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CHAPTER ONE

INTRODUCTION AND PRELIMINARIES

INTRODUCTION

In 1921, Emmy Noether proved that a commutative ring has the
ascending chain condition on ideals if and only if all ideals
are finitely generated. Such rings, now called commutative
Noetherian rings., were extensively studied from the 1920s

onwards because of their importance in algebraic geometry.

The noetherian condition is very natural in commutative ring
theory, since it holds for the rings of integers in algebraic
number fields and the co-ordinate rings crucial to algebtraic

geometry.

The first important result in the theory of non-commutative
Noetherian rings was Goldie’s theorem (19%58> which gives an
analogue of the familiar result that every commutative domain
can be embedded 1in its quotient field. Since then,
Noetherian ring theory has steadily gathered strength, partly

from its own impetus and partly through feedback from



neighbouring areas in which Noetherian i deas found
applications. By now, various methods and results from the
theory of commutative Noetherian rings have been adapted to

non-commutative Noetherian rings.

In commutative ring theory, we have the elementary but
powerful technique of localisation at a prime ideal. If R is
a commutative ring and P is a prime ideal in E, then the set
S =R NP is multiplicatively closed, and the localisation of
R at P is got by considering the set R x $ and defining an
equivalence relation ~ on it by Ca,b) ~ Cc,d) if and only if
Cad - becd e = O for some e e S. This gives the ring of
fractions RP. This is the generalisation of the formulation
of the field of fractions of a commutative integral domain

(in that case, § = R \ {0}).

We can reduce questions on arbitrary rings and modules over
such rings to the case of local rings via localisation at
prime ideals. In many important instances, a result will be
valid for a ring R, if it holds for every localised ring RP
Cwhere P is a prime ideal in R. For a non-commutative ring,
such a localisation is not, in general, possible, even at the

zero ideal of an integral domain. Ore (19300 characterised

those non-commutative domains which have right rings of



fractions that are division rings. For years, mathematicians
worked to find a procedure which would enable one to
localise non-commutative Noet..herian rings at prime ideals.
The standard procedure that emerged took the commutative
situation and the situation in Goldie’'s theorem as models and
attempted Lo use Ore’s method to localise Noetherian rings at

semiprime ideals.

In the 1970s and 1980s, Jategacnkar, Mueller and others
worked on the problem of localisation at a prime ideal. They
found that there exist "links” between prime ideals and that
these links ‘"obstruct” localisation. But in the case of
Noetherian rings satisfying the "second layer condition”,
Jategaonkar has found that it 1is possible to describe
localisation at a prime Cor a collection of primesd under

certain conditions.

Goodearl (€1988D defined links belween uniform injective
right modules over a right Noetherian ring. He observed that
links between "tame" injectives correspond to prime ideal
links, while, there exist other injective module links which
provide more obstructions to Ore localisations than prime

ideal links do.



For a right Noetherian ring, there 1is a one-to-one
correspondence between uniform injectives and prime torsion
classes. Because of this connection, we have tried to study

Ore localisation using the torsion-theoretic approach.

Before proceeding further, we take a look at the preliminary

definitions and results required in the rest of the thesis.

PRELIMINARY DEFINITIONS AND RESULTS

Most of the material in this section i1s taken from (G411,

[Gwl, [J]1, [MR] and [S511].

CONVENTIONS

All rings are assumed to be associative with 1 and all
modules are unital. We denote the fact Lthat M is a right

R-module, by writing M_. The set of all right R-modules is

R
denoted by Med-R. We use the notations =, <, ¢ for
inclusions among submodules or ideals. In particular, {f A

is a module, the notation B 2 4 means that B is a submodule
of A and the notation B < A means that B is a proper
submodule of A4. An ideal refers to a two-sided ideal. One
sided ideals will be referred to as such. This convention

applies to other one-sided properties also.



THE NOETHERIAN CONDITION

A collection & of subsets of a set 4 satisfies the ascending
chain condition CACC) 1if there does not exist a properly
ascending infinite chain A1< A2 < L. of subsets from .
A set Be # is said to be maximal in &, if there does not

exist a set in & which properly contains B.

PROPOSITION 1.1: Let R be a ring and 4 be a right

R-module. The following conditions are equivalent:

ad) 4 has ACC on submodules.

b> Every non-empty family of submodules of A4 has a maximal
element.

¢c) Every submodule of 4 is finitely generated.

A right R-module 4 is said to be Noetherian if and only if
the above equivalent conditions are satisfied. A ring R is
rightCleftd Noetherian if and only if the right R-module R
Cleft R-module R) is Noetherian. R is Noetherian if it is

both right and left Noetherian.

If B is a submodule of 4, then A4 is Noetherian if and only if

B and 4B are Noetherian. Any finite direct sum of



Noetherian modules is Noetherian. If R is a Noetherian ring,

then all finitely generated right R-modules are Noetherian.
PRIME IDEALS

A proper ideal P in a commutative ring R is said to be prime
if whenever we have two elements a and & of R such that
ab € P, it follows that a € P or b € P, equivalently. P
is a prime ideal 1if and only if the factor ring R-P
is a domain. We need a non-commutative analogue of a prime
ideal. An ideal P in a ring R is said to be completely prime
if R/P is an integral domain.. Thus, if R is commutative, P

is prime if and only if it is completely prime.

There are non—-commutative rings, however, in which there are
not many completely prime ideals, and sometimes none. For
example, in a simple Artinian ring, the only proper ideal is
the zero ideal. Also, we would like every maximal ideal to
be prime. The following definition, proposed by Krull in
1928, satisfies this property, and reduces to the familiar
cne in commutative rings: P is prime if for any ideals 1
and J, IJ £ P a1 =P or J=P. The set of prime ideals of R
is dencted by JFnec R. If O is a prime ideal, we say that R

is a prime ring. If © is a completely prime ideal, R is

]

domain.



PROPOSITION 1.2 : For a proper ideal P in.a ring R, the

following are equivalent:

a) Pis a prime ideal.

b> RP 1s a prime ring.

¢) If x, v € R with xRy £ P, either x e P or v € P.

dd) If I and J are any right ideals of R such that IJ < P,
either I £ P or J < P.

e If I and J are any left ideals of R such that IJ < P,
either I £ P or J =< P.

£f> If I, J are right ideals of R, such that I n J € P, then
el ther I £ P or J = P. This is a lattice theoretic

condition.

It immediately follows that if P is a prime ideal in a ring R
and ‘]1" RN .Jn are right ideals of R such that Jth. .. .Jn < P

then some J,L < P.

By a maximal tdeal in a ring, we mean an ideal which is a
maximal element in the collection of proper ideals. Then,
every maximal ideal M of a ring R is a prime ideal.

SEMIPRIME IDEALS

A semiprime itdeal in a ring R is any ideal of R which is an

intersection of prime ideals.



PROPOSITION 1. 3: For an ideal I in a ring R, the following
are equivalent:

a) I is a semiprime ideal.

b) If J is any ideal of R such that o <11, then J =< 1.

¢) If x €« R with xRx £ I, then x e I.

A semiprime ring is any ring in which 0 is a semiprime ideal.
The prime radical of a ring R is the intersection of all the
prime ideals of R. Aring R is semiprime if and only if its
prime radical is =zero. In any ring R, the prime radical

equals the intersection of the minimal prime ideals of R

ANNILHILATORS

It Mis a right R-module, the annihilator of M, written ann M
Cor anan'D is the set {r e R :mxr = O for all m € M>r. It
M is a right R-module and $ is a subset of R, then the
annthilator of $ tn M, written annHS s <xeMM: x5 =0>. 1If
S is a left ideal of R, then annMS is a submodule of M. If N
is any subset of M, the annthtlator of N |is
ann N = { r &« R :Nr = 0 2, Ann N is a right ideal of R,
and if N is a submodule of M, then ann N is a two-sided
ideal. In particular, this defines the right annihilator
r-ann S of a subset S of R:

r-ann S = {reR: sr =0Vs €S> The left annihilator

l-ann S of 5 is defined similarly.



A right R-module M is said to be faithful if ann M = 0. H is
fully faithful if ann N = O for every non-zero submodule N

of M.

ESSENTIAL SUBMODULES

A submodule M’ of M is said to be essential in M , denoted
M So M, iIf N2 O &« Nn M = O for any submodule N of M. If
M’ so M, then M 1is called an essential extension of M. If
R is considered as a right dCor left) R-module, we obtain

essential right Cor left) ideals. A module M is uniform if

all its non-zero submodules are essential

Aring R is right bounded if every essential right ideal of R
contains an ideal which is essential as a right ideal. A
ring R is right fFfully bounded if every prime factor ring of R
i1s right bounded. A right Cleftd FBN ring is any right
Cleftd fully bounded right Cleftd Noetherian ring. An FBN

ring is any right and left FBN ring.

ASSASSINATORS AND PRIMARY MCDULES

Let R be a right Noetherian ring. and let V be a uniform
right R-module. Then the set of the annihilator ideals of

non-zero submodules of ¥V has a unique largest member, say P.



Then P is a prime ideal of R, and is called the assassinator

of V, denoted ass V. For any non-zero submodule W of V, we
have ass W = P. Moreover, setting W = annVP. we have W = O
and ass W = ann W = P,

For an arbitrary right R-module, the set

{ass V : V is a uniform submodule of M >
is called the assassinator of M, and is denoted as ass M.
The members of ass M are often referred to as the

assassinator prime tdeals of M.

A non-zero right module M over a right Noetherian ring is
called a primary module if ass M is a singleton set. If P is
the sole member of ass M, the module M is called a P-primary
module. For any prime ideal P in a right Noetherian ring R,
the class of all P-primary modules is closed under non-zero

submodules, essential extensions and arbitrary direct sums.

Let 5 be a semiprime ideal in a right Noetherian ring R.

A right R-module M 1s called an S-primary module 1if

ass M € assCR/SD.

INJECTIVE MODULES

A right R-module 4 is injective provided that for any right

10



R-module B and any submodule C of B, all homomorphisms C—> 4
extend to homomorphisms B—>A. Given M € Med-R is called an
tnjective envelope Cinjective hulld of M, if E is a minimal
injective module containing M. Alternatively, an injective

hull for M turns out Lo be a maximal essential extension of

A.

PROPOSITION 1. 4:

i) Every modul e has an injective envelope, unique upto
isomorphism and denoted by ECM.

11> A right R-module M is injective if and only if M = ECM.

111> It M So N, then ECMD = ECND.

ivd) If M is injective and M £ N, then M is a direct summand

of N.
v) If agAECHaD is injective, ¢ for instance, if 4 is finited,
then EC agA Ma) = agAE( Ha) .

vi) Direct products and direct summands of injective modules
are injective.

viid) A non-zeroc module M is uniform if and only if ECMD \is
indecomposable.

viiid If E is an indecomposable injective module, then E is

the injective hull of every non-zero submodule of E.

11



If M, M* are right R-modules such that ECM> = ECM'), we say

that M and M* are similar.

SIMPLE AND SEMISIMPLE MODULES

A right R-module 4 is said to be simple if A has no proper
submodules. A ring R is simple if it has no proper ideals.
The socle of a right R-module 4 is the sum of all simple
submodules of 4 and is denoted by soc A. This is the direct
sum of some simple submodules of 4. 4 1is semisimple Uf
A =5s50c 4 if and only if 4 is a direct summand of any module

containing it.

ARTINIAN MODULES

A module A4 is Artintan 1if A satisfies the descending chain
condition (DCC) on submodules, i.e., there does not exist a
properly descending infinite chain of submodules of A. A
ring R is called rightCleftd Artinian if the right R-module R
(left R-module R is Artinian. If both conditions hold, R is
called an Artinian ring. A right R-module 4 is Artinian if
and only if A“B and B are Artinian where B is a submodule of
A. Any finite direct sum of Artinian modules is Artinian,

If Ris a right Artinian ring, all finitely generated right



R-modules are Artinian. If R is a right Artinian ring, then
R is also right Noetherian. If R is a non-zero right or left

Artinian ring, then all prime ideals in R are maximal.

SEMISIMPLE ARTINIAN RINGS

In a ring R, the following sets coincide:
a> The intersection of all maximal right ideals.
b) The intersection of all maximal left ideals.

This intersection is called the Jacobson radical JC(R) of R.

PROPOSITION 1.5: For any ring R, the following
conditions are equivalent:

a) R is right Artinian and semiprime.
bd> R is left Artinian and semiprime.
¢) All right R-modules are semisimple.
dd> All left R-modules are semisimple.
e) RR is semisimple.

£ RR is semisimple.

g) R is right Artinian and JCR = O.
hd R is left Artinian and JCRY = O,

1> All right R-modules are injective.
J2 All left R-modules are injective.

kD R = M (DY x M CDDI....x M (DD for some positive
n1 1 nz 2 nk k

integers nosn...,n and division rings Dt" ...D

k Kk

13



A ring satisfying the above conditions is called a semisimple

Artinian ring.

PROPOSITION 1.6: For a ring R, the following
conditions are equivalent

a) R is prime and right Artinian.

b) R is prime and left Artinian.

¢) R is simple and right Artinian.

d) R is simple and left Artinian.

e) R is simple and semisimple Artinian.

f> R = MnCDD for some positive integer n and some division

ring D.

The rings characterised above are referred to as simple

Artinian rings.

RINGS OF FRACTIONS

In the theory of commutative rings, localisation plays a very
important role. Most basic is the idea of a quotient field,
without which one cannot imagine studying integral domains.
Next comes the idea of localisation at a prime ideal, which
reduces many problems to the study of local rings and their

maximal ideals.

However, this is not the case with non-commutative rings.

Although the set of non-zero elements is a multiplicative set

14



in any domain, we have examples of domains which do not
possess a division ring of quotients. It was in 1930, that
Ore characterised those non-commutative domains which possess
division rings of fractions. In 1962, Gabriel gave the
necessary condition for a multiplicative set in a ring to

have a right Cleftd ring of fractions.

A subset C of a ring R is a multiplicatively closed set 1if
1 eC and €,2¢, € C » c,c, € C. A multiplicatively closed
subset C of R 1is a right Cleftd Ore set if, given r € R,
c €, there exist s e R and d e C such that rd = ¢cs
Cdr = sc).If C is a right and left Ore set, it 1is called
an Ore set. C is a right reversitble set if r € R, ¢ € C with
¢r = 0 in R implies rd = O for some & € €. A right Ore, right
reversible set is called a right denominator set. 1In a right

Noetherian ring, every right Ore set is right reversible.

Let € be a multiplicative set in a ring R. A right gquotitent

ring Cor a right ring of fractions or right Ore localisationd

of R relative to € is a pair <Q,f>, where Q is a ring and ¢

is a ring homomorphism from R to @ such that

a) fCC) is a unit of Q@ for all ¢ e C.

b) Each element of @ has the form fCr>fCecd ' for some r e R,
c € C.

cdKer f ={(rekR: r¢c =0 for some ¢c € C »>.

1S



By abuse of notation, we usually refer to Q as the right ring
of fractions and we write elements of Q in the form rc—‘

for r e R, c € C.

THEOREM 1.7: Let € be a multiplicative set in a ring R.
Then there exists a right ring of fractions for R with

respect to € if and only if € is a right denominator set.

If C 1s the set of regular elements of R and if the right
quotient ring QR of R relative to € exists, we say that R

is a right order in QCRD.

A ring R is a domain if it has no zero divisors, The
non-zero elements in a domain form a multiplicative set and
if € =R N (O, then we have the following corollary to the

above theorem:

COROLLARY 1.8: A domain R has a right division ring of
fractions if and only if € is a right Ore set if and only if
the intersection of any two non-zero right 1ideals 1is

non—-zerao.

A domain which satisfies this condition is called a right Ore

domain,



GOLDIE’S THEOREMS

A very useful technique in commutative ring theory is to pass
from a commutative ring R to a prime factor ring R-P. In the
non-commut ative case we could ask whether it is possible to
pass to a factor ring from which a division ring may be built
from fractions. Since non-commutative Noetherian rings need
not have any factor rings which are domains, this is rather
restrictive. Instead we look for factor rings from which
simple artinian rings can be built using fractions. The main
result is Goldie’s theorem which says that if P is a prime
ideal in a noetherian ring, then the factor R P has a ring of
fractions. It turns out to be no extra work to investigate

rings from which semisimple rings of fractions can be built.

A regular element in a ring R is any non-zero-divisor,i.e.,

any element x € R such that r-annCx) = 0 and l-anntCx> = O.

A rightCleftdannthilater in a ring R is any rightCleft> ideal
of R which equals the rightCleftdannihilator of some subset

of R.

¥We say that a right R-module M has finite Goldie dimension if

M does not contain a direct sum of an infinite number of

17



non-zero submodul es. Aring R is said to have finite right
Goldie dimension if R has finite Goldie dimension as a right

R-modul e.

PROPOSITION 1.9: If M has finite Goldie dimenision, then
there is a largest positive integer r such that M contains a
direct sum of n non-zerc submodules. This is called the

Goldie dimension of M

A right Goldie ring 1is any ring R that has finite right
Goldie dimension and ACC on annihilators. For example, every

right Noetherian ring is right Goldie.

PROPOSITION 1.10 (Goldied: Let R be a semiprime right Goldie
ring, and let I be a right ideal of R. Then I is an
essential right ideal if and only 1if I contains a regular

element.

THEOREM 1.11 (Goldied: A ring R is a right order in a
semisimple ring if and only if R is a semiprime right Goldie

ring.

THEOREM 1.12 (Goldie, Lesieur-Croisot): A ring R is a right
order in a simple artinian ring if and only if R is a prime

right Goldie ring.

18



Let R be a semiprime right Goldie ring. Any semisimple ring
Q@ in which R 1is a right order 1is called a right Goldie
quotient ring of R, An important property of QR is that {1t
is an injective hull of RR'

TORSION CLASSES

It is often convenient to think of 1localisation in the
broader context of torsion classes. We can characterise the
right Ore condition on a multiplicative set in terms of the
associated torsion class. In this subsection we define right
torsion classes and other torsion theocretic terms which we

use later.

Aright torsion class ¢ for a ring R is a non-empty class of

right R-modules satisfying the following two conditions:

1> The direct sum of any family of modules in ¢ is also in o.

i1) For any exact sequence O0—> M'—> M—> M'* —> O of right
R-modules, M belongs to ¢ if and only if M* and M’ both

belong to o.

It follows that a torsion class is closed under submodules
and homomorphic images. The set of all torsion classes

over R is denoted by Fero-R. .Qver a commutative domain,
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the medules which are torsion in the usual sense form a right

torsion class.

We define the notions that are usually associated with
‘torsion’. Let ¢ be a right torsion class for a ring R, For
any right R-module M, the unique largest submodule of M
belonging to ¢ is called the o-torsion submodule of M and is
denoted as o(M). M is called a o-torsion module if oCM) = M
and a o-torsion—free module if oCMd = O. The class of
o-torsion-free modules is closed under submodules, injective
hulls, direct products and isormorphic copies. Let N be a
submodule of M. Then N is said to be o-dense in M if M/N is
o-torsion and o-cltosed in M if M/N is co-torsion-free. A
o-dense C(o-closed) submodule of RR ie called a o-dense

Co-closed) right tdeal of R.

A module B € Mod-R is o-torsion-free 1if and only if
HomCA4,B) = O or every o-torsion module A4 € Mod—R. A module
A e Med-R is o-torsion if and only if HomCA4,B> = O

for every o-torsion-free module B = Med—R.

The set Feno-R is partially ordered under inclusion. Under
this partial order, Jero-R is a complete lattice in which

meet and join of any collection of torsion classes exist.



Given 4 € Med~R, the torsion class y(A) cogenerated by A is

the greatest torsion class ¢ such that A is o-torsion-free.

PROPOSITION 1.13:

(a) A right R-module B is y(Ad-torsion if and only {if
Hom(C, 4> = O for all submodules € of B {if and only if
Hom(B,ECADD> = O. where ECA) is the injective envelope of A.
(b) 0> is the largest element of JFero-R.

() If A € Med—R, and B So A, then (A = x(BD.

(d) For every o € Jono—R, there is an injective module E
with o = CED.

(e If E,E’ are injective right R-modules, then C(E) 2 (E’D
if and only if E' can be embedded in a product of copies

of E.

Corresponding to the notion of a prime ideal in the lattice
of two-sided ideals of a ring Ca prime ideal is m-irreducible
by proposition 1.2), Simmons{S1] has defined a prime element

in the lattice of torsion classes.

A point of Teno-R is a aA-irreducible element, i.e.,a point is
an element n € Jero-R such that n ® (00 and o AT = n
implies ¢ £ mor T £ n for each ¢,1T € JTors-R. P¢-R denotes

the set of points of JFero-R.

21



EXAMPLE 1.14: KA is a point for each uniform module 4

over R, and yCR/P) is a point for each prime ideal P of R.

Let T € JFens-R. A non-zero module M € Mod~R is T-critical 1if
M is T-torsion-free and every non-zero submodule N of M is
t-dense in M. For example, a simple right R-module 1is
t-¢critical for every T relative to which it is torsion-free.

A non-zero right R-module is c¢ritical it is (MO -critical.

Let T € Joro-R. If 1T = (M) for some critical right R-module
M, then we say that 7 is prime (G3). For example, if M is a
simple right R-module, then (M is prime. The set of all
prime torsion classes of JTers-R is denoted by on-R. Every
prime torsion class is a point. In a right Noetherian ring
R, every point is a prime and hence on-R = nt¢-R. The map
¢: Pnec—R—> rt-R 1is an 1injection, where @C(P) = (RPD

for P € FPnec—R.

If Ris a commutative Noetherian ring or an FBN ring, then

MR = onp-R = { xCRPD) : P &£ Prnec R .

PROPOSITION 1.15:
(1) If ¢ € sn-R, then there is a uniform injective right

R-module E such that o = (ED.

a2
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(11> If o € on-R and M, M* are o-critical wuniform
injectives, then EC(M = ECM"D.

(1ii> Let R be a right Noetherian ring. If 1 € Tero—-R and
T ® 0D, then

T =N (M) : Mis a t-critical right R-module ».

Apoint m is a principal point if there is an ideal Q such
that if [/ is a two-sided ideal of R, then I is n-dense if and
only if I ﬁ Q. Then Q is the union of all the ideals of R
that are not n-dense, and is Q is prime. We write Q = w(md
and say that n is Q-principal. Every prime torsion class is

a principal point.

PROPOSITION 1.16:

(1D If E 1is a uniform injective right R-module, then,
wWxC(EDD = ass E.

Cii> If n is a principal point and I is a two-sided ideal of

R, then R/l is n-torsion if and only if I % yCm.
C-TORSION AND C-TORSION-FREE MODULES
Given a multiplicative set C in a ring R, there is a torsion

class Pe associated with it: A right R-module M is salid to be

pc-torsion Cor C-torsiond if, for every m € M, there is ¢ € C



such that mc = 0. M is pc—torsion— free if pr.(HD = O, where
pC(M) is the pc—t,orsion submodule of M. If C is a right Ore
set,, then M is pc—t.orsion—free if and only if, given m e M,

there is no ¢ € ¢ such that me = O,

The right COre condition on C cah be characterised in terms of

C, as follows:

PROPOSITION 1.17: A multiplicative set C in a ring R is
right Ore {if and only if R¢cR ts a pC—torsion module for
every ¢ € C if and only if for any M € Med-R,

pCCH)=(meH:mc=OforsomeceC}.

If ¢ is the set of regular elements of R, we use the
term ‘torsion’ for tC-torsion’ and ttorsieon—-free’ for

‘C-torsion—-free’.

For any ideal I of R, we denote by ¥(1>, the multiplicative
sel of elements of R that are regular module I, i.e.,

%I = {r e R : r+l is regular in R-1 %,

PROPOSITION 1.18 [LM): If R is a right Noetherian ring, then

Pycsy = Y.R’3) for any semiprime ideal S of R.



THE UNIFORM INJECTIVE MODULE E P

Let P be a prime ideal in a right Noetherian ring E. We use
the notation EP to denote the right R-injective hull of a
uniform right ideal of R-P. Upto an R-isomorphism, the
indecomposable right R-injective module EP is uniquely
determined by PF. If n denotes the Goldie dimension of R/P,
then ECR/P) = EP". Then assCEPJ = assCECRP) = P and
YXRP) = »CECR/PD =xCEP).

TAME MODULES AND WILD MODULES

Let ¥V be a uniform right module over a right Noetherian
ring R. Set P = ass V, W = annVP. and R* = RP. Then P is a
prime ideal of K, and the uniform right R’-module W has no
non-zero unfaithful submodules. Moreover, as a module over
the prime right Noetherian ring R’, W is either a torsion

module or a torsion-free module but not both.

If the R’-module W is torsion then we call the R-module V a
wild module or a P-wild module, if we wish to convey that P
is the assassinator of V. If the R’-module W is torsion-free
then we call the R-module V a tame module or a P-tame module.

W is torsion~-free over R’ @& ECV)R is a direct summand of



ECR/P)P. Hence,a wuniform right R-module V over a right

Noetherian ring is P-tame if and only if Ed(VD = EP' Thus a

P-tame unitorm module 1s uniquely determined by P upto

similarity.
EXAMPLE 1.19: Uniform modules over commutative HNoetherian
rings and over right Artinian rings are tame. A uniform

module over a simple Noetherian ring is tame if and only if

it is torsion-free.

A SUMMARY OF THE THESIS

In this thesis, we study Ore localisation and related ideas

from the point of view of torsion classes. Hence we have
tried to get, torsion-theoretic versions of various
definitions and results of Jategaonkar, Goodearl etlc.. In

the case of commutative rings, for a prime ideal £, the set
RNP is a right Ore multiplicative set. The localisation of
Rat P, which 1is the localisation of B at the setl £ N\ P,
always exists. If R is not commutative, then R N F is not
necessarily a multiplicative set. The counterpart of R N P
in this case is

P = rekR: r+P € R/P is regular 7»,

which is a multiplicative set and is equal to B N P {if R is
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commutat ive. The localisation of R at #¥CP), called the
localisation of R at P exists if and only if 8P> is a right
denomi nator set. Hence it is important to find when €(P) is
right Ore, In {G4) Goodearl considers, for a right module E
over a right Noetherian ring R, the multiplicative set

MEY = (Cr € R :annEr=0}.
By [J, proposition 3.1.41, if R is a prime ideal in a right
Neetherian ring R, then ¥CP> is right Ore if and only if
8P €& HKCECRAPI)D. In chapter two, we get a generalisation
of this result for an arbitrary multiplicative set C, by
defining, for a torsion class vt € Jeoero R, a multiplicative
set,

C_={CreR: RrR is 7-torsion >r.

T

Then C is right Ore {if and only if € < t‘J(3 . We see that if E
o

"~

is an injective right R-module, then Cr(.’E) = NCED. Using
torsion classes, we get some situations when %(P) is right

Ore, for P € Pnec R.

Given a multiplicative set C in a ring B, it is known that
there is a right Ore set contained in €, which contains all
right Ore sets contained in C. Using torsion classes, we

construct this largest right Ore subset.

Let R be a right Noetherian ring. To study the regularity of

an element of R at different prime ideals, it is convenient



to put a topology on JSnec R. Two such topologies are the
Zariski topology and the patch topology. In (811, Simmons
has generalised the Zariski topology to prime torsion
theories. In the case of prime ideals, the patch topology
and the "generic regularity condition" are important in the
study of localisation. Hence we find it appropriate to get a
torsion-theoretic version of these concepts. We discuss some
properties of the patch topology and see that 1if R is
Artinian, then the patch topology on sn-R is the discrete
topology. We also see some collections of prime torsion

classes that satisfy the generic regularity condition.

As we have already mentioned, Jategaonkar has defined links
between prime ideals and Goodearl has generalised these links
between uniform 1injective right modules over a right
Noetherian ring. In chapter four, we define links between
prime torsion classes in such a way that an injective
(Goodearl> link between two uniform injectives implies a
generalised injective link between the prime torsion classes
cogenerated by them. An example shows that these links
provide more obstructions to Ore localisation than injective
links do. We also see some sets that are ‘'right stable”

under these links.



The construction of the largest right Ore subset of a
mnultipicative set has motivated us to define new 1links
between prime torsion classes. In chapter five, we define
these 1links C(Ore 1links) and observe that they provide
obstructions to Ore localisations in the following sense: If
a multiplicative set € in R iz a right Ore set, then,
vhenever C < Cr » we should have ¢ < Co' for prime torsion

classes ¢ and T such that ¢ is Ore-linked to T.

The following result of Jategaonkar 1s important in
characterising localisable sets of prime ideals: Let X be a
non-empty set of prime ideals in a right Noetherian ring R.
If X is "right stable"” and satisfies the 'right second layer
condition” and the "right intersection condition”, then

80 = Npex BCP) 1s a right Ore set.

Ve define a intersection condition for a set of uniform
injectives <Cor, equivalently, the prime torsion classes
cogenerated by themd), analogous to Jategaonkar’s condition,
using #CED instead of 8CPO and obtain a version of the above
result, for Ore links, without assuming the right second

layer condition.

We also discuss the behaviour of Ore links in various cases
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and obtain some situations when the set

n< Cr : T € 'rt ¢l ¢" ¥ is right Cre,

We conclude by discussing the scope for further work and by
mentioning certain problems that arose in the

torsion-theoretic study of Ore localisation and links.

P)wPosLﬁ'ans 24, 2, 26, 4 .12, 4.4 and v.xo.mp|c L L6 wene
ineluded (N mg M .Phil- dissentalion . ‘-lﬁet‘ ane menlioned
hene fon  the Sake of compaPe,temSS- |
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CHAPTER TWO

TORSION CLASSES AND MULTIPLICATIVE SETS

INTRODUCTION

For a ring R, there is a bijection of »n-R into the
collection of ail isomorphic classes of uniform injective

right R-modules, given by

M e Md-R : E = ECMD for some T7-critical right
>
R-module M
This map is well —defined, since, |1if M, M are

r-critical, then ECMD = ECM’).If R is right Noetherian, this
map is a bijection [Gi1l. This fact induces us to study
localisation from the point of view of torsion theories,
Since this approach seems to be promising, we have tried to
Jeneralise various results of Jategaonkar, Goodearl ete. to

torsion classes.

In this chapter, we define, for a torgsion theory 71, 2

corresponding multiplicative set C‘r as the set of elements of



R that generate t-dense right ideals. We see its connection
with the multiplicative set 8CP) of elements regular modulo a
prime ideal P and the set ACED of elements that act reguiarly
on an injective right R-module £, We obtain some results
concerning the right Ore condition for these sets. We also
see a new proof of the fact that every multiplicative set S
has a largest right Ore subset (i.e., one that contains every

right Ore subset of 5. Several of these results were

published in [(SCl.

THE MULTIPLICATIVE SET ¢

PROPOSITION 2.1: Let T € JTero—-R. Then the set

CT = (r e : RRrR 1s t-torsion in R

is multiplicatively closed.

PROOF : Clearly, 1 € C_. Ir r, r e« (C_, then r R/rr R
T 1 3 T ' ] 1" 2

is a homomorphic image of R/rZR y 1., rtrzR is T7-dense in

r R. SO rr R is t-dense in R, i.e , rr__ac .

1 1 2 1 2 T

NOTE:

(1) If T = LCO2>, the smallest torsion class, then C-r = (1>,

Cii> CT = R & 0 € CT @& 1T = Med—R, the largest torsion class.
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NOTE 2.2: Let M be the class of all multiplicative sets in
R. Define f : M —>Fero-E with fCCO = o, for € M and
g: Jerno-B — M with glrd = Cr for T &€ 7Ferno-R. Then both

f and g are order-preserving.

PROPOSITION 2.3 If 17 & Jsro-R, tLthen O < T.
“r

PROOF: If M is a right R-module which is e,- -torsion, then
“r

for every x € M, there is ¢ € R such that R cR is t-torsion
and x¢ = 0. So xR is a homomorphic image of R/cR. Hence xR

is T-torsion for all xe M, 1i.e., M is t-torsion.

PROPOSITION 2.4: If C is a multiplicative set, then C € C

if and only if ¢ {s a right Ore set.

PROOF: By proposition 1.17 we know that C is a right Ore set
if and only is R/cR is pc-torsion for every ¢ € ¢, {.e., 1f

and only if ¢ = C for every ceC.
C

CQROLLARY 2.5: Ir CT is a right Ore set for some Tt € JTers-R,

then CT = C .
Pe
T



PROOF': By proposition 2.4, CT € C By proposition

In
(9

2.3 and note 2.2, Cp
[»
r

PROPOSITION 2.6 If € is a right Ore set, then Cp is a
C

right Ore set but the converse is not true.

PROOF's We have

C =4{ reR: RR is pc-torsion >

Pe

=< refRR: glven s € R, there is ¢ € € such that sc &« rR >

By proposition 2.4, € € C_ . Hence, if r & Cp and s e R,

P C

there is ¢ = Cp such that sc e rR.

lo see that the converse is not true, let k be a field, and
let R be the ring of 2x2 upper triangular matrices over k.

Then R is an Artinian ring with two prime ideals P nd Q,

where

kR e Rk k 0 .3
R = ’ P = .and @ =

0 f 3 0 0 0 .3
Then 8CP) = R N P and 8 = R N\ Q.

¥e compute C .
Peced

a 13 ad e
1) For a, & € kR, ® C », for, taking « RE ,
[_O 0 eCPd) &) 1

34



35

€y %2 g, &
if Lthere is € R and < 8P Cga = 0) such that
O ¢ |c =
3 9
['a b c < d e} | g
* z = t 2 » then
0 O 0 Cqy o 1 |0 g,
[ac.  ac +bcs ) d31 dgz+eggs Lo . =0
K o 0 dg 2

which is a contradiction.

O 0
112 If a € k, then e C » for if a = O, then
0 a BCPd

clear.

(O 0 0 &g
then, = » 1L.e., £, = O, which is false.



0O a
1i1) If a,.b € k, then

e« C », for, if a = 0O, then
o & Pec P>

we have the prootf by case (iid>. If a = O, consider

0 O €, <, g, 8,
e R, If there is € R and € 8P

0 1 0 Cq O =z

(g. = 03, such that
3

0 a.cg 0 0
o= . Thus ac, = 0O and bcs = £, Since a = 0O,
s

we have €, = 0. 3o 8y =0, which i1s a contradiction.

ivy If a,b,c € k such that a # O, ¢ == 0, tLhen

Fa b e f
-] CJ » for, given e R , we have
Pecp> o g

a e a-1Ce+f—bc—1g)' 1 1
e R and € 2CP) such that

| o c g o 1

a b a ‘e a 'Ce+f-bc ted e f t 1
- = —e==C A
Y < O T _ o £ o 1




ases (1D, Ciid, Ciiid, Civd together cover all the elements

of R and hence we get

i a b
c = ra, b, c ek, a® O, ¢ = O,
Pecpd 0 e
= BCPO) N BCQD.
1 1
Now by case (iv), € C and hence by equation CA,
o 1 Pec P>
we see that ¢ is right Ore. But #(P) is not right Ore,
o
8CPD
since,

0 0 O 1 L b
e B8CP) and e R such that if e Rk

0 Q Q <c

w

=)

[a %
e
Q Q.
-~ 1]

j € 8CPY) Cf = 0>, then

0 1 J | O c | o) c |
FO 1 d e [O f
whereas = and these two cannot be
| O 0 % f O 0

equal for ¢ = O,
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NOTE: Following Stenstrom {S2], we say that a multiplicative
set € in a ring R satisfies property S0 if, for a, b € R,

ab € R implies a € C.

PROPOSITION 2.7: If a multiplicative set € in a ring R
satisfies =50, then Cp € C.

C

PROOF: Let r e ¢ . Since i € R, there are c a i, 4 € R

Pc

such that 1.2 = r.d, i.e., rd €« C. By property SO, r € C.

NOTE 2.8: If R/P is a right Goldie ring, then 8(P> satisfies
50, for, let ab € $CP). If a = a+P € R/P, then

ab e (0> € R/P. Thus ab is invertible in XR-P), i.e.,
abQCR/P) = QCR-P). Also abQ(R/P) € QCR-P)>. Thus,

A R/P) = CR-P), L.e, a is invertible in QCR-P>, i.e.,

a <= ECP).

NOTE 2.9: If £ is a right R-module, then the set W(ED

P O ¥ is a multiplicative set

(G4]. The set ACED) satisfies S0, for, if ab e€ ACE), Lhen,

defined as ACED=( r « R: ann

for x € £, 1f xa®b = O, then x = O, Now, 1f xa = O, then

xab =2 O and so x =0, 1.e., a &« N#(ED.
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39
PROPOSITION 2.10: Let n = (E), where E is an injective

right R-module. Then

KE = { R NI : I is a right ideal of R, I # R and R~1 }

is n-torsion—-free

PROOF : Denote the left hand side of the above expression by
Y. Let ¢ & ACED, and let I be a right ideal of R, I = R, such
that R7I is n-torsion-free. Then y(ECR/ID) 2 n = »(E, {.e.,
ECR-I> can be embedded in say, E£’, a product of copies of E.
Then HCECR/ID) =2 ME'D = HA(ED. Hence ¢ e ACECR-IDD. Now if
¢ e I, then there is 1+ e€ ECR/I> such that (1+I>c = ¢+l = O,
But since we have ¢ € ACECR/IJ), this means 1+ = O, which is

false. So ¢ € RN\ I. Hence ACE) <= Y.

Next, let ¢ € ¥, and O ® x e E. Since xR is a submodule of
E, xR Iis n—-torsion—-free. So ann x is one of the I's in the
definition of Y. Hence ¢ € R N\ ann x, i1i.@ , xc = O. Thus

¢ € A/CED, fL.e., ¥ € AE>, This completes the proof.

NOTE: By the above proposition, it is clear that if E, E’
are injective right R-modules, with (ED) = x(E’D, then

HMEY = HKCE'D.

PROPOSITION 2.11: Let € be a multiplicative set in a ring R.

If £ is an injective right R-module,. then, = NCED.

(‘xCED



PROOF: Let r € C i.e., R/'rR is y(E)-torsion. Let I be

xCED’
A proper right ideal of R such that R-1 is
wE -torsion-free. I[If r € I, then rR is a submodule of I and
hence R-I 1s x(ED-torsion. Thus, R7I is E>-torsion-free

and xCED-torsion, which s false, since | = R, Hence

S HCED.

re RN1I. By Proposition 8, r € ACED, i.e., Cx(E) =t

Next, let c € NED. Suppose there is a homomorphism
f : RcR —>F such that fdl1+cR = x C(say)d. Then

x¢ = fCl+cRc = O. Since ¢ € ACE), we get x = O, i.e.,

fCl1+¢cRd = O, Hence = O, Thus R-cR is y(ED-torsion. Thus

HMEY € Cx(;E)'
NOTE 2.12: If P is a prime 1ideal in a ring R, then (RPD
is the largest of all P-principal points, for, let n be a
P-principal point. Then, wnd = P. Now, for a two-sided
ideal I of R, R-/1 is n-torsion if and only if I ¢ wim.
Hence R-P 1is not n-torsion. By (J, proposition B.4.21,

R’P is n-torsion-free, i.e., XRP>) 2 n.

PROPOSITION 2.13: If £ is an injective right R-module aver a
right Noetherian ring R, such that »wE) is a PFP-principal

point for some prime ideal P of R, then A#CE) € #2CP).
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£y - > a
PROOF: By note 2.12, y(R/PD> 2 x(CED. Hence Cx(ED = Cz(R/P)'

€ 8CP>, by

So, NME) & NECR/PY) = C c
XCRAPD Pec P>

proposition 2.11, proposition 2.7 and note 2. 8.

COROLLARY 2.14: If K is a right Noetherian ring and E is a

uniform injective with ass £ = P, then ACE) € 8CP).

PROOF: Since £ is a uniform injective right EF-module, we

have yw(xCE> = ass E by proposition 1.186,

COROLLARY 2.15: If R is a 'right, Noetherian ring and P is a
prime ideal in R, then ACECR/PD) = 8(P) if and only if &P

is right Ore.
PROOF: Follows from propositions 2.4 and 2.13.

THE RIGHT ORE CONDITION ON %CFPD

ln the next few propositions, we see some situations where
P> is right Ore (for a prime ideal P>, using torsion

classes.

PROPOSITION 2. 16: If R is a right duo ring Ci.e., a2 ring in
which every right ideal is two sided), then ¥ P> is right Ore

for every prime ideal P in R.
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PROOF: By assumption, if r € R, then rE = RrR, Now

r € C if and only if R rR is 2CP)-torsion if and only
Prcp>

if RRrR is B8CP)-torsion if and only if RrR £ P if and only

if r e R\ P. Since 8P € R N P, we have ¥(P) <« C .
Pec P>

S0, by proposition 2.4, 8P is right Ore.

PROPOSITION 2.17: Let R be a right Noetherian ring and P

be a prime ideal of R. If CR/P)k is injective, then B(FP) is

right Ore.

PROOF: Since L'R/P)R is injective, we have

NAECRAPDY = AC(R/P) = { r € R : ann, p = o
=4{reR: xr =0 4 x=0Tfor any x € R/P >
={ reR: sr e Pds apP for any s € R >
=2 2P,
Thus, by proposition 2.11, 8P) € C . By proposition

Pec Py
2.4, €CP) is right Cre.

COROLLARY 2.18: If R is semisimple Artinian and P is any

prime ideal of R, then 8 PO is right Ore.

PROOF': Over a semisimple Artinian ring, any module \is

injective,



COROLLARY 2.19: It R is semisimple Artinian, and E is any

simple right R-module, then ACED = ¥C(P), where P = asg E.

PROOF: Since R is semisimple Artinian, E is tame and so
E = EP. By corollary 2.18, ¥&(P) is right Ore and so by

corollary 2.15, we have 8(P) = ACECR/P) = HED.

NOTE 2.20: In a general right Noetherian ring R, if E and E’
are uniform injectives with ass £ = ass E’, then ACED need
not be equal to WCE*’), for, let E be a uniform injective
right module over a simple right Noetherian ring R. Then

€C0) is right Ore and so by corollary 2.18, #C(0> = ICEOD.

Now, suppose ¢ € 80> such that cR » R, Thernn ¢ 1s an
essential right ideal and so R ¢cR is torsion. Let E be a

uniform submodule of R/cR. Then E is torsion. Hence, given

x € E, there is r € 8(0) such that xr = O, i.e., r & ACED.

So 8C0d> ¢ ACED.

THE LARGEST RIGHT ORE SUBSET OF A MULTIPLICATIVE SET

So far, we have seen many situations when multiplicative sets
of interest to us are right Ore. But we know that there are

cases when sets are not right Ore. Now, given a
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multiplicative set C we give a new proof that there exists a
right Ore set contained in € which contains all right Ore

subsets of C.

This fact has been known for a long time. A proof is
given 1in [GW, Exercise 9F]. However, our proof will lead to
a characterisation of this subset as an intersection of

right cliques, as conjectured in [G4}1, in the case € = CC(PD.

To prove the next theorem, we define, for any multiplicative
subset C of R, a sequence of subsets Ca’ for every ordinal a.

Let C0 =C , C‘ = Cp N C, and for any successor ordinal o,
c

= nﬁ(a Cn.

Then the Ca's form a descending chain of multiplicative

let C = CC D . For a limit ordinal a, let
a+t a1 el

sets in R.

LEMMA 2.21: If T is a right Ore subset of a multiplicative
set €, then T < C{
THEOREM 2Z2.22: Let € be a multiplicative set in a ring R.
Then C has a right Ore subset which contains every right Ore

subset of C.

PROOF: The map a > Ca ,from the class of ordinals to the

power set of €, cannot be one-one since the ordinals do not
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form a set. Hence for some a, Ca = C =2 N"NCC,: 3 1is an

ot 3

ordinal number »>. By proposition 2.4, Ca is a right Ore set.

By lemma 2.21,

it contains every right Ore subset of C.

48



CHAPTER THREE

THE PATCH TOPOLOGY

INTRODUCTION

Lett R be a right Noetherian ring and #nrec R denote the set of
prime ideals of R. To consider regularity of an element of R
at different prime ideals, it is convenient to put a topology
on Jnec R. One such topology 1is the Patch topology
introduced by Hochster in 1969. In 19868, Goodearl defined
the generic regularity condition for subsets of Snec R, and
this helps us to clarify the discussion of various continuity

results on fnec R.

In this chapter, we give an analogue of the Patch topology
for prime torsion classes and discuss its properties. We
also define the generic regularity condition for prime
torsion classes. In the case of prime ideals this condition
has an important role in the study of localisation. Though
we study patch topology and generic regularity condition on
prime torsion classes for their own sake, we hope that they
can be used 1in the torsion theoretic approach to

localisation.



Let R be a ring with ACC on ideals. Then the sets VC(ID n WCD
(I, J ideals of R) form a base for the open sets of the patch
topology on FPnec R, where

VCI> = ( Pe fnecR: P21

WCID) = ¢ Pe PnecR: F 3 J>.

THE PATCH TOPOLOGY ON P¢-R

Let R be a ring in which all points are principal, i.e., a

point principal ring (for example, a right Noetherian ringD.

DEFINITION 3.1: For each ideal I in R, define
6CI> = {n € R : Rl is n-torsion >
&S'CID) = {n € R : R-I is not n-torsion » = rt-R \ &6CID
Then, for ideals I‘ , Iz of R,
&I DO VSCI D = 46CF + 1D
1 2 1 2
&'CI ) mbd°CI O = 6"CI + 1) and
1 2 1 2
&I DN &CI DO = 6C1 N ID) so that for ideals I, I, J , J
1 2 1 2 1 2 1 2
of R, we have
CO'CI D MSECIID NCE'CL D MECIDD = &6"CL +I D n bCT  JD.
1 i 2 2 1 2 1 2
Hence, the sets of the form &°CI) N &0 (I, J ideals of B ,
form the base of open sets of a topology (Lthe patch topology

on JSnec .

By proposition 1.16C(iid, for an ideal I and prime ideal P of

R, I £ P if and only if R/I is not YR P)-torsion. Hence we
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have the following result.

NOTE 3.2: For P e frec R, P e V(UID mn WCD if and only if

XRPD) € &'CI> n &6CD.

PROPOSITION 3. 3: Let R be a ring with ACC on ideals. The
map @ : Fnec R —>nt-R with (P> = (RP) (where P € Fnec B
is a topological embedding, where Sfnec R and on-R are given

the coresponding patch topologies.

PROOF: Let &°CI> N 6CJ)) be a basic patch open set in npe-R
where I, J are ideals of R. Then we have

¢_‘[6'CID N SCIDT = &°CId) N 6D N ¢CPnec RY, which is open
in ¢ (frec RD. Hence ¢ is continuous. Now,

FVCId N WCIDD

C @CCP> : P € VOO N WCI> >

K Pnec R, Hence ¢ is an open map.

PROPOSITION 3. 4: Let o e pnpt-R . Then the patch
neighbourhocods &'Cy(edd N &6CJD form a base for the patch

neighbourhoods of ¢, where J is an ideal properly containing

wed.

PROOF: Any patch neighbourhood of a point ¢ € npt-R must

contaln a neighbourhood of the form &°CI) n &7 > o. Since

E'CIdD N 6D N ¢gCFfnec R, which is open in
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v € &'CyCod) and 6°CyCodd € 6°CId, we may replace &°CI) by
&'CyCod). Now, &*CyCodd) N &6CID = & Cyodd n SCyCod + D, and
so we replace J by wWoed + J. Thus. every patch-neighbourhood
of ¢ contains a neighbourhood of the form &§"CyCodd N &CND,

where J is an ideal properly containing yCeod

PROPOSITION 3.5: If R is a ring with ACC on ideals, then

-R with the patch topology is a compact space.

PROOF: Let X be a family of patch-open sets covering né-R.
Suppose no finite subfamily of X covers sn¢-R. Then, since
R = &6°C0>, we may use ACC on ldeals to choose an ideal Q
maximal with respect to the property that no finite subfamily
of X covers 6’CQ. If A and B are ideals properly containing
Q, there must be a finite subfamily Y of X that covers &°CA
and &'CBD. Then, since &"CABD < &6°CAd v &6°CBY, Y covers
6'CABY. Hence &°CABY $ &'C®. So, AB f Q, i.e.. Q is a

prime ideal in R.

Choose U in X such that »XRQ e U. Then CR/QD must have a
patch—-nei ghbour hood S CyCCRQDID M &CD, for some 1ideal
J 2 ywW (RO, such that 8"y (RMDI> N 6CD < U, L.e.,

wXRQ must have a patch-neighbourhood &°CQ> n &CJ>, where

J > @, such that &’°CQ@> n &N < U.
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Now, by maximality of Q, &°CJD can be covered by some finite
subfamily ¥Y* of X. But &°CQ N\ &°'CD = 86"CAO n 6D s U. So
&§’CQ can be covered by Y U {U> contrary to our choice of Q.

Thus there must be a finite subfamily of X which covers pne-R.

Recall that there is a surjection yw: PR —> SFrnec R given

by mr» wCrd.

DEFINITION 3.6: A point-principal ring is a T-ring if the

map ¥: ft-R —> Pnec R is injective.

PROPOSITION 3.7: Pt-R with the patch topology is Hausdorff

if and only if R is a T-ring.

PROOF: Suppose R is a T-ring. Let ¢, n be distinct points
in R Then either Rywo) 1s n-torsion or RyCn) |is
o-torsion (For, .it‘ not.,, then o) = yw(nd, 1. e., ¢ = n, since
Ris a T-ringd, say, R ywWod 1is n-torsion. Then, since
SR = n-R, &'Cyoldd N SR 1is a.patch—neighbourhood of ¢
and &'Cy(md)) N Syl is a patch neighbourhood of n and
these are disjolint since &§'(yCodd and &(y(ol) are disjoint.
Thus, if R is a T-ring, then r-R with the patch topology is

Hausdorff.

Now, suppose R is not a T-ring. Then, there 1is a prime



torsion class ¢ and a prime ideal P such that »Cod = P, but
o®n = yYCRPD. By note 2.12, ¢ < n. Now, any neighbourhood
of ¢ contains a neighbourhood of the form &’CyCed) N &6C N » ¢
vhere J > P, 1. e., o € 6’CP) n &CJ>. Since R/J is o-torsion,
RJ 1is n-torsion, i1i.e., n € &CD. Now, n e &’Cyind) and

wod) = wWnd, and so nn @ $’Cyodd, L.e., n € &' CyCod) n &C D,

Thus, any neighbourhood of ¢ contains n also, i.e., we cannot
find a neighbourhood N of ¢ such that n &« N, i.e., nt-R with

patch topology is not even 'I‘1 if Ris not a T-ring.

PROPOSITION 3.8.: Pt-R with patch topology 1is totally

disconnected.

PROOF: Since &°C0) = &6CR) = pt-R, for an ideal I, we have
S'CId> = &*CId N SCR and &CID = &°COd n 8CID, both of which
are patch-open and patch-closed. So, the basic open sets
&’'CId) m &CD for ideals I, J of R are all patch-closed.
Hence the patch topology on né¢-R has a basis of open sets

which are also closed.

PROPOSITION 3.9: If R is a right Artinian ring, then the

patch topology on nt-R is the discrete topology.

PROOF: Since R is Artinian, we have

51



w-R = ¢ (RP) : F € fnec R ).
If P e Pfrnec R, then &CF) = { n €« r~R : RP is n-torsion >.
Let n € né¢-R, say, n = yXRQ for some Q € fnec R. Since all
prime ideals of R are maximal, we have Q@ § P if @ = P. Hence
YCR/PD # WRAAD, 1.e., RP is not R -torsion-free, {.e.,
by (J, proposition 5.4.281, R/P is RO -torsion, i.e.,
YXR/Q) € &CPO. Thus we have &(P) = nt-R N\ (R P)D for any
prime ideal P in R, i1.e., &6’CP) = {(RPD). Hence all
singletons are open in the patch-topology on né-R, i.e.,
when R 1is Artinian, the patch topology on nt-R 1is the

discrete topology.

NOTE 3.10: For a torsion class n in JFeno-R, let E be an
injective right R-module such that nn = C(E). Then we denote

N = HCED, This is well -defined by‘proposition 2.10.

THE GENERIC REGULARITY CONDITION ON P¢-R

DEFINITION 3.11: Let X € on—-R. VWe define generic regularity
condition as follows. If, for any n € sn—-R and any ¢ € ¥#(mnD,
there is a patch-open neighbourhood U of n such that ¢ € ACod
for ‘any ¢ € U n X, then we say that X satisfies the generic

regularity condition.
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PROPOSITION 3.12: If R is right Artinian, then any X € on—-R

satisfies the generic regularity condition.

PROOF': By proposition 3.9, the patch topology on on-R is
the discrete topology. Hence given n = (RP> € sn-R and any
c e A, &CPY = XR/PY> > 1s a patch-open-neighbourhood

of n.

PROPOSITION 3.13: If R is a right duo ring, then any
X € on—R satisfies the generic regularity condition, where a

right duo ring is as defined in proposition 2.17.

PROOF: If o0 € sp~-R , then ¢ e #(od if and only if R/cR is
o-torsion if and only if R RcR is o-torsion if and only if
o € SCRcRY. Now, &6CRecR) 1s an open set and hence is an open
neighbourhood of ¢. Hence, given 71 € on-R and ¢ € #C1D,
there is a patch-open neighbourhood U = &CRcR) of T such that

¢ € KCo) for any ¢ € U Cand hence for any o € U n XD.
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CHAPTER FOUR

GENERALISED INJECTIVE LINKS

INTRODUCTION

In the theory of commutative Noetherian rings, several
fundamental results are obtained by using the procedure of
localisation at prime ideals. In the non-commutative case,
localisation at a prime ideal is not always possible and it
has been found that if we wish to localise at one prime, we
have o look at a whole bunch of primes "linked"” to the first
one. In the 1970s and 1680s, Jategaonkar, Mueller and others

worked on this problem.

There is a large class of Noetherian rings that satisfy a
certin condition called the ‘'second layer c<condition” by
Jategaonkar in which it is possible Lo describe localisation
at a prime Cor a collection of primes) under conditions that
apply widely. However, there are important classes of rings
that do not satisfy this condition. A study of localisation
in such rings was started by Goodearl (1988). He found a

closer connection between prime ideal links and the second



layer and used it to define links between uniform injective
right modules over a right Noetherian ring. He observed that
links between tame injectives correspond precisely to links
between prime ideals, while, in general, other links exist,
which provide more obstructions to Ore localisations than

prime ideal links do.

In our endeavour to study localisation using torsion classes
we have defined links between prime torsion classes in such a
way that an injective link between two uniform injectives Cas
defined by Goodearl) implies a torsion-theoretic link between
the prime torsion classes cogenerated by them. Some of the

results of this chapter are in [CS].

PRELIMINARIES

Most of the material in this section is taken from (J]1 and

(G4].

DEFINITION 4.1: Let R be a right Noetherian ring and let P,
Q be prime ideals in R. We say that Q ts linked to P Cvia
the ideal A < @ n P), dencted @ P, Iif QP £ A < Q@ n P such
that the right R/P-module C(Q n PD/A 1is torsion-free, and
the left R/Q-module <@ N P)/4A has no non-zero unfaithful

submodules (J1}
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DEFINITION 4.2: Let X € Pnec R. We say X is right stable
if, whenever P « X, Q € fnec R, and Q~> P, we have Q & X.
We say X is stable if Q@ ~»P implies either both @, P € X or
both Q, P & X. If P e fnec R, the right cligue of P, denoted
rt ¢l (P> is the smallest right stable subsetl of J/nec R
containing P, i.e., rt ¢l P is the smallest set of primes
containing P and all prime ideals Q@ in R such that

Q> a ~» Q ~>...... ~>Q ~> P, where Q (1 < i < nd are
prime ideals in R. The cligque of P € Fnec R is the smallest

stable subset containing P.

PROPOSITION 4.3 : Let R be a right Nocetherian ring, P a
prime ideal of R and € a right Ore set in R. If C € CCP),

then C € CC@> for all Q@ ert cl CP).

EXAMPLE 4.4: For the ring in proposition 2.6, the only prime
ldeals are @ and P and the only link is @ ~»P. Then we have

rt ¢l @ =< Q> andrt ¢l P =L P, Q>

DEFINITION 4.5: Let 5 be a semiprime ideal in a right
Noetherian ring R and let M be an S-primary right R-module.
Then the first layer of M is defined as the module annH s.
This is defined by M alone (independently of S).
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Consider the module ECM-7ann M SO. This module can be

decomposed as EICM/annH s = etex Elc"'i.) where < E,L : 1 eI >
is a family of pairwise non-isomorphic indecomposable
injectives, < Ho 1 €I > is a family of non-zero cardinals,
.ind Eicut) denctes the direct sum of a family of copies of E'_L
that i1s indexed by a set of cardinality H, - The family
< EL : 1 €I > is uniquely determined by M upto permutation
and isomorphism, and, for { €1, B, is uniquely determined by
EL.

The second layer of M is defined as the set of the similarity
classes of the indecomposable injectives Et » 1 e I. Then,
the second layer of M is just the set of the similarity
classes of uniform submodules of H/annH S. Often, we loosely

treat a set of the representatives of the second layer of M

as if it were the second layer of M.

DEFINITION 4.6: A prime ideal P in a right Noetherian ring R
is said to satisfy the right second laver condition if every
uniform module in the second layer of CEP)R is tame. A prime
ideal P in a Noetherian ring is said to satisfy the second
layer condition if P satisfies the right and left second

layer condition.
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A set X of prime ideals in a Cright) Noetherian ring R is
said to satisfy the (right) second layer condition if every
member of X does. Finally, the ring R is said to satisfy the
Cright) second layer condition if FPnec R satisfies 1it. For,
example, FBN rings, having no wild modules, satisfy the

second layer condition.

DEFINITION 4.7: If X € Snec R, we say X satisfies the right
intersection condition 1if any right ideal of R that has

non-empty intersection with §_(P) for every P € X also has

R

X0 = Neex eCP) .

non-empty intersection with 8R

PROPOSITION 4.8 (J, lemma 7.1.41: Let X be a non-empty set
of prime ideals in a right Noetherian ring R. Assume X 1is
right stable and that it satisfies the right second layer
condition as well as the right intersection condition. Then

8CXD is a right Ore set in R.

Goodearl ([(G4]1 studies the influence of 1injective module
structure on localisation questions for non-commutative

Noetherian rings.

DEFINITION 4.9: If F,E are uniform injective right modules

over a right Noetherian ring R, we say that there is a tink
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from F to £ , written F~E , if F is isomorphic to a direct
summand of the injective hull of E/annECassE). i1.e., F~>E,
if and only if the isomorphism class of F belongs to the

second layer of E.

The right cligque of E consists of E and all those uniform

injective right R-modules F such that

F~E ~oF ~...... ~>E ~>E
n n—t 1
for some uniform injective R-modules Ei (1 =1 < nmn.
Injective module 1links provide obstructions to Ore

localisations in R, in the following sense.

PROPOSITION 4.10 (G4, proposition 1.21: Let C be a right
Ore set in a right Noetherian ring R, and let E be a
uniform injective right R-module. If C £ HAED, then € € H(FD

for all F in the right clique of E.

The notion of linked uniform injectives, when restricted to
tame injectives is equivalent to the notion of linked primes,

as follows.

THEOREM 4.11: (G4, theorem 1.41: Let R be a right

Noetherian ring, and 1let P, Q e ne¢c R. THen Q P if and

only if EO ~> EP.



It can also happen that a Q-wild uniform injective is linked
to a P-tame uniform injective., In this case, O need not link
to P. Thus, there can exist links between uniform injectives
that do not correspond to links between the assassinator

primes.

For a right Noetherian ring R, since there is a bijection of
on—-R onto the collection of all isomorphism classes of
uniform injective right R-modulexs, we define links between
prime torsion classes, in such a way that an injective link
between two uniform injective modules implies a link between

the prime torsion classes cogenerated by them.

GENERALISED INJECTIVE LINKS BETWEEN PRIME TORSION CLASSES

DEFINITION 4.12: Let R be a ring and ¢, n € sn—R. Let E be
a uniform injective right R-module with nn = »CED. Put
ass £ = P and annECP) = L. We say that o is linked to n
written ¢ ~>n if o 2 (E/L)

NOTE 4.13: This definition is independent of the choice of
E, 1. e.,if n = xCED = xCE') C(where E,E’ are injective right
R-modules) with ass £ = ass £* =P, L = annECP). and

L = annE,(P). then we have »)(E/L) = »wWE'-ZL'>, for, since

WE'Y = xCE), by proposition 1.13Ced, E* 1is embedded 1in

80



61

nieI E1 » Cwhere Ei 2 F for every 1 € I) say, x +—> Cxi).

If reR, then xr +— (xir). Let Li = anng P. Then
i

x € L’ if and only if X, € L:I. for every { e I. So we have a

map f: E’- L "_>nie1 CEi/Lj.) » with x+L — Cx1+L1).

Then  1is well-defined and is one-to-one, since 1if
C xi +L1 > = 0, then x+L'=0Q, So E'/L' can be embedded in a
product of copies of E-L , and thus we have

XCE' ALY 2 xCE-/LY. Similarly, x(EALY 2 E*/L'D.

FROPOSITION 4.14: Let R be a right Noetherian ring, and FE,
F be uniform injective right R-modules. If F ~>E as in

definition 4.9, then x(F) ~>CED.

PROOF: Since F ~»E, F can be embedded in ECE/annECassE)).

Hence y(FD> Z C(E ann_Cassi)) and so y(F) ~>(CED.

E

The next proposition shows how torsion-theoretic links

obstruct localisation.

PROPOSITION 4.15: Let n, ¢ € osp-R and C be a right Ore set

in R.If € € #CnD, then C € A/ (o), for every o~»Hrm.

PROOF': Let m = xE), where £ is a uniform injective right

R-modul e. Let ass £ = P and annE P = L. Then, since o ~>n,



> 2 < <
we have o 2 (E/L). Since € €€ #4C(n), we have Pe = Phepy ST
by propositions 2.3 and 2.11. Hence, using (G4, lemma 1.1],
we have Pe < xW(EAL>, and hence Pe < ¢o. Since £ is right Ore,
using proposition 2.4, we have © < Cp = Co' By proposition
C

.11, C € A/Co) for every o ~>mn.

The following example shows that generalised injective links
provide more obstructions to Ore localisation than injective

links do.

EXAMPLE 4.16: Let R =2 , the ring of integers and let

E = Z(pPS = a/pn :n

o, 1, 8, ..... » O 2 a =< b-1 3>, Ve

have, for a prime p,

EC2/p2) 220 < @2 =C ab: b= 0O, 0<ac<b1l) So we

have an embedding of 2-pZ into ZCpuD with t+—=>1 p.

Now £ is an indecomposable injective and ass £ = p&. Let
L = annEﬂassED =< 0, 1/0,...., Co-1Ddrp >, Then E-L = E.
Also £ 1is faithful as a right R-module, i.e., ann £ = O,
i.e., for each r € R, there is x € £ such that xr # 0. Hence

we can embed R = £ in a product of copies of E,

i.e., 2R 2 B = wCE/A). So xR >xCB.

But ECE/annE(assEDD = ECE/L) = E, which is indecomposable.

&2



So the right clique of £ Cas in definition 4.9) consists of

£ alone, 1.e. ,R is not linked to E.

DEFINITION 4.17: Let X € on-R. We say X is right stable if,
whenever n e€ X, o € sp~-R and o ~> n, we have o e X. If
n € sn-R, the right cligue of n, denoted rt ¢l n, is the

smallest right stable subset of sn-R containing n.

NOTE 4.18: By proposition 4.15, we have: If n € osp-R and C
is a right Ore set in R and € € A4n), then € £ A{0) for

every o € rt cl m.

PROPOSITION 4.19: If C is a right Ore set disjoint from a
prime ideal P in a right Noetherian ring R, then we have,

O ENLC o€ sn-R: o €«rt ¢l Cx(R/PID).

PROOF: Since € is disjoint from P, we have C £ CC(P) by
< =

{B, Theorem 2.1(c>]) and hence Pe = Pecpy x(R/P> by

proposition 1.18. Hence, by note 4.18, Pe £ o for every

o e rt cl y(RP).

PROPOSITION 4.20: If R is a prime right Noetherian ring and
E is a fully faithful uniform injective right R-module, then
there is no prime torsion class linked to wWE), i.e., the

right clique of (E) consists of (ED alone.
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PROOF: Since £ is fully faithful, ass £ = 0. Hence, we have

L = ann_ Cass £ = E. So, 1if ¢ € sn—-R such that o~>n, then

E
o 2 x]E/LD) = yWE/ED) = (0> which 1is the largest torsion
class, i1.e., o = (0>, which is not a prime torsion class.

Hence, rt cl (E> = { xCED ».

PROPOSITION 4.21: If £ is a simple uniform injective over a
right Noetherian ring, then there is no prime torsion class

linked to »CED.

PROOF: Let ass £ = P, Since E is simple, L = ann, P = 0 or
E. If L =E, then if o € sp—-R and o ~»>(E>, we have

o 2 WEALD = 20> which is not possible, as in proof of
proposition 4.20. But L = O, since P = ass £ is the
annihilator of some non-zero submodule of E. Hence there is

no prime torsion class linked to (& and

rt ¢l CED> = { yCED .

NOTE: let n = E>, for a uniform injective E, P = ass E,

L = ann, P. Then o~>n & ¢ 2 YXE/L). Hence, if o~ n, then

I 1s o—closed » I is y(EsLD—-closed for any right ideal I of R
Thus,

U<CI:I is o-closed and o ~»n » € U C I: I is (E/LD)-closed >
Hence, we have,

CRNID 2 CR N ID

N is o-—closed Ny is xCE/L>-closed
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Let us represent the left hand side of the above equation by
A and the right hand side by B. Now, 1if wWCE/LD is a prime
torsion class, then (CE-LD >m. So, then, A € B and so we
have A = B. Thus, if xWE/L) is prime, then,

N < ACod : o~>n > = ACECEALYD

SOME RIGHT STABLE SETS

DEFINITION 4.g2: Let R be a right Noetherian ring and

o € JTero-R. We define [(o) = {( n e osp-R : n 2 0o Y.

PROPOSITION 4.23: Let R be a right Noetherian ring and let
X< on-R 1If € is a multiplicative set in R such that

csnc« CT i T € X >, then X € FCpC).

PROQF: Let o € X. Then C < Co' Hence pc < pt < ¢ by

proposition 2.3, i.e., o & FCpC). 1.8, X & FCpC).

PROPOSITION 4.24: Let D be a right Ore &eét in a right
Noetherian ring R. Then FCpr is right stable under
generalised injective links.

PROOF: Let n e FCpD) and o ~»n. Then n 2 and so

p

Cp =1 Cn' i.e., D € #Cnd by proposition 2.4. So, by
D



proposition 4.15, D € #Ced, 1.e., . by

< <
Pp = Pacod =
propositions 2.3 and 2.11, 1.e., o € FCpD).

NOTE: If P is a right localisable prime ideal in a right
Noetherian ring R, then Pecpy € rcgﬁCP)) Csince Pec P> is a
prime torsion class by example 1.14 and proposition 1.18) and

so, by proposition 4.24, rt cl C(CR/P) € IN'Cx(R/PD).

PROPOSITION 4.25: Let R be a right Noetherian ring. If C is
a right Ore set in R such that Pe is a point, then, for
ceC, rt cl Ce S 6CRecR), where &6CI) (for an ideal I in R is

as in definition 3.1.

PROOF: Since C is right Ore, by proposition 2.4,

cscC = HMp). Hence ¢ € #Cp D, 1.e., RcR is p. —-torsion.
Pe C C c

So R/RcR is Pe -torsion. Now, by note 4.18, C € 4 (oD for
every ¢ € rt cl Pe » i.e., ¢ € 6CRcR for every o @ rt cl Pes

i.e., rt cl Pe € SCRcRD.

COROLLARY 4.26: If R is a right Noetherian ring and 8Pd is
right Ore for some P € Snec R, then for ¢ € ®(P), we have
rt ¢l xXRPY € &CRcRD, 1.e., rt cl xXR/P) = Nec SCReBRD .

PROOF: By proposition 1.18, WR-P) and by example

Pecp>
1.14, xXR/PD) is a point.The result now follows from

proposition 4.:298.
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PROPOSITION 4.27: If R is a semisimple Artinian ring, then
6CI> is right stable under generalised injective links for

any two-sided ideal I of R.

PROOF: Since R is semisimple Artinian,

on—-R = ( YXRP):P @« PrnecR ¥y and so, Iif ¢ € R and o € &(RcR,
then ¢ = yCRP) for some P € Sneck. By corollary 2.18,
eap = ﬂthCP)). Since ¢ € 6CRcR), R/RcR 1s o-torsion and
hence, by proof of proposition 4.288, rt cl WR/P) <€ 6(RcPR,
t.e., &6CRcRD 1is right stable under generalised injective

links for any ¢ € R,

Now, let I be a two-sided ideal in R. If ¢ €I, then
ReR £ I, and so &CRcRD € &6CID. If oo € 6CID>, then o = YRP)
for some prime ideal P in R. By proposition 1.168C1i1)0, [ # P,
i.e., there is ¢ € I such that RecR # P,

i.e., (RP) € 6CRcR). 1.e., there is ¢ € I such that

o € 6(ReR, 1.e., 6CId € Ucel 6CRcR. Thus

&CId = Uce16(RcRD. Since &6CRcR) is right stable under links,

for any ¢ € C, so is 6CI) for any ideal I of R.
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CHAPTER FIVE

ORE LINKS

INTRODUCTION

In chapter four, we have defined torsion-theoretic 1links
between prime torsion classes and we have seen that they are
extensions of injective 1inks in some sense. Thus
generalised injective links are important, but, so far, only
as a matter of theoretical interest. Meanwhile, the
construction, in theorem 2.23 of the largest right Ore subset
of a multiplicative set has motivated us to define entirely
new links between uniform injectives dor, equivalently,
between the prime torsion classes cogenerated by them. In
this chapter, we define these links, which we call Ore
links, and also a right intersection condition for uniform
injectives. Using these, we see that we can obtain a version
of proposition 4.8 using the sets ACED instead of ¥8C(PO, and

without assuming the right second layer condition.
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MOTIVATION FOR ORE LINKS

Let R be a right Noetherian ring and let S be a
multiplicative set in R satisfying property S0 (i.e., for

a, b e R, ab e s a2a € 3.

Let So = 3, S‘ ={rekR: RrR is 50 -torsion >, and
) = (CS D> for any successor ordinal a. Then
a+d [+ 3 §

s = S‘o 2 S1 2 Sz 2 ...... Now, by proposition 1.189C1i11),

Py = N M Mis an S_L—crit,ical right R-module ).

i

Then, we have

Si.+1 = JCPS,)

i

=n ¢ ACECMD) : Mis an S,L—crit.ical right R-module »

Let s € SL N ’Si.+1 » where i 1s a successor ordinal. Then
R/7sR is S,L__1 -torsion but not SL ~-torsion. Hence, by
equation (1) above, R/sR is not (M -torsion for some M which
is S,L —-critical. Then, M is not S,L -torsion, but for every
non-zero submodule N of M, M/N is Si_ - torsion. HNow, since
5_L = N < ACEH’DD : M is an St-a -critical right R-module >,
there 1is an SL_1 —critical module M which {s not

A’C‘ECH’))—torsion. but M/N is W(ECM’))-torsion for every

non-zero submadule N of M. Then, M is ACECM'D)-torsion—-free,



for, if not, let the WEM’I)-torsion submodule of M be
M1 = 0. Then, by the above statement, )Ldﬁ is

NCECM*I) -torsion, but by the property of torsion submodules,
MVH‘ is ACE(M*DD-torsion-free, which 1is a contradiction.
Thus, M is HKCECH'DD-torsion—-free, but M N is ACECM'DD-torsion
for every non—-zero submodule N of M, i.e., M 1is
HCECH* DD —critical. We say that y (M is Ore-linked to y(M*),

since this link occurs while looking at the construction of

the largest right Ore subset of a multiplicative set.

ORE LINKS BETWEEN PRIME TORSION CLASSES

DEFINITION S5.1: If ¢, 7 € »n—-R, for a right Noetherian ring
R, we say that ¢ is Ore-linked to 7, written ¢ 21 if and

only if o = (MO for some HCTd)-critical right R-module M

NOTE 5.2: Since ¢, T € on—R&, by proposition 1.15(ii1)> we can
find uniform injective right R-modules F and £ such that
o = FD and Tt = (ED. Then xCF> 2> E if and only if
XWF) = (M for some ACED-critical right R-module M. 1.e., if
and only if F = ECM> for some ACED-critical right R-module M,
by proposition 1.195Ciid>. Thus, we may loosely say that F is
Ore-linked to E. We will use Ore links between uniform
injective modules, or, equivalently between the prime torsion

classes cogenerated by them, as the situation requires.
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We note that, given any torsion class ¢, there {is always a
c-critical right R-module [{Gl]l. Hence, given 1t € sn-R, there

is always a ¢ € sn—R such that ¢ A>T,

NOTE 5. 3: A right stable subset of sn—-R and a right clique

are defined in analogy with definition 4.17.

In this chapter, unless otherwise mentioned, links, cliques

and related terms will be with reference to Ore links.

We have the following proposition, which shows how Ore links

obstruct. localisation.

PROPOSITION 5. 4: Let R be a right Noetherian ring. Let

T, ¢ € sn~-R and C be a right Ore set in R. Then, if C = CT N

we have C < Ca for every ¢ e rt cl v under Ore links.

PROOF: If ¢ ~7T, we have o = XM for some Cr -critical

right R-module M. Then, since M |is Pe ~ torsion-free,
T

xXM 2 Or i.e., 02 pc . Since € < Cr » we have
T

< . < <
e~ = pCT <c¢c, l.e., Cpt < Co . By proposition 2.4, C < Ca .

since € is right Ore.

We next note a result that we frequently use.
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PROPOSITION 5.5 [Gl, proposition 19.21]1: If T € sn—R, then a

right R-module M is 7-¢ritical of and only if 7 = (M.

PROPOSITION 5. 6: If R is a right Noetherian ring and

T € sn—R such that Pe = 1, then T has only a self-Ore link.
T

PROOF: If ¢o € »n-R such that ¢ 2>t, then o = .M for some
C‘T—cr.itical right R-module M. Then, by assumption, M is

T-critical and so, by proposition 5.5, 7 = (M2, L.e., ¢ = T.

COROLLARY 5.7: If R is a commutative Noetherian ring, and

¢, T € op-R, then o =t if and only if o = T,

PROOF: Since R is commutative Noetherian, v = (R for
some Q@ € FPnec R and 8CQO = WNCECR/QD)D. Sc by propositions

= KR/ = T.

2.11 and 1.18, we have Pe = PucECcR Q) = Pecd
T

Hence, by proposition 5.6, o = T. Also, if o =1 xCED
where £ is a uniform injective, then by proposition 8.9, E is

r-eritical and so o 2>r.

COROLLARY 5.8: If R is a semisimple Artinian ring and

7z, T € on—R, then ¢ 27 if and only if ¢ = 1.
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PROOF': Since R is semisimple Artinian 1t = (R/Q> for some
Q@ € frnnece R and by corollaries 2.18 and 2.15,
8O = KECR/Q)D. Hence the result follows from the proof of

corollary S.7.

Next we see that generalised injective links and Ore links

need not imply each other.

PROPOSITION 5.9: Let R be a right Noetherian ring. Then a
prime ideal link @ ~»P ned not imply an Ore link between

XR/QD and xCR/P).

PROOF: Let @ ~P with €CP) right Ore. Then by propositions
2.11, 1.18, and corollary 2.195, we have

o =p = p = x(R-P).

C;;CR/P) HCECR/PID P>

Hence, 1if (R ~> xXR’P> , by proposition 5.8, we have
XRQD = x(R/P), i.e., @ = P. Thus, if @Q~>P with @ = P and

CPY right Ore, we cannot have YR QD =W RP).

PROPOSITION 5.10: Let R be a right Noetherian ring. Then an
Ore link between two prime torsion classes need not imply =a

generalised injective link between them.

PROOF: Let R be semisimple Artinian and £ a simple right

R-module. Then, by proposition 4.21, there is no ¢ € snp-R

73



such that o ~>xCE> (generalised injective 1linkd but, by

corollary 5.8, xXE» 1is Ore-linked to (ED.

PROPOSITION S5.11: Let R be a right Noetherian ring and C be
a right Ore set in R such that Pr € on-R. Then, under Ore
links, for any ¢ € ¢, rt cl Pc S SCRecRD. In particular, 1if
8(P> is right Ore and ¢ € 8P, then rt cl »(RP) & S&CRcRD,

where &CRcR) is as in definition 3.1.
PROOF: Analogous to the proof of proposition 4.285.

PROPOSITION S5.12: If R is semisimple Artinian, then for any
two— sided ideal I of R, &6CI> is right stable under Ore

links.
PROOF: Analogous to the proof of proposition 4.27.

PROPOSITION S.13: Let R be a right Noetherian ring and

T € sn—R such that Pe < T. Then there is ¢ € on-R such
T

that ¢ # T and o 1.

PROOF: Since Pe <17, by [(Gl, proposition 18.18]1, there is a
T

Pe -critical right R-module M that is 7-torsion. Then
T

wWHD A>T, but »MHD = T.



PROPOSITION S.14: Let R be a right Noetherian ring and £ be

a simple injective right R-module. Then CED 3)):(5’).

PROOF: Since E is simple, £ is Tt-critical with respect to

any torsion class for which it is torsion-free. Now, by
proposition 2.3, po. < x}(E), i.e., by proposition 2.11,
C
xCED
Opcpy S XCED and so E is #CE)-critical, i.e., 2CE) BB,

PROPOSITION 5.15: Let R be a right Noetherian ring. Suppose
X =4 oo, 7 >y is a stable set of prime torsion classes with

o ~2>T and T ~> being the only links. Then ¢ = 7.

PROOF: By definition of Ore links, o = ZKCHR for some Pe ~
T
critical right R-modul e M1 and * = zCHz) for some Pr ~
o

critical right R-module Hz' By proposition 1.15Ciiid, we

have
o = N M Mis a £ -critical right R-module .
T T
Hence P = xCMl) = ¢ and Pe <=1, l.e, o =T Similarly
T T
T £ o.

PROPOSITION 5.16: If R is a right Artinian ring, then for

every P € Fnec R, we have y(R/F) e xCRAPD.



PROOF': Suppose there is no Ore link y(R/PD gﬁx(R/P). then
XCR-PY) = x(MD for any WHCECR/P)D-critical right R-module M.
Then, we have,

Cucecrpyy = N € D 1 My is HCECRPY)-criticaly .
by proposition 1.15C1i11i>. Now, by propositions 2.3 and 2.11,
P CECRPYD < y(R/P), and since R is Artinian, there are only
finitely many points in sn—-R. Since XR/P> is a point, there
is an W(ECR/PI-critical right R-module H; such that
xﬁkﬁ) = pRP), but by assumption xﬁfﬂ) # YRP, i.e.,.
x(Hi) < yCR/PD. But since R is Artinian, y(R/PD) is minimal
in on-R by {(Gl,proposition 19.161, {.e., we cannot have
2ﬂr§) = HRAPD. Hence there has to be an Ore 1link

WRAP) P> RPY.

PROPOSITION 5.17: Let R be a right Noetherian ring and let
o € on—R. Then the prime torsion classes Ore-linked to ¢
satisfy the incomparability condition, i.e., if =7 2 o, then
any prime torsion class n, such that n £ 7 or m 2 1, cannot

be Ore-linked to <.

PROOF: If T ~>c¢, then 7 = (M for some o -critical right
CU

R-module M. But, by {Gl, proposition 19.211, »(M 1is a



minimal element of F(pc ) ={nesp-R: n2 Pe >, 1.e., all
T T

prime torsion classes that are Ore-linked to v are minimal

elements of FCpC ) and hence cannot, be greater than or lesser
: T

than one another.

PROPOSITION 5.18: If R is a right Noetherian ring and
o, T € »n—R such that o ~»t, then ¢ cannot be strictly

greater than T.

PROOF: By definition of Ore links, ¢ = (M) for some Pc ~
T

critical right R-module M. Hence o 2 Pc - By proposition
T

2.3, O <X 1. As in proposition 5.17, since o is a minimal
T

element of PCpc > , we cannot have o > T.
T

PROPOSITION 5.19: Let R be a right Noetherian ring and E be
a uniform injective right R-module such that the only prime
torsion class Ore-linked to WE) is itself. Then WCED is

right Ore.

PROOF: By proposition 1.135(i1id>, we havé;
Prcey = A MDD @ Mis H#E)-critical >. Now, since x(E) is

the only prime torsion class Ore-linked to (ED, Pycey = xCED
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oy definition of Ore links. So C =
P>

proposition 2.11. Hence, by proposition 2.4, ACED is right

Cocpy = HCEX. by

Ore,

Let us <say that a prime torsion class ¢ @& sn—R satisfies
condition CAY if either
lad there is only a self link to ¢, or

b)) there is no self link to o.

PROPOSITION 5. 20: Let R be a right Noetherian ring and
o € osn—R such that for any T € rt ¢l ¢ Cunder Ore links),

(1> 7 satisfies condition CA) and

(2> there are only finitely many prime torsion clasges linked

to T then Nrertcle HC1d) is right Oreé.

PROOF: Let o = XL for a uniform injective right R-module
£, by proposition 1.18Ci)D. By propositions 2.3 and 2.11,
xWKED 2 P e B> and by proposition 1.15(1iii>, we have

o e € M : Mis HE>-critical Y. By assumption CiD,
there are only finitely many XM 's on the right hand side of
this equation. If 3(E) does not have a self-link, then since
¥wWEY is a point, there is an A#CED-critical right R-module ia
such that (D > :ﬁfﬁ). If WED has only a self-link, then
the result follows form proposition 9.19. Similarly,

considering the prime torsion classes Ore-linked to zﬁra). we



can find an J(rg)—critical right R-module M; such that
x{f&) > zﬁf&). Proceeding likewise, we get a descending
chain CEY > ZCHR > xCMz) b 2P in rt ¢l »EY and this
chain is finite since, by I[Gi,proposition 19.171, on—-R
satisfies the descending chain condition. Thus we get a
finite chain y(ED > 1{)&) > z(fg) > e, > xCH;). C(for some
nd) and XCMQ> will have only a self-link (since, otherwise,
the chain will continue). By propeosition 5.19, «VCHn) is
right Ore and by note 2.2 and proposition 2.11, JtH;) € MNED,
and so, by propositions 8.4 and 2.11, A(r%) € ACT) for every

T €rt ¢l xXEY. Hence, AT = MHn) ’

we have nrertclxcE)
which is right Ore.

PROPOSITION 5.21: If R is a right Noetherian ring and
o € on~R such that rt ¢l ¢ is finite and every 7 € rt ¢l o

satisfies condition CAY, then Nertelo ACT) 13 right Ore.

PROPOSITION S.228: Let R be an FBN ring. If o € »n—-R, such
that every 7 € rt ¢l o satisfies condition CA), then the set
ntert,clo' ACod is right Ore.

PROOF: Since R is FBN, snp-R = ¢ xCR’P) : P & Snec R . Let

T = YXRQ. Then, if An n £ yYXRQ, there is n e T such

€z
that n = WRQ), for any £ € JTew-R, by [Si, lemma 2.41.

The proof is then similar Lo that proposition %.20.



DEFINITION 5.23: Let R be a right Noethérian ring and let X
be a non-empty set of uniform injective right R-modules. We
say that X satisfies the intersection condition if, whenever
I is a right ideal of R which contains an element of AED for
each &£ € X, then I contains an element of NCXO, where

HC = Neex HCED .
The following is our counterpart of (J, theorem 7.1.4]

THEOREM S.24: Let R be a right Noetherian ring and let X be
a set of uniform injective right R-modules, right stable
under Ore 1links and satisfying the right intersection
condition. Then

Ca) If N is an #C)XD-critical right R-module, then ECND € X.

(b A#CXO is right Ore.

PRQOOF:

Cad) Suppose Lthat for every £ € X, N is WA E)-torsion. Then
for every n € N, there is p € ACED) such that np = O, i.e.,
r-ann(n) N ACED) = @ for each E e X. Then, by right
intersection condition, r-ann(nd N ACXO = O So N \is
HCXDO -torsion, which is a contradiction, since N is
HCXO —critical. Hence, there is £ & X such that N is not
HCE)-torsion. Now, if N1 is a non-zero submodule of N, then

N/N1 is ACXDO-torsion, i.e., N/hl1 is nE‘ex ICEib-torsicn.
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i.e., for each E‘ e X, N/N1 is .A’(E‘)—torsion. Hence, for the
above E in X, N’/N‘ is WHED-torsion for each non-zero
submodul e N1 of N, but N is not AW CED-torsion, i.e., N is
HCED)-critical, i.e., NDE. Now, E @ X and X is right stable

under Ore links, so N e€ X.

Cbd Let ¢ € A4CXD. Assume that R/cR is not W (XD-torsion.
Then let M be a submodule of RcR maximal with respect to the
property that N = (R/¢cR /M is not N)XO-torsion. Then N is
H#CXO -critical. By Cad, there is E e X such that ECAD DE,
Thus ECND € X. Since ¢ € (XD = Nrex HMF), we have

¢ € ACECNDD, i.e., ann c = Q0. Hence ann,, ¢ = O. Now, N

ECND N

is a homomorphic image of R/¢cR, say, f : R’¢cR —> N such
that f is a surjection. Let fC1+cRD = x. Since R¢cR is
cyclic, N 1s c¢yclic and is generated by x. Hence x » O.
Then fCc+cR) = x¢, and c+cR = 0, but x¢ ®# O since ann, c = o,
which is a contradiction. Hence, by proposition 1.17, W#CXO

is right Ore.

PROPOSITION 5.25: Let R be a right Noetherian ring and let
X = ¢, T > be a stable subset of on-R such that the only

link to 7 is ¢~~>71. Then ACXD is right Ore.

PROOF: Let T = xCEzb and o = z(E‘) where E‘ R E‘z are uniform

injective right R-modul es. Then xC Ezb = H‘D for some
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.AfCE?i)-critical right R-module Hg’ and xCE‘) = x(Hz) for some
J(E;)—critical right R-module H;. Then by propositions

1.15C114>, 8.3 and 2.11, PycE>y = zCE}) < xCE;). Hence
1

ﬂtE}) < ﬂtE;). Then, ACX) = JtEi) N JtEé). Thus X satisfies
the right intersection conditioon and so by proposition 5. 24,

ACXD is right Ore.

SCOFPE FOR FURTHER WORK

So far, we have seen how torsion classes can be used in Ore
localisation and related areas. Now, we discuss some
problems that arose in the above study and which are still

unsol ved.

cad As already mentioned, in the case of prime ideals, the
generic regularity condition has an important role in the
study of localisation. It would be interesting to see the
connection between the generic regularity condition
Cdefinition 3.11) and Ore-localisation in the

torsion-theoretic case.

Cb) We have defined two types of links between prime torsion
classes. Though the direct connection between the two is
ruled out C(propositions 5.9 and 8.10), it is quite possible

that they are related Lo each other in some way.
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Ccd) By proposition $.16, we see that 1f R is an Artinian
ring and ¢ € sn-R, then ¢ 2 o. Now, let Q, P € Snec R such
that (R r'&)x(R/P). 1.e., YWXRQ = XM for some NACECR/P)
C=.A’(EP)')— critical right R-module M. By note 5.2, EQ = BECMD.
Let I = JCR) be the Jacobson radical of R. Then I is a

semiprime ring and so BRI is a semisimple Artinian ring.

' = » o r =
Now, let £ anng I, F ann, I, M ann,, Q@ and
P Q
A = AC annEP )R/I' Then, we have, (F )R/I = ECM )R/I ., by
(GW, exercise 4E]. Since E’', F' are uniform injective

modules over a semisimple Artinian ring, they are simple and

so, F' = M. Hence, M.R/I is either W -torsion or W'-

torsion-free. Ir H’R/I is A" -torsion-free, then it |is

#*—critical and hence F* >E®* as R-/I-modules. By corollary

5.8, F* = £, L. e., ann I = ann I. By (J, proposition

EQ EIP
4.4.31, ann I = ann Q and ann I = ann P, 1.e.,
EIQ E:Q E:P E.‘P
annE Q = annE £ ., Hence, ann(annE QO = arm(annE P, {.e.,
Q P Q P

Q@ = P i.e., the Ore link »XR/Q '9'>x(R/P> is a self-link.
There is also the case when M’R/I is A’ -torsion. It would be

interesting to know what happens then.

(dd  If R is a right Noetherian ring, then any finite set of
prime ideals satisfies Jategaonkar’s right intersection

condition (J, proposition 7.2.41). From the proof of this
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proposition, 1t can be seen that 1in a semiprime right
Noetherian ring, any finite set of tame injectives satisfty
the right intersection condition as in definition $.23. More
generally, if X is a finite set of indecomposable injectives
over a right Noetherian ring, then does X satisfy the right

intersection condition?

(ed An ideal P in a ring R is right primitive if P = anng A

for some simple right R-module A. If X € Sfnec R, we =say X is
a classically right localisable set if (XD = Neex BCPY is a

1

right Ore set and the localisation Rx = RECXD ° has the

tfollowing properties:

1> Rx 7’ PRX is a simple ring for all P e X.

22 Every right primitive ideal of Rx has the form PRX for
some £ < X.

3 Every tfinitely generated right RX -module which is an

essential extension of a simple right R\( -module is

Artinian.

A set X of prime ideals of R 1s salid to satisfy the
tncomparability condition if the members of X are pairwise
incomparable, i.e., no member of X is properly contained in

any other member of X. Then, by (J, Theorem 7.1.51, we have

24



THEOREM: A non-empty set X of prime ideals in a CrightD
Noetherian ring is <Crightd? classically localisable 1if and
only it it is Cright) stable and satisfies the (right) second
layer condition, the (right) intersection condition and the

incomparability condition.

It would be interesting to get an analogous definition of a
classically localisable set of uniform injectives Ccor,
equivalently, of prime toréion classes) and to get a torsion-

theoretic version of the above theorem.
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