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INTRODUCTION

Fuzzy set theory and fuzzy topology are

approached as generalizations of ordinary set

theory and ordinary topology. We consider fuzzy

subsets as functions from a non empty set to a

membership lattice. Through out this work we follow

the definition of fuzzy topology given by Chang[3]

with membership set as an arbitrary complete and

distributive lattice.

Category theory is the branch of mathematics

which studies the abstract properties of 'sets with

structures' and 'structure preserving functions'.

It provides a tool by which many parallel techniques

used in several branches of mathematics can be

linked and treated in a unified manner.

In this work, we present some applications of

category theory in Fuzzy Topology based mainly on

two notions 'simple reflection and coreflection'.

This thesis is presented in five chapters.
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In 1974, C.K. Wong [34] introduced the concept

of 'fuzzy point belongs to a fuzzy set'. Later the

same concept was defined in different ways by

Srivastava, Lal and Srivastava [30]. The definitions

of the relation 'E' of a fuzzy point belonging to a

fuzzy set given independently by these authors seem

to be very much alike. But on thorough analysis,

they are found to differ in certain aspects. This

study is included in chapter I. We arrive at the

conclusion that the definition given by Piu and Liu[27]

is the most appropriate one for fuzzy set theory.

A characterization of fuzzy open set is necessary for

the study of fuzzy topology. This leads us to study

the fuzzy neighbourhood system of a fuzzy point.

Piu and Liu [27], Demitri and Pascali [4] introduced

the notion of fuzzy neighbourhood system. Both the

definitions do not generalize the corresponding

definitions of ordinary topology. To rectify this

anomaly we introduce a new definition for fuzzy

neighbourhood system by the addition of two more

axioms. These axioms are necessary in the fuzzy

context. In the case of ordinary topology where

L = [O,l}, these axioms are trivially satisfied. The

basics of fuzzy topology is strengthened in chapter I.
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Pelham Thomas [26] introduced the concept of

associated regular spaces. Later P.M. Mathew [22]

introduced associated completely regular spaces.

"What is the speciality of these spaces among all

subcategories, say reflective, coreflective"?

Chapter 11 provides an answer to this question which

holds for all those classes for which interesting

characterizations of completely regular spaces and

regular spaces are known. As a generalization to

this, an associated p-space is constructed and their

properties are studied. We formulated these concepts

in Category theory and obtained a characterization

of the simple reflective 5ubcategories of the category

of topological spaces.

In the third chapter a fuzzy parallel of

associated completely regular spaces is constructed

and their properties studied. Fuzzy completely regular

space was introduced and studied by Hutton [U~,ll].

A different version of fuzzy complete regularity is

available in [15]. However, we follow the definition

given in [11].
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The properties of fuzzy completely regular

spaces enable us to construct fuzzy associated

p-spaces. We obtain this as a generalization of

the concepts that we have introduced in the second

chapter. In order to widen the range of application

we do this in the language of category theory. The

results obtained enable us to treat the known theories

in an unified manner. Thus we obtained some characteriz­

ations of the simple reflective subcategories of the

category of fuzzy topological spaces in the fourth

chapter.

In the fifth chapter we present some applications

of Category theory in Fuzzy Topology based on the notion

'Coreflection'. The coreflective subcategories of the

class of fuzzy topological spaces are considered in

the works of Lowenand Wuyts [20]. In this chapter

we give an internal description of the coreflection.

This was motivated by the work of V. Kannan [13]. The

notion of topological coreflections are discussed in

the paper by Herrlich and Strecker [8]. V. Kannan [13]

characterized the smallest coreflective subcategory
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of the category of topological spaces TOP, containing

a given subcategory ~ of TOP. We introduce the class

of induced fuzzy topological spaces I(t) correspond­

ing an arbitrary family of fuzzy topological spaces~.

The study of induced fuzzy topological spaces coincides

with the generation of coreflective subcategories of

the category of fuzzy topological spaces. We also

characterize coreflection as the lattice meet of all

finer fuzzy topologies.



Chapter I

FUZZY TOPOLOGY THROUGH FUZZY NEIGHBOURHOOD SYSTEM

The concepts of fuzzy point, fuzzy point belong­

ing to fuzzy subsets and fuzzy neighbourhood are revisited

1n this chapter. The various definitions by different

authors are analysed. Most appropriate definitions are

deduced. A new definition of fuzzy neighbourhood systems

is introduced. A characterization of fuzzy topology in

terms of fuzzy neighbourhoods is arrived at.

In 1974, C.K. Wong [34] introduced the concept of

'fuzzy point belongs to a fuzzy set'. Later the same

concept was defined in different ways by Piu and Liu[27],

M. Sarkar [23], Srivastava, Lal and Srivastava [30]. The

definitions of the relation '£' of a fuzzy point belong-

1ng to a fuzzy set, given independently by these authors
-

seem to be very much alike at a glance. But on thorough

analysis, they are found to differ in certain aspects.

We arrive at the conclusion that the definition given by

Piu and Liu [27] is the most appropriate one for fuzzy

set theory.

Piu and Liu [21], Demitri and Pascali [4] introduced

the notion of fuzzy nei~hbourhood_~ystem. Both the
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defini tLons d9,,--~!l0t__9~nera.l.ize the corresponding

definition of ordinary topology [/2]. To rectify this

anomaly we introduce a new definition for fuzzy neigh­

bourhood system.

1.1 PRELIMINARIES

In this section, some definitions and results

that are needed later on, are given. Throughout this

chapter, X is taken to be a non empty set. A fuzzy subset

of X is considered as a function from X to L, where L is

a complete and distributive lattice. The least element

and greatest element are denoted by 0 and 1 respectively.
- -, X

The set of all fuzzy subsets of X is denoted as L •

1.1.1 Definition

A point x of X with a non zero membership value
, --------1 E L is a fuzzy point of X, and is denoted by p(x,l).

1.1.2 Definition C']

The fuzzy singleton determined by a fuzzy point

p(x,l) is a fuzzy subset s(x,i) such that for y € X,

s ( x , i> (~) = r0 i f Y F x
LP if y = x



1.1.3. Definition

A subset R of L is join complete (meet complete)

if R is closed for arbitrary join operation (meet

operation).

1.1.4. Definition

A lattice L is said to be join complete (meet

complete) if every subset of L is join complete (meet

complete).

The following remarks are immediate consequences

of the definitions.

1.1.5. Remark

( L) A join complete lattice with 0 is complete.

( ii) A meet complete la ttice with 1 is complete.

( iii) A join complete (meet complete) lattice is a
chain.

(iv) L is a finite chain if and only if it is join
complete and meet complete.

1.2. A STUDY ON FUZZY MEMBERSHIP

Different definitions of the relation' E' are given

and they are analysed.
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1.2.1 Definitions [ [23],[26],[29] ]

Let a be a fUzzy subset and p(x,i> a fuzzy

point, of X.

( L) p(x,i) E a if and only if f< a (x) (A)

( il) p(x,£) E. a if and only if i~ a (x) (B)

( ili) p( x, £) ea if and only if f= a (x) (C)

1.2.2 Remark

(1) According to definitions (A) and (B)a fuzzy

singleton may contain more than one fuzzy point. How­

ever, by definition (C), a fuzzy singleton uniquely

contains a fuzzy point.

(2) Ordinary set theory can be considered as a special

case of fuzzy set theory, taking L = [0,1]. But then,

by definition (A) p(x,l) f s(x,I). Hence definition (A)

is not considered further. However, p(x,l) E s(x,l)

according to definition (B) and (C).

In ordinary set theory we have for any two subsets

A,S of X, ACa if and only if x e t« -:::::} xE:.B. The existence

of corresponding characterization for two fuzzy subsets

of Xis 5 tud ied •
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1.2.3 Theorem

Let a and b be fuzzy subsets of X. Then the

following are equivalent.

(1) a ~ b (i.e., a(x) ~ b(x) for all x)

(2) p(x,Q) E. b for all p(x,R)e. a (we use definition
1.2.1 (B) )

Proof: Let (1) holds and p(x,i) E a.

Then 1.~ a(x).

i.e., i.~ a(x) ~ b(X) ::::9 i~ b( x)

~ p(x,l) € b which is (2)

(2) ~ (1) 1s straight forward.

1.2.4 Remark

If we use definition (C) in (1.2.3) (2) in the

above theorem, (1) ~ (2). It may be noted that if we

use definition (C), theorem (1.2.3) holds if and only if

L= [0,1] .

1.2.5 Remark

Owing to the fact that definitions (A) and (C)

of (1.2.1) are unable to generalize ordinary set theory,

hereafter, only definition 1.2.1 (B) is used.



1.2.6 Theorem

Let tai:i € l} be an arbitrary family of fuzzy

subsets of X and a = V a .• "p(x,.f> E. a :::;> p(x, 1) E a.
i€I 1 1

for some i·, is true if and only if L is join complete.

Proof:

( -; ) Suppose L is not join complete. Then there is

a subset R of L which is not join complete. Let

R =trj:j €J]and r = '{rj. Then r 1= r j for every j.

-..

Let .£ denotes the constant fuzzy subset such that

lex) = f for all x E X, for .f. E: L. Clearly r 1= o.
Then p(x,r) € "i, but p(x,r) ~ ij for every j. Thus

p(x,r) e: y;;- =/=; p(x,r) E' r j for some j. Hence
J

L must be join complete.

( ~) Let £a i: i € l} be an arbitrary family of

fuzzy subsets of X and a = \I al.-' and L be join complete.
i El

Let p(x,Q) € a. Then~' a(x). a(x) = a.(x) for some i
1

since ~ai(x):i E lJC L, and L is join complete •

... 1~ ai(x). i.e., p(x,f) € a i for some i € I.

Hence the theorem.
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From the preceding theorem we have immediately

the following theorem.

1.2.7. Theorem

Let tai: i e 1J be an arbitrary family of fuzzy

subsets of X and a = 1\ a i" " p(x,t) E a i for every i
i

'7 p(x,l) E a" is true if and only if L is meet

complete.

Proof: Dual of theorem (1.2.6).

1.2.8. Remark

The above theorems (1.2.6) and (1.2.7) hold

simultaneously if and only if L is a finite chain

(1.1.5 iv ).

1.3. FUZZY NEIGHBOURHOOD SYSTEM

In this section fuzzy neighbourhood system of a

fuzzy point, is studied.

1.3.1. Definition [3]

An ordered pair (X, &), where 6 , is a family

of fUzz~ subsets of X is called a fuzzy topological

space (fts) if b satisfies the following conditions.



( 1)

(2)

( 3)

8

0, T E: t
If a l,a2 E f: then alA a2 E: er
If rai~ is a family of members of ~,

1 le!

then \I a i E ~
i

Every member of ~ is called a fuzzy open subset

of X.

1.3.2. Definition

Let (X, d) be a fuzzy topological space. A fuzzy

subset 'a' is a fuzzy neighbourhood of a fuzzy point

p(x,t) if and only if there exists a fuzzy open subset

'g' such that p(x, e)€ 9 ~ a.

In terms of this concept, we have the following

trivial but useful characterization of fuzzy open sets.

1.3.3. Theorem

Let a be a fuzzy subset in a fuzzy topological

space (X, ~ ). 'a' is fuzzy open if and only if for each

fuzzy point P(X,t)E a, a is a fuzzy neighbourhood of

p( x, e) •
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- GC:i2q3 -

Proof: ( y) obvious.

(~ ): Let p(x,t) be an arbitrary fuzzy point of a.

Then a is a fuzzy neighbourhood of p(x,t). Then

gp(x,t) be fuzzy open such that p(x,.e) ~ gp(x, t) ~ a.

v 9 p ( x .f) ~ a. i.e., for every YE X, Vg ( t)(y)~a(y)
p(x,£)e a ' p x,

We claim that \!gp(x,t)(y) = a(y) for every y ~ Y.

Suppose not:

i.e., there exists a,y E Y such that \/gp(x,t> (y) < a(y).

i.e., gp(x, t) (y) < a(y) for every p(x,t) E a

Then p(y,a(y»€ a and p(y,a(y»,e gp(y,a(y» which is

a contradiction. Hence the claim.

J1.3.4 Definition

Let (X, ~) be a fuzzy topological space and p( x,~)

be a fuzzy point. Let ~p(x,t) be the set of all fuzzy

neighbourhoods of p(x,l). The family ~p(x,e) is called

the fuzzy neighbourhood system at p(x,t).
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The next theorem is similar to theorem [12(2.5)]

about neighbourhood system in ordinary topology [12].

The theorem lists properties of the fuzzy neighbour­

hood systems which can be used to generate fuzzy

neighbourhood system without invoking a fuzzy topology.

1.3.5. Theorem

Let (x,~) be a fuzzy topological space and

p(x,t) be a fuzzy point. Let ~p(x,t) be the fuzzy

neighbourhood system at p(x,t). Then

( 1) I f a e ..ffp ( x , t ) then p ( x , ~) € a

(2) For any a,bE -I'fp(x,{)' a 1\ b f: # p(x,{)

(3) If a G:- ./\f p(x,-!) and b ~ a then be #p(x,t)

(4) If a e #p(x,.f.) then there exists betv'Jp(x,t)

such that b ~ a and be # ( ) for everyp y,m

p(y,m) G b.

Proof:

(1) Let a E APp(x,t). Then a is a fuzzy neighbourhood

of p(x,!). i.e., there exists a fuzzy open subset g such

that p(x,.f.) E 9 ~ a. By theorem (1.2.3) p(x,-l) E a.
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(2) Let a,b E ~p(x,t). Then there exists fuzzy

open sets g)h such that P(x,t)E9~ a and p(x,f)Gh~ b.

Then p(x,f) E- gAh ~ a /\ b.

?> a A b € H p( x,t) since 9 1\ h Ea.

(3) Let ae- Np(x,e). Then there exists fuzzy open

set 9 such that p(x,t) E 9 ~ a. But b ~ a. Then

p(x,t) E: g~ a ~ b.

(4) Let a e ~p(x,f). Then there exists fuzzy open

subset b such that p(x, l> Gb ~ a.

for every p(y,m) G b by (1.6.3).

This be-N ( )p y,m

We now introduce fuzzy neighbourhood systems

independent of a fuzzy topology.

1.3.6. Theorem

Let X be an arbitrary set, L a join complete

lattice and suppose for each fuzzy point p(x,{), a

non empty fami1Y~p(x,l) of fuzzy subsets of X is

given satisfying conditions (1) to (4) of theorem

(1.3.5). Then there exists a unique fuzzy topology t on

X such that for each fuzzy point p(x,t), ~p(x,t)
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coincides with the family of all fuzzy neighbourhoods

of p(x,.t) with respect to f.

Proof:

Let r- = fa E LX: a G #p(x,f..) for all p(x,{) e a}

We shall now prove that bis a fuzzy topology on X.

Obviously, 0 belongs to $. From condition (3)

it follows that '1 E ~(x,t) for all p(x,f) e rand then

'I E~ • Now let al'a2 € b and p(x,t)e a 11\ a2• Then

P(X,C)6 a l and p(x, t) e a2 so that a l e #p(x,t) and

a2 E Np(x, f)' By condition (2), a l A a 2 e -#p(x,l ).

Since this holds for every p(x,f)e a l /\ a2, a lAa2 Ed .

Now let [ai:i e I} be an arbitrary family of members

of 6. If p(x,e) E V ai' by theorem (1.2.6), there
i

exists i E I such that p(x,f) E ai. Since aioEd,o 0

we have aio E ~p( x, t) and therefore by condi tion (3),

'I a i E ~(x, -t) • Since this holds f or every

P(x,t)E y. ai' it follows that y aiE d. Thus the

famil y a is fuzzy topology on X.

Condition (4) means that for every fuzzy point

p( x , e) and a e N p( x ,1)' there exi s ts a fuzzy open
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l ) A~

subset b such that bE tVp(x, E) and b ( a.

condition (1) it follows that P(x,{)E b.

From

Hence every

member Of~p(x,t) is a fuzzy neighbourhood of p(x,{)

with respect to ~ •

Conversely, let'a'be a fuzzy neighbourhood of

p(x,f) with respect to t. There exists'b'fuzzy open

such tha t p( x, E) € b ~ a. Since bE S, we have

be#p(x,~) and thus by condition (3) a~ #p(x,e).

Thus the fuzzy neighbourhoods of p(x,{) with respect

to (are precisely the members of -# p( x,-O for each

p(x,e).

If &' is a fuzzy topology for X, where ~p(x,l)

is again the fuzzy neighbourhood system at p(x,f) for

each fuzzy point p(x, e), then 6 = ~t (by 1.3.3).

To show that the condition: 'L is join complete'

is necessary, consider the following example.

1.3.7. Example

Let L = [0,1]

Define Jr/x, 'ff 1< .k ,-/'f {x -}
L p( x, (.) = a EL: a >,. {

-v x, ~ .e >~ .k AI) = [I}v , L ,t/V P( x , -£ )
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ifp(x,~) satisfies all the conditions in the above

theorem.

Define fuzzy subsets an such that

for n e IIJ, n) 2, for every x . Now

1- -n

1- -n • i.e.,

• 'f BtV 1 i• • an s are uzzy open. u an = ~ 5 not fuzzy

open since p(x, ~) E: ~ and ~ i=~(x, ~ ).

A modified version of theorem(1.3.5)by introducing

two more properties of the fuzzy neighbourhood system is

given below.

1.3.8. Theorem

Let (X,~) be a fuzzy topological space and p(x,t)

be a fuzzy point. Let ~p(x,~) be the fuzzy neighbour­

hood system at p(x,t). Then the following hold.

( 1) I f a E Ifp ( x ,t) then p ( x , {) E a

(2) For any a,be ~(x,f)' a A bE v\Pp(x,.f)·

(3) If ae ~(x,-l) and b ~ a then bey\pp(x,l)
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(4) If aG Afp(x,f) then there exists b€~p(x,f)

such that b ~ a and bE.f\P. ( ) for all p(y,m) E b.p Y,m

If f,m E L '\.to} and {< m then Af) .1)-r« -P ( x , m) Cifp ( X , t)

(6) If ~= V ~ aandae,f\felp(x,.t'a) for every a,
a".r

then a€..f'\fp(x,{).

Proof:

(1) to (4) are proved in theorem (1.3.5). Hence

we need only to prove (5) and (6).

(5): Let {< m and a E .J\P ( ) • Then therep x,m

exists a fuzzy open subset 9 such that p(x,m)E 9 ~ a.

i.e., m~ g(x) ~ a Lx ) for all x ,

But ~ < m. Then f.< m ~ g(x) ~ a(x) for all x ,

i.e., p(x,{) E: 9 ~ a.

i.e., a EI'Pp(x,{)· Therefore fPp(x,m)c J'fp(x,{).

(6): ae fP, ( f) for a and let ~= v L-: Then
p x, a a a

there exist fuzzy open sets 9a
l S such that p(x,.fa)E9Cl~a

for every a.
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i.e., ~a ~ ga(x) ~ a(x) for every a and for every x.

L, e. ,

Since V ga is fuzzy open, aE#p(x,.f)·
a

Now we partially generalise theorem (1.3.6) by

omitting the condition of L being join complete.

1.3.9. Theorem.

Let L be a complete chain. If with each fuzzy

point p(x,f) is associated a family ~p(x,t) of fuzzy

subsets of X satisfying conditions (1) to (6) of

theorem (1.3.8) are satisfied, then there exists a

unique fuzzy topology on X with ~p(x,() as the fuzzy

neighbourhood system at p(x,f).

Proof:

Let ~ = [a E LX: a€v'.f'p(x,f) for all P(x,{)E a]

We sha 11 now prove tha t b is a fuz zy topology on X.
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Obviously 0 Ea. From condition (3) it follows

that T Eb. Let aI' 'a2 E.;;; and p(x,·t) ealAa2. Then

p(x,e)e:a l and p(x,t}€.a2 so that ale.J\Pp(x,-t) and

a 2 Ei'Pp(x,O. By condition (2) a I Aa2€.#p(x,-l.). Since

this holds for every P(X,{)E al"a2 , a l"a2 E cl. Let

{ a 1 be an arbitrary family of members of ~ and
aJa e I

\la = a. We shall now show that a € t. Let p(x,t) ~ a.a

Then e~ a(x). Then we have two cases:

(1) f < a(x),

Ca se (i) .f. < a ( x ) •

(ii) ~ = a(x).

Since L is a chain, there exists a ~ I such thato

~~ aa (x) < a(x). Since p(x,aa (x» E: aa '
000

and by (3) a € -tfp(x,l).

Ca se (ii) e= a ( x ) •

We have aa e ~p(x,a (x» for every a and aa ~ a.
a

By (3) a€'1>(x,aa{x» for every a. By (6) ae #p{x,a{x»·



18

i.e., aG-I'Pp(x,O. Thus in both cases

p(x,-O €- a~ a E l/"Pp(x,e). i.e., a e. d'. Thus the

family s: defines a fuzzy topology on X. Last part of

the theorem follows from theorem (1.3.6).

The following examples illustrate that the

condition IL is a complete chain' in the above theorem

is not necessary.

1.3.10. Example.

Let the membership lattice be

1

L = P. · m

<>
The theorem (1.39) holds in this case because, in this

case also if k < V ~ i ~ k ~ £i for some i EIs ince
lE I
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if some ~.' is 1 then the proof is trivial.
~

Case (ii) none of the ~i's, is exclusively from {a,e,l]
or fa,m,l} then, being completeness the proof
trivial.

Case (iii)atherwise some of the fi's are Eand others

are ei ther m or 0, then vf. = 1 and k <vt.
l. l.

~> k = { or m or 0 and the result holds.

The following examples show that the conditions

(5) and (6) are independent from the others and is

necessary in the fuzzy context.

1.3.11. I Example

Let L = [0, 1] .

Define -V x, v.f< ~ , .wap(x,~) = la ELX:a ~ {,}

-t/ x, vtf ~ ~ ) 'lI\? p(x,.e) = fT J
Here ~p(x,e) satisfies (1) -- (5) but does not satisfy

property (6).

Define fuzzy subsets an such that
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a (.x) 1 1 for x and for every n > 2,=2 - - every
n n

n E IN

Van
T

=~

Let ~ = fa E LX:a E V'Fp(x,f) for all p(x,-e) E a J.
Now a E ~, for every n ,n

1 r
In particular p( x , 2)E V an = 2

n

. •. V an i~. Hence :; is not a fuzzy topology.

1.3.12. 11 Example

Let L = [0,1]. Define for every x, for every .{ < ~,

..fVtJP( x , e) =fI }) 'it x , V l ~ ~, y\fp ( x , f) = { a E LX : a >,...t}

We can easily observe that this family satisfies properties

(1) --- (4) and (6) but does not satisfy (5).



21

Define ~ = -la G-LX:a e- #p(x,-f.)' for all p(x,·i)e a}

and let an e ~ where a n( x) = ~ - ~ for every x , n > 2.

1 1 I T
p(x, 2 -il)E 2· But 2 tj~(x, ~ _*)

1.3.13. Remark

Conditions (5) and (6) of theorem (1.3.9) do not

have parallels in ordinary topology. However, they

trivially true when L= fO,I}. It may also be noted

that L, then is a complete chain as well as a join

complete lattice. Theorem (1.3.9) shows that fuzzy

neighbourhood systems is indeed a generalization of

neighbourhood system in ordinary topology. Thus the

characterization theorem generalizes the corresponding

theorem in ordinary topology.



Chapter 11

ASSOCIATED p-SPACE AND SIMPLE REFLECTION

J. Pelham Thomas [26] studied associated regular

spaces and proved that to every topology T on a set X,

there exists a regular topology T*c:T on X such that

the continuous functions from X to a regular space Y

are the same for T and T*. P.M. Mathew [22] introduced

the concept of associated completely regular spaces as

follows:

A closed subset A of X is * closed if there

exists a continuous map f:X --7 [0,1] such that f(x)=O

and f(a)=l for each a E A and x~ A. Complement of *
closed sets are * open. Then T* = {GCX : G is * open}

is a completely regular topology coarser than T.

In this chapter, these concepts are generalized

to the case of any initial property p and associated
)

p-space are defined. The above concepts are reformulated

using the language of category theory and obtained a

characterization of the simple reflective subcategories

of the category of topological spaces.
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For any two topological space X and Y, C(X,Y)

denotes the set of all continuous functions from X to Y.

2.1. PRELIMINARIES

2.1.1 Definition

Let~ be an arbitrary class of topological spaces

and let (X,T) be a topological space. A subset U of X

is called ~* open if there is a continuous function
~.

f:X ~ Y, Y E ~ and an open subset V of Y such that

U = f-I(V). Complements of ~* open subsets are called

~* closed.

2.1 02 Remark

Every ~* open set (~ closed set) is open (closed).

2.1.3 Lemma

Let X,Y be topological spaces and f:X --7 Y be

continuous. If V is ~* open ~* closed) in Y with respect

to a class ~ of topological spaces then f-I(V) is~* open

0e* closed) in X.



=

24

Proof:

Let V be,e* open in Y. Clearly f-l(V) is

open. Since V is~* open, there exists g:Y ~ Z

continuous, Z E;jZ and HCZ, open such that V = g-l(H).

i.e., f-l(V) = f-l(9-1(H))

(g 0 f) -1 (H)

Now 9 0 f :X ---7 Z is continuous such that

=

~ f-l(V) is f:* open in X.

2.1.4 Definition [25]

x --7 Y.}
1. ie!

be a family of

functions from a common domain X to topological spaces

Y.. Then the topology generated by the subbasis
1.

{ f . - l (V . ) : V. C Y.} is called the initial topology
1. 1. 1 1 ie-I

of the family [fi}

2.1.5 Remark

When the family of functions is a singleton {fJ

the initial topology is simply the preimage topology by f.
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2.106. Definition

Let p be a topological property. p is said to

be an initial property if for every family of functions

[f i : X ---+ YiT, whenever each Yi has p, the initial
LEI

space of [fi} also has p ,

2.1.7. Theorem

If ~ is a class of topological spaces which

satisfies an initial property-p, then

T* = tuex : U is ~* open} is a topology on X and

(X, T*)€ e .

Proof:

~ E T* and X € T* (Trivial). Let U1,U2 E T*

then there exists continuous functions fl:X ~ YI,

y = Y1 x Y2 • Since f sa tisfies initial property,;e



26

is productive. Therefore YE". Let f: X ----7 Y be

the evaluation map.

=

2
1t.of)-l(v.)= n (

i=l 1. 1.

2
[f-l(1t:- l(V.) )= n ]

i=1 1. 1.

f- I 2
1t:-l(V.) ]= [ n

i=1 ~ l.

=9 U1n U2 ~ T*

Let {u-} be an arbitrary family of elements of T*.
1 i€ I

Let f., Y., U. be the corresponding functions, spaces
1. 1 1.

(elements in~) and open subsets. Take Y = 1t Y.(YE~)
r 1. ~

and let f be the evaluation map of the family [f i} •

Let Hie Y be such that Hi = YI x Y2 x ... x Vi x Yi+1x ..•

then t! Vi = f-l( L! Hi) E: T*. Hence T* is a topology on X.
1. 1.

Clearly T*C T and T* is the weak topology induced by all

continuous functions in C( (X,T),~). Therefore (X,T*)Ef.
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2.1.8. Corollary

T = r* if and only if (X,T) E~.

2.1.9. Theorem.

Let (X,T) be a topological space. Then the

set of all continuous functions from (X,T) to (Y:U)

for any Y in~ ve as in theorem 2.1.7) is the same

as that from (X,T*) to Y. Further T* is characterized

by this property.

Proof:

Let Y be any element in ~ and f: (X, T*) ----? Y

be continuous. Since T*C T, f: (X, T) ~ Y is also

continuous. On the other hand, let f:(X,T) ~ Y

be continuous. Let U be open in Y. Since Y E ~

by ( 2 • 1 •8 ) U is,,* open in Y • Then f-1(U) is p open

in X (2.1.3). i.e., f-1(U) is open in (X, T*) •

Hence f : (X,T*) --7 Y is continuous. Thus for any

y t~, the continuous functions X --7 Y are the same

for T and T*.

Let T' be any topology on X and (X,T') E ~

such tha t T'c. T• Since T*C T, the identity map
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i : (X,T) --7 (X,T*) is continuous. Since (X,T*)e~,

by assumption the identity map i: (X,T') ~ (X,T*)

is continuous. i.e., T*c T'. Similarly we have T'C T*.

Hence T' = T*.

We call T* as the associated topology and (X,T*)

as the associated p-space.

2.1.10. Definition [12]

A space X is said to be completely regular if for

any point x ~ X and closed set A not containing x, there

exists a continuous function f:X --7 [0,1] such that

f(x) = 0 and f(y) = 1 for all y€ A, where the continuity

is with respect to the usual topology on the unit interval

[0,1].

2.1.11. Definition [25]

A topological space (X,T) is called an R space if
o

it satisfies the condition: x E GET ~ xCG

2.1.12. Definition [25]

A topological space X is called an RI space if it
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satisfies the condition: x p y ? x and y have

disjoint neighbourhoods.

2.1.13. Definition

A space X is zero dimensional if and only if

each point of X has a neighbourhood base consisting

of open-closed sets.

2.1.14. Remark

Regularity, complete regularity, R , RI zeroo ,

dimensionality are initial properties. Hence it may

be noted that the theorem (2.1.7) proved in the general

setting of associated p-spaces is equivalent to several

theorems, one for each of these particular classes.

2.1.15. Theorem

Let~ be the collection of all topological spaces

having an initial property p.

For a space (X,T), T* is the lattice join of all

topologies on X weaker then T and which belong to~.
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Proof:

Let fr } be the collection of all topologies
a a e J'

on X which belong to ft and weaker th.an T. Since (X, T*) E£

and weaker than T,

T* C V T
a a

(1 )

For every a E J, T eT. Then the identity map
0:

i (X,T) ---? (X, Ta) is continuous. By theorem [2.1.9]

i (x,r*) > (x, Ta) is continuous. Hence T C T*a

for every a EJ.

From (1) and (2)

T* = V T
a a

2.1.16. Theorem.

If T1 and T2 are topologies on X such that

TIC T2 ' then T1*C T2* •

(2)
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Proof:

We have TI CT2• Then Tl*C T2• Since T1* is

coarser than T2 , by (2.1.15) Tl*cT2*.

2.2 A DESCRIPTION OF SIMPLE REFLECTION

In this section, we express some of the results

of the earlier section in the language of categories.

We assume that all considered categories are full and

replete subcategories of the category of topological

spaces: TOP.

2.2.1. Definition

Let~ be a class of objects A,B,C

together with

€obj tA)

(1) a family of mutually disjoint sets {Mor(A,B)}

for all objects A,S E Obj~) whose elements

f,g,h, ••• EMor (A,S) are called morphisms and

(2) a family of maps

[Mor (A,B) x Mor(B,C) '3 (f,g) ~gof E. Mor(A,C)}

for all A,B,CEobj(~), called compositions. ~ is called
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a category if it satisfies the following axioms:

(i) Associativity: For all A,B,C,D e obj(~) and all

f E Mor(A,B), 9 € Mor(B,C) and h E Mor(C,D),

we have ha(gof) = {hog)o f

( ii) Identity: For each obj ect A € ob.i<tA) there is a

morphism lA E Mor(A,A), called the identity such

that we have

felA = f and IA~g = 9 for all a,e 6 obj{A) and

all f E. Mor(A,B) and 9 e Mor(C,A).

2.2.2. Definition

A category (8 is called a subca t eqo rv of a

category t,A if

( i ) 0 b j (d3) cob j (.A )

( i i ) Mo r (B c: Mo r (~)

(iii) The composition of morphisms inm coincides with

the composi tion of the same morphisms in ~.

(Lv) For every object B of ta, the identity morphism

on B coincides wi th tha t in ~.
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2.2.3 Definition

A category is said to be replete if it contains

all isomorphic images of its members.

2.2.4 Definition

A subca tegory (!{ of a ca tegory tA is said to be a

full subcategory if Mo~(A,B) = Mor~(A,B) for each pair

of objects A,B in ffi where MO~(A,B) denotes the set of

all morphisms in~ which have domain A and range 8-

2.2.5. Definition

A subca t eqo rv R of a category.fA is reflective

in ~, if for each obj ect X in ~ there exists an ob~ect X

in (R and a morphism ~: X ----7 X such that given any

y E ~ and amorphism f:X -7 Y, there exis ts a unique

morphism g: X --7 y such that the diagram commutes.

x-------- X
/

./

/
/

Here X is called the reflection of X in~.
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2.2.6 Definition

A reflective subcategoryeR of TOP is said to be

simple reflective subcategory of TOP if in the above

definition each ~ is an one-one onto map i.e. a

bijection.

For any initial property p, the collection of

p-spaces forms a category with continuous functions as

morphisms. The category is denoted as d'. This category

is shown to be simple reflective in the category of

topological spaces.

2.2.7 Theorem

The subcategory @ of p-spaces (the class of

topological spaces which satisfies initial property-~)

is simple reflective in TOP. Here the reflection is the

associated p-space.

Proof:

By theorem (2.1.7 and 2.1.9) for each (x,r) E TOP,

we have (X,T*) in ~ such that the continuous functions X

to Y, Y E (J> are the same for T and T*. If we take ex
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as the identity function from (X,T) to (X,T*), then

we have for every continuous f:X --.., Y, Y E ffJ , there

is a unique f : (X, T*) ----7 Y ( f = f itself) such that

f =1 0 eX. By definition (2.2.5) cP is a simple

reflective 5ubcategory of TOP and that (x,r*) is the

simple reflection of (X,T) in dP.

The following theorem establishes that p-spaces

are the only simple reflective subcategories of TOP.

2.2.8. Theorem

Let~ be a simple reflective subcategory of TOP.

Then -ft is the ea tegory of p-spaces. L, e., ~ =cP

Proof:

If $ is a simple reflective subcategory, then the

reflection morphism is a bijection. The reflection of

any space may be taken to have the same set with a weaker

topology so that the reflection morphisms are identity

maps. If (X, T) is the reflection of (X, T) in ~ , then

we have C((X,T);~) = C((X,T),-'S). i.e., T is the weak

topology induced by all continuous maps from (X,T) ~ ~
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such that (X,"f) E p. Hence ~ is the class of p-spaces.

Simple reflection of an object in TOP is characterized

in the following theorem.

2.2.10. Theorem.

Let~ be a simple reflective subcategory of TOP

and (X,T) E TOP. (x,r) is the simple reflection of (X,T)

if and only if T is the lattice join of all topologies on X

weaker than T which belong to ~.

Proof:

( ~) Since (X, T) is the simple reflection of (X, T) ,

(X, T) E ,e. But T = T* (2.2.9). A1so by (2.1.15)

T* is the join of all weaker topologies on X which

belong to~. Hence T do so.

( ~) Given T = 'IT , TaC T and (X,T a ) E e.
a a

Since~ is simple reflective, by (2.1.6) ·and

(2.2.5) and (X, VT ) can be got as the subspacea

of the product of the spaces (X,T ).a
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(x, 'ITa) E ~

(X, T) E ~.

Let (X,T ') be the simple reflection of (X,T) in~.

Then (X,!) = X is finer than the reflection of X in~.

i.e., T'eT. But i: (X,T) ---7 (X,T) has to split

through the reflection of X. Hence T = T' •

Remark:

We note that the simple reflection (X,T) of (X,T)

in a simple reflective subcategory Lnduc es a map T --7 T

from the lattice of topologies onto itself. The map

taking T to T is order preserving in the lattice of

topologies, since, if 11,T2 are two topologies on X such

that T1CT2 • Then by (2.1.16). T1* CT2*
i.e.



Chapter III

ASSOCIATED FUZZY COMPLETELY REGULAR SPACES

A study on associated completely regular spaces

was made by P.M. Mathew [22a]. The study was further

carried out in [22b]. A fuzzy analogue of the results

are made in this chapter. Fuzzy completely regular

spaces was introduced and studied by Hutton [10,11].

A different version of fuzzy complete regularity is

available [15]. However, we follow the definition

given in [11].

Through out this chapter 'L' denotes a complete

and distributive lattice with order reversing

involution: 0

301. DEFINITIONS

Concepts that are required for the study in this

chapter, are defined below.

3.1.1. Definition [11]

A fuzzy unit interval [0,1] (L) is the set of all

monotonic decreasing maps A: R ) L for which
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for t < 0

for t > 1, t E~, after the identi-

fication of ~: R --7 Land J.1 : R ~ L

if A( t - ) = ~(t -) for t e R

~(t + ) = ~(t -) for t e R, where

A( t + ) = V /\ (s); 1\( 5 -) = 1\ A( s )
s>t s<t

We define fuzzy topology on [0,1] (L) as the topology

generated by the subbase

tLt' Rt I t ER} , where Lt : [O,l](L) ~ L

and Rt : [O,l](L) ~ L defined by

Lt( >t) =?\ (t _) 0

R
t

( 7\ ) = A (t +)

This topology is called the usual topology for [O,l)(L).

[O,l](L) and its topology reduces to [0,1] and its

usual topology for L = {O,l}_
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3.1.2. Definition [11]

A fuzzy topological space (X,&) is fuzzy

completely regular if for each a e ~ there is a family

of fuzzy sets tUi: i E r}and a family of maps

Y u i = a and
1.

3.1.3. Definition

If (Y,y) is a fuzzy topological space and

f: X --7 Y is a function, then {f-l(b) . b e: y} is.
a fuzzy topology on X and is called the preimage

fuzzy topology of y by f.

3.1.4. Definition C~

A map f:X --7 Y between fuzzy topological

spaces (X, ~) and (Y,y) is said to be fuzzy continuous

if f-l(v)E-~for each VEY.

3.1.5. Definition

A property p is said to be preimage invariant

property if whenever a fuzzy topological space Y has

P, the preimage space also has p.
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3.2. FUZZY COMPLETELY REGULAR SPACES

Properties of fuzzy completely regular spaces

are studied in this section. The lattice theoretic

properties of the class of fuzzy completely regular

spaces are also studied.

3.2.1. Theorem

If (Y,y) is a fuzzy completely regular spa ce

and f:X---7Y is a function, then 6* ={f-l(b):bE-Y}

is a fuzzy completely regular topology on X.

i.e. Fuzzy complete regularity is pre-image invariant.

Proof:

0, I ~ t *

Let a l,a2 e &*. Then a l = f-l(bl), a 2 = f- l(b
2)

f-l(b
l)

1\ f-l( b
2)

= f-l(b
l/\

b
2)
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Let iai : i G r} be an arbitrary family of members

of b. Then a. = f-1(b.) for some bl.. E y.
l. 1.

Va. = V f-1(b.) = f-l( V b.)
i 1. 1 · l.

1 1.

Since Vb. E y, Va. E ~ * .
• 1. c,' 1.
1.

Hence &* is a fuzzy topology on X.

Let a E S*. Then a = f-1(u) for some u cS v ,

Since (Y,y) is fuzzy completely regular, there exists

fuzzy sets ki such that u = Vk. and fuzzy continuous
· 1.1.

functions gi: (Y,y) ~ [0,1] (L) such that

ki(y) ~ gi(y)(l-) ~ gi(Y) (0 -: ~ u(y) ···_··_.(1)

for every Y E Y

for every i

Then (2)

Let h. = g. 0 f
1 1.

f( x) e Y.
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By (l ) kif ( x ) ~ 9 i f ( x )( 1 -) ~ 9 i f ( x )(0+) ~ u f ( x ) ,

since f(x)E Y.

i.e. f-l(ki)(X) ~ h(x)(l-) ~ n (x)(O +) ~ f-l(u)(x)

= a(x) (3)

i.e. for a G"a* there is a family of fuzzy sets

{f-l(ki)j and a family of maps [hi:(X, ~*) ~ [O,l](L)}

such that v f-l(k.) = a and
• 1.1.

for every x,
for every i.

i.e. ~* is fuzzy completely regular.

3.2.2 Theorem [15]

Fuzzy complete regularity is productive.

A unique fuzzy topological space associated with

a given fuzzy topological space is constructed and

proved that it is fuzzy completely regular.
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3.2.3. Theorem

If b is a fuzzy topology on X, then there is

a unique fuzzy completely regular topology er *,

coarser than b such that if Y is any fuzzy completely

regular space, the fuzzy continuous maps (X,b) --7 Y

are the fuzzy continuous maps (X, f*) -7 Y.

Proof:

Define S * to be the family of all a e: 6 for

which there exists a fuzzy completely regular space Y,

a fuzzy continuous map f: (X, ~) T7 Y and a fuzzy

open subset b of Y for which a = f-l(b)

Claim: b * is a fuzzy topology.

0, I E 6* (trivial)

Letal,a2 e e5 *· LetY =Y l xY2 (Y is fuzzy

completely regular) and f:(X,O) -) Y be such that

f {x ) = (fl(x), f 2(x»

a ll\a2 = f1l(b l) 1\ f;:1(b2), where a l = f1l(b l)

a2 = f 2l(b
2 )

= (1t
l

0 f)-l(b
l) A (1t

2
0 f)-le b2)
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Let fa.} be an arbitrary family of elements
l ~ i E I

of ~ *. Let f. .v, ,b. be the corresponding fuzzy maps,
1. ]. 1.

fuzzy completely regular spaces and fuzzy open sets.

Take Y = 1tY. and let f: (X, b) -7 Y be such
L' 1.

that f(x) = (f.(x» ..
]. ].

Then f is fuzzy continuous.

Let hi be a fuzzy subset of Y such that hi = Y1 xV 2 x •••

x b. x •••
~

Then V a.
i 1.

=

~* is a fuzzy topology on X.

Clearly ~ * c. ~.

Let a E S*. Then there exists a fuzzy continuous

function f: X --7 (Y,y), (Y,y) fuzzy completely regular

and a fuzzy open subset b of Y such that a = f-1(b).
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Since (Y,y) is fuzzy completely regular and bEy

implies that there exist a family of fuzzy subsets

{Ui: i E:I} and a family of maps [9i:(Y'Y) ~ [O,l](L)J

such that YUi = band

Ui(Y) ~ 9i(Y) (1 -) ~ 9i(Y)(0 +) ~ bey)

for every i E I

for every y G Y

(I )

But a =

Since f(x) E Y and (1) is true for all Y E Y,

Ui f(x) ~ 9i f(x)(l -) ~ 9 i f(x)(O +) ~ bf(x)

for every i G I

i.e. f-l(ui)(x) ~ hi(x)(l -) ,< hi(x) (0 +) ~ a(x), (11)

for every x Go X
for every i €. r

i.e. a = V f-l(u.) and (11) shows that cS * is fuzzy
. l.
l.

completely regular.
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Let Y be a fuzzy completely regular space

and f: (X,b) --7 Y be fuzzy continuous. Let a be

fuzzy open in Y, then by def ini tion of a*, f- l (a)

is fuzzy open in 6 *.

i.e. f: (X, cS *) ~ Y is fuzzy continuous. On

the other hand, if g: (X, ~*) --7 Y is fuzzy continuous.

Since C~ d*, 9 : (X, ~) --7 Y is also fuz zy con tinuous.

Thus for any fuzzy completely regular space Y, fuzzy

continuous maps from X to Y are the same for 6 and ~ *

Let d' be a fuzzy completely regular topology

on X, weaker than &. Sinc; &* c 6, the identity map

i : (X, b) ~ (X, ~*) is fuzzy continuous. Since

(x , S*) is fuzzy completely regular;by assumption,

the identity map i : (X, 6') ~ (X,6*) is also fuzzy

co nt lnuous ,

i.e. ( 1)

Conversely &'ct, i (X,6) ~ (X, b') is fuzzy

continuous. Since (X, ~') is fuzzy completely regular

and by assumption, i : (X, &*) ~ (X, £') is also

fuzzy continuous.

i.e., S' c ~* (2)
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Hence from (1) and (2) ~ I = ~ * .

We call (X, ~*) as the fuzzy completely

regular space associated with (X, ~ ) •

3.2.4 Corollary

~ = ~ * if and only if Sis fuzzy completely

regular.

Two characterizations of the associated fuzzy

completely regular topology is given below.

3.2.5 Theorem

For a fuzzy topological space (X, a), a* is

the weak topology induced by all fuzzy continuous

maps from (X, 6) ---7 [0,1] (L).

Proof:

The proof is straight forward from the

definition.

3.2.6 Theorem

For a fuzzy topological space (X, ~), ~* is

the least upper bound of all fuzzy completely regular

topologies on X weaker than [.
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Proof:

Let ita} be the collection of all fuzzy
a e I

completely regular topologies on X weaker than er .
Since b * is fuzzy completely regular and weaker than6,

61t:C V ~ a
a

(1)

For every a El, ba c.. 6'. Then the identi ty

map i: (X, d) ~ (X, 6a ) is fuzzy continuous.

By theorem (3.2.3) i: (X, b*) ---7> (X, Da ) is

fuzzy continuous

for every a E I

( 2)

From (1) and (2),

3.2.7 Remark

(* =
C

If ~1 and ~2 are fuzzy topologies on X such

that f 1 CS:2' then d *ct *I 2.
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Proof:

Since ~l*C ~l' 61* is a fuzzy completely

regular topology weaker than S- 2. But by (3.2.6)62*

is the join of all fuzzy completely regular topologies

weaker than it, therefore, ~ 1*c.~2*.

Now we shall show that fuzzy complete regularity

is sup invariant.

3.2.8. Result

Join of an arbitrary collection of fuzzy completely

regular topologies on a set X is fuzzy completely regular.

Proof:

Let [a } be a collection of fuzzy completely
a a <::1

regular topologies on X. Let $ = v J ·a a
By (3.2.6)

~* is the join of all fuzzy completely regular topologies

weaker than ~. Since d" ex C cS and aa's are fuzzy

completely regular Sex c &* . i.e., ~ca*. But always

S* ca. Hence a= &*, a fuzzy completely regular

topology.
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3.2.9. Remark

The collection of all fuzzy completely regular

topologies on a set forms a complete lattice under the

usual ordering.



Chapter IV

A DESCRIPTION OF SIMPLE REFLECTION IN THE
CATEGORY OF FUZZY TOPOLOGICAL SPACES

This chapter is devoted to the study of simple

reflective subcategories of the category of Fuzzy

topological spaces FTOP. The properties of fuzzy

completely regular spaces enable us to construct fuzzy

associated p- spaces. We obtain this as a generalization

of the concepts that we have introduced in the second

chapter. Some characterizations of the simple

reflective sub categories ofFTDP are obtained and

their properties are studied.

4.1 ~*- FUZZY OPEN SETS

A method to consruct an associated fuzzy topology

is presented. For this~* fuzzy open subsets are

introduced corresponding to a given class ~ of fuzzy

topological spaces.

4.1.1 Definition

Let (X, &) be a fuzzy topological space and ~ be

an arbitrary class of fuzzy topological spaces. A fuzzy

subset 'a' of X is called ~* fuzzy open if there is a
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fuzzy open subset "b I of some Y in,. and a fuzzy

continuous function f:X ~ Y such that a = f-l(b).

4.1.2 Remark

Every ~~ fuzzy open subset is fuzzy open.

NO'N we shall show that inverse image of a ~*

fuzzy open subset is fl~ fuzzy open.

4.1.3 Theorem

Let (X, a), (Y,y) be fuzzy topological spaces

and f:X ---7 Y be fuz zy continuous. If t-a' is Jt,* fuzzy

open subset of Y then f-l(a) is a ~* fuzzy open sub­

set of X.

4.1 04 Definition [17]

Let X be a set,{(Y i' Yi)}.be fuzzy topological
"-

spaces. The weakest fuzzy topology on X making all

the functions f.: X ~ Y., i Eo I fuzzy continuous is
1. 1.

called the initial fuzzy topology of the family of

functions.



54

We now introduce the fuzzy analogue of initial

property.

4.1.5. Definition

A fuzzy topological property 'pt is said to be

a fuzzy initial property if for every family of

functions f .: X --7 Y. , whenever each fuzzy
~ 1.

topological space Yi has p, the initial space of [fi }

also has p.

4.1.6. Remark

Fuzzy ini tia 1 property ~ productive.

The class of fuzzy topological spaces which

satisfies a fuzzy initial property p is denoted as

fip(p). An example is given below.

4.1.7. Theorem

Fuzzy completely regularity is a fuzzy initial

property.

Proof:

Fuzzy complete regularity is preimage invariant

and sup invariant [(3.2.1) and (3.2.8)]. The initial



55

fuzzy topology induced by {fit is also the

supremum of the preimage fuzzy topologies by f ..
1.

Corresponding to any fuzzy topological space,

and an initial property, a unique fuzzy initial

property topology can be associated with it.

F e [ (X, ~ ), (Y, ~ )] d e no t e s th e co 11 ec t ion 0 f f uz zy

continuous functions with domain X and codomain Y.

4.1 08. Theorem

Let (X, S) be a fuzzy topological space and 1!

be the class of fip(p), determined by an initial

property 'pi. Then there is a unique fuzzy topology

b* weaker than ~ such that (X, 6'*) E £and for any

(y , ~) in;C, F C [ (X, b ) , (y ,13)] = F e [ (X, 6' *) , (y ,13) ] •

Proof:

Define &* = {a E LX:a is ~* fuzzy open}

(5, I E ~ * choosing X wi th indiscrete fuzzy

topology and f as the identity function.

Let a l' a 2 E ~ * · Then there exist fuzzy open

subsets bl,b2 of some Yl'Y2 in ~ and fuzzy continuous

functions f l,f2 on X such that a l = fil(b l) and
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a2 = f;1(b2). Then the fuzzy topological product

Yl x Y2 E ~ [4.1.6]. Let f = (fl,f2) be the fuzzy

evaluation map defined in (X, £).

a I 1\ a2 = fll (bl) I\. f- l (b2)2

= (nlo f)-l ( b1) /\ (1t2 0 f)-l (b2)

= f- l (1ti l ( bl » 1\ f- l (n; 1( b2»

= f- l [1tl
l(b

l) /\1t;1(b2)]

Let {a.? be an arbitrary family of elements
l.Ji E I

of S*. Let f i , Vi' bi be the corresponding fuzzy

con tinuous func tions} .lements in}~ and fuzzy open subsets

such that a. = f~l(b.). Let Y be the product space
1. 1. l.

1fy. and f be the evaluation map (f.(x). defined
• 1. 1. 1-
1.

on (X, f), Ye:" [4.1.6].
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= 1\ u., where
• 1.
1.

={bj for i = j
u.

1. Y. for i 1= j
1.

Clearly kj's belong to Y.

Then Va. =
c 1

Hence &* is a fuzzy topology on X. Further ~ *c~,
follows from remark (4.1.2).

Clearly b * is the weak topology induced by all

fuzzy continuous maps in F C! [(X ,&),~ ].

.. . (x, S*) E f; •

Now we shall show that

F C[(X, r) ,V)] = F c[(X,~*) ,V] for any YE ~

Let f: (X, ~ *) --t Y be a fuz zy continuous

function. Since b*C.d, f: (X, S") ~ Y is also fuzzy

continuous.

Let g: (X, ~) ---1' Y be a fuzzy continuous

function and b a fuzzy open subset of Y. Then by

(4.1.3) g-l(b) is z; fuzzy open in (X, a). i.e.,

g-l(b) is fuzzy open in (X, S*).
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i.e., g: (X, a*) --7 Y is fuzzy continuous.

Thus for any Y E Jl, the fuzzy continuous function

X ---f Y are the same for ~ and a*. It remains

to show tha t ~ * is unique.

Let cl I be any fuzzy topology weaker than 6'
with (X, ~I) E " and Fe! [(X, ~ ') ,Y] = F C'[(X,~) ,Y]

for every YElt. Since S*c ~, the identi ty

function i : (X, 6) ~ (X, a*) is fuzzy continuous.

Since (X, ~ *) E: ~, by assumption the identity function

i : (X, b') ---1- (X, 6*) is also fuzzy continuous.

i. e. , (l)

Since S'e a, i (x , S) --? (x , d') is fuzzy

continuous. Since (X, ~')e,., by first part of

theoremJi : (X, a*) ~ (X, 6I) is also fuzzy

t - - (', <'*con anuous . J.. e., 6 {I! d (2)

Hence

i.e., e:5 * is unique.
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4.1.9 Definition

For any fuzzy topological space (X, b) and

a fuzzy initial property p, the ~ * obtained in

the theorem(4.I.a)is called the associated p-fuzzy

topology of ~ and (X, 6*) is called the associated

fuzzy p-space.

4.1.10. Remark

For a fuzzy topological space (X, d), ~ * is

the lattice join of all weaker fuzzy topologies on X

which belong to /l.

4.1.11. Remark

If 61' ~ 2 are fuzzy topologies on X such tha t

~ 1 C ~2 ' then a 1*c ~2* •

4.2 SIMPLE REFLECTION IN FrOp

The class of fuzzy topological spaces with fuzzy

continuous functions as morphisms form a category and

is denoted as FTOP. In this section, simple reflective

subcategories of FTOP is characterized in terms of

associated fuzzy topological spaces.
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4.2.1. Theorem

Let p be a class of fip(p), then~ is simple

reflective in FTOP and the simple reflection of any

fuzzy topological sp2ce (X,~) is the associated

fuzzy topological space. Conversely, any simple

reflective subcategory of FTOP must arise only in

this way.

Proof:

For each (X, ~ ) E FTOP, we have

(X, a*) G " with F c [(X, cl) ,Y] = F c [ (X, d*) ,Y]

for all YE fl by (4.1.8). If we take "x as the identity

map from (X, ~) to (X, S*), then we can see that for

every f: X~ Y, Y E jl, there is a unique

f : (X, ~*) ~ Y (f = f itself) such that f = f oeX•

Since eX is a bijection it follows that~ is a simple

reflective subcategory of FTOP and that (X, a*) is

the simple reflection of (x,~) inf.

Conversely, let~ be a simple reflective subcategory

of FTOP. Then the reflection morphism eX is a bijection.

Let (X,~) be the simple reflection of (X,d) in,. Then
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(X, 6) is homeomorphic to a weaker fuzzy topology

on X. By the definition of reflection then, any

fuzzy continuous function f: X ---7 Y, Y E ~ spli ts

uniquely through this "x and hence f: (X, d) -7 y

is also fuzzy continuous. Thus 6 is a weaker fuzzy

topology having the same family F e [(X, ~ ) ,.e] of

fuzzy continuous functions. Since 8 is the weak

topology induced by the family of fuzzy continuous

maps in Fe[(X,~),~] and (X,a)e f,jl is the class

of fip( p) • Moreover ~ = S*.

It is shown that for the case of simple

reflective subcategory remark (4.1.10) can be further

strengthened.

4.2.2. Theorem

Let(Z be a simple reflective sUbcategory of

FIOP. Let (X, ~) E FTOP and c c. a. (X, S) is the

simple reflection of (X, ~) if and only if 6 is

the lattice join of all weaker fuzzy topologies on X

which belong to ~.
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Proof:

( '9) If ~ is simple reflective and (X, 6 )

is the simple reflection of (X, ~)

then I" =~* (4.2.1). By (4.1.10) [*

is the lattice join of all weaker fuzzy

topologies on X which belong to ~ •

(4= ) Since~ is simple reflective subcategory

it is the class of fip(p) (4.2.1). Let

(X, ~) E: FTOP and d = V aa' S" a C ~
a

and (X, &a) G~. Since ~ is the class of

fip(p), (X, V$a)6.~. i.e. (X,~)E~.
a

Let (X, d') be the simple reflection of (X, r: )
in ~. Then SIc. ~. By the def ini tion of s impl e

reflection, the identity function

r:
i: (X, (j ) ) (X, & ) has to split through the

reflection of (X, r). Hence 6 = d'
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Remark

The simple reflection (X,5) of (X, S)
in a simple reflective subcategory induces a

map ~~~ from the lattice of fuzzy topologies

onto itself. We note that this map is order

preserving and idempotent.Also the class of fuzzy

topological spaces on a set X which satisfies

a fuzzy initial property-p forms a complete lattice

under the usual ordering.



Chapter V

COREFLECTIVE SUBCATEGORIES IN Frop

In this chapter we present some applications

of category theory in Fuzzy topology based mainly

on the notion 'coreflection'. The coreflective

5ubcategories of the class of fuzzy topological

spaces are considered in the works of Lowen and

Wuyts [20]. Their results do not serve for our

purpose. We give an internal description of the

coreflection in this chapter. This was motivated

by the work of V. Kannan [13].

The notion of topological coreflections are

discussed in the papers of Herrlich and Strecker

([8], [9]). V. Kannan [13] characterized the

smallest coreflective 5ubcategory of the category

of topological spaces TOP, containing a given 5ub­

category ~ of TOP.

We introduce the class of induced fuzzy

topological spaces I(~), where ~ is an arbitrary

class of fuzzy topological spaces. The study of

induced fuzzy topological spaces provides the ground
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work for investigating properties of coreflective

subcategories of the category of fuzzy topological

spaces FTOP. We obtain coreflective hull of hand

some results related to fuzzy topological properties.

Also we discuss the behaviour of coreflection of

fuzzy topological space in the lattice of fuzzy

topologies.

5~1 INDUCED FUZZY TOPOLOGICAL SPACE

Corresponding to any class of fuzzy topological

spaces, we introduce a class of induced fuzzy

topological spaces.

Let F c [11 ,X] denotes the family of all fuzzy

continuous functions with domain in kand codomain,

(X, ~ ). F C [<j:f ,X] induces a fuzzy topology on X.

5.1.1. Theorem

Let ~ be a class of fuzzy topological spaces

and let (X, ~) be a fuzzy topological space. Then

the family

f-l(a) is fuzzy open in the

domain of f for each f in F ~ [11 ,X]

is a fuzzy topology on X such tha t 6'c 5 •
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Proof:

0, 1 <::: d (Trivial)

2
Since t;;l( /\ a.) =

to' i=l 1

fuzzy open in X~,

2
I\. a i E '6. That is a 1 I\a2 E d.
i=l

Let V f;l(a ),
a tJ a

fuzzy open in X~. Therefore V a E: 5"a a

Hence b defines a fuzzy topology on X. Clearly

5.1.2. Remark

The members of ~ are called induced fuzzy open

subsets of X.

5.1.3. Definition

A fuzzy topological spa ce (X, 6) is said to be

induced by Mif every induced fuzzy open subset of X

is fuzzy open.
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5.1.4. Notation

I(~) denotes the family of all fuzzy topological

spaces induced by h .

5.1.5. Example

Let h be the family of all fuzzy discrete spaces.

Then a fuzzy topological space X is induced by k if and

only if X is fuzzy discrete.

5.1.6. Theorem

A fuzzy topological space (X, ~) is induced by 11

if and only if it has the strongest topology having

the same family of X-valued fuzzy continuous functions

from members of H.

Proof:

( y ) Let (X, ~) be induced by 11. Let dl be a

fuzzy topology such tha t ere dI and

FC[<J; ,(X, SI)] = Fe[ 11, (X,d)]

We have to show tha t SI = b".

Let a E ~ I • Then f- l ( a) is fuzzy open in the

domain of f for each f in Fe [H ,(X'~I)]=FC!.[1;,(X,~)]

Since (X, ~) is induced by 11 , a is fuzzy open in X.
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- { X-1Consider 6 = a EL: f (a) is fuzzy open
in the domain of f for each f

in Fe [ 11 , (X, 0")] J
This family forms a fuzzy topology by [5.1.1] and de cl

~ T -1() ·Let a Eo. hen f a is fuzzy open 1n the domain

of f for each fin FC![<t1 ,(X,~)]. But

F C[1:i', (X, ~)] = Fe. [t ,(X, e5 )]. This implies that f is

fuzzy continuous even when X is given a finer fuzzy

topology. Hence by the given condition a is fuzzy

open in X. Thus ~= "i. Le., (X, ~) is induced by err •

5.1.7 Theorem

If (X, ~ ) G t then (X, ~) is induced by '11 •

i.e., (X,~)E 1(11).

Proof:

Let (X, d')Et;" and let'aJbe an induced fuzzy open

subset of X. Now the identity map

i (X, b) ---7 (X, &") E F C (~, X)

Since a is induced fuzzy open, i-l(a) is fuzzy open

in X. That is, a is fuzzy open in X. Thus any induced

fuzzy open subset of X is fuzzy open in X. Hence X is

induced by 11 •
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Concepts that are required for the study are

defined below.

5.1.8 Definition: Quotient Fuzzy Topology [36]

Let X be a space of points. Let R be an equi­

valence relation defined on X. Let X/R be the usual

quotient set, and let p be the usual projection from X

onto X/Re If (X,~) is a fuzzy topological space,

the quotient fuzzy topology is the largest fuzzy

topology such that p is fuzzy continuous.

5.1.9 Definition

Let (X a , ~a) be fuzzy topological spaces. Then

the coproduct or fuzzy topological sum is denoted by

® Xa and is defined as

EB Xa = Ia: a /\ Xa is fuzzy open in Xa} •

i.e. A fuzzy set is open in the coproduct if and only

if it's restriction to each component is fuzzy open

in that component.

Now we will try to present some results on the

basis of the above definitions.
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5 01.10. Theorem

Let (X,J) G. I(~) and p: (X,£)~ (V,y)

be a fuzzy quotient function. Then (Y ,y) E 1(11).

Proof:

Let 'a' be an induced fuzzy open subset of Y.

Then f-l(a) is fuzzy open in the domain of f for each

f in F C [~ ,Y]. We want to show that a is fuzzy open

in Y. Since p: X~ Y is a fuzzy quotient function,

th t -1 ( ) ·we need only to show a p a 1S fuzzy open in X.

Let g Go Fe (k ,X). Then p 0 gGFC (t; ,Y). Since a is

induced fuzzy open in Y, (p og)-l(a) is fuzzy open

in the domain of pogo i.e., g-l(p-l(a» is fuzzy

open for every 9 E Fe. (~ ,X) • Thus p-le a) is induced

fuzzy open in X. Since X is induced by ~ and p is a

quotient function, a is fuzzy open on Y. Thus Y is

induced by 'H 0

Now we prove that I(~) is closed under the

formation of 'sums'.

5.1.11. Theorem

Let £X } be a set of fuzzy topological
a aGJ

spaces such that Xa E I (~) for every a. Then
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Proof:

A fuzzy subset of X is induced fuzzy open

if and only if a I\X a is induced fuzzy open in Xa

for every a E J. a I\Xa is induced fuzzy open if

and only if a r. Xa is fuzzy open in Xa for every

aEJ (since each Xa e I(CfI». That is, a is fuzzy

open in X. Thus X 6- I~ ).

5.1.2. Theorem

A fuzzy topological space (X,cr) is induced

by t if and only if X is a quotient of a sum of

members of ~.

Proof:

( 9» Let X be induced by ~ and a be an induced

fuzzy open subset of X. Then there exists a fuzzy

continuous function f G. F<! (If ,X) such that f-1(a)a a

is open in the domain 0 of f. Thus to each induceda a

fuzzy open a, there is a fuzzy topological space 0 E c:r.t'
a

and a fuzzy continuous function fa:D a ---7 X such

that f-1(a) is open.
a Let E fa = p with domain

a
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E D = D. Also plD = f for every a. Since
a a a a

each f is fuzzy continuous, p is fuzzy continuous.a

Now we can show that p: D~ X is a fuzzy quotient

function.

Let tb' be fuzzy subset of X, such that p-l(b)

is fuzzy open in D. i.e., p-l(b) 1\ Db is fuzzy open

-1 ( ) -1() .in Db. But p b" Db = f b b, a s fuzzy open in Db.

Since X is induced by H b is fuzzy open in X. Hence

p is a quotient map and X is a quotient of a sum, of

members of ttt •

(4 ) Let X be a quotient of sum of members of k .

Then by (5.1.10 and 5.1.11) X is induced by k.

5.2. OOREFLECTION

Here we translate the study of the earlier

section into categorical language.

5.2.1 Definition

A subca tego ry (B 0 f a ca tegory LA is sa id to

be coreflective in \fA if, for each obj ect X in \A
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there exists an object X in m and a morphism

eX: X --? X such that given any Y in QB and a

mo rphi srn f: Y~ X, there exists a unique morphisrn

g: y -7 X such that the diagram commutes.

9 f

Y

In the course of our investigation the following

results are obtained.

5.2.2. Theorem.

Let ~ be any family of fuzzy topological spaces.

Then I( 11), the family of induced fuzzy topological

spaces is coreflective in FTOP.

Proof:

Let (X, ~ ) E: FTOP and

induced open subsets of X.

b c 6

.--
6 be the family of all

Then

(5.1.1)
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Let i:(X, 'i) ~ (X,S") be the identity map.

By (5.1.6) FC[(Y,y), (X,~)] = F~[(Y,y),(X,&)]

Let a be induced fuzzy open in (X,o). Then f-l(a)

is fuzzy open in (Y,y). i.e., a is induced fuzzy

open in (X, &) .

i.e., a is fuzzy open in (X, ~).

Hence (X, ~ ) e I (<t;) .

Now let (Z,~) E- r( 9:1) and

let g: (Z,~) ---1 (X,~) be

fuzzy continuous. Let a E. S .

i.e., a is induced fuzzy open

in (X, ~). Since (X, ~) E I(~),

a is fuzzy open in (X, ~ ). !.

i.e., g-l(a) is fuzzy open in (Z,~).

g: (Z,~) ---7 (X, a) is fuzzy continuous.

Thus the diagram commutes. Uniqueness condition is

trivially satisfied.

Hence I(~ ) is coreflective in FrCp.
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5.2.3. Theorem.

<t1 is coreflective if and only if t= I( 91).

Proof:

( =9) Let (X, S ) E l(t') and let (X, &) be its

coreflection in 91. Consider the identi ty

map i: (X, ~) --7 (X, a) as the coreflection

map. Then by the definition of coreflection

[5.2.1], f:(Y,y) --7 (X,S) with (Y,y) E 11
splits uniquely through i and hence f: CY ,y)-7 (X, ~ )

is also fuzzy continuous. Thus ~ is a finer

fuzzy topology in X having the same family of

fuzzy continuous functions. Hence by (5.1.6)

~ =~. But (X,6)E f.=1 So (X, ~) E: Cf1 •

Thus l( t)C ~. But by (5.1.7) ~ C 1(11).

Hence 11 = I ( 'l1 ) •

(~) Let <t1 = l( ~). By (5.2.2) l(~) is coreflective.

This implies that 11 is coreflective.

5.2.4. Theorem

l( ~) is the smallest coreflective subca t e qo rv

of FrOp containing ". •
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Proof:

Let G be a coreflective subcategory of

FTOP containing ~ such that Gel( ~ ) (1)

We shall show that I( 91) = G.

Since G is coreflective I(G) = G.

But FCG ~I(F) C I(G) = G.

i.e., I(F) C G

Hence from (1) and (2) I(~) = G.

(2)

Now we characterize coreflective subcategory

of FTOP using fuzzy topological properties.

5.2.5. Theorem

~ is coreflective in FTOP if and only if ~ is

closed under the formation of sums and quotients.

C ;» 1:; is coreflective if a ne only if 11 = I(~)

by (5.2.3). But l( 91) is closed under the formation

of fuzzy sums and fuzzy quotients [5.1.10 and 5.1.11].

This implies that ~ is closed under the formation of

fuzzy sums and fuzzy quotients.
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Conversely, ~ is closed under the formation

of sums and quotients. But, by (5.1.7) he I(t').

Also l( ')=:) is the smallest family having above

properties. Then ~ coincides wi th I (~ ) . Hence ~

is coreflective in FrOp.

Here we discuss the behaviour of coreflection

in the lattice of fuzzy topological spaces. The

coreflective subca tegory ~ induces a function a~ y
from the lattice of fuzzy topologies on X onto itself.

5.2.6. Theorem

The induced map ~I~ & is order preserving,

and idempotent on the lattice of fuzzy topologies

on X.

Proof:

Let ~ 1 C. t 2- We want to show that ~ 1 c. f 2 ·

i (X, ~2) ~ (X, SI) is fuzzy continuous since

~ 2 .::> ~1 - Since er1 C ~,

i --.,~ (X, cl1) is fuzzy con t Lnuous ,

But (X, ~ 2) c= 11" - Therefore by definition of coreflection
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-----.) (X, b1 ) is fuzzy continuous.

Thus ~1 C ~ 2 •

Since 6 c & , 0- c, s ( 1)

Since ~ Cd, i : (X, 0-) ~ (X,6) is fuzzy

continuous. Since (X, ~) is the coref1ection of

(X, ~})i: (X,a) ~ (X, 6) is the same as

---i : (X, 8) ~ (x , 8").

Then i : (X, f) ~ (X, S-) is fuzzy continuous.

i. e. , a C a (2)

From (1) and (2) 6 = s (idempotent)

5.2.7. Theorem

Let ~be a coreflective subcategory of FTOP.
-(X, 6") be the coreflection of (X, b) in 11 if and

only if (X, ~) is the lattice meet of all finer fuzzy

topologies on X which belong to 11 •

Proof:

( ~) (x , d ) e er; since (X, ~) is the coreflection



79

of X. Let a' be any fuzzy topology finer than ~

with (X, ~') E ~. Since de d, i:(X,cf) ---4 (X,o)

is fuz zy con tinuou s • Since (X,~) CS", and by

definition of coreflection i: (X, ~ I) ~ (X, -g )

is fuzzy continuous. i.e., ~ ca' .
i.e., any fuzzy topology £' finer than ~ which

belongs to ~ is finer than &also. This implies

that cl is the lattice meet of all finer fuzzy

topologies on X which belong to 11 .

( 4: ) Let {(X, Sa)} be members of t such
a EJ

tha t ~ ;::> 6. Since ~ is coreflec tive, ~ = 1(1; )a

can be got as the quotient of the sum of the fuzzy

topological spaces (X;Sa). Hence by ( 5· r- 2. ),

(X, AS) E I( 1;). But I(~) = ~. Hence (X, /\~ )E'11'a a

Now we wan t to ShO'N tha t (X, &) coincides wi th the

coreflection of X in h .

Let (X,~) be the coreflection of (X, ~) in '11
Then,

( 1)



80

Consider the identity map i:(X,J) ~ (X,d)

and the diagram,

i

i

(x,o)

From the diagram,

i : (X, ~ ) ---7 (X,~) is fUZZy continuous

i.e., ~ C d

From (1) and (2) ~ = ~

(2)

i . e., (X, ~) co incide s with th e core f Lec t ion 0 f ( X, ~ )

in ~ •

5.2.8. Remark

Let k be a family of fuzzy topological spaces.

Then there exists a smallest coreflective subcategory

of FTOP containing 'l1 (5.2.4). This we shall call the

coreflective subcategory generated by 11 or the

coreflective hull of 11 in FTOP. For example, r( f1)

is the coreflective hull of 91 in FIO?
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~.2.9. Remark

We can observe that, if ~ be a family of

fuzzy topologies in X and each (X, 6a.) ~I(9:f)

then (X, I\.ba.) E I( 11). In this case I( 11) forms a

complete lattice under the usual ordering.

Conclusion

The investigation made in Chapter III to V

is a humble beginning in the direction of the study

of the class of fuzzy topology. There remains a lot

of research work to be done. Several lattice theoretic

properties are to be investigated, especially by

fixing the underlying set. In the category theoretic

study, more general subcategories deserve a closer

look. We are attempting some of them.
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