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CHAPTER I
INTRODUCTION

The concept of s-numbers of operators originated in the study of integral
operators by E.Schmidt in 1907 and F.Smithies in 1937 Let 7" be a compact operator on
a complex Hillbert space // and (7" be the positive square root of T
fet { A, (| 7° 7} " )} be the sequence of eigen values of (’/"'/)'\2 written in the
decending order, counting multiplicity. Then the n" singular value of 7" denoted by s(T")
is A, ([ T*T]™).

It is well known that 5,(7) can be computed using Min-Max principle .An
important usage of singular values for compact operators is the singular value
decomposition [15] .

Ir ' finite dimensional case, the singular value decomposition leads to the
following factorisation of a given nxn matrix 4 ;

A=UA;V Wheee
,{/and V are nx n unitary matrices and

s1.52. s, are the singular values of 4.
In the infinite dimensional case the singular value decomposition of a compact
opcrator 4 on a Hilbert space H, leads to the following factorisation of A.
A=UAsV where A4, is the diagonal operator with s,{A4)
as the n® diagonal entry, {/: H— 1/, and V:/, > H are bounded linear operators such

that {/ (/" and ¥V are identity operators on /; .

APPROXIMATION NUMBERS
DEFI NITION .
l.et 7 be a bounded lincar transformation from a Banach space X" to another

Banach space Y. then the #” approximation number a{7) of T'is defined as

a, () =inf{{I - L|): L e B(X,Y),rankl <n }



where B(X.¥) denote the class of all bounded linear transformation of X to¥.

When X and Y are complex Hilbert spaces, approximation number measures the

compactnes of 7°in B (X' ,Y) in the following sense.

The compact if and only if lima, (7)=0. If Sand 7" are compact operators and

if ay(S) —> 0 faster than {a, (7)] , then one could say that S is more compact than 7.

KOLMOGOROV NUMBERS
For every operator Se&( /2, /") the Kolmogorov numbers are defined by

d,(S) = inf§Qr | dim(N) < n }

where QF is the canonical map of /- onto the quoticnt space /< M.

GELFAND NUMBERS
For every operator Seg £, [) the Gelfand numbers are defined by

c_.(.\')zinf{}S/:; ccodim(M)<n }

where ./{; is the embedding map of a subspace M into /.

These are some of the well known s-numbers. In 1974 Albrecht Pietsch {29]
developed an axiomatic theory of s-numbers. The axiomatic definition is as follows.

Let 7 be in B(X,)) and let (s,(7)) be a unique sequence of numbers associated
with 7 such that

D =s(Mzsy(N 2252
2)s,(S+T)<s5,(S)+|1], 7.SinBX,Y)

3) 5,(RST) <|R]s,(S)]

T, where Te B(X,,X),Se B(X,Y) and R e B(},Y,).

where X, and Y, are Banach spaces.
4) Rank (7') < n implies s(T) 0.

5) Dimension X > n implies s,(1)=1.

[ 8]



Ultimately 1t is known that if X and Y are Hilbert spaces then every s-numbers
concides with the approximation numbers{31 ].
When X=Y=H a Hilbert space , the following description of approxiation

numbers is well known.

ESSENTIAL SPECTRUM

For 7 in B(H) the essential spectrum o,(7) is ‘EE(\H)J(T+K) where K(H)
denotes the set of all compact operators on A.
For T in B(H) with T*=T let u.u,,..u, be the eigenvalues of finite
multiplicity above o (7). Then
a(Ty=u,,n=123.N
= u,,n2 N +1 when N is finite.
Otherwise « (T)=u,,n=123,..

In fact it is known that g = lim 4, 1s the least upper bound of o _(7') [15].

‘T'his description tumns out be very important spectral theory point of view.

DEGREE OF A BOUNDED LINEAR OPERATORS|1]

Definition.

Let {H,} be an increasing sequence of finite dimensional subspaces of a complex

Hilbert space H such that U /4, is dense in H. For T in B(H) degree of T, denoted by

deg(T) is defined as
deg(7’) = suprank(1P, - P.T')

ARVESONS CLASS
Let A denote the class of all T in B(H) such that

I = Z A,, where A4, € B(H)and deg( A, ) < « such that

171, =i ( +deg(Ak);)|[AkH< o,

3



Then Arvesson shows that if A is in 4 and self adjoint then the essential spectrum
of A can be computed linear algebrically [1 ].This work of Arveson is used in chapter
I1I to find lower bounds for certain types of positive operators on Hilbert spaces.

A.Pietsch [30 ] introduced the concept of pseudo-s-function axiomatically, which
satisfies only the first three axiom of an s-function. The so called entropy numbers are the
prime examples of pseudo-s-function. A.Pietsch has contributed enormously to the theory

of entropy numbers in connection with the theory of operator ideals [30].

SUMMARY OF THE THESIS

In the second chapter the concept of semi-pseudo-s-numbers 1s introduced
axiomatically. This is motivated from the study of operators on the space of operators
especially elementary operators on B(H) when H is a complex Hilbert space. Just like
approximation numbers, the so called V-numbers are introduced in this chapter measures
the strength of compactness of clementary operators. Other cxamples bascd on concepts

like index, degree, trace, nullity and co-rank are also given in this chapter.

The third chapter is devoted to computation of approximation numbers. This leads
determination of bounds for essential spectra of certain types positive operators in B(H)
where H is a separable Hilbert over C. Through a diagrom it is illustrated that how the
computation can be implemented algornithemically.

The fourth and final chapter deals with closed linear operators between complex

Banach spaccs.

The aim is to extend the notion of s-numbers to a class of closed linear operators
which includes the bounded ones, preferably to the whole class of closed linear operators.
This chapter is divided into two sections. In the first section the so called f  and g’
numbers are introduced using Kato's notion of gap of operators. In the second section s’
numbers are studied for a class of closed linear transformation using the well known

relative b~'~dedness of Kato [20).



Finally s-number sets are defined for every closed linear transformation, again
using relative boundedness of operators. It 1s observed that for bounded linear operators,

the corresponding s-number scts are singleton sets consisting of approximation numbers.



CHAPTER 11
SEMI-PSEUDO-s-NUMBERS

The concept of semi-pseudo-s-numbers of bounded linear operators
between complex Banach spaces is introduced, axiomatically. This concept arise
naturally when the Banach space under consideration is the Banach space B(X) of all
bounded linear operators on a Banach space X, with supreum norm. More specifically
when one approximate bounded linear operators on B(X), by bounded linear operators A,
on B(X) such that rank(A, )< n and rank(A, (7 ))< n for all T and estimate the error
involved tn it, one gets semi-pseudo-s-numbers. Of course this is the prime example that
1s studied 1n this chapter. Various examples based on concepts like index, degree, trace,
nullity etc. are also given.

Let us recall the definition [Chapter 1}

Definition. A map s which assigns to every bounded ltnear operator 7 from a complex
Banach space X to a complex Banach space Y a unique sequence of numbers denoted by

{s{T)}n=123... such that
1. ”T”=S|(7')Z s7)>... ;and

258+ NS5, (8) + |

T| forevery S, Tin B(X.Y)

is called a semi-pseudo-s-function.

It 1s to be mentioned that this 1s an extension of the pseudo-s-function introduced
by A. Pietsch [30], which is a generalisation of the abstract s-function introduced by
Pietsch :imself. It is also clear from axiom (2) that the semi-pseudo-s-function is
continous with respect to the norm topology of operators. Throughout this chapter X and
¥ will denote complex Banach spaces and B(X.,Y) the class of all bounded linear

transformations from X to Y. Now what follow are various examples and their properties.



Examples
2.1. V-numbers

For each @ 1in B(B(X),B(Y)), let

V (®)= inf{]¢> = L||: L e B(B(X),B(Y)),rank(L)<n and rankl(T)<n for

all T'in B(N)}.
Theorem 2.1.1.

The map @ - {1'(®)} is a semi-pseudo-s-function on B(B(X),B(Y)).
Proof.

V(@) = o]

V. (@) =inf§® - L|: rankl. < n+\and rank I(T) < n+1vT }
<inf{® - L} rankl < n and rankI(T)< nvT }
=V D)
Now
V(@ +¥) = inff® + W - L|: rankL < n and ranki(T)<n }
<inf§& — L|: rankl < nand rankL(T)< n }+|\¥|
SV (@) +[P].®,¥ inBBX)B(Y))

This completes the proof.

Proposition 2.1.2.

The map ® — {V,(®D)} is not a pseudo-s-function.

Proof.

Let R, S, () be in B(B(H)) be as follows. () = I, the identity operator. Let L in
B(B(H)) be such that rank/.< n and let P be a projection of rank < n. Now define
S(TY - PI(THP. Tin B(H).



For a nonzero continuous linear functional ¢ on B(H), let R(T) =& 7).1, Tin B(H) where /
is the identity operator on the Hilbert space H.

Observe that, rank RS = 1, rank R(S(7)) = +oo

Hence V,(RS)# 0, but V(S)=0 forn>|

Hence VARSQ)4 RV, (S)]O|

Thus ® — { V,(P)}n=12... 1s not a pseudo-s-function.

Remark 2.1.3.

The above theorem shows that operators on the spaces of operators have to be
treated seperatily and deserves a special status. The well - known theory of completely
positive maps and the theory of elementary operators suggest the importance of studying

operators on operators [26].

Recall that if {a,(7)} is the sequence of approximation numbers for 7' in B(X,N
W
then a,(7) =0 if and only rank (7) < . Also, if X' and Y are separable Banach spaces with

Schauder basis, then 7'1s compact if and only if lima (7)) =0

Analogously, the following observation can be made for }-numbers also. Clearly

V (®)=0 if and only if rank (®)<n and rank(®(7)) - n . As before,

lim ¥V, (®) = 0 implies that ® is compact and ¢(7) is compact for every 7" in B(X.Y).

[26] Recalling the definition of elementary operator, a linear map A: B(X)— B(X)
is called elementary if there are 2n operators 4,4, An.B;B; . B, in B(X) such that

A(TY=Y ATB, TeBX). It is known that Ais compact if and only if 4,4, A,

1
B;B;..B, are all compact, provided { 4,4, . 4,} and { B;B,..B,} are linearly
independent sets. Thus when A is compact A(7) is also compact for every 7" in B(X).
Hence when X 1s a complex Banach space with schauder basis, by approximating
coefficient operators by finite rank bounded linear operators, one gets the following

result.



Theorem 2.1.4.
Let X be a complex Banach space with Schauder basis. Then an elementary

operator A on B(X) is compact if and only if limV,_(A) =0

The following example shows that the above semi-pseudo-s-function doesnt

satisfy the fourth axiom of s-function. That is, rank (®)< 7 doesn t imply that V(@) =0.

Example 2.1.5.
Let ¢ be a nonzero bounded linear functional on B(X). For 7" in B(X),
put (7)) = ¢ (7).1, where / is the identity operator on X. Then for n >1, rank ® < n, but

VADR0.

Theorem 2.1.6.

V- numbers satisfy the fifth axiom of s- function namely
dimension B(X) > n implies that V,(/) = 1 where / is the identity operator on B(X).
Proof.

Clearly V(1) < |. Now V,(I) <l implies the existence of an operator @ on B(X)
such that rank @ < nand rank (7)< »n for all T'in B(X) and ul —d)ﬂ <l.

But this means that @ 1s invertible which 1s not true. Hence the result.

Remark 2.1.7.

It is trivial to see that V(A®D)=|A | VA®) for every complex number A and & in
B(B(X),B(Y)).Now a study of some of the properties of approximation numbers like
additivityinjectivity and surjectivity is carried out for V-numbers. The proof of the

following proposition is exactly the same as that of approximation numbers { 30 .

Proposition 2.1.8.]30]

V-numbers are additive. That is, for every pair of positive integers

Vin-n (@) Vi @) + Vi D). @ in B(BX),B(Y))

9



Next recall the definition of metric injection and the associated injectivity of s-function.
Definition 2.1.9. [30]

J in B(X,Y) is called a metric injection if ||/ (x)}| = |x|.Semi-pseudo-s-function s is
called injective if s,(J7") = s,(T) for all .J, metric injection .J in B(X,Y) and for all T in
B(XoX).

The following example shows that }-numbers are not injective.

Example 2.1.10.
Consider the Banach spaces X, Xjand X defined as follows.
Xo =X, X2 =Y @Y and X;=Y where X and Y are Hilbert spaces. Here Y®Y is given the
maximum norm namecly,
@ f = maxfel phoxy ey )
Let . : B(Xo) = B(X)) be a bounded linear operator with rank< n, and 7’ an orthogonal
projection on Y where rank< » .
Let @ : B(Xo) = B(X) be defined by
(1) =PL(NP, TeBX) .
‘Then rank ®< n and rank (7)< n for every T in B(X))
For a bounded linear functional (nonzero) on B(Y) such that [|gf <1 let
J(S) — SD KS), SeB(X,)
where / is the identity operator on Y.
Then J is an injection.
But V,(J®)=0
But V,(®)=0

Hence V is not injective



Definition 2.1.11 [30}

A surjection Je B(X.,Y) is an operator which maps X onto Y. In this cace

Ib"Q =inf{!.r“:.re X,Ox=y } for all yeY defines an equivalent norm on Y. If, in

addition, we have ||| = HQ , then O is said to be a metric surjection.

Definition 2.1.12.]30]
A semi-pseudo-s-function s is surjective if, given any metric surjection
Qe B(Xo,X) $a(S) =5, (SQ) for all Se B(X.Y).
Proposition 2.1.13.
V - numbers are surjective.
Proof.

From the definition of metnc surjection we get
Is-2]=ks-0)0
V,(S)=inf§S - L|: rankL < n and ranki(T)<n forall T }.
= inf (S - 1)Q|: rankl. < n and rankI(Ty< n for all T )
= inf{}SQ - l,(_)“ crankl.() < nand rankl (X1s)< n for all Ty }

= 1AS0)

Lemma 2.1.14.
_et (L;) be a bounded family of operators L; € B(B(X;),B(1;)) be such that
rankl;<n and rank L{ 7)) <n .Then rank/; < »implies rank ((L;),,) < n.

Proof.

Using the same technique as in Lemma 11.10.9. [ 30 ].

Lemma 2.1.15.
Let (1, (7;)) be a bounded family of operators L,(7;) € B(Y;) be such that
rank L.{ 7;) <n . Then rank ; (7;) < nimplics rank ((L; (7)) < n.



Let us recall the definition of ((Si},) [30]
Let (£;) be a family of Banach spaces and suppose that v is given on the index set I. The
Banach space of all bounded families (x;), where x, € E, for i e I, is denoted by

I(F,,1). Moreover, put
e () = {x,) e 1 (E, 1) limlx, =0 }.

I(E,, ]

JIf x =(x,), denote the equivalence
e (F 1) G, .

We now form the quotient space (%)), =

class corresponding to (x;), then the norm of x can be computed |l = lim]x, |

The Banach space (/2; )y obtained in this way is called the ultraproduct of the Banach

spaces I, with respect to the ultrafilter o .

Let (£)) and (/) be families of Banach spaces.Suppose that ($,) 1s a bounded
family of operators S;eB([, F; ). By setting
(SHufxi)o = (Six; ),

Definition 2.1.16.{30]
A semi — pseudo-s-function s is called ultrastable if (s5,(S,),) <limsy(S;) for

every bounded family (S;) of operators S,e B(X,,};) and every ultrafilter

Proposition 2.1.17.
I~ numbers are ultrastable.
Proof.

Let (S;) be a bound family of operators S; e B(B(X),B(Y;)). Given £ > 0,we choose
Lie B(B(X;),B(Y;)) such that rank /., < n, rank 1, (7)< n and ”S,. - 1,,” <(l+&)lV (S,)

STy =2, (T)| < (1 + W (S,)



It follows from
led <. - 2]+ 1si
<+ eW(S)+|S|
<@2+e)s|
fa @< s, = L@+ s,
S+eW,(S)+|ST)
<Q+e)s]
that the families (L;) and (L; (T;)) are also bounded. Hence rank ((L:),) < » and
rank (L (T)o) < n
We have Vu(S)) <kSH., - Lo
= lign"S,, - L
<(1+&)limV,,(s)

Letting € — 0, we get
V,((S,)v) <limV,(S,)

2.2 5-numbers
For every SeB(X,Y)and n=23,... the n™ &- number is defined by
88y = inf{lS — 7] 1.€ BCX.Y)=n < indl. < n }.where ind /. = dim ker/. - codim(Im/.).

Put &(S) = [|S].

Theorem 2.2.1.
The map &: S —(5AS)) is a semi-pseudo-s-function.

Proof.

1) 6, (S)=inf§S~L]: L« BV, V) ~(n+1)<indl <n+1 }
<infl§S~ 1. Le BOX.Y)-n<indl. <n }

=6,(S5)
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Therefore,

IS = 8,(5)28,(5)2...20 forall Se BX,Y).

2)  S,(S+T)=inffiS+T~1|: 1 e B(X,Y)~n<indl <n }

<inf§S-L|: L e B(X,Y),~n<indL < n }+|T|

=5, +[7]

Proposition 2.2.2.
The map 6:S —X5(S)) 1s not a pseudo-s-function.
Proof.

The following example shows that
& (RST) < |RYlS, (SH|T]., not true.
Let S be an invertible operator such that §(S) - 0
Put R=S'
Define 72 /,—> /; by
Ty 2, ) = (e, Xpes, )
So mndi-n+]
Hence &, (RST) =0, but 6,(S)=0
Therefore, & (RST) £ |Rlls, (T

Remarks 2.2.3.

a) 6 - numbers do not satisfy the fifth condition of s- function.
Proof.

Whatever be the dimension of X, &, (/y) = 0 always.

b) & (S) =8, (S + K),where K is a compact operator.
Proof.

We know that ind(S+X) = ind S, where K is a compact operator.

) & (8) =8, ()



Theore 2.2.4.
o (S) =0 if and only if —n< ind S< n

Proof.
If &, (S) = 0, there exist a sequence {L}, -n < ind /4< n such that
lims - 1,]=0
Therefore, S = iim L,
So indS = limindLl_

Therefore -n<ind S<n.

Converse part is trivial.

Proposition 2.2.5 .

limé, (S) =0 if and only if S 1s the limit of a sequence of finite index operators.

Proposition 2.2.6.

6 - numbers are not injective.
Proof.

The example shown below illustrates that 8, () # &, (JS).
Let S=1 and hence &, (S) =0
Decfine./: [, I; by

J(xyix2...)= (OC_;:JO, X1X2...).

So indJ=-n+l) n+
Therefore, &, (JS)#0but 5,(5)=0

Proposition 2.2.7.
J - numbers are not surjective.
Proof.
This can be shown using the example given below.
LetS=1,508,(5)=0

15



Define 0 : >/, by

L)(Xl X2, ) = (Xme2, Xores, <o)
So mdQ=n+1
Therefore &, (SQ)#0

Proposition 2. 2.8.
J - numbers are not additive.

Proof.

The following example shows that &1 (S+T) § 8(S) ~ (T, is true.
Let S=7and hence & (S)=0
Define T : [,—> [ by

Nxix,... ) = (2x2,-x3-x4, )

(1= TXx1,x2,...) = (2xp+x) XaxX3 X3-Xs, )
Therefore, &, (7)=0forn=273,... becauseind 7= 1
But &, .p1 (/1+7) 2 0 because ind (/+7) = oo .

Definition 2.2.9.[30]

A semi- pseudo-s-function s is called symmetric if s (8)2 s (S") for

all S € BX.Y).

Proposition 2.2.10.
J - numbers are symmetric.
Proof.

Given £ >0, we choose LeB(X,Y) such that -n <ind L. < nand
IS-L||<(1+£)8,(S)
Then —n<indl'<n and |$' - L < (1+ £)8,(S)

Therefore, &, (S)H<(148) &, ()
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Definition 2.2.11.[30]

A semi-pseudo-s-function s is called completely symmetric if s (S) = s _(S') for

all Se B(X\1).

Propesition 2.2.12.
& numbers are completely symmetric.

Proof.
The proof of this proposition can be carried out in the same way as the proof of

proposition 2.2.10.

Definition 2.2.13.[30]
A semi-pseud-s-function s is called regular if s, (S) =sAKxS) for all Se B(X.Y),

where K is the evaluation map from Xinto X" .

Proposition 2.2.14.
& numbers are regular.
Proof.

It is tnvial.

Now what follows is an example of a semi-pseudo-s-function based on a concept,

due to William Arveson, called degree of operators. First recall the definition | 1]

Definition 2.2.15.
Let {H,} be an increasing sequence of finite dimensional subspace of a Hilbert

space H such that C:J H, is dense in H. For T'in B(H), the degree of 7 denoted by deg(7)

is defined as deg(7) - sup rank (£,7° 77,), P, is the projection onto H,,.



2.3 f- numbers
Forevery S eB(H)andn=23,... the n” -number is defined by
[,(8)= inf§S - 1]: L e B(H),degL < n }.Put £,(S) = |5]

Theorem 2.3.1.
The map f: $— ((/(S)) is a semi-pseudo-s-function.

Proof.

The proof is quite similar to the proof of theorem 2.2.1.

Proposition 2.3.2.
The map f : S— ((f(S)) is not a pseudo-s-function.
Proof.

The following example shows that f,,(RST}i [IR

L |7, is true.
LetS, 7=1s0f(S)=0
Define R:/,— I; by
R(X1 .X2,...) = ( Xp+1. Xn+2, Xnt3, --- X20,0,0,...).
Therefore deg R=n
Hence f(RST =0 ifl<ik<n

Remarks 2.3.3.
a) f(AS) = [ Al £(S).
b) fdS) = £,(S%).

Proposition 2.3.4.

£(S) = 0ifand only if deg S<n.
Proof.

We know that deg 1s lower semi-continuous. Therefore £,(5) = 0 if and only if
deg S< n.

Converse part is trivial.

18



Proposition 2.3.5.

lim / (S)=0 ifand only if S is the limit of a sequence of finite degree

operators.

Proposition 2.3.6.
/- numbers are additive.
Proof.

From the definition of degree 1t is clear that deg(/., + /., ) < deg L, + degl,

Proposition 2.3.7.
f~-numbers are not injective.

Proof.

This can be shown using the example given below.
Let S =/, therefore /,(S8) = 0
Define.J : I~— {; by
J(.\’) ,.X‘;,...) = (0,...0,1'1,,,...X|,X‘3n+|, )
S
Therefore degJ/>n n

Therefore  f(J$)# 0

Propeosition 2.3.8.

/- numbers are not surjective.
Proof.

The following example shows that /(S) # £,{SQ), is true.
Let S =/, and hence /,(S) = 0.
Define (#:/,—> {; by

Xxp0,0) 7 (G0 X, ).
Therefore, deg ()= n+1
Hence f{SQ) #0.



Proposition 2.3.9.
f - numbers are symmetric..
Proof.

Given ¢> 0, we choose .€ B(H) such that deg /.< n and ]I.\ -~ 1“ <(+e)/,(S).

Thendeg L' <n and [|S" - 1| < (1+ £) £,(S). Therefore f,(S") < (1+£)£,(S)

Propeosition 2.3.10.
The f - numbers are completely symmetric.
Proof.

The proof is quite similar to the proof of proposition 2.3.9..

Propeosition 2.3.11.
The f— numbers arc rcgular.
Proposition 2.3.12.

/- numbers are ultrastable.

2.4 g —numbers
For every operator Se B(H) and n=23,... the n™ ¢ — number is defined by
g, (S)=inf{S— 7] L e BUH )irl < n },pa g,(S) = ||, where tr (1) denotes the trace of /.

Theorem 2.4.1.

The map g : S— ((gS)) is a semi-pseudo-s-function.
Proof.

The proof is quite similar to the proof of theorem 2.2 1.
Proposition 2.4.2.

The map g : S— ((2A5)) 1s not a pseudo-s-function.
Proof.

The example shown below illustrates that g(RST)4 |Rlg, (SH7].

Let 7= /,s0 |T]|=1.
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Define R, S: l,—> /; by
R(x1x3,...) = (-X1, X2, ..., X Xnt1,... ),
S(xyx,..)=(-x1, x2, ..., x,0,...).
Hence trS=n-1.
Therefore, g,{S) = 0.
RS(xyx3,...)=(x1, X, ..., x,0,...)
So trRS=n
Therefore, g{RS)+0

Hence the result.

Proposition 2.4.3.
tr S<nifand only if g.{S) = 0.

Remark 2.4.4.
If dim H 2 n, then g (/) ¥ 0.

Proposition 2.4.5
g- numbers are additive.
Proof.
We know that tr(4- B) =tr(A4) + tr(B)

Theorem 2.4.6

limg, (S)=0 ifand only if § is the limit of a sequence of finite trace operators.

Proposition 2.4.7.

£ - numbers are not injective.
Proof.

Ttus can be shown using the example given below.
Define J, S :hb— 1, by

J(x1,%2,...) = (=x1, X2, ..., Xn Xps1 Xpe2, ... )
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S(xyxa....)=(-x1, x>, ..., x,0,...)
JS(x1,x2,... ) =(x1, X2, ..., Xn0,...)
Therefore, trJS=n buttrS=n-1
Hence g{JS)#0andg(5)=0

Proposition 2.4.8.
£- numbers are not surjective.
Proof.
The following example shows that g,(S) # g,(S()), 1s true.
Define O, S: L— [; by
O(x1,X2,... ) = (=X1, X2, ooy Xp, X1 X2, -2 )
S(xyxz,...) = (<x1, X2, ..., X,0,...)
SO(xy,x2,...) = (X, X2, ..., x,0,...)
So tr SQ=n and tr S = n-1
Therefore, g£,(SO)= 0 and g,(S) =0

Remarks 2.4.9.
a) For each mapping Se B(H) and all numbers A (4 # 0) gAS) 2| 1| g«9)
Proof.
The example shown below illustrates that g,(AS) = | Al g(S)
Define S: L,— [; by
S(xy,x2,...) = (X1, X2, ..., X0 Xp+10,0, ...)

So trS =ntl

Therefore, g{S)# 0. Choose 4 = such that tr AS =-1. Hence g{AS) =0

n+l

b) gAS) = &S

Proposition 2.4.10.

& - numbers are regular.



Proposition 2.4.11.
£- numbers are symmetric.
Proof.
We know that tr S = tr§’

Proposition 2.4.12.
g- numbers are completely symmetric.

2.5 O-numbers
For every operator Se B(H) and n =2 3,..., the n™ @ - number is defined by
0,(S)=inf{§S — L]: L € B(H),nulL < n },put 6,(S) =S|

Theorem 2.5.1.
The map 8: 85 — (6,(Y)) is a semi-pseudo-s-function.

Proposition 2.5.2.
The map @: 5 — (4,(S)) is not 2 pscudo-s-function.
Proof.

The following example shows that 8,(RST) ¢ |Rll6, (S)T]. is true.
Choose S and T =/ such that nul S=0 and |[7]| =1.

Therefore, G{S)=0.
Define R: 12—) /z by

R(xy,x3,..)=(00...0xy, x5, ...).
—
So nulR=n. n

Therefore, 6, (RS7T)=0
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Remarks 2.5.3.
a) 8- numbers do not satisfy the fifth condition of s-function.

Proof.
Whatcver be the dimension of H, &,(/;) 0 always.

£)8,(8)=6,(S").
c) B/AS)= 14| 649).

Theorem 2.5.4.
84S) =0 ifand only if nul S < n.

Proposition 2.5.5.

lim@,(S) = 0it'and only if S is the limit of a sequence of finite nullity of

operators.

Proposition 2.5.6.

€- numbers are not additive.
Proof.

The following example shows that G.,.1(S+7) § 8.(S) + 6(7), is true.
Define S : ,— /; by

S(xy, X0, ) T (=X, =X2, oo Xy Xpe2 Ll ).
Therefore, 8(8)=0.
Put 7 =/ Therefore, G{7)=0.
Therefore, (I +8¥xyx2,..)= (O;A;;)O’ Xpa2 ... )

Putm n=2 e
Therefore, Gy .pa(St1) = K/ + 8) = 0.

Because nul (/+8) = n+1
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Proposition 2.5.7.
@- numbers are injective.
Proof.

6,(S)= inf§S-1]: L e B(H),null. <n }
=inf§S - JL|: L € B(H ),null <n }
= inf{US - JL|: L € B(H ), nulJL < n }

= 6,(JS)-

Proposition 2.5.8.
¢ - numbers are not surjective.
Proof.

The example shown below illustrates that 8(S) = 6_(.SQ)

Let S = /. Therefore, G(5)=0
Define Q : l»— [; by

Qx1.x2,...) = (Xpe2 X3,
Therefore, nul Q=n+l.

Therefore, 6.(SQ)=0.

Proposition 2.5.9.
€ - numbers are not symmetric.
Proof.

The following example shows that 8,(S) £ 6,(S"), is true.

Define S : /,— /; by

S(x1x2,...)=(0, ....0, x1x2...)
Thereforc, S.(.ﬂ,tz,... ) = | -{}rﬂ Xpo3 Xpay )
So nul $=0. Hence 8(5)=0.
So nul S" = 0. Hence 04(S’) # 0.
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Propeosition 2.5.10.
@ - numbers are regular.
Proof.

8,(S)=inf§S—1|: L e B(H).null <n }
= inf{lK, (S-L¥:Le B(H),nulL <n }
= inf§{K, S~ K,L|: Le B(H),milK,L<n }

= 8,(K,S)

2.6 n-numbers
For every operator S e B(H) and n =2,3...., the n” - number is defined by
n,(S)= infﬂS - LH: L€ B(H).co-rankl <n },put n,(S) = “S”,where

co ~ rankl, = dim (Ranl)*

Theorem 2.6.1.

The map n7: 8§ — (17,(S5)) 1s a semi-pseudo-s-function.

Proposition 2.6.2.
Themapn: S — (,(S)) is not a pseudo-s-function.
Proof.

The following example shows that 77, (RST) ¢ |Rln, (SIT}.

letSand T=1.
Define R - .- [, by
R(xyx2,...)—(0,...,0,xy x3....)

———t
n

Remark 2.63.
n- numbers do not satisfy the fifth condition of s-function.
Proof.

Whatever be the dimension of 4, n,(/,, ) = 0 always .
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Theorem 2.6.4.
n,(S) =0 if and only if co-rank S< n.

Proposition 2.6.5.

limrn, (S) =0 if and only if S is the limit of a sequence of finite co-rank of

operators.

Proposition 2.6.6.

n- numbers are not additive.

Proof.

The example shown below illustrates that 7, ... /(S 1) § 9(S) (T
Define S: ;> /; by

SO, ) = (<X, 2X2, o= Xl X2 ).

Therefore, 7,(S) =0.
Let 7=/ be such that n,(7) O
Therefore, (/ +SXx1,x2....) =(0, ...,0, xm2 ...)
Therefore, co-rank (/+S) = n+1.
Putm~-n=2.
Therefore, 7n.,. (S 1) " m(S-T)% 0

Proposition 2.6.7.
77- numbers are not injective.
Proof.
The following example shows that n,(S8) = 7,(JS)
PutS =/ DefineJ: /7> /> by

Jxpoxo)=(0, .0, 0 x5, ).
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Propeosition 2.6.8.

n - numbers are surjective.
Proof.
7,(8) = inf§S ~ 1 € B(H),co-rankl. <n |}
= inf{(S - L)Q|: L € B(H),co~rankL <n }
= inf§$Q — LO||: L € B(H),co~rankLQ < n }

= 1,(SQ)-

Propeosition 2.6.9.

n- numbers are not symmetric.
Proof.
The example shown below illustrates that 7, (S") # 17,(S)
Define S: /> [; by
Sxp x5 )= (Xp 1 Xpe2 Xpez ).

So co-rank S = 0. Therefore, n,(8)=0
S xrx,. ) =(0, .0, x x2.0)

So co-rank 8" = n, hencer, (S") =0.

Proposition 2.6.10.

n - numbers are regular.

2.7 5 -numbers

Let {H,} be a decreasing sequence of closed subspace of H, H;=H, n" § -numbe:
of Se B(H) is defined by 5,(S) = supﬂle] xeH, |d=11
Propeosition 2.7.1.

The map 5 : S— (5,(S)) is a scmi-pscudo-s-function.



Proposition 2.7.2.

The map § : S— (5,(S)) is not a pseudo-s-function.

Proof.

The following example shows that 5, (RST) ¢ |R[, (SHT]. is true.
Let R =/ and S be an orthogonal projection of  onto H .
Therefore, 5,(S)=0
Define T:H— H such that TTH,) # 0 and H,)c H .

Therefore, 5,(ST)=0.

Remarks 2.7.3.

a) £ -numbers do not satisfy the fourth condition of s-function.

b) Ifdim H > n, then 5,(/,) = 1.

¢) 58| =)
dy 5(ST)s|S|s, (7).

e) +,(8) - 5,(8).

Proposition 2.7.4.

§ -numbers are additive.

Proposition 2.7.5.

§ -numbers are injective.

Propeosition 2.7.6.

§ -numbers are not surjective.

Proposition 2.7.7.

§-tumbers are  regular.



Remarks 2.7.8.

a) a{SP,) < §,(S) where P, is an orthogonal projection of H onto H,.
b) an(S)< F,(8)+a,(SP)) where I’ is an orthogonal projection of H onto /.
c) 5,(5)<5,(SP)+a,(S),where I’ 1s an orthogonal projection with rank  <n.
Proof.
@) adSPyy = inf{SP, 1)) rankL < n }
<Isr
<5.(8).
byLet - H > H}
(I-P):H->H,

5.(S)2[S(/ - )

an(S) <[IS(7 = P+ a, (SP)
<5,(S) +a,(SP)

Hence the i’esult.

c)We know that a,(S)= inf{{S~SP

|: P € B(H),is an orthogonal projection

with rank P < n}.

Therefore,
IS = SP| < (1+£)a,(S)
kS —sPyd < (1+ £)a,(S) o
s < s+ 1+ 2, ()]

=1} < supﬂSPxﬂ: xeH Jxd=1}+a,(SX1+e)

sup{leh xefl,,

Hence the result.
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2.8 Relationships between s-numbers and semi-pseudo-s-numbers

Remarks 2.8.1.
a) fou(S) < alN)
Proof.

Given ¢ > O,we choose Le B(H) such that rankZ<n and |S - L|| < (1+ £)a,(S)

Then degl< 2n.

Therefore,

S S) <(1+£)a,(S).

b) foS) £ ALS) ., Se K(H)
€) 5. SalS)+ 1

Proof.

Given & > 0, we choose e B(H) such that rank /< nand |S - L| < (1+ £)a,(S)
8,(S)=inf§S~L|: ~n<indL <n }
< -+ L)
<fs-zf -
S(1+£)a, (S)+1

Hence the result.

d) lima (7)< limd,(7) if T'1s a compact operator.

e) lim f(T™) '™

An('/')] if 7"1s compact.
f). If T'is compactand 7= 17°1, 7" 7"77"then § (r'y<a, (1'yand f,,(I')<1.
T.emma 2.8.2.

Let 7'be a continuous linear mapping from an arbitrary Hilbert space / into an

(n+1) dimensional Hilbert space / for which there is a mapping Se B(F /) with I'sy = y
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for ye I. In the case of approximation numbers the inequality a,(T)|S| 21 holds. But

this does not hold in the case of &numbersfznumbers g-numbers,&numbers and 7
numbers.

Proof.

The following example. show that

SN 4, £,(TNS| 31, g (TSI 21, n, (THS|#1 6,(THS| 21, is true.
Define " /2" = ;" and S 17" —> " by

T(x;x3. . X20) = (X1 X2, Xnsp)
Sxp x5 Xn-1) = (X X5... X410, ..0)
-t

=1
TS(x)x2,.. Xn-1) =(X1.X2,... Xp+1)

From this we get ,6{7) = 0,/{(T) =0, 8{7) =0,n(T) =0 and ||S| = 1.
Hence & (TS| =0 . /(TS| =0 .6,(I'}S| =0 and 7, (TS} =0

Hence the result.
This chapter is concluded with the following remark.

Remark 2.8.3.

There exist one and only one s-function on the class of all bounded linear
operators acting between Hilbert spaces. All s-number sequences coincide with the
singular numbers of the operator namely, approximation numbers of the operator. But
there are several semi-pseudo-s-functions on the class of all operators acting between
Hilbert spaces. In the case of s-function on the class of all operators acting betwer
complex Banach spaces approximation numbers are the largest s-function and Hilbert
numbers are the smallest s-function. But in the case of semi-pseudo-s-numbers, the

answer is not known.



CHAPTER 11

COMPUTATION OF s-NUMBERS

This chapter aims at providing a computational method for finding singular values of
Hilbert space operators. The results are given in two sections. The first section deals with the
above mentioned computational method. Second section consists of an application of the
observations of first scction, to find lower bound of essential spectrum [algorithmically] for

certain class of Hilbert space operators identified by William Arveson [ 1,2 ].

Of course the findings of the first section is motivated by the following Proposition. I.et us recall

the proposition[6].
Proposition.

et F and /- be Banach space and 7' in B(F, "y where /' is the dual of /. Then
a(ly=a (1), n-12.. where a (7)=sup{a (TI{): M c I dimM <x}  (TI{, denotes the

restriction of 7 to the finite dimensional subspace M).

3.1 Approximation of approximation numbers

Remarks 3.1.1.

1) Itis well known that
sl T)= inf {7~ A|l: Ae B(H),rankA <n }  [29].
2) Also the following equivalent description is given in Gohberg, Goldberg
and Kaashoek {15 ].
Let 7'be in B(H ) and let x be the maximum of the essential sbg:ctrum o (T*1) of T*T-

Let A ;, A 2... A ybe the cigen values of 7*7 strictly above g and arranged in the decreasing
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order.
Then  s,(I)=A2.n - 1.2,3,.if Nis infinite.
Otherwise,

s(T)=A2,n- 123N

=4 2 n=N-IN+2,.

Now let {¢,.¢,, ...} be an orthonormal basis in / and let /°, denote the orthogonal projection of H
onto the subspace H, spanned by ¢,e, ..e, If [T] = (a;) is the matrix of 7 with respect to the
above basis, then the matnx [7], of I’,7, can be identified with the nx n square matnx
(ay)ij=1.2..n- So whatever calculations we are going to do in the subsequent part of this chapter

can be implemented in terms of [7] and [7], as Arveson does 1,2 ].

The main theorem of this section is as follows.
Theorem 3.1.2.

For each pair of positive integers (k,n ), let 5,7 ) be the n"™ s - number of | 7P;|. Then
!im 8, (T)=s,(T)exists and s,(7) 1s the n®™ s-number of 7 for each 7'in B( H).

This theorem is a consequence of the following propositions.
Proposition 3.1.3.

For each 7 in B(H), s,{ 1) exist for each n,

s (N =[] and sAS+ 7)< 5,(S)+||T|| for all Sand 7'in B(H).
Proof.
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Since {s,{7)}+211s 2 bounded increasing sequence of numbers {3], s.(7) exists for each n.

Now  s;i(7) =IITI’,I"_<_ [1] for each k, where |17, = £I"1P, .

Also, PiT*TP, — T*T strongly as k—ao Therefore, given £> 0 there is a positive integer N such

that
l’,?“']'l’,(x)" 2 Hlﬂ’ - ¢ for every k 2 N and for some x in f{ with H,x‘H =1.

|

From this it follows that

lim s, ,(T) 2[7]. Thus s:( 7) =|T}.
Now to show that s,(S + 7)< s,(S)+[[T]. But this is an easy consequence of the fact that s,(7)
1s an s-number for each & and n.

Proposition 3.1.4.

5,(RST) s |Rjls,,(5)]7| for each compact operator S in B( ) and for every R. 7 in B( H).
Proof.

For each j we have,

5,(RSP,T) = limss,

RSPTP.

But s,,|RSPIF,| is the n” cigenvalue of A= |17 P,S"R'RSP,TP,

Now A <R Jnotestse i, .

Therefore,

Sur () <R, 2T PSSP IR,
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But spectrum o'(\/f". T'PS'SP TP, ) = a(‘[SP_, TRRTP S ) 4
Since o(AB)=o(BA), whenever 4 or B is compact [33 |, the above equation holds.

Therefore,

5,0 SP,P,S TP

Hence s.(A) <||Rls, (SPHIT].

s, (A) <R

Now since S is compact and since P;— [ strongly SP;—>.S uniformly {14], as j 5=

Since s, 7)< for all T it follows that s(SPj)— s/{S) as j—x

Thus s, (RST) < |Rjls, (SHF]. whenever S is compact.

Proposition 3.1.5.

1) s«{7) =0 whenever rank /< n, and

2) s{/y) =1 whenever dimension of ¥ >n.
Proof.

Follows easily from the definition of «,.

Proposition 3.1.6.
(1) = a,( 1) for each compact operator 7.
Proof.

We found that s,(.) satisfies all the axioms of an s-number whenever 7 is compact Now,

we may use the same proof as that of theorem 2.11.9 [32 ] to conclude that
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so(1) = a,( T) for all compact 7.

Proposition 3.1.7.
sdN=ual T forall T in B(H).
Proof.

Given >0, let L in B( H) be such that rank(.) <», and ”T - L” < +68)a (1)

Now sk 1) =sA T-L+L) S|T = L]+ 5,(L)
<(+&)a,(T)
Therefore, sA T) <ad 7).
Now we may use the same proof technique as that of theorem 2.11.9 [32 ], to conclude that
al 1) <s 1) forall 7 in B(H).

Remark 3.1.8.

Thus theorem 3.1.2. which is a consequence of the above propositions, reveals that we
may use matrix computations to find singular values of operators in B(H).1t is also clear that

there s freedom in choosing suitable orthonormal basis. This is helpful computationally.

3.2 Application

In this section we use the observations made in section 1 to get a reasonable lower bound
for the essential spectrum of positive operators belonging to the class of opcrators identified by
W . Arveson (1 ].

First of all | let us recall the class of operators identified by Arveson [ 1].
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Definition 3.2.1.

Let A be the collection of all operators 7 in B( #) such that

T—=) T7,,dcgree (Ty)< o and

k)
k=1

3 1+ deg ) D, <o

k=1
If 7], =inf S (1+(degT}) W
k=1

then A is a Banach algebra.

For T in A, Arveson shows that the essential spectrum o.(7) coincides with the set of

essential points [ 1 ].

Now we provide a systematic procedure for arriving at a reasonable lower bound of the

essential spectrum o.(7) of 7, whenever 7" isin A and 7'is positive.

Let {sai, 71,2, k!, be the n™ s-number of | 77| for each k>1.We arrange them in a

triangular form as shown in the following figure (*).
Propeosition 3.2. 2.
Let S, be the 7™ s-number of | 7P, | as shown in the figure (*) and
let 5o =’l'l’n; .. -lhen sy 1s a lower bound for the essential spectrum of 7 whenever 7 is in A
and 7' 1s positive.
Proof.
It is clear that 'l‘i_’rgsm = s, exists. Let fbe in (7). Then by theorem 3.8[1 ] there is a

sequence of spectral values £, B eao.[7], such that Iim g = £. But 4, 2 s, for all n

Therefo.c ﬂZS(),
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Remark 3.2.3.

Comparing figure(*) and the equivalent definition of s-numbers which is given in section
1, one finds ihat the limits along the vertical columns will never cross over the maximum value
S« Of the essential spectrum and get inside o.(7).So if at all one wants to compute the essential
spectral values in (so, §=), one should consider sequences of the type s, 1), Where f'is a mapping
on the set of positive integers such that fn) #n. This is an easy consequence of Arveson's t™eory

and our observations.

Again consider figure (*) for positive operators 7" in A If s, 1s not in the essential
spectrum o.(7) of 7 ( this can be checked by examing the sequence {s,,} , using Arvesons
observations), one may consider {s,,;} and take the limit to get a better lower bound for o.(7).

This process can be repeated till we arrive at the best lower bound.
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CHAPTER 1V

SINGULAR NUMBERS FOR UNBOUNDED OPERATORS

In this chapter an attempt is made to extend the concept of s-numbers to a class of
linear operators between Banach spaces which contains the class of bounded linear
operators and some unbounded operators. In the casc of bounded operators this coincides

with the classical s-numbers.

Let X'and ¥ be Banach spaces. Let B(X,T), ('(X,T) and By(X,Y) denote the class of
all bounded linear operators, the class of all closed linear operators and the class of all 7" -
bounded operators from X to ¥ respectively, where /" is a linear transformation from

Ato Y

This chapter comprnises of 2 sections of which the first one deals with £ and
S numbers which arc defined using Kato’s notion of gap of operators, sccond one deals

with s'— numbers which is defined using Kato’s notion of relative boundedness of

operators. The second section deals with s - numbers.

4.1 p and S numbers
Let us recall Kato’s notion of gap of operators.
Definition 4.1.1 [20].
Forevery S, 7 e B(H), 5(T.S) is defined by
S5 = max [S(GT), GIS)),S(GIS).GIT)]
S(G(T),G(S)) = sup dist (. (AS))

veS,,,, .
where Sz, - { weGil: Hu" =] }
(D, G are subspaces of the product space [7x/1. (‘):(7',5) is called the gap

between 7"and S.
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We define fand #' numbers as follows.
Definition 4.1.2.
Let X=- Y- H be a Hilbert space. For every operator 7' B(H) the n" Beta and Beta

prime numbers are defined by

b
Bu(T) 2D
J1-bn(r)?
bi(r
g A0
1-b,(T)
where b (I =inf {8 (T,) :rank I <n|l]<1}

b(TYy=inf {6 (T~ L.0) : rank L. <n}.

Proposition 4.1.3.
Let H be a Hilbert space. Then for 7" in B(H),

“T“ =B (1) 2 BoT) 2 .. 20.

Proof.

It is clear that B(7) > f,.(T) for all n. So we prove that i(T) =|T|. For that it is

enough to show that 5,(7) =_"T”
1+ ﬂTﬂ2

By definition
h(1) =5(7,0)

max {5(G(T), G(0)) 8(G(0), (7)) }
But
S(G(T),G(0)) = sup dist(u,(G(0))

veSGir

where
Som etz o + e =1}
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Now
dist((x,Tx),G(0))? = inf{pc— v +|7x }
=’
Therefore,

dist((x,7x),G(0)) = |Tx]

Let x' in H be that x| =1

Put
x!
XY= ———
N
Therefore,
sup dist (u,(;(0)) 2 <] > <1
Ve i+
Therefore,
sup dist (1,G(0)) 2 il
weSg,,, m
So
I
¥ G(T),G(0)) 2 -
1+{7]
Now
8(G(0),H(T)) = sup dist(u,G(T))
veS;0)
where S 1 (x0): leﬂz =1}

dist(u,G(T)? = inf Y-y +]rxf )
< [122 disr(u,(tx, 7'(rx)))2

<infle-of + el )
sinf{i-0" s’ )
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and the infimum

) ) ) ]
One can see that the infimum is attained when ¢ = —

L+ |7’
7=l
Js 4 __
T
Hence
8(G(0),G(M)) < 71 :
L+[7]
Thus
8T ,O)Z_Ml_
Yt
Therefore,

b(T) 2z ﬂ forevery 'in B(H ).

e’
For u (x,7x)inS;n. let
R
Then
T = “T(z)uz < "THZ since fi-f =
el =y s Hl =
Therefore,

S(G(T),G(0)) < i}

1+]7)°
Thus using the previous inequalities we get
S(I',0) < -
1+]7]



Hence

N
pT

Proposition 4.1.4,
f.(T) =0 if and only if rank 7' < nand||T|| <1

Proof.
Assume that 8,(7) 0.

Hence 0=b,(T)=inf {S(T.L):rank L - n|L|<1)

Therefore there exists a sequence {L:} in B(H)such that rank L; < nand |L,}< /

such that
lim AR
That is, ll_glé' (G(T),G(Ly)) =0 (4.1) and
lim & (G(Le ), G(T)) = 0 (4.2)

Now (4.1) implies that, given € > 0, there exists a positive integer N
such that

sup_[x— ||2 +|rx - 1,54 "< 542—,\# >N (4.3)

o ref =1

Now let x" € H be such that x| =1.

'
X

Now put x= -
L+

Now (4.3) implies

lrx = Lo <= Loys + Lovh - 1,

! -

<£, for all k>N

s"Tx ~ L,V
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Hence

supll7'(x") ~ L, ()| < (1 +|T]")e for all k=N
{ofi=l

Since rank L; < n forall k rank7 <n.

Conversely rank 7" <n and || <1 implies that 4,(7) =0

Proposition 4.1.5.
Bu(D) = forall n.
Proof.
We show that  An(/) f for all n.
b (1) = inf (7, L) rankl. < n. L] <1 }
Now

8 (1.1) ~ max §8(G(1),G(L)).S(G(LY.G(TY)

Let u=(x,x)eG(/), [ -4 =1
Then

d(u,G(L))* = inf{"x— ;4]2 +[x - 1,_\.112 e 1 }

V2

zinife=of 2 - 51 - inf{fs- ol sbel= = )
mf{”xﬂ o ~2Rete 1) =

%an{ulyn - 2Re(x, Ly): 4| = T

Now choose x such that /.*(x)--0.

Then

d(. (L)Y z%
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Hence

1
S (ANGIL)) 2 —+=
)
Therefore,
2 i 1
31, L) = max[ §(G(1),G(L)),8(G(L),G(1)) 2 —
V2
Hence
1
bn(l) 22—
2
. 1. 1
It is trivial to see that b,(/) <—,since b, (/)<b(/)=—F .
V2 2
Hence A,(/) =1.
Proposition 4.1.6.

S numbers are continuous with respect to gap convergence.
Proof.
Let {7,} be a sequence in CL(H) such thaté (7,,7)— 0 as n— o.
For each positive integer & let /. be any operator with rank ... & Then
S(TWL) S S(THT) ~ S (T.L).

Therefore,
inf S(Tnl)< 8(T,T) - inf S(T.1)
That is,
BUT) SbT) + 8 (T 1)
Similarly
B(T) <b(To) +8 (T, T)
Therefore

|hi(T) b | < & (T, T)
Thus b T,y>h{(T)as n— = for each k.

Hence £, is continuous.
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Now some properties of B, numbers are considered. Its connection with the

classical approximation numbers is established.

Propesition 4.1.7.
B.(T) = an(T) for each bounded linear operator 7.

Proof.
By definition
BU(T) = inf (T = L,0): rankl <n }
=inf -4 = rankl.<n }
1+~ 1)
Now
a (-1
JI+aX(1) i+ -1
Then
_ ) < inf M:mnki,<n }
Ji+a2(1) 1|7 - Lff
a0
- 1+ af (T)
Therefore .
a (T)

BTy = =l
Jl+a2 (1)

Hence B (1) ua(7) for each bounded linear operator 7'on H.

Proposition 4.1.8.
Since (5:(T.O) 1 whenever 7 is unbounded (‘;‘('/'-L ,0) 1 for any finite rank

operator which is bounded and therefore £,(7') - for any unbounded operator. It is

clear thst £, (T) is also infinite whenever 7' is unbounded.
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Now we introduce the so called <'- numbers in an attempt to associate a
sequence of numbers to any operator belonging to a class of operators which includes the

bounded ones also. Here we use Kato’s notion of relative boundedness of operators.

4.2 s'- numbers

Let us first recall Kato’s notion of relative boundedness.

Definition 4.2.1.
Let X and Y be normed linear spaces and 7"and 4 be linear operators from Xto Y
such that Domain(7" )< Domain(A4) .If there exists non negative real numbers ¢ and b
such that
”Aun < u"u" + b"lu" for every win (7).

(IXT) is the domain of 7), then A is said to be relatively bounded with respect to 7.

Definition 4.2.2.
For each 7T'in B(X,Y) Let 4 be in By(X,Y) and let L. be a bounded operator with

rank /. < k. Let g;, be the least positive number such that
KA = Ly <« 5, 17
Where b, is the relative bound of 4-/. with respect to 7. Then the I s, number s

defined as,
5;(TE ir}fa,'
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Proposition 4.2.3.
Let S and R be in B/ X, Y) be such that R is bounded. Then

s, (S+R)< s (S)+]K|
Proof.

Letrank /.<n
Then

S+ R— Ly <|(S - Lyu||+]|Red

<[ = Lyud] + |G|

<(a, + Rl + b, (7 u|
Where b,(S) denote the relative bound of S - /. with respect to 7.
Hence

bi(S+R) L bi(S)
Since R is any bounded linear transformation we get
b (S)= bu(S: R-R) <b(S+R)
Thus
b (S+R)= bi(S)
Hence by definition
a (S+R)s a (S) +]R|

Therefore,

SAS Ry < s (S)+]H

Remark 4.2.4.

s" - numbers do not satisfy the third axiom of s-numbers.
Proof.

The following simple example shows that s, (PQ) £||P|s.(Q) even if P is

bounded.
Let X =Y =([0,1]
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1

/>(u)(1)=j u(x)dx, ue ([0,]] and

QuXt)=u'(1), ue D(Q)= {u cu' exists and uf0)~0}and
T(uXt)y=u'(t),

Then

20X = ]

oG] = 0] + 1 JOwN
Therefore,

si(PQ)=1, But s(Q)=0
Hence the proof.

Now the following simple result says that s, -numbers coincides with approximation

numbers for bounded linear operators.

Propeosition 4.2.5.
Let Sbe in BX.Y). Then s (S) =a,(S).
Proof.
s.(S) =influ, ‘ranki. <n }
When
K= £ <, b, i
where a; 1s the minimum associated with 7’bound b, of S L. But &, =0.

infda, rankl. <n }= inf'ﬂ.\' - /,H Crankl. <n Y= a(S)

Remark 4.2.6

Thus we find that s, - numbers is an extension of the classical approximation

numbers to the class Br/X,Y).

Next some examples are considered. They are taken from [20 ], with some minor

modifications occasionally.
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Example 4.2.7

Let X =Ly[ab), T(u)=u', A(u)= ulc)where c€ [u,b]. Here
domain (7) = {u: u' €l,[a,h] }and domain 4 = ([u,h]
Then

”A uH S% + g::'“l uedomain(1)

It is known that when ¢ =a or b, T-bound of 4 is exactly 1. Hence if ¢ =a orb,

1
b-u

sy (A)<
Now take 1(x) =1 for every x.

Then

Am=1, u' =0, —ﬂl—l”—'—z ]

b-u

This shows that

N
s (A)= o
Example 4.2.8.
Let X =Lyab], T(u)=u", A(u) = u'(c)
Let
(x—a)™ ~(n+Dn(x-a)™"
Y . U ————————t et 'h R -
&y (b-aXc-a) v (b-aXc-a)" asxs
£lx) = il U D . h(x)-" (n+ (b= x)" c<xsh
(b-aXb-o) (b-aXb-c)"
Then

W (¢) = (u",g)+ (u,h)
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When
<u2/>=j (1) £ ()t

The above identity is taken from Kato[ 20].

It is also known that

') < e Jee, + Al I,
b-a)y Vo | 11
= n( + a-i)-l u’ P 1.(In+ ” ] nu"p (—+==1)
(‘1 9 (b-a) "(ng-q+1)° P9

If p>1, then the coefTicient of ”u'"p on the right side of the above inequality can be

made arbitrarily small by taking n- large. Hence s,,(A4) = +o0.

If p --1, then ¢ -+ and the above inequality reduces to

2},

l+(b_a)2

}u'(c)l < "

It is known that the 7"-- bound of 4 is exactly 1.
Take {t)=t-a
Then

() =1,

This shows that

Iun

= 0and |, =1

SE(A) = e

(/)—-(l)“’

Example 4.2.9.
Let X =La b)Y =Cla,b]
Tu=1u', and Au = u, A:domain (4) — Cla,b], when domain 4 = ([a,b]

with /.; -norm.
Then
1

S'LT(A) ;"-b—'—l-
iy ¢
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Example 4.2.10

The following example illustrates the fact that, when 4 and 7 are unbounded and
if the T - bound of A is 0, then s,,(4) = +o©
X =1, abh]
A(u) =Py(x) '
Ru) = Polx) u" = Py(x) u' - Py(x)u,

where P; is a polynomial for i = 0,1 and 2. 1t is proved in Kato [ 20 ] that the 7 -- bound

of A is zero. Hence s,;(A) =+

Example 4.2.11

Let H be a separable Hilbert space and {¢),¢,, . ..} be an orthonormal basis for H.
Forany uet, u=y (u.c)e,

Define

Tu= i k(u,e, e,
k=l
Au= i k "2 (u,e, e,
k=1
”AuH2 = Z kl(u,e‘ )fz
k=1

[ruf =3 K2 fe,)

To find the smallest posssible value for £ such that
nAuﬂ < aﬂuu + ,3”7'11H forall uin IX7)
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Assume that
4w < af+ BljTuj

Therefore, the following incquality holds;

5

lau|® <a?fu’ + BT’ + 2ap}ufjiy (4.4)
1f |4’ <a?|uf + p2|7u|’, then (4.4) holds.

If k<a’+ B%k?, then also (4.4) holds. Thus whenever a, P satisfies the inequality
Pk —k+a’ 20 (4.5), for all real k.

Then (4.4) holds.
Now (4.5) holds if 14 f’a’ <0

Therefore whenever af > % (4.4) 1s satisfied.

If Atends to zero then atendsto o

Therefore s, (A4)=.

s-number set 4.2.12.

The mission of this chapter 1s to assign sequence of numbers to closed

linear t—nsformations between Hilbert spaces in such a way that sequences associated

with bounded linear transformation are classical approximation numbers.

It 1s partially achieved by associating the so called s — number sets.

4‘2 ’15
Deﬁnition;\ Let C'L(X,T) be the class of all closed, densly defined linear transformations

between two Hilbert spaces .Y and Y. For ecach A& (C/.(X)), let K; denote the set of all

linear transformations in ('Z(X.}) withwhich A4 is relatively bounded. Now the s — number

set 5 (4) is defined for each positive integer 7 as follows:

5,0~ s, (A):Tek, }
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Propesition 4.2.14.
For A in BL(X)Y), 5,(4) is the singleton set {a,(4)}, consisting of the o™

approximation number.
Proof.

It has been shown in the previous section thats,',r (A)=a,(A) forany T inK,.
Remark 4.2.15.

For each unbounded element 4 of CL(X,Y) 0 is in 5, (4). This is because
s'A(4)=0, and +0 is in s, (4) sinces;, (4) =+, whenever T is BUX,Y), and
TekK,.

We conclude this chapter with the following remark.
Remark 4.2.16.

The above observations shows that the set 5,(S) gives a measure of

unboundedness.

The following questions are of interest in the above respect

Q.1.When is §,(S)=[0,0)?

Q.2. When is 5,(S) is discrete?

Q.3.Given the positive real number o, what conditions on S guarantee thata €5, (S) ?
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