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INTRODUCTION

Fuzzy set theory and fuzzy topology are
approached as generalizations of ordinary set
theory and ordinary topology. We consider fuzzy
subsets as functions from a non empty set to a
membership lattice. Through out this work we follow
the definition of fuzzy topology given by Chang[3]
with membership set as an arbitrary complete and

distributive lattice.

Category theory is the branch of mathematics
which studies the abstract properties of 'sets with
structures' and 'structure preserving functions'.

It provides a tool by which many parallel techniques
used in several branches of mathematics can be

linked and treated in a unified manner.

In this work, we present some applications of
category theory in Fuzzy Topology based mainly on
two notions 'simple reflection and coreflection'.

This thesis is presented in five chapters.
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In 1974, C.K. Wong [34] introduced the concept
of 'fuzzy point belongs to a fuzzy set'. Later the
same concept was defined in different ways by
Srivastava, Lal and Srivastava [30]. The definitions
of the relation '& ' of a fuzzy point belonging to a
fuzzy set given independently by these authors seem
to be very much alike. But on thorough analysis,
they are found to differ in certain aspects. This
study is included in chapter I. We arrive at the
conclusion that the definition given by Piu and Liu[27]
is the most appropriate one for fuzzy set theory.

A characterization of fuzzy open set is necessary for
the study of fuzzy topology. This leads us to study
the fuzzy neighbourhood system of a fuzzy point.

Piu and Liu [27], Demitri and Pascali [4] introduced
the notion of fuzzy neighbourhood system. Both the
definitions do not generalize the corresponding
definitions of ordinary topology. To rectify this
anomaly we introduce a new definition for fuzzy
neighbourhood system by the addition of two more
axioms. These axioms are necessary in the fuzzy
context. In the case of ordinary topology where

L = {0,1}, these axioms are trivially satisfied. The

basics of fuzzy topology is strengthened in chapter I.
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Pelham Thomas [26] introduced the concept of
associated regular spaces. Later P.M. Mathew [22]
introduced associated completely regular spaces.
"What is the speciality of these spaces among all
subcategories, say reflective, coreflective"?

Chapter II provides an answer to this question which
holds for all those classes for which interesting
characterizations of completely regular spaces and
regular spaces are known. As a generalization to
this, an associated p-~space is constructed and their
properties are studied. We formulated these concepts
in Category theory and obtained a characterization

of the simple reflective subcategories of the category

of topological spaces.

In the third chapter a fuzzy parallel of
associated completely regular spaces is constructed
and their properties studied. Fuzzy completely regular
space was introduced and studied by Hutton [00}11].
A different version of fuzzy complete regularity is

available in [15]. However, we follow the definition

given in [11].
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The properties of fuzzy completely reqular
spaces enable us to construct fuzzy associated
p-spaces. We obtain this as a generalization of
the concepts that we have introduced in the second
chapter. In order to widen the range of application
we do this in the language of category theory. The
results obtained enable us to treat the known theories
in anunified manner. Thus we obtained some characteriz-
ations of the simple reflective subcategories of the
category of fuzzy topological spaces in the fourth
chapter.

In the fifth chapter we present some applications
of Category theory in Fuzzy Topology based on the notion
'Coreflection'. The coreflective subcategories of the
class of fuzzy topological spaces are considered in
the works of Lowenand Wuyts [20]. 1In this chapter
we give an internal description of the coreflection.
This was motivated by the work of V. Kannan [13]. The
notion of topological coreflections are discussed in
the paper by Herrlich and Strecker [8]. V. Kannan [13]

characterized the smallest coreflective subcategory



of the category of topological spaces TOP, containing
a given subcategory &£ of TOP. We introduce the class
of induced fuzzy topological spaces I(% ) correspond-
ing an arbitrary family of fuzzy topological spaces §.
The study of induced fuzzy topological spaces coincides
with the generation of coreflective subcategories of
the category of fuzzy topological spaces. We also
characterize coreflection as the lattice meet of all

finer fuzzy topologies.



Chapter I
FUZZY TOPOLOGY THROUGH FUZZY NEIGHBOURHOOD SYSTEM

The concepts of fuzzy point, fuzzy point belong-
ing to fuzzy subsets and fuzzy neighbourhood are revisited
in this chapter. The various definitions by different
authors are analysed. Most appropriate definitions are
deduced. A new definition of fuzzy neighbourhood systems
is introduced. A characterization of fuzzy topology in

terms of fuzzy neighbourhoods is arrived at.

In 1974, C.K. Wong [34] introduced the concept of
'fuzzy point belongs to a fuzzy set'. Later the same
concept was defined in different ways by Piu and Liu[27],
M. Sarkar [23], Srivastava, Lal and Srivastava [30]. The
definitions of the relation '€' of a fuzzy point belong-
ing to a fuzzy set, given independently by_fﬁ;;gmgazh;rs
seé;—EE\EE‘V€§§’Hdch alike at a glance. But on thorough
analysis, they are found to differ in certain aspects.
We arrive at the conclusion that the definition given by
Piu and Liu [27] is the most appropriate one for fuzzy

set theory.

Piu and Liu [27], Demitri and Pascali [4] introduced

the notion of fuzzy neighbourhood system. Both the



definitions do not generalize the corresponding
definition of ordinary topology [/2]. To rectify this
anomaly we introduce a new definition for fuzzy neigh-

bourhood system.

1.1 PRELIMINARIES

In this section, some definitions and results
that are needed later on, are given. Throughout this
chapter, X is taken to be a non empty set. A fuzzy subset
of X is considered as a function from X to L, where L is
a complete and distributive lattice. The least element
and greatest element are denoted by O and 1 respectively.

—_—

The set of all fuzzy subsets of X is denoted“as LX.

l.1.1 Definition

A point x of X with a non zero membership value

—_—
/

L e L is a fuzzy point of X, and is denoted by p(x,f).

—

1.1.2 Definition (1]

The fuzzy singleton determined by a fuzzy point
p(x,,f) is a fuzzy subset s(x,f) such that for y € X,

s(x, £) gy = {; ii z f '



l.1.3, Definition

A subset R of L is join complete (meet complete)
if R is closed for arbitrary join operation (meet

operation).

l,1.4. Definition

A lattice L is said to be join complete (meet
complete) if every subset of L is join complete (meet

complete).

The following remarks are immediate consequences

of the definitions.

l.1.5. Remark

(1) A join complete lattice with O is complete.
(1i) A meet complete lattice with 1 is complete.

(1ii) A join complete (meet complete) lattice is a
chain.

(iv) L is a finite chain if and only if it is join
complete and meet complete.

l.,2. A STUDY ON FUZZY MEMBERSHIP

Different definitions of the relation '€ ' are given

and they are analysed.



1.2.1 Definitions [ [23],[26],[29] ]

Let a be a fuzzy subset and p(x,{) a fuzzy
point, of X.

(1) p(x,[) € a if and only if XL« a(x) -— (A)
(ii) p(x,f) € a if and only if ,[4 a(x) -- (B)
(ii1i) p(x,f) e€a if and only if F= a(x) =-- (C)

l.2.,2 Remark

(1) According to definitions (A) and (B)a fuzzy
singleton may contain more than one fuzzy point. How-
ever, by definition (C), a fuzzy singleton uniquely

contains a fuzzy point.

(2) Ordinary set theory can be considered as a special
case of fuzzy set theory, taking L = {O,{}. But then,
by definition (A) p(x,1) ¢'s(x,l). Hence definition (A)
is not considered further. However, p(x,l) € s(x,1)

according to definition (B) and (C).

In ordinary set theory we have for any two subsets
A,B of X, ACB if and only if x€ A —» x€B. The existence
of corresponding characterization for two fuzzy subsets

of X is studied.



1.2.3 Theorem
Let a and b be fuzzy subsets of X. Then the
following are equivalent.
(1) ag& b (i.e., a(x) £ b(x) for all x)

(2) p(x,0)e b for all p(x,f)e a (we use definition
1.2.1 (B)

Proof: Let (1) holds and p(x,/) € a.
Then f\< a(x).

ice., L¢ a(x) ¢ b(x) = ¢ b(x)
= p(x,[)e b which is (2)

(2) = (1) is straight forward.

l,2.4 Remark

If we use definition (C) in (1.2.3) (2) in the
above theorem, (1) :;é} (2). It may be noted that if we
use definition (C), theorem (1.2.3) holds if and only if

L = [0,1} .
l.2.5 Remark

Owing to the fact that definitions (A) and (C)
of (1.2.1) are unable to generalize ordinary set theory,

hereafter, only definition 1.2.1 (B) is used.



l1.2,6 Theorem

Let {ai:i (= I} be an arbitrary family of fuzzy

subsets of X and a =V a.."p(x,ﬁ) € a = p(x,f)ea.
jep & i

for some i*, is true if and only if L is join complete.

Proof:

(ﬁ ) Suppose L is not join complete. Then there is

a subset R of L which is not join complete. Let

R ={rj:j €J} and r = Vrj. Then r # I for every j.
J

Let Zdenotes the constant fuzzy subset such that

g(x) = / for all x € X, for ZeL. Clearly r # O.
- Lo

Then p(x,r) € T, but p(x,r) € I for every j. Thus

p(x,r) e \/r.

J # p(x,r) ;j for some j. Hence
J

L must be join complete.

( ¢ ) Let {ai:i € I} be an arbitrary family of

fuzzy subsets of X and a = \e/ aj and L be join complete.
i€l

Let p(X,f) & a. Then [\( a(x). a(x) = ai(x) for some i
since {ai(x):i € I}C L, and L is join complete.
f\< ai(x). i.e., p(x,f) € a; for some i€l

Hence the theorem.



From the preceding theorem we have immediately

the following theorem.
1.2,7. Theorem

Let {gi:i e I}.be an arbitrary family of fuzzy

subsets of X and a = /} aj. " p(x,?) a; for every i

= p(x,t) € a" is true if and only if L is meet

complete.
Proof: Dual of theorem (1.2.6).

1,2.8. Remark

The above theorems (1.2.6) and (1.2.7) hold
simultaneously if and only if L is a finite chain

(1.,1.5 iv ).

1.3. FUZZY NEIGHBOURHOOD SYSTEM

In this section fuzzy neighbourhood system of a

fuzzy point, is studied.

1.3.1. Definition [3]

An ordered pair (X,8 ), where § , is a family
of fuzzy subsets of X is called a fuzzy topological

space (fts) if g satisfies the following conditions.



(1) 0, 1 e:ér

14
(2) 1f aj,ap € S then al/\a2€5

(3) 1ffa } is a family of members of é;
i iel ’

then Vv aié g
i

Every member of S,is called a fuzzy open subset

of X.

1.3.2., Definition

Let (X, 8 ) be a fuzzy topological space. A fuzzy
subset 'a' is a fuzzy neighbourhood of a fuzzy point
p(x,1) if and only if there exists a fuzzy open subset
'g' such that p(x,8)e g € a.

In terms of this concept, we have the following

trivial but useful characterization of fuzzy open sets.

1,3.3. Theorem

Let a be a fuzzy subset in a fuzzy topological
space(x,é'). 'a' is fuzzy open if and only if for each

fuzzy point p(x,L)e a, a is a fuzzy neighbourhood of
p(x, 0.



_ Gis2az —
Proof: ( :%> ) obvious.

(4= ): Let p(x,B) be an arbitrary fuzzy point of a.
Then a is a fuzzy neighbourhood of p(x,£). Then

Io(x,2) be fuzzy open such that p(x,£) < gp(x,t)‘s a.

P(x,g{; Jp(x,0) & 2. 1.e., for every ye X, Vap(x,¢) (Y)$2(y)

We claim that \/g ? (y) = a(y) for every y € Y.
p(x,t)
Suppose not:

i.e., there exists a,ye Y such that \/gp(x E)(y) < a(y).
4

i.e., gp(x,{)(y) < a(y) for every p(x,8) e a

Then p(y,a(y)) € a and p(y,a(y))é& g y which is

p(y,a(y)

a contradiction. Hence the claim.

1,3.4 Definition

Let (X,S') be a fuzzy topological space and p(x,%)
be a fuzzy point. Let 3 be the set of all fuzzy
p(x,¢)

neighbourhoods of p(x,{). The family.ﬂﬁ;(x 2) is called
’
the fuzzy neighbourhood system at p(x,¢).
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The next theorem is similar to theorem [12(2.5)]
about neighbourhood system in ordinary topology [12].
The theorem lists properties of the fuzzy neighbour-
hood systems which can be used to generate fuzzy

neighbourhood system without invoking a fuzzy topology.

1,3.5. Theorem

Let (X,% ) be a fuzzy topological space and
p(x,{) be a fuzzy point. Let \P be the fuzzy
p(x,2)
neighbourhood system at p(x,£). Then

(1) If ae Nj(x,p) then P(x,0) € a
(2) For any a,be Mp(x,{)’ anb e 1')V,p(x,-f.)
(3) 1f 2@ W p(x,) 3¢ Py 2 then be Ay y)

(4) If a e -A/’p(x,{,) then there exists bc—:-./\/Jp(x,e)
such that b { a and be WP

p(y,m) € b.

p(y,m) for every

Proof:

(1) Let a € Aﬁp(x p)- Then a is a fuzzy neighbourhood
?
of p(x,{). i.e., there exists a fuzzy open subset g such

that p(x,?) € g & a. By theorem (1.2.3) p(x,t) € a.
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(2) Let a,be 'N)p(x,{i)' Then there exists fuzzy
open sets g)h such that p(x,ﬁ)eg\< a and p(x,f)eh ¢ b.

Then p(x,f) € gAh § a A b.

= a AbeNp(x,t) since g/\heg.

(3) Let ae -N’p(x,e). Then there exists fuzzy open

set g such that p(x,f) € g a. But b ) a. Then

p(x,t) € g a ¢ b.
=7 v e Mo,

(4) Let ag A2 . Then there exists fuzzy open
p(x,?)

subset b such that X eb & a. This b
p(x, ) eb is be Wh(y,m)

for every p(y,m) € b by (1.2.3).

We now introduce fuzzy neighbourhood systems

independent of a fuzzy topology.

1.3.6., Theorem

Let X be an arbitrary set, L a join complete
lattice and suppose for each fuzzy point p(x,1), a
non empty family Wop(x,f) of fuzzy subsets of X is
given satisfying conditions (1) to (4) of theorem
(1.3.5). Then there exists a unique fuzzy topology $ on

X such that for each fuzzy point p(x,{), Mp(x £)
14
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Coincides with the family of all fuzzy neighbourhoods
of p(x,L) with respect to 5.

Proof:
Let g={ae L. ac \° for all p(x {)ea}
p(xy'ﬂ) '

We shall now prove that gis a fuzzy topology on X.

Obviously, O belongs to 5 . From condition (3)
it follows that -ié,/\/;(x 1) for all p(x,f) e 1 and then
1

T €8 . Now let 31'3268 and p(x,t)e aynay. Then
p(x,l)e a; and p(x,C)ea2 so that aleMp(x,{) and
azeMp(x,f)- By condition (2), al FaN 326 "N)p(x,t)'
Since this holds for every p(x,{)e a; A 2y, al/\aQeA’.

Now let {ai:i e I} be an arbitrary family of members
of § . If p(x,{)e V a;, by theorem (1.2.6), there
i

exists 1 & I such that p(x,0) & aj - Since aioeg,

we have aj, € NP 2) and therefore by condition (3),

p(x,
}./aie 'N:)(x,f)‘ Since this holds for every

p(x,{)e \[ai, it follows that \[aie J . Thus the
t [

family 5 is fuzzy topology on X.

Condition (4) means that for every fuzzy point

p(x,l) and aev\/’p(x,z), there exists a fuzzy open
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subset b such that be A° and b £ a. From
p(x, f)

condition (1) it follows that p(x,{)e b. Hence every

member of,ﬁfp(x 2) is a fuzzy neighbourhood of p(x,{)
?

with respect to 5'.

Conversely, let‘a’be a fuzzy neighbourhood of
p(x, ) with respect to & . There exists ‘b’ fuzzy open
such that p(x,l)eb ¢ a. Since be &, we have

beMp(x,e) and thus by condition (3) ac y\ﬁ‘p(x’e).

Thus the fuzzy neighbourhoods of p(x,{) with respect
to § are precisely the members ofHAPp(x 2) for each
?

p(x,£).

'
If 5 is a fuzzy topology for X, where.ﬁﬁp(x,{)
is again the fuzzy neighbourhood system at p(x,{) for
each fuzzy point p{x, f), then § = g' (by 1.3.3).

To show that the condition: 'L is join complete'

is necessary, consider the following example.

1.3.7. Example
Let L = [0,1]

Defi 'vtpv’/e<l’ = X' t
efine ¥ x 3 ﬁ@mmc)_{aeL.a )ﬂ}

-VX’VZZ%’N&XJ)={T}
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N’p(x g) satisfies all the conditions in the above
?

theorem.

Sh-

Define fuzzy subsets a, such that an(x) = % -
for ne /N, n 3 2, for every x. Now

Pl e ag = L5 -7 . teer, L8, Sa emyp)

o e an's are fuzzy open. But &/an = % is not fuzzy

open since p(x,-%)ei % and % 7évVg(x, % ).

A modified version of theorem(l.3.5)by introducing
two more properties of the fuzzy neighbourhood system is

given below.

1.3.8. Theorem

Let (x,S) be a fuzzy topological space and p(x,t)
be a fuzzy point. Let $Pp(x;{) be the fuzzy neighbour-
hood system at p(x,%). Then the following hold.

(1) If ae NJp(x,f) then p(x,£)ec a
(2) For any a,be ‘N‘;)(x,{’)’ aAbe ‘M)p(x,f)'

(3) If ae N?)(X,{) andb;a then be”\/')p(x,f)
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(4) If ac ./\Pp(x,e) then there exists be Mp(x,{)

such that b § a and be ,/\ﬁp m) for all p(y,m) € b.

(Y,

(5) 1f £,me L\J0} and {< m then Ap(x,m) S (x, )

(6) 1f L=V £ _and aenp

for every a
aers ea) '

p(x,

then ae \/\Pp(x’{) .

Proof:

(1) to (4) are proved in theorem (1.3.5). Hence
we need only to prove (5) and (6).

(5): Let €< m and ae N3p Then there

(x,m)°
exists a fuzzy open subset g such that p(x,m)e g £ a.

i.e., mg g(x) £ a(x) for all x.
But £ < m. Then {<¢ mg g(x) € a(x) for all x.
i.e., p(x,0) e gg a.
i.e., a Gf@p(x,{)' Therefore ﬁﬁp(x'm)c ﬁﬁb(x,{)'
(6): ae ﬁﬁ;(x'é;) for « and let {= X(a. Then

there exist fuzzy open sets g 's such that p(x,fa)EEgaga

for every a.
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i.e., ka £ ga(x) < a(x) for every a and for every x.

teee, v, $Vo (x) & a(x)
a

i.e., p(x, 1.)e g £ a .
e /o

Since }l/ga is fuzzy open, aeMp(x,f)'
Now we partially generalise theorem (1.3.6) by
omitting the condition of L being join complete.

1.3.9. Theoren.

Let L be a complete chain., If with each fuzzy
point p(x,f) is associated a family Jwb(x,&) of fuzzy
subsets of X satisfying conditions (1) +a (6) of
theorem (1.3.8) are satisfied, then there exists a

unique fuzzy topology on X with J\ ) as the fuzzy

p(x,t
neighbourhood system at p(x,pP).

Proof:
XO
Let & = {ae L™: ae»/\Pp(x’f) for all p(x,1)e a}
We shall now prove that S'is a fuzzy topology on X.
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Obviously O € g. From condition (3) it follows
that T €8 . Let ayy ‘a, e S and p(x,{)eal/\aQ. Then

p(x,{’)eal and p(x,[)e;a2 so that aleMp(x,f) and

aye Np(x,t)* BY condition (2) a; Aajze Mp(x,1)* Since

this holds for every p(x,{)eal/\ an, al/\azeg . Let
{aa} be an arbitrary family of members of 5 and
ael

\/a[x = a., We shall now show that a e S, Let p(x,l) €a.

Then [ a(x). Then we have two cases:

(1) £ < a(x), (ii) £ = a(x).

Case (1) £< a(x).
Since L is a chain, there exists @, € I such that

2\< aao(x) < a(x). Since p(x,aao(x)) E a“o’

3 € Mp(x,aao(x)) . By (5) g€ Mp(x,t) * But aa°\< a

and by (3) ae N)p(x,t)'

Case (ii) 0= a(x).

We have a ¢ V\Pp(x,aa(x)) for every a and a_ £ a.

By (3) ae,/\/;)(x,aa(x)) for every a. By (6) ae ‘N)p(x,a(x))'
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i.e., ac N)p(x,e)' Thus in both cases

p(x,t) e a-—=r» a E’N)p(x,f)' i.e., aed. Thus the

family S/defines a fuzzy topology on X. Last part of

the theorem follows from theorem (1.3.6).

The following examples illustrate that the
condition 'L is a complete chain' in the above theorem

is not necessary.
1.3.10. Example.

Let the membership lattice be

The theorem (1.39) holds in this case because, in this

case also if k <V A . = k¢ {; for some i I since
iel *
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Case (i) if some £.' is 1 then the proof is trivial.
i

Case (ii) none of the ﬂi's, is exclusively from'{O,C,l}

or Zo,m,l} then, being completeness the proof
trivial.

Case (iii)Otherwise some of the ei's are € and others
are either m or O, then \/E’i =1 and k < v(i
€é> k =€ or mor O and the result holds.

The following examples show that the conditions
(5) and (6) are independent from the others and is

necessary in the fuzzy context.

1.3.11. I Example

Let L = [0,1].

Define ‘Vx, Vf( ’ 5(x,1) = iLaeLX:a )‘—ﬁ-}

) ”\Pp(x,e) - {T}

Nl Nl

sz,‘fi 2

Here $Pp(x,?) satisfies (1) — (5) but does not satisfy

property (6).

Define fuzzy subsets a, such that
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an(x) =% -?ll for every x and for every n > 2,

ne /N

Let S = {a c Lx:ae ’N;p(x,f) for all p(x,?) e a} .

Now aneg, for every n.

Nl+=]

In particular p(x, %)E Voa =
n

But % é‘N)p(x, % ).

e \/an q’:{ g Hence gis not a fuzzy topology.

1.3.12., II Example

Let L = [0,1]. Define for every x, for every { < %,
( J 1 - ~ X. —
Mok ey AT })Vx,vb,g, Mo(x, 0y =fae Lia > T}

We can easily observe that this family satisfies properties

(1) — (4) and (6) but does not satisfy (9).
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Define 5 = {a G-Lx;a G N;p(x’{), for all p(x,e)ea}

and let a_ e § where a (x) = % - % for every x, n > 2.

é'«/g(xo % -

Nl—|
Nl

p(x, % - % )E . But

i [
A

1.3.13. Remark

Conditions (5) and (6) of theorem (1.3.9) do not
have parallels in ordinary topology. However, they
trivially true when L = {O,l}. It may also be noted
that L, then is a complete chain as well as a join
complete lattice. Theorem (1.3.9) shows that fuzzy
neighbourhood systems is indeed a generalization of
neighbourhood system in ordinary topology. Thus the
characterization theorem generalizes the corresponding

theorem in ordinary topology.



Chapter II
ASSOCIATED p-SPACE AND SIMPLE REFLECTION

J. Pelham Thomas [26] studied associated regular
spaces and proved that to every topology T on a set X,
there exists a regular topology T*¥c— T on X such that
the continuous functions from X to a regular space Y
are the same for T and T*. P.M. Mathew [22] introduced
the concept of associated completely regular spaces as

follows:

A closed subset A of X is * closed if there
exists a continuous map f:X —> [0,1] such that f(x)=0
and f(a)=1 for each a € A and xgé A. Complement of *
closed sets are * open. Then T* =-{GCZX ¢t G is * open}

is a completely regular topology coarser than T.

In this chapter, these concepts are generalized
to the case of any initial property P and associated
p-space are defined. The above concepts are reformulated
using the language of category theory and obtained a
characterization of the simple reflective subcategories

of the category of topological spaces.
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For any two topological space X and Y, C(X,Y)

denotes the set of all continuous functions from X to Y.

2.1. PRELIMINARIES

2.1.1 Definition

Let £ be an arbitrary class of topological spaces
and let (X,T) be a topological space. A subset U of X
is called 2* open if there is a continuous function

¢~
f:X — Y, YE £ and an open subset V of Y such that

U = f-l(V). Complements of £* open subsets are called
Z* closed.

2.1,2 Remark

Every g* open set (£* closed set) is open (closed).

2.1.3 Lemma

Let X,Y be topological spaces and f:X —> Y be
continuous. If V is £* open (€* closed) in Y with respect
to a class £ of topological spaces then f-l(V) is g* open
(Z* closed) in X.
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Proof:

Let V be C* open in Y. Clearly £ 1(V) is
open. Since V is £* open, there exists g:¥ —> Z
continuous, Z € £ and HCZ, open such that V = g-l(H).

£ (g'l(H)>

(gof)~t ()

ice., £R(V)

Now go f :X =—> Z is continuous such that
£71v) = (go £)7HH)
= ) is £* open in X.

2.1.4 Definition [25]
Let {f. : X —> Y.} be a family of
i if .
iel

functions from a common domain X to topological spaces
Yi. Then the topology generated by the subbasis

£.7Lv) s VL Y. is called the initial topology

i i i if je1

of the family {'fij.
2.1.5 Remark

When the family of functions is a singleton -{f}

the initial topology is simply the preimage topology by f.
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2,1.6. Definition

Let p be a topological property. p is said to
be an initial property if for every family of functions
{%i : X — Yi}’ whenever each Yi has p, the initial

tel
space of {fi} also has p.

2.1.7. Theorem

If £ is a class of topological spaces which

satisfies an initial property-p, then

T* = I(-UCX : U is g* open} is a topology on X and
(X, T*)E 2 .

Proof:

§ < T* and X = T* (Trivial). Let U U, & T*

then there exists continuous functions fl:X -—)Yl,
Yle F and f2: X ﬁY2, Y2 € £ and Vlch’ \I2CY2

-1

such that U; = f; (Vl) and U, = fgl(Vz). Let

Y =Y, xY,. Since £ satisfies initial property, £
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is productive. ThereforeY € €. Let f: X —> Y be

the evaluation map.

Then U NU, = f£77(v)) N £55(v,)
2 -1
= in ( niof) (vi)
2
-1, -1
= N UEv)) )
2
-1 -1

=> UNU, e T*

Let {Ui} be an arbitrary family of elements of T*.
iel

Let fi, Yi, Ui be the corresponding functions, spaces
(elements in 2) and open subsets. Take Y = n Yi(YC—_‘}Z)
and let f be the evaluation map of the family {fi} .

Let Hic: Y be such that H.l =YJ. X Y2 X see X Ui X Yi+lx”'

then U U; = f-l( U Hi) € T*. Hence T* is a topology on X.
i i

Clearly T*<C T and T* is the weak topology induced by all

continuous functions in C( (X,T),¢ ). Therefore (X,T*)EF.
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2.1.8. Corollary

T = T* if and only if (X,T) € g.

2.1.9. Theoremn.

Let (X,T) be a topological space. Then the
set of all continuous functions from (X,T) to (YSU)
for any Y in € (£ as in theorem 2.,1.7) is the same
as that from (X,T*) to Y. Further T* is characterized

by this property.

Proof:

Let Y be any element in £ and f:(X,T*) — Y
be continuous. Since T*—T, f:(X,T) —> Y is also
continuous. On the other hand, let f:(X,T) —™ Y
be continuous. Let U be open in Y. SinceY & 2
by (2.1.8) U is £* open in Y. Then £ 7(U) is £* open
in X (2.1.3). i.e., f-l(U) is open in (X,T*).

Hence f : (X,T*) —> Y is continuous. Thus for any
Y € £, the continuous functions X =—> Y are the same
for T and T*.

Let T' be any topology on X and (X,T') € 2
such that T'C.T. Since T*cT, the identity map
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i: (X,T) — (X,T*) is continuous. Since (X,T*)Eg,
by assumption the identity map i: (X,T') —> (X,T*)

is continuous. i.e., T*c T'. Similarly we have T'cC T*.

Hence T' = T*,

We call T* as the associated topology and (X,T*)

as the associated p-space.

2.1.10. Definition [12]

A space X is said to be completely regular if for
any point x& X and closed set A not containing x, there
exists a continuous function f:X —> [0,1] such that
f(x) = 0 and f(y) = 1 for all ye A, where the continuity
is with respect to the usual topology on the unit interval

[0,1].

2.1.11. Definition [25]

A topological space (X,T) is called an R, space if
it satisfies the condition: x€ GeT = X CG

2.1.,12. Definition [25]

A topological space X is called an Rl space if it
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satisfies the condition: x # Yy => x and y have

disjoint neighbourhoods.

2.1.13. Definition

A space X is zero dimensional if and only if
each point of X has a neighbourhood base consisting

of open-closed sets.

2.1.14. Remark

Regqularity, complete regularity, Ro, Rl,zero
dimensionality are initial properties. Hence it may
be noted that the theorem (2.1.7) proved in the general
setting of associated p-spaces is equivalent to several

theorems, one for each of these particular classes.

2.1.15. Theorem

Let £ be the collection of all topological spaces

having an initial property p.

For a space (X,T), T* is the lattice join of all

topologies on X weaker then T and which belong to £.



Proof:

Let be th i '
e {Ta}aej e e collection of all topologies

on X which belong to £ and weaker thanT. Since (X,T*)ec?

and weaker than T,

™*C VT, .o (1)
a

For every x € J, 'I‘(x c T. Then the identity map
i (X,T) —> (X, T,) is continuous. By theorem [2.1.9]

i (X, T%) —> (X,‘I‘a) is continuous. Hence T CT*

for every a €1J.

— VI CT* .. (2)
«
From (1) and (2)
™ = VT
a

2.1.16. Theorem.

If Tl and T2 are topologies on X such that
TJ.CTQ' then 'I‘l*CTz*.
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Proof:

We have T,CT,. Then Tl*c;Tz. Since Tl* is

coarser than T,, by (2.1.15) T\ *c Ty

2.2 A DESCRIPTION OF SIMPLE REFLECTION

In this section, we express some of the results
of the earlier section in the language of categories.
We assume that all considered categories are full and
replete subcategories of the category of topological

spaces: TOP.

2.2.1. Definition

Let 4 be a class of objects A,B,C ... eobj(A)

together with

(1) a family of mutually disjoint sets {Mor(A,B)}

for all objects A,B € Obj{A) whose elements
f,g,h, ... eMor (A,B) are called morphisms and

(2) a family of maps

<[Mor (A,B) x Mor(B,C) = (f,g) —>gof & Mor(A,C)}

for all A,B,C & obj{&), called compositions. @ is called



32

a category if it satisfies the following axioms:

(1)

(ii)

Associativity: For all A,B,C,D € obj(A) and all
f € Mor(A,B), g € Mor(B,C) and h  Mor(C,D),
we have ha(gef) = (heg)e f

Identity: For each object A€ ob{A) there is a
morphism 1, Mor(A,A), called the identity such

that we have

fel, = £ and l,ag = g for all B,C & obj{A) and
all f € Mor(A,B) and ge Mor(C,A).

2.,2.2. Definition

A category B is called a subcategory of a

category & if

(1)
(i1)

(iii)

(iv)

obj (B) < obj(A)
Mor B < Mor (A)

The composition of morphisms in 8 coincides with
the composition of the same morphisms in A.

For every object B of 8, the identity morphism
on B coincides with that in A.
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2.2.3 Definition

A category is said to be replete if it contains

all isomorphic images of its members.

2.2.4 Definition

A subcategory R of a category A is said to be a
full subcategory if MoaR(A,B) = Mofﬂ(A’B) for each pair
of objects A,B in R where MOER(A’B) denotes the set of

all morphisms in ® which have domain A and range E.

2.2.5. Definition

A subcategory ®R of a category A is reflective
in@, if for each object X in o there exists an object X

inR and a morphism %(: X — X such that given any

Y €R and a morphism f:X —> Y, there exists a unique

morphism g: X —> Y such that the diagram commutes.

X X
/7
P Ve
s/
f ,
L 9!
7
Y

Here X is called the reflection of X in R.
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2.2.6 Definition

A reflective subcategory R of TOP is said to be
simple reflective subcategory of TOP if in the above
definition each é; is an one-one onto map i.e. a

bijection.

For any initial property P, the collection of
p-spaces forms a category with continuous functions as
morphisms. The category is denoted as (P. This category
is shown to be simple reflective in the category of

topological spaces.

2.2.7 Theorem

The subcategory (P of p-spaces (the class of
topological spaces which satisfies initial property-$)
is simple reflective in TOP. Here the reflection is the

assoclated p-space.

Proof:
By theorem (2.1.7 and 2.1.9) for each (X,T) € TOP,

we have (X,T*) in (P such that the continuous functions X

to Y, Ye ® are the same for T and T*. If we take fx
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as the identity function from (X,T) to (X,T*), then

we have for every continuous f:X —Y, Y & &) , there
is a unique T : (X,T*) —> Y ( f = f itself) such that
f=TFfo €k . By definition (2.2.5) P is a simple
reflective subcategory of TOP and that (X,T*) is the
simple reflection of (X,T) in (.

The following theorem establishes that p-spaces

are the only simple reflective subcategories of TOP.

2.2.8. Theorem

Let 8 be a simple reflective subcategory of TOP.

Then 8 is the category of p-spaces. i.e., 8B =

Proof:

If;g is a simple reflective subcategory, then the
reflection morphism is a bijection. The reflection of
any space may be taken to have the same set with a weaker
topology so that the reflection morphisms are identity
maps. If (X,T) is the reflection of (X,T) in € , then
we have C((X,T),8) = c((x,T),§). i.e., T is the weak

topology induced by all continuous maps from (X,T) —> §
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such that (X,T)e:'s. Hence}; is the class of p-spaces.
Simple reflection of an object in TOP is characterized

in the following theorem.

2.2,10. Theorem.

Let £ be a simple reflective subcategory of TOP
and (X,T) € TOP. (X,T) is the simple reflection of (X,T)
if and only if T is the lattice join of all topologies on X
weaker than T which belong to £.

Proof:

( :€>) Since (X,T) is the simple reflection of (X,T),
(X,T)e £ . ButT =T* (2.2.9). Also by (2.1.15)
T* is the join of all weaker topologies on X which

belong to 2. Hence T do so.

(&) GivenT = VT, T,C T and (X,T)) € .
a

Since £ is simple reflective, by (2.1.6) and
(2.2.5) and (X, VTa) can be got as the subspace

of the product of the spaces (X’Ta)‘
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i.e., (X, VT,)) € 2

i.e., (x, T) € .

Let (X,T') be the simple reflection of (X,T) in 2.
Then (X,T) = X is finer than the reflection of X in £.
i.e., T'C¥. But i : (X,T) —> (X,T) has to split
through the reflection of X. Hence T =T' .

Remark:

We note that the simple reflection (X,T) of (X,T)
in a simple reflective subcategory induces a map T ——>T
from the lattice of topologies onto itself. The map
taking T to T is order preserving in the lattice of
topologies, since, if Tl,‘l'2 are two topologies on X such
that TlCTQ. Then by (2.1.16).1‘1* CT2*

i.e, TlC. T2



Chapter III
ASSOCIATED FUZZY COMPLETELY REGULAR SPACES

A study on associated completely regular spaces
was made by P.M. Mathew [22a]. The study was further
carried out in [22b]. A fuzzy analogue of the results
are made in this chapter. Fuzzy completely regular
spaces was introduced and studied by Hutton [10,11].

A different version of fuzzy complete regularity is
available {15]. However, we follow the definition

given in [11].

Through out this chapter 'L' denotes a complete

and distributive lattice with order reversing

involution : © .

3.1. DEFINITIONS

Concepts that are required for the study in this

chapter, are defined below.

3.1.1. Definition [11]

A fuzzy unit interval [0,1] (L) is the set of all

monotonic decreasing maps At R ——> L for which
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)\(t) ={l for t <O
0

for t > 1, t €eR, after the identi-

fication of A: R—> Landpu :R—> L

if  A(t =) = p(t -) for te R
Nt + ) = p(t +) for t € R, where
ANMt+) = VA(s); NMs =) = AAs)

s>t s<(t

We define fuzzy topology on [0,1] (L) as the topology
generated by the subbase

{Lt’ Ry | te R}, where L, : [0,1](L) — L

and R, : [0,1](L) =—> L defined by

At -)°

L (3)

Ry(A) = At +)

This topology is called the usual topology for [0,1](L).
[0,1](L) and its topology reduces to [0,1] and its
usual topology for L = {O,l}.



3.1.2. Definition [11]

A fuzzy topological space (X,S ) is fuzzy
completely regular if for each ae § there is a family

of fuzzy sets {Pi: ie I}and a family of maps

{fi: X —> [O,l](L)} such that v u, = a and
i

ui(x) RY fi(x) (L =) ( fi(x)(O +) £ a(x) ¥x, ¥1i.

3.1.3. Definition

If (Y,y) is a fuzzy topological space and
f: X —> Y is a function, then {f-l(b) : b e‘Y} is
a fuzzy topology on X and is called the preimage
fuzzy topology of y by f.

3.1.4. Definition (3]

A map f:X —> Y between fuzzy topological
spaces (X, &) and (Y,y) is said to be fuzzy continuous

if £1(v) e for each v e v.

3.1.5., Definition

A property p is said to be preimage invariant
property if whenever a fuzzy topological space Y has

P, the preimage space also has p.
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3.2. FUZZY COMPLETELY REGULAR SPACES

Properties of fuzzy completely regular spaces
are studied in this section. The lattice theoretic
properties of the class of fuzzy completely regular

spaces are also studied.

3.2.1. Theorem

If (Y,y) is a fuzzy completely reqgular space
and f:X —> Y is a function, then § * = {f-l(b):bC—Y}

is a fuzzy completely regqular topology on X.
i.e. Fuzzy complete regularity is pre-image invariant.

Proof:

5, Icé*
Let a;,ay & S*. Then a; = f-l(bl), a, = f-l(b2)

for some bl,b2<5 Y.

£ (b) A by)

=3 N & §* since byaby 2 ¥ -
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Let %ai ti1e I} be an arbitrary family of members
of § . Then a; = f_l(bi) for some b, e v.

_ -1 S|
\i/ai_ \i/f (bi)- f (\i/bi)

Since \/bi €y, Va; e S* .
i ¢

Hence §* is a fuzzy topology on X.

Let a ¢ §*. Then a = f-l(u) for some u € y.

Since (Y,y) is fuzzy completely regular, there exists

fuzzy sets k; such that u = \/k.1 and fuzzy continuous
: i
functions g;: (Y,y) —> [0,1] (L) such that
ki(y) € 9;(y)(1-) € g;(y) (0 +) < uly) -----(1)

for every ye Y
for every i

Then a = £ 1(u) = £V k) = V£ (k) (2)
i i 1
Let hi =g;0 f

o hi(x) = (gg0£)(x) =g;(f(x)), where

f(x) € Y.
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hi(x)(1 =) = g, (£(x))(1 =) € g;(£f(x))(0+) ¢ uf(x)

By (1) k;f(x) & g;f(x)(1 =) & g,f(x)(0+) & uf(x),
since f(x)€ Y.

fee. £k (X) & R((1=) ¢ ()0 +) & £ (%)
= a(x) (3)

i.e. for agg* there is a family of fuzzy sets
{f-l(ki{} and a family of maps {hi:(x, ¢*) — [O,l](L&-

such that V f-l(ki) = a and
i

£ (k) (x) € hy(x)(1 =) € hy(x) (0 +) € a(x)

for every x,
for every 1i.

i.e. 8'* is fuzzy completely regular.

3.2.2 Theorem [15]
Fuzzy complete regularity is productive.

A unique fuzzy topological space associated with

a given fuzzy topological space is constructed and

proved that it is fuzzy completely regular.
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3.2,3. Theorem

If g is a fuzzy topology on X, then there is
a unique fuzzy completely regular topology & *,
coarser than § such that if Y is any fuzzy completely
regular space, the fuzzy continuous maps (X,S) — Y
are the fuzzy continuous maps (X, §*) —> Y.

Proof:

Define & * to be the family of all aed for
which there exists a fuzzy completely regular space Y,
a fuzzy continuous map f: (X, &) —> Y and a fuzzy
open subset b of Y for which a = f-l(b)

Claim: & * is a fuzzy topology.
0, T€{* (trivial)

Let aj,a, g 4*. LetY =Y, xY, (Y is fuzzy

completely reqgular) and f:(X,§ ) —> Y be such that
£f(x) = (£f;(x), f5(x))

=1 -1 -1
f] (bl)/\f2 (b2), where a £] (bl)

£51(by)

ajAag 1

as

(m, 0 £)™H (b)) A (my 0 )7 (by)
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I (R CA N ()

= a;Aa, e §*
Let {ai} be an arbitrary family of elements
iel

of g*. Let fi’yi’bi be the corresponding fuzzy maps,

fuzzy completely regular spaces and fuzzy open sets.

Take Y = 7Y, and let f: (X, &) —> Y be such
that f(x) = (fi(x))i. Then f is fuzzy continuous.
Let hi be a fuzzy subset of Y such that h‘i =Y xYs X ...

x [ ® o »
blx

= 1 *
Then \i/ai = f (\i/hi)eé

é* is a fuzzy topology on X.
Clearly § * < S.

Let a € §*. Then there exists a fuzzy continuous

function f: X —> (Y,y), (Y,y) fuzzy completely regular
and a fuzzy open subset b of Y such that a = f-l(b).
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Since (Y,y) is fuzzy completely regular and b € ¥y

implies that there exist a family of fuzzy subsets

. . !
{ui s i el} and a family of maps {gi:(Y,y) - [O,l](L)j
such that Y‘ui = b and

u; (y) € g;(y) (1 =) < g5(y)(0 +) < b(y) (1)

for every i €1
for every y @ Y

-1 -1 -1
b) = f Vu,) = V¥ .
(b) (Vuy) = V)

But a

]
'—h

Since f(x) € Y and (I) 1is true for all ye Y,

u; f(x) < g; f(x)(1 =) & g;£(x)(0 +) € bf(x)

for every i ¢ 1

icer £7Hu;)(x) & (g 0B)(x) (1 =) & (g;0£)(x)(0+) & FH(b) (x)

ice £7Hup) (x) € hy(x)(1 =) & hy(x) (0 +) ¢ a(x), (11)

for every x ¢ X
for every ieT

i.e. a = \/f-l(ui) and (II) shows that § * is fuzzy
i

completely regular.
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Let Y be a fuzzy completely regular space
and f: (X,8) —> Y be fuzzy continuous. Let a be
fuzzy open in Y, then by definition of J§ *, f-l(a)

is fuzzy open in § *.

i.e. f : (X,8§*) —> Y is fuzzy continuous. On
the other hand, if g: (X, §*) —> Y is fuzzy continuous.

Since & 3 5*, g : (X, S) —> Y 1is also fuzzy continuous.
Thus for any fuzzy completely regular space Y, fuzzy

continuous maps from X to Y are the same for & and S+

Let §' be a fuzzy completely regular topology
on X, weaker than 5 Since 6* Cg, the identity map

i (X, 6) —> (X, &*) is fuzzy continuous. Since

(X, §*) is fuzzy completely reqgular,by assumption,

the identity map i : (X, ') —> (X, £*) is also fuzzy

continuous.

i.e. $* c & (1)

Conversely $res, i (X,8) —> (X, &) is fuzzy
continuous. Since (X, §') is fuzzy completely regular
and by assumption, i : (X, &*) — (X, &') is also

fuzzy continuous.

i.e., S' c g* (2)
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Hence from (1) and (2) §' = 5*.

We call (X, $*) as the fuzzy completely

regular space associated with (X,é').

3.2.4 Corollary

S =§* if and only if 6‘is fuzzy completely

regular.

Two characterizations of the associated fuzzy

completely regular topology is given below.

3.2.5 Theorem

For a fuzzy topological space (X, 5}, S* is
the weak topology induced by all fuzzy continuous
maps from (X, §) —> [0,1] (L).

Proof:

The proof is straight forward from the

definition.

3.2.6 Theorem

For a fuzzy topological space (x,<§),<§* is
the least upper bound of all fuzzy completely regular

topologies on X weaker than 5/.
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Proof:

Let {S } be the collection of all fuzzy
Clac1

completely regular topologies on X weaker than 5 .

Since 6* is fuzzy completely regular and weaker than S,

chyga (1)

For every a & I, Scx 'l 5 Then the identity
map i: (X, 5) —> (X, Sa) is fuzzy continuous.

By theorem (3.2.3) i: (X, &%) — (X, Sa) is

fuzzy continuous

_-_-)Sac_g* for every a & 1
=y, <& (2)

From (1) and (2), g* = (\x/ga.

3.2.7 Remark

If Sl and 52 are fuzzy topologies on X such

that §, cfp, then & *c§ %



Proof:

Since Sl*c gl, 51* is a fuzzy completely

regular topology weaker than 52. But by @.2.6)52*
is the join of all fuzzy completely regular topologies

weaker than it, therefore, gl*c_éz*.

Now we shall show that fuzzy complete regqularity

is sup invariant.

3.2.8. Result

Join of an arbitrary collection of fuzzy completely

regular topologies on a set X is fuzzy completely regular.

Proof:

Let {G(a} ¢ el be a collection of fuzzy completely

regular topologies on X. Let £= \/Ja. By (3.2.6)
a

5* is the join of all fuzzy completely regular topologies
weaker than g . Since ga ¢ & and 5(1'5 are fuzzy

completely reqular Sacé*. i.e., Sc8*. But always

5* cg. Hence §= 5*, a fuzzy completely regular
topology.
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3.2.9. Remark

The collection of all fuzzy completely regular
topologies on a set forms a complete lattice under the

usual ordering.



Chapter IV

A DESCRIPTION OF SIMPLE REFLECTION IN THE
CATEGORY OF FUZZY TOPOLOGICAL SPACES

This chapter is devoted to the study of simple
reflective subcategories of the category of Fuzzy
topological spaces FTOP. The properties of fuzzy
completely regular spaces enable us to construct fuzzy
associated p- spaces. We obtain this as a generalization
of the concepts that we have introduced in the second
chapter. Some characterizations of the simple
reflective sub categories of FTOP are obtained and

their properties are studied.
4,1 g,- FUZZY OPEN SETS

A method to consruct an associated fuzzy topology
is presented. For this £, fuzzy open subsets are
introduced corresponding to a given classlz of fuzzy

topological spaces.

4,1,1 Definition

Let (X, &) be a fuzzy topological space and 2 be
an arbitrary class of fuzzy topological spaces. A fuzzy

subset 'a' of X is called £, fuzzy open if there is a
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fuzzy open subset'b of some Y in £ and a fuzzy

continuous function f:X —> Y such that a = f-l(b).

4,1.2 Remark

Every £, fuzzy open subset is fuzzy open.

Now we shall show that inverse image of a £,

fuzzy open subset is 2, fuzzy open.

4.1.3 Theorem

Let (X, 8 ), (Y,y) be fuzzy topological spaces
and f:X —> Y be fuzzy continuous. If @ is £, fuzzy
open subset of Y then f-l(a) is a £, fuzzy open sub-

set of X.

4,1,4 Definition [17]

Let X be a set,{(‘{i, Yi)}'be fuzzy topological
spaces. The weakest fuzzy topslogy on X making all
the functions fi: X —> Yi, i €1 fuzzy continuous is
called the initial fuzzy topology of the family of

functions.
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We now introduce the fuzzy analogue of initial

property.

4,1,5. Definition

A fuzzy topological property 'p' is said to be
a fuzzy initial property if for every family of
functions fi: X — Yi y Wwhenever each fuzzy
topological space Yi has p, the initial space of {fi}

also has p.

4.1.6. Remark

Fuzzy initial property = productive.

The class of fuzzy topological spaces which
satisfies a fuzzy initial property p is denoted as

fip(p). An example is given below.

4,1,7. Theorem

Fuzzy completely reqularity is a fuzzy initial

property.

Proof:
Fuzzy complete regqularity is preimage invariant

and sup invariant [(3.2.1) and (3.2.8)]. The initial
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fuzzy topology induced by {fi} is also the

supremum of the preimage fuzzy topologies by fi'

Corresponding to any fuzzy topological space,
and an initial property, a unique fuzzy initial
property topology can be associated with it.
Fe[(X,8), (Y,B)] denotes the collection of fuzzy

continuous functions with domain X and codomain Y.

4.1,8. Theorem

Let (X, 8) be a fuzzy topological space and &
be the class of fip(p), determined by an initial
property 'p'. Then there is a unique fuzzy topology
§* weaker than & such that (X, §*)e Zand for any
(Y,8) in 2, FC[(x,8),(Y,B)] = FE[(X, §*),(Y,p)].

Proof:
. X .
Define §* = {a € L":a is g, fuzzy open}

5, T €8 * choosing X with indiscrete fuzzy

topology and f as the identity function.

Let a;,a, € S*. Then there exist fuzzy open
subsets bl’b2 of some Yl,Y2 in 2 and fuzzy continuous

functions f,,f, on X such that a; = fIl(bl) and
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a, = fal(bz). Then the fuzzy topological product
Y, xY,E 2 [4.1.6]. Let f = (fl’f2) be the fuzzy

evaluation map defined in (X, &).
ayAay = (b)) A £ (by)
= (n06)7H (b)) A (15,0071 (by)
= a7 ) A £ g (ey)
= £ aTe) AnH(b,)]
= 3N e §*

Let {a.} be an arbitrary family of elements
ier

of §*. Let f.» Yy, by be the corresponding fuzzy

continuous functions, elements in £ and fuzzy open subsets

such that a; = f;l(bi). Let Y be the product space

ﬂ‘Yi and f be the evaluation map (fi(x))i defined
i

on (X,8), Ye g [4.1.6].
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b, for i = j
J
Let kj = Tl—ui, where u, =
i Poly, for i £ j

Clearly kJ.'s belong to Y.

Then Va, = f *(Vk,)ed*
i i

Hence 5* is a fuzzy topology on X. Further S*CS,

follows from remark (4.1.2).

Clearly 8* is the weak topology induced by all
fuzzy continuous maps in FG[(X,S),’Z ].

. (X, 50 e B,

Now we shall show that

Fel(x, §),Y)] = Fe[(X,§*),Y] for anyYE £

Let f: (X, S*) —> Y be a fuzzy continuous

function. Since $*.~ 5, f: (X, §) —> Y is also fuzzy

continuous.

Let g: (X, 8) —> Y be a fuzzy continuous
function and b a fuzzy open subset of Y. Then by

(4.1.3) g-l(b) is g, fuzzy open in (X,8). i.e.,

g-l(b) is fuzzy open in (X, S*).



58

i.e., g: (X, d*) —> Y is fuzzy continuous.

Thus for any YE€ 2, the fuzzy continuous function
X —F Y are the same for § and S* . It remains

to show that S* is unique.

Let §' be any fuzzy topology weaker than s
with (X, $') e £ and Fe [(x, §'),Y] = Fc[(X,8),Y]

for every Y€ £. Since S*C_S, the identity
function i ¢ (X, 5) —> (X, 5*) is fuzzy continuous.

Since (X, $*)e £, by assumption the identity function

1: (X, 8') —> (X, §*) is also fuzzy continuous.
i.e., S*c o (1)

Since g'CS, i (X,8) —> (X,S"') is fuzzy
continuous. Since (X, §')€& £, by first part of
theorem,i : (X, S*)y —> (X, &') is also fuzzy

continuous. i.e., g'cg* (2)

Hence g' = g*
$

i.e., * is unique.
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4.1.9 Definition

For any fuzzy topological space (X,SI) and
a fuzzy initial property p, the é;* obtained in
the theorem(4.1.8)is called the associated p-fuzzy
topology of S and (X, 3*) is called the associated

fuzzy p-space.

4.1.10. Remark

For a fuzzy topological space (X,<§), g* is
the lattice join of all weaker fuzzy topologies on X

which belong tolz.

4,1,11. Remark

If gl’(SQ are fuzzy topologies on X such that

S 1cSar then % §o* .

4,2 SIMPLE REFLECTION IN FTOP

The class of fuzzy topological spaces with fuzzy
continuous functions as morphisms form a category and
is denoted as FTOP. In this section, simple reflective
subcategories of FTOP is characterized in terms of

associated fuzzy topological spaces.



4,2.1. Theorem

Let £ be a class of fip(p), then £ is simple
reflective in FTOP and the simple reflection of any
fuzzy topological space (X, S) is the associated
fuzzy topological space. Conversely, any simple
reflective subcategory of FTOP must arise only in

this way.

Proof:

For each (X,d$ ) € FTOP, we have
(X, $*) e g with Fa [(X,8),Y] = Fe[(X, 5%),Y]

for all YE £ by (4.1.8). If we take ey as the identity
map from (X, S) to (X, 5*), then we can see that for
every f: X — Y, YE€ 2, there is a unique

T:(X,8*) —> Y (T =f itself) such that f = T oey.
Since ey is a bijection it follows that £ is a simple
reflective subcategory of FTOP and that (X, &*) is

the simple reflection of (X, &) in £.

Conversely, let £ be a simple reflective subcategory
of FTOP. Then the reflection morphism ey 1s a bijection.

Let (X, 8) be the simple reflection of (X, &) in g. Then
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(x, g) is homeomorphic to a weaker fuzzy topology
on X, By the definition of reflection then, any
fuzzy continuous function f: X —— Y, Y & R splits
uniquely through this ey, and hence f:(X, dj) — Y

is also fuzzy continuous. Thus g-is a weaker fuzzy
topology having the same family Fe& [(X, S), 2] of
fuzzy continuous functions. Since 3 is the weak
topology induced by the family of fuzzy continuous
maps in Fc[(x,S),F] and (X, 3)e £» £ is the class
of fip(p). Moreover ?= S*.

It is shown that for the case of simple
reflective subcategory remark (4.1.10) can be further

strengthened.

4,2.2, Theorem

Let(z be a simple reflective subcategory of
FTOP. Let (X, 5 ) C FTOP and 5 ~ §. (X, 3) is the
simple reflection of (X, S) if and only if & is
the lattice join of all weaker fuzzy topologies on X

which belong to £.
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Proof:

( = ) If ¢ is simple reflective and (X,_S-)
is the simple reflection of (X,d)
then § = S* (4.2.1). By (4.1.10)§ *
is the lattice join of all weaker fuzzy

topologies on X which belong to £ .

(&=) Since £ is simple reflective subcategory
it is the class of fip(p) (4.2.1). Let
(X, §) € FTOP and 6= v §,r Sgc S
a

and (X, Sa)e,c. Since £ is the class of
tip(p), (X, Vé,)e £. i.e. (X,5)E E.
a

Let (X, $') be the simple reflection of (X,& )
in 2. Then § ' ;3: . By the definition of simple

reflection, the identity function

K - -
i: (X,0)——> (X, &) has to split through the
reflection of (X, §). Hence E = S .
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Remark

The simple reflection (x,?) of (X, g)
in a simple reflective subcategory induces a
map S}——+‘g-from the lattice of fuzzy topologies
onto itself. We note that this map is order
preserving and idempotent.Also the class of fuzzy
topological spaces on a set X which satisfies
a fuzzy initial property-p forms a complete lattice

under the usual ordering.



Chapter V

COREFLECTIVE SUBCATEGORIES IN FTOP

In this chapter we present some applications
of category theory in Fuzzy topology based mainly
on the notion 'coreflection'. The coreflective
subcategories of the class of fuzzy topological
spaces are considered in the works of Lowen and
Wuyts [20]. Their results do not serve for our
purpose. We give an internal description of the
coreflection in this chapter. This was motivated

by the work of V. Kannan [13].

The notion of topological coreflections are
discussed in the papers of Herrlich and Strecker
([8], [9]). V. Kannan [13] characterized the
smallest coreflective subcategory of the category
of topological spaces TOP, containing a given sub-

category £ of TOP.

We introduce the class of induced fuzzy
topological spaces I(¥% ), where % is an arbitrary
class of fuzzy topological spaces. The study of

induced fuzzy topological spaces provides the ground
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work for investigating properties of coreflective
subcategories of the category of fuzzy topological
spaces FTOP. We obtain coreflective hull of ¥ and
some results related to fuzzy topological properties.
Also we discuss the behaviour of coreflection of
fuzzy topological space in the lattice of fuzzy

topologies.

5.1 INDUCED FUZZY TOPOLOGICAL SPACE

Corresponding to any class of fuzzy topological
spaces, we introduce a class of induced fuzzy

topological spaces.

Let FC[¥% ,X] denotes the family of all fuzzy
continuous functions with domain in % and codomain,

(X,'S). Fe [ ¥,X] induces a fuzzy topology on X.

5.1.1. Theorem

Let & be a class of fuzzy topological spaces
and let (X, &) be a fuzzy topological space. Then
the family

—

§ = {g e X, f-l(a) is fuzzy open in the
domain of f for each f in F¢ [ ,X]

is a fuzzy topology on X such that dcd&.



66

Proof:

ol
|
M
0

(Trivial)

2
—= . -1
Let a;,a, € . Since fB ( iﬁh a;) A

2 —_
fuzzy open in X A a.e & . That is a, Aa,c & .
B’ j=1 1 1 2

Let {aa} C & . We have fEl (v aa)
acl @

[}
R <
h
™|
[y
o~
W1
R
S®

fuzzy open in XB' Therefore V e & -
a

—

Hence § defines a fuzzy topology on X. Clearly

scé-

5.1.2. Remark

The members of § are called induced fuzzy open

subsets of X.

5.1.3. Definition

A fuzzy topological space (X, S ) is said to be
induced by K if every induced fuzzy open subset of X

is fuzzy open.
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5.1.4. Notation

I(¥) denotes the family of all fuzzy topological
spaces induced by F .

5.1.5. Example

Let H be the family of all fuzzy discrete spaces.
Then a fuzzy topological space X is induced by ¥ if and

only if X is fuzzy discrete.

5.1.6. Theorem

A fuzzy topological space (X, &) is induced by ¥
if and only if it has the strongest topology having
the same family of X-valued fuzzy continuous functions

from members of § .

Proof:

( =€>) Let (X, $) pe induced by % . Let<§l be a
fuzzy topology such that gcéi and
Fel%,(X, 8))] =Fel ¥, (X,8)]

We have to show that &, = $.
g’ -1 . .
Let a€o,. Then f (a) is fuzzy open in the

domain of f for each f in Fc[?;,(x,gl)]=FG.[‘ﬁ‘,(x,8)]
Since (X, S) is induced by¥ , a is fuzzy open in X.
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(/= ) Consider g:{aeLX:f-l(a) is fuzzy open
in the domain of f for each f

in ch,(x,a')]}

This family forms a fuzzy topology by [5.1.1] and §c d
Let aes . Then f-l(a) is fuzzy open in the domain
of f for each f in Fa[¥% ,(X,8)]. But

Fel¥, (X,5)] = Fa[%,(X,5)]. This implies that f is

fuzzy continuous even when X is given a finer fuzzy
topology. Hence by the given condition a is fuzzy

open in X. Thus § = §. i.e., (X, $) is induced by ¥ .

5.1.7 Theorem

If (X,5) €% then (X, &) is induced by & .

ice., (X,9)e I(K).

Proof:

Let (X, §)€% and let'a’be an induced fuzzy open

subset of X. Now the identity map
i:(X,8) — (X, 8)e Fo(y, X)

Since a is induced fuzzy open, i-l(a) is fuzzy open
in X. That is, a is fuzzy open in X. Thus any induced

fuzzy open subset of X is fuzzy open in X. Hence X is

induced by | .
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Concepts that are required for the study are

defined below.
5.1.8 Definition: Quotient Fuzzy Topology [36]

Let X be a space of points. Let R be an equi-
valence relation defined on X. Let X/R be the usual
quotient set, and let p be the usual projection from X
onto X/R. If (X,S ) is a fuzzy topological space,
the quotient fuzzy topology is the largest fuzzy

topology such that p is fuzzy continuous.

5.1.9 Definition

Let (Xa, 5;) be fuzzy topological spaces. Then
the coproduct or fuzzy topological sum is denoted by

@ X, and is defined as
@ Xa =£a:a /\Xa is fuzzy open in Xa} .

i.e. A fuzzy set is open in the coproduct if and only
if it's restriction to each component is fuzzy open

in that component.

Now we will try to present some results on the

basis of the above definitions.
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501410, Theorem

Let (X,d) @ I(¥) and p: (X,8) — (Y,¥)
be a fuzzy quotient function. Then (Y,y)e I&).

Proof:

Let 'a' be an induced fuzzy open subset of Y.
Then f-l(a) is fuzzy open in the domain of f for each
f in Fc[% ,Y]. We want to show that a is fuzzy open
in¥Y. Since p:t X —>» Y 1is a fuzzy quotient function,
we need only to show that p—l(a) is fuzzy open in X.
Let g FC(¥%¥ ,X). Then pogeFc (% ,Y). Since a is
induced fuzzy open in Y, (pc)g)_l(a) is fuzzy open
in the domain of pog. 1i.e., g-l(p-l(a)) is fuzzy
open for every g FC (% ,X). Thus p-l(a) is induced
fuzzy open in X. Since X is induced by % and p is a
quotient function, a is fuzzy open on Y. Thus Y is

induced by % .

Now we prove that I( %) is closed under the

formation of 'sums'.

5.1.11, Theorem

Let {X } be a set of fuzzy topological
TlgeJ

spaces such that X G1I (%) for every «a. Then



X =& X, also belongs to I(Y)

Proof:

A fuzzy subset of X is induced fuzzy open
if and only if a/\Xa is induced fuzzy open in Xa
for every a € J. aAX, is induced fuzzy open if
and only if a A Xa is fuzzy open in Xa for every
«€J (since each X, & I(% )). That is, a is fuzzy
open in X. Thus X ¢ I ).

5.1.2. Theorem

A fuzzy topological space (X,d”) is induced
by  if and only if X is a quotient of a sum of

members of & .

Proof:

( =) Let X be induced by ¥ and a be an induced
fuzzy open subset of X. Then there exists a fuzzy

continuous function f_c FC(% ,X) such that f;l(a)

is open in the domain Da of fa. Thus to each induced
fuzzy open a, there is a fuzzy topological space Da6?1
and a fuzzy continuous function f_ :D_ —— X such

that f;l(a) is open. Let I f_ = p with domain
a
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g D, =D. Also p]Da = f_ for every a. Since

each fa is fuzzy continuous, p is fuzzy continuous.
Now we can show that p: D =— X is a fuzzy quotient

function.

Let 'b' be fuzzy subset of X, such that p~+(b)
is fuzzy open in D. 1i.e., p-l(b);N D, is fuzzy open

in D. But p-l(b)A\Db = fgl(b), is fuzzy open in D,.

Since X is induced by ¥ , b is fuzzy open in X. Hence
p is a quotient map and X is a quotient of a sum, of

members of ¥ .

(&) Let X be a quotient of sum of members of ¥ .
Then by (5.1.10 and 5.1.11) X is induced by % .

5.2. COREFLECTION

Here we translate the study of the earlier

section into categorical language.

5.2.1 Definition

A subcategory B of a category & 1is said to

be coreflective in A 1if, for each object X in @4
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there exists an object X in (B and a morphism
ey Y——) X such that given any Y in® and a
morphism f: Y =—» X, there exists a unique morphism

g: Y —> X such that the diagram commutes.

ex

N X

N

In the course of our investigation the following

results are obtained.

5¢2.2. Theorem.

Let K be any family of fuzzy topological spaces.
Then I( %), the family of induced fuzzy topological

spaces is coreflactive in FTOP.

Proof:
Let (X, &) € FTOP and £ be the family of all

induced open subsets of X. Then

S C_ST (5.1.1)
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Let i: (X,8) —> (X, ) be the identity map.

By (5.1.6) Fcl(Y,y), (X,8)] = Fe[(Y,y),(X,5)]

Let a be induced fuzzy open in (X,g). Then f'l(a)

is fuzzy open in (Y,y). i.e., a is induced fuzzy

open in (X, &8).

i.e., a is fuzzy open in (X, §).

Hence (x,?)e I(y) .

Now let (Z,8) & I( %) and
let g: (z,8) — (X, &) be

. Cx,é—':"—-———-—><x,é_)
fuzzy continuous. Let ac §.
i.e., a is induced fuzzy open A
in (X, §). Since (X,8) @ I(%),
a is fuzzy open in (X, o). 7

i.e., g-l(a) is fuzzy open in (Z,8).

g: (2,8) — (X,E) is fuzzy continuous.

Thus the diagram commutes. Uniqueness condition is

trivially satisfied.

Hence I(F ) is coreflective in FICP.



73

5.2.3. Theorem.

% is coreflective if and only if &= I(%).

Proof:

(=) Let (X,8)e I(¥) and let (X,E) be its
coreflection in % . Consider the identity
map i:(X, &) —> (X, &) as the coreflection
map. Then by the definition of coreflection
[5.2.1], f:(Y,y) —> (X,8) with (Y,y) e &
splits uniquely through i and hence f:(Y,Y)—>(X,§)
is also fuzzy continuous. Thus§ is a finer
fuzzy topology in X having the same family of
fuzzy continuous functions. Hence by (5.1.6)
S =§. But (Xx,§)e ¥ . So (X,S)e ¥ .
Thus I( §)C % . But by (5.1.7) ¥ c I(% ).
Hence % = I(%).

(&) Let = I(%). By (5.2.2) I(%) is coreflective.

This implies that ¥ 1is coreflective.

5.2.4, Theorem

I(%) is the smallest coreflective subcategory

of FTOP containing % .
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Proof:
Let G be a coreflective subcategory of

FTOP containing ¥ such that GcI( ¥ ) (1)
We shall show that I(%) = G.

Since G is coreflective I(G) = G.

But FCG = I(F)cC I(G) = G.

i.e., I(F)c G (2)

G.

Hence from (1) and (2) I(% )

Now we characterize coreflective subcategory

of FTOP using fuzzy topological properties.

5.2.5. Theorem

¥ is coreflective in FTOP if and only if % is

closed under the formation of sums and quotients.

(=) ¥ is coreflective if anc only if { = I(% )
by (5.2.3). But I(% ) is closed under the formation
of fuzzy sums and fuzzy quotients [5.1.10 and 5.1.11].
This implies that % is closed under the formation of

fuzzy sums and fuzzy quotients.
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Conversely, % is closed under the formation
of sums and quotients. But, by (5.1.7) ¥ c I(%).
Also I(%) is the smallest family having above
properties. Then % coincides with I(% ). Hence ¥

is coreflective in FTOP.

Here we discuss the behaviour of coreflection
in the lattice of fuzzy topological spaces. The
coreflective subcategory ¢ induces a functiong}——><§

from the lattice of fuzzy topologies on X onto itself.

5.2.6. Theorem

The induced map 5W——+ & is order preserving,
and idempotent on the lattice of fuzzy topologies

on X.
Proof:

Let gl c S-2' We want to show that ?lcf2 .
i (X, gé) —_—> (X, gl) is fuzzy continuous since
52 Dgl. Since § C.g’
i (X, gé) —_— (X,J}) is fuzzy continuous.

But (X, g;)éEﬁf. Therefore by definition of coreflection
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—

i (X, 52) —> (X, Sl) is fuzzy continuous.
ThUS gl C g2 .
Since § ¢ s , s c -5:: (1)

Since gc'g— , 1 : (X,?) -—> (X, &) is fuzzy
continuous. Since (X, &) is the coreflection of
(X, S)) it (X,8) —> (X, §) is the same as
i:(x,8) — (X,3).

Then i : (X,§) — (X,_?_) is fuzzy continuous.

—

ie., s C& (2)
From (1) and (2) —-E': = & (idempotent)

5.2.7. Theorem

Let % be a coreflective subcategory of FTOP.
(X, E) be the coreflection of (X, §) in % if and
only if (X, §) is the lattice meet of all finer fuzzy

topologies on X which belong to & .

Proof:

( =) (X,5) e % since (X, 5) is the coreflection
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of X. Let §' be any fuzzy topology finer than &£
with (X,$')e%. Since Sc &, i:(X,F) = (X,8)
is fuzzy continuous. Since (X,8) <%, and by

definition of coreflection i: (X, §') —> (X,S )

is fuzzy continuous. i.e., s C S,

i.e., any fuzzy topology § ' finer than S which
belongs to 7 is finer than cg:also. This implies
that Eis the lattice meet of all finer fuzzy

topologies on X which belong to % .

(£L=) Let {(X, ga)} be members of {; such

aeld
that Sa.Dg . Since % is coreflective, % = I(% )

and therefore (X, Sa) e I(%¥). Also (X, /\ga)

can be got as the quotient of the sum of the fuzzy
topological spaces (X,'é-a). Hence by ( 5-1-2 ),
(X, AS) & I(%). But I(K) = . Hence (X, A )e%

ie., (X,8) = (X, AS)E K

Now we want to show that (X,g) coincides with the
coreflection of X in Tt .

Let (X,B) be the coreflection of (X,&) in &
Then,

e

§ < B (1)
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Consider the identity map i:(X,g) —> (X, 5)

and the diagram,

(X,B) 1 (x, &)

(X,§)

From the diagram,

i (X,E) —> (X,B) is fuzzy continuous

i.e., BC & (2)

From (1) and (2) B = -5_—

i.e., (X, 3—) coincides with the coreflection of (X,$)

in ¥ .
5.2.8. Remark

Let % be a family of fuzzy topological spaces.
Then there exists a smallest coreflective subcategory
of FTOP containing % (5.2.4). This we shall call the
coreflective subcategory generated by T or the
coreflective hull of ¥ in FTOP. For example, I(})
is the coreflective hull of % in FTOP.



81l

9.2.9. Remark

We can observe that, if ¥ be a family of
fuzzy topologies in X and each (X, ga)el(‘};)
then (X, /\ga) € I(%). In this case I(¢) forms a

complete lattice under the usual ordering.

Conclusion

The investigation made in Chapter III to V
is a humble beginning in the direction of the study
of the class of fuzzy topology. There remains a lot
of research wérk to be done. Several lattice theoretic
properties are to be investigated, especially by
fixing the underlying set. In the category theoretic
study, more general subcategories deserve a closer

look. We are attempting some of them.



REFERENCES

[1] S. BABUSUNDAR Some lattice problems in Fuzzy
Set Theory and Fuzzy Topology,
Ph.D. thesis submitted to the
Cochin University of Science and
Technology (l989¥

(2] BIRKHOFF G Lattice theory, Amer. Math. Soc.
Colloq. Publ., Vol.25, 3rd Edn.
Providence (1967)

[3] CHANG C.L Fuzzy topological space
J. Math. Anal. Appl. 24(1968)
182-190.

[4] DE-MITRI and Characterization of fuzzy topologies

E. PASCALI from neighbourhoods of fuzzy points,

J. Math. Anal. Appl. 93(1983),
1-14.

[5] EKLUND P Category theoretic properties of

fuzzy topological spaces, Fuzzy
Sets and Systems 19(1986),81-87.

[6] GOGUEN J L Fuzzy Sets, J. Math. Anal. Appl.
18(1967), 145-174.

[7] HERRLICH H Category theory, An Introduction,
Heldermann Verlag, Berlin (1979).

[8] HERRLICH H and Coreflective subcategories,
STRECKER G.E Trans. Amer. Math. Soc. 157,
205-226(1971).



(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

HERRLICH H

HUTTON B

HUTTON B

JOSHI K.D

KANNAN V

KANNAN V

KATSARAS A .K.

KENNISON J.F.

LOWEN R

83

On the concept of Reflections

in general topology (Berlin)
Proceedings of the Symposium
held in Berlin, New York (1967).

Uniformities on Fuzzy Topological
Spaces, J. Math. Anal.Appl.58(1977),
559-571.

Normality in Fuzzy Topology,
J. of Math. Anal. Appl« Vo0l.50
No.l (1979).

An introduction to general topology,
Wiley Eastern Ltd. ?1986).

Coreflective subcategories in
topology, Ph.D. thesis submitted
to Madurai University (1970).

Reflective cum coreflective sub-
categories in Topology, Math.
Ann. 195(1972) 168-174.

On fuzzy proximity spaces, J. Math.
Anal. Appl. 75(1980).

Reflective Functors in General
Topology and elsewhere,
Trans. AMS 118, 303-315(1965).

Initial and final fuzzy topologies
and the fuzzy Tychonoff theorem,
J. of Math. Anal. Appl. 58(1977),
11-21.



[18]

[19]

[20]

[21]

[22a]

[22b]

[23]

(24]

[25]

[26]

LOWEN R

LOWEN R

LOWEN R,
WUYTS P and
LONEN E

LOWEN R,
WUYTS P and
LOWEN E

MATHEW P.M.

MATHEW P .M.,
SHEELA C and
RAMACHANDRAN P.T

MIRA SARKAR

MIRA SARKAR

MURDESHWAR, M.G.

PELHAM THOMAS

84

Convergence in fuzzy topological

spaces, Topology Appl. 10(1979)

Fuzzy neighbourhood spaces, Fuzzy
Sets and Systems 7(1982), 165-189.

On the reflectiveness and co-
reflectiveness of subcategories
of FTS, Math. Nachr 141(1989),55-65.

Reflectors and coreflectors in the
category of fuzzy topological spaces,
Comput. Math. Appl. Vol. 16(1988)
823-836.

On the lattice of topologies and
Boolean Spaces, Ph.D. thesis submitted
to Cochin University of Science and
Technology (1988).

Associated completely regular spaces.
Indian J. of Pure and Appl. Maths.
(to appear)

On L-fuzzy topological spaces, J. of
Math. Anal. Appl. 84, 431-442(198l).

On fuzzy topological spaces, J. Math.
Anal and Appl. 79, 384-394, 198l.

General Topology, Wiley Eastern Ltd.

Associated Regular Space, Cana.J.
of Math. Vol.20, pp. 1:087-1092.



[27]

[28]

[29]

[30]

[31]

[32]

[33]

PU PAI MING and
LIU

RODABAUGH, S.E.

SHOSTAK A.P.

SRIVASTAVA, LAL and
SRIVASTAVA

WARREN R.H.

WARREN R.H

WILLARD S

85

Fuzzy topology 1,

Neighbourhood structure of a fuzzy
point and Moore smith convergence,
J. of Math. Anal. Appl. 6, 571-599
(1980).

A categorical accommodation of
various notions of fuzzy topology,
Fuzzy Sets and Systems 9, 241-265,
1983.

Two decades of fuzzy topology-
Basic ideas, notions and results,
Russian Surveys 44(1989) 125-186.

Fuzzy Hausdorff topological spaces,
J. Math. Anal. Appl. 81, 497-506
(1981).

Neighbourhoods, bases and continuity
in Fuzzy topological spaces,

Rocky Mt. J. of Maths, Vol.3,

Summer 1978.

Boundary of fuzzy sets,
Indiana University Math.J.Vol.26
No.2 (1977).

General topology, Addisén Wesley
Publishing Co. (1970).



[34]

[35]

[36]

[37]

WONG C.K.

WONG C.K.

WONG C.K.

WONG C.K.

86

Fuzzy points and local properties
of fuzzy topology,
J.Math.Anal.Appl. 46(1974) 316-328.

Covering properties of fuzzy
topological spaces, J. Math. Anal.
Appl. 43(1973) 697-703.

Product and quotient theorems
J.Math. Anal. Appl. 45(1974),
512-521.

Categories of fuzzy sets and fuzzy
topology, J. of Math. Ana. Appl.
53, 704-714(1976)

_Ggaoqz



	Title
	Certificate
	Contents
	Introduction
	Chapter I
	Chapter 11
	Chapter III
	Chapter IV
	Chapter V
	References

