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CHAPTER O
INTRODUCT ION

O.l. GENERAL INTRODUCTION

Let Mn(G) denote the set of all n x n matrices
over the field (@ of complex numbers and let § be a
linear transformation on it. In 1959 Marcus and

Moyl's [20] proved the following elegant theorem

MARCUS AND MOYL'S THEOREM

Let Q:Mn(d) —> M, (C) be a linear transfor-
mation. Then @ preserves eigen values and their
multiplicities if and only if there exists a non

singular matrix A in Mn( @) such that

1

§(T) = ATA™" for all T in M (@)

In 1959 itself Marcus and Purves [21] characterised

invertibility preserving linear maps on Mn( Q). Their

characterisation is as follows:

MARCUS AND PURVES THEOREM

Let §:Mn(d) to Mn( @) be a linear transformation.



Then § preserves invertibility of matrices in
Mn(<3) if and only if'ﬁ is a Jordan homomorphism;
that is

T, T+1,T)) = BT BT + (1) BT
for all T,,T, in Mn( Q).

These two results created a lot of research
activity. Since Mn((ﬂ) can be identified with the
Banach algebra of all linear operators on a finite
dimensional Hilbert space, various attempts were
made to generalize these results to the algebras
of operators. So the general problem studied by

various Mathematicians can be stated as follows:

PROBLEM

Let ¢\ and JB be Complex Banach algebras with
identity and let Q: A ——> B be a linear map. When

does Q preserves the spectrum of elements of Q.

This problem when and J3 are C*-algebras
were studied by Russo [25], Gleason [11], Kahane
and Zelasko [15], Bernard Aupetit [ 2], M-D Choi,

D.Hadwin,E. Nordgren,H. Radjavi, P.Rosenthal [ 6 ]Jetc.



The general problem remains open even
now. But when = B(X),B = B(Y), the Banach
algebras of all bounded linear operators on
Complex Banach spacesX and Y, considerable
progress have been made by Mathematicians like
Ali A. Jafarian and A.R. Sourour [14], Hou Jin-
Chuan [13].

Motivated by these developments, Mathematic-
ians started studying linear maps between operator
algebras preserving other properties like positivity,
hermiticity, commutativity, ranks of operators,
trace of operators etc. 1In this direction signific-
ant contributions were made by Heydar Radjavi [26],
Bernard Russe[24]}, Roy B. Beasley [17], [18],

G.H. Chan and M.H.Lim [5], Marvin Marcus [19],
Raphael Loewy [16], Roger A. Horn, Chi-Kwongli and
Nam-Kiu Tsing [12], C.K. Fong and A.R. Sourour [10],

HOU Jin-Chuan [13], etc.

This thesis is an attempt to continue the work

on similar problems.



0.2. DEFINITIONS AND NOTATIONS

Let Q denote the set of all complex numbers.
All the vector spaces considered in this thesis
are over 3. Also it is assumed that all the
topological vector spaces considered here are

Hausdor ff.

C*-ALGEBRA

A C*-algebra is a uniformly closed subalgebra

of the set B(H) of all bounded linear operators on
a complex Hilbert space H, which is closed under the

adjoint operation * |,
POSITIVITY, COMPLETE POSITIVITY

An element T in a C*-algebra f is said to be
positive and written T » O if T = V*V for some V in A

A linear map ¢ :&\—>P , where A and B are

C*-algebras is called positive if

@(T) > O whenever TeN and T » O.

Lets& be a C*-~-algebra and An denote the C*-

algebra of all n x n matrices with entries from ¢ .



Let Q(n): Sgn -——?:Dn be defined as follows;

50 (Lag51) = [Blay 1, agyled,.

If @(n) is positive for n =1,2,..., then § is

called completely positive.

* REPRESENTATION, IRREDUCIBLE
REPRESENTATION

A * representation of a C*-algebra 4 on

a Hilbert space is a homomorphism of $\ into B(H)

which preserves involution * in 4\ .

A * representation m of f\ on H is called
irreducible if the only closed subspaces of H

invariant under () are H and {O'} .

It is well known that every C*-algebra A has

an irreducible representation [1 ].

0.2.1. STINESPRINGS THEOREM [27]

Let § be a completely positive linear map from
a Ct-algebra QA to a C*-algebra B on H. Then there

exists a *-representation m of A on K and a bounded



linear map V¢ H —>» K such that

$(T) = v* o(T)V for all T in A,

0.2.2., DENSITY THEOREM OF VON NEUMANN [1]

LetA be a self adjoint algebra of operators
which has trivial null space. Then §\ is dense in

the second commutant " of Q.

0.2.3. KAPLANSKIS DENSITY THEOREM [27]

Let ¢\ be a self adjoint algebra of operators
and let §\s be the closure of & in the strong operator
topology. Then every self adjoint element in the
ball of §\s can be strongly approximated by self
adjoint element in the ball of A .

CALKIN ALGEBRA

Let H be a Hilbert space and K(H) denote the
two sided ideal (* closed) of all compact operators
on H. Then the quotient B*-algebra (i.e., a Banach
* algebra B such that [[x*x|] = || x “2 for all x in B).
B(H)/K(H) is called the CALKIN ALGEBRA.



0.2.4., THEOREM

If H is separable, then K(H) is the only

non trivial two sided ideal in B(H) which is closed

under norm topology and adjoint operation.
Consequently every non trivial * representation

of B(H)/K(H) is one-one, when H is separable.

0.3. SUMMARY OF THE THESIS

This thesis is devoted to the study of mappings
between algebras of operators on locally convex
topalogical vector spaces and their characterisations
when they preserve various aspects of operators like
spectrum, eigen values,hermiticity,positivity etc.
Apart from the introductory chapter, the thesis 1is

divided into three chapters.

In chapter I, spectrum preserving linear mappings
from B(X) to B(Y) are studied where X and Y are locally
convex topological vector spaces. Theorems 1.1.6,
l1.1.7 and 1.2.1 are the main results proved in this
chapter. Theorem 1.1.6 and 1.1.7 are generalization
of the corresponding results of Jafarian and Sourour

to the set up of locally convex topological vector



spaces., It is observed in Remarks 1.1.9 that

the proof of Theorem 1l.1.6 given here is simpler

than that of Jafarian and Sourour [l4]. Remark 1.2,3
is another observation regarding essential spectrum
preserving linear maps between B(X) and B(Y) when

X and Y are Complex Banach spaces.

In chapter II elementary operators on B(X) are
considered. The well-known notions of hermiticity of
operators on Complex Banach spaces, do not share
many properties of Hilbert space adjoint. So we
select a class ﬁLof operators on X which coincides
with the class of self adjoint bounded linear operators
on X when X is a Hilbert space. This is done in
Definition 2.1.1. Then certain types of elementary
operators on B(X) which leaves ﬁhinvariant are
characterised. This is given in Theorem 2.1.7. In
section 2.2 elementary operators on B(H), when H is
a complex separable Hilbert space are studied.
Elementary operators on B(H) which preserves essential
self adjointness and essential positivity (i.e.
positivity and self adjointness modulo compact
operators) are characterised in theorems 2,2.3 and

2.2.8. In section 2.3 the transformationA_ on B(H)



is introduced. This transformation is an infinite
series analogue of elementary operators. Theorem 2.3.7
characterises certain class of operators of the

form £\_,» which preserves self adjointness of operators
in B(H). Finally in Remarks 2.3.10it is observed that in
the proof of JIN=-CHUAN'S theorem, spectral representa-
tion of hermitian matrices may be used, instead of the
explicit usage of diagonalisation. This approach

may be helpful in dealing with A _ because diagonalisa-
tion of the scalar matrix (aij ) may not be possible
for a large class of maps of the type Do’ The

details are not supplied.

The third and final chapter is extremely short.
There, some properties of non linear maps on P(H)

are 'studied, when H is a Complex Hilbert space.



CHAPTER 1

SPECTRUM PRESERVING LINEAR MAPS

In this chapter the structure of spectrum
preserving linear maps between B(X) and B(Y) is
studied, where X and Y are locally convex topological
vector spaces over the field @ of complex numbers.
This is a generalisation of the work of Ali A Jafarian
and A.R. Sourour [14], where they considered spectrum
preserving linear maps on $(X) where X is a complex
Banach space. Section l.l1 deals with this. 1In
Section 1.2, spectrum preserving linear maps on B(X)
which preserves eigen values of operators in B(X) are

studied.

l.1. SPECTRUM PRESERVING LINEAR MAPS ON B(X)
THEOREM (ALI A JAFARIAN and A.R. SOUROUR)

Let X and Y be Banach spaces and {:8(X) —> B(Y)
be a spectrum preserving surjective linear mapping. Then

either

(1) there is a bounded invertible operator A:X —> Y

1

such that §(T) = ATAT" for all T in B(X), or
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(ii) there is a bounded invertible operator

B from X* (the dual of X) to Y such that

§(1) = BT*B™! for every T £ B(X).

As specified we establish the same result,
when X and Y are locally convex topological vector
spaces over @. Since the method adopted is the same
as in [14], we start with generalising various

technical results proved in [14].

Even though the proofs are exactly similar,
we supply the details. Through out this section X
and Y denote locally convex topological vector spaces
over @ and B(X) the set of all continuous linear

mappings on X.

LEMMA 1.1l.1

Let A be in B(X). Then o(T+A) € o(T) for every

T in B(X) if and only if A=0.

PROOF
A= 0 =ﬁ;rc(T+A) = o(T) for all T.

Now assume that o(T+A) < o(T) for all T.
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To show that A = O.

Let if possible A 4 0. Then there exists
x € X, x £ 0 such that A(x) = y # 0. By Hahn
Banach theorem in locally convex topological vector
spaces, there exists f € X* (X*- the dual of X)
such that

f(x) =1 and f(y) #0

Let a be a nonzero complex number and let
T = (ax-y) ® f, where

T(z) = ((ax-y)® f)(z) = £f(z) (ax-y), z € X
Continuity of T follows from the continuity of f.

Now

(T+A)(x) = T(x) + A(x) = ax-y+y = ax

Hence a is an eigen value of T+A.

Now one can easily show that, for e @, T-BI is
not invertible in B(X) if and only if either B = O
or p = f(ax-y). Therefore of(T) = iO, f(ax-y)}



13

Since f(ax-y) = a-=-f(y) # a, we have
o(T+A) 45 o(T)

This proves our assertion.

LEMMA 1.1.2.

Let §; B(X) —> B(Y) be a spectrum

preserving linear mapping. Then.ﬁ is injective.

PROOF
o(T) = o(P(T)) for all T in B(X).

Suppose @(A) = Q(B), A,B € B(X).
To show that A = B

o(T+A-B) = o (§(T+A-B))

o (§(T))
o (T)

n

for all T in B(X). Hence by lemma 1l.l1l.1, A-B = O.

LEMMA 1.1.3.

If §: B(X) to B(Y) is a spectrum
preserving surjective mapping, then Q(IX) = Iy,
where I, (or LY) denote the identity mapping on X

(or Y respectively).
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PROOF
Let §(s) = I,

For T in B(X),
o(T+5-1,) = o(B(T-I+S))
= o(@(T)- §(1,) + @(s))
= o(®(T))

= o(T)

Hence by lemma 1l.1.1, S = IX.

LEMMA 1.1.4.

Let X be a locally convex topological vector
space and K(X) denote the set of all compact operators
on X. Let A be in B(X) and C be in K(X). If

A€ o(A) is not an eigen value of A, then 3¢ o(A+C).

PROOF
Let if possible, A+C- A.I, is invertible in B(X).

Therefore,

-1
A-AIy = (A+C=~ A.Ix)[IX-(A+C—?\IX) o
Since (A+C-uAIX)-l is continuous and C is compact,

(A+C-AIX)'1.C is compact [ 9]
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Case 1
Ix._(A+C- 7\~Ix)-l C is invertible.

In this case A-?vIX is invertible.

Case 2

IX-(A+C--:>‘-IX)"l is not invertible.

Here, since (A+C—;\-IX)—lC is compact, 1 is
an eigen value of (A+C-aL)7'C [9].

Hence, there exists a non zero vector x such
that
-1 B
Iy - (A+C-A.IX) Cc (x) = 0.
Therefore (A-2a.I,) (x) = O.

In either case the conclusions are contradictions
to the assumption that 4 g o(A) but not an eigen value

of A.

This completes the proof.

LEMMA 1.1.5.

For T in B(X), x £ X, £ € X*¥ and 2 not in o(T)
we have 3 g o(T+ x@®f) if and only if f((?\lx-T)-l(x))=l.
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PROOF
Assume that f(a.xx-r)“l(x) =1

Then (x®f) ((?\-IX-T)-l(x)) (f( 7\~IX-T)'1(X)).x
= X

Hence

(T+x® £) (AL -T) "2 (x)

T(AL=T)"H(x)) + (x@ £)( A L-T) " (x)

T(z-IX-T)'l(x) + X

(T(AL=T)7H + L) (x)

(T+ 2 I=T) (A I =T) 7 (x)

A (A I =T) 7H(x)

Therefore 9 1is an eigen value of T+x®f{.

Conversely assume that A e o(T+x®f). Then by
lemma l.1l.4, 5 is an eigen value of T+x®f. Hence

there exists a non zero vector u in X such that

(T+ x®@f)(u) = A u

ices, T(u)+f(u)ex = 2 U
since A¢0(T), f(u) £0

(?\IX-T)-I(X) = TTuy

ieer, f((AL-T)7Hx))= 1
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THEOREM 1.1.6.
Let A€B(X), A #0. Then the following
conditions are equivalent.
(1) A has rank 1
(2) o(T+A) N o(T+cA) < o(T) for every T in B(X)

and every c # 1.

PROOF
Assume that A is of rank 1. Hence there

exists x ¢ X and f g X* such that
A=xpf.

Now let T be in B(X) and » not in o(T). Then by
lemma 1.1.5 2 is in o(T+cA) if and only if
f((A IX—T)-l(x))=l. Hence 9 does not belong toe(r + cA) for
two distinct values of c. Hence (1) implies (2).

Now to show that (2) implies (1).

Assume that rank A > 2,
Case 1

A= a.IX for some nonzero scalar a.

Let T in B(X) be such that o(T) ='{O,dﬁ .
It is enough to take T = y@®g for suitable yeg X and

g in X*,.
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Then

o(T+A) = {a,2a} and
o(T+2A) = {2a,3d].

Therefore o(T+A) N o(T+2A) = {2a} which is not
contained in o(T). This completes the proof of

case 1,

Case 2,

A £ aly for any « in C and rank A > 2.

Case 2',

There exists a vector u ¢ X such that
iu,Au,AQU} is linearly independent. Let U be the
linear span of ~£u,Au,A2u3 and V be a closed complement

of U in X. It is enough to take

V = ker faul ker ngur\ker £,

where fu, fAu' fA2u are bounded linear functionals

on X such that

fAmu(Anu) = g N m,n = 0'1'2'000

m,n
where,
Sn“n = 0 ifm#n
= 1 if m = n
Put Nu = u - Au

N(Au) = Au - 2Au
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N(A2u) =-§ + 2%2 - 2A2u and
NV = 0 for all v in V and extend it linearly.

Clearly N gB(X) and N3 = 0, (N+A)(u)=u and

(N+2A) (Au) = Au.
Therefore, 1 € o(N+A) No(N+2A)
But o(N) ={o}.
Thus o(N+A) N o(N+2A) is not contained in o(N).
This establishes case 2'.
Case 2"
[u,Au,AQGEare linearly dependent for every u in X.
Let A2u = au + BAu for some scalars a and B.
First we assume that a # O.
Let N(x) = x for every x g V, and
N(u) = -Au
N(Au)= AU = au + AU
Clearly N is invertible.
Also (N+A)(u) = 0 and (N-A)(Au) =0

Thus O g o(N+A) No(N-A) whereas O is not in o(N).

If A2(u) = B(u)Au for every u, we get,
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A2(u-v) = Au = A“v = B(u)Au - B(v)Av
= B(u-v)Au -~ B(u=-v)Av
= B(u) = B(v) = B(u-v) since rank A > 2.
2

Thus A~ = BA for a fixed scalar B.
i.e., P(A) = O where P(t) = t°-B.t

Now rank (A) > 2. Also O and B are eigen values of A.

Hence there exists three linearly independent vectors

X,Y,AZ such that

A(x) = O
A(y) = By, and
A(z) £ O

Let W be the three dimensional space generated by x,y

B 0 O
and A(z). Then A(W)cW and [) B O] is the matrix
0O 0 O

of A/W with respect to {A(z), y,x]. Now we define a

nilpotent operator N as follows. Let Z be a complement
of W in X and let N(z) ={0} . Let N/W has the matrix

representation

0o 0|

0
O 2B 2B | with respect to {A(z),y,i} .
0 -2B -2B

—
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Then N is nilpotent. One can easily see that 2B
is an eigen value of (N+A) and (N+2A). Since B#0

we get

o(N+A) N o(N+2A) Q;U(N).
Now we prove the main theorem of this section.

THEOREM 1.1.7.

Let §: B(X) —— B(Y) be a spectrum preserving

surjective linear mapping. Then either

(i) there is an invertible linear operator A:X—> Y
such that'Q(T) = aTA™! for every T in B(X) for

which there is an unbounded sequence in C-o(T)
or

(ii) there is an invertible linear operator B:X*—Y
such that §(T) = BT*8~ 1 for every T in B(X),
for which there is an unbounded sequence in

A -o(T).

PROOF

Let x and f be nonzero elements in X and X*
respectively. Let Lx and Rf be linear subspaces

of B(X) defined by
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I"X

£ fu®f:ueXj

{x@h heX*‘ﬁ and

R

First we prove the following. Corresponding to

each x in X there is a y € Y such that

gLy = L,
or corresponding to each x in X, there is a g g X*
such that

e(L,) = Ry

Also if @(Lx) = LY for some x € X, then

Q(Lu) £ Rg for any u ¢ X
This follows from the following observations.

(i) By lemma 1.1.2 and theorem 1.1.6, if R is of

rank one, @KR) is of rank one.

(ii) Lyr\Rg is one dimensional where as L N L,

has dimension O or dimension X*.
(iii) If @(Lu) = LY for some u g X, then

@(Lv) £ Rg for any v in X.

For,

$L,nLy) =3 PN, =L ARy
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Since @_is one-one and onto, dimension Lur\LV
should equal dimension @(Luﬂ L,) = dim Lyrle

which is not possible. This leads to two cases.

Case 1.

Q(Lx) = Ly(x) for every x ¢ X. Put y(x)=y

for brevity.
Therefore,
@(x@f) =y ®g for some g g X*

Now let,
Cx: X*¥ ——> Y* be defined by

Cx(f) = g. Clearly C_ is linear.

Claim
The set, {'Cx:xaxs is one dimensional. Let
if possible, there exists two linearly independent

transformations C and Cx , where

X1 2
@(Xl® f) = Y] ® Cxl(f) and
Q(XQ ®f) = Yo @sz(f)

Now,

Pl(x+x,) @ f) =Plx; @f) + Blx, ®F)
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Since X,+Xo, ® f is of rank 1,

P(x+x,)®f = ye@g

for some yegX and g ¢ X*. Hence we get

Cxp (£)(weyy + €y (£)(u)eyy = g(u)ey

for every u in X. Since Cxl and Cx2 are linearly
independent, Yy and y, should be linearly dependent.

Hence L =L
Y1 Yo

'." Q(Lxl) =§_(Lx2)

. Therefore Xy

Since Q is one-one we have Lxl=Lx

2

and x, are linearly independent. Then C and C
2 X1 X2

are linearly dependent. This is a contradiction.

e dimension {Cx:x £ X} =1

Hence there is a linear operator C such that
fcex exy={ac: a¢ @l
Therefore,

Q(x ®f) = y ® Cf where y depends on x.
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Put Ax=y. Hence P(x®f) = Ax ® Cf. Since § is
bijective both A and C are bijective linear mappings.
Now let T€ B(X) be such that there is an unbounded

sequence in @ -o(T).
P(T+x®f) = P(T) + AxgCf
Let A be not in o(T). Hence by lemma 1l.1.5 we have

£f((a -T)™X)= 1 if and only if A ¢ o(J(T)+Ax ®CE)
and
a € o((T)+ Ax®Cf) if and only if
CH(A L- BTNTH A(x) =1

Thus for 5 not in o(T), we get
£((a L=T)"H(x)) = CE((A 1,-§(T)) ™ Ax)

Réplacing A with % and using similar argument as in [14]

we get,
£((I,=2T) (%)) = CF(I,=28(T)) "M (y), where A(x)=y

That is

£((1,-21) 72 A7H(y)) = cf(1,-28(T)) " (y)
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Since @ - o(T) contains an unbounded sequence,
by taking the limit as z —> 0 we get,
-1
f(A " (y)) = cCf(y)

again £L(I=2T)TH ATHy) - ATH(y)]

cfl(1, - zB(T))"Hy)-y ]
rA

Now letting z tend to O we get,

£(TA™(y)) = c£(F(T)y) for all f g X*
But we already have,

f(A7(y)) = cfly)
Combining these two we get,

CE@(T)(y)) = £~ BTy,

£(TA™ (y))

ATHR(T) ()

CE(P(T)(y))

and  Cf(Q(T)(y))

]

Thus we get,

£(TA™1(y)) = £(A™IF(T)y) for every f in X*.
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That is, TA™(y)

[

A~t Q(T)(y) for all y ¢ Y

That is, ATA™T = §(T)

Case 2

Let x ¢ X and §(Lx) = Rg for some g g Y*.

As in case 1, we can show that for each x € X and

f g X%,
d(x@f) = Bf @ Ax

where B: X¥ —> Y 1is linear.
As before for TeB(X), x £ X, f &£X* and 3 4 o(T),
A € o(T+x@f) if and only if f((AL,-T)7H(x)) =1

and finally for every x g X, f € X* and Aq;o(T)

F((A I=T)7H(x) = A(x) (A L-B(1)7F (D))

Now for Té& B(X) such that @ -o(T) contains an unbounded

sequence, identical arguments leads to the conclusion

£(T(x))

A(x) (B(T) B(£))

f(x) A(x) (B(f))

Therefore,

A(x) B(T) B(f) = £(T(x)) = AT(x) (B(f)) = A(x)(BT*f)



28

Hence we get

g §(T) (B(f)) = g(BT*(f)) for all g in Y*
Therefore,

¢(T) B(f) = BT*f for all f in X*
Thus §(T) = BT*B™ L,

REMARK 1l.1.8.

One does not know whether the operators A or B
obtained in Theorem 1.1.7 is continuous or not. But
when X and Y are Frechet spaces, using closed graph

theorem, continuity of A and B can be established [9].

REMARK 1.1.9.

It is to be observed that Theorem 1.1.6 is a
generalisation of the corresponding theorem of
Jafarian and Sourour [14]. Though the proof goes along
the same line as in [14], our proof is simpler in the
following sense. By considering one more simple case,
we are able to arrive at the quadratic polynomial
P(t) = t(t-B) such that P(A) = O directly without using
any existence theorems. Also the other forms of minimal

quadratic polynomials are not needed at all.
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l.2. EIGEN VALUE PRESERVING LINEAR MAPS

In section 1.1 we analysed spectrum preserving
surjective linear maps of B(X) to B(Y), where X and Y
are locally convex topological vector spaces over @d.
In this section we characterise spectrum preserving
linear maps which preserves eigen values when X and Y

are complex Banach spaces with Schauder basis.

THEOREM 1.2.1,

Let X and Y be Complex Banach spaces with
Schauder basis and @; B(X)—> B(Y) be a spectrum
preserving, surjective linear mapping. Then §
preserves eigen values if and only if it is of the
form @(T) = ATA-'l for every T in B(X) where A:X — Y

is a bounded invertible linear operator.

PROOF

1

Let §(T) = ATA™", for all T in B(X), A:X =Y

an invertible bounded linear map. Let Ago(T). Then
T(x) = A x for some nonzero x in X.
-1 -1
Let y = A(x). Thus TA T (y) = a2 A" (y)
. -1
i.e., ATA  (y) = a2y

Therefore 4 is an eigen value of T.
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From theorem 1,1.7, either

1

(i) §(T) = ATA™", A:X =—=>Y a bounded invertible

linear map, or

1

(ii) @(T) = BT*B™", where B: X* —> Y is a bounded

invertible linear map.

We show that if § takes the form (ii), ¢ will not

préserve eigen values for all T.

Let if possible A 1is an eigen value of T
implies 4 is an eigen value of BT*B™ 1. Then there

exists a nonzero x in X such that T(x) =3.x.

i.e., (T-gxlx) is not one-one.

Since 3 1is an eigen value of BT*B-l,

BT*B-l(y) =24y for some non zero y in X.

o

Therefore T*B—l(y) =2AB " (y)

i.e., A4 1s an eigen value of T*,

Let f = B-l(y). Then we get,

(T*f)(z) = 5 f(z) for all z in X.

Hence,

f((T-21)(z)) =0 for all z g X.
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Since f is a non zero continuous linear functional
on X, its null space is a proper closed subspace of

X. Therefore Range (T-21) is not dense in X.

Now we show that there is a bounded linear
operator S on X which is not one-one but onto. In

this case, O is an eigen value of S but it is not

an eigen value of §(S).
Let {xl,x2,...,xn} be a Schauder basis in X.

For z in X,

[e2]

z = Zl a (z)x_ , where a« (z) ¢ @ n=1,2,...
n=
a,(z) a.(z) a (z)
Put S(z) = 22 X + 3 5= Xp + eee ntl X+ e
2 3 (n+1)

Then S g B(X), S(xl) = 0.
Now we show that Range (S) is dense in X.

Let vy = an(y)xn

—~t™ 8

2 2
Let x = 0.x) + 2 .al(y)x2 + 3 a2(y)x3+ .oot

(n+l)2 an(y) X041



32

Then

S(xn) = al(y)xl + a2(y)x2+ oo + an(y)xn

Therefore,

S(x )—>y as n—» =

i.e., Range(S) is dense in Y.

REMARK 1.2.3.

Let X and Y be complex Banach spaces and

let @: B(X) —> B(Y) be a linear mapping. If

1

$(T) = ATAT + K TK,,

where A:X —> Y a bounded invertible linear map,
Kl:X —~—> Y compact linear mapping and Kot Y — X

a compact linear mapping, one can easily see that

Q preserves the essential spectrum of T, for every T

in B(X).

Now let §(T) = BT*B™' + K TK,, where B:X* —»Y
a bounded, invertible linear map, and Kl,K2 as above,
One can easily prove that ce[Q(T)]g_ce(T) for all T
in B(X), where ce(.) denote the essential spectrum.
The inclusion may be proper as every compact operator

K on X* need not be dual of some compact operator on X.
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The following is an example for that

EXAMPLE 1.2.4.

Let X = ll’ the Banach space of all summable
sequences of complex numbers with Ql norm. Then
9‘1Cl~ao and the closure Il of 9‘1 under the 9»00 norm
is properly contained in‘Qm. Hence there is a
non zero bounded linear functional F on Q“>Such that
F(x) = O for all x in Ll‘ Let f in lw— Iﬁ be such
that F(f)=1l.

Now let,

T = f@F, where f ® F(g) = F(g).f, g ¢ L_.

Then 4@ 1is a compact linear operator on ﬂw. We show

that T # T* for any T in B( Ql).
Let if possible T = T* for some T in 6(21).
Therefore,

T (g)(u) = T*(g)(u) for all g in.[m and

for all u in ll

i.e., F(g).f(u) = g(Tu) for all u in ll

Hence O = g(T(u)) for all g in Ql'
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Now let h g Ql be arbitrary, and let

T(h) = (Ul,ﬁz,...,ﬁn o )el . Let g = (ul,u2,...un..) 291‘
oy 2

Then O = g(T(h)) = E Iunl = u =0 for all n.

Hence T(h) = 0. But h is arbitrary. Hence T = O.

Therefore T* = O which is not true. HenceT# T*

for any T in B( ﬂl)'



CHAPTER II
ELEMENTARY OPERATORS

In this chapter, the study of elementary
operators on the Banach algebra of all bounded
linear operators on a complex Banach space is
carried out. These observations are generalisa-
tions of some recent work of HOU JIN-CHUAN [13].
This is also based on the work of C.K. FONG and
A.R. SOUROUR [10]. Section 2.l. contains these

general versions.

Throughout this chapter, B(X) will denote
the Banach algebra of all bounded linear operators
on a complex Banach space X. For doubly infinite
sequences {Ai} and {Bﬁ in B(X), the transforma-
tion A_ on B(X) defined by

AT = EATE TegpX

is studied in section 2.3.



36

2.1. HERMITICITY PRESERVING ELEMENTARY OPERATORS

HOU JIN-CHUAN'S THEOREM.

n n
Let {Aﬁ and {Bi} be operators in B(H),
i=1l i=1

where H is a complex Hilbert space. Then the

elementary operator /\ on B(H) defined by

A(T) =

N t3
>

i=1

is self adjointness preserving if and only if there

exists operators D),Dp,...,D_ in B(H) such that

[} n
A(T) = L D,ID* - © D.TD}
1=) 11 gog4y PR

for every T.

We wish to consider similar characterisation
problems when X is a complex Banach space. There
are several notions of hermiticity of operators in
B(X). Among them, the well known notions are due
to LUMER [23] and STAMPFLI [23). Recall [3,4] that

these notions of hermiticity do not possess some
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well known properties of selfadjoint operators in
Hilbert spaces. For example square of a hermitian
operator need not be hermitian in the Lumer's sense.
Similarly sum of two hermitian operators need not be
hermitian in the Stampfli's sense [3,4]. So we
introduce a new class ﬁl as follows and designate

an operator hermitian if it belongs to the class ﬁl.

DEFINITION 2.1l.1.

Let HL denote the class of all operators in
B(X) which are hermitian in the Lumer's sense. Then
ﬁl is the largest linear subspace of HL over the

field of real numbers such that

(1) Te® implies T?e H
L L
~ ~

(3) gL + 1 EL contains all rank one operators on X.

REMARK 2.1.2.

When X is a complex Hilbert space, Lumer's
hermiticity and Stampfli's hermiticity coincides with

usual Hilbert space self adjointness of operators.
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In general ﬂl is a proper subset of HL'

Now let {Ai}n and {Bi}n be operators
i=1 i=1

from the class'ﬁl. We wish to characterise the
associated elementary operator which leaves ﬁL
invariant. To achieve this, the following Lemmas

are needed.

LEMMA 2.1.3.

Let A; and By (1<i¢n) be bounded linear
operators on a Banach space X, where Bl’BQ""'Bn
are linearly independent. Then A(T) = O for all T

~J
in H

L if and only if Ai =0, for i =1,2,...,n.

PROOF
Assume that A (T)

O for all T in ﬁL' Since
BysBys...,B_are linearly independent, there exists [10]
vectors X)9Xppeoos Xy, in X and linear functionals

f f2,...,fr in X* such that

l’

0 if 3j=2,...,n

T
£ f, (B; x,)
k=1 k j "k

1 if j§=1.

Now let x £ X and Tj = fj ® x, j=1,2,...,r.
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Since T, g A+ 1 H, A(Ty) =0, 3=1,2,...,r.

Then we have

"
>
P
—
>
~—

Thus A, = O, since x is arbitrary.
Similarly one can show that Ai =0 for all i = 2y00eyna

LEMMA 2.1.4.

Let A; and By (1<i<n) be in B(X) where
{81,82,...,853 mén form a maximal linearly independent
subset of {31,82,...,BA}. Then A(T) =0 for all T

in H if and only if
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n
A, = - L a A, (1 < k < m)
k Jj=m+1 k3 ™
where
m
B = B 1
j kil a4 By (m+l < j < n)
PROOF
I ( )
IfA =~ LI a A l1{kd{m then one
k™ jome1 K373 ’

~
can easily see that A(T) =0 for all T in H; by
substituting for Ak and then rearranging the

expression.

Conversely assume that A(T) = O for all T
oJ
in HL‘ Since 81,82,...,Bm is a maximal linearly
independent subset of 81,82,...,Bn)there exists
constants 3y 5 (1<k¢m and m+l £j<n) such that

m

Substituting this in /A\(T) = O we get,

m n
0=A(T) = ¢ (A pX A,) TB
AN oy etk %y Ay T

Since {31,52,...,Bm} is linearly independent by
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n
Lemma 2.1.3 we must have Ak + I ak A, =0.
j=m+1 3

LEMMA 2.1.,5.

Let A; and By (1<i<n) be bounded linear
operators on a Banach space X where Al’A2"“’An
are linearly independent. Then A(T) = O for all

T in ﬁl if and only if Bi =0 for all i = 1,2,...,n.

PROOF

Assume that A(T) = O for all T in ﬁl. Since
Al,A2,...,An are linearly independent, there exists
[10] vectors X)sXpyeoosX, in X and linear functionals

fl’f2’°°”fr in X* such that

r
ﬁl fk (Aj xk) =0 if j = 2,...,!'1

k

n
—

1 if j
Now let Ty = f@® xj, fEX*, J =1,2,...,r

Since Tj £ EL + 1 ﬁL’ we have [ﬁ(Tj) = 0 for all j.

Ir
Therefore I A(Tj)* (£5) (x) =0 for all x in X.
j=1
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But T AT * (£)) (x)
§=1

1N

n
= E (

&1 bR fj(Ak xJ)) f(Bk x)

= f(Bl x)

Since x and f are arbitrary, Bl = 0. Similarly we

can prove that Bi = QO for i = 25600 yNa

LEMMA 2,.1.6.

Let A; and B; (1<i<n) be in B(X) where
{Al'A2""’Aﬁ} m¢n is a maximal linearly independent
subset of {A;,Ay,...,A T . Then A(T) =0 for all T

in ﬁl if and only if
z ( )
B, = - L a B, 1<k<m
kK yome1 K3
m

The proof is quite similar to the proof of

Lemma 2.1.4 and hence omitted.

Now we prove the main theorem of this section.
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THEOREM 2,.1,.7.

n n
Let {Aj}j=l and {Bi}j=l be operators from

~ ~ n
the class H,. Then zx(ﬁ')g;H , where A(T) = L A,TB.
L L L j=1 3773

if and only if there are operators Dl,D2,...,Dn, in
ﬁl such that

0
A(T) = 2 Dy D
j=1

n
- L D, TD

j j=l+l j j

for-every T in B(X) where X is a complex Banach space

such that ﬁi + i'ﬁl contains all rank one operators

on X.

PROOF

L n
Suppose A (T) = jile TDy - j=i&le T Dy for

~
every T in B(X) where Dy,Dyy...,D are in H . To show

that A(T) belongs to ﬁl whenever T belongs to ﬁl.

~
It is enough to prove that A,B belongs to HL

implies ABA belongs to'ﬁL.

We have AB + BA belongs to ﬁl.



44

Therefore A(AB+BA) + (AB + BA)A

2 2 ~
= A"B + BA” + 2ABA belongs to H; .

This implies ABA belongs to Hy. Using this
~J
we can see that A(T) belongs to Hy , whenever T
belongs to'ﬁL.
Conversely assume that A\(T) belongs to’r{L for
. ~J
all T in HL‘

CLAIM

n n ~
A B, = B,TA, f T in H,.
jil j T j jil 374 or every in H¢

Since the identity operator I belongs tolﬁl,

n ~
jiiAj Bj belongs to HL’

n n
jilBj Ay = jil(aj Ay + AyB)- L A

n -~
N jﬁlBj Aj belongs to HL'

n
o o z A -
=1 J Bj LBy A

-
belongs to H
] j=1 3

3 L
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But  i(A; By - By A,), i = V=1 belongs to H

L
for j = 1,2,...,n.

n —~
o.o i B -B- l .
jil (Aj 3 j Aj) belongs to H;

Hence by a result in [3 ] it follows that

n
’j‘v;l@j By - 13J Aj')= 0.

~
Now let T € HL'

~
i - 1
(AJT TAJ) belongs to Hp

"« 1(A4T - TA;)By + By.1(AT = TA;) belongs to ﬁL.

i.e. i(Aj TBj - BJ TAj)+i(B

for j =1,2,...,n.
adding we get,

i
3

™S

n
. (Aj TBy - By TAj) + i Jil(BJAjT - TAij)
~

belongs to HL'

3 AjT - TAj Bj) belongs to H

L
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n n
But i B AT—TAJ Bj)=i((EBA)T -T(EAJBJ))

NERE jo1 3% jo1

he1s

3

n

~ n
This is in H; since ¥ A, B, = L B .
L 328 BT R B A

n ~
Therefore 1 I{(A, T B, -B, T is i .
o j=§‘j j j Aj) s in HL

~
We have (Aj + Bj) T (AJ + Bj) € Hp.

—~J

i.e., Aj 'I'.Aj + AJTBJ + BJTAj + BJTBJ belongs to HL'
~

This implies BJ T Aj belongs to HL'
n ~J

0.0 - i i .
jzzle\j T By - By T Aj)is in Hp

Hence by a result in [ 3]

n n
jil AyT By =j£ By TA, (2.1)

~~
for every T in HL‘ This proves our claim. Now assume

that {AJ.} , {Bj} , j=1,2,...,n are linearly independent.
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Identity (2.1) is equivalent to the following

2n

jElAJ'TBJ =0 (2.2)

for every T in ﬁl, where

A = -B J=l’2’ooa’n

n+j

3

B = Aj i=1,2,...,n

n+j
If{AJ,Bj} j=1,2,...,n form a linearly independent
set we have AJ = BJ = 0 for all j. Otherwise we

may assume that{Al,Az,...,Aéﬁ form a maximal linearly
independent subset of‘{Al,AQ,...,An, 81,82,...,BA}.
Therefore there exists real scalars a.. such that

Jj1

(2.3)

[ ne o)

Substituting (2.3) in (2.1) we have,

n n n
JilAJT ( . aJi Ai) = Jil (1£1aji Ai)TA

]

(I t=]

1

: (I ) T inH
i.e. z ( L(a,, —-a A TA, = O for all in H,.
j=1 i=1 1j. 31 i) b L
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Hence by Lemma 2.1.3 and the linear independence

Thus the matrix A = (a,,)" is a non singular
jiiv.j:l

n xn symmetric matrix. Therefore there exists a

unitary matrix U = (uij) such that

d)
dy
d
U*aAd = L
'dL+l
-d
n
| |

where dl’d2”"’dl are the positive eigen values of A

and -dl+l""” -dn are the negative eigen values of A.

We may assume that the entries of U are all real.

Now as in [13] put

[C),Chs-e- ,cn] = [A},Ay,... ,An] U
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[ _1 — — T — —
¢ Ay Ay Ay
c, Ag Ay A,
e O R O I AV :o | =utl| o
c, A A A
L L L L
— —1 ——— -7
Ay ¢
ie. . A2 C2
. = U .
N N
Therefore ~—

n
N(T) = jﬁl AjTB:j

= I Aj T | iil aji Ai)

—
allAl + a12A2 4+ cee + aln.An

a21Al + a22A2 + eee + aZﬂAn
=[A1T’A2T,00'AnT] :

anlAl + anzA2 4+ eee + annAn

—_—



=[A1'A2, * o0 ,An]

=[C1,C2y---,c

=[Cl,C2, LI ) ’cn]

—
T all al2 e oo aln
Q T a_, a .. a
nl “n2 nn
|
O o
T C2
I 0L |
Q T C
n
L | |
M !
Ol
94 O
94
-d9_+l
T -d,
L

50
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0 n
= jil Cj T dj Cj - j=i+1 Cj T dj Cj
¢ n
= & D, TD; - L D, TD
j=1 J h) j=l41 J J

where Dj = Y dj Cj' It is also clear that CJ belongs

Vol
is in H

to ﬁl for all j. Therefore D L

3 for all j.

This completes the proof.
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2,2, ELEMENTARY OPERATORS PRESERVING SELF
ADJOINTNESS MODULO COMPACT OPERATORS

Let Al,AQ,...,An; Bl’B2""’Bn be bounded
linear operators on a complex separable Hilbert

space H and let

C.K.FONG and A.R. SOUROUR [lO] has obtained the

following result.

THEOREM 2,2,1, (C.K. FONG and A.R. SOUROUR)

Let Al’A2"“’An;Bl’B2""’Bn be as above
where B,,By,...,B_ (m¢n) are linearly independent
modulo the compacts and there are constants ij,
1<¢k<m and m+1{j<n, such that

m

£ C.. B, modulo the compacts (m+1<j<n)

®3 7 k%3 Pk

Then /A(T) is compact for each T in B(H) if and

only if

n
A, =- 1L Ck'Aj modulo the compacts (1<k<m)
j=m+l <J

Now we prove the following .variant of HOU JIN-

CHUAN'S Theorem. To do this we need the following

concepts which are well known.
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DEFINITION 2,2.2.

Let H be a complex Hilbert space and K(H)
denote the ideal of all compact operators on H.
An operator T in B(H) is called essentially self
adjoint if T-T* belongs to K(H), where T* is the
Hilbert space adjoint of T.

THEOREM 2.2.3.

Let H be a separable Hilbert space and
Al’A2"“’An; Bys»Bysye..,B  be operators in B(H),
where Al,A2,...,An ’ Bl,B2,...,Bn are linearly
independent modulo K(H). Then the elementary

n
operator A(T) = iilAiTBi preserves ess®ntial self
adjointness if and only if there are operators

D;sDpy...,D in B(H) such that

n
Dier - I DiTD* + K(T)

L
A(T) = I :
i i=g+1

i=1

for every T, where K(T) is a compact operator on H

depending on T.

PROOF

Sufficiency is clear.
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Even though the proof of necessity is quite similar
to that of Lemma 2.1 in [13] we supply the details.
Suppose that T-T* € K(H) implies A (T)-A(T)* € K(H).
Therefore,

£ L BTTAY £ K(H) (2.4)
I A,TB, - I B,TA {_KH 2.4
i=1 i°71 i=1 i* 71

for every T in B(H).

Now assume that AI, A;, ee.y A* form a maximal

h
linearly independent modulo compact subset of

* #* *
{81,82,...,Bn, Al,AQ’ e o ey An‘k * Therefore there

exist a matrix (a, )" such that
ij
i,j=1
n »*

Substituting (2.5) in (2.4) and on applying theorem 2.2.1
n
i,j=1

we can see that (aij) is a hermitian matrix. Also

it is nonsingular,

Let U denote an n x n unitary matrix such that
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b O
d,
* . \

U (aij)U = ‘
dg
O —dg 41
-d
n

Where. dl'd2,ooo,dg » -dp_""l’...’-dn are the pOSitive

and negative eigen values of A = (aij) respectively.

As in [13] define [cl,cz,...,cn] = [Al,Az,...,An]U

Then we have

— - — -7 —
1 1 1 1
* * * *
Co Ay A3 A3
s =l ¢ | o |t :
* * *
c* AY A¥ A
L. L ] . _J
n
Now A(T) = L A;TBy
i=1
n n
= I AT ( £ A* + K.)



n

n
*
=R ( jf:-.l 23y Ay )+ KD
e g
= [A],Ap,ce ey ] T ' (aij) A%
o -
Ol |=
T dg
=[Clyc2v'°-vcn] df.
-d
.

Qf C. T *
= d, C
o) 4 1Y
% D, T D
i=1 1 1
where Di =

..i=

n
I C
i=f+1

n
I D
+1 i

*
4 T d; €+ K(T)

T D; + K(T)

+ K(T)
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Now we prove a theorem which characterises

essential positivity preserving elementary operators.

DEFINITION 2.2,.4.

Let H be a complex Hilbert space and n be the
canonical homomorphism of B(H) onto the Calkin algebra
B(H)/K(H). An operator T in B(H) is called essentially

positive if m(T) is a positive element in B(H)/K(H).

Let Al’AQ""'An' Bl'BQ""'Bn be operators in
B(H). HOM JIN-CHUAN introduced elementary operators

(K) for each positive integer K by

A
(K) = o a(K) 1o(K)
AT (T) = L AT TB;
i=1
K copies (K) K copies

Te B(HO®H® ... ® H) and A=A @ .. @ Ay,

(K) K copies
Bi = Bi ® ... @ By . HOU JIN-CHUAN has proved the

following theorem in [13].

THEOREM 2.2.5.
K
p (K

are positivity-preserving for all positive

integers K if and only if there are bounded linear
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Operators D), Dy, ..., QL in B(H) such that

o

A() = D;(.)pY .

i=1

We wish to characterise those elementary operators A,

such that AéK) preserves essential positivity for

all positive integers K.

In the following remark we observe that

(K)

positivity of S\ for all K is equivalent to the

well known complete positivity

REMARK 2.2.6.

Let § : A —> DB be a positivity preserving
linear map from § to B where & and 13 are C*
sub algebras oflﬁ(H) for some complex Hilbert space H.

Recall that §' is completely positive if the map

K
3 : A@ M —>B® M
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defined by

Q(K) (as5) T (@ (a55) )y« &

k x

where | ©® Mk = {k x k matrices (aij) over 9\3

is positive for all k.

K copies
Now one can identify B(H® eee @ H) with

B(H) ® M . Also one can see that c}K) is
positive for all K if and only if A is completely

positive. Now we prove the following lemma,

LEMMA 2,.2.7.

Let Al’A An’ Bl’BQ""’Bn be bounded

2’...’
linear operators on a separable Hilbert space H

and A(T) =

i
{Al,A2,...,An3 and {81,82,...,Bn} are linearly
K)

A;TB;, T in B(H). Assume that

Ul i)
-

independent modulo K(H). If Z&F preserves
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essential positivity for every positive integer K,
then there exists bounded linear operators Dl’D2”"Dn

in B(H) such that

n
D.TD¥ - & D.TD* + K(T)
1 i*"i iﬂjll i

where K(T) is a compact operator depending on T. Also

the map A on the Calkin algebra B(H)/K(H) defined by

~N N~ n ~ °’*
D.TD¥ - I D.TD; ,
1 1

A(T) =
TSI 1=g41 *

e

i

where for Tg B(H), T = T+K(H) € B(H)/K(H) is completely

positive.

PROOF

Since /A preserves essential positivity, it
preserves essential self adjointness. Therefore by
Theorem-2.2,3, we can find operators Dl’D2"“’Dn in

B(H) such that

*

n
DiTD* - L DiTDi + K(T)

L
A(T) = L i
i= i=041

i=1

for some integer { , 1< % ¢<n.
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Now to show that Zi is completely positive.

For that let (5;.) be a positive element in
J nxn
~ ~J
B(H)|K(H) ® M, . To show that (A(aij)) nox n 1S

positive. For that consider the mapping'$ from
K copies
p(H® ... @ H)/K(H® ...®H) to p(H)/K(H) ® M

defined by
~J ~
§ ((a;5)) = (d}y) for (azy) in B(He...®@H).

Thus @ is a * preserving isomorphism. One-oneness

is proved using the fact that the map

K copies K copies
(ai) tH® ... @ H—>He® ... @ H
3k x k

is compact if and only if aij:H'——? H is ccmpact for

all i,j. Thus,

~J

~J
. lv i

(aij)nxn is positive if and only if (aij)nxrl is

positive. Since [X(K) is essential positivity preserving

is positive.

N
for all K, we find that (A(aij))n 1

Therefore (Zﬁ(a’;j)) is positive.
nxn
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Now we prove the main theorem.

THEOREM 2.2,8.,

Let Al,A2,...,An, Bl’B2""’Bn be bounded linear
operators in B(H) such that {Al""'An}’{Pl"°"Bﬁ}
are linearly independent modulo K(H), where H is a
separable Hilbert space. Then

K -
A(K) (T) = g AiK)TBgK), TepH @ ‘??plese "

i=1

preserves essential positivity for all positive integers
K if and only if there exists bounded linear operators

L .
A(T) = .}:lDiTDI + K(T), i< L <n,
1=
where K(T) is a compact operator on H depending on T.

PROOF
By lemma 2.2.7, there exists bounded linear operators

Dy»Dpyeve,D in B(H) such that

DiTD*- g DiTD: + K(T), Teg(H), K(T) eK(H).

(T) = %
Alt) =2 boyoga

i=1

Therefore,
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*_ 3 BT 0% Tes)/k)
i={+1

Now let p be an irreducible representation of the
Calkin algebra B(H)/K(H) on some Hilbert space Hu.
Since H is separable, p is faithful and therefore
B(H)/K(H) and p(B(H)/K(H)) can be identified.
Therefore the map_ : p(B(H)/K(H))—> u(p(H)/K(H))
defined by

~ L ~ ~ . ~ ~ ~
AG®) =z wBPu® sBD* - T w@Gu® wE)»
i=1 i=ﬂ_j-l

is completely positive and continuous in the weak
operator topology of B(Hu). Moreover, since u is
irreducible, by Von Neumann density theorem [ 1 ],
w(B(H)/K(H)) is dense in B(Hp) under the weak operator

topology.

Let (ass) be a positive element in

7k xk
B(H) ® Mk‘ Using functional calculus and Kaplanski's
density theorem [27] one can find a net (aij(a))a €1

in p(B(H)/K(H)) ®M,, which are positive such that

Lim (aij(“)) = (ayy)



64

in the weak operator topology of ﬁ(Hp). Since A is
completely positive (Il(aiga))) are all positive.

Since _n_ is continuous in the weak operator topology

it follows that

L ~ ~ n ~ ~

is positive.

Therefore the extended map, (1,

[
1B 3 R aid
)—4

~ r~ n ~ o~
P'(Di) TP(Di)*"i:i*.}i(Di) T}J'(Di)*

a(T) =

TiEB(Hp) is completely positive. Eguivalently 415K)

is positive for all K.

Now the argument used in the proof of Theorem 2,1

in [13] shows

~
-u(Dy) =0 for i=1%%+1,...,n

i.e ,ﬁ’i =0 for i =Qv+l’.oo’n
i.e Di's are compact for i ={+1,...,n.

: L _
e AT =B D; T D} + K(T)

where K(T) € K(H) for all T in $(H).
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2.3. THE TRANSFORMATION A\

Here we study the operator /A__ on B(H), where
H is ‘a complex Hilbert space. Even though [\  is
not 'elementary' as per the definition of elementary
operators, its form makes it elementary in the literal
sense. Such transformations makes its appearance in
the context of normal completely positive maps [ 7]
and C*-algebraic approach to quantum mechanics [ 7].

We begin with the formal definition of A\ .
DEFINITION 2.3.1.

Let {Aé&, {BA}, n=0, + 1, + 2, ... be doubly
infinite sequences of bounded linear operators in B(X)
such that © A_T B_ belongs to B(X) for all T in B(X),

Nn=-co
where X is a complex Banach space. ThenAo° is defined

as

- -]

A (T) = & AL TB

N=e=co

In this section we wish to characterise [}w,
which preserves self adjointness of operators. To do

this job we require the following extensions of some
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results of C.K. FONG and A.R. SOUROUR, [10].

LEMMA . 2,3.2,

Let {An}, {BA} n=0,+1, + 2,... be bounded

linear operators in B(H) such that
1. L Ihn(x)ll + ||Bn(x) || ¢ » for all x in H.

2, {Bn}, n=0, + 1 ... are linearly independent.

3. For each Bk,there exists a bounded set Wk of
trace class operators on H such that for each finite
subset F of '{Bn:n =0, +1,... 3 not containing Bk’

there exists "ngk such that

trace(Bkij) =1 and
trace(B ) =0 for all B ¢ F.
ThenAm(T) = LA TB =0 forallTin B(H) if and

-00

only if An = 0 for all n.

PROOF

First we show that A° = O and the same argument

O for any n.

can be used to show that An
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Consider {Bo, B-_4-_1’ B+2""’Bin for a fixed n.

By assumption there exists a bounded 2t W of trace

class operators on H such that

trace (Bo C)

i
+—
-
<)
o)
Q

trace (Bm’[‘_ )

n
O
3
i

_'tl,i2’ .co’in *

Let{yi} be a complete orthonormal set in H and

C

Yy = Xy Let 'I‘k =X ® Yy where xgH 1is arbitrary

We have,

0 =8_(T ) (x,) = ;; A, T, B (x)

n=-co

[= -]

= £ A (x®y) B (x)

n=eoco

[= -]

= L <B xk,yk>An(x)

N===co n
Therefore,
o= L A(T,) (x.)
k=l = k k

nE_w 151 < B X;,Y32 An(x)
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-— P2
= I trace (L.Bn) An(x)

N=-—=co

= Ao(x) + I trace(BiC) Ak(x)
k= +n+l,+n+2,..

Since Bk's are uniformly bounded and T belongs to
the bounded set Wo, there exists a positive constant

M independent of n such that

lAc x|l ¢ M = Il A ()i
k=+n+l,+n+2 ...
Therefore Ag x = O since z Ihk(x)“ can be

k= +n+l,+ n+2

made arbitrarily small,

REMARK 2.3.3.

Condition 3 mentioned in Lemma 2.3.2 looks very

strange. But atleast in the following special cases
one can verify it.

Case 1

The collection{ B : n=0, + 1,...5 is finite.
It is well known that the dual of the Banach space of
all trace class operators J (H) on H is B(H) [27].

Hence by a result in [8 ], there exists a trace class
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operator T(K) in J(H) such that trace (Bk fc(K))nl

and trace (Bn ﬂ:(K)) = 0O for n # k. In this case it

(K)
is enough to take W) = {?C IE

Case 2,

The collection {Bn:11=0, +1, £2, ...7 consists

of compact operators on H and I a. Bn = 0 if and only

if a, = O for all n. It is well known that the dual

of K(H), the Banach space of all compact operators on H
is 9 (H), the Banach space of all trace class operators
on Hs Since Bk does not belong to the closed linear
span of the remaining Bn's, by Hahn Banach theorem there
exists a @ g J(H) such that trace ( TB,) =1 and
trace ( ¢ Bn) = 0 for all n # k.

LEMMA 2.3.4.

Let'[AA} and {Bﬁ}, n=0,+1, +2, ... be two

families of bounded linear operators in B(H) such that

(1) ; | A (x) I+ |l B, (x) || < » for all x ¢ H.

an OO

(2) 'iB 1 is a maximal linearly independent

subset of-in: k =0, + 1, + 2, ...}
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(3) {Bn: n =0,1,2,...] satisfy condition (3) of
Lemma 2.3.2.

(4) £ Z Iajkl < «, where

Bj = kio a3k B, where ayy = O for all k > N(j)

j=-1, =2, ...

Then A_(T) = O for all T in B(H) if and only if

AL == I a
j=-1

jk AJ, k=0,l,2,...

PROOF
Sufficiency is trivial.

Assume that A _(T) =0 for all T in B(H).

Therefore O = AW(T)

-00

& A, TB

= TA,TB
k k=-1 K k

-+
k=0 k

k=o ¥ K 3=1 73 -3
® by N(=3)

= LA, TB,+ LA ,T( I B
k=0 k k j=1 -3 k=0 a—Jk k)
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= kﬁo (A + jE a ~jk A j) T B
Now,
kio | A K(X) + JE a_sx A_j(x) Il
1/2 1/2
< I ol + z Jad 7 E a0 )
< o

Since 81’82’ ... are linearly independent by Lemma 2.3.%

we have,
Ay + jil a_sx Ay =0, k=0,1,2,...
i.e. Ak = jﬁ_lajk Aj, k=O,l,2,-o.

We state two more lemmas without proof. The proofs are

exactly the same,

LEMMA 2.3.5.

Let {An}, {Bn}, n=0, + 1, + 2, ... be two families

of bounded linear operators in B(H) such that



72

(1) ; HAn(x)“ + “Bn(x)” < o for all x in H.

+ 2, ... are linearly

(2) {al,n=0,21,

independent.

(3) For each Ay, there exists a bounded set W, of
trace class operators on H such that for each
finite subset F of {A :n=0, + 1, + 2,...] not

containing Ak’ there exists a T in Wk such that

1l and

trace (Am

trace (Ak’t)
€) =0 for A, e F.

Then A (T) = LA T B =0 for all T in B(H) if and

-0

only if Bn =0 for all n.

LEMMA 2.3.6.

Let {AA} and {Bng be two families of bounded

linear operators in B(H) such that

(1) ; il An(x) b+ |l B (x) Il < = for all x in H

-00

(2) {:AA} n=0,1,2,... form a maximal linearly
independent subset of{_Ak: k=0, + 1, + 2,...}
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(3) {iAn: n=0,1,2,...7 satisfy the condition
prescribed in (3) of Lemma 2.3.5.

(4) © |a;,| € « where
jk K

j = k=° ajk Ak’ j= -l’ -2' e e

where ajy = O for k > N(3)

Then A_(T) =0 for all T in B(H) if and only if

-0

B, =

k - ji-lajk Bj’ k =0,1,2,...

Now we state and prove the main theorem of this section.

THEOREM 2.3.7.

Let {A} and-[Bn}, n=1,2,... be two sequences

of bounded linear operators in B(H) such that
N PN RN EXOR RS

(2) -{Bn} form a maximal linearly independent subset

of-{Bn, A;}.
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(3) E § laij‘ ¢ » where
« N(1)
A -j.il aj; Byr 1= 1,2, ...

(4) The collection {Bn} satisfy condition (3) of

lemma 2.3.2. Then the map A _(T) = L AT B is
1

self adjointness preserving if and only if there are
bounded linear operators {L%V Vi n=l,2,..:} in B(H)
such that

[o ]

_ 5 * *
A_(T) = LUy TUL - 5V, T V]

for every T in B(H).
PROOF
Sufficiency is trivial.

Assume that A.w preserves self adjointness.

ice. A _(T) = A_(T)* for all T in B(H) such that T=T*,

Therefore we have,

* *® »* *
E An T Bn = f Bn T An (2.6)

for all T in B(H).
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Identity (2.6) is equivalent to the following:

an)= LA, TB =0 (2.7)
-
for all T in B(H), where A =A , B =B, A_Z-B],
B_, = A}, for all n > 1.

By assumption there exists scalars ajq9 j=1,2,...N(1i)
such that
N(i)

= I B,, i =1,2,... (2.8
o1 137yt :

»
Ay
Now consider the infinite matrix A = (aij)’ where

a., = O for all j » N(i) for each i. By condition (3)

ij

in the statement of the theorem, A is a compact

matrix. Next we show that A is hermitian.

Using (2.8) substitute for A, and A; in (2.6)

we get,

© N(i)
IB*T( £ a,, B,
i=1 * ( j=1 13 By

o [N(1) _ JB* 4 T B* |TB
e jil (a557351)8] +j=§1(i)+laji J ] i

for every T in B(H).

o ( «
0 = i ( .i d. . Bj) TBi -
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Now,
. ‘N(i)(_ Y o .
B L R ARG A
< M °zc:'N(z)(I | + |a,|) T la,. |
a + |a +
=1 y=1 M SELRRNT SRR E

where M is an upper bound for”{BS(ij.
Hence by Lemma 2.3.2Z we have

aj; = ay4 for all j < N(i)
and ay; =0 for all j > N(i)+1

Thus A is a hermitian matrix. Therefore there exists

a unitary matrix U = (uij) such that

Ur AU = d

where dl,d2,... are the eigen values of A.



Let Cl,C2,C3, ... be a sequence of bounded linear

operators in B(H) defined by

[c,,C5,Cqs «..]1 = [B], B}, ...] (Uij)

where the right side is the usual multiplication of

matrices.

i
—~

We have

A (T)

We then have,

N

—

[ ]
By
Us B2 -
B3
T B.
i
N(i)
— %
N(i)
*
jil ajl Bj

) TB

)TB
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. — —
T 0 0 e B
*» * * 1
= [Bl’ 82’ 83’00-] (aij) O T‘. 0 eee 82
i ]

1
= [C}4C5,Cqy--.] U* A U r O c3
T '
o o
L R
d NRE ES
1 d O O C%
=[C,,C5,Cqy. ] 2 ‘ ‘
O ]]lo - |
l_— L

= 151 ci d, T c;

Now assume that id. ,d. ,d.; ...j and id d ...}
i i i k,” ks’
1 2 3 1 2

are the positive and negative eigen values of A.



79

Then
A (T) = ;:c d Tc*f-;c d T C*
it m=1 im im 1m m=1 km km km
by +* ® »*
= L D TD, - L D TD
m=1l Im im m=1 km km

where b, =Yd., C, , D, =Y d C .
im m im km km km

This completes the proof.

REMARK 2.3.8,

Obviously the whole analysis carried out here
dwells upon a couple of lemmas proved at the beginning
of this section. But the conditions prescribed are
apparently strong. The problem of finding optimal
conditions under which these results are valid remains
open. However the following examples throw some light

into this problem.
EXAMPLES 2.3.09.

Let H be a separable Hilbert space and {el,eQ,ea,..f}

be a complete orthonormal set in H. Let Pi denote the
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one dimensional orthogonal projection to the

subspace Mi generated by the vectors ei.

(1) Let A = I, the identity operator on H for

every n and Bl = I-Pl, B2 = -P2,...Bn = -Pn

Now consider the associated /\  defined by

o]

A (T) = I Aq T By, Tin B(H).
n=

For x ¢ H,

N
AT Bn(x) = lim T T Bn(x)

z
= N—>» n=1

n=1

lim T(B B .o. + B
lim (B (x)+B,(x)+ + By(x))

!

lim T(I-(P,4+P,+...+P.)(x))
N oo 1772 N

O for all T€ B(H).

But A_ # O for any n. We observe the following facts

regarding {Aﬁ} and {Bn}.

(1) ;l A O+ B, (x)|| =« for all x #0
n=
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(2) {Bn} form a linearly independent set.

(3) The collection {Bn'j satisfy the third
condition of lemma 2.3.2.

Let W ={pi, Pi-Pyr 4,3 = 1,2, ...}

Then W 1s a bounded set consisting of trace class

operétors.
Case 1.

B i-P

l p—1
Let F = {311,312,... Bi,] be a finite set in

{:BAX not containing B;. Let B =P, £ P, be such

k
that Pk £ Pi or Pj whenever Pi or Pj or Pi-Pj are

in F.

Put¢ =8B Then T €W, and

k.

trace (Bl‘C) =1

I

trace (Bmil) O for all By € F.
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Case 2,

Consider B, £ B,
Let F = {Bj, 512,...,5%&<:{5n} be a finite set
such that B §F. Now let B, # B, be in F® and
T = BB .
Then

trace (Bgﬂ) =1 and

trace (Bij’t) =0, for j =1,2,...,m.

(2) Let A = anl ,n=1,2,...
P P P P
1 2 3 n
B, = =5+ =5+ —F+... 4 5=
1 22 24 26 22n
-p -p -pP
| = -2 = —n
B2 - §— ’ 83 = 22 ¢ oo Bn+l - 2n

L ATB =0 for all Te B(H).

Then [;m(T)
n=1

But none of the An's are zero.

We observe the following:

A X O O N R A

(2) {BA} is a linearly independent set

(3) The condition (3) of lemma 2.3.2 is not satisfied.
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REMARK 2.3.10.

In the proof of JIN-CHUAN'S Theorem, one
of the crucial point is the observation that the
scalar matrix (aij) is hermitian and hence it
can be diagonalised., But in the infinite situation
we had to put extremely strong conditions to get
compactness and hermiticity of (aij) so that it can
be diagonalised. At least in the proof of JIN-CHUAN'S
theorem, instead of using diagonalisation explicitly,
we can use the spectral representation of (aij) and
get the result. So in the infinite case, just
demand that (aij) is symmetric (not necessarily
compact) and bounded, and then use the spectral,
integral representation of (aij) to get an integral

representation of the map A _.



CHAPTER 1III
NONLINEAR MAPS ON B(X)

In this short chapter an attempt is made

to study certain type of nonlinear maps on B(X)

where X is a complex Banach space.

Let §: B(X) —> B(X) be a transformation.

The problem is to find conditions under which there

exist bounded linear operators A and B in B(X) such

that, B(T) = AT?B for all T in B(X).

PROPOSITION 3.1.1.

(1)

(2)

(3)

Let §: B(X) —»B(X) be a map such that

QT +T,) + BT -T,)
2

= @(Tl) + §(T,) for all

Tl ’T2 in ﬁ(X) .

Rank §(T) < 1 whenever rank T=l and
Rank T¢l, o(T) = O implies §(T) =0

@(aT) = a2 @(T) for all T € B(X) and for

all a ¢ @ . Then either,
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(a) §(Lx) c Ly(x) for every x in X, or
(b) @(Lx) Ei.Rf(x) for every x in X

PROOF
Let M be the vector space generated byj@(Lx).

Case 1

Dimension Mx=l‘ If dim (Mx) = 0, there is

nothing to be proved. If the dimension is 1, then
M, = ia'ﬁ(x ® fo): a E_G}for some f_in X

={a (v,89,):«a gd} for some y_ in X and
9, in X*

Since @(xd)fo) is of rank 1. Hence@(Lx)g_Lyo .

Case 2
dim (Mx) > 2.

Let if possible, there exist an Xo in X and

fl,f2 in X* linearly independent, such that

@(Xoﬁfl) = xl® 93 7é0

1

@(Xo®f2) x2@g2 7éo

where {xl,x2} and {91,92} are linearly independent

sets in X and X¥* respectively.
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Now by (1) we have,

(x @ f,+f,) + O(x @ f,-f,) _
Yoo 1y QQ e 2 F(x @)+ T(x @%)

But X, ® £1+£5) = v ®9,

§-(Xo®fl-f2) = z ®h,
for some y_,z, in X and g_,h_  in X*; by condition (3).

Thus,

Px ®F+f,) = vy ®9,

2Xl®gl + 2X2®92 - zo®go

By multiplying f, by a suitable scalar if necessary,

we may assume that fl(xo) = f2(xo) so that
c(xo®fl-f2) ={07%

Therefore _9'5 (xo® f_l—fQ) =0 = z & h,

Thus we get,
§(Xo®fl+f2) = 2x,®9) + 2%, ® 95

This would imply that @(xo®fl+f2) is a rank 2
operator, since {Xl,XQ}, {91’92} are linearly

independent. This is contradictory to the assumption (3).
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Hence @(LX)QLY for some y in X

and @(Lx) C R_ for some g in X*

9

Now we show that either §(Lx)c Ly(x) for every x gX.

or Q(Lx) S Ry, fOI every x e X.

Let M ={x £ X| §(Lx) < Ly(x)} and

N ={X EXI Q(LX) < Rf(x)’k

We found that MUN = X and MAN = @#. So assuming
that M £ @, it is enough to establish that N = @.

Let if possible x; € N and let x, be in M.

Also put,
Q)_(xo® f) = Y, ®9, and
'@(Xl®f) = Y1®9;
We choose an f in X* so that Yo and y, are linearly

independent. Also by multiplying Xq with a suitable

scalar, if necessary, we may assume that f(xo)=f(xl).

Now, as before, we get

§(xo+xl® f) + @(xo-xl)@f

=2 @(xoqg £) + 2 _Eg(xl@;f)
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Thus, since @((xo-—xl) ®f) =0, we get

@(xo+xl)®f =2 @(x()@f) + 20(x; @ f)

But left side is of rank 1 and right is of rank 2
which is impossible. Hence N = ¢ if M £ &.
Similarly we can show that if N f: @, then M = .
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