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CHAPTER I 

INTRODUCTION 

The concept of .,·-numbers of operators originated in the study of integral 

operators by E.Schmidt in 1907 and F.Smithies in 1937. Let T be a compact operator on 

a complex Hillbert space Hand (T-7)1'J. be the positive square root of T-r 

Let { .A" ( 1 T- 7] 1\2 )l he the sequence of eigen values of U'°7)I\2 written in the 

decending order, counting multiplicity. Then the nth singular value of T denoted by s,,(T) 

is An ( [ 7'*T]II.2). 

It is well known that sn( 7J can be computed using Min-Max principle .An 

important usage of singular values for compact operators is the singular value 

decomposition [I5J . 

It ,':, finite dimensional case, the singular value decomposition lead" to the 

following factorisation of a given nxn matrix A : 

A=-- U Ad V Whet'e 

, [ ! and V are n x n unitary matrices and 

.\'1.S~ .• "n ::Ire the singular values of A. 

In the infinite dimensional case the singular value decomposition of a compact 

operator A on a Hilbert space H, leads to the following factorisation of A. 

where Ad is the diagonal operator with sJA) 

as the nth diagonal entry, U: H ~ '2 and V: '2 ~ H are bounded linear operators such 

that (! (1" and ~,. V are identity operators on '2 . 

API'ROXIMATION NllMRERS 

DEFI NrTION . 

I.ct T he a bounded linear transformation from a Banach space X to another 

Banach space r then the nth approximation number u,,( n of T is defined as 

u,,(l') = inf~V - 1.11: 1. E I3(X, Y),rankL < n } 



where R(X, Y) denote the cla<;s of all hounded linear transformation of X to Y. 

When X and Y are complex Hilbert spaces, approximation number measures the 

compactnes of T in B (X ,y) in the following sense. 

The compact ifand only if lima,,(T) =0 O. IfS and T are compact operators and ,,-+or: 

if an(S) ----;) 0 faster than {an (I)} , then one could say that .\" is more compact than T. 

KOLMOGOROV NUMBERS 

For every opera.tor SEfi . ...I .. :, F) the KoImogorov numbers are defined by 

d,,(S) = infilo~SII: dim(N) < n } 

where Q.~ is the canonical map of F onto the quotient space E'M. 

GELFAND NUMBERS 

For every operator s~ F, F) the Gelfand numocrs are defined by 

c,,(.\') = inf~\:f:~ 11: codim(M) < n } 

where .lt~ is the embedding map of a subspace M into F. 

These are some of the well known .,·-numbers. In 1974 Albrecht Pietsch [29] 

developed an axiomatic theory of s-numbers. The axiomatic definition is as follows. 

Let T be in B(X,}) and let (sJ.,J) be a unique sequence of numbers associated 

with T such that 

1) IITII = SI (T) ~ S 2 (T) ~ ... ~ s" (T) ~ ... 

2)s,,(S + 1') ~ S,,(S) + IITII, 1: Sin B(X,Y) 

3) s,,(R5;T.) s IIRJ\',,(S)IITI~ where T E B(X(I, X), SE B(X, Y) and RE mY, Yo). 

where Xo and Y () are Banach spaces. 

4) Rank (1') < n implies sJ.,T) O. 

5) Dimension X~ n implies SI/(l)=!. 
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Ultimately it is known that if X and Y are Hilbert spaces then every s-numbers 

concides with the approximation numbers[3 I ]. 

When X=Y=H a Hitbert space, the following description of approxi ation 

numbers is well known. 

ESSENTIAL SPECTRUM 

For T in B(H) the essential spectrum ae(T) IS n a(T + K) where K(H) 
keK(H) 

denotes the set of all compact operators on H. 

For T in B(H) with T*=T let 11,,112 , ... lls be the eigenvalues of finite 

multiplicity above ar(T). Then 

an (T) = .un' n = 1,2,3 ... N 

= ji.\", n ~ N + 1 when N is finite. 

Otherwise 0,,(7') = ji",n = 1,2,3, ... 

In fact it is known that II = limjin is the least upper bound of ar(T) [15]. 
,. ..... '" 

This description turns out be very important spectral theory point of viev.'. 

DEGREE OF A BOONDED LINEAR OPERA TORS(1] 

Definition. 

Let {Hn} be an increasing sequence of finite dimensional subspaces of a complex 

Hilbert space H such that u H" is dense in H. For T in B(H) degree of T, denoted by 

deg(T) is defined as 

deg( T) = sup rank( TI>,. - P" T) ,. 

ARVESONS CLASS 

Let A denote the class of all T in B(H) such that 

'" r = I At, where At E B(H)and deg(A t ) < 00 such that 
I 

.. ", , 
l!rllt = I (I + deg(At )2 )IIAt ~ < 00. 

I 
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Then Arvesson shows that if A is in A and self adjoint then the essential spectrum 

of A can be computed linear algebrically [1 ].This work of Arveson is used in chapter 

III to find lower bounds for certain types of positive operators on Hilhert spaces. 

A.Pietsch [30] introduced the concept ofpseudo-s-function axiomatically, which 

satisfies only the first three axiom of an s-function. The so called entropy numbers are the 

prime eX:lmrles of pseudo-s-function. A.Pietsch has contributed enormously to the theory 

of entropy numbers in connection with the theory of operator ideals [30]. 

SUMMARY OF THE THESIS 

In the second chapter the concept of serni-pseudo-s-numbers is introduced 

CLxiomatically. This is motivated from the study of operators on the space of operators 

especially elementary operators on B(H) when H is a complex Hilhert space Just like 

approximation numbers, the so called V-numbers are introduced in this chapter measures 

the strcn!-,>th of compactness of elementary operators. Other examples based on concepts 

like index, degree, trace, nullity and co-rank are also given in this chapter. 

The third chapter is devoted to computation of approximation numbers. This leads 

determination of bounds for essential spectra of certain types positive operators in F3(H) 

where H is a separable Hilbert over C. Through a diagrom it is illustrated that how the 

computation can be implemented algorithemically. 

The fourth and final chapter deals with closed linear operators between complex 

Banach spac~s. 

The aim is to extend the notion of s-numbers to a class of closed linear operators 

which includes the bounded ones, preferahly to the whole cla<;s of closed linear operators. 

This chapter is divided into t\VO sections. In the first section the so caJ \cd fJ and p' 

numhers arc introduced using Kato's notion of gap of operators. In the second section s' 

numbers are studied for a class of dosed linear transformation using the well known 

relative h"".,rledness of Kato [20]. 
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Finally .'I-number set" are defined for every closed linear transfonnation, agam 

using relative boundedness of operators. It is observed that for bounded linear operators, 

the corresponding s-numbcr sets are singleton sets consisting of approximation numbers. 
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CHAPTER 11 

SEMI-PSEUDO-s-NUMBERS 

The concept of semi-pseudo-s-numbers of bounded linear operators 

between complex Banach spaces is introduced, a,<iomatically. This concept arise 

naturally when the Banach space under consideration is the Banach space B(X) of all 

bounded linear operators on a Banach space X, with supreum norm. More specifically 

when one approximate bounded linear operators on R(X), by bounded linear operators An 

on H(X) such that rank(An )< n and rank(A" (T )< n for all T and estimate the error 

involved in it, one gets semi-pseudo-s-numbers. Of course this is the prime example that 

is studied in this chapter. Various examples based on concepts like index, degree, trace, 

nullity etc. are also given. 

Let us recall the definition [Chapter I] 

Definition. A map s which assigns to every bounded linear operator T from a complex 

Banach space X to a complex Banach space Ya unique sequence of numbers denoted by 

{s,,(1)}n~I.2.3 .. such that 

I. IITII =.\'I(1)~ S2(7)~... ; and 

2.sn(S-'- D5sn ( .. \) + IITII for every S, Tin B(x'}) 

is called a semi-pseudo-s-function. 

It is to be mentioned that this is an extension of the pseudo-s-func1ion introduced 

by A. Pietsch [30], which is a generalisation of the abstract s-function introduced by 

Pietscr 'liJ115elf It is also clear from axiom (2) that the semi-pseudo-s-function is 

continous ""'lth respect to the norm topology of operators. Throughout this chapter X and 

Y will denote complex Hanach spaces and B(X,y) the class of all bounded linear 

transformations from X to Y. Now what follow are various examples and their properties. 
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Examples 

2.1. V-numbers 

For each <I> in B(B(X).B( r», let 

V,,(<I» = inft/<I> -/l LE B(8(X), 8(y),rank(L) < n and rankL(T) < n fur 

all T in RO,): . 

Theorem 2.1. t . 

Proof. 

Now 

The map <1> ~ 1",,(<1»1 is a semi-pseudo-s-function on B(B(X),H(y». 

VI (<1» = !~~ 

V .. , feI» = inf~/<I> -1.11: rankL < n + 1 and rank L(T) < n + l'1T } 

~ inf~~ - 1.11: rankL < nand rankL(T) < n'1T } 

= Vn(<I» 

v" (<I> + '1') = i nf ~1<1> + 'I' - LII : rankL < nand rankLe 7) < n } 

~ inf t/<I> - LII : rankL < nand rankLe 7) < n } + II'¥I! 

~ V" ( <1» + ~'I' 11 ' <1>, 'I' in B(B(A.'),B(}) 

This completes the proof. 

Proposition 2.1.2. 

The map <l> ~ {V n< <l»} is not a pseudo-s-function. 

Proof. 

Let R., S, Q be in 8(8(H» be as follows. Q = I, the identity operator. Let L in 

B(B(H» be such that rank1-< n and let P be a projection of rank < n. Now define 

.\'(7) .. /'/,(7')P. Tin H(H). 
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For a nonzero continuous linear functional ~ on B(H), let R(7) =«.7)./, Tin 8(H) where 1 

is the identity operator on the Hilbert space H. 

Observe that, rank RS = 1, rank R(S(7) = +00 

Hence V ,,(R,\") *- 0, but V,,(~") = 0 for n > 1 

Hence V,,(RSQH IIRjIV .. (S)~QII 
Thus <I> ~ { V,,(<I»}n=I.L is not a pseudo-s-function. 

Remark 2.1.3. 

The above theorem shows that operators on the spaces of operators have to be 

treated seperatily and deserves a special status. The well - known theory of completely 

positive maps and the theory of elementary operators suggest the importance of studying 

operators on operators [26]. 

Recall that if {a,,(7)} is the sequence of approximation numbers for Tin B(X,}') 
'of 

then a,,(7) =0 if and onlY"rank (7) < Il. . Also, if X and Yare separable Banach spaces with 

Schauder basis, then {is compact ifand only if Iimun (F) = 0 
,,->00 

Analogously, the following observation can be made for V-numbers also. Clearly 

V,,(<1»=O if and only if rank (<1»<n and rank(<1>(7') .' n. As before, 

lim V" (<1» = 0 implies that <fJ is compact and <1>(7) is compact for every Tin B(X, Y). ,,->00 

[26] Recalling the definition of elementary operator, a linear map .1: BUt) ~ B(X) 

is called elementary if there are 2n operators A l.Al. A",R I.B2 . . Rn in R(X) such that 

n 

,1(7') = I AJR;, rE R(.\). It is known that .1 is compact if and only if A I.A}. An .. 

Bl.B2 .... Bn are all compact, provided { Al,A2, '" An} and { B I .B2 .... Bn} are linearly 

independent sets. Thus when .1 is compact 1l.(T) is also compact for every T in B(X). 

Hence when X is a complex Banach space with schauder basis, by approximating 

coefficient operators by finite rank bounded linear operators, one gets the following 

result. 
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Theorem 2.1.4. 

Let X be a complex Banach space with Schauder basis. Then an elementary 

operator.1 on B(X) is compact if and only if lim Vn (.1) = 0 If ___ 

The following example shows that the above semi-pseudo-s-function doesn't 

satisfy the fourth axiom ofs-function. That is, rank (<1»< n doesn't imply that V,,(<l» = O. 

Example 2.1.5. 

Let ~ be a nonzero bounded linear functional on B(X). For Tin B(X), 

put 4>(1) = ~ (1)./, where / is the identity operator on X. Then for n > 1, rank <l> < n, but 

V J. <l> );eO . 

Theorem 2.1.6. 

V- numbers satisfy the fifth axiom of s- function namely 

dimension B(X) ~ n implies that V J.I) = 1 where 1 is the identity operator on B(X'). 

Proof. 

Clearly V,,(/) s I. Now V,,(I) < 1 implies the existence of an operator <l> on B(X) 

such that r::>.nk <l> < n and rank <l>(T) < n for all Tin B(X) and IV - <I>~ < I . 

But this means that <l> is invertible which is not true. Hence the result. 

Remark 2.1.7. 

It is trivial to see that V,,(A<l» = I A I V,,(<I» for every complex number A and <I> in 

B(13(X),/J(Y»).Now a study of some of the properties of approximation numbers like 

additivity,injectivity and surjectivity is carried out for V-nurnbers. The proof of the 

following proposition is exactly the same as that of approximation numbers [ 30 ]. 

Proposition 2.1.8.13O} 

V-numbers are additive. That is, for every pair of positive integers 

V", -n.'( <l»s Vm( <l» + V,,( <l», <l> in B(B(X»)3( Y» 
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Next recall the definition of metric injection and the associated injectivity of s-function. 

Definition 2.1.9. [301 

J in B(X,Y) is called a metric injection if 1~(x~1 = ~1.Semi-pseudo-s-function S IS 

called injective if sn(.l?') = sJ7) for all ./, metric injection ./ in B(X,Y) and for all Tin 

8(Xo..¥). 

The following example shows that V-numbers are not injective. 

Example 2.1.10. 

Consider the Banach spaces Xo, Xtand X2 defined a<; follows. 

Xo = X, X2 = Y my and X1=Y where X and Yare Hilbert spaces. Here ymy is given the 

maximum nonn namely. 
IIx El) YII = max kl~II.llvll). x, y E Y } 

Let /, : R(Xo) -)- 8(XJ) be a bounded linear operator with rank< n, and Pan orthogonal 

projection on Y where rank< f1. 

Let ell : B(Xo) -+- B(X1) be defined by 

<l>( 1) = PL(1)P, TeB(Xo) . 

Then rank <1>< n and rank <1>(1)< n for every Tin B(Xo) 

F or a bounded I inear functional (nonzero) on 8( Y) such that 1\9S~ ~ I let 

./(,1)) ~ S m 4>(5)/, SeB(XJ) 

where / is the identity operator on Y. 

Then J is an injection. 

But V n<J<1» * 0 

But Vn(<1»=O 

Hence V is not injectivc 
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Definition 2.1.11 [30) 

A surjection QE B(X,y) is an operator which maps X onto Y. In this ca!7e 

I~'IIQ = inft~tll: x E X,Ox = y} for all yE Y defines an equivalent norm on Y. If, in 

addition, we have I~II = ~IIQ' then Q is said to be a metric surjection. 

Definition 2.1.12.(30J 

A semi-pseudo-s-function s is surjective if, given any metric surjection 

QEB(Xo,X) SrI (S) =s" (SQ) for all SE B(X, Y). 

Proposition 2.1.13. 

V - numbers are surjective. 

Proof. 

From the definition of metric surjection we get 

I~s - LII = ~S - L)Q~ 

V,,(S) = infl" - rll: rankL < nand rankL(T) < n for all T). 

= inf~kS -/,>011: rank/, < f/ (/f/J rankr(T) < f/ for all T 1 

= inf~ISO - rOil: ruf/uQ < f/ (/f/J rankU}(7'o) < n fiJr (/1/ 7;1 ) 

Lemma 2.1.14. 

:...et (L;) be a bounded family of operators L; EB(B(Xj).B(Y;» be such that 

rankL;<n and rank LI( 7~) <n .Then rankL; < 11 implies rank «L;~» < n. 

Proof. 

l Tsin[; the same technique as in Lemma 11.10.9. [ 30 ]. 

Lemma 2.1.15. 

Let (/'1 (7;» be a bounded family of operators /,[It) EB( Y;) be such that 

rank L/( 7:) < n _ Then rank L; (7:) < 11 implies rank «L; (7i~) < n. 
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Let us recall the definition of«Si)u) [30J 

Let (Ei) be a family of Banach spaces and suppose that v is given on the index set I. The 

Banach space of all bounded families (Xi), where Xi E Ei for i El, is denoted by 

'"" (F:p I) . Moreover, put 

c,,(/~',,1) = tx,) E ',.,(E,J): Iiml~,~ = 0 }. 
11 

W fi h · '(F,l) - d h . I e now orm t e quotIent space (E;)" = '" , .. It x = (x,)" enote t e eqUlva ence 
c,,(I:,,1) 

class corresponding to (XI), then the norm of x can be computtXi I~I = Iiml~; ~ 
v 

The Banach space (hi>. obtained in this way is called the ultraproduct of the Banach 

spaces El with respect to the ultrafilter v. 

Let (Hi) and (I'i) be families of Banach spaces. Suppose that (S,) is a bounded 

family of operators Sj EB(Ei.Fi ). By setting 

(Si)JXi)u = (S;x; )" 

Definition 2.1.16. [30] 

A semi - pseudo-s-function s is called ultrastable if (s,,(S;) v) :$ lim Sn(Si) for 
" 

every bounded family (Si) of operators SiEB(X;'Yi) and every ultrafilter u. 

Proposition 2.1.17. 

v- numbers are ultrastable. 

Proof. 

Let (S;) be a bound family of operators S; EB(B(X;)J3(Yi ». Given E > O,we choose 

',;E8(R()(;),8( r;» such that rank /', < 1/, rank I,; (7i)< n and I~\'i -/,,11 S (I + c)V,,(.\) 

1~\'j(7;)--/,,(7;)IIS() +£)V,,(Sj) 

12 



It follows from 

IILi~~I~)i -LIII+I~)i~ 

~ (1 + C)V,,{SI) + I~)I~ 

~ (2 + C~~)ill 

Ill-I (1; )11 ~ I~\ (7; ) - 1-1 (7; ~I + I~\ (7; )11 

~ (1 + &)V,,(SI) + I~\'I(T; ~I 

~ (2 + C~~Si~ 

that the fami1ies (L;) and (L; (T;)) are a1so bounded. Hence rank «L;)v) < nand 

rank «(f'i (T;)v) < n 

We have (V,,(Sj )") ~ IKSI ),) - (L; )vjl 
= Iiml~\ -IJIII 

u 

~ (1 + c) 1im V" (S,) 
u 

Letting E ~ 0, we get 
V,,«SI)V) ~ IimV,,(SI) 

IJ 

2.2 8-numbcrs 

For every SeB(X,Y) and n= 2,3, ... the nth 0- number is defined by 

ls:.(S) = inff~\' - 1-11: I. E R( X. y).-n ~ indl- ~ n } .where ind!. = dim kerl- - codim([m!.). 

Put ~(S) = I~~II. 

Theorem 2.2.1. 

Proof. 

The map 8: S ~~.))) is a semi-pseudo-s-function. 

I) t5n+,(S)=inf~\,-I.II:/.(c fJ(X,Y),-(n+1)~indIJ~n+l } 

~ inf~~\, -1.11: I, E H(X,r ),-n ~ imf!. ~ n } 

=t5,,(S) 
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Therefore, 

I~~'II = 8) (S) ~ 82 (S) ~ ... ~ 0 for all SE B(X,}). 

2) 8,,(S+T)=inf~IS+r-LII:IJEB(X,Y),-nSindLsn} 

s inf~S' - L~: LE B(X,Y),-n S indL s n }+ IfTll 

=8n (S)+lIrll 

Proposition 2.2.2. 

The map 8:51 ~~~S) is not a pseudo-s-function. 

Proof. 

The following example shows that 

b;, (RS1) s IIRJ\t5n (S)~II, not true. 

Let S be an invertible operator such that ~(.\j . 0 

Put R =.)"' 

Define T: /r~ /2 by 

So ind T·~ n + 1 

Hence b;, (RST) ~, but ~ (Sj = 0 

Therefore, ~ (RST) t IIRjjO,,(S~T~ 

Rema rks 2.2.3. 

a) 8 - numbers do not satisfy the fifth condition of s- function. 

Proof. 

Proof. 

Whatever be the dimension of X, t\, (/r) = 0 always. 

b) b;, (S) =t\, (51 + K),where K is a compact operator. 

We know that ind(5;+Aj = ind ."'. where K is a compact operator. 

c) c\ (.\j -L\, (S') 
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Theore 2.2.4. 

~ (S) = 0 if and only if -n5, ind Ss. n 

Proof. 

If ~ (S) '" 0, there exist a sequence {/'k}' -n S. ind /,,,,s. n such that 

Therefore, 

So ind S = Iim indLt 
k-ooo 

Therefore -n s. ind Ss. n. 

Converse part is trivial. 

Proposition 2.2.5 . 

limb',,(S) = 0 ifand only if S is the limit ofa sequence of finite index operators. 
"....., 

Proposition 2.2.6. 

b' - numbers are not injective. 

Proof. 

The example shown below illustrates that;':' (,") -:t:- b;, (.I.\) 

Let S = / and hence ~, (S) = ° 
Define.l: Ir+ 12 by 

J(Xlh .... ) = (0, ... 0, XI.X2 .... ). 
'-.--" 

So ind J = -(n+ I) rH-l 

Therefore, ~ (J,\j -I:- O,but Ii" (S) = 0 

Proposition 2.2.7. 

i5 - numbers are not surjective. 

Proof. 

This can be shown using the example given below. 

Let S= /, so ~ (~) = 0 
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Define Q: h-~ 12 by 

Q(XI ,x2, ... ) = (Xrr+2, X,,+J, ... ) 

So ind Q = n + I 

Therefore ~ (SQ) :I: 0 

Proposition 2. 2.8. 

0- numbers are not additive. 

Proof. 

The following example shows that b;,,~n-I (S-"- n ~ b;,,(s) -'-8,,(n, is true. 

Let S= I and hence ~ (8) = 0 

Define T: 12~ 12 by 

7{X t,x2, ... ) c= ( 2r2,-X3.-X4,,) 

(l.L T)(XI,x2, ... ) = (2r2+XI,XrX3,X3-X4, ) 

Therefore, ~ (7) = 0 for n = 2,3, ... ,because ind T= I 

Bute\" 'n.1 (/+ l) i'- 0 ,because ind (/+ 7) = 00 . 

Definition 2.2.9.[301 

A semi- pseudo-s-function s is called symmetric if .... "(S)~ .... "(.\") for 

all S eB(X,Y). 

Proposition 2.2.10. 

0- numbers are symmetric. 

Proof. 

Given E >0, we choose LeH(X,y) such that -n:::; ind L :::; nand 

I~~ - LII ~ (l + &)0,.(5) 

Then - n:::; indl/ :::; n and I~\)' - CII:::; (1 + &)O"(S) 

Therefore, ~ (S'):::; ( 1 +e) ~ (.\1 
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Definition 2.2.11.(30) 

A sl!mi-pseudo-s-function s is called completely symmetric if s,,(S) = s,,(S') for 

all SE H(X, Y). 

Proposition 2.2.12. 

0- numbers are completely symmetric. 

Proof. 

The proof of this proposition can be carried out in the same way as the proof of 

proposition 2.2.10. 

Definition 2.2.13.[30] 

A semi-pseud-s-function s is called regular if s,,(S) =s,,(Kx::.,j for all SEH(X,Y), 

where K.r is the evaluation map from X into X· . 

Proposition 2.2.14. 

().. numbers are regular. 

Proof. 

It is trivial. 

Now what follows is an example of a semi-pseudo-s-functlon based on a concept., 

due to William Arveson, called degree of operators. First recall the definition [ 1] 

Definition 2.2.15. 

Let {H,,} be an increac;ing sequence of finite dimensional subspace ofa Hilbert 

'" 
space H such that u H" is dense in H. For Tin B(H), the degree of T denoted by deg(T) 

I 

is defined ac; deg(7) -- sup rank (p"T TJ>,,), P" is the projection onto H". 
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2.3 f- numbers 

For every S e8(H) and n = 2,3, ... the nth i·number is defined by 

/,,(S) = illf~~ -I,ll: Le B(H),degL < n }.Putft(S) = I~~~ 

Theorem 2.3.1. 

The map/: 84 «(,,(L\,) is a semi-pseudo-s-function. 

Proof. 

The proof is quite similar to the proof of theorem 2.2.1. 

Proposition 2.3.2. 

The map/:.~ «(("(.<,,J) is not a pseudo-s-function. 

Proof. 

The following example shows thatln(R...';?)~ IIRIIJ~(S)IITII, is true. 

Let L'-,~ T = I, so In(.<'" = ° 
Define R:/24 12 by 

R(XI ,Xl, ... ) = ( Xn+l. Xn+2, Xn+3, ... , X2n'O'O' ... ). 

Therefore deg R = n 

Hence /iRS?) * 0 if 1 < k< n 

Remarks 2.3.3. 

a)f,,('A..'-,J . I tJ /~(.<"'). 

b)/,,(S) = f"(S*). 

Proposition 2.3.4. 

(.,(S) =-c 0 ifand only if dcg S< Tl. 

Proof. 

We know that dcg is lower scmi-continuous. Therefore j~( ..... ') = 0 if and only if 

deg S< 11. 

Converse part is trivial. 
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Proposition 2.3.5. 

lim I" (5) = 0 if and only if 5 is the limit of a sequence of finite degree 
It-+OC 

operators. 

Proposition 2.3.6. 

I-numbers are additive. 

Proof. 

From the definition of degree it is clear that deg(1'1 + /,2 ) ~ deg LI + degI'2 

Proposition 2.3.7 . 

. f-numbers are not injective. 

Proof. 

Tnis can be shown using the example given below. 

Let 5 =/. therefore j~(.") ~. 0 

Define.J : 1,-4 h by 

J(XI ,X2, ... ) ' (0, ... O.x2n, .. XI,X20+1. ). 
"--v--J 

Therefore degJ> n I\. 

Therefore fJ..J:-'') ~ 0 

Proposition 2.3.8. 

I - numbers are not surjective. 

Proof. 

The following example shows that/n(S,) ~ f,,(SQ), is true. 

Let S = /, and hencejJS) = O. 

Define Q : fr·~ h by 

{}(XI~r~, ... ) (XTlt~. Xn 11, . . ) 

Therefore, deg () =~ 11 4 1 

Hence f,,(SQ) t:O. 
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Proposition 2.3.9. 

f - numbers are symmetric .. 

Proof. 

Given E> 0, we choose I,E 8(H) such that deg /,< n and I~S' -I,ll ~ (I + E )/,,(S). 

Then deg I: < n and liS' - 1.'11 ~ (I + £) fn(S).Thercfore j~/(S') ~ (I + I;)j~(.)') 

Proposition 2.3.10. 

The f - numbers are completely symmetric. 

Proof. 

The proof is quite similar to the proof of proposition 2.a.9:. 

Proposition 2.3.11. 

The f - numbers are regular. 

Proposition 2.3.12. 

l .. numbers are ultrastable. 

2.4 g - numbers 

For every operator SE IJ(H) and n = 2,3, ... the nrtl g - number is defined by 

g" (S) = inf~IS -I,ll: r E f3(JI ),1rI, < n },JU g, (S) = IISII, \\h:retr(L)~tretroccofL 

Theorem 2.4.1. 

The map g : S~ «(,g"(,",) is a semi-pseudo-s-function. 

Proof. 

The proof is quite similar to the proof of theorem 2.2.1. 

Proposition 2.4.2. 

The map g : s~ «g,,(S) is not a pseudo-s-functlOn. 

Proof. 

The example shov..n below illustrates that g,,(n.';l)~ IIR~g,,(S~lTl 

Let ]'.0 I, so IVII = 1 . 
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Define R, S : h~ h by 

R(XI"x2 •... ) = (-XI, X2, ... , Xn. Xn+I,"')' 

S(-'"I.X2 •... ) = (-Xl, X2, ... , xn.O, ... ). 

Hence tr S = n-I. 

Therefore, g,,(S)~' O. 

RS(XI"xZ, ... ) = (XI, X:" ... , xn.O, ... ) 

So tr R:': = n 

Therefore, gnf..R.(,;) *- 0 

Hence the result. 

Proposition 2.4.3. 

tr S < n if and only if g,,(S) = O. 

Remark 2.4.4. 

If dim H ~ n, then g,,(JH) t o. 

Proposition 2.4.5. 

g- numbers are additive. 

Proof. 

We know that tr(A -' B) = tr(A) + tr(8) 

Theorem 2.4.6 

lim g,,(S) = 0 if and only if S is the limit of a sequence of finite trace operators. ,,--

Proposition 2.4.7. 

!!. - numbers are not injectivc. 

Proof. 

T!-:i~ ~an be shown using the example given below. 

Define J, S : h~ h by 
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.S(XI,x2 •... ) = (-Xl, X~, ... , Xn,O, .. , ) 

JS(XI,x2, ... ) = (Xl, X2, ... , xn,O, ... ) 

Therefore, tr JS = n ,but tr .\' = n-l 

Hence g"(J,,,,) * 0 and g,,(.\') = 0 

Proposition 2.4.8. 

g- numbers are not surjective. 

Proof. 

TIle following example shows that g"(S) * g,,(SQ), is true. 

Define Q, S : h~ h by 

(J(X\,x2, ... ) = (-XI, X2, ... , Xn. Xn+I,Xn+2, ... ) 

S(XI,x2, ... ) = (-XI, X2, ... , xn,O, ... ) 

SQ(XI,x2, ... ) = (XI, X2, ... , xn.O, ... ) 

So tT SQ = f1 and tT S = !I-I 

Therefore, gll(S(}) '* 0 and g/~S) ." 0 

Remarks 2.4.9. 

a) For each mapping SE 8(H) and all numbers A (A *' 0) UA..),) * I A I U.\') 

Proof. 

The example shown below illustrates that gnU";"') '* I A I g,,(S) 

Define S: h~ 12 by 

S(X\,x2, ... ) = (XI, Xl, ... , X", xn+\,O,O, ... ) 

So trS=n+i 

-1 
Therefore, uS) * O. Choose ..1.=-- such that tT A.)' = -1. Hence g,,(A.S, = 0 

n + I ' 

b) uS) = g,,(5;") 

Proposition 2.4.10. 

g - numbers are regular. 
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Proposition 2.4.11. 

~- numbers are symmetric. 

Proof. 

We know that tr .\,' = tr S' 

Proposition 2.4.12. 

g- numbers are completely symmetric. 

k5 8- numbers 

For every operator SeB(H) and n =2,3,.:., the nth 0 - number is defined by 

O,,(S) = inf~S' - L~: L e B(H),nuIL < n },put O)(S) = I~~II 

Theorem 2.5.1. 

The map (J: .\' -)- (~(.'~) is a semi-pseudo-s-function. 

Proposition 2.5.2. 

The map (): S -)- (a(,\) is not a pseudo-s-functlOn. 

Proof. 

The following example shows that (J,,(RST) ~ 11/~18,,(S~TII, is true. 

Choose S and T = 1 such that nul S = 0 and IITII = I . 

Therefore, ~S) = O. 

Define R: Ir~ /2 by 

R(..rl~2, ... ) = (0,0, ... O~l, X2, ... ). 
'--..,.-J 

So nul R ~ n. "-

Therefore, On (RST);f. 0 
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Remarks 2.5.3. 

a) 0- numbers do not satisfy the fifth condition ofs-function. 

Proof. 

Whatever be the dimension of H. Bn(lll) 0 always. 

b)On(S)=O,,(S·). 

c) 0,,0 ... '> = I A. I 8,,(.\'). 

Theorem 2.5.4. 

It(S) = 0 ifand only ifnul S < n. 

Proposition 2.5.5. 

lim 0" (S) = 0 if and only if S is the limit of a sequence of finite nullity of 
,,~ 

operators. 

Proposition 2.5.6. 

0- numbers are not additive. 

Proof. 

The following example shows that ~ 'n-I(S+ 7) $ o",C'> + Bn( 7), is true. 

Define S : Iy-~ 12 by 

Therefore, o,,(,~;) = O. 

Put T c. I Therefore, a.< n = 0. 

Therefore, (I +S)(.'·I,X~,.) = (Od' X"t2. '" ) 

Put m n =') -. n+, 

Therefore, Om 'n-I(S+ I) =. fh(l + ,\l:# ° 
Because nul (I+~l ... n+ I 
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Proposition 2.5.7. 

0- numbers are injective. 

Proof. 

O,,(S) = inf~S -I,ll: LE B(H).nuIL < n } 

=inf,",S -JLII: LE B(H).nuIL < n } 

= inftJS - JL~: L E B(H).nuUL < n } 

= O,,(JS)' 

Proposition 2.S.S. 

0- numbers are not surjective. 

Proof. 

The example shmVTl below illustrates that o,(S) =I- 0" ( .';Q) 

Let ,,,' = I. Therefore. o,(S) = ° 
Define Q : 12,-) 12 by 

Q(..t1"x2, ... ) = (..tn+2 . ..tn+3.··· ). 

Therefore. nul Q = n+ I. 

Therefore. O,,(SQ) :to 0. 

Proposition 2.5.9. 

0- numbers are not symmetric. 

Proof. 

The following example shows that O,,(S) f 0,,(51'), is true. 

Define 51: h~ 12 by 

S(..t1"x2 •... ) = (0, ... ,0, ..t1 . ..t2 .... ) 
~ . "-

Therefore. S (XI"x2, ... ) ~ ( X"+I ..t"·2X,,~, ... ) 

So nul S = 0. Hence o,(S) = 0. 

So nul S· ~ 0. Hence On(S·) :to 0. 
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Proposition 2.5.10. 

Proof. 

e - numbers are regular. 

en(s) = inf~<I - 1.11: I. E B(H).nuIL < n } 

= inftlKIl (S - L~I: LE R( H),nulL < n } 

= inf'KHS-KHLII:LeR(H),nuIK"L<n} 

= 0" (K H'<I) 

2.6 77-numbers 

For every operator S EB(H) and n =2,3 .... , the nth 77- number is defined by 

77n(S) = inftS - L~: L E 8(H),co - rankL < n }, put 771 (S) = 1I.\'II,where 

co - rank!, = dim (Ran/,)J. 

Theorem 2.6.1. 

The map 77: S -~ (77n(S» is a scmi-pseudo-s-function. 

Proposition 2.6.2. 

The map '7 : S ~ ('7n(S)) is not a pseudo-s-function. 

Proof. 

The following example shows that 77" (RST) $ ~Rlfqn(S~r~. 

Let S and r""'1. 

Define R . 12~ 12 by 

R (XI,.X2, ... ) - (0, ... ,0, XI.x2 .... ) 

Remark 2.6.3. 

~ 

1"\ 

'7 - numbers do not satisfy the fifth condition of s-function. 

Proof. 

Whatever be the dimension of H, '7n (I H ) = ° always. 
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Theorem 2.6.4. 

7],,('\') = ° ifand only ifco-rank S< n. 

Proposition 2.6.5. 

lim 7]"U'n = ° if and only if S is the limit of a sequence of finite co-rank of 
n..-

operators. 

Proposition 2.6.6. 

7] - numbers are not additive. 

Proof. 

The example shown below illustrates that 7]m· n· ,(S' T) i 7]m(c\j • 7],,(1) 

Define S : h~ 12 by 

Therefore, 7]n(S)'" O. 

Let T = I be such that TJr,,( T ) ° 
Therefore, (/tS)(Xlrt2, ... ) = (0, '" ,0, X,,-t2, ... ) 

Therefore, co-rank (/+S) ~ n+ 1. 

Put m ~ n = 2. 

Therefore, 7],.,.".!(S . 7) . '7J(S, 7)-:1: ° 
Proposition 2.6.7. 

'7- numbers are not injet.,iive. 

Proof. 

The following example shows that 7],~..\1-:1: '7,,(.1..\) 

Put S = I. Define J: ,,~~ I.' hy 

.I(x, .x} .... ) -' (Od,X, .. lf ... ). 

·tt 
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Proposition 2.6.8. 

'7 - numbers are surjective. 

Proof. 

T/,,(S) = infl~ -Ill, € IJ(H),co-rank/, < n } 

= inf~S-L)QII:LEB(f1),co-rankL<n} 

= inftsQ - LQII: L E B(H),co - rankLQ < n } 

=T/,,(SQ). 

Proposition 2.6.9. 

T/ - numbers are not symmetric. 

Proof. 

The example sho"'1l below illustrates that T/,,(S') =" T/n(S) 

[)cfinc S : 1.,.-)0 11 by 

,,,'(x 1 ,X} • ... ) = ( xn • I. xn • 2. xn • .~ .. ). 

So co-rank 5; = O. Therefore, T/ nU;) = 0 

S·(Xl~2" .. ) = (0, ... ,0, XI.X2 .... ) 

SO co-rank S· = n, henceT/n(S') = O. 

Proposition 2.6.10. 

T/- numbers are regular. 

2.7 s -numbers 

Let {H,,} be a decreasing sequence of closed subspace of H, H/=H, nth "5 -numbe,' 

of SEB(H) is defined by :~" (S) = supf~ull: x EH", ~II = 1 }. 

Proposition 2.7.1. 

The map "5 : S ~ ("5,,(8» is a scmi-pscudo-s-function. 
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Proposition 2.7.2. 

The map s : S-+ (s,,(S» is not a pseudo-s-function. 

Proof. 

The foJlowing example shows that s,,(RST) 111R~~,,(S>M, is true. 

Let R = I and .. )' be an orthogonal projection of H onto H;. 

Therefore, s,,(S) = 0 

Define T:H-+ H such that 7T..Hn) ~ 0 and T(Hn)c H; . 

Therefore, s" (ST) ~ o. 

Remarks 2.7.3. 

a) l' -n~lmbers do not satisfy the fourth condition ofs-function. 

b) Ifdim H ~ n. then S,,(!II) = 1. 

c) .~" IA.SI = I}.I.~" (S) . 

uJ s,,(.\T) ::;IISlls,,(f). 

e) .v,,(S) -'- .v,,(S·). 

Propositil)!" '2.7.4 . 

. ~ -numbers are additivc. 

Proposition 2.7.5. 

S -numbers are injective. 

Proposition 2.7.6. 

s -numbers are not surjectivc. 

Proposition 2.7.7 . 

. ~ . ~ mmbers are regular. 
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Remarks 2.7.8. 

a) a,,(SP,,) ~ S,,(S) where 1\ is an orthogonal projection of H onto H". 

b) a,,(S)~s,,(S)+tJ,,(S/:;) where I~ isanorthogonal projectionofHontoH:. 

c) s,,(S) ~ s,,(Sr) + tJ,,(S),where P is an orthogonal projection with rank P < n. 

Proof. 

a) a,,(SPn ) = inf~ISP" - L~: rankL < n } 

< - (") _ s,,' . 

(I - P~) : H ~ H n 

:fn(S) ~ IIS(I- p;)II 

(' = "(I -/") + ,<.,'/" l} ,,) " . 11 

Hence the result. 

c)We know that Q,,(S) = inf~~ - SplI: PE 8(H»)s an orthogonal projection 

with rank P < n}. 

Therefore, 

I~" -SFII ~ (l+c)a,,(S) 

IKS - SP)·~I ~ (1 + c)u" (S) I~t~ 

I~ \:t~ ~ IISp.~1 + (1 + c)a" (S )I~I 

supflSxjI: x E fI ",Ifll = 1 } ~ supt~S'F.~I: x E f{ ",llxll = 1 } + a" (.\')(1 + c) 

Hence the result. 
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2.8 Relationships between s-numbers and semi-pseudo-s-Dumbers 

Remarks 2.S.1. 

a)/J"(.\1 ~ 0"(.\) 

Proof. 

Given & > O,we choose Le B(H) such that rankL<n and I~ - LII S (1 + &)a,,(S) 

Then degL< 2n. 

Therefore, 

fi,,(S) ~ (I + £)o,,(S). 

b) fp,(S) S ~S) • SE K(f{) 

c) c5.(S) ~a,,(S) + 1 

Proof. 

Given £ > 0) we ~hoose LE B(H) such that rank L< n and liS - 1.11 ~ (1 + E:)o,,(S) 

c>,,(S) = inf~~ - 1.11: -n ~ indL ~ n } 

~ 1~5' - (I + L)II 

~ I~S - L~ + 1 

S (1 + £)a"(S) + I 

Hence the result. 

d) lima,.(T) S limc>,,(T) if Tis a compact operator. 
n~ n-+~ 

I 

e) lim /,,(T"') '" 1A.,,('nl if T is compact. 
If-+«> 

Lemma 2.S.2. 

Let l' be a continuous linear mapping from an arbitrary Hilbert space H into an 

(n+ 1) dimensional Hilbert space F for which there IS a mapping .\'EB(F)f) with Tsy = Y 
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for yE F. In the case of approximation numbers the inequality a,,(T~~'11 ~ I holds. But 

this does not hold in the case of t5-numbers/-numbers...R-numbers, ~numbers and ir 
numbers. 

Proof. 

The following example. show that 

J .. (T~\sII! 1, f .. (T~~~11 ~ 1, g .. (T~ij ~ 1, 'l .. (T~S~ ~ 1 O .. (T~ISII * 1, is true. 

[(XI.Xl .... x],J = (X'.Xl .... ,x,,·l) 

S(Xl.X2 .... X,,'-l) = (Xl.X2 .... X,,+l.O, .. 0) 
-v--J ""-I 

7S(Xl.X2 .... Xn-l) = (Xl.X2 .... X" ... l) 

From this we get ,£\'(7) = 0/,,(7) = 0, ~T) = 0,'l"(T) = ° and IISII = I. 

Hence c5 (T)I~~'II = ° .f)T)I~~11 = 0 .Bn(l·~~~1I = 0 and TJn(T)I~~'~::: 0 

Hence the result. 

This chapter is concluded with the following remark. 

Remark 2.8.3. 

There exist one and only one s-function on the class of all bounded linear 

operators acting between Hilbert spaces. All .\·-number sequences coincide with the 

singular numbers of the operator namely, approximation numbers of the operator. But 

there are several semi-pseudo-s-functions on the class of all operators acting between 

Hilbert sp&:eS. In the case of s-function on the class of all operators acting betw~i; 

complex Banach spaces approximation numbers are the largest s-function and Hilbert 

numbers are the smallest s-function. But in the case of semi-pseudo-s-numbers, the 

answer is not known. 
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CHAPTER III 

COMPlJTA TION OF s-NlJMBERS 

This chapter aims at providing a computational method for fmding singular values of 

Hilbert space operators. The results are given in 1\vo sections. The first section deals with the 

above mentioned computational method. Second section consists of an application of the 

observations of first section, to find lower bound of essential spectrum [algorithmicallyJ for 

certain class of Hilhert space operators identified by William Arveson [ 1,2 ]. 

Of course the findings of the first section is motivated by the following Proposition. I ,et u..c; recall 

the proposition[6]. 

Proposition. 

Let l~' and F he Banach space and Tin n( F. F') where F' is the dual of F. Then 

a,,(T) = an(T), n ~ 1.2 ... where /I,,(T) = sup{an(Tl:~): M ~ F.dim M < oo} (Tl:., denotes the 

restriction of T to the finite dimensional subspace M). 

3.1 Approximation of approximation numbers 

Rema rks J. 1.1. 

I) It is well known that 

'\'n(7) = inf~T - All: A E 8(H),rankA < n} [29]. 

2) Also the following equivalent description is given in Gohberg, Goldberg 

and Kaashoek (15 1, 

Let Tbe in 8(H) and let)J be the maximum of the essential s~trum a ..(.1'*1) of T*T 

Let J... / • A 1 .... J....\' be the eigen values of r*r strictly above JI and arranged tn the decreasing 
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order. 

I 

Then ... ,,(1') = A.,/ ' n - 1.2,3, ... if N is infinite. 

Otherwise, 

I 
=11 2 ,n=N" I,N'-2, ... 

Now let {CI.Cl, ... 1 be an orthonormal basis in H and let Pn denote the orthogonal projection of H 

onto the subspace HII spanned by el.el • ... e,,. If [7] = (aij) is the matrix of T with respect to the 

above basis, then the matrix f71n of PnTPn can be identified with the nx n square matrix 

(alj)/.J=I.l .... n. So whatever calculations we are going to do in the subsequent part of this chapter 

can be implemented in terms of [7] and [71n as Arveson does [1,2 ]. 

The main theorem of this section is as follows. 

Theorem 3.1.2. 

For each pair of positive integers (k.n ), let sn)~ r) be the n1h s - number of I TPk I. Then 

lim s".! (T) = s,,(T) exists and .'1,,(1) is the nth s-number of r for each Tin 8( H). 
!-.<x> 

This theorem is a consequence of the following propositions. 

Proposition 3.1.3. 

For each r in R(H), s,~ I) exist for each n, 

SI(1) =111'11 and ... ,,{S+ 7)~ s,,(S) + IITII for all Sand Tin B(H). 

Proof. 
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Since {sn,,t(7)}t.?l is a bounded increasing sequence of numbers [3], s,,(7) exists for each n. 

Also, Pk~TPk -+ T·Tstrongly as k~ Therefore, given &> 0 there is a positive integer N such 

that 

From this it follows that 

Iim '\·u (T) ~ ~T~. Thus SI( T) = IITII· 
.t~oo 

Now to show that fi,,(S + T):$ -'"n(S) + ~T~. But this is an easy consequence of the fact that sn.,t(T) 

is an .\"-number for each le and n. 

Proposition 3.1.4. 

s,,(R.<;T) :$IIRj~\",,(S)lIrll for each compact operator 5; in B(H) and for every R. Tin B( H). 

Proof. 

F or each j we have, 

Therefore, 
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Since ~AB)·=~RA), whenever A or B is compact [33 ], the above equation holds 

Therefore, 

Hence s,,(A) ~ II~s,,(S/~ )V~· 

Now since S is compact and since Pj 4/r{ strongly SPj-~.r..,· uniformly [14], asj~:c. 

Since <~n<. T)~ IITII for all r. It follows that s,,(S/]) 4 s,~,\) asJ~·:c. 

Thus s,,(RST) ~ ~/~~~,,(S~TII, whenever S is compact. 

Proposition 3.1.5. 

1) s,,( 7) = 0 whenever rank 7'< n, and 

2) S,,(/H) = 1 whenever dimension of H Zn. 

Proof. 

Follows easily from the definition of s". 

Proposition 3.1.6 . 

... ,,(1) = 0,,( 1) for each compact operator I: 

Proof. 

We found that sn(.) satisfies all the axioms of an .'i-number whenever r is compact Now, 

we may use the same proofas that of theorem 2.11.9 [32 ] to conclude that 
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.~,,( 7) = a,,( 7) for all compact T 

Proposition J.t. 7. 

s"(n = a,,( n for all T in B(H). 

Proof. 

Given c> 0, let L in B( H) be such that rank(L) < 11, and liT ~ LII s (1 + c)a" (7") 

s (l + &)a,,(7') 

Therefore, s,,( l) 5 a,,( 7). 

Now we may use the same proof technique as that oftht,'orem 2.11.9 [32 ), to conclude that 

a,,( 7) 5,..,,( 7) for all T in I3Un. 

Remark 3.1.8. 

Thus theorem 3.1.2, which is a consequence of the above propositions, reveals that we 

may use matrix computations to find singular values of operators in 8(H).It is also clear that 

there is freedom in choosing suitable orthonormal basis.This is helpful computationally. 

3.2 Application 

In this section we use the observations made in section I to get a reasonable lower bound 

for the essential spectrum of positive operators belonging to the class of operators identified by 

W.Arveson [t ]. 

First of .111 , let us recall the class of operators identified by Arveson [ J J . 

37 



Definition 3.2.1. 

Let A be the collection of all operators tin H( fI) such that 

'" 
T --: I I~, dcgrcc (Tk)< co and 

!~I 

'" I (1 + (degTi ) 12 )~l 11 < co 
1:1 

If 
x 1 

IITIL = inf I (1 + (deg Tt) 2 ~ITt 11 
1=1 

then A is a Banach algebra. 

For T in A. Arveson shows that the essential spectrum 0" .. ( T) coincides with the set of 

essential points l 1 ]. 

Now we provide a systematic procedure for arriving at a reasonable lower bound of the 

essential spectrum 0" .. ( 7) of T. whenever T is in A and T is positive. 

Let ['~n,1., n=I,2,.kJ, he the nth ,\'-number of 11'1'.1:1 for each k?1.We arran6>e them in a 

triangular fonn as shown in the following figure (*). 

Proposition 3.2. 2. 

Let Sn.n be the nth ,\'-number of IJP n I as sho\\-l1 in the figure (*) and 

let So = lim C:"ft .Then So is a lower bound for the essential spectrum of T whenever T is in A 
"-~ 

and T is positive. 

Proof. 

It is clear that lims"" = '\'0 exists. Let pbe in a .. (7) Then by theorem 3.8[1 1 there is a 
11-+0(' , 

sequence of spectral values f3,... fi,EO' .. [71 .. such that lim p" = p. But fi, ~ s" ... for all n. 
"--oOC 

Therefo. ~ p ;C So 
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Remark 3.2.3. 

Comparing figure(·) and the equivalent definition of "'-numbers which is given in section 

1, one fincb i.hat the limits along the vertical columns will never cross over the maximum value 

Soo of the essential spectrum and get inside O' .. (1).So if at all one wants 10 compute the essential 

spectral values in (so. s"'), one should consider sequences of the type snJ(nh where f is a mapping 

on the set of positive integers such thatJ(n) *n. This is an easy consequence of Arveson's t!,eory 

and our observations. 

Again consider figure (*) for positive operators T in A If So is not in the essential 

spectrum 0' .. ( 7) of T ( this can be checked by examing the sequence ' .... n.n: , using Arvesons 

observations), one may consider {.\'n.n-d and take the limit to get a better lower bound for 0'~(7). 

This process can be repeated till we arrive at the best lower bound. 
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CHAPTER IV 

SINGULAR NUMBERS FOR UNBOUNDED OPERATORS 

In this chapter an attempt is made to extend the concept of s-numbers to a class of 

linear operators between Banach spaces which contains the class of bounded linear 

operators and some unbounded operators. In the case of bounded operators this coincides 

with the classical .\·-num be rs. 

Let X and Y be Banach spaces. Let B(X, ij, Crx, ij and Brrx, Y) denote the class of 

all bounded linear operators, the class of all closed linear operators and the class of all T -

bounded operators from X to Y respectively, where r is a linear transformation from 

.X to r. 

This chapter comprises of 2 sections of which the first one deals with fJ and 

,8'numbcrs which arc defined using Kato's notion of gap of operators, second onc deals 

with s' - numbers which is defined using Kato's notion of relative boundedness of 

operators. The second section deals with 5' - numbers. 

4.1 ,8 and ,8' numbers 

Let us recall Kato's notion of gap of operators. 

Definition 4.1.1 [20]. 

For every S, T E RU!), o( is) is defined by 

J( 1 .. \)C max r r5 (( j(f). (Jr.)) ),<'> (( j(.)), (1(7))] 

c5(G(F), Ci(.'<)) = sup dist (u,G{S)) 

where SI ;rT; .. { U E GrT 1 .. 111111 == 1 } 

(i{l), (i(.\) are subspaces of the product space 11 xII. J (T".)) is called the gap 

between T and ,\'. 
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We define /land p numbers as follows. 

Definition 4.1.2. 

Let Xo. y.}{ be a Hilbert space. For every operator rE H(H) the nth peta and peta 

prime numbers are defined by 

P,,(I; 
h,,(T) 

~1- hn(T)2 

fJ' (1').~ 6:(r) 
" ~l-b:(Tr 

where h" (T) = inf {g rrJJ : rank '- < 11.11'-11 $ I } 

. 
b:(n = inf {8 (1'- L.O) : runic '" < n}. 

Proposition 4.1.3. 

Let H be a Hilbert space. Then for Tin B(H), 

Proof. 

It is clear that f3,,( l) ~ fJ,,"ICI) for all n. So we prove that PI(7) = IITII. For that it is 

enough to show that hl(l) = IITII 
~I + ~T~2 

By definition 

But 

8(G(T).(i(O))= sup dis/(u,G(O)) 
JlEScfn 

where 
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Now 

diS/«X,rx),G(O))2 = inrtf- YI12 +IITxI12 } 

Therefore, 

disl«x,Tx),G(O» = IITx~ 

Let x' in H be that IP"'II = 1 

Put 

Therefore, 

Therefore, 

So 

Now 

where 

x' 
t= --;===== 
. ~1 +!lTrf 

8(G(O),G(T)) = sup disl(lI,G(T)) 
11&\'0(0) 

-"U(OI ,(x,O) : 1I·~f = I l 

di.,·,(u'(;(T))2 = inf tf- yf +~Txf } 

~ inf disl(U,(tX, T(tx))Y 
~/~l 

~ J2f, tix _lxll
2 

+ 121lTrl12 } 

~ inftl-t)2 +/2117:xf } 
(}!I~l 
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One can see that the infimum is attained when I = I 2 and the infimum 
1 +1I7X!1 

equals 117:tf 
1+llrxf 

Hence 

Thus 

Therefore, 

J( G(O), G(T)):S IITII 
~l +lIrll2 

h1 (T) 2 IITII jiJr everv j'ill H( If ). 
~1 +~7f . . 

For 11 (x.7:t) in S(;(7) , let 

x 

Then 

Therefore, 

Thus using the previous inequalities we get 
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Hence 

PropOsition 4.1.4. 

f3n( n = 0 ifand only if rank T< n andllTl1 $1 

Proof. 

Assume that f3n eT) O. 

Hence 0 = h" (T) = inf { (5 (T,i-) : rank L ' n.IILI! $ I] 

Therefore there exists a sequence {Lt} in 8(H)such that rank Lt < nand I/Lkl:$ I 

such that 

lim 0(1',1.) = 0 
k-",' 

That is, lim 0 (G(F ),G(LI.;) = 0 
A-+«> 

(4.1) and 

lim 0 (G(Lk ) , G(T» = 0 ( 4.2) 
k-+", 

Now (4.1) implies that, given e > 0, there exists a positive integer N 

such that 

Now let x' EH be such that II.'('~ = 1 . 

Now put 
x' 

X= , 

1 + ~l\'lr 

Now (4.3) Implies 

< r., jilr all k ~N 
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Hence 

su~IT(x') - /'1 (X')II < (1 + ~TII2)£ fhr al/ k2N 
1·'1~1 

Since rank LA < n jiJr al/ k, rank T < n . 

Conversely rank T < nand IITII ~ I implies that f3n (1) = 0 

Proposition 4.1.5. 

f3n (I) = I for all n. 

Proof. 

We show that 
J 

hn(1) . J2 for all n. 

hn (1) = inf~5(T,L): rankL < n,IILII s J } 

Now 

5(l./) , max{g«(1(1),G(I,)),c5((;(/,),(i(/)) } 

Let u = (x,x) E G(l), IM2'-lIxf = I 

Then 

d(lI, Cl(/.))2 = inf {llx - _~12 + IIx -I.Jf : I~~I = ~ } 

~ inf{ IIx -}f : IIxII = ~ }- inf {11x - Lyf : I~= ~ } 

inf {Ilxf + IILyI1
2 

- 2 Re(x, I.y) : I~~ = ~ I 

~ + inf {IV~YIl2 - 2 Re(x, Ly) : IIxII = ~ } 
Now choose x such that I, *(x) '0. 

Then 



Hence 

S «(J(n.G(IJ)) C ~ 

Therefore. 

6(1.IJ) = max[ 8(G(I),G(L)),8(G(L),G(I)) ~ ~ 

Hence 

It is trivial to see that bn(n s ~, since b,,(J) s blU) = ~ . 

Hence p" (1) :: I . 

Proposition 4.1.6. 

pnumbers are rontinuous with respect to gap convergence. 

Proof. 

Let {1~} be a sequence in CL(H) such that 8 (l:h l) ~ 0 as n~ 00. 

For each positive integer le let JJ be any operator with rank L le. Then 
A A A 

8 (Tn.L) S 8 (Tn. n ~ 8 (T.L). 

Therefore, 
• A 

inf 8 (T",L)s 8(7"",7) . inf (5(1),) 
I r 

That is, 

Similarly 

Therefore 

I h.( 7~1) -hs;{ 7) Is J (T", T) 

Thus b/.Tn)---+hi. n as n ~ 00 for each k. 

Hence f3" is continuous. 
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Now some properties of P; numbers are considered Its connection with the 

classical approximation numbers is established. 

Proposition 4.1:7. 

P; (I) = a,,(T) for each bounded I inear operator T. 

Proof. 

By definition 

b~(1') = inf~(1' - L,O): runkL < n } 

= inr{ lIT - LII : runkL < n } 

~l +111' - LI12 

Now 

a,,(r) Ill' -I,ll 
-r==== ~ ---r======= 
~1 +o;(r) ~l+II1'-/r 

Then 

" ~ mf . a (7') . { Ill' - LII 
~l + 0; (7') ~l + Ill' _ LI12 

: runkL < n } 

Therefore. 

Hence P~ (71 0,,(/) for each bounded linear operator Ton H. 

Proposition 4.1.8. 

Since c5(T.0) whenever T is unbounded () (T-L ,0) 1 for any finite rank 

operator which is bounded and therefore P~ (1') c·. OCJ for any unbounded operator. It is 

clear th~H p~ (7) is also infinite whenever l' is unbounded. 
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Now we introduce the so called s' - numbers in an attempt to associate a 

sequence of numbers to any operator belonging to a c1a<;s of operators which incl udes the 

bounded ones also. Here we use Kato' s notion of relative boundedness of operators. 

4.2 s' - numbers 

Let us first recall Kato's notion of relative boundedness. 

Definition 4.2.1. 

Let X and Y be normed linear spaces and T and A be linear operators from X to Y 

such that Domain(T )~ Domain(A) .If there exists non negative real numbers a and h 

such that 

IIAlI~ ~ aijll11 + h11T1I11 for every 11 in /)(1'). 

(lX 7) is the domain of n. then A is said to be relatively bounded with respect to 1: 

Definition 4.2.2. 

For each Tin B(x' Y). Let A be in B7(X. Y) and let L be a bounded operator with 

rank L < k. Let al. be the lcast positive number such that 

Where hI. is the relative bound of A-L with respect to J: Then the k!" s~ number IS 

defined as, 

s; (T'r inf {If 
l. . 



Proposition 4.2.3. 

Let Sand R be in fhr-¥. Y) be such that R is bounded. Then 

Proof. 

Let rank L< n 

Then 

.< (8 + R) s s: (8) + IIRII 

IKS + R- r)ullslKS - r)ull+ IIR'11 
s IK s - L )ull + I/R!~ull 

s(a, +~R\I)~ull+b,(S)Vuij 

Where hdS, denote the relative bound of S . r with respect to T. 

Hence 

h,.(S +R) s h,.(5) 

Since R is any bounded linear transformation we get 

hI (S) = hL(S! R-R) 5fh(S+ R) 

Thus 

hI. (S + R) = h,.(S) 

Hence by definition 

Therefore. 

Remark 4.2.4 . 

.'0' - numbers do not satisfy the third axiom of .,·-numbers. 

Proof. 

The following simple example shows that -< (PQ) $lIpl~«Q) even if P IS 

bounded. 

Let X =y c~C[O,I] 
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Then 

Therefore, 

Hence the proof 

I 

F(uXI) = f u(.'C)dt, U E ('[0,1] and 
() 

Q(uX/) = u'(I), u E f)(Q) = {u: u' exists and u(D)'O}and 

/'(uX/) =- u'(I), 

Ikl}{!)(u~ = Ilu~ 

IK?( u )jj = olHI + I ¥)( u ~I 

Now the following simple result says that s: -numbers coincides with approxImation 

numbers for bounded linear operators. 

Proposition 4.2.s. 

Let S be in B(X Y). Then -< (S) = an (S). 

Proof. 

-< (S) = inf{al : mnkl. < 11 

When 

Ik."· -I. )ull ~ (/1.llull + bl.lITu l1 

where (//. IS the minimum associated with Tbound h/. o f.,,' I .. But hL " O. 

inf{al. : rankl. < n } = inf~~'" -I,~: rankl. < n } = (/,,(.\') 

Rema rk 4.2.6. 

Thus we find that '<T - numbers is an extension of the classical approximation 

numbers to the class BrC( Y). 

Next some examples are considered. They are taken from [20 ], \vith some minor 

modifications occasionally 
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Example 4.2.7 

Let X = Lp[a.h}. T(u) = u', A(u) = uC')where c€ [a,b]. Here 

domain (7) = {u: u' ELp[ll,b] }and domain A = C[a,h] 

Then 

IIAU~5~+;Ut uEdomain(7) 
b-a 

It is known that when c = a or b. T-bound of A is exactly I. Hence if c = a of_b, 

s;,.(A)5-
1
-

h-a 

Now take 1I(X) = 1 for every x. 

Then 

A(u)= 1 ,,' = 0 K = 1 . . h-a 

This shows that 

') 1 sl(A =--
h-a 

Eumple 4.2.8-

Let X = LI'[a,hJ, T(u)= u',A(u)= 11'(C) 

Let 

(x - a )"+1 - (n + 1 )n( x - a ),,-1 
.h(.r:) a5x5c 

(h-aXc-a)" (h-aXc-a)" 
g(.r:) 

- (h - xr· 1 
_ (n + l)n(h - x),,-' 

g(.r:) ,.. . h(.r:) 
(h-aXh-c)" (h-aXh-c)" 

c<x5b 

Then 

,; (c) ."0 (lI',g) + (1I,h) 
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When 

h 

(11',/) = f u"(t)f(t)dl 
tI 

The above identity is taken from Kato[ 20]. 

It is also known that 

$ (h - a) ~X lIu.t + I. ~n + l)n I. !/ut (~+ ~ = 1 ) 
nq + q + Y ( b - a) I' (nq - q + 1) q P q 

If p> I, then the coefficient of 1~'llp on the right side of the above inequality can be 

made arbitrarily small by taking n- large. Hence s~ (A) = +00 . 

If P '1, then q+<Xl and the above inequality reduces to 

It is known that the T- bound of A is exactly 1. 

Take u(1) = I-a 

Then 

lu'(c)1 = 1, I~'III = Oand I~~I = 1 

This shows that 
.., 

, t ~ 
Sl1 (/) = ---, 

(h··(/r 

Example 4.2.9. 

Then 

Let X = Lda,h] r = (la,h] 

Tu = u', and Au = 11, A:domain (:4) ~ qa,b], when domain A = (la.b] 

with L/ -norm. 

s;'(A)­
h-o 
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Example 4.2.10 

The following example illustrates the fact that, when A and T are unbounded and 

if the T - bound of A is O. then S;T (A) = +co 

X = ['p [a,h] 

A(u) =p\(x) u' 

T{u) = Prf....x) u· ~ p\(x) u' - Pz(x)u, 

where Pi is a polynomial for i C~ 0, I alld 2. It is proved in Kato [ 20 ] that the T -- hound 

of A is zero. Hence s;r (A) = +<Xl 

Example 4.2.11 

Let H be a separable Hilbert space and kl,Cl, ... l be an orthononnal basis for H. 

For any 1/ Ell, 1/ = I (1/, I'l. )1'. 

Define 

'" 
Tu = I k(u.et )et , 

t=1 

~ I 

Au= I * 2(u,et )Ct 
t=1 

IIAu~2 = I kl(u,ct )1
2 

hi 

Ijru~l = I el(u,et >12 
t~1 

To find the smallest posssible value for fJ such that 

I!Au~ S a~u!! + P!ITu~ for all u in D( 7) 



Assume that 

Therefore, the following inequality holds; 

IIA1f ~ a 2
11ul1

2 
+ P211Tu ll

2 
+ 2af3~ul~Vull 

I f IIA~2 ~ a21~f + ,82117'11112, then (4.4) holds. 

(4.4) 

If k ~ a 2 + /1 2 k 2 , then also (4.4) holds. Thus whenever a, J3 satisfies the inequality 

Then (4.4) holds. 

Now (4.5) holds if 

( 4.5), for all real k. 

Therefore whenever afJ 2: li (4.4) is satisfied. 

If ,8 tends to zero then a tends to 00 

Therefore sll"(A) = 00. 

s-number set 4.2.12. 

The mission of this chapter is to assign sequence of numbers to closed 

linear r.nsfonnations between Hilbert spaces in such a way that sequences associated 

with bounded linear transfonnation are classical approximation numbers. 

It is partially achieved by associating the so called s - number sets. 

4·2.1~ 
Definition. Let (,/,(X. n he the class of all closed, densly defined linear transfonnations 

" between two Hilbert spaces X and r. For each A E (~r(>,: y), let KA denote the set of all 

linear transfo.nnations in (o//X,}) with~ch A is relatively bounded. Now the S - number 

set S" (AJ is defined for e<ich positivt! intt!ger n as follows; 
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Proposition 4.2.14. 

For A in BL(X.Y). s,,(A) is the singleton set {an(A)}. consisting of the ". 

approximation number. 

Proof. 

It has been shown in the previous section thatS~T (A)= a,,(A) for any T in K.J,.. 

Remark 4.2.15. 

For each unbounded element A of CL(x, Y) 0 is in sn (A). This is because 

S~A (A) = O. and +00 is in SII (A) sinces:U (A) = +<Xl. whenever T is BL(X Y). and , 

TeKA• 

We conclude this chapter with the following remark. 

Remark 4.2.16. 

The above observations shows that the set sn(S) gIves a measure of 

unboundedness. 

The following questions are of interest in the above respect 

Q.l.When is s,,(S) = [O.oo)? 

Q.2. When is sn(S) is discrete? 

Q.3.Given the positive real number a. what conditions on S guarantee that a E s:.(S)? 
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