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Chapter-I
INTRODUCTION

Sqmmability transformations help us to
generalize the concept of limit of a sequence
or series, and thus provide us a method to assign
limits even to sequences which are divergent.

These transformations or methods can be classified

into two types.

(1) Sequence to sequence transformations

(11i) Sequence to function transformations

Sequence to sequence transformations are
accomplished using infinite matrices. Consider an
infinite matrix C = (an) and a sequence {s 1,
n=0,1,2,... . Form the new sequence {tn} defined
by

[- -]
t. = I ¢ G
n k=0 nk "k
We shall assume that the series converges for every n.
{tng is called the C-transform of the given sequence {sn}.
If {tn} converges to t, then t is called the C-limit
of isn} and we write s —> t(Cc).



A transformation C is called a regular summability
transformation if it preserves limit in the case of
convergent sequences. That is

s,—> s —>» t —> s(C)

n

Silverman-Toeplitz theorem gives necessary and
sufficient conditions for a matrix to represent a regular
method and thus help us to construct regular transforma-
tions. This theorem can be stated ast{ The necessary and
sufficient conditions that the matrix C = (cnk) represents

a regular transformation are:

(1) kZ Icnkl { M, for some M and for all n=0,1,2,... .
=0

(ii) lim ¢, =0, for each k = 0,1,2,...

n = o nk
(ii1) lim I ¢, =1
n —> o k=0 nk

As an example for the sequence to sequence trans-
formation consider the (C,1) mean (Cesaro mean of order 1).
The transformed sequence {tn} of a given sequence {sns is
defined by

So * Sp + eee t S

0
tn - n




If {sng = 1,0,1,0,..., then {sn} is not convergent
where as s_ ———?'%(C,l). The matrix of (C,l) is given

by
1 o0 o o ... |
5 2 0 0 ...
: £ 4 o ...

As an example for sequence to function transformation,

consider the Abel method, defined by

8 ﬁ S(A)y

n
if,

[ -]
lim (1-r) & snrn = s
r —»1l- n=0

If {s,} denotes the sequence of partial sums of the

(- -]
series L as then we have the relation
: o

n
ar
L n

oo
n
Ter - = I et

Hence for a series I as Abel method is defined as
o]

La = s(A),



if

o0
lim I ar"=3s
r—>l-n=o "
In particular the series 1-243-4+ ... is summable
Abel with limit Zz. The partial sums of the above
series determine the sequence 1, -1, 2,-2, ... which

is not (C,1l) summable.

In the field of summability theory, Tauberian
theorems occupy an important position. These theorems
provide results of the following type. If a sequence
{sé} is summable by a method C and also s = satisfy
some condition (called Tauberian condition) then {spt
is convergent. The first theorem of this character
was proved by A. Tauber in 1897 and he proved the follow-
ing result ( [16], Theorem 85).

"If L a, is summable (Abel) to s and a, = o(%),
then Zan converges to s". This theorem has been generalized
by showing that the result is true even when a_ = O(%)

([16], Theorem 90). A similar theorem for Borel-summability

can be stated as follows:

1
" If La  is Borel summable to s and a = O(Tn)’
then Za  converges to s". ( [16], Theorem, 156).



Definitions, properties and theorems concerning a
large number of reqgular transformations can be
obtained from the book "Divergent Series" by

G.H. Hardy ([16]).

Another variant of Tauberian theorem prove
results of the following character. " If€) - % R
a, = o(n®) and La, is summable Borel to s, then Ia_
is summable (C,2¢+1) to s". ([16], Theorem 147). Borel
method is a particular case of Borel-type method (B,a,B).
(Results on (B,a,B) method form the material of this
thesis). The above theorem was generalized to (B,a,B)
method by Borwein, D [5]. This was again improved by
Kwee, B [25] by showing that the result is true with
a =0(n®). A few papers dealing results of this nature

n
are[7], [8], [10], [26].

The study of Gibbs phenomenon and Lebesgue constants
for different summability transformations had been under-
taken by many researchers ([18],[19],(27],[28],[29],[30] ).
Summability transformations help us to extend the domain
of convergence of a series of functions. The domain of
convergence of a series of Legendre polynomials for differ-

ent summability transformations had been investigated by



many authors ([11], [21], [22], [32]). Tauberian
constants for many summability methods had been deter-
mined. The problem generally considered in this area
can be stated in the following way. Let [sn} be the
sequence of partial sums of Ean and asigme a, satisfies

some tauberian condition. Let T(x) = [ cn(x)sn be a
n=o0

sequence to function summability transformation. Then
the results give estimates of
lim sup | Tix )=-s|
n-—)oo X ~—>» oo
n
when neither lim T(x) nor lim s, is assumed to exist.

[1], [20], [31], |33) deal results of this nature.

A brief introduction to Summability transformations
touching all aspects of the theory is almost an impossible
task. Hence in the above introduction, 1 have restricted
the concepts to those which are relevant to the topics

discussed in this thesis.

Brief summary of the results in the thesis

Before summarising the results, we first define
the Borel-type transformation (B,a,B) which is a generaliza-
tion of the classical Borel transform. After Borwein,D([5])
we may define (B,a,p) summability as follows:



Let {8 }, n=0,1,2,... be a sequence of real or

n}
complex numbers. Suppose that a > O, B is real and N,
a non-negative integer such that aN+p > O. The

sequence §s } 1is said to be (B,a,B) summable to s, if

-x xan+h-1
Limit ae L s, = S
X => o n=N [—an+ﬁ)

The (B,a,B) method is regular and reduces to the
classical Borel method when a=f=1. Being a generalization
of the Borel transform (B,a,B) method is also called Borel-

type summability method.

In chapter 2, the study of Gibbs phenomenon with
regard to (B,a,B) summability is undertaken. It is shown
that the Borel-type summability completely preserves the

Gibbs phenomenon for Fourier series.

In chapter 3, the Lebesqgue constants for (B,a,p)
method is calculated. It is shown that the Lebesgue

constants LB(x) for (B,a,B) method is given by

2 I S
LB(X) = =5 log ( ) - 7 - = f\P(;)Slnt dt
n n T (o]
+0(2) (x > «



where C is the Euler-Mascheroni constant and

Yt/m)y = [(t/n)/ Tt/n)

In chapter 4, the domain of summability of
Legendre polynomials by the (B,a,B) transform is
obtained. It is shown that the sequence {sk(z,w)}

of partial sums of the series of Legendre polynomials

; (2n+l)apn(z) Qn(w) is summable (B,a,p) to (w-z)-l
n=o0

in the region

z:Re{,%{%}}l/a<>\,‘%%}\ <M, 0¢@B&m 0¥

where M is a positive constant and O <A< 1,

In chapter 5, we prove a result on Tauberian
constants for (B,x,B) transform of a series Zuk with
the condition lim sup | Yk u, | = L < w. It is shown
that if m —> », t —> » such that

lim sup ﬁi =Q € =, then

1im sup IB(t)-smI < A.L, where

a _2 a 2
]2a -z l2 7 Q
A = - Q Z) e dz + o ©



Chapter-II
GIBBS PHENOMENON FOR (B,a,B) SUMMABILITY

Preliminaries

In this section we define the Borel-type
summability transformations. We also list some of
the basic inequalities and estimates satisfied by
the Borel-type transform which will be used in the
sequel. The proof of these inequalities and estimates
can be found in [5]. These are generalization of the
corresponding results for the Borel-transform (cf [16],

theorem, 137).

Definition of the Borel-type transforms (B,a,f)

Let {sn}, n=0,1,2,... be a sequence of real
or complex numbers. Suppose that a > O, p is real
and N a non-negative integer such that aN+p > O. The
sequence {sn} is said to be (B,a,B) summable to the

sum s, if

-~ = xan+B-1
Limit «e r ———— S, = S
X => oo n=N [(an+B)
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The (B,a,B) method is regular and reduces to the

classical Borel method when a=8=1.

Lemma 2.1. (cf [5])

-X X

n=N  [(an+g)

o an+f-1

ae = 1+0(1l) (x = ).

Lemma 2.2. (cf [5])

1 1 2 1, \2
Let x >0, 0 <8< 2, 5<§< 3, v = 3(as)

0<n<28-1 and let

_ -x xan+ﬁ-l _
u =u(x) = ae S——— , n = N,N+1,...

n n [Tan+ﬂ)

Then,

(1) £ u —> 1 as x —> =

n=N "
(ii) u € U when n ( % - % - 1, and
1
sl £ u, when n ) § - % + 3
(iii) Ex un = o(e-YX) (X —500)
In- EI > 8 x
LY
(iv) I u, = 0(e™) (x—> =)

| n- fl > x$
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2,2
-a"h
3
(v) u = 2. e Zx 1+ O Inf+1 o( 1o
n mx— [ X ) + ( J_x%- )]
-a2h2
j-2i— e 2-;(—[l-o- 0(x3§-2)] where h = n - i’
nX

(vl) If © > O fixed, then

-x"
X u = O(e " ) (x —> =)
In- §|>9xg
(vii) X u, <€, for x> xo(c), )\>‘Ao(e)
| n- él > NYx

Theorem 2.1. (cf [13])

The (B,a,p) Summability completely preserves

the Gibbs phenomenon for Fourier series.

Proof:

Consider the function f(t) defined on [0,2%) by

f(t)

Z(n-t), (0O<t<2n)

Oif t =0

and extended outside by periodicity.
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The Fourler serles of f is given by

in nt
f &in.nt
n=l1 n

Clearly f is odd and has a jump =n at O. The sequence

iln(t)} of partial sums of the above Fourler series is

given by
t 1
sn(t) - -% + f sin (n+ 5)u a
°© 2 sin %

Let Bx(t) denote the (B,a,B) transform of isn(t)}.
Then,

oo an+f-1
B_(t) X p X s (t)
X “e n=N [Tan+B) n

o xan+B-l t t

= qe” X niN o) ( -5+ £ 2sin 3 du )
an+f-1
[(an+p)

=L, + I, (2.1)

say. Applying Lemma 2.1, it follows that
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L, = TF [eo(1)] (x —> =) (2.2)
By changing the order of integration and summation

in 22, which i1s permissible because of uniform conver-~

gence, we obtain.

1
t[ o (sin n+x®)u an+f-1
I, = ae™™ [| T u§ . X } du
o|n=N 2sin 3 [(an+B)
-x & i % ®  jnu x®MB-1l 4y
=ae [ Im |e L e u
o n=N Izan+B) 2sin 3
(Im means imaginary part)
: i-:-)an+B-l
t l 1= o xe
ca fm | L D) au__
o n=N rian+B) 2sin 3
Now by using Lemma 2.1, we have
t i (1 l:ﬂ) iﬁ du
-X f Im u 7‘- a _j_.. Xe {l+°(l)§] T u
Iy = ae e a © 2sin »
)
t 1 1-B -x(l-ei-:-)] {l+o0(1)} S¥—0
=/f Im [eiu(§ +32 ) e 2sin %
o
Now, LU
iu(% + iiﬂ ) =x(l-e *)]

(2.3)
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iu(% + liﬁ)-x(l-cos % - i sin %)

= Im [e
1 1-8
-x(l-cos ¥ ) i(x sin 2 + (5 + Ju)
= e a Im [e @ 2 *
—2x sin? T u 1 1-
= e sin[x sin ik ( 5+ -EE Ju]

Thus from (2.3) we obtain

t <2x sin
5, = [e 28 oinlx sin ¥4 u(d + 22B)J(140(2)) S
(0] 2sin %
. 2 u

t -2x sin” 5=

= [ e 2a sin[x sin % + ( ——E)U] du_
) 2sin §
t

=2§ e2X sin’w sin[x sin 2w + (@4+2-2 a_dw
. w(l+2~ ﬂ)J—EIETEW) (2.4)

Consequently for small values tx of t, we obtain from

(2.1), (2.2) and (2.4),

t
.

B (t) “x = e-2xw2 sin[2wx+w(a+2-28)] dw
x\ex/ 20T n w

o+ 0‘521

e-2xw2 sin{w(2x+a+2-28)] %ﬁ



1%

The substitution z = (2x+2-28+a)w, yield

x+1-B 1
( a t 3 )tx 2 2
-2xz2°/(2x+2-2p+a)

f e sinzdz
o z

Hence for any positive number T, if x— e, tx-%> O in
such a way that xtx-%> aT, then

T
sin 2z
Bx(tx) = £—;— dz. (2.5)

Thus equation (2.5) shows that (B,a,B) transform
preserves Gibbs phenomenon for Fourier series. When
a=p=1, we obtain the result on Gibbs phenomenon for

Borel summability proved by Lorch [30].



Chapter 111

LEBESGUE CONSTANTS FOR (B,a,B) SUMMABILITY

In this chapter the Lebesgue constants for Borel-
type method of summability is determined. These constants
are defined as follows. Let Dn(t) the Dirichlet's kernel,

namely sin§§2+t)t and Bx(t) the (B,a,B) transform of

the sequence iDn(t)}. In finding the Lebesgue constants,
we estimate the value of the following integral for large

values of x,

|B_(t)|dt (3.1)

AN
0 S NJA

X

The following theorem generalizes the corresponding

result for Borel summability [28].

Theorem 3.1. (c.f.[l3])

If Ly(x) denote the Lebesgue constants for (B,a,B)

summability, then

2 2x 2 2 X t

L = —Q—l ( =) - 5 C - ( = )sint dt
_B(X) n °9 n ) n n £VI T
+ 0( =) (x —> o)
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where,
1 . =y oo
C= fi=2 "4y - S 9 s the Euler-Mascheroni
Y )4
0 l’ye
t
constant and %(-Tt;) = RE)
&)

Proof:

Let Bx(t) denote the (B,a,B) transforms of the

sequence of functions { 312&%%%ll£ }

Then

-x % sin(2n+l)t  x&NTR-1
Bx(t) = ae £

n=N sin t ) [?an+B)

'~ ae X S i(2n+1)t xan+f-1
= sint Im[ £ e - ————
n=N [(an+p)
. 12t an+f-l
ae” Im [ it-(ﬁ-l)i%E L (xe_a )
= %in t "M L€
n=N [(an+B)
iit 2(p-1)t i2t
ae” X - a Fol xe® ]
sin t a
— i {t+ 2(l:%)t + x(sin %3 )3} x cos
_ & Im [e . e
sin t
-2x sin2 i
e 2t 1l 1-B
= T . sin[x sin =+ 2t(x + a )]

%



18

It follows from (3.1) that the Lebesgue constants
LB(x) for (B,a,B) method is given by

~-2X sin2 1

T
)
_2 a 2t l 1-B dt
LB(X) = { e Isin[x sin  * 2t(§+ = )]IETn t

(3.2)

The evaluation of the integral is divided into many stages

and hence the following lemmas.

Lemma 3.2,

Let,

2
-2x sin
e | sin[x sin%E + 2t(% + liﬂ ) I g%

O S NJA
ald

LBl(x) = 3
Then Lg(x) = I..Bl(x) + 0 %; ) (x—> )

Proof:

Using the following inequalities

. 3
0 Ctesin t < ¥r for t 50

(3.3)
1¢i—— <3 forogtg¢}
it follows that
0 ¢ Lp(x) = Ly ()
5 2 ¢
= % £ [ %TE-T - % ] e~2Xx sin a| sin[x sin %E +

2t(3 + 5B at
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A
aln

A
ain

OSSN 0%y

t
[

Q.
Lo

1
)

reduces the integral to

Rl

Substitution of y =

5 2
2 Za -2x sin‘y

= [ ve dy
o]

2 Mn -2xsin2y 1
£ y e dy where M = [ 5= ] + 1

~
0152

a2 M ?n
& n=1 (n-1)=%

2
e-2x siny dy

Also,

nn nm

2 2
f e--2x siny dy < nn [ e-2x siny dy
(n-1)= (n=1)=n
n 2
=nx [ e—2X sinvy dy
o

2
e-2x siny dy

2

-8x
e iﬁ dy (using 3.3)

O NIA O < NIa
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2
o =8x 17
n

< 2nx [ e dy
o

The substitution z

Y8x % shows that

2
s -Bx
) x° dy
o

0 () (x—> =)

Since M is finite, it followsthat

Lp(x) — Ly (x) = O(f,) (x> =)
Thus
Lg(x) = Ly (x) + O ;}-; ) (x> =)

Lemma 3.3.
Let
2t

n
2
LB2(X) = % { e a2 |sin[x sin =+ 2t(% + liﬁ)] | %5

Then

(x) +0( ) (x=> =)

LB(X) = L -

By
Proof: We have

0o « LBl(x) - Lsz(x)
=2x sin2 L -2 t!
a a

2
£ [e - e ]

1 1-Bq¢dt
| sin[x sin %i + 2t(5 - 'Eﬁllf-

2

|
AN
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2 2
[e72 o10°Y _ e™2X Y']| |sin[x sin 2y +

o 'ﬁla)l.‘-l

Consequently,

2
O L, (x) =L, (x) ¢ =
N B, B, N oon £

For approximating the integral on the right hand side

we consider the following cases for different values of a.

Case-1

Let « 3 5. This implies 3= ¢ =.
From equation (3.4) it follows that,

2 2
e2x(y -sin y)_l

o ™
L, (x)-L, (x) £ =/ dy
By By R e2XY2.y
%
) 2x(y2-sin2y)
2 e -1 d
= x f 2wyl y +
o e<Xy®, y
n e2x(y2-sin2y)_l
2 f 5 ] dy
n % e2XY
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say. To estimate I1 and I2 we make. use of the following

inequalities,

siny L vy, fory >0

(3.5)
ey-l < yeyfor Yy >0

Using the above inequality in Il’ we see that

n
2 2
I, ¢ 2 ; 2X(Y2—singy) e2x(y -sin®y) dy
1 LI ye2xyz
n
2. z -2x sin2 d
== [ (y+sin y) (y-sin y) e y , dy
LI v
n
2 3 -8x Y2
€ %5 [2y. 3r e 27 %1 (Using (3.3) )
o L
n - 8x .2
4x 2 3 ;5 Y
= 3n Sy e dy
)

The substitution z = 2§ y° shows that

3 2x -z
I, € ggx J ze " dz
)

Since the intepal [ ze~ % dz converges, it is bounded.
o

It follows that

1, = 0(3) (x-> =

X
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Also,
4 2x(y2-sin2y)_

2 e 1
12"5-1’; P dy
I ey.Y
¢ 2 } o 2X siny dy
\ﬂ " ‘Y

z
n 2
< 55 I e--2x sin”y dy
L
2
3 2
- 52 ! e-2x sin“y dy
" o
T
4 2 -%Y2
=5 JeT dy (using (3.3))
o
o “BE 2
\<47fe" dy
x° o
The substitution z = TE% Yy shows that
oo 2
1, 24— Je? dz= 2
xy8x o YZ2rx

Thus we see that

L= 0( =) (x= «).
X
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It follows that for a j 3

;1
LBl(X) - L52(X) = O \_[-; ) (x-> o).

Case 2:
1 1
Let 0 < a < 5. SetM=[§—a]+l.

Consequently from (3.4) we see that

2 2
Mrn 2x(y“=-sin“y)
2 e -1
L, (x)=L, (x) ¢ &= [ dy
By By AL ye2XY2
5 e2x(y2-sin2y)_l o Mn e2x(y2-sin2y)_l
==[ /) dy + £ J 2 dy
o 2xy n ye2xy
y e
= 13 + 14,

say, As in case-l, we find that

I,= 0(%) (x> =).
Yx
Further,
2 2
o M n e2x(y ~sin y)_l
I, == I dy .
4 L3 2

r=2 (r-1)= ye2xy

The following calculation: shows that each integral on

the right hand side is O ( %— ).
X
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To this end note that

Y)—l 1 ol e-2x singy dy
e2xY2.y (r=1)n (r=1l)=n

”
H
]
[
a

o( &) (x => o)
Y x

Since M is finite, it follows that

14=o(5) (x—> =)
Yx

Thus we see that for all values of «

1
LBl(x) - LB2(x) = 0 ( -;) (x > =)

This result together with Lemma 3.2 shows that

Lg(x) = Ly (x) + 0( =) (x = =)
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Lemma 3.4.

Let n 2

, 2 -2x%, t 1 . 1-B dt
LB3(X) = = £ e af |sin[2x: + 2t(5 + =5)] | e
Then

Lg(x) = Lg (x) + O (%x ) (x> =)

Proof: Now,

2
L - L 2 -2 x= 2
| BQ(X) Ba(x)l < 2 Je X22 |sin[x sin EE +

O *NJA

1, 1- 2 1, 1-
2t(5 + —Eﬁ)]-sin [x EE +2t(5 + izﬂ]l%i

Applying the trigonometric formula
SinC- SinD = 2 sin %52 cos &H2

it follows that

n
) -2x£2
4 x/ 2t 2t dt
ILB2(X) - LB3(X)| KS z £ e a |sin[§(a- - sin e )]I .
7 £
Ax eX—z 2¢ 2t dt
N { e o« (55 -sin a ). t
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-2 x= 3
4 2 :
K -ﬁ S e o, §£§ g% (using (3.3) )
o 6a
5 2 £
=& 7 t2 e @ gt
3n a o]
’z‘_
2
8 * 2 -2
= 3-% { Y e Xy dy
8x 2 2 -2xy2
. .C/;Y e dy
2 2
-2xy oo -2xy
= 8x|ve e
3 “ax + {; ax 9
0
= %E_ J e 2XY qy 2_ [ e% dz
o 3ny2x o

Thus Ly (x) - L (x) = 0 (#;) (x> =)

Together with Lemma 3.3, it follows that

Lg(x) =L (x) + 0L =) (x—> =)

Lemma 3.5.

If £ (t) = % (L-e a )
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then g
S If;((t)ldt = O (yx) (x—b )
(o]

Proof

Differentiating we obtain,
2

t
2 -2X
£0(8) = A [(axiz 1) e o - 1]
t a
£2 2
set y = 2x=» and g(y) = t f;(t) (3.6)
a
consequently,
g(y) = (2y+1) e77 -1
and

gly) =0 &> 2y+l = &

This clearly shows that, there exists a unique positive

value for y say 262 such that

g(262) = 0, and

2
a(y) < O if y> 28 (3.7)
aly) > 0 if y < 282

(3.6) and (3.7) together shows that

£.(t) >0 1F0 <t <oy

Yx

and f_'(t) <O 1f'c>"‘—§
X v'x
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consequently
. Q .
"2 ¥ x 2
S Ifx'(t)ldt = [ £ (t)dt - S £ ' (t)dt.
(o] (o]

%)j:

= £, (F5) - £,00) - £,(B) + £(F8)

2 =28 2 2
= 3 x(l-e ) - X ( l-e « )
=0( ¥x ) (x> =)

Lemma 3.6.

If g
2 1 l= d
L(x) = = J |sin[2x 5 + 2t(5 + —Eﬁ)] | zﬁ
o
then,

%
L(x) = :7 logx = i‘Qlog a- 1%2 {w(;t‘)sint dt+ O(;l(-) (x —» )
/
where k}/(%) = R;tt") / R,‘tt')

Proof:
T

2
L(x) =% [ Isin [ {2("—+é:ﬁ)+ Bt] | E (3.8)
0
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To estimate this integral we make use of the following
result proved in [29]

T
2
_ 2 % |sin(2x+1)t
1f Ll(x) = 3 { T ‘ dt
then,
n
Ll(x) = 12- log x = 22- f+(§t)sint dt + 0(;1(') (x> =)
n 1° o

1t follows that

4

1
L(x) 45 log (XtiB) . 2 ,7+(-:-)sint dt + O(X%1=B )
T ® O a

(x> o)

n
= ‘—12- log x - % loga - 27 fu/z(j-tt')sint dt+ 0(‘;1(-)
n n 1" o
(x=> o)
Lemma 3.7. If
d(x) = L(x) - Ly (x)
3
then,’

d(x) = 2 logx+2 log-’z3 +-27C+0(=l—) (x—> )
;2 n_z 2a2  x Yx
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where C is the Euler-Mascheroni constant given by

1 -y e
c=/ 128" 4y - s 9L
o Y 1 yey
Proof:
Using the expressions of L(x) and Lg (x) from (3.8)
3
and Lemma 3.4, we obtain,
2
g -2x§2
2 l- 2 1l-
d(x) == [J (——i"-—t—) | sin[{—ﬁlia-ﬂu}t]ldt
0
2
n t
] -2)(‘&'2
=-4L§ f(l-'-s—{——-)dt+ o( L) (x> =)
1n° o X
t2
Set y = 2x—5. Then,
a
2
—Eﬁx
d(x) =% | —dy + 0(=F= ) (x> )
anNx; = ;7 ; Y Tx >
n2
X
1 -y 2a -y
2 f l-e 2 l-e 1
= —'——dy+ f dY+0( )
;7 o Y ;7 1 Y Vx
2
T
1 Yy 2a X
2 l-e” dy
=5 J dy - [ + log ( —»—x )
;ﬁ o Y 1 er] w2 a
+ O( =



l-e d
= log x + log(—ﬁg-) + (S dy - [ <L
;2 x2 2a x2 o Y 1 yeY
n 1t2 yey X
—7%X
2a
The integral —217 vanishes exponentially as x-> o
ye
n
—7—X
2a
and. hence can be absorbed in O ( %— ). Also it is known
X
that the value of the integral
1 -y o
[ A=y - [ 4L
o 1 vye

is equal to Euler-Mascherioni constant C.

Thus we see that

d(x)

L(x) - LB3(x)

2
22 log x + 25 log ( —ﬁg—) + ggC +0 ( #;)
= T 2a n

(x> o)
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Proof of theorem.

Lemma 3.4, Lemma 3.6 and Lemma 3.7 together

show that
Lg(x) = L(x) = d(x) +0( 3= ) (x>w)
Yx
= gi—log ( %)-%C- 27-_1/"‘#(%)sint dt
n n n o]



Chapter IV

(B,a,B) SUMMABILITY OF LEGENDRE SERIES

In this chapter the domain of summability of a
series of Legendre polynomials by (B,«,Bf) method is
obtained. The corresponding result for the Borel
exponential method [22] follows as a particular case.
The series to be considered is the expansion of (t--z)-l
in terms of Legendre polynomials. To this end consider
the Legendre polynomials of the first and second kind of
nth degree denoted by Pn(z) and Qn(w) respectively. The

Laplace integral representation of Pn(z) and Qn(w) are

given by (c.f [40] ).

P = P(z) = % Z " dg (4.1)
and

Q, = Q(w) = Zf'"‘l d (4.2)
where,

§ = §(F) = z+ V(°-1) cosgl

T = T = w+w-) coshy

The banach ofﬁ?z-l) is so chosen that z + Wz2-l) lies
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in the exterior of the unit circle.

Write,
' k
s, = s (z,w) = nio (2n+1) P _(z) @ (w)
and
d, = d.(z,w) =P ,(z)Q (w) - P (z) Q _,(w) (4.3)

We have by Christoffel formula ([40], page 321)

1 1
wez - Spt (n+1) W~z dn (4.4)

By Hein's theorem ( [40], page 322) the sequence{sn(z,wlj
converges to (w-z)-l in the interior of the ellipse with
focl + 1 and passing through w. The following theorem
asserts that the sequence {sn(z,w)} is summable by

(B,a,B) method to (w-z)-l in a wider region.

Theorem 4.1. (c.f [14] )

The sequence {sk (z,w)} of partial sums of the
o0

series of Legendre polynomials I (2n+l) Pn(z) Qn(w)
n=o

is summable (B,a,B) to (w-z)-l in the region

{z: Rei%}%</\, ]%l<M’O‘<¢‘< n,o\q/}

where M is a positive number and O <A< 1.
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Let T(x) = £ uk(x)sk, where

uk(x) = ae

Then, using

T(x) =

k=N

-X X

[(ak+B)

ak+p-1

(3.4) we see that

T a0 gk - e g o]

) 1 =
—=- T u (x) - = T (k+l) u (x)d
L, - L

say. Applying Lemma 2.1, it follows that

I, = 22— [+ o(1)] (x> <).
Hence
lim T(x) = (w-z)'l
X~—> oo
if

if and only

T (k+1)
k=N

u (x)d, = 9(1) (x> =)

(4.5)
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We now investigate the region where (4.5) is satisfied.
Using the equations (4.1), (4.2), (4.3) and (4.4) we

have

; (k+1) wu

x)d, =
k=N k

Al
=

I~ 8

(k+1)u, (x) 7
0

0%:—!

Syk (£
N $* (E-2prag ap
(4.6)
Change of order of integration and summation in (4.6)

is permissible if

= < M <

with this assumption we obtain from (4.6)

; (k+1)u,.(x)d, = L 7} (-5 ) [ ): (k+1)u (x)( ) ]d¢ d¢
k=N k L A KeN k 1

= 0(1) (x> )

provided
I (kDu(x) () = o()) (x> =)
k=N

Now
1l ak+p-1

(ak+p=1 [(2 )]
M(ak+p) (%)&;i

; (k+1)u (x) (g)k = qe % ; (k+1)
=N k T k=N
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1 -

—x s)LZ'E T (kel) S I

= — }_‘. k l
®e CT k=N * [Tak+ﬂ)

(4.7)

1

- s @ _ak+p-1
Write I(x) = p LX(Z)]
k=N [(ak+B)

R -

consequently right side of equation (4.7) reduces to

1-8
ae™(3) ¢ [{1'(x)- B 100} 24 1(x)) (4.8)

For large values of x, Lemma 2.1 shows that

Rl

S
I(x) = % eX(T)

1
a

xg%) (

=g 5]

I(x) = é e 5;)

Consequently from (4.7) and (4.8) we obtain
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oo 1-8
kEN(k+l)uk(X)dk = ae-x(%) @ [x I'(x) + a+a I(x)]

=8 3 1 5
= ae-x(é‘,) @ [ .E.é eX(‘r) (:S_r)a + a+(];_g. -(J—i ex(.r) ]
1
PRY 1
= % e~ X ex(x') {: é’ 'uﬁ [(a+1-B)+ x(éL) ] :} (4.9)

Rl

Let (ér) = a+ib. Then right hand side of (4.9) is

equal to

-x(l-a) ixb [ a+l-ﬁ+x(a+ib)

=© B-1

a(a+ib) &

o(1) (x = )

if l-a > 0. That 1is real part of

d
(-?-;-)“ ¢AC 1.



TAUBERIAN CONSTANTS FOR BOREL-TYPE SUMMABILITY

Chapter-V

In this chapter we obtain Tauberian constants
for Borel-fype summability.
for Borel-summability proved in [1] follows as a

particular case of the following theorem

Theorem 5.1. (c.f. [15])

Let Euk satisfy the tauberian condition

lim sup | Yk u | = L <=

Let m— e, t—>» such that

lim sup

Then

lim sup

where

The corresponding result

(5.1)

(5.2)
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Lemma 5.2, {c.f[1l]).

It is easily seen that

(1) If 0 < k < p, then

b ;z L -4
j=kel = [ x%dx - €, = 2( Yu - Vk)— €,
k

where Gk —> 0 as k —> o,

1
(11) | ¥m = Vp| m < m—p ] (myp > 0)

Proof of the theorem:

Let j* = max(j,N), {sk} the sequence of

partial sums of I uy and B(t) the (B,a,B) transform
o
of {s,}- Then

_ -t = tak+B-—l k
B(t) = a e I -— I uy,)
k=N [(ak+B) Jj=o 3

oo t = tak+B--l

z
j=o k=j* [(ak+p) 14
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Consequently

oo ak+p~-1
3*  [(ak+p)

m
B(t)-sm = JZ

}]UJ

o -t ; tak+B—l ] u
J=m+1 3% [(ak+p) ]

m . %=1 ak+p-l
= I [-ae toy 2

j=o N [(ak+p) Iy

-t = tak+B—l

+ L [ae

L
j=m+1 3* [(ak+p) Iy

-1
_4+ b=l _ak+p-1
Let c = -« pﬁe t L t
W N [fak+p)

1IfNgpgm

o ak+p-l

=a u

z ifpo>m
b [(ak+p)

Let x, = Yk u, so that

lim sup |x, | =L < e
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and
B(t)-—sm = L ¢, X
For fixed p, Lt c = 0.
t>e M

To determine the Tauberian constant A in the theorem
we follow the method used in [1] where it is shown
that

A = lim sup [ lcpl (5.3)

Use of Lemma 5.2 shows that

-1
o _y M=1 _ap+p-1 m
Zlc | = ae t L r L 2 )
N M p=N [(ap+p)  p+l
-t = tap.+B-l 1) f%
+ ae — )

p=m+1 l?au+B) m+1

m=1 . apu+p-1
=2ae”t 'z E—— (Vm -Yp)
: p=N [Cap+g)

t co tap+B--l

+ 2ae” z ( Vp =VYm)
p=m+l [(ap+p)
+8-1 o ap+f-l
- ae‘-t mgl ﬁ;P ﬂ GP - €m ae-t _ l}( )
u=N ap+B) p=m+1 |(ap+p



Since €p and €~ are null sequences and (B,a,p)

transform 1is regqular it follows that

tap,+ﬁ-l

oo _ -t oo_—— _ R
Heul = 2™ 2= T e |+ o)) (noe)

For each ®> O, define

5, = {u/ lutl > 5Vt |
2

Then
%0 - ap+p-1
L el =2ae® £ E—ou | yn -y |
p=nN ¥ weB; [(ap+p)
3
- ap+p-1
+ 2007t t | Vm - Vul

z ————

b g By [(an+p)
2
= Zl + 22, say.

Use of Lemma 5.2 (ii) and Cauchy-Schwartz inequality on L,
shows that

ae ———
Ym ne By [(ap+p)
5

- ap+p-1
gy ¢ et g & | m-u ]
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1/2
2. teemt 3 (mep)? Pl we-t p Rl
Ym heB) Rap-&-ﬁ) B e B% [(ap+8)

2

An application of Lemma 2.2 shows that Zl-—> 0.

Now we shall consider the behaviour of the second sum

ap+p=1
t t—-—-[Ym-Vul

I, = 2dae L
2 ) [ 4 Bl [(au+B)
2

-t tap.+B-l
= 2ae I =——  |[Ym-Vp|
u-t| <8Vt [(ap+p)

Condition (5.2) in the theorem implies that

L‘;Ei —> O and hence § —> 1.
Also |p-t] & SYt dimplies
ERE R
E — .

It follows that if u ¢ B, &
2

1/2
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Consequently

[ Ym - yu| = [m=ml ~ [moyl

Ym+Yp 2fm
Thus we see that
ap+f-1
B = ae-t b t_P'__ Im_pl
2 - Vm p{Bl [(ap+p)
z
-t oo ap+f-1
= 2§ X" m-p] +0 (1)
Ym p=N [(ap+p)
Let
-t ap+f=-1
() =2~ 1 t——— |ny
Yo p=N [(ap+B)
-t m ap+f-1 -t = ap+p-1
= ae__ r  (m-p) + 2 el
Ym p=N [(ap+p) m+l [(ap+p)
= 23 + 24, say.
Now,

a e-t ? tap+B-l

—— (m-t)-(p-t)
ym  p=N [(ap+p) e b=t

= I3) = I3y, say

(p=-m)
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- _ m ap+f-l
231 = M axe t I ;t.______

Ym p=N  [(ap+B)

Let % <§< % . Use of Lemma 2.2 shows that

-a
_m=t T TJa W(“'t)
*31 Ym tEts 2t © vl
m = (x-t)
= D=t l ?tt S e 7t dx +o0(1)
Ym tmtS

The substitution z = %_’—t and the assumption (5.2) in
t

the theorem show that

-a _2
231=J%Q?e§zdz+o(l)

o -az2 -%22
Q| S e?2 dz+3'e dz
o

o(l)+F | S

1

-q_2

Q
o) + [F ol [Rr [ e ]

-a 2
o(1l) + g— + Y%Q? e 2% dz.
0



A similar treatment of L4p yleld

-t ap+p-1
L., =2 5§ X" " (u-t)
32 Ym u=N [(ap+8)

l [a n -g-( -
= = |55 S (x=t) e dx + o(1l)
Ym t—tS
The substitution z = lii together with the fact lim
' t
shows that
Q -0 22
L3n =‘I§% J ze () dz + o(1)
_ -az2
=0(1) +\[§; ? z e§ dz
- ag?
2
=0 (1) -i%an ©
Thus we see that
I3 =23 - 13
- 2 -a(h2

Q z
Q [ b3 l 1 2
7t %E(D{ ° dz + (Zax °©

3
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K similar calculation with L, will show that

4
a 2
- 2 - =
o 5z 1
£L,, = l—— ({ e .z dz = e
41 "N 7w T2a%
a 2 —« 2

o Q z
242=J%_;;06fe dz=2——\l§-;-Q£e§ dz

Thus we see that

_522 -

Q
_ | 2a 2
'*li—— C){ e dz +‘IEE‘ e

(5.3) and (5.4) together completesthe prcof of the theorem.

Q2

NIR

(5.4)

When a=p=l, the value reduces to

-1 2 - Q2
Q z
Jg-[ Q { e 2 dz + e 2 ]

which. is proved in [1].
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