlier determinations on the Pop I stars. For
our purpose we will consider this latest value as the 7Li abundance

TLi +0.30 -10

— =1214R % 10 (1.79)
by number fraction. In this thesis we concentrate on the abundance of D, *He,
‘He and "Li only. So no datailed discussion will be given about the other possi-
ble elements formed during the primordial synthesis, for example lithium-6, Boron,
Beryllium. However the beryllium-7 formed during the primordial synthesis will

converted it Li. So the abundance value of "Li as given above will actually repre-

sents the combined abundance of lithium-7 and beryllium-7.
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Chapter 2

The effect of the enhanced

8Li (a, n) 1! B reaction rate on
primordial abundance of "Li

One of the espential inputs of the primordial nucleosynthesis calculation is the re-
action rates of the various relevant reactions. The final abundance is strongly de-
pendent on the accuracy of the reaction rates. One has to obtain these reaction
rates from the laboratory measurements of the reaction cross-sections. Such calcu-
lations of reaction rates from the cross-sections are discussed in Wagoner e al
[15], Fowler et al [19] and Mathew et al{35]. Usually the laboratory data are
available at comparably large center of mass energy than that prevailed in the early
Universe during the nucleosynthesis period. So one has to extrapolate the labora-

tory data available at high energies, to the appropriate lower energy region. This
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extrapolation is usually done through the so-called astrophysical S-factor formalism
[161,16].

2.1 S-factor formalism for reaction rate

For a two body reaction where an #** species is destroyed (or created) due to the
interaction between the species j and &, the reaction rate per unit volume can be de-
trmined by equation (1.69). Since the Universe was in thermodynamic equilibrium
with the components of the reaction, there exist a spectrum of relative velocities
of the various particles. The temperature range during which the nucleosynthesis
ig taking place i8 Ty ~ 1 to 0.1. In this temperature range all the matter parti-
cles are non-relativistic and non-degenerate. Hence the velocity digtribution will be

Maxwellian 28], which can be written ag

pmn \¥2 pmy, v?
fv) = 4n’’ (211:,'1‘ exp (' kT (2.1)

which satisfies [ f(v)dv = 1, where u = (1/m; 4+ 1/m;)"! the reduced mass of the
colliding system expressed in atomic mass unit (lamu = m, = 1.6605 x 10~2Kg).

Now the equation of (ov) reduces to

_ um, \¥2 sf_ pmv?
ov) = dm (21r kBT) fom il e R (22)

which is the integral required for the calculation of the reaction rate. In principle

the term {ov) can include the contributions from a resonant part other than the

prominent (16} non-resonant part. But the magnitude of the contributions from the
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regonant energy region depend up on the energy of the reactants. In the following
however we will mainly concentrate on the most important part, the non-resonant

part.

Apart from the knowledge about the velocity distribution, the quantity to be
known for the calculation of the reaction rate is the cross-section of the reaction.
While calculating the cross-section we have to take into account the Coulomb barrier
peneiration also because most of reactants posses charge during the primordial
nucleosynthesis. Nuclear reactions are take place because the reacting nuclei are
able 10 penetrate the coulomb repulgive barrier. The Coulomb energy between any

species of atomic numbers Z; and Z, separated by a distance of R fermi is

1 Z1 22 32
4mey 1015 R( ferms)
1.44 Z, 2,
R{fermd) o

B,

(2.3)

where ¢; is the permitivity of vacuum. Classically the reactions will take place
when the kinetic energy is greater than the coulomb repulsive potential. The kinetic
energy of a reactant nuclei i8 determined by the Maxwell-Boltamann distribution of

velocities corresponding to the thermal energy,

ks T = 1.3807x10°16T (2.4)

8.62 x 107 T Kev.

From the above two relation it is clear that the Coulomb repulsive energy is many
orders of magnitude greater than the average kinetic energy. The particles with the
highest energy in the Maxwell-Boltzmann distribution, have a chance to overcome
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the coulomb barrier. Gamow showed that two particles of charges Z; and Z; moving
with relative velocity v have a quantum mechanical probability for penetration

approximately given by

_ 2 5
P> exp (— 2£ofm) (25)

exp (31.2921Z2 [im])

where E,,, is the cender of mass energy in Kev. The cross-section will also be propor-
tional to the same factor. Quantum mechanically the cross-section is proportional
to wAP,, where A is the de Broglie wavelength of either nucleus in the center of mass
frame. But #A o (1/E), where E is the center of mass energy. So one can write

the cross-section o F) as promotional to

1 2,2,¢
o(B) « 5 &P (- 215.7:0) (2.8)
or equivalently
&
® = 2 en(557) @

where the factor S(E) is by definition, the astrophysical S-factor, is a slowly varying
function in general. The advantage of writing reaction rate in terms of S-factor is
that the other two terms in the above equation are strongly varying function of
energy, there factorisation leaving the gituation in favour of the slowly varying
function of energy, the S-factor. Now the reaction rate per particle can be written

in terms of energy as

0 = (;;s_m:)llz (TB%E;E /: S(B) axp(— k,%’ - %3) dE (2.8)

where

2re®Z, 2
b = J2um, ——I&l—’ = 31.2002,Z,u'? keV. (2.9)
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The behaviour of the integrand is mainly determined by the exponential factor.
Because of the opposite behaviour of the two terms in the exponential, they give

rise to what is known as the Gamow peak of the reaction rate at energy Fy

bk 28 i3
B = 2 = 1.220(Zy Z,uTe) '~ ke (2.10)

and an effective width A given by

12
A =4 (E“';ﬂ) =040 (ZZ1?)" (2.11)

where T} is the temperature in terms 10® K. The value of the integral in equation

(2.8) has an approximated value

/2
(o) = (“fnn) (ks%m Suar(Bo) exp ( - 2‘%’, . (2.12)

In the above equation the term S,(Ep) the effective value of S-factor at the peak

value Ey, is found to have a form

_ 5 ksT  S(0) ( 35
S.i(Bo) = S(0) {1 Y% 8 t e B 5 kBT) Fo]  (213)
where S(0) is the astrophysical S-factor at By = 0, provided S(E) is expanded in
Tuylors's series, S(B) = S(0)+ ES(0) + (E?/2) S(0) + ....... So in order to calculate
the reaction rate one has to calculate the S(E,;j).

If the energy of the reaction is so high that the Gamow peak is less than the
nuclear resonance energy, then the resonance contribution towards the reaction rate
will be comperably larger. In such a case the Taylor expansion for the S-factor will

break down. The cross-section of such resonant reactions can be follows from the
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Breit-Wigner formula as [16]

r,.T,
(E- Br)* + (I/2)?

o(B) = 7w (2.14)

where I' = I’y + Ty + ........ is the sum of partial energy widths of the resonances and
w characterising the spin multiplicities of nuclei taking part in the reaction. The

corresponding reaction rate per particle is given as

32 B
{ov), ~ (“::T) 52 (wg}&) exp(— le; (2.16)

These equation must be added to the equation (2.14) in order to get the full reaction

rate. If there are more than one resonances, an expression of the above form for

each equation to be added to get final reaction rate.

2.2 Reaction rate of ®Li(a, n)!!B.

The standard big-bang model of nucleosynthesis [15,16,22] is thought to be & suc-
cessful model for predicting the primordial abundances of the light elements up ’Li.
But recent work [124] on “He has raised questions about the agreement between
theory and experimental obgervations as mentioned in chapter 1. Even then the
SBBN fits well with the observational results to some extent. The ultimate test of
the model has to come from the prediction of the heavier elements like !'B. Heavier

elements are produced mainly through the cycle {163},
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“He (*H,) Li(n,7)" Li (0,n)" B(n,7)* BB Cn, 7" C

The most important reaction in this series is *Li (a, n)'B which determines the
abundance of !B and through which other elements can subsequently form. To
understand the detailed dynamics of the above series, one must know the reaction
rate of each component reaction. For calculating the reaction rate we must know
the cross-section of the component reactions. Since the half life of *Li is low as
840.3 ms, it is very difficult to produce the reaction, ®Li (a, n) !B in the existing
laboratory conditions. So what used to be done was measure the reaction rate of
the inverse process and apply the principle detailed balance to infer the the rate of
the forward reaction. The center of mass energy of the reaction in the laboratory
wasg 1.5 Mev, so we have 10 extrapolate this data to the energy range prevailed in

the early Universe during the primordial nucleosynthesis.

For the firet time, Boyd e£ al [45] have been able to measure the direct reaction
cross-section for *Li (o, n)' B using radioactive beams of *Li of center of mass energy
1.5 MeV, which shows that the S-factor derived from the direct reaction is about
5-8 times larger than those obtained by Paradellis e al [67] from the study of its
usual reverse reaction 'B(n, a)®Li. The strong depedance on energy and existence
of several resonances are noted and therefore the assumption of existence of no
resonance structure in the low energy region leading to the concept of S(0) factor
is basically invalid. But since the big bang nucleosynthesis took place in energy

range of 0.1 to 1 MeV, one has to extrapolate the data to the correct value of the
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astrophysical S-factor for the reaction.

We calculate the value of S.;i{Ep) and hence S.;(T), by extrapolating the data
of Boyd et al. The data of Boyd et al is given in Table 2.1. Since the data of
Boyd et alfor *Li(a, n)''B reaction is available only up to the lowest energy of 1.5
MeV, we consider the data of Paradellis et al for the same reaction at energies less
than 1.5 MeV, but we modified the data of Paradellis et al in view of the direct
data of Boyd et al by multiplying it by an average factor that is derived from the
comparison between the two data sets in the overlapping domain of the center of
mass energy. In the low energy range where there is no data available, we took S(E)
as a constant. We have evaluated the integral of the equation (2.8) for different
temperatures ranging from 0.2 x 10*K to 22 x10°K. A sample of our calculated data
are presented in Thble 2.2. With data, we have integrated the equation graphically.
The value of the integral at different temperatures are given in Table 2.3.

Next we calculate the rigit hand side of equation (2.12) without the factor
Set(Bo), that is (ov) /S.;(Fp) at different temperatures and the results are tabu-
lated in Table 2.4. We compare Thble 2.4 and Table 2.3 at corresponding temper-
atures and thus find the value of S,;; at different temperatures. The newly found
values of S.;/(7) is plotted with temperatures as shown in figure 1. On extrapolating
the curve to lower temperatures, we found that the value of S,;(0) is 2.0(10.05)
x10* MeV barn {35]. The value of S,;;(7) are then calculated for different temper-

atures and are given in Table 2.5
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Fig I. Plot of log(S,.;(T)) and temperature in units of 10* K.



Table 2.1: Data of Boyd et al

E (MeV) | o (mb) | S(E) (MeV barn)
1.62 381 1258
2.00 509 968
2.19 519 796
2.38 545 695
2.76 462 436
2.95 419 349
3.24 472 33b
3.52 381 235
3.81 276 151
4.09 424 209
4.38 414 186
4,66 2n 113
4.86 333 132
5.24 305 113
534 133 46
5.71 195 64
5.90 104 33
6.19 186 87
6.47 162 47
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Table 2.2: Values of the integrand of eq. (5) at different values of temperature

E (MeV) | S(E) (MeV barn | at T=4 x10° | at T=8 x10° | at T=10 x10°
0.2000(-01) | 0.5433(05) | 0.2168(-03) | 0.1644(-03) | 0.6527(-04)
0.2500(-01) |  0.5433(05) 0.2817(00) | 0.2167(00) | 0.8859(-01)
0.5000(-01) |  0.5433(05) 0.1252(08) | 0.1035(08) | 0.4889(07)
0.1000(00) |  0.5433(05) 0.2000(13) | 0.1913(13) | 0.1208(13)
0.1500(00) |  0.5433(05) 0.2698(15) | 0.2983(15) | 0.2518(15)
0.2000(00) |  0.5433(05) 0.3746(16) | 0.4788(16) | 0.5401(16)
0.2500(00) |  0.5433(05) 0.1792(17) | 0.2647(17) | 0.3992(17)
0.5971(00) |  0.5433(05) 0.1099(18) | 0.4444(18) | 0.5020(19)
0.6119(00) |  0.4688(05) 0.8915(17) | 0.3763(18) | 0.5020(19)
0.6545(00) |  0.3228(05) 0.4989(17) | 0.2383(18) | 0.3755(19)
0.7158(000 |  0.2070(05) 0.2223(17) | 0.1268(18) | 0.2852(19)
0.7652(00) |  0.9863(04) 0.7536(16) | 0.4963(17) | 0.1486(19)
0.7771(00) |  0.2588(05) 0.1812(27) | 0.1235(18) | 0.3964(19)
0.8747(00) |  0.6310(040 0.2118(16) | 0.1826(17) | 0.1032(19)
0.9352(00) |  0.4246(04) 0.7945(15) | 0.8567(16) | 0.8879(18)
0.9563(00) |  0.3622(04) 0.5578(15) | 0.6395(16) | 0.5804(18)
0.1000(01) |  0.3083(04) 0.3136(15) | 0.4082(16) | 0.4773(18)
0.1109(01) |  0.2075(04) 0.7055(14) | 0.1261(16) | 0.2782(18)
0.1231(01) |  0.1770(04) 0.1644(14) | 0.4181(15) | 0.1869(18)
0.1269(01) |  0.2851(04) 0.1752(14) | 0.4969(15) | 0.2759(18)
0.1366(01) |  0.1919(04) 0.3930(13) | 0.1478(15) | 0.1443(18)
0.1494(01) |  0.1396(04) 0.6421(12) | 0.8501(14) | 0.7187(17)
0.1618(01) |  0.1258(04) 0.1298(12) | 0.1016(14) | 0.4294(17)
0.1999(01) |  0.9678(03) 0.8569(09) | 0.2023(12) | 0.7790(16)
0.2190(01) |  0.7660(03) 0.6043(08) | 0.2479(11) | 0.2880(16)
0.2380(01) |  0.6949(03) 0.4358(07) | 0.3105(10) | 0.1089(16)
0.2761(01) |  0.4361(03) 0.1713(05) | 0.3683(08) | 0.1176(15)
0.2951(01) |  0.3493(03) 0.1050(04) | 0.3922007) | 0.3781(24)
0.3237(01) |  0.3347(03) 0.2062(02) | 0.1764(06) | 0.8917(13)
0.3522(01) |  0.2350(03) 0.2076(00) | 0.5634(04) | 0.1497(13)
03808(01) | 0.1512(03) | 0.3582(-02) | 0.1606(03) | 0.2232(12)
0.4094(01) | 0.2091(03) | 0.9389(-04) | 0.9643(01) | 0.7024(11)
04379)(01) | 0.1865(03) | 0.1560(-05) | 0.3669(00) | 0.1401(11)
0.4665(01) | 0.1127(03) | 0.1730(-07) | 0.9315(-02) | 0.1865(10)
0.4855(01) |  0.1318(03) | 0.1397(-08) | 0.1307(-02) | 0.7899(09)
05141(01) | 0.1127(03) | 0/2149(-10) | 0.4604(-04) | 0.1458(09)
0.5427(01) |  0.4645(03) 0.1575(-12) | 0.7729(-06) | 0.1285(08)
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Table 2.3: Values of the integral at different temperatures.

T x10°* K| Integral
0.6 2.01 x10~% |
4 5.34 x107%
8 5.35 x10°%
10 16.36 %10~
20 25.24 x10~%
22 34.92 x10°%

Table 2.4: Values of ({ov) /S.;(Ep) at different temperatures.
T x10% | {ov) /Sejf(Bo)
4 7393 x10°
8 1056 x10°
10 4064 x10°
14 2536 x10%°
18 8626 x10%°
20 1393 x 101
22 2115 x104

Table 2.5: Values of S.;(7) at differemt temperatures.

T x10* K S,H(T)
1 2.015 x10°
4 2.027 x10*
8 2.035 %104
10 2.038 x101
20 2.049 x10*
22 2.051 x104
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The new value of S-factor will affect the old value of reaction rate of 8Li( «,
n)"B substantially. According to Malaney and Fowler [163], the old reaction rate
of °Li( a, n)''B in the required energy range is given by

N, (ov) = 8.62x 108 T, T3~ exp( - -1;—;651) em?s Imole™?  (2.16)

BA
where N, is the Avogadro number, T} is the temperature in units of 10°K and

Ty

Tor = ———
M T 1+ Tef151

(2.17)

On comparing equations (2.16) and (2.12) one can find that the S, Ep) used by
Malaney and Fowler is 8.40 x103MeV barn. One can note that the difference
between our value and their value of S,;;. By incorporating our value of S,z Bp)
in to the reaction rate equation instead of Malaney-Fowler's value the reaction rate

become,

19.461
Ton

Probably due to the above reaction rate the abundance of !B and *Li should change.

Nu {(ov) = 2.05 x 10% T30 T3P exp( - ) em?s'mole™  (2.18)

Since this reaction is coming after the element ’Li in the cycle this modified reaction
rate will affect the abundance of 7Li also. We modified the Wagoners code by
incorporating our reaction rate for the above reaction and also some new reactions
which are important for the synthesis of 'Li, but are net incorporated in a recent
work by Smith et al [28] and found that the abundance of 7 Li is reduced by a. factor
of 1.2.
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Chapter 3

Neutrino degenerate big bang
nucleosynthesis

The stanc;a.rd big-bang nucleosynthesis model is successful in predicting the mi-
crowave back ground radiation [13]. It has been claimed that its prediction about
the abundances of the light elements is also perfect. But the abundances values
of the various light elements inferred from the latest observational data are not in
agreement with the the theory for a unique range of the baryon-to-photon ratio.
The prediction of the present day baryon-to-photon ratio 7 is the main aim of the
SBBN.

In the SBBN model 1 is treated as one of the parameters along with the other

two, the number of light neutrinos and neutron life time. The parameters, number
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Table 3.1: Number of light neutrinos, N,
Authors N,
Adeva at al  3.29 + 0.17
De Camp et al 3.27 + 0.30
Akrawy et al 3.12 + 0.42
Arnio et al 2.40 + 0.40
Abramset al 2.80 £+ 0.60

Schramm et al 3
Shvarteman 3
Malaney et al 3

of light neutrinos and neutron life time are derived from the laboratory experiments.
The number of light neutrinos has been fixed as 3 these beeing the electron neutrino,
muon-neutrino and taon-neutrino. There are lot of experimental evidence for fixing

the neuirino number as 3. We have summarised a set of results in Table 3.1.

There are various experimental determinations and theoretical inference on neu-
tron life time. Since the freeze out value of the n/p ratio depends strongly on the
life time of neutron {16}, it has a crucial role in determining the abundance of “He,
because “He abundance depends very much on the freeze out value of the n/p ratio.
The abundance shows a sharp increase with the neutron life time. In the Table 3.2
is given the summary of some of the lifetime estimations of the life time of neutron.
The latest measurements indicates a lower value for neutron life time, implying a
lower abundance for “He. In our calculation we take the weighted mean of the
values since 1986, as done by Smith et al {28], that is -, = 888.56 + 3.8 sec. Once

the number of neutrino and neutron life time are fixed the SBBN theory becomes a

46



Authors Years neutron life time
Sosnovskii et al 1959 1013 + 26
Christensen et al 1972 919 + 14
Krohn and Ringo 1975 907 + 18
Bondarenko et al 1978 877 + 16
Strataura et al 1978 902 + 20
Erozolimekii et al 1979 905 + 14

Byrne et al 1980 936 + 17
Bopp et al 1984 889 + 11

Byrne et 1984 8914 £ 6
Kosvintsev et al 1986 903 + 13

Last et al 1988 876 + 22

Mampe et al 1989 887 + 3
Olive et al 1990 880 + 44
Walker et al 1991 889 +£ 29

theory becomes a one parameter problem, the parameter being . The expectation
is that the SBBN model should predict a single value for 5. But recent reports
are against this expectation. It has been reported by many [30,31,38,164] that the
theory predicts more than one value for 5. This should not be, because & single

Universe cannot have more than one value for 1.

3.1 The discrepancy - earlier results

In order to review the earlier gituation we mainly follow the work of Rana [30,31].

For compering the calculated results, the following limits inferred form the obser-

47



vational data for the primordial abundance were used by him,
Y, = 0.230 + 0.006

by mass fraction

3
D—+H§3 = (3.6+0.60) x 107
by number fraction and
[ 3 K
% = (1.1240.38) x 108

by number fraction. The number of neutrinos is 3 and the neutron life time is 891.6
sec. For the calculation Wagoners's code was used. The results due to Rana [11,30]
shows that the range of » corresponding to Y, and (D 42 He)/H mutually exclude
each other, but the % corresponds to 'Li/H is overlapping with both regions. So
the discrepancy here is mainly in the case of Y, and (D +* He)/H. Similar cases
of inconsistencies in the SBBN model were reported by many as mentioned above.
Even though the discrepancy is small, it is not negligible. It shows that the standard
model predictions are not absolutely correct, but at the same time are not very far
from truth. So SBBN model should be modified. T'wo alternative solutions have
been proposed. One is the inhomogeneous nucleosynthesis model (37,68] and the
second is the nucleogynthesis with neutrino degeneracy [30,31]. At the same time
geveral works argued that standard model is sufficient [21,22,144]. We shall try
to asses the status of the above reported discrepancy in the light of the refined
values of the abundances, reaction rates and other parameters. First we propose
to modify the Wagoners code to take account the latest results on reaction rates,
neutron life times and include some other corrections which are described in the

following sections.
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3.2 Modifications of the Wagoners code

In the Wagoners code all the thermodynamic functions are evaluated approximately
in terms of the modified Bessel function [15,16] as has been elaborated in chapter 1.
Since the reported discrepancy regarding the non-uniqueness of 1 is small a precise
evaluation is needed to check the absolute existential status of the inconsistency. We
did an exact evalustion by changing all the approximately evaluated functions with
accurate numerical calculations. The photon energy density is put in to the code as
p=8.4182T,* gom™3, and ite number density as, n, = 2.0282719 x 10® T,® om™3.
Another important constituent is the electron, which determine the baryon den-
sity through the charge conservation law. The difference in the electrons and its

amtiparticle positrons can be evaluated using the exact relation,

kg 3107 3 . Ve -1 3
N, — N = (E) 72—7;, sinhd, /lw cosh(2) T coshd, z de (3.1)

This difference in number can be related to the baryon mass density by assuming

charge coservation. The total number density of the electrons and positrons can be

evaluated as,

N coshd, + & -
- + N+ = (-c—r—‘) —1'_-2—7‘9 /1"" cash(ze.)+wsh¢, evet -1 z’de (32)

and the total energy of the electrons and positrons is calculated as,

_ K5 8 4 coshd. +e™* 4 a7 A
Pe- + Pet = (m) 10° Tg /:" cosh(ze.)+cosh¢, eVet -1 2 de. (3.3)

Electrons and positrons will annihilate each other during the pair annihilation pe-

riod whicﬁ starts at a temperature about 6/¢K. But a small amount of electrons
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Table 3.3: Evolution of electron density during pair annihilation.

Ty pe/py
100 1.751
34.5 1.746

33 1335
135 0.181
0.41 0.0002

ived and these are responsible for the electron degeneracy ¢, = u./kgT, where
rthe chemical potential of the electrons. During the peair annihilation the mass
ity of the electrons evolve with respect to that of photons as given in the Table
The total pressure due to the electrons and the positrons is calculated exactly

he relation,

(kA 0%, coshge + € 0
(P,- +P,+) = (-C—Big-) ) T j;’“ cosh(ze) T cosh, e —12z"% de. (34)

calculating the evolution of the temperature with respect to time, we need
derivatives of the above quantities with respect to temperature and electron

nical potential. The temperature derivative of net electron number can be

tly calculated using the relation,

3
Aresne) - (B2) 1772 b, (38)

sinh(ze) 2. /3 p
Ve -1 2 de.
x 1 {cosh{ze) + aosh4;,)2 eve £

perature derivative of total electron energy density is,

Hoe +p2) _ { ka\ 10%° 4
o (Er?) o) (3.6)
cosh(ze) coshde +1 , r5—
x| (cosh(ze) 3 Vet -1 2 de
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snd the temperature derivative of the total pressure due to electrons and positrons

is calculated as,

B(Pe' + Pa*) - k‘B 10_35. 3
MetB) - () e &0
cosh(ze)coshd. +1 , — — .5
* )i (cosh(ze) + coshe) €-lede

The corresponding chemical potential derivatives are

On-—nps)  n-—na + (ﬁ)3 10

0. sinhd, 7] = T (coshd— 1) (38)

cosh(ze) — 1 TR
“h (cosh(ze) + coshd,)* Ve -1de

(P +pet)  _ (kz) 10%

8(# -c-égs 72— T'g‘ sinth, (3.9)

sinh(xe) 2VFTT A de
*h (cosh(ze) + coshd,)* Ve -T4d

- + 38
é.aﬂ)‘t—})‘) = (.c%) %T; sinhg, (3.10)
sinh(ze) 2 _ 1\ 4
* 1 (cosh(ze) +co.l;:l'u;‘),)i (6 1) & de

where the symbols have their usual meaning as given in the introduction. In the
above equations we treat all particles as relativistic. In the case of baryons, they are

treated as non-relativistic. But they show a relativistic character at temperatures
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above 101K. Their mass density can be evaluated using the equation (1.47). The

temperature derivative of the baryon density can be written as,

AM ay;
ipi = th3C ZY' ¥ th3 (Mu +CT9) 7&; (3.11)

dTy

The total energy density of the 3 species of the neutrinos and their antiparticles
can be written as,

py+ P =3 x 7.365936T," (3.12)

Neutrons are decoupled from the thermal equilibrium at about a temperature 2.1
x10'°K. After that the temperature of the neutrinos decrease with the expansion

of the Universe as, 7, o R1.

3.2.1 Overheating of neutrinos

Neutrinos decouple from the thermodynamic equilibrium ( at about a temperature
T ~ 2 x 101K ) well before the annihilation of electrons and positrons in to pho-
tons (at temperature of about T ~ 5.93 x 10°). Hence the energy associated with
the e* pairs is transferred completely to the photonic sector. As a result the the
neutrino temperature is reduced by 1.401 times that of the photon. This was the
sequence assumed in the standard model of the hot big-bang theory. But Dicus et
al. [27] have shown that during the pair annihilation of the e* pairs a fraction of
the energv amociated with the e* pairs is added to the decoynled neutrino. sector
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through the scattering interactions, v + et « v + et, and also through the anni-
hilation process v + 7 « e~ 4 e*. Since the neutrinos are decoupled species this
trangference of energy to them, is an effective loss for further Universal processes
like primordial micleosynthesis. Dicus et al have shown that due this overheating
the neutrino temperature can be increased by 0.3% [27). This will affect the pri-
mordial micleogsynthesis process mainly in two ways. One is the modification in the
weak imeraction rate which controls the freeze out value of the n/p ration. The
second is the effect on the number of the neutron decays after the freeze out of n/p
ratio. Both the effects will be reflected in the abundance value of primordial “He.
Dodelson and Smith have argued that the first effect will lead to0 a decrease in “He
abundance by an order of 1075, and the second effect will lead to a decrease about
1-2x 1074,

In order to incorporate the effect of overheating in the Wagoners code we adopt
the formulation by Rana and Mitra [33]. They showed by a more careful method
that there can be a 0.36% increase in the neutrino temperature compared to the
photon temperature, which will lead to reduction about 0.003 in the ‘He abundance.
The lose in the primordial soup due to the neutrino overheating can represented as,

du adu,
— = — = L(T-17, 3.13
T = & = L L@T-1) (313)
where I; is the energy loss integral (its exact form is given in of Rana and Mitra
{33]). It is amsumed here that - 7, << 7. The summation in the equation extends

over all types of neutrinos. The above equation can be recast in to more suitable
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form by using the following equations,

I, = d (3.14)
= 4C, % (3.15)
as
% - E,GIE“T—T - Hr, (3.16)
where
Gl =l )t

C, and C, are the specific heat capacities of electron and neutrino respectively.
7; i8 the total relaxation time for a given type neutrines. The relaxation time of
electron neutrino is slightly different from that of mu/tau neutrinos and as a result
v, will decouple at about 1.5 x10K, but v, and u, decouple at a slightly higher
temperature 2.5 x10©°K. The second term in the above equation arises due to the
expansion of the Universe, where H is the Hubble constant. When we incorporates
this effect in the our modified code it is found that the ‘He abundance is reduced
by 0.001 only.

3.2.2 Effect of plasma on the electron mass

Due to the interaction of the electron with the rest of the plasma in the early
Universe, its propagation will be modified. This interaction will effect a net increase

in the rest mass of the electron at finite temperature {27]. Increase in the mass of the
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electron can be calculated using the finite temperature propagator of the electron
and photon , by assuming fermi distribution for electron. Dicus et al [27] have
noted that the finite temperature increase in the electron mass is, if the chemical

potential is negligibly small,
BaT?

Smr = (3.17)

where m, is the zero-temperature rest mass of the electron, B is a slowly varying
function of temperature having value between 1 - 2 and « is the coupling constant
which arises due to the addition of the gauge fixing term in the finite temperature
propagator of eleciron. This correction cab be added to the zero temperature rest
mass of the eleciron, which is 0.511 MeV, to get correct mass of the electron, at
given temperature. The corrected mas mainly affect the weak interaction rate,
which will in turn affect the “He abundance through the freeze out value of the n/p
ratio. Due to the inclusion of this correction in our modified code there can be a
slight decrease in the weak interaction rate, about -0.0013, which would result in a

slight increase in the “He abundance about 0.0002.

3.2.3 Coulomb and radiative correction

In Wagoner’s original code [16] the Coulomb correction is included by simply in-
creasing the term )y appearing in the weak interaction rate by 2%. This has the
drawback that at low temperature A(n — pev) approaches 0.98 rather than unity.

The correct treatment of the Coulomb and radiative interactions was worked out
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by Dicus et. al [27]. We will adopt their results to Wagoners code accordingly.
They proposed that, the correction is to multiply all the weak interaction rate by
(1 + £C(B,v), where o i the coupling constant, 8 is the velocity of the electron in
'the rest frame of the positron and y is the neutrino energy divided by the electron
mass m,.. The function C ig given by,

C(B,y) ~ 40+ 4(R-1) (-3% - g + ln2y) +R (2(1 +#) + 6—{; (3.18)

~4BR) - 4(2 + 118+ 256" + 306" + 208* + 84°) /(1 + B)°
where R is defined to be
R~ tanh™8

In the above correction the largest part is that due to the radiative correction. The
overall effect is about a 7% increase in Ay, out of that 3.4% comes from the radiative
part and the remaining part from the Coulomb part. Due to these correction Ay
increase from its old value 1.53515 to the new value 1.756321. Consequently ‘He
abundance is reduced by a 0.0005.

3.2.4 Updating the reaction rates

We have included about 250 reactions in the code. In the original code of Wagoner

around 180 reactions were included. In a recent work of Smith ez al [28] only
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81 reactions were included. They neglect other reactions arguing that the remain-
ing ones are unimportant. We think that however small be the contribution of a
particular reaction, it should be incduded. Of course the computation time will
become large due to the inclusion of more reaction. But if one looking for accuracy
in the prediction all the possible reactions must be included. In that sense we have
more reactions which are not included in the work of Smith ez. al. A list of some

important reactions and their rates are given in the appendix.

We have updated the reaction rates according to the latest results. The updating
of the reaction is mostly from the paper due to Caughlan et al [46). For the rates
of some of the reaction we adopt the results from Smith e al [28]. In the case of

the reaction *Li (o, n)"'B we included the new rate determined by us in chapter 2.

3.2.5 Correcting the values of the nuclear weight

For calculating the primordial abundance we need the weight of all the nuclear
species in atomic mase units. In the original code the weight of the corresponding
atomic species are included, which include the weight of the nuclei plus the corre-
sponding number of the electrons also. Strictly speaking only the weights of nuclei
are neede. So we have modified the code by replacing all these atomic weights with

the corresponding nuclear weights.
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3.3 Comparison of the theory and observation

We perform the computation with our modified code. For the calculation we chooges
the following initial condition. The initial temperature is chosen ag Ty = 100. This
temperature ig high enough to have all the particles in statistical thermal equilibrium
with each other. The initial value of all other variables are set for the temperature
Ts = 100. For example the initial value of the baryon density can be specified as

follows. We know that the baryon-to-photon number density ratio is,

n

7 = 3.19
n, (3.19)
Let i refer to the initial value of the corresponding quantity, then
(m); = (ny); w (3.20)
where
(n,); = 2.028719 x 10* (3.21)

Since the temperature Ty=100 is well above the neutrino decoupling temperature
(2.1 x 10'°K) one should be cautious in calculating ;. The value of the baryon-to-
photon ratio will change due to the addition of the photons during the e* annihila-
tion. Let #; be the value of the baryon-to-photon ration after the e* annihilation,

then it can be written as,

w = (%) " (3.22)

= 0.3667;
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Using the relation (3.20) and (3.21) the initial value of n,, the baryon number

density turns out to be

(ny) = 554298 x 10* y; (3.23)

Now we can essily calculate the initial value of h parameter by using the following

relation,

n = NohTy. (3.24)

Thus the initial value of h is turns out to be 9.20434 x u;. Initial value of the
sbundance of all the elements is fixed as 1072 by number fraction in order o avoid
underflow in the numerical calculation. Basically the initial values of all relevant
variables are fixed by the initial value of the temperature and baryon-to-photon

ratio.

The ultimate test of the SBBN model is that whether the predicted abundances
are all matching with those inferred from the observations for a unique range of %
values. The results of the calculation are as shown in the figure 2a and 2b, where
we plotted the abundance, mass fraction of “He, number fractions of (D +° He)/H
and "Li/H. Figure 2a is that result which obtained using our modified code. After
this calculation, there was a paper by Smith et. al. [28], who proposed modified
reaction rates for some of the important reactions. In constructing figure 2b, we
include these modified reactions also. The shaded regions are the allowed ranges
of 17 obtained from the constraints due to the observationally estimated primordial
abundances of the elements ag described in chapter 1. The shaded zones are not

found to overlap each other, thus bringing out the inconsistency of the SBBN model.
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According to figure 2a, the observational abundance of “He by mass fraction
corresponds to a range (0.7 - 1.1)x 107 of 5, and that of (D + 3He)/H corresponds
to the range (4 - 5.6)x107'%. The observational limits of "Li/H is corresponds to

(1.8 - 3.5)x 107, These three ranges of 7 are mutually excluding each other.

According to figure 2b, the range of % corresponds to the *He abundance is (0.5
- 1)x1071 that for (D + *He)/H abundance corresponds to (4.8 - 6.9)x10~® and
that for Li/H abundance corresponds to (1.7 - 2.6)x107", These results also shows
that three ranges of % are mutually excluding each other. Earlier it was reported
[30] that the discrepancy is there for ‘He and (D + 3He)/H only. Our calculations
using a more realistically modified code shows that the discrepancy is shared by
Li/H also. Even though the inconsistency is small, it is not negligible. A small

modification of the model must be sufficient to cure the theory.

Two alternative solutions have been proposed. One of them as proposed by
Rana [30,31] and Sherrer [38], involves the introduction of one more free parameter,
. = by, called the degeneracy of electron neutrinos, characterizing the ratio of
the excess number density of neutrino of electron type over their antiparticles to
the photon number density. Another alternative solution {6,68], is the inhomoge-
neous primordial nucleosynthesis, where the inhomogeneity is introduced in to the
early Universe, prior to the nucleosynthesis by a pessible first order transition from
the quark-gluon to hadronic state of matter. The dynamics of this transition is

the least understood one o far as the exact quantifications are concerned, but it
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Fig. 2e Primordial abundances *He, D/H and "Li/H in the SBBN model with the shaded
regions representing the allowed ranges of the baryon to photoa number density ratio
1. Non-overlapping of thesc shaded ranges of n implies inconsistency of the model
predictions and the observational estimates.
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allowed the introduction of three more parameters to the model at a time when
it had already three parameters in it. When the inhomogeneities were taken in to
account the abundance ‘He and ?Li shoot up considerably, in particular the later.
We will discuss some aspects of inhomogeneous nucleosynthesis as solution to the
above mertioned inconsigtency in the next chaptier. Here we will concentrate on the

neutrino degenerate case.

3.4 Degenerate big-bang nucleosynthesis

In the work of Wagoner it was assumed that the neutrinos are non-degenerate.
There is no firm experimental basis for such an assumption. A small neutrino
degeneracy is natural according to many grand unified theories [57,29]. The meaning
of neutrino degeneracy in the present context is that the chemical potential of the
neutrino is non-zero, which implies an excess of neutrinos over their antiparticle
[30]. We consider a degeneracy in the electron type neutrinos and there is no
degeneracy in the other two types, the muon type and the taon type. The small
neutrino degeneracy can affect the nucleosynthesis process in two ways. First the
excess dengity of the neutrinoes due to the dégvenemcy can increase the expansion
factor causing an earlier freeze out of the n/p ratio. Because of the freeze out the
value of n/p ration will be higher than its canonical value, which in turn increase
the “He abundance. Second effect is that, because of the excess electron neutrino

over their antiparticles, the rate of the forward reaction n + v, — e + p will
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dominate compared to the corresponding rate of the backward reaction. This causes
a substantial decrease in the number density of neutrons. This in turn will reduce
the ‘He abundance. So the first and second effects are mutually opposing effects.
Since we are assuming a small degeneracy, the increase in the expansion rate will
be comparably negligible, as a result the second effect will dominate the first one.

We analyse the situation below with relevant calculations.

If there is no neutrino degeneracy, the energy density of electron neutrinos will

be given by the reiation,

P = PutPa (3.25)
- 1" pa
" B 15(ch)y

Because of the electron neutrino degeneracy the electron neutrino energy density

become,

n? {7 16 , 15
P = T &[5t 3 et g 9 (3:26)
provided the rest mass of the neutrino is negligible. With respect to the photon

energy density, the neutrino energy density become

Pw _ T(T,
o =3 (Tv) (1+ AN,) (3.27)
where
_ 30 , 15
AN, = 72 ¢*+—7 = P (3.28)

Here we assumed that the electron neutrino degeneracy will affect much the photon-

neutrino temperature difference, which is realistic assumption in the case of small
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degeneracy. However if the degeneracy is higher [185] one should apply the cor-
rection of neutrino overheating due to the degeneracy also. Now the total energy

density would become,

Pra = Geif Po (3.29)

by assuming that all the relevant constituents are relativistic. Here g:” ig the
effective spin multiplicity with neutrino degeneracy, which can be written as,

. 11 7
%5 = T+3 (AN,) (3.30)
before et annihilation,and
_ 7 4 4/3
Gy = 145 (ﬁ) (1+AN,) (3.31)

after e* annihilation. According to the above equations the increase in energy

density compared 1o photons due 10 the degeneracy of electron neutrinos is

(7/8)T,/T, AN,

Due to this there is a speed up in the expansion of the Universe, which can be
characterized by a speed up factor S as,

H (o, \""?
S = —={hb 3.32
d (m) (3.32)
Geff
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where H is the Hubble constant of the Universe with electron neutrino degeneracy.
Due to a finite degeneracy S is always greater than 1. Because of this the n/p
ratio freezes out at a higher temperature due to the early overtaking of the weak

imteraction rate by expansion rate.

The second effect is just the opposite of the first as we mentioned above, that
is to decrease n/p ratio by enhancing the rate of conversion neutrons into protons.
Due to this effect the *He abundance decrease, without affecting the abundance
of the other elements. Our aim is to find a unique range of 1 for which theory is
satisfied with the observational abundance of the “He, D, 3He, and "Li. We run the
modified code for various values 1 and ¢,,. The value of 7 used by us is in the range,
0.5 % 1071° t0 1.0 x 107® and ¢, is in the range 0.05 to 1. We span a 2-dimensional
parameter space of 7 and ¢. Results are as shown figures 3a and 3b. In figure 3a,
is that figure which corresponds to figure 2a, where the most latest results of some
important reaction rates as reported by Smith et al [28] have not been used. Those
results are incorporated to obtain the figure 3b. Figure 3a, which gives the isoyield
curves shows that the the abundance of elements, that is ¥,, (D + *He)/H and "Li/H
can be fitted for a unique range of baryon-to-photon ratio, 7 = 4(£1) x 10~ where
the required value of the degeneracy parameter is ¢,, ~ 0.11 £ 0.04 [34]., However
3b, is more reliable in that it include all the reaction rates in its most uptodate form.
According to figure 3b, the value of baryon-to-photon ratio is # = 3(£1) x 1071°
and the corresponding value of degeneracy is ¢,, = 0.3+ 0.05. If the Universe is not
strictly obey the conservation of (B - L) (the difference between baryons and lepton

numbers), it will then be possible to accommodate such a large value of ¢,, compered
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to the smallness of . That the Majorana type of neutrinos with little or zero rest
mags can under the circumstance of the early Universe develop such a large values of
¢4, has been shown by Langacker et al [63]. The above reported value of degeneracy

parameter (se .3) would correspond to an excess neutrino number density of

L = De—™ 006 (3.33)

The corresponding speed up factor is about 0.4%, which justifies our assumption
that for smaller degeneracy parameter (of course the degeneracy is higher compared

t0 the photon number density) the speed up in the Universal expeneion i negligibly
small.

Another point to be noted is that, given the error bars, possibly the shaded
regions for (D + 3He)/H and "Li/H can merge for a value around 4.0 x1071° with
no neutrino degeneracy. But if the value of ¥, < 0.220 we need a mechanism
to reduce the SBBN value of “He abundance. This can be achieve by introducing
significant degeneracy of electron neutrino (¢, = u, /ksT ~ 0.30) is the main result
of our work, However this suggestion must be confirmed by further tests. If one
extend the degeneracy to the other types of neutrinos aiso, there appears to be a
possibility of constructing a baryon dominated Universe, even with 3, = 1.
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3.5 An analytical analysis of the degenerate big-
bang nucleosynthesis

Most of works, reported in the literature in the field of primordial nucleogynthesis
icludes, the one we have given above, are of computational in nature. The over
numerical reliance and computational nature gives the theory a kind of black box
character, hiding the real physics from view most of the time. Hence analytical
approaches which can throw light on the physical processes in the primordial nu-
cleosynthesis are considered a welcome addition. This sorts of analytical treatment
can devoloped only in an approximate way. For exact quantifications one canot by
pess the exact numerical calculations. Bernstein et o/ [44] did an approximate
analysis about the *He formation, where they mainly concentrated on case with
non-degenerated neutrinos. Here our aim is to do such an analygis with some suit-
able assumptions for simplification of the calculation, for the “He for formation in

Universe with electron neutrino degeneracy.

3.56.1 Neutron abundance with small electron neutrino de-
generacy

Let Xa(t) be the neutron abundance. During the evolution of the Universe, rate of

neutron abundance change compared to the total mass density of the Universe is
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governed by the equation,

D) ry X = A (1= Xoft) (334
where \,, is the total rate of the weak interactions that convert neutrons in to
protons and A, is the rate of conversion of protons in to neutrons. The relevant weak
imteraction are as given in the first chapter. At temperature of about 1 MeV, the
weak interactions fall out of equilibrium and after that only an occasional neutron
will remain active. If we neglect the neutron decay and synthesis of elements, then
ihe neutron abundance will reach e constent finite value X{? as ¢ — oo (or as
T — 0). The effect of the neutron decay is to multiply X with an exponential
factor as

X, = X® exp( - -t—) (3.35)
T

where ¢, is the neutron capture time in the 4He nuclei and ris the neutron life time.

Once X, i8 known, the “He abundance by mass fraction is equal to 2X,. So the

quantities one has to evaluate are X and ¢.. In the case of neutrino degeneracy

our assumption is that the electron neutrino degeneracy is small but the mu/tau

degeneracy need not be small. If there is & small electron neutrino degeneracy, the

equilibrium abundance of neutron can be written as

1
T 1+ exp(y+ du)

Xey (3.36)

where the variable is defined a8, y = Am/T, Am = 1.2083 the neutron-proton mass
difference. By neglecting the neutron decay, the solution of the equation can be

written as

X0 = Xo - [ Kuy) *};"(Sf;)] dy (3.37)
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where
yy) = exp[ f dy dy A(y )] (3.38)

is the integrating factor. The derivative the time with respect to the variable y can

be written as,

dt dt dT
5 " Ta (3.39)
{4\ M,
- 4#39,” Am? y
and
AY) = dnt (3.40)

= (1+exp(-y-¢..)) A

is the total reaction rate of neutrons and protons except for the free neutron decay,

since we have ignored the neutron decay for calculating X%, Hence the rate )\, is
Ay = AMnt+v,—pte)+An+et op+ )
The corresponding individual rates are

Mn+v.—pte) = A /:o dpy, PLpe B. (1- fo) fu. (3.41)

AMnt+et—p+7, = A/:dp.PZpu.Ev. (1-£4) fe

where A is a constant whose value can be determined by calculating the neutron

decay rate or equivalently the neutron life time. The rate of the neutron decay can

be written as,

Mnopte +7) = A [ dopip(1-£)(-0)  (34)
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In the above equations p, (p.) denote the momentum of electron-neutrino (electron)

and B, (B,) is the energy of the electron-neutrino (electron). They are related as

E. = E,+Am for n+v.,eap+e,

B, = E+Am for n+e’ op+4,

B, = Am-E, for nop+et +u,

The last relation gives the upper limit of the integration in the rate of A(n —

p + et + 77,). In this case we neglect the kinetic energy of the nucleus because

the recoil of the nucleus is negligibly small in the temperature of interest. The

integration limit py, can then written as,
1/2
P = (Amz - mz)

The distribution functions have the form

_ 1
fu = exp (B, /Ty, - ¢u) +1
1
fe = exp(E./T.) + 1

In order to simplify the analysis we make the following assumptions

1. T.~T,~T,=T

2. f. ~ exp(B./T) and [, ~ exp(—E\/T+ u,)
3. (1-f)=~1 and (1-f,)~1

4. electron mass m, ~0
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Actually the neutrino temperature T, is less than the photon temperature 7., by
about 10% after the ¢* annihilation. In the second amumption we approximate the
Fermi distribution by the Boltzmann distribution. Since during the nucleosynthesis
the temperature is comparably less than Am, this assumption will not do much

harm 1o the final assumption. Under these assumptions the weak rates are become

Mn+veopte) = 24Am° (1+4,) {;{- + 5‘- + %} (3.49)
AMn+et —2p+7) = 2AAm° {§+$+$}' (3.50)

The rate of the reactionn —p+e + 7, is
Mn—-p+e i) = 00157 A Am® (3.51)

So A can be written as
_ 255
T 4rAmS

where 7= 1/A. Total rate for the conversion of neutrons in to protons A, can the

written s,
Ay = (1 + 9—2—) (f_—zf-) (12 + 6y +9%) (3.52)
Substituting dt/dy and A(y) in equation (3.38), the equation for I(y,% ) can be
expressed as,
Iyy) = exp [K(y) - K(y)) (3.53)
where

K@) = b{(1+¢2—"') (%+%+§)+(1—¢2—*) ($+$) e-'} (3.54)

with
45 M,
b =125 (41!39,”') TAﬂ'lz.
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Table 3.4: Variation of helium abundance with v, degeneracy.

¢ frecacoutn/pratio Y, forn=3x10" Y, fory=4x 100
0.00 0.154 0.245 0.248
0.05 0.146 0.233 0.236
0.10 0.139 0.222 0.224
0.12 0.136 0.217 0.219
0.16 0.131 0.208 0.211
0.20 0.126 0.200 0.202

The solution to the neutron abundance equation now becomes

XG) = X + [t &40, Xy ) 13 (3:55)

The integral can be easily evaluated t;or different values of ¢, . The consistency of
this type of simplified calculation for ¢,, = 0, was verified by Benstein et a/[44],
where they have calculated the integral for 7 = 896sec. In our calculation we used
the most recent value for the neutron life time, 7 = 888.5 [28]. The results of our
calculation are tabulated in Table 3.4. We have calculated X also as shown in the
table. Peebles [64] calculated X® for ¢,, = 0 as 0.155, where he used the neutron
life time as 7 = 1013sec. In order to calculate Y, one should know the capture
t. also. We calculate the capture in the presence of electron neutrino degeneracy.
The capture time is that time when all the neutrons in the early Universe are
captured into the ‘He nuclei. Since the ‘He synthesis is taking place at comparably
low temperature than the electron rest mass, the temperature difference between

electron and neutrinos must be taken in to account. The capture time can be

45\ rN\¥ M,
¢, = =) =E+¢ .
. (16139.”) (4) T, th (3.56)
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where ¢y = 2 see [44] and T, is the capture temperature. By calculating the capture
temperature, the calculation of the capture time is straight forward. In the following

we will calculate the capture temperature.

The following are the main reactions through which ‘He is formed in the early

Universe,

n+p — D+7y (3.57)
D+D —T+P

D+T — *He+n (3.58)

During capture temperature most of the neutrons will be incorporated in to
‘He. *He is formed due third reaction in the above sequence, due to the reaction
between D and T. For most of the neutrons capture in to “He, it is required that the
destruction rate of D shoul be maximum, since the destruction of D will finally end

up ag helium. So we can calculate the capture temperature T, by the condition,

Xol  _ g (3.59)
dT' |,
x
The calculations are done in equilibrium condition. The destruction rate of D

will depend on the rate of formation D through the first reaction, and the rate
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of formation T through the second reaction. In equilibrium state the following

equations are valid

Gy = XeXo _ MD)

Xy = o] forn+p— D+ (3.60)
__Xp _ ™A
GDD = XTXp = [DD] fOf‘D'f'D—bT-}-P (3.61)

where G i8 the Saha factor [44] of the corresponding reaction. The number fraction

X 4 of any element of mass number A and atomic number Z can be written as (3]

3(A-1)/2
X4 = ga [4(3).4—1 L1-A7 2(3,4-5)1z] A (l) A1 XE XA exp ( _B_A)
My T
(3.62)
Now the Saha factors can be rewritten as,
1!'1/2 (mN) BD
G,, = ex (- =2 3.68
¥ (B \T, P T (3.65)
@ (4 B
GDD = ;—;’— (53—1-2-) exp( - ?) (3.64)

where B = 2mp—mp— my= 4.02MEV, gp = 3, g7 = 2. The deuterium destruction

can now be written approximately as

%2 = R’T (X’Xn - G’PXD) bl RDD (2XED - GDDXTX’) (3'65)

where Z = BfT,. The equation is takes into account the first two reactions in
the sequence given equation (3.59). However the destruction of deuterium through

second process will enhance the production of “He. The quantities R., and Rpp,

are given by the relations,
dt
E’ = & (0‘0 ng (3.66)

45 1/2 .
() C@BoMugs oW

1.55x 10 1 g
- T (B @)
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Table 3.5: Variation of capture time with v, degeneracy.

¢, Value of t for nyp =3 Value of ¢ for 9y =4
0.00 202.82 192.98
0.10 204.25 194.38
0.12 204.55 194.67
0.16 205.14 195.25
0.20 205.75 195.84
0.30 207.29 197.36

where we take (oV) = 4.55 x 10~%

1.55 x 107
Rop = = ;}%z—‘” exp ( ~ 1.442V°) (3.68)

Using the maximizing condition as given equation in 3.5.1 the condition for capture
temperature i8 become

XL RpD =1 (3.69)

After substitution of the relevant quantities, the above condition become

Z-1i/e exp (Zc - 1442:/3) = 6.124 x 10 \f9efs (ﬁ) . (3.70)
X$ Xa 't

where %, is the baryon-to-photon ratio in units of 107, We can now calculate
t. for various values of ¢,. The results are shown in table 3.5. We find that a
slight increase in capture time with increasing ¢, . Using the capture time for
different ¢,, values the abundance “He (¥;) are calculated and are given Table 3.4.
Comparing the results obtained here with our earlier numerical calculations we find
that becauuse of the various approximations used the accuracy of the analytical
calculations are rather poor. In spirits of this approach this approach helps to
understand the physics behind the primordial synthesis of ‘He. Similar works can
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be carried for other elememnts also, but will need & diifferent method which take
account of the various reaction rates of the important reactions involved. Such an

anslysis is beyond the scope of the present work.

3.6 Massive neutrinos and nucleosynthesis

In SBBN and IBBN, the neutrinos are assumed to be meassless species {15,21,22].
The SBBN theory restricts the number of neutrinos to 3 [63,60]. The condition
Qh? < 1, restrict the mass of the neutrinos to less than about 92 h? eV [143]. The
laboratory limits for the masses of the u and 7 neutrinos are around 250 keV and

35 MeV respectively.

In the following we consider the effect of massive unstable neutrinos, with the
presupposition that, these neutrinos decay only after the primordial nucleosynthesis
process. The crucial effect of the massive neutrinos is through their contribution
to the total mass density of the Universe, there by increasing the expansion rate
of the Universe. The first attempt to include the effect of the massive neutrinos to
primordial nucleosynthesis was done by Dicus et al [27]. Here we report a woric
in which neutrino mass and the electron-neutrino degeneracy are included. Our
aim ig to limit the degeneracy of electron-neutrino in the presence of the massive

neutrinos using the limit on the ‘He abundance.
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The time evolution of the number density n, of the massive neutrinos of masgs

m, can be evaluated by using the Boltzmann relation [3],

dn,
dt

+ 3Hn, = - {(ov) (n,z, - nf‘;'a) (3.711)

where n’¢ is the equilibrium number density, o is the neutrino-antineutrino annihi-
lation cross-section. The term 3Hn, represents the dilution in the neutrino density
due to the expansion of the Universe. The above relation can rewritten using the

variables Y = n,/n, and z = m, /T as

dY = z{ov)s

ar __zoys _ v

= ) (¥ - y¥) (3.72)
where H(m) is the Hubble constent in the presence of the massive neutrinos which
has the form

H(m) = 1.6 g %

¢'/* is the spin multiplicity factor of the constituents of the Universe and s is the
entropy density. By substituting for H(tn) and S the equation {3.72) can be brought

to the form,

dy _ 2mymy (8229) @ 32 (v - y). (3.73)

dz n?
We consider {ov) = N,Gimi/2x* [4], which is a constant for given m,, but in real
cage {ov) is dependent on the momentum of the neutrinos. The contribution to the

total energy density by the massive neutrinos can be calculated by the relation [3]
(Omasive = 2y ¥ [(3251T3)2 + m] (3.74)

The factor 2 will account for neutrino-antineutrine pairs. To obtain (p,) we

have to solve equation (3.73). We numerically solved that differential equation
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taking m, = 5MeV. The speed up factor then be calculated as
- )
Po

Po =Pyt Pet + 20,

where

and

p = mt (p”)muiuc

(3.75)

In figure 4 we plotted the ratio of densities that is S? versus the temperature, which

shows a considerable increase in the expansion factor.

The increase in the speed up factor will affect the “He abundance in the following

way. The speed up in the expansion will cause an earlier freeze out of the weak

imteraction and thus produce & high n/p ratio. This increase in the n/p ratio will

increase the ‘He abundance. The effect of the electron-neutrino degeneracy is to

bring down the value of “He abundance. By using the modified Wagoners code we

found that for m, = 5 MeV, and electron-neutrino degeneracy is ¢,, = 0.5, for ¥,

= 0.225 is obtained.
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Chapter 4

Mini-Inflation before the QCD
phase transition

One of the alternative solutions proposed for the removal of the discrepancy in the
SBBN due to the appearance of the multivalueg of the baryon-to-photon ratio is
the inhomogeneous big-bang nucleosynthesis (IBBN) [38,6]. Quark-hadron transi-
tion is found to be the best agent to produce density inhomogeneity in the early
Universe prior to the nucleosynthesis. The quark-hadron transitio were happened
around the temperature of about 200 MeV. Theoretical analysis and numerical lat-
tice studies suggest that the quark-hadron transition in the early Universe may be
a firet order transition. Several studies have been made about the nature and dy-
namics of thig transition [81,121,122,123,149,83,167,162,126]. The inhomogeneous

nucleosynthesis after the quark-hadron transition has been worked out in detail by
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coexist together at the critical temperature 7.. This phase seperation between the
quark and hadronic state will cause density fluctuations. This isothermal density
fluctuation will be modified later due to the diffusive separation of neutrons and
protons [89], resulting in low density neutron-rich regions and high density proton-
rich regions. This density fluctuation will affect the primordial nucleogynthesis
which happens just after this trensition. One of the attractive feature of this model
is that, this opens the possibility of accounting for the primordial abundances for Q2
= 1in baryons. A Universe with £, = 1, has the merit that, it is in accord with the
inflationary scenario (since inflationary scenario predicts that the geometry of the
Universe should be flat), and at the same time gives an answer for the dark matter

problem.

The essential ingredient to study the phase transition is the equation of state
of the two phases participating in the transition. If the quark-gluon plasma is
ireated as an ideal ralativistic gas then ite pressure can be written in the bag model

approach as [148]

_ T p _?2_('_‘1)’15_(#_1)‘ o
Pa = =5Ne Nj T [1+,“rz 2) tex (F) |+ NI - B ()

where N, is the number of colours (which is 8), Ny is the number of quark flavours,
N,=8, the number of gluons, u, is the chemical potential of quarks, which equal to
one-third of the baryonic chemical potential y,, in the early Universe (u/7) ~ 1078,
The term B appearing in the above equation is called the bag constant, which
characterizes the vacuum energy of the quark-gluon plasma. The exact value of
B for the early Universe is uncertain. Muller {125] have argued that the accepted
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range of B is in between 60 MeV fm 2 and 400 MeV fm~3, but higher values are
used in literature, for example, Kajantie and Suonio {126} have shown that if the
transition temperature is 200 MeV, then B ~ 780 MeV fm~3. Spectroscopic studies
[128] shows that the value of B is around (250 Mev)* If there is interaction in the

quark-gluon plasma, then the pressure will be given as [78,127],

P = (1) (152 o [() (- 22) 4

(02 6-2))-

where a, is the coupling constant. We have asumed h = C = 1 and uy is the quark

chemical potential. The coupling constant a, can be written as [127]

(g T) = ((331_2—’2'}\,1)} (in (0842 + 15.6227°%) /1&3])'1 (4.3)

where A parameterizes the absolute strength of the interaction, whose value is in
between 100 and 400 MeV. The other thermodynamic variables are then calculated

by using the relations,

daP
n = E; (4.4)
dP
§ = — (4.5)
E = -PV4ST+unV (4.6)

where n, S and E are the number density, entropy and energy respectively and V
is the volume of the guark-gluon plasma. For non-interacting massles quarks with

zero chemical potertial the equations will take the form [148]

1
Py = 3 9.aT* - B (4.7)
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By = gal*+B (4.8)

Sep = %g,aT3 (4.9)

where g, = 51.25, is the statistical factor of quark phase which the back ground

leptons and s, is the entropy density.

The equations of state for hadronic state, by considering it as s massless ideal

gas of zero chemical potential are [148]

P, = %g*aT‘ (4.10)
Ey, = g,.aT‘ (4.1])
8 = g g,,aT 3 (4.12)

where gy = 17.25, which also includes the lepton background particles contribution,
The hadrenic constituents are mainly consists of nucleons. These equations are sim-
plest to analyse the nature and dynamics of the first order QCD transition. Even
though the T is considered as the starting temperature of the phase transition, in
real case there will be a supercooling below the critical temperature, in order to nu-
cleate the hadronic phase in the quark-gluon plasma. The coexistence temperature
can be obtained by equating the quark-gluon plasma pressure and hadron pres-
sure since it is assumed to be & first order transitions. So the critical temperature

become,

_ -1/4
T, = (ﬂ%_gg) B ~ 0.72B'A, (4.13)

This will lead to a coexistence temperature of 7. < 250 MeV, when B < (300 Mev)*.
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The latent heat liberating during the transition can be calculated as,

L=nﬂ&§;9=n@ra) (4.14)

where the derivative is evaluated at T = 7.. By using the ideal equation of state
for both quark-gluon plasma and hadronic phase it can be shown that the laterst
heat L ~ 4B. The latent heat by induding 2 and 3 flavours of quarks are studied
by Fuller e a/[148]. Their studies by treating both the phases as ideal gases shows
that the latent heat will be slightly higher for 3 flavours of quarks than for 2 flavours.
Other thermodynamic quantities for example, transition temperature 7, also show a
slight increase with the number of quark fiavours. The effect of including interaction
in the quark-gluon plasma has been studied by many [78,80,86,87,88]. It was found
that the effect of interaction is to increase the thermodynamic quantities like T, L
etc.

The important consequence of this first order phase transition is the generation
of isothermal baryon number fluctuation which will alter the preceding primordial
synthesis of light nuclei [148] in the early Universe. The baryon number fluctuation
is characterized by the ratio of the baryon number density in the quark phase to

that in the hadron phase at the coexistence temperature, as represented below,

ny
R= (4.15)

Fuller ef a/[148] calculated the value of R by assuming ideal gas equation of states
for both quark-giuon and hadronic phase with chemical and thermal equilibrium
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between the two phases as,

2 (P\"? T\
2 — ol e
R~3 (8) (m) & (4.16)

where m is the mass of the baryons in the hadronic phase. They have shown that the
inhomogeneity may have significant effect on primordial nucleosynthesis when R >
20 for which the coexistence temperature should be less than 7. < 1256MeV. This
result was later confirmed by Murugesan et al {80] by including interaction in the
quark-gluon phase and Hagedorns pressure ensemble correction [79,129,130] to the
hadronic phase. The exact value of the transition temperature is still uncertain due
1o the lack of understanding of QCD, however lattice field calculations {134,141,166)
shows that, 7, = 235 + 42MeV. If so the inhomogeneity due to this transition will
not affect the primordial nucleosynthesis. But due to the uncertainty in the exact
quantification of the QCD parameters, & firm conclusion cannot be drawn yet, which

motivate lot of works in the inhomogeneous nucleosynthesis.

The two main factors to be taken in to account while computing the abundances
of the light elements in IBBN are the different values of the baryon-to-photon ratio
prevailing in the different parts of the same Universe due to inhomogeneity in baryon
density and the different diffusion probability of the neutrons and protons of the
hadronic phase. Compared to the charged proton, the diffusion length of neutron
is large because the protons diffusion will be hindered by the proton-electron scat-
tering unlike in the case of neutrons whose diffusion length will be affected by the
nucleons collision only due to itg dipole moment. This difference in diffusion length

will cause the generation of low density neutron rich region and high density proton

85



rich region [162]. The two regions will participate in the nucleosynthesis process.
Several works on IBBN are there in which the authors assumed that [71,89,131,148]
the neutron diffusion is over before the nucleosynthesis. On the other hand examples
are there [68,85,163] which include the possibility of neutron diffusion during the
inhomogeneous nucleosynthesis. Fuller at al have {148] shown, by assuming that the
neutron diffusion is over before the nucleogynthesig, that the inhomogeneous nucle-
osynthesis with = 1, will overproduce 'Li. The same authors later extended their
work for 2 # 1 case also and proved that the deuterium also will be overproduced.
Terasawa. and Sato [69,70] have considered the case where the neutron diffusion is
continued during the nucleosynthesis also, and showed that the IBBN prediction
for the light elements will be compatible with the observational abundance only if
the density fluctuation parameter K > 300 and the other parameters were tuned
accordingly. Various values for R are considered in the literature, varying from
1 to 10° [71,124,167]. A consensus value is still not derived due to the enormous
number of possibilities and the lack of understanding of the exact dynamics of the

quark-hadron transition.

4.2 Mini-inflation

The Universe may supercools below the transition temperature T, to facilitate the
nucleation of the hadronic phase. If this supercooling is large enough it might be

possible that the QCD vacuum energy contribute to the energy density and pressure
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of the quark-gluon phase will come to dominate and as a result the Universe can
undergo a mini-inflation [72,148]. This mini-inflation may be present even during
the transition time [73]. If there is sufficient supercooling, such an inflation can af-
fect the scale factor, and baryon density fluctuation. However it is possible that the
supercooling may be quite small as has been pointed out by Banerjee [40]. In the
following we study the possibility of mini-inflation by including interaction in the
quark-gluon plasma and Hagedorn’s pressure ensemblt; correction 10 the hadronic
phase. For including interaction we make use of the formula for the ternperature
dependence of the coupling constant, suggested by Kapusta [127] as given equation
(4.3). For the temperature dependence of the coupling constant we make use of
another formula also, derived by Nakkagawa-Niegawa [76], which seems to be more
realistic one. An interesting result we obtained is possibility of mini-inflation above
the transition temperature, which does not need a supercooling. The mini-inflation
without supercooling is possible for a reasonable value of the vacuum energy con-
stant (the bag constant) when we use the Nakkagawa-Niegawa equation for the

temperature dependence of the QCD coupling constant.

We use the following equation of state for the quark-gluon plasma by considering
it a8 unconfined gas of relativistic particles with overall vacuum energy and the
interaction between the quarks and gluons is included in the lowest order of the

perturbation through the running coupling constant a,, as

_ 51.251:27,‘ ( 110

Per 30 51.257 ) +B (4.17)

where we included the degrees freedom of quarks and the background particles like
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electrons, photons and neutrinos, p,, is the energy density of plasma. The pressure

of the quark-gluon plasma can be calculated as,

Py = 210 (4.18)

In our analysis we consider a range of values for the bag constant form 50
MeV/fm™3 to 400 MeV/fm 3. Even though the use of high values of B parameter
may not be physically meaningful our final results are in agreement with reasonable

values of B.

In the absence of interaction between hadrons the equation of state for hadronic

state is {78],
P,
P = (1 " Pﬁ:fﬂB) (4.19)
N 2 (4.20)

Phad = od
(1+ pZu/4B)
where P 444 i8 the pressure of the hadronic phase and pa,q is the energy density. De-

nominators in equations 4.19 and 4.20 are due to the Hagedorn's pressure ensemble

correction for the finite size of the hadrons. P, and p%,; are given by

P, = E_R (4.21)
where
Po= [ aB(B - m3)" (exp (B - ) £6) (4.22)
and
Pad = D i (4.23)
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where

p= o LB (B7-m)” @olaB-wIta)".  (629)

The subscript pt refers to point like hadrons and $ denote a single hadron. We
consider only nucleons in the hadronic phase. u; is the chemical potential for the §**
hadron of mass m;, with spin-isospin degeneracy d; and &; = +1 for fermions and

6; = -1 for bosons.

Earlier we have calculated the critical 7. as 0.72B'f by considering the both
phases as massless ideal gases. When we includes the interaction in the quark-gluon
phase and apply Hagedorn's correction [130] to the equation of state of hadrons 7,
will change accordingly. Behaviour of 7, wes studied by Murugssan et al [80]
by using the equations of state given above. To calculate the T, they made use of
the temperature and chemical dependence of the coupling constant o, as given in
equation (4.3) suggested Kapusta [127] and in a later work by Heins et al [78].
In zero temperature QCD the scale parameter A appearing in «, is lies between 100
and 400 MeV. [78]. We assume values for A between 0 and 400 Mev., and calculated
the 7. for different values of B and corresponding values of ¢, are computed and
are given Table 4.2. Our calculation shows that 7 increase with A and also with
B. The coupling constant algo increases with A and 7.. 1t is clear from the table

that for a given value of A, 7 increases with B, but «, decrease with B.

Kapusta [127] obtained the coupling constant using the momentum space sub-

traction method. In this calculation it was assumed that the temperature depen-
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dence of the coupling constant can be taken in to account by naively choosing the
normalisation scale to be the energy scale comparable to the temperature of the
environmert. But this is not generally true as has been pointed out by Nakkagaws
and Niegawa [76]. One should treat the dependence of the coupling constant on
the renormalisation scale and the temperature of the environment separately, since
there is no compelling reagon to take the the renormalisation scale to be equal to
the environmernt temperature. Nakkagawa and Niegawa's analysis showed that the
coupling constant o, has a power like dependence on temperature in contrast to the
logarithmic dependence as predicted by Kapusta, the form of the coupling constant
obtained by Nakkngaws and Niegawa is shown below.

a, = (b [n(u/A) - In(AQ)/A)) . (4.25)

Here u is the energy scale characterizing the process considered, b = 29/6 for two
flavours of quarks and £ = T/u where T is the temperature of the surrounding. At
large temperature the second term in the parenthesis of the right hand side of the

equation (4.25) can be written as,

AQY _ o
bin| =82} =3 A (88 +e€). (4.26)
i=1
With N = 3, for two quark flavours Nakkagawe and Niegawa have obtained,
A] =1 Az =1 A3 = 4/3 (4.27)
81 =0 62 =0 63 =~2 (4.28)
e1=13/8 =0 e&=-5/4 (4.29)

The variations of o, with A for u = 0.5,1, 1.5 GeV. and £ = 1 (T = u) is given in
table 4.1



Table 4.1:
The variations of o, with A for é=1, according to Nakkagawa-Niegawa equation

" A | bin(u/A) | b ln(A(zi)/A) | o,
(GeV.) | (MeV.)
0.5 50 11.129 5.313 0.172
0.5 100 7.779 5313 0.406
0.5 150 5819 5.313 1.976
1 50 | 14479 5313 |0.109
1 100 11.129 5313 0.172
1 150 7.779 5.313 0.406
1 300 5.819 5.313 1.976
1.5 100 13.089 5.313 0.129
1.5 200 11.129 5.313 0.226
1.5 300 7.779 5313 0.406
1.5 400 5.819 5.313 1.976

It is clear from that o, increases with A, but the rate of increase of o, here is
very large compared to the rate increase as by Kapusta equation for the coupling
constant.

The condition for inflation can be derived from the Friedmann equations satisfied

in the early Universe. The condition for inflation is

.. C*R
R=- T (p.m + 3P99'P) (4.30)

The inflation possible when R > 0, and from the above equation it follows that the

required condition is

Pap + 3P <0 (4.31)
The critical temperature T; at which the above condition is satisfied can be deter-
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Table 4.2: Variation of 7; with A & B and corresponding values of a, & T; according
to Kapusta's equation for o,

A B T. a, T,
(MeV.) | (MeV./fm® | (MeV.) (MeV.)
0 60 103 0 30

0 250 148 0 123

0 400 166 0 197
100 60 117 | 0.42 32
100 250 163 1035 132
100 400 183 033 210
250 60 145 0.78 36
250 260 184 | 0.61 141
250 400 202 |056| 223

mined by equating the left hand side of the above equation to zero:

Using equation (4.17) and (4.18) with a, given by equation (4.3) we compute the
values of T; for different choices of A and B. Some of these are shown in Table 4.2 It
is seen that both T} and 7. increases with o, but the rate of increase of 7T; is large
compared to that of 7.. With B given a reasonable value (comparably high value if
Kapusta's equation for coupling constant is used), 7; exceeds 7,. The consequences
of this is that and inflationary stage can start above the coexistence temperature
T., without supercooling. This possibility was not noted in the work of Fuller e4
al. {148} and Boyko et. al [72], where supercooling below T is considered as an
essential condition for mini-inflation to happen. The value of B needed to realise
this scenario appears to be quite high in comparison with the phenominologically
permisgible range of B if Kapusta's equation for the temperature dependence of the
coupling constant is used. On the other hand when use the Nakkagawa-Niegawa
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Table 4.3: Values of B according to Nakkagawa-Niegawa equation for a,
B

A T. a,
(MeV.) | (MeV.) (MeV./fm?
100 100 | 0.171 132

100 200 {0171 234
250 1006 ] 0.721 130
250 200 |0.721 260

equation [76], the condition for mini-inflation without supercooling is found to be
satisfied with lower values of o, and hence with smaller values of B, the bag constant.
This is clear from Table 4.3, which shows the variation of B with «,. It is seen from
our calculation that the mini-inflation without supercooling is possible for a value

of B = 250MeV] fm3.

A solution describing the time evolution of the scale factor during the mini-

inflation can be obtained from the Friedmann equations as
R-CRJ/p =0 (4.33)

ﬁ+3% (c+P) =0 (4.34)

where C = (822/3)!/2M,,. On applying the equations of state of quark-gluon plasma

phase to the above equation, it become,
p+4C M -4 CB GV =0. (4.35)
This has solution solution
p = BCti? (2 CVB (¢ - t,) + ArCth (‘/ﬁé)) . (4.36)

93



This result is in agreement with obtained by Boyko e£ al [72]. The Friedmann

now gives the scale factor as,
R = ShV? (2 C VB (t - t.) + ArCth (\/pc/B)) ShU/? (Ar()th o/B)  (437)

where ¢, is the zero point of time given as

t. = (2CVb)" ArCth (‘/pc/B) (4.38)

and p, is the integration constant which is equal to the energy density at critical
temperature 7. It is found that p, =~ 5.516B for a, = 0 and decreases as o, increases.
Equation (4.37) shows that scale factor is incr.easing not a8 a pure exponential
function, but approaches an exponential form when ¢ > (2 Cs/ﬁ)_l.

During the expansion of the Universe RT is a constant. Using this we can
calculate the increase in the scale factor due to mini-inflation without supercooling.
In table 4.4 we give the percentage increase of the scale factor due to mini-inflation
without supercooling. In this calculation we have made use of the Kapusta's formula
for the coupling constant with a high value of B around 400 Mev/fm=3. But
if the Nakkagawa-Niegawa. equation is uged the required wvalue of B is B ~ 250
MeV/fm=%. Table 4.4 also reveals that the increase of the scale factor due to mini-
inflation without supercooling is reduced because of the inclusion of interaction in

the quark-gluon plasma.

If there is a supercooling before the phase transition the mini-inflation will con-

tinue and the scale factor may increase rapidly. This will depend on the dynamics
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Table 4.4: Percertage increase in R due to mini-inflation without supercooling

A | T. | T | R./R; | percentage increase in R
0 166|197 ] 1.19 19%
10011831210} 1.15 15%
25012021223 1.10 10%

of the phase transition and will also be probably infiuenced by the rapid expansion.
Specific conclusions regarding this require a detailed study of the transition and the

effect of mini-inflation.

In our analysis we consider hadron phase as an ideal gas. One can take in to
account the interaction between the hadronic states also, for example, by including
& density dependent interaction between the hadronic states as done by Heins ez
al. [78]. If this is done the coexistence temperature shows an increase by a small
factor which does not affect conclusion much. Another question that can be raised
is regarding the effect of the inclugion of strange quarks in the quark-gluon phase.
Murugesan et a/. [80] have shown that the inclusion of s quarks can lead to a
slight decrease in the transition temperature. The effect of this slight decrease will

only strengthen our conclugion.

The effect of mini-inflation on inhomogeneity may be a dilution of the density
inhomegeneity. If the inflation is sufficient enough to smoothen the density in-
homogeneity before nucleosynthesis, the primordial nucleesynthesis will become a

homogeneous process. There also a number of other problems as well that the IBBN
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model faces. Only future works on the experimental side and theoretical side can

clarify the exact status of the inhomogeneous nucleosynthesis model.



Appendix
Modified rates of some important reactions

No.

Reaction

Nuclear Reaction Rate (em”s'mole™"

1.

oe

10.

11.

12.

Ph,nd

TLi (n, p°Li

"Be (n, p) "Li

‘He(n , p)T
“B(n,v) "B

d (p,7)’He

08e (n , “He) "Li
SLi (n, T) *He
d (d, n) “He

ddp) T

T (d,n) ‘He

T,y 'L

4472 x10°
(1 - 0.85073 + 0.490T; - 0.006273"

+ 847 x 10774 - 2.80 x 1073")
3.144 x10°

+4.26 x 100757 exp(- 2.576/T5)
2.675 x10°

x (1 - 0.56073" + 0.1797; - 0.02837}"
+2.21 x 107 - 6.85 x 107°7")
+9.301 x 1P 1, 3R

+4.461 x 10T, exp(-0.07486 /T3)
Tia = {Ts/(1 + 13.08T3)}

7.21 10° (1 - 0.50873 + o.zm)
7.29 x1

+2.40 x 10T, exp(-0.223/T3)
2.65 x10°

T, P exp(-3.720/T3")

x (1 + 0112757 + 1.997;°

+1.5673 + 016273 + 0.3247',"/‘)
5.07 x108

2.54 x10° + T, exp(-2.39/T3)
3.95 x1087, >

exp(-4.259/T;'F) x (1+0.0987;*

+ 07657, % + 0.5257; + 961 x 10T, + 0.0167")

417 x10°

T, exp(-4.258/T;' )

x(1 - 0.008%;'P + 05187 + 0.355T;

~0.010T;*P — 0.0187;"*

1.063 x10%
Y i3

T, exp| - 4559/, - (T3 0.0754)"

x(1 - 0.0027;? - 0.375vTy*” - 0.2427;

+33.82T;%P + 55.42T;°P) + 8.047 x 1087, P exp(—0.4857/T3)

3.082 x10°

TP exp(—8.000/T;'7) x (14 0.0516T; "+

0.02297;"+

8.828 x 107373 — 3.28 x 107" - 3.01 x 10 T,"") + 5.100 x 10F
ST exp(-8.068/ T

Ra Ty exp(—8.068/T4.")

Too = T3 /(1 + 0.137873)




13.

14,

15

16
17
18
19.

21.
22,

“He (d , p) 'He

e (@ , 7) "Be

"Li(p,a)‘He

‘He (n , ) ‘He
din,9)T

He (n, 7) ‘He
"Be (o, ‘He
SLi (n, T) ‘He
0Re (n \ ‘He) TLi
‘Be (@, ) Li

‘He (T, 4) "Li

‘He ("He, ) "Be

Tu (‘He . ,7) llB

5.021 x10™

T, exp|-7.144/T, - (T3/0.270)?]

(1 + 0.058T;"? +0.803T;>” + 0.245

T +6.97T P + 7.191;"7’)

5.212 x 10°T, P exp(-1.762/T3)

4817 x10f

7,7 exp(-14.964/T;'%)

x(1 4 0.0328T;'P — 1.04 x 10-3T® — 2.37 x 1073
811 x10-°,*” - 4,69 x 10-°T;*P)

+ 5.938 1075757, 7 exp(-12.859/T;.7)

Toa = To /(1 + 0.1071T5)

1.096 x10°T;, >R exp(-8.472/T;' )

—4.8330 x 10°7,./87, 2P exp(-8.472/T;' )

+1.06 x 10197, exp(—30.442/T;1 %)

+ 1.56 x 10°T, *Pexp|-8.472/T57 - (T3/1.606)7)
x(1 + 0.04973” — 2.5073P + 0.860T; + 3.527,*" + 3.08T;*F)
1.55 x 10073 exp(—4.478/T3)

Tha = |T3/(1 4 0.759T3)]

6.62 (1 + 0.90573)

6.62 x10'(1 + 18.973)

6.62 (1 + 90573)

2.05 x10%(1 + 3760T%)

1.25 x10% + 3.65 x 10°T; *Pexp(-2.53/T3)

5.08 x108

3.01 x10t

TP exp(-7.42/T,'P

(14 0.0567,'” — 4857, + 885T, — 0.5857,*F — 0.5847;°?)
+ 8.55 x 10 /73" exp(-8.228 /T3)

1.23 x10° /T, exp(—8.08 /7 x

(1 + 0052532 - 0.71573" - 0.2587;

+ 0.272T,'7 + 0.250737)

5.79 x1

Tof 115" exp(-12.826/T,."

Taa =T /(1 + 0.09573)

355 x107

T, exp(-1879/7;' - (3/1.326)'77)

(1 + 0022747 + 15473 +0.230T; + 2.20757 + 0.860737)
1.91 x10° /73" exp(-3.484/T3) + 1.01 X 10% /T3 exp(~7.260/Tp)




2% [He(n,) Be | (2.59 x107F
/(1 +0.344T5)TY)) exp( - 1.062/T5)
27. | 3Li (p, n) “He 8.85 x10°
T3P exp(-8.52/T3" — (T3 /2.53)%) + 2.31
x10°T5* exp(—4.64/Ty)
28. | ®Be (n,p) “He | 402 x10
29 | ®Be (p,d)“He | 211 x10¢
T3P exp(~10.359/T37 - (T3/0.520)%)
(1 4 0.04073” + 1.0073” + 0.307T; + 3.2172" + 2.30757)
+ 5.79 x10%/T; exp(-3.046/7;) + 8.50 x 10* /Ty'* exp(~5.80/T3)
%0. {%Li (a,n) !'B 2.05 x10'4
BT exp(-19.461/T5,)
Too =T /(1 + T5/15.1)
31. |H {p,n) e 7.07 x108
(1 - 0.1573” + 0.09873) exp( -8.863/T3)
32. | 3H (v, n) ‘He 1.67 x10*/15°
exp(—4.872/T3)
(1 4 0.086757 — 0.455727 — 0.272T; +0.14875° +0.22572%)
33. | 9 (T, d)“He | 5.46 x10*
'Iisf ﬂgnm("’-?ssﬂ"uﬂ)
Too = T3/(1 + 0.128T5)
*Li (d, n)"Be 148 x104/73"°
exp(-10.135/73”
35. | ®Li(d, p)'Li 148 x1013/732/3
exp(~10.135/75°
36. | TLi(d, p) 8Li 8.31 x108/737
exp(—6.998/T;)
37. | TLi (T, n)"Be | 1.4 x104 /73" exp(-11.333/73"
38 |SLI(d,n)®Be | 3.22 x10 /732 /3exp(~10.357/75°
30. | Li (T, n) *He | 881 x10" /75" /T3P exp(-11.333/73°
10. | "Be (*He , p) “He | 6.11 x10° /7" exp(-21.793/7:"
41. | "Li (He , p) “He | 111 x10°/T;" exp(-17.989/73"
£ | "Be (*H, p) ‘He | 291 x10%/72" exp(-13.719/T:"
43 | "Li(p, ) ‘Be Rate of raction 18.

+ 1.56 x105/73" exp(-8.472/T5" - (T3/1.696)%
(1 + 0.00975" + 2.49872" + 0.8607; + 3.51875° 4+ 0.30873"7)
1.555 x10°/75" exp(~10.70/T3)
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