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CHAPTER 0 

INTRODUCTION 

0.1. GENERAL INTRODUCTION 

Let Mn(C!.) denote the set of all n x n matrices 

over the field C of complex numbers and let ~ be a 

linear transformation on it. In 1959 Marcus and 

Moyl's [20] proved the following elegant theorem 

MARCUS AND MOYL'S THEOREM 

-~) Mn( ~) be a linear transfor-

mation. Then! preserves eigen values and their 

multiplicities if and only if there exists a non 

singular matrix A in Mn( ('3) such that 

~ (T) = AT A-I for a 11 Tin Mn ( d ) 

In 1959 itself Marcus and Purves [21] characterised 

invertibili ty preserving linear maps on M (j). Their 
n 

characterisation is as follows: 

MARCUS AND PURVES THEOREM 

Letili:M (C!) to M (C) be a linear transformation. ~ n n 
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Then! preserves invertibility of matrices in 

Mn< C!) if and only if ~ is a Jordan homomorphism; 

tha t is 

These two results created a lot of research 

activity. Since Mn< a.) can be identified with the 

Banach algebra of all linear operators on a finite 

dimensional Hilbert space, various attempts were 

made to generalize these results to the algebras 

of operators. So the general problem studied by 

various Mathematicians can be stated as follows: 

PROBLEM 

Let <A. and J3 be Complex Banach algebras with 

identi ty and let ~: A ) J3 be a linear map. When 

does ~ preserves the spectrum of elements of ~ • 

This problem when ~ and J3 are C*-algebras 

were studied by Russo [25], Gleason [11], Kahane 

and Zelasko [15], BeTnard Aupeti t [ 2 ], M-O Choi, 

D.Huciwin/E. NordgreT\.JH. Radjavi, P.Rosenthal [6]etc. 
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The general problem remains open even 

now. But when ~ = t3(X),.J3 = t3(Y), the Banach 

algebras of all bounded linear operators on 

Complex Banach space~X and Y, considerable 

progress have been made by Mathematicians like 

Ali A. Jafarian and A.R. Sourour [14], Hou Jin­

Ckuan [13]. 

Motivated by these developments, Mathematic­

ians started studying linear maps between operator 

algebras preserving other properties like positivity, 

hermiticity, commutativity, ranks of operators, 

trace of operators etc. In this direction signific­

ant contributions were made by Heydar Radjavi [26J, 

Bernard Russo [24] , Roy B. Beasley [17], [18J, 

G.H. Chan and M.H.Lim [5], Marvin Marcus [19J, 

Raphael Loewy [16J, Roger A. Horn, Chi-Kwongli and 

Nam-Kiu TSing [12], C.K. Fong and A.R. Sourour [lOJ, 

HOU Jin-Chuan [13J, etc. 

This thesis is an attempt to continue the work 

on similar problems. 
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0.2. DEFINITIONS AND NOTATIONS 

Let cr denote the set of all complex numbers. 

All the vector spaces considered in this thesis 

are over G. Also it is assumed that all the 

topological vector spaces considered here are 

Hausdorff. 

C*-ALGEBRA 

A C*-algebra is a uniformly closed subalgebra 

of the set ~(H) of all bounded linear operators on 

a complex Hilbert space H, which is closed under the 

adjoint operation * 

POSITIVITY, COMPLETE POSITIVITY 

An element T in a C*-algebra ~ is said to be 

posi tive and wri tten T ~ 0 if T = V*V for some V in A 

A linear map I :~ ~ ~ , where ~ and J3 are 

C*-algebras is called positive if 

~(T) L. 0 whenever T (~ and T l. O. 

Let ~ be a C*-algebra and A denote the C*­n 

algebra of all n x n matrices with entries from A . 
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Let ~(n): ~ n --~') J'n be defined as follows; 

If l(n) is positive for n =1,2, •.• , then I is 

called completely positive. 

* REPRESENTATION, IRREDUCIBLE 
REPRESENTATION 

A * representation of a C*-algebra .-A on 

a Hilbert spa ce is a homomorphism of ~ into f3 (I-I) 

which preserves involution * in ~ • 

A * representa tion 1t of ~ on H is called 

irreducible if the only closed subspaces of H 

invariant under 1t(~) are Hand {Ol • 

It is well known that every C*-algebra ~ has 

an irreducible representation [1 ]. 

O.2~1. STINESPRINGS THEOREM [27] 

Let! be a completely positive linear map from 

a C*-algebra ~ to a C*-algebra J3 on H. Then there 

exists a *-representation 1t of ~ on K and a bounded 
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linear map V: H ~ K such that 

~(T) = V* n(T)V for all T in -A. 

0.2.2. DENSITY THEOREM OF VON NEUMANN [1] 

Let~ be a self adjoint algebra of operators 

which has trivial null space. Then ~ is dense in 

the second comrnutant ~" of ~ • 

, 
0.2.3. KAPLANSKIS DENSITY THEOREM [27] 

Let sA. be a self adjoint algebra of operators 

and let ~ s be the closure of ~ in the strong opera tor 

topology. Then every self adjoint element in the 

ball of ~s can be strongly approximated by self 

adjoint element in the ball of !A • 

CALKIN ALGEBRA 

Let H be a Hilbert space and K(H) denote the 

two sided ideal (* closed) of all compact operators 

on H. Then the quotient B*-algebra (i.e., a Banach 

* algebra B such that IIx*xll = 11 x 112 for all x in B). 

~(~)/K(H) is called the CALKIN ALGEBRA. 
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0.2.4. THEOREM 

If H is separable, then K(H) is the only 

non trivial two sided ideal in ~(H) which is closed 

under norm topology and adjoint operation. 
Consequently every non trivial * representation 

of ~(H)/K(H) is one-one, when H is separable. 

0.3. SUMMARY OF THE THESIS 

This thesis is devoted to the study of mappings 

between algebras of operators on locally convex 

topological vector spaces and their characterisations 

when they preserve various aspects of operators like 

spectrum, eigen values,hermiticity,positivity etc. 

Apart from the introductory chapter, the thesis is 

divided into three chapters. 

In chapter I, spectrum preserving linear mappings 

from ~(X) to ~(Y) are studied where X and Y are locally 

convex topological vector spaces. Theorems 1.1.6, 

1.1.7 and 1.2.1 are the main results proved in this 

chapter. Theorem 1.1.6 and 1.1.7 are generalization 

of the corresponding results of Jaf~rian and Sourour 

to the set up of locally convex topological vector 



spaces. It is observed in Remarks 1.1.9 that 

the proof of Theorem 1.1.6 given here is simpler 

than that of Jafarian and Sour-our [14]. Remark 1.2.3 

is another observation regarding essential spectrum 

preserving linear maps between p(X) and ~(y) when 

X and Y are Complex Banach spnces. 

In chapter 11 elementary operators on ~(X) are 

considered. The well-known notions of hermiticity of 

operators on Complex Banach spaces, do not share 

many properties of Hilbert space adjoint. So we 
,...J 

select a class HLof operators on X which coincides 

with the class of self adjoint bounded linear operators 

on X when X is a Hilbert space. This is done in 

Definition 2.1.1. Then certain types of elementary 
"-J 

operators on P(X) which leaves H~invariant are 

characterised. This is given in Theorem 2.1.7. In 

section 2.2 elementary operators on ~(H), when H is 

a complex separable Hilbert space are studied. 

Elementary operators on ~(H) which preserves essential 

self adjointness and essential positivity (i.e. 

positivity and self adjointness modulo compact 

operators) are characterised in theorems 2.2.3 and 

2.2.8. In section 2.3 the transformation~ on ~(H) 
00 
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is introduced. This transformation is an infinite 

series analogue of elementary operators. Theorem 2.3.~ 

characterises certain class of operators of the 

form ~~, which preserves self adjointness of operators 

in ~(H). Finally in Remarks 2.3.10it is observed that in 

~he proof of JIN-CHUAN'S theorem, spectral representa-

tion of hermitian matrices may be used, instead of the 

explicit usage of diagonalisation. This approach 

may be helpful in dealing with ~~ because diagonalisa­

tion of the scalar matrix (aij ) may not be possible 

for a large class of maps of the type ~~. The 

details are not supplied. 

The third and final chapter is extremely short. 

There, some properties of non linear maps on ~(H) 

are 'studied, when H is a Complex Hilbert space. 



CHAPTER I 

SPECTRUM PRESERVING LINEAR MAPS 

In this chapter the structure of spectrum 

pr~serving linear maps between ~(X) and ~(Y) is 

studied, where X and Y are locally convex topological 

vector spaces over the field d of complex numberso 

This is a generalisation of the work of Ali A Jafarian 

and A.R. Sourour [14], where they considered spectrum 

preserving linear maps on ~(X) where X is a complex 

Banach space. Section 1.1 deals with this. In 

Section 1.2, spectrum preserving linear maps on ~(X) 

which preserves eigen values of operators in ~(X) are 

studied. 

1.1. SPECTRUM PRESERVING LINEAR MAPS ON ~(X) 

THEOREM (ALl A JAFARIAN and A.R. SOUROUR) 

Let X and Y be Banach spaces and ~:~(X) ~ ~(Y) 

be a spectrum preserving surjective linear mapping. Then 

either 

(i) there is a bounded invertible operator A:X ~ Y 

such that ~(T) = ATA- l for all T in ~(X), or 
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(11) there is a bounded invertible operator 

8 from X* (the dual of X) to Y such that 

~(T) = 8T*8-1 for every T £ ~(X). 

As specified we establish the same result, 

when X and Y are locally convex topological vector 

spaces over o. Since the method adopted is the same 

as in [14], we start with generalising various 

technical results proved in [14]. 

Even though the proofs are exactly similar, 

we supply the details. Through out this section X 

and Y denote locally convex topological vector spaces 

over 0 and ~(X) the set of all continuous linear 

mappings on X. 

LEMMA 1.1.1 

Let A be in ~ (X) • Then o(T +A) C o(T) for every 

T in ~(X) if and only if A-:::.O. 

PROOF 

A == 0 ~ 0 ( T +A) = a (T ) for a 11 T. 

Now assume that o(T+A) £ aCT) for all T. 
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To show that A = o. 

Let if possible A * o. Then there exists 

x ~ X, x ~ 0 such that A(x) = y ~ O. By Hahn 

Banach theorem in locally convex topological vector 

spaces, there exists f E X* (X*- the dual of X) 

such that 

f(x) = land f(y) ~ 0 

Let a be a nonzero complex number and let 

T = (ax-y) ® f, where 

T ( z) = (( ax-y) ® f) (z) = f( z) (ax-y), Z E X 

Continuity of T follows from the continuity of f. 

Now 

(T+A)(x) = T(x) + A(x) = ax-y+y = ax 

Hence a is an eigen value of T+A. 

Now one can easily show that, for ~ c:. cr , T-~I is 

not invertible in ~(X) if and only if either ~ = 0 

or ~ = f(ax-y). Therefore o(T) = to, f(ax-y)J 
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Since f(ax-y) = a-f(y) ~ a, we have 

a(T+A) $. a(T) 

This proves our assertion. 

LEMMA 1. 1.2. 

Let!: ~(X) ~ ~(V) be a spectrum 

preserving linear mapping. Then I is injective. 

PROOF 

a(T) = a(~(T» for all T in ~(X). 

Suppose ~(A) = I(B), A,B E ~(X). 

To show that A = B 

a(T+A-B) = a (~(T+A-B) >. 

= a (~(T» 

= a (T) 

for all T in ~(X). Hence by lemma 1.1.1, A-B = O. 

LEMMA 1. 1. 3 • 

If~: ~(X) to ~(y) is a spectrum 

p't'eserving surjective mapping, then ~(IX) = IV' 

where IX (or IV) denote the identity mapping on X 

(or V respectively). 



14 

PROOF 

Let ~(S) = Iy 

For T in ~(X), 

O'(T+S-IX) = O'(~(T-IX+S) ) 

= 0' (~ ( T ) - ~ ( IX) + ~ ( s ) ) 

= O'(~(T» 

= 0'( T) 

Hence by lemma 1.1.1, S = IX· 

LEMMA 1. 1.4. 

Let X be a locally convex topological vector 

space and K(X) denote the set of all compact operators 

on X. Let A be in ~(X) and C be in K(X). If 

Ae. O'(A) is not an eigen value of A, then.:\€. O'(A+C). 

PROOF 

Let if possible, A+C- A' IX is invertible in ~(X). 

Therefore, 

Since (A+C- A Ix)-l is continuous and C is compact, 

(A+C-~IX)-l.C is compact [9] 
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Case 1 

IX - (A+C- ~.IX) -1 C is invertible. 

In this case A- A·IX is invertible. 

Case 2 

IX-(A+C- A.IX) -1 is not invertible. 

Here, since (A+C-A.Ix)-lC is compact, 1 is 

an eigen value 'of (A+C- ~IX)-lC [9]. 

Hence, there exists a non zero vector x such 

that 

Therefore (A-~. Ix) (x) = o. 

In either case the conclusions are contradictions 

to the assumption that A E. O'(A) but not an eigen value 

of A. 

This completes the proof. 

LEMMA 1. 1 • 5 • 

For T in ~(X), x £ X, f E. X* and ;\ not in O'(T) 

we have::\ E. O'(T+ x®f) if and only if f«" Ix_T)-l(x»=l. 
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PROOF 

Assume that f( A.IX-T)-l(x) :: 1 

Then (x®f) « A'IX-T)-l(x» = (f( A.IX-T)-l(x».x 

Hence 

= x 

(T+x®f)( ".Ix-T)-l(x) 

= T ( ( A' IX - T ) -1 ( x» + (x ® f)( " IX - T ) -1 ( x ) 

= T ( A' IX - T ) -1 ( x) + x 

= ( T ( ". IX - T ) -1 + IX) ( x ) 

= (T+~.IX-T)( A.lx-T)-1(x) 

= A (A' IX-T)-l( x) 

Therefore " is an eigen value of T+x ® f. 

Conversely assume that A£. a(T+x ® f). Then by 

lemma 1.1.4, " is an eigen value of T+X(2lf. Hence 

there exists a non zero vector u in X such that 

(T+ x~f)(u) = A u 

i.e., T(u)+f(u).x • ~ u 

since 

• • • 

i.e., 

~~a(T), f(u) 1= 0 

( A I X- T) -1 ( x) = f (~) 

f ( ( ~ IX - T ) -1 ( x) ) = 1 
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THEOREM 1.1.6. 

Let A E~(X), A f: O. Then the following 

conditions are equivalent. 

(1) A has rank 1 

(2) a(T+A) n a(T+cA) c aCT) for every T in ~(X) 
and every c f: 1. 

PROOF 

Assume that A is of rank 1. Hence there 

exists x E X and f £ X* such that 

A = x®f. 

Now let T be in ~(X) and A not in aCT). Then by 

lemma 1.1.5 " is in a(T+cA) if and only if 

f((~ IX-T)-l(x»=l. Hence ~ does not belong toCT(T 

two distinct values of c. Hence ( 1) implies (2) • 

Now to show that (2) implies (1). 

Assume that rank A L 2. 

Case 1 

A = a.IX for some nonzero scalar a. 

Let T in ~(X) be such that aCT) ={O,aJ • 

It is enough to take T = y®g for suitable YE X and 

g in X*. 

+ cA) for 
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Then 

a(T+A) = ia,2a'j and 

O'(T+2A) = {2a,3a}. 

Therefore O'(T+A) n O'(T+2A) = t 2aJ which is not 

contained in O'(T). This completes the proof of 

case 1. 

Case 2. 

A ~ aIX for any a in C and rank A ~ 2. 

Case 2'. 

There exists a vector u ~ X such that 

tu,Au,A2u} is linearly independent. Let U be the 

linear span of tu,Au,A2UJ and V be a closed complement 

of U in X. It is enough to take 

where fu, fAu ' fA 2 u are bounded linear functionals 

on X such that 

where, 

S m,n = 0 

= 1 

-- g mn--012 
" 

, , , ... m,n 

if m ~ n 
if m = n 

Put Nu = 

N(Au) = 

u - Au 
1.. 

Au - 2Au 
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- u 3Au 2A2 
= ~ + ~ - u and 

Nv = 0 for all v in V and extend it linearly. 

Clea rl y N E f3 (X) and N3 = 0, (N+A)( u) =U and 

(N+2A)(Au) = Au. 

Therefore, 1 E a(N+A) n a(N+2A) 

But a(N) =[01. 

Thus a(N+A) n a(N+2A) is not contained in a(N). 

This establishes case 2' • 

Case 2" 

[ U,Au,A
2
u)are linearly dependent for every u 

2 
~Au for scalars Let A u = au + some 

First we assume that a I:- o. 

Let N(x) = x for every x £ V, and 

N( u) = -Au 

N(Au)= A2u = au + ~Au 

Clearly N is invertible. 

Also (N+A)(u) = 0 and (N-A)(Au) = 0 

a and ~ . 
in X. 

Thus 0 E a(N+A) n a(N-A) whereas 0 is not in a(N). 

2 If A (u) = ~(u)Au for every u, we get, 
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= ~(u-v)Au - ~(u-v)Av 

=9 t3(u) = ~(v) = ~(u-v) since rank A > 2. 

Thus A2 = ~A for a fixed scalar ~. 

i.e., peA) = 0 where pet) = t2_~.t 

Now rank (A) ~ 2. Also 0 and ~ are eigen values of A. 

Hence there exists three linearly independent vectors 

x,y,Az such that 

A (x) = 0 

A(y) = ~y, and 

A (z) f; 0 

Let W be the three dimensional space generated by x,y 

~g~ O~ ~gO and A (z). Then A(W) C Wand lil: " ~ is the rna trix 

of A/W with respect to lA(z), y,x). Now we define a 

nilpotent operator N as follows. Let Z be a complement 

of W in X and let N(Z) = to} . Let N/W has the matrix 

represen ta tion 

[ O~ o 2~ 2~ with 
o -2~ -2~ 

respect to tA(z),y,X] • 
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Then N is nilpotent. One can easily see that 2~ 

is an eigen value of (N+A) and (N+2A). Since ~~ 

we get 

a(N+A) n a(N+2A) $- a(N) • 

Now we prove the main theorem of this section. 

THEOREM 1.1.7. 

Let!: ~(X) ---? ~(Y) be a spectrum preserving 

surjective linear mapping. Then either 

(i) there is an invertible linear operator A:X~ Y 

such that !(T) = ATA-l for every T in ~(X) for 

which there is an unbounded sequence in C-a(T) 

or 

(ii) there is an invertible linear operator B:X*---tY 
if\ -1 such that ~(T) = 8T*8 for every T in ~(X)t 

for which there is an unbounded sequence in 

Cl -a(T). 

PROOF 

Let x and f be nonzero elements in X and X* 

respectively. Let Lx and Rf be linear subspaces 

of ~(X) defined by 
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h E. X*) and 

u £ X J 

First we prove the following. Corresponding to 

each x in X there is a y £ Y such that 

= 

or corresponding to each x in X, there is a g £ X* 

such that 

~(Lx) = Rg 

Also if ~(Lx) = 

~(Lu) I: 

L for some x ~ X, then y 

Rg for any u E. X 

This follows from the following observations. 

(i) By lemma 1.1.2 and theorem 1.1.6, if R is of 

rank one, I(R) is of rank one. 

(i1) LynRg is one dimensional where as Lun Lv 

has dimension 0 or dimension X*. 

(iii) If ~(Lu) = Ly for some u E X, then 

~(Lv) I: Rg for any v in X. 

For, 
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Since I is one-one and onto, dimens ion L n L 
u v 

should equal dimension ~(L n L ) = dim L n R 
u v y 9 

which is not possible. This leads to two cases. 

Case 1. 

l(Lx) = Ly(x) for every x £.X. Put y(x)=y 

for brevity. 

Therefore, 

~ ( x <Xl f) = Y <la 9 for some 9 e: X* 

Now let, 

Claim 

C : X* --~) Y* be defined by x 

Cx(f) = g. Clearly Cx is linear. 

The set, [Cx:XE.xJ is one dimensional. Let 

if possible, there exists two linearly independent 

t~ansformations Cx and C , where 
I x2 

Now, 

= 

= 

YI ® CXI (f) 

Y2 ® C'2 (f) 

and 

I ( ( xl + x2 ) ® f) = J ( x I ® f) + 1 ( x2 ® f ) 
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Since xl +x2 ® f is of rank 1, 

for some yeX and g 'C:. X*. Hence we get 

for every u in X. Since CXl and CX2 are linearly 

independent, Yl and Y2 should be linearly dependent. 

Hence Ly = L 
1 Y2 

• . . 

Since ~ is one-one we have Lx :Lx • Therefore xl 
1 2 

and x2 are linearly independent. Then CXl and C
X2 

are linearly dependent. This is a contradiction. 

• • • dimension t Cx: x E. XJ = 1 

Hence there is a linear operator C such that 

Therefore, 

~(X ®f) = y ® ef where y depends on x. 
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Put Ax=y. Hence ~(x®f) = Ax ® Cf. Since ~ is 

bijective both A and Care bijective linear mappings. 

Now let TE ~(X) be such that there is an unbounded 

sequence in ~ -o(T). 

~(T+X~f) = ~(T) + Ax®Cf 

Let ~ be not in o(T). Hence by lemma 1.1 0 5 we have 

and 

f( (?\ -T)-IX)= 1 if and only if '" ( o(~(T)+Ax ®Cf) 

" €. o(~(T)+ Ax ®cf) if and only if 

Cf(" ly- ~(T»-l A (x) = 1 

Thus for ~ not in o(T), we get 

Replacing A with i and using similar argument as in [14] 

we get, 

That is 
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Since B - aCT) contains an unbounded sequence, 

by taking the limit as z ~ 0 we get, 

Again 
f[(IX-ZT)-1 A-I(y) _ A-I(y)] 

Z 

= Cf[(Iy - z~(T))-I(y)_y ] 
z 

Now letting Z tend to 0 we get, 

f(TA-I(y)) = Cf(~(T)y) for all f E X* 

But we already have, 

Combining these two we get, 

and 

Cf(~(T) (y)) 

Cf(~(T) (y)) 

Cf(~(T) (y)) 

Thus we get, 

= f(A- I ~(T)(y)), 

= f(TA-I(y)) 

= A-I(~(T)(y)) 

f(TA-I(y)) = f(A-I~(T)Y) for every f in X*. 
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That is, TA-I(y) = A-I !(T)(y) for all y ~ Y 

Th t i ATA-l a s, = ~(T) 

elSe 2 

Let x (X and ~(Lx) = Rg for some g E. Y*. 

As in case 1, we can show that for each x E X and 

f E X*, 

~(x®f) = Bf ® Ax 

where B: X* ---7 Y is linear. 

As before for TE.~(X), x E. X, f £X* and" 4-0(T), 

"t.0(T+x®f) if and only if f«~Ix-T)-l(x» = 1 

and finally for every x E X, f £. X* and .l. f o(T) 

Now for Tt:. ~(X) such that d -o(T) contains an unbounded 

sequence, identical arguments leads to the conclusion 

f(T(x» = A(x) (~(T) B(t) 

f(x) = A(x) (B(f» 

Therefore, 

A(x) ~(T) B(f) = f(T(x» = AT(x) (B(f» = A(x)(BT*f) 



28 

Hence we get 

g ~(T) (8(f» = g(8T*(f» for all g in Y* 

Therefore, 

~(T) 8(f) = 8T*f for all f in X* 

Thus ~(T) = 8T*8-1• 

REMARK 1.1.8. 

One does not know whether the operators A or 8 

obtained in Theorem 1.1.7 is continuous or not. But 

when X and Y are Frechet spaces, using closed graph 

theorem, continuity of A and 8 can be established [9]. 

REMARK 1.1.9. 

It is to be observed that Theorem 1.1.6 is a 

generalisation of the corresponding theorem of 

Jafarian and Sourour [14]. Though the proof goes along 

the same line as in [14], our proof is simpler in the 

following sense. 8y considering one more simple case, 

we are able to arrive at the quadratic polynomial 

p(t) = t(t-~) such that P(A) = 0 directly without using 

any existence theorems. Also the other forms of minimal 

quadratic polynomials are not needed at all. 
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1.2. EIGEN VALUE PRESERVING LINEAR MAPS 

In section 101 we analysed spectrum preserving 

surjective linear maps of ~(X) to ~(y), where X and Y 

are locally convex topological vector spaces over a . 
In this section we characterise spectrum preserving 

linear maps which preserves eigen values when X and Y 

are complex Banach spaces with Schauder basis. 

THEOREM 1.2.1. 

Let X and Y be Complex Banach spaces with 

Schauder basis and~: ~(X)~~(Y) be a spe:trum 

preserving, surjective linear mapping. Then ~ 

preserves eigen values if and only if it is of the 

form ~(T) = ATA-l for every T in ~(X) where A:X ~ Y 

is a bounded invertible linear operator. 

PROOF 

Let ~(T) = ATA- l , for all T in ~(X), A:X -~ Y 

an invertible bounded linear map. Let.:\ £o(T). Then 

T(x) = ~ x for some nonzero x in X. 

Let y = A(x). Thus TA-l(y) = ~ A-l(y) 

i.e., ATA-l(y) = ~ y 

Therefore A is an eigen value of T. 
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From theorem 1.1.7, either 

(i) ~(T) = ATA- l , A:X -~ Y a bounded invertible 

linear map, or 

(ii) !(T) = 8T*8-1 , where 8: X* --7 Y is a bounded 

invertible linear map. 

We show that if ~ takes the form (ii), ~ will not 

preserve eigen values for all T. 

Let if possible ;:\ is an eigen value of T 

implies ~ is an eigen value of 8T*S-1. Then there 

exists a nonzero x in X such that T(x) =~.x. 

i.e., (T- A·IX) is not one-one. 

Since -1 
~ is an eigen value of ST*S , 

ST*S-l( y) = ::\.y for some non zero y in X. 

i.e., ~ is an eigen value of T*. 

Let f = S-l(y). Then we get, 

(T*f) (z) = A f( z) for all z in X. 

Hence, 

f((T-AI)(z» = 0 for all z EX. 
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Since f is a non zero continuous linear functional 

on X, its null space is a proper closed subspace of 

X. Therefore Range (T-" 1) is not dense in X. 

Now we show that there is a bounded linear 

operator S on X which is not one-one but onto. In 

this case, a is an eigen value of S but it is not 

an eigen value of I(S). 

For z in X, 

00 

z = ~ an(z)xn , where an(z) E C 
n=l 

Put s(z) = 

Then S £ ~(X), S(Xl ) = a. 

Now we show that Range (S) is dense in X. 

00 

Let Y = ~ an(y)xn 1 

Let x = a.x l + n 
2 

2 • a l (y) x2 + 

2 
(n+l) an (y) x n+l 

n=1,2, ••• 

. .. + 

. . . 



32 

Then 

Therefore, 

i.e., Range(S) is dense in Y. 

REMARK 1.2.3. 

Let X and Y be complex Banach spaces and 

let ~: p(X) ~ ~(Y) be a linear mapping. If 

where A:X ~y a bounded invertible linear map, 

Kl:X -~ Y compact linear mapping and K2 : Y --7 X 

a compact linear mapping, one can easily see that 

! preserves the essential spectrum of T, for every T 

in ~ (X) • 

Now let !(T) = BT*B-l + KI TK2 , where B:X* --~ Y 

a bounded, invertible linear map, and Kl'~ as above. 

One can easily prove that cre[~(T)] Scre(T) for all T 

in ~(X), where cr (.) denote the essential sp~ctrum. e 
The inclusion may be proper as every compact operator 

K on X* need not be dual of some compact operator on X. 
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The following is an example for that 

EXAMPLE 1.2.4. 

Let X = 11 , the Banach space of all summable 

sequences of complex numbers with tl norm. Then 

9-1 eland the closure 11 of 11 under the i. 00 norm 

~s properly contained in 1
00

• Hence there is a 

non zero bounded linear functional F on t such that 
00 

F(x) = 0 for all x in 11 • Let f in 1
00

- ~l be such 

that F(f)=l. 

Now let, 

'l = f ~ F, wh ere f ® F ( 9 ) = F ( g) 0 f, 9 €. Q. • 
00 

Then 'C is a eompa et linea r opera tor on.Q. • 
00 

We show 

that ~~ T* for any T in ~( ~l). 

Let if po ss i b 1 e 'L = T* for so meT i n ~ ( .9...1 ) . 

Therefore, 

't (g)(u) = T*(g) (u) for all 9 in i and 
00 

for all u in tl 

i.e., F(g) .f(u) = g(Tu) for all u in II 

Hence 0 = g(T(u» for all 9 in 11 • 
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Now let h £ ~l be arbitrary, and let 

T(h) = (u l 'u2 '··· ,un •.• ) £.Q.,. Let 9 = (u l ,u2 '· 0 .un°·) file 
00 2 

Then 0 = g(T(h» = E lu I ~ u = 0 for all n. 
Inn 

Hence T(h) = O. But h is arbitrary. Hence T = O. 

Therefore T* = 0 wh ich is not true. Hence L 1= T* 

for any T in ~( ~l). 



CHAPTER 11 

ELEMENTARY OPERATORS 

In this chapter, the study of elementary 

operators on the Banach algebra of all bounded 

linear operators on a complex Banach space is 

carried out. These observations are generalisa­

tions of some recent work of HOU JIN-CHUAN ~3]. 

This is also based on the work of C.K. FONG and 

A.R. SOUROUR [10]. Section 2.1. contains these 

general versions. 

Throughout this chapter, ~(X) will denote 

the Banach algebra of all bounded linear operators 

on a complex Banach space X. For doubl~ infinite 

sequences {Ai} and LBi1 in ~ (X), the transforma­

tion ~ on ~(X) defined by -
00 

~ (T) = 
00 

T £ ~ (X) 

is studied in section 2.3. 
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2.1. HERMITICITY PRESERVING ELEMENTARY OPERATORS 

HOU JIN-CHUAN'S THEOREM. 

n 
Let tA.} 

1: • 1 1= 

n 
and tB.1 be operators in ~(H), 

1 . 1 1= 

where H is a complex Hilbert space. Then the 

elementary opera tor 6. on 13 (H) defined by 

~(T) = 
n 
E A TB 

i=l i i 

is self adjointness preserving if and only if there 

exists operators Dl ,D2 , •.. ,Dn in ~(H) such that 

6(T) = * O.TO. 
1 1 

for every T. 

We wish to consider similar characterisation 

problems when X is a complex Banach space. There 

are several notions of hermiticity of operators in 

~(X). Among them, the well known notions are due 

to LUMER [23] and STAMPFLI [23J. Recall [3,4] that 

these notions of hermiticity do not possess some 
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well known properties of selfadjoint operators in 

Hilbert spaces. For example square of a hermitian 

operator need not be hermitian in the Lumer's sense. 

Similarly sum of two hermitian operators need not be 

hermi tian in the Stampfli' s sense [3 , 4 ]. So we 
r-J 

introduce a new class HL as follows and designate 
r-J 

an operator hermitian if it belongs to the class HL. 

DEFINITION 2.1.1. 

Let HL denote the class of all operators in 

~(X) which are hermitian in the Lumer's sense. Then 
rv 

HL is the largest linear subspace of HL over the 

field of real numbers such that 

( 1) implies 

(2) 

(3) 
,.... ~ 

HL + i HL contains all rank one operators on X. 

REMARK 2.1.2. 

When X is a complex Hilbert space, Lumer's 

hermiticity and Stampfli's hermiticity coincides with 

usual Hi1bert space self adjointness of operators. 
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r.J 

In general HL is a proper subset of HL• 

Now let [AJ nand 'lBi1 n be operators 
i=l i=l 

,-...J 

from the class HL• We wish to characterise the 
r-J 

associated elementary operator which leaves HL 

invariant. To achieve this, the following Lemmas 

are needed. 

LEMMA 2. 1 .3. 

Let Ai and Bi (lSi~n) be bounded linear 

operators on a Banach space X, where Bl ,B2 , •.• ,Bn 
are linearly independent. Then b(T) = 0 for all T 

r..J 

in HL if and only if Ai = 0, for i = 1,2, ••• ,n. 

PROOF 
r-J 

Assume that 6 (T) = 0 for all T in HL• Since 

Bl ,B2 , ••. ,Bn are linearly independent, there exists [10] 

vectors xl ,x2 , ••• ,xr in X and linear functionals 

f l ,f2 , •.. ,fr in X* such that 

r 
t fk (Bj xk) = 0 if j=2, ••• ,n 

k=l 
= 1 if j=l. 

Now let x E. X and T j ::: f. ® x, j = 1,2, ••. ,r. 
J 
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Then we have 

r 
o = 1: 6,. (T j ) (X j ) 

j=l 

r 
= E 

j=l 

n 
= E 

i=l 

n 
= E 

i=l 
( 

n 
t A. Tj Bi (x.) 

i=l 1 J 

r 
E Ai Tj j=l 

Bi (x j ) 

r 
E fj(B i xj » Ai(X) 

j=l 

Thus Al = 0, since x is arbitrary. 

Similarly one can show that Ai = 0 for all i = 2, ••• ,n. 

LEMMA 2. 1 .4. 

Let Ai and Bi (l~i~n) be in ~(X) where 

{Bl,B2, ••• ,B~ m<n form a maximal linearly independent 

subset of tBl,B2 •••• ,Bn}- Then 6,,(T) = 0 for all T 
N 

in HL if and only if 



where 

PROOF 
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n 
Ak = I akj Aj ( 1 ~ k ~ m) 

j=m+l 

m 
Bj = I akj Bk (m+l ~ j .{ n) 

k=l 

n 
If Ak = - I a kj Aj (1 ~ k ~ m), then one 

j=m+l 
rJ 

can easily see that ~(T) = 0 for all T in HL by 

substituting for Ak and then rearranging the 

expression. 

Conversely assume that ~(T) = 0 for all T 
N 

in HL• Since Bl ,B2 , •.. ,Bm is a maximal linearly 

independent subset of Bl ,B2 , ••• ,Bn )there exists 

constants akj (l~k~m and m+l ~j~n) such that 

= 

Substituting this in Ll(T) = 0 we get, 

o = 6(T) = 

Since tBl,B2, ••. ,BmJ is linearly independent by 
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n 
Lemma 2.1.3 we must have Ak + E a kj Aj = o. 

j=m+l 

LEMMA 2. 1 • 5 • 

Let Ai and Bi (l~iin) be bounded linear 

operators on a Banach space X where Al ,A2 , ..• ,A n 
are linearly independent. Then ~(T) = 0 for all 

"" T in HL if and only if Bi = 0 for all i = 1J 2 , ••• ,n. 

PROOF 
rJ 

Assume that f:::,. (T) = 0 for all T in HL • Since 

Al ,A2 , ••• ,An are linearly independent, there exists 

[la] vectors xl ,x2 ' ••• ,xr in X and linear functionals 

f l ,f2 , ••• ,fr in X* such that 

r 
k:l fk (A j xk) = 0 if j = 2, ••• ,n 

= 1 if j = 1. 

NowletTj=f® xj , fe:.X*,j=1,2, ••• ,r 

Since T j E:. HL + i HL, we have ~ (T j) = 0 for all j. 

Therefore r * E ~(Tj) (f.) (x) = 0 for all x in X. 
j=l J 
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r 
But I: l1(T j )M (fj ) (x) 

j=l 

n r 
= I: ( 

k=l 
I: fj(A k xj » f(B k x) 

j=l 

Since x and f are arbitrary, Bl = O. Similarly we 

can prove that 8 i - 0 for i - 2, ••• ,n. 

LEMMA 2.1.6. 

Let Ai and Bi (l~iin) be ,in ~(X) where 

{A l ,A2 , ••. ,AnJ m(n is a maximal linearly independent 

subset of [A l ,A2 , ... ,A nJ. Then ~(T) = 0 for all T 
I'..J 

in HL if and only if 

n 
Bk = - I: a kj Bj j=m+l 

( l~k~m ) 

m 
where Aj = I: akj Ak 

k=l 
(m+l ~ j ~ n) 

The proof is quite similar to the proof of 

Lemma 2.1.4 and hence omitted. 

Now we prove the main theorem of this section. 
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THEOREM 2.1.7. 

Let{A·1
n 

J j=l 
"""-J 

and [BjJ n be operators from 
j=l 

n 
the class HL" Then 1: AjTB. 

j=l J 

if and only if there are operators 0 1 ,02 , ••• ,On' in 
,-.J 

HL such that 

~ n 
~ (T) = t Dj TOj - r ° T Dj 

j=l j=i+l j 

for-every T in ~(X) where X is a complex Banach space 
r-J r--J 

such that Ht + i HL contains all rank one operators 

on X. 

PROOF 
i. n 

Suppose ~ (T) = 1: Dj T Dj - 1: Dj T Dj for 
j=l j=.l+l 

,..J 

every T in ~(X) where 0l,D2 ,"".,On are in HL• To show 
r.J "..,) 

that 6. (T) belongs to HL whenever T belongs to HL" 

r-' 

It is enough to prove that A,B belongs to HL 
r-J 

implies ABA belongs to HL" 

r-J 
We have AB + BA belongs to HL" 
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Therefore A(AB+BA) + (AB + BA)A 

2 2 ~ 
= A B + BA + 2ABA belongs to HL" 

r-J 

This implies ABA belongs to HL• Using this 
I"J 

we can see that ~(T) belongs to HL , whenever T 
r-J 

belongs to HL• 

rJ 
Conversely assume that ~(T) belongs to HL for 

r-.J 

all T in HL • 

CLAIM 

n n ~ 

E Aj T Bj = E BjTA j for every T in HL" 
j=l j=l 

,-..J 

Since the identity operator I belongs to HL, 

n 
E Aj Bj j=l 

n 
E Bj Aj = 

j=l 

rV 

belongs to HL" 

n n 
E CBj Aj + Aj BJo)- E Aj Bj j=l j=l 

n ,-..J 

.00 E Bj Aj belongs to HL" 
j=l 

• • • 
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for j 

• . . 
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= 1,2, ... ,ne 

Hence by a resul t in [3] it follows that 

n 
1: ~. Bj - Bj A jj) = O • 

. j=l J 

,.....J 

Now let T £. HL. 

,-.J 

belongs to HL 

for j = l,2, ••. ,n. 

adding we get, 

n 
i j:l (A j TB j - Bj TA j ) + i 

belongs 

n 
1: (BjAjT 

j=l 
rJ 

to HL• 
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n n n 
But i j~IBj AjT - TA j Bj ) = i(( E BjAj)T -T( E AjB j )) 

j=l j=l 

N n n 
This is in HL since E A Bj = E 

j=l j j=l 

Therefore i 

We have 

i.e., 

;,.....; 
This implies Bj T Aj belongs to HL • 

• . . 

Hence by a result in [ 3] 

n 
1: Aj T B04 

j=l ..J 

,-.J 

n 
= I: Bj T Aj 

j=l 

Bj Aj 

for every T in HL- This proves our claim. 

(2.1) 

Now assume 

that {Aj1 , {Bj1 ' j=1,2, ••• ,n are linearly independent. 
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Identity (2.1) is equivalent to the following 

2n 
E Aj T Bj = 0 

j=l 

,-..J 

for every T in HL, where 

An+j = - Bj 

Bn+ j = Aj 

j = 1,2, ••• ,n 

j = 1,2, •.. ,n 

If{Aj,Bj} j = 1,2, •.. ,n form a linearly independent 

set we have Aj = Bj = 0 for all j. 

ma y as sume tha t[A 1 ,A2 , ••. ,An] form a 

independent subset of {A l ,A2 , ••• ,An' 

Therefore there exists real scalars 

n 
E a j i Ai 

i=l 

Substituting (2.3) in (2.1) we have, 

n n n n 

Otherwise we 

maximal linearly 

B 1 ' B2 ' • • • , B nl · 
a. . such tha t 

J1 

(2.3) 

E AjT ( E a ji Ai) = E (E a j . Ai)TA j j=l i=l j=l i=l 1 

.-J 

i.e. o for all T in HL • 
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Hence by Lemma 2.1.3 and the linear independence 

of {A j) we get a ij = a ji for all i,j = 1,2, ••• ,no 

Thus the matrix A = (aji)n is a non singular 
i,j=l 

n x n symmetric ma trix. Therefore there exists a 

unitary matrix U = (uij ) such that 

U*AU = 

o 
o 

-d n 

where dl,d2, ••• ,d~ are the positive eigen values of A 

and -d t + l , •••• , -dn are the negative eigen values of A. 

We may assume that the entries of U are all real. 

Now as in [13] put 
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Cl Al Al 

C2 A2 A2 

ie. • =UT · =U* · • • · • • · 
Cn An An 

ie. 

• 

• = U • 

Therefore 

n 
6(T) = E Aj T Bj j=l 

n 
= E Aj T 

j=l 

allA l + al~2 + 

a2lA 1 + a202 + 
• 
• · 

Al 

A2 

= U-l • · • 

An 

... 



50 

T all a 12 · . . a.1n Al 

0 T a2l a22 • • • a2n A2 

=[A 1 ,A2 , • • • ,An] • . 
• . 

0 • 

l;n T anl a n2 · .. ann 

T 

TO 
Cl 

C2 
= [ Cl' C2 ' • . • ,C n] ut (a ji) U 

0 ,t'r Cn 

- -
T dl Cl 

0 d2 0 C2 
= [ Cl' C2 ' ••• ,C n ] r 

dl, 

-d1+1 

0 0 
• 

T -d C n n 
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t n 
= E Cj T d j Cj - r Cj T d j Cj j=l j=i.+l 

t n 
= E Dj T Dj - E Dj T Dj 

j=l j=l+l 

where Dj = v-aj Cjo It is also clear that Cj belongs 

r..J /".J 

to HL for all j. Therefore Dj is in HL for all j. 

This completes the proof. 
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2020 ELEMENTARY OPERATORS PRESERVING SELF 
ADJOINTNESS MODULO COMPACT OPERATORS 

Let Al ,A2 , •.. ,A n; Bl ,B2 , •.. ,Bn be bounded 

linear operators on a complex separable Hilbert 

space H and let 

C.K.FONG and A.R. SOUROUR [10] has obtained the 

following result. 

THEOREM 2.2.1. (C.K. FONG .nd A.R. SOUROUR) 

Let Al,A2, ••• ,An;Bl,B2, ... ,Bn be as above 

where Bl ,B2 , •.. ,Bm (m{n) are linearly independent 

modulo the compacts and there are constants Ckj , 

l~k~m and m+l~j~n, such that 

m 
Bj = L Ckj Bk modulo the compacts (m+l~j~n) 

k=l 

Then ~(T) is compact for each T in ~(H) if and 

only if 

n 
= - E CkJ.A j modulo the compacts (l~k~m) 

j=m+l 

Now we prove the following .variant of HOU JIN­

CHUAN'S Theorem. To do this we need the following 

concepts which are well known. 
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DEFINITION 2.2.2. 

Let H be a complex Hilbert space and K(H) 

denote the ideal of all compact operators on H. 

An operator T in ~(H) is called essentially self 

adjoint if T-T* belongs to K(H), where T* is the 

Hilbert space adjoint of T. 

THEOREM 2.2.3. 

Let H be a separable Hilbert space and 

Al ,A2 , ••. ,An ; 81 ,82 , ••. ,8n be operators in ~(H), 

where Al ,A2 , ••. ,A n , 81 ,82 , ••. ,8n are linearly 

independent modulo K(H). Then the elementary 

n 
operator ~(T) = .E AiTBi preserves ess~ntial self 

1=1 

adjointness if and only if there are operators 

01,02, ••. ,On in ~(H) such that 

Ll(T) = 
l n 
E O.TO~ - E O.TO*i + K(T) 

i=l 1 1 i=l+l 1 

for every T, where K(T) is a compact operator on H 

depending on T. 

PROOF 

Sufficiency is clear. 
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Even though the proof of necessity is quite similar 

to that of Lemma 2.1 in [13] we supply the details. 

Suppose that T-T* t K(H) implies b.. (T)- Ll(T)* E. K(H). 

Therefore, 

(2.4) 

for every T in ~(H). 

Now assume that A1, A;, ••. , A~ form a maximal 

linearly independent modulo compact subset of 

Therefore there 

(2.5) 

Substituting (2.5) in (2.4) and on applying theorem 2.2.1 

we can see that (aij)~ is a hermitian matrix. Also 
~,j=l 

it is nonsingular. 

Let U denote an n x n unitary matrix such that 
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d
i 

o 

-d n 

where' dl ,d2 , ••• ,dt , -dt.+l, ••. ,-dn are the positive 

and negative eigen values of A = (a ij ) respectively. 

Then we have 

c* 
1 

A* 
1 

A* 
1 

A* 
1 

c* 2 
A* 2 

A* 2 
A* 2 

• =(UT) • =l1* • =U-l • 
• • • • 
• · • · 
~ A* A* A* n n n 

n 
Now 6(T) = t Ai TBi 

i=l 

n n 
= t AiT ( t a ij Aj + Ki ) 

i=l j=l 



56 

n n 
= t AiT ( t a ij A*j ) + K(T) 

i=l j=l 

* T O. Al 

= [A 1 ,A2 , ••. ,An] T (aij ) A* + K(T) 2 

0 T A* 
n 

* 
T 0 d1 

Cl 

0 .T d2 * C2 

=[C1 'C2 '···,Cn] dt K(T) 

-dt +1 

0 0 
T -d c* n n 

i n 
= t Ci T di C* - t C T d. c~ + K(T) 

i=l i i=1.+1 i 1 1 

t * n * = t °i T °i - 1: 0 T °i + K(T) 
i=l i=L+l i 

where 0i = Vdi Ci • 
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Now we prove a theorem which characterises 

essential positivity preserving elementary operators. 

DEFINITION 2.2.4. 

Let H be a complex Hilbert space and n be the 

canonical homomorphism of ~(H) onto the Calkin algebra 

~(H)/K(H). An operator T in ~(H) is called essentially 

positive if n(T) is a positive element in ~(H)/K(H). 

Let Al ,A2 , ••• ,A n , Bl ,B2 , ••• ,Bn be operators in 

~(H). HOU JIN-CHUAN introduced elementary operators 

~(K) for each positive integer K by 

n 
1: 

i=l 
A ~K) TB~K) 
~ ~ 

K copies ( ) K copies 
T € ~ (H @ H ~ ••• ® H) and Ai K = Ai (9 • • • G) Ai' 

(K) K copies 
Bi = Bi ® ••• ffi Bi • HOU JIN-CHUAN has proved the 

following theorem in [13]. 

THEOREM 2.2.5. 

6 (K) are positivity-preserving for all positive 

integers K if and only if there are bounded linear 
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Operators Dl , D2 , ... , D.l in ~(H) such that 

~( .) 
9-

D.(.)D~ = 1: . 
i=l 1. 1. 

We wish to characterise those elementary operators /1, 

such that 6,(K) preserves essential positivity for 

all positive integers K. 

In the following remark we observe that 

posi tivi ty of 6..( K) for all K is equivalent to the 

well known complete positivity 

REMARK 2.2.6. 

Let ~ : A ~j3 be a positivity preserving 

linear map from ~ to J3 where ~ and .l3 are C* 

sub algebras of, ~(H) for some complex Hilbert space H. 

Recall that ~ is completely positive if the map 
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defined by 

-m(K) (a .. ) = (~ (a"))k k 
1J k x k 1J X 

where ~ (ID Mk = {k x k matrices (a ij ) over ~) 

is positive for all k. 

K copies 
Now one can identi fy ~ (H ~ • • • E:t) H) wi th 

~ (H) ® Mk • Also one can see tha t 6,(K) is 

positive for all K if and only if ~ is completely 

positive. Now we prove the following lemma 0 

LEMMA 2. 2 • 7 • 

Let Al ,A2 , ••. ,A n , Bl ,B2 , •.. ,Bn be bounded 

linear operators on a separable Hilbert space H 

and ~(T) = 
n 
1: 

i=l 
A . TB., T in ~ (H) • 

1 1 

independent modulo K(H). If 

Assume that 

J\ (K) 
L..J. preserves 
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essential positivity for every positive integer K, 

then there exists bounded linear operators 01,02, ••• On 

in ~(H) such that 

~(T) = 

where K(T) is a compact operator depending on T. Also 
,..., 

the map Cl on the Calkin algebra ~(H)/K(H) defined by 

f'J N 

6(T) = 
l N "'..... n N rJ .... 

E D.TD~ - E D.TO~ 
i=l 1 1 i=t+l 1 1 

N 

where for T£~(H), T = T+K(H) £ ~(H)/K(H) is completely 

positive. 

PROOF 

Since ~ preserves essential positivity, it 

preserves essential self adjointness. Therefore by 

Theorem·2.2.3, we can find operators 01,02, ••. ,On in 

~(H) such that 

~(T) = 
.2... n 
E O.TO*i - E DiTO*i + K(T) 

i=l 1 i=1+1 

for some integer.l , IS i ~n. 
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,..J 

Now to show that Ll is completely positive. 
r-.J 

For that let (a .. ) be a positive element in 
1J n x n 

~(H) IK(H) ~ 
rJ tV 

To show tha t (A (a ij) ) is n x n 

positive. For that consider the mapping ~ from 

K copies 
F3(H e ... ~ H)/K(H $ ••• ~ H) to fj(H)/K(H) ® Mn 

defined by 

Thus ~ is a * preserving isomorphism. One-oneness 

is proved using the fact that the map 

K copies K copies 
(aij)k x k :H r;f) ••• @ H-~>H e> ... ~ H 

is compact if and only if aij:H ~ H is ccmpact for 

all i,j. Thus, 

"-.J r-.....J 
(aij)n xn is positive if and only if (aij)nx n is 

positive. Since Ll (K) is essential positivity preserving 
~ 

for all K, we find that (~(aij))n xn is positive. 

Therefore (ll(a?j)) is positive. 
n xn 
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Now we prove the main theorem. 

THEOREM 2.2.8. 

Let AI ,A2 , ••• ,A n , BI ,B2 , .•. ,Bn be bounded linear 

operators in ~(H) such that [AI, ••• ,AnJ,{BI, ••• ,BnJ 

are linearly independent modulo K(H), where H is a 

separable Hilbert space. Then 

/1(K) (T) = 
n (K) (K) K copies 
1: Ai TBi ' T€..~(H(f) ..• Ef>H) 

i=l 

preserves essential positivity for all positive integers 

K if and only if there exists bounded linear operators 

~(T) 

where K(T) is a compact operator on H depending on T. 

PROOF 

By lemma 2.2.7, there exists bounded linear operators 

DI ,D2 , ••• ,Dn in ~(H) such that 

Ll (T) = 

Therefore, 
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Now let ~ be an irreducible representation of the 

Calkin algebra ~(H)/K(H) on some Hilpert space H • 
~ 

Sinc~ H is separable, ~ 1s faithful and therefore 

~(H)/K(H) and ~(~(H)/K(H» can be identified. 

Therefore the map..n..: ~(~(H)/K(H»~~(~(H)/K(H» 

defined by 

is completely positive and continuou~ in the weak 

operator topology of ~(H). Moreover, since ~ is 
~ 

irreducible, by Von Neumann density theorem [ 1 ], 

~(p(H)/K(H» is dense in ~(H~) under the weak operator 

topology. 

Let (a·.) be a positive element in 
1J k xk 

~(H) ~ Mk • Using functional calculus and Kaplanski's 

( (0:» densi ty theorem [21] one can find a net a ij 0: E.. I 

in ~(f3(H)/K(H» @Mk , which are positive such that 



64 

in the weak operator topology of ~(H). Since ~is jJ. 

completely positive (~(ai~a») are all positive. 

Since ~is continuous in the weak operator topology 

it follows that 

is positive. 

Therefore the e)(tended map, £L, 

SL(T) = 

T E ~(HjJ.) is completely positive. Equivalently -n5 K) 

is positive for all K. 

Now the argument used in the proof of Theorem 2.1 

in [13] shows 

i.e 

i.e 

. . . 

rJ 

.jJ.(D i ) = 0 for i = ~+l, •.. ,n 

n. = 0 for i = t+l, ••. , n 
~ 

0.'5 are compact for i =i+l, ••• ,n. 
~ 

where R(~) E K(H) for all T in p(H). 
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2.3. THE TRANSFORMATION ~ 

Here we study the opera tor 6. on ~ (H), where 
00 

H is 'a complex Hilbert space. Even though ~ is 

not 'elementary' as per the definition of elementary 

operators, its form makes it elementary in the literal 

sense. Such transformations makes its appearance in 

the context of normal completely positive maps [ 7J 

andC*-algebraic approach to quantum mechanics [ 7J. 

We begin with the formal definition of ~ • 
00 

DEFINITION 2.3.1. 

Let [An1 , (Bn1, n=O, ± 1, ± 2, ... be doubly 

infinite sequences of bounded linear operators in ~(X) 

00 

such that E An T Bn belongs to ~(X) for all T in ~(X), 
n=-co 

where X is a complex Banach space. Then!i is defined 
00 

as 
00 

b..oo(T) = E An T Bn 
n=-co 

In this section we wish to characterise ~ , 
00 

which preserves self adjointness of operators. To do 

this job we require the following extensions of some 
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results of C.K. FONG and A.R. SOUROUR, [lOJ. 

LEMMA.2.3.2. 

Let [An}' {Bn] n = 0, ± 1, ± 2, ••• be bounded 

linear operators in ~(H) such that 

00 

1. L I~n(x) 11 + 11 Bn(x) 11 < 00 for all x in H. 
-00 

2. [Bn}' n:::(), ± 1 ••• are linearly independent. 

3. For each Bk,there exists a bounded set Wk of 

trace class operators on H such that for each finite 

subset F of lBn:n = 0, ± 1, ••• ) not containing Bk , 

there exists re £ Wk such that 

trace(Bk'C") = 1 and 

trace(Bm ~) = 0 for all Bm €. F. 

00 

Then lloo(T) = L An T Bn = 0 for all T in I3(H) if and 
-00 

only if An = 0 for all n. 

PROOF 

First we show that Ao = 0 and the same argument 

can be used to show that An = 0 for any n. 
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By assumption there exists a bounded ~t Woof trace 

class operators on H such that 

trace (Bo'l) = l, and 

tra ce (Bm 'C) = 0, m = ±l, ± 2, ••. , + n • 

Let {y iJ be a complete orthonormal set in Hand 

'LYi = xi" LetTk = x ®Yk' where xE..H is arbitrary 

We have, 

Therefore, 

o = 

00 00 

= E E 
n=-oo i=l 

00 

00 

= 1: 
n=-oo 

00 

= E < Bn xk'Yk > An(X) 
n=-oo 

< B x. ,y.> A (x) n l. l. n 
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= I: 
n=-
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= Ao(x) + I: ~race(Bk~) Ak(x) 
k= ±n+ I ,±n+2, .• 

Since Bkls are uniformly bounded and ~ belongs to 

the bounded set Wo' there exists a positive constant 

M independent of n such that 

11 Ao xll < M 1: 11 Ak(x) 11 
k=±n+I,±n+2 ... 

Therefore Ao x = 0 since I: IlAk (x) 11 can be 
k= ±n+l,± n+2 ... 

made arbitrarily small. 

REMARK 2.3.3. 

Condition 3 mentioned in Lemma 2.3.~ looks very 

strange. But atleast in the following special cases 
one can verify it. 

Case 1 

The collection [Bn: n=O, ± I, •.. } is finite. 

It is well known that the dual of the Banach spoce of 

all trace class operators j (H) on H is ~(H) [27]. 

Hence by a result in [8], there exists a trace class 
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operator 'L(K) in rJ(H) such that trnce (B
k 

'C(K» • .:l 

and trace (Bn ~ (K» Cl 0 for n ~ k. In this case it 

is enough to take Wk Cl {-c(K)1. 

Case 2. 

The collection tBn: '1t::::(), ± 1, ± 2, ••• 1 consists 

of compact operators on H and ~ an Bn = 0 if and only 

if an = 0 for all n. It is well known that the dual 

of K(H), the Banach space of all compact operators on H 

is ~ (H), the Banach space of all trace class operators 

on H. Since Bk does not belong to the closed linear 

span of the remaining Bn's, by Hahn Banach theorem there 

exists a "C £ c:J (H) such that trace ( 't Bk) = 1 and 

trace ( ~ Bn) = 0 for all n ~ k. 

LEMMA 2. 3 .4. 

Let [An1 and {BnT' n = 0, ± 1, ± 2, ••• be two 

families of bounded linear operators in ~(H) such that 

00 

( 1) E 11 A (x ) 11 + 11 B (x ) 11 < 00 for a 11 x £ H. n n 
_00 

(2) 1.. Bn} is a maximal linearly independent 
n=O,1,2, •• 

subset of -LBk: k = 0, ± 1, ± 2, ••• 1 
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(3) [Bn: n = 0,1,2' •.• 3 satisfy condition (3) of 

Lemma 2.3.2.. 

( 4) 1: 1: I ajkl < 00, where 

00 

Bj = 1: a jk Bk where a jk = 0 for all k L N(j) 
k=o 

j = -1, -2. . . . 
Then ~ (T) = 0 for all T in ~(H) if and only if 

PROOF 

00 

Ak = - 1: a' k Aj • k = 0.1,2 •••• 
j=-l J 

Sufficiency is trivial. 

Ass ume tha t ~ (T) = 0 for all T in ~ (H) • 
00 

Therefore o = D. (T) 
00 

00 -00 

= 1: Ak T Bk + 1: Ak T Bk 
k=o k=-l 

00 00 

= 1: Ak T Bk + 1: A -j T B -j k=o j=l 

00 
00 N(-j) 

= 1: A T Bk + ,1: A_jT( 1: a_'kBk) k=o k J=l k=o J 
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00 00 

= 

Now, 

00 00 

< 00 

Since 81 ,82 , •.• are linearly independent by Lemma 2.3.~ 

we have, 

i.e. 

00 

Ak + I a_jk A_ j = 0, k = 0,1,2, ••• 
j=l 

We state two more lemmas without proof. The proofs are 

exactly the same. 

LEMMA 2. 3 .5 • 

Let {An}' [8n}, n=O, ± 1, ± 2, ••• be two families 

of bounded linear operators in ~(H) such that 
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00 

( 1 ) E llA n ( x) 11 + liB n ( x)" < 00 for a 11 x i n H. 
-00 

(2) LAn1, n = 0, ± 1, ± 2, ••• are linearly 

independent. 

(3) For each Ak , there exists a bounded set Wk of 

trace class operators on H such that for each 

finite subset F of {An:n=O, ± 1, ± 2, ••. 1 not 

containing Ak , there exists a ~ in Wk such that 

trace (A k re) = 1 and 

trace (Am'L.) = 0 for Am E:. F. 

00 

Then Lloo(T) = E An T Bn = 0 for all T in ~(H) if and 
-00 

only if B = 0 for all n. n 

LEMMA 2.3.0. 

Let [An1 and {Bn} be two families of bounded 

linear operators in ~(H) such that 

00 

(1) E It An(x) U + 11 Bn(x) U < 00 for all x in H 
-00 

(2) {Anl n=O,l,2, ••• form a maximal linearly 

independent subset ofLA k: k=O, ± 1, ± 2, •.• } 
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( 4) 
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{An: n=o,1,2,.··3 satisfy the condition 

prescribed in (3) of Lemma 2.3.5. 

t a jk Ak , j= -1, -2, ••• 
k=o 

where ajk = 0 for k > N(j) 

Then lloo(T) = 0 for all T in ~(H) if and only if 

Bk = - E a jk Bj , k = 0,1,2, ••• 
j=-l 

Now we state and prove the main ~heorem of this section. 

THEOREM 2. 3. 7. 

Let {An1 and [Bn}' n=1,2, ••• be two sequences 

of bounded linear operators in ~(H) such that 

00 

(1) E 11 An(x) 11 + 11 B (x) 11 < 00. 

1 n 

(2) {Bn) form a maximal linearly independent subset 

of [Bn' A~J. 
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(3) E E laijl < 00 where 
i j 

A~ 
N(i) 

= E a i . Bj , i = 1,2, ... 
~ j=l J 

(4) The collection [Bn1 satisfy condition (3) of 
00 

lemma 2.3.2.. Then the map 6
00

(T) = f AnT Bn is 

self adjointness preserving if and only if there are 

bounded linear operators {Un' Vn , n=1,2, ••• 1 in i3(H) 

such tha t 

6. (T) = 
00 

00 

E 
n=l 

00 

U T u* - E V T V* 
n n n= 1 n n 

for every T in ~(H). 

PROOF 

Sufficiency is trivial. 

Assume that ~ preserves self adjointness. 
00 

i.e. 6. oo (T) = Lloo(T)* for all T in ~(H) such that T=T*. 

Therefore we have, 

00 00 

E A T B = E B* T A* (2.6) 
1 n n 

1 
n n 

for all Tin~(H). 
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Identity (2.6) is equivalent to the following: 

00 

= EA TB =0 
~ n n 

for all T in ~(H), where An = An' Bn = Bn' 

B_n = A~, for all n 2. 1. 

(2.7) 

~ 

A ~-B* -n n' 

By assumption there exists scalars a ij , j=1,2, ••• N(i) 

such that 

N(i) 
= E a ij Bj , i = 1,2, ••• 

j=l 
. (2.8) 

Now consider the infinite matrix A = (a ij ), where 

a ij = 0 for all j ~ N(i) for each i. By condition (3) 

in the statement of the theorem, A is a compact 

matrix. Next we show that A is hermitian. 

Using (2.8) substitute for Ai and Ai in (2.6) 

we get, 

00 N( i) 00 N (i) 
0 = E ( E a .. B~ ) TBi E B~ T( E a .. B. ) 

i=l j=l 1.J J ·11. j=l 1.J J 1.= 

ro C(i) 00 JIB! = . E E ( a ij -a j i) Bj + E a j i B* 
1.=1 j=l . j=N( i)+l j 

for every T in ~(H). 
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Now, 

~ N(i) ~ 
E 11 E ( a-: . -a . i) B*j ( x ) + E a j i B*j ( x) 11 

i=l j=l l.J J j=N(i)+l 

where M is an upper bound for{Bj(x)J. 

Hence by Lemma 2.3.~ we have 

a .. 
l.J = a j i for all j ~ N(i) 

and a j i = 0 for all j ) N(i)+l 

Thus A is a hermitian matrix. Therefore there exists 

a unitary matrix U = (uij ) such that 

dl 0 d2 

u* A U = d3 

0 
where d l ,d2 , ••• are the eigen values of A. 
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Let Cl 'C2 'C3 ' •.• be a sequence of bounded linear 

operators in ~(H) defined by 

where the right side is the usual multiplication of 

matrices. We then have, 

Ci Bl Bl Bl 

C2 =(UT) 
B2 

= u* B2 
= U-l B2 

C* 3 B3 B3 
13" 

We have 
00 

6. (T) = 1: Ai T Bi 00 i=l 

00 N(i) 
= E ( E~ B* ) TB. 

i=l j=l l. j l. 

00 N( i) 
= E ( E a j . B* )TB. 

i=l . 1 l. j l. 
J= 
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o 

T 

o 

T 

o 
T 

o 
T 

T 

T 

T 

o 

o 
o 

o 

o 

. . . 

, 

'~ 

c* 1 
C2 

are the positive and negative eigen values of A. 



79 

Then 
00 00 

l:J. (T) = 
00 

00 00 

= E D. T D~ - E Dk T D~ 
m=l 1m m m=l m m 

This ,completes the proof. 

REMARK 2.3. B. 

Obviously the whole analysis carried out here 

dwells upon a couple of lemmas proved at the beginning 

of this section. But the conditions prescribed are 

apparently strong. The problem of finding optimal 

conditions under which these results are valid remains 

open. However the following examples throw some light 

into this problem. 

EXAMPLES 2.3.9. 

be a complete orthonormal set in H. Let P. denote the 
1 
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one dimensional orthogonal projection to the 

subspace Mi generated by the vectors ei • 

(1) Let An = I, the identity operator on H for 

every nand Bl = I-PI' B2 = -P2,···Bn = -P n , ••• 

Now consider the associated Ll~ defined by 

For x £ H, 

00 

00 

E An T Bn' T in ~(H). 
n=l 

= lim T(B l (x)+B2 (x)+ ••• + BN(x» 
N~~ 

= 0 for all T £. ~(H). 

But An ~ 0 for any n. We observe the following facts 

regarding {An1 and {Bn}. 

00 

( 1) E /lA n ( x) 11 + liB n ( x) 11 = 00 for a 11 x F 0 
~=l 



81 

(2) {Bn} form a linearly independen t set. 

(3) The collection tBn) satisfy the third 
condition of lemma 2.3.2. 

Then W is a bounded set consisting of trace class 

opera tors. 

Case 1. 

Bl = I - PI 

Let F = { Bil,Bi2 '··· B' J l.m be a finite set in 

{ Bn1 not containing Bl • Let Bk = Pk 1= PI be such 

that Pk 1= Pi or P j whenever P. l. or P. or P .-P. are 
J l. J 

in F. 

Put "C = Bk • Then 'C E. W, and 

trace (Bl ~) = 1 

trace (Bm~) = 0 fo~ all Bm E F. 
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Case 2. 

Consider Bk ~ Bl • 

Let F = [Bil , Bi2, ... ,B~1c.[Bn1 be a finite set 

such tha t Bk ~ F. Now let Bi ~ Bk be in FC and 

Then 

trace (Bk~) = 1 and 

trace (Bi.re) = 0, for j = 1,2, •.. ,m. 
J 

(2) Let An I 1,2, •.• = 
2n- l , n = 

PI P2 P3 P 
Bl 

n = -+ - + 6 + ..• + 22n 22 24 2 

00 

Then ~ (T) = 
00 

I A TB = 0 for all T E ~(H). 
n=l n n 

But none of the An's are zero. 

We observe the following: 

00 

(1) I ~ An(x) 11 + 11 Bn(x) 11 <. 00 

n=l , 

(2) tBn] is a linearly independent set 

(3) The condition (3) of lemma 2.3.~ is not satisfied. 
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REMARK 2.3.10. 

In the proof of JIN-CHUAN'S Theorem, one 

of the crucial point is the observation that the 

scalar matrix (a ij ) is hermitian and hence it 

can be diagonalised. But in the infinite situation 

we had to put extremely strong conditions to get 

compactness and hermiticity of (a .. ) so that it can 
1J 

be diagonalised. At least in the proof of JIN-CHUAN'S 

theorem, instead of using diagonalisation explicitly, 

we can use the spectral representation of (a .. ) and 
1J 

get the result. So in the infinite case, just 

demand that (a ij ) is symmetric (not necessarily 

compact) and bounded, and then use the spectral, 

integral representation of (a ij ) to get an integral 

representation of the map 6 . 
00 



CHAPTER III 

NONLINEAR MAPS ON ~(X) 

In this short chapter an attempt is made 

to study certain type of nonlinear maps on ~(X) 

where X is a complex Banach space. 

Let ~: ~(X) ~ ~(X) be a transformation. 

The problem is to find conditions under which there 

exist bounded linear operators A and S in ~(X) such 

that, (P(T) = AT2S for all T in ~(X). 

PROPOSITION 3.1.1. 

Let~: ~(X) -~~(X) be a map such that 

(1 ) 

(2) Rank ~(T) ~ 1 whenever rank T=l and 

Rank TS1, o(T) = 0 implies ~(T) = 0 

for all 

(3) ~(aT) = a
2 ~(T) for all T E ~(X) and for 

all a cc:. d . Then ei ther, 



85 

(a) ~(Lx) c L y( x) for every x in X, or 

( b) ~(LX> c Rf(x) for every x in X 

PROOF 

Let M x be the vector space generated by l(Lx). 

Case 1 

Dimension M =1. x If dim (Mx) = 0, there is 

nothin9 to be proved. If the dimension is 1, then 

=t.a~(x f ): a E.. Q) for * Mx ® some f in X 
0 0 

=[a (Yo®9 0 ):a £ a1 for some Yo in X and 

90 
in X* 

Since ~(x ~ fo) is of rank 1. Hence l(L )c L . 
x - Yo 

Case 2 

Let if possible, there exist an x in X and o 

f l ,f2 in X* linearly independent, such that 

~ (xo ® f 1) = xl ® 91 f. 0 

~ ( x 0 ~ f 2) = x2 ® 92 f. 0 

v/here tXl'X2] and [91,921 are linearly independent 

sets in X and X* respectively. 
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Now by (1) we-have, 

But l(xo ® fl+f?) = 

~,<xO®fl-f2) = Z If) h o 0 

for some yo'zo in X and go,ho in X*; by condition (3). 

Thus, 

By 'multiplying f2 by a sui table scalar if necessary, 

we may assume that fl(xo ) = f2 (xo ) so that 

Thus we get, 

z ~ h o 0 

This would imply that Q)(xo ®fl +f2 ) is a rank 2 

operator, since [x l ,x21' i gl'g2} are linearly 

ind ependen t. Th is is contradic tory to the assumption (3). 
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Hence ~(L ) c::. L for some y in X 
x y 

and ~(Lx) eRg for some g in X* 

Now we show that either J(Lx)c:. Ly(x) for every XE.X. 

or !(Lx) S Rfllo for every x 'E. X. 

Let M =[ x E X I ~ ( Lx) c:: Ly ( x )1 and 

N ={x E xl ~(Lx) c Rf (x)1 

We found that MUN = X and MnN =~. So assuming 

that M ~ ~, it is enough to establj.sh that N = ~. 

Let if possible xl E N and let Xo be in M. 

Also put, 

t( xo® f) = Yo ®go and 

!(xl®f) = Yl®gl 

We choose an f in X* so that Yo and Yl are linearly 

independent. Also by multiplying Xo with a suitable 

scalar, if necessary, we may assume that f(xo)=f(x l ). 

Now, as before, we get 

!(Xo+xl ® f) + l.(xo-xl)g)f 

= 2 !(xo ® f) + 2 CP(x l ® f) 
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Thus, since (j)((x -xl) ®f) = 0, we get 
- 0 

But left side is of rank I and right is of rank 2 

which is impossible. Hence N = ~ if M ~ ~. 

Similarly we can show that if N r~' then M = ~. 
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